
43

BAIKONUR
Internet/Intranet Suite

Application Developer�s Guide

44

Introduction

BAIKONUR Intranet Suite includes the Web Application Server, the HTML Controls
Library and additional tools. It enables the developer to create application software
in Internet/Intranet technology. An Intranet application is an application that utilizes
the technologies and software tools that had originally been designed to access
data in Internet. The wide proliferation of Internet technologies offers solutions to a
number of complicated problems that challenge the developers of almost any
application software, be it a rudimentary program or an elaborate corporate information
storage/retrieval system. Among the most important advantages that Intranet
technology offers, the following clearly stand out:

a) It provides an easy and inexpensive way of gaining access to remote data. Internet
is a global network, and therefore you don�t have to use a long-distance or leased
telephone communication line to access a database in Moscow from, say, London
� an outlet to Internet is all you need to do that.

b) It allows the client to use virtually any operating system and any computer - any
Web browser on any platform can be used as a client program. No additional
software download is required.

c) It makes administration easier. Only one copy of Intranet application running on
the Web is required.

d) It permits many users to simultaneously work with data on an SQL server even if
the number of its user licenses is limited. An Intranet application can supply data
for many users by utilizing only a single connection to a database. A country-
wide ticket reservation and booking system is a vivid example of that.

e) It enables the developer to easily and quickly create HTML pages that can represent
most up-to-date data, even in real time (for example, a HTML page may contain
the latest stock exchange quotations).

Due to the use of Borland Delphi (or C++ Builder, or JBuilder), applications of this
kind can be developed in a visual environment and in as short a time span as
conventional application software.
To build software systems in Intranet technology, you need the following:

� A Web browser as a client application. There is now a horde of Web browsers on
the market for practically any software and hardware platforms (such as Netscape,

45

Mosaic, Lynx, Internet Explorer, Ariadna and so on). More than that, a Web
browser can be built into a client application. Delphi , for one, incorporates a
library of components allowing you to do just that. Senior versions of BAIKONUR
(starting from BAIKONUR Enterprise) include components allowing the developer
to create client applications that do not use the Hypertext Markup Language
(HTML).

� A Web server that can transmit data from an Intranet application to the client and
backward. We suggest that you use BAIKONUR if you want to be able to utilize
the Baikonur HTML Controls library most comprehensively. BAIKONUR is a Web
server that, apart from supporting typical Web-server functions, can also function
as an application server. BAIKONUR can launch the necessary application on
the client�s request, and then supervise and manage the transmission of data to/
from the client.

� An Intranet application software. To facilitate the building of such applications in
Delphi or C++ Builder, we have incorporated a Baikonur HTML Controls Library
into our BAIKONUR Intranet Suite.

The Intranet application development technology which BAIKONUR offers can be
utilized both for developing closed corporate information systems and building an
open Internet Web site or expanding its functionality. This technology and the latest
Internet developments (Java, ActiveX, etc.) are not mutually exclusive, but rather
supplement one another.
Apart from the development of conventional Internet/Intranet applications, BAIKONUR
can also be employed to solve non-trivial (from the point of view of Internet) tasks,
such as data replication, remote monitoring, organizing a print server, etc.

46

Chapter I

This chapter presents an overview of the general principles of developing applications
for BAIKONUR, and some of issues related to the use of HTML and browsers.

What is BAIKONUR?
BAIKONUR Web Application Server, as its name implies, is a two-faceted software
package - it is a usual Web server and an application server all in one.
The Web server is needed to perform the usual functions of sending HTML pages,
images and other resources on a client�s (browser�s) request. In addition to that, the
Web server supports CGI and ISAPI interface technologies. You can use BAIKONUR
to build a conventional Web site. See �BAIKONUR. Getting Started� for details on
how to install, start-up and administer a Web server.
The application server is needed to organize an interface between the user and the
application launched on the server upon receipt of a corresponding request. This
request is essentially the URL specifying the name of the program (called the Web
application) to be launched. The remote client can use any Web browser that supports
the HTML protocol (Netscape Navigator, Microsoft�s Internet Explorer, etc.). The
application server is responsible for launching the appropriate application on the
client�s request, passing data from the client to the application and backward, and
closing the application.
To exchange data between the client and application, use is made of the HTTP
protocol. Dialog screen forms are described with the help of the HTML (Hypertext
Markup Language), which permits the use of interactive control elements, such as
single-line and multiple-line text input/edit fields (Edit, Memo), button controls
(Button), view lists and drop-down lists (ListBox, ComboBox), and others. Once it is
launched in response to a client�s request, the Web application builds an HTML
script describing the user dialog, and passes it to the client. The user performs the
necessary actions (views and modifies data in the input fields), and sends the modified
data (generated by the browser after the user clicks a submit-type button) to the
application. The application parses and saves the incoming data, builds a new HTML
script and sends it back to the client, and so on. The HTMLPage and HTMLControl
components from Baikonur HTML Controls Library are responsible for such functions

47

as parsing of the incoming data, generation of the HTML script based on the form�s
current status, and transfer of data between the application and the server. All this is
done automatically, so that the application developer doesn�t normally have to interfere
into this process.
The client-application interface scheme outlined above is very reminiscent of the
CGI or ISAPI, but with one important exception. The Web application does not stop
functioning after data is sent to the client. Instead, it retains its status in expectation
of a next user-generated request. In fact, the user works on a remote terminal and
application is located on the server. The user can have several applications launched
on the server and work with all of them simultaneously.
There exists a somewhat similar interface standard (known as FastCGI), which
services all incoming requests within the framework of a single process, but does
not terminate it after the user breaks the connection. BAIKONUR server can open
an arbitrary number of processes and direct information flows from the client to the
appropriate process or thread. In this sense, BAIKONUR server solves the most
general (and therefore most complicated) remote user-to-application interface
problem more efficiently than most existing approaches.

Building of Web applications
For developing BAIKONUR applications in Delphi (or C++ Builder), use is made of
Baikonur HTML Controls Library. After setup, the components of that library are
located on the �HTML�, �HTML DB� and �HTML Add� pages of the Components
Palette. The process of connecting the components library is described in the
�BAIKONUR. Getting Started� manual. A detailed description of these components
can be found in Annex À.
The following Section gives an overview of the basic principles of building Web
applications. Specific solutions are given in the �Examples� section.

Types of Web applications
There are three types of Web applications:

� A single-user Web application, whereby a new instance of the application is
launched for every user.

� A multiuser Web application, whereby only one instance of the application is
launched, but its users do not interact with one another in any way.

� A shared Web application (a variation of the multiuser application), whereby all
users can work together in one and the same dialog.

The simplest type of an Web application for a developer is the single-user one,
because the technology employed to create it is basically no different from that of
creating a conventional application program. For example, it can be a program for
viewing and editing data, a program for gaining access to a private bank information,
etc. From the point of view of the developer, everything looks as if all the users were
working concurrently on a single computer, each with his/her own instance of the
program. However, the simplicity of such an approach is fraught with the problem of
computer system resources (since the number of program instances that can be

48

launched simultaneously is limited). Therefore we have provided a capability of setting
the maximum number of simultaneously launched programs in the BAIKONUR
application server�s administration utility.
The problem of limited system resources can, to a certain extent, be solved by
organizing a multiuser-type Web application (although in that case the programmer
must himself ensure that dialog forms would be dynamically built for each user
during his/her work session with a program). The maximum number of users of a
multiuser Web application increases 10- to 20-fold. Some examples of building
multiuser and shared applications are given further in the text.

General Tips of Building an Web application

1. The application�s main form must contain a HTMLControl component responsible
for the interface between the application and the BAIKONUR server.

2. On every form of the application there must be a THTMLPage component
responsible for generation of the HTML script describing that form.

3. You should use Baikonur HTML Controls library components as the objects for
building the user dialog.

4. You can use standard Delphi (or C++ Builder) components (�Data access� page
of the Components Palette) to provide access to data.

5. You can use any Delphi components in the program, but they will not be visible
in a browser. It therefore makes sense to employ only invisible components
(such as TTimer or TIBEventAlerter). Besides, it is good practice to employ
TPanel when designing a form.

6. An application may contain more than one form, but it cannot be an MDI application.
The forms should not be modal (i.e., you can�t use ShowModal). It is desirable
that once a form is closed, the focus is explicitly returned to the calling form, for
example:

procedure TForm2.FormClose(Sender: TObject; var Action:
TCloseAction);

begin

 Form1.SetFocus;

end;

Form Design Tips
Since the onscreen appearance and placement of objects on an HTML page cannot
be arbitrary (they are determined by the Web browser), a Web-browser page can
differ substantially from the corresponding Delphi form.
The basic algorithm of designing an HTML page is as follows:

� If the top edge of one object is located above the bottom edge of another object
on the form, the two objects will be located on one and the same line on the

49

HTML page. In this version of HTML Components Library, the object located
higher on the form will appear left-most on the HTML page.

� The vertical spacing between objects is calculated based on the size of the
form�s current font, and equals an integer number of lines.

� The horizontal spacing between objects equals an integer number of character
positions and is determined by the control�s Distance property.

Considering that an HTML page is essentially a set of lines, we recommend that the
following technique be used to create an application interface. First, a panel (TPanel)
is placed on the form and top alignment is specified for it (Align=alTop). Then, the
objects that must be located on one and the same line on the HTML page are
placed on the panel and are left-aligned (Align=alLeft). If necessary, the HTMLRuler
can be placed between the panels.
In this version of BAIKONUR, a design-time form preview capability is not provided.
However, you can still obtain the HTML script for a form at design time by double-
clicking on the HTMLPage object, saving the script to a file and then viewing it from
a browser.

Controlling the Application�s Behavior
The behavior of an Web application is controlled by the HTMLControl component,
which must be located on the application�s main form. By appropriately setting the
properties of that component, you can specify whether the Web application is a
single-user or a multiuser one, set its timeout value, etc.

� The FinalURL property determines the HTML page that will be sent to the user
when the given application is closed. The HideApp property determines whether
the application will appear in the Task Bar at start up. If the application and all its
screen forms are �hidden� (using the HideForm property of the HTMLPage
component), the user will not be able to switch from it elsewhere by using the
<Alt>+<Tab> accelerator key. Besides, the application will not appear on the
applications list in the Task Manager (although it will show in the list of processes).
If BAIKONUR Web Server works as a Windows NT service, the application will
not appear on the screen in any case. It will only be visible onscreen when
working under Windows 95 or when BAIKONUR is started up in the debug mode.

� The MultiUser property indicates whether the service is of the multiuser type. If
this property is set to False, a single-user application is implied (whereby a
separate instance of the program will be launched for every user). If the same
property is set to True, the application will be a multiuser one, with only a single
instance of the program launched for all users. The way the interface between
such a program and its users can be organized will be discussed further in the
text. The setting of the MultiUser property has a meaning only at program startup.
Changing this property at run time will have no effect on program execution.

� The TimeOut property determines how long the program is allowed to idle (in
seconds) before it will be closed. If TimeOut=-1, the application will not be closed.
If the TimeOut property is set to 0 (zero), the application will start up, post one
screen form to the user, and terminate. If the case of a multiuser application, a
timeout event for one of the users will result in that the latter will be merely
deleted from the list of users working with this specific application. If it is the last
user on the active users list, the application will terminate.

50

Controlling a Form�s Behavior
The onscreen appearance and behavior of a form is determined by the HTMLPage
component.

� You can specify a background image (in GIF or JPEG format) in the BackImage
property for the page. If it is not specified or an incorrect file name is specified,
the page background color will default to the clrBackground property.

� The CheckFrame property indicates whether the form�s actuality is to be checked.
By default, the Web application assigns a unique number to each page it sends
out. Each time a next user-originated request is received, a check is made of
whether it is associated with the current form. If not, an error message is posted.
An error situation may occur if the user clicks the �Back� button in his/her browser
to go back to the previous page or a page belonging to another application, and
then accidentally clicks a Submit-type button on that �obsolete� form, thereby
originating a wrong (in the context of the current program) request. Normally, the
default value of this property needs not be changed (see �Browser�s �Back� Button
and Page Caching� in Chapter II).

� The HideForm property determines whether the screen form will be hidden.

� The Multipart property determines the document�s type. The page being sent out
will be treated as a type �text/html� document if Multipart=False, and as a type
�multipart/mixed� document if Multipart=True. �Multipart/mixed� means that the
application can send out a page to a user without waiting for that user�s request.
If necessary, you can use the SendMultiPage procedure of the HTMLControl
component to have a new page sent out. Such a page will be received by all the
users who are currently working with it in a browser and did not break the
connection.

IMPORTANT. At his time, documents of the �multipart/mixed� type are supported
only by Netscape Navigator 2.0 and above.

� You can use the Title property to specify the text to be displayed in the browser�s
caption.

MultiUser Web applications
By default, a Web application will be a single-user one, because the MultiUser
property of the HTMLControl component defaults to False. In a single-user service,
a separate instance of the program is launched for every user.
A Web application will be a multiuser one if you set the MultiUser property of the
HTMLControl component to True at design time. All users of a multiuser Web
application will be working with a single instance of the program. There are two
general kinds of multiuser services, whereby:

� all users are working with their own sets of screen forms and are independent
from one another.

� all users are working in one common dialog and can interact with one another.
Let us consider the first method of building a multiuser service. Apparently, this
method calls for the use of dynamically created forms.
The program�s main screen form will, of course, be created automatically, and it is

51

this form that all the users accessing your application will normally start working
with. You must therefore take this into account when designing your main form. As
far as possible, you must not place any input fields on the main form or, if you do so,
make sure that they are returned to their original state once an HTML script is sent
to the user. For example, the main screen form may contain only a menu with type
HTMLButton or HTMLImageButton buttons. If the main form does include fields for
the input of some information (for example, information about the user), it is good
practice to ensure that these are returned to their initial state after the received
information has been processed and the appropriate HTML script has been generated.
You can use the OnDataSend event of the HTMLPage component to achieve this.
Thus, the principal requirement that the main form of a multiuser-service should
meet consists in that all its input fields (if any) must return to their initial state after
the appropriate data is sent to the user.
Secondary screen forms of the program must usually be created dynamically (a
secondary screen form may be created automatically as well, as long as the above
requirement to the main form is met). For example, if clicking on a button on the
form must take the user to another form, the code could be as follows:

procedure TForm1.HTMLButton1Click(Sender: TObject);

begin

 Form2:=TForm2.Create(Self);

 Form2.Show;

end;

Note that you must use the Show method rather than the ShowModal method.
Once a secondary form is closed, it must be destroyed. It is also desirable that the
input focus be set to the calling form immediately after that:

procedure TForm2.FormClose(Sender: TObject; var Action:
TCloseAction);

begin

 Action:=caFree;

 if Owner is Tform then

 (Owner as TForm).SetFocus;

end;

Let us briefly discuss the second method of building a multiuser service, whereby
users can concurrently work with one and the same form. If program logic requires

52

that all users currently working with a given form must see the changes made in the
program by one of the users, it would be good practice to employ the �multipart/
mixed� document type (see the Multipart property of the HTMLPage component).
Multiuser services of this type are obviously still fairly rare. They are mostly employed
for performing such tasks as organizing server chats, viewing stock exchange
quotation, viewing database HTML pages, and the like.

User�s Interface Limitations
To the programmer, building an Web application is no different from creating a
conventional application in Delphi, although there do exist a few limitations. These
limitations are determined by certain specific features of the HTTP protocol and the
HTML standard.

Events
The main limitation is that the browser generates no events other than a Submit-type
button click event. Consequently, all changes made by the client in the form�s control
elements are passed to the application simultaneously when a Submit-type button
is clicked. Besides, the order in which objects are updated in the application can be
arbitrary. The only sure thing is that the button will not be clicked until after all other
objects are updated. You must therefore create such an application whose status
would not depend on the order in which objects on the form are edited.
In the browser, the user interface turns out to be poorer in its functional capabilities
compared to the commonly familiar interface of the programs written in Delphi. Thus,
most of the existing browsers do not support �drag-and-drop� capability, cannot
respond to mouse- or keyboard-generated events, etc.
You can enhance your interface somewhat through the use of Java scripts, Java
applets or ActiveX objects. As far as Java scripts are concerned, they are supported
by this version of the library. The other extensions can, in principle, be used now as
well, but subsequent versions of the library will have special controls built in to
support these extensions.

Forms
You must also take into account the fact that only a single form can be displayed in
a browser at a time. Your application can be a multi-window one, but in this version
of the library you cannot use modal screen forms (ShowModal). And, of course, you
must preclude the use of standard dialogs (such as MessageDlg or ShowMessage)
and objects from the «Dialogs» page of Delphi Components Palette, because no
HTML scripts are generated for them. Otherwise, the client will have no way of
knowing that a screen form of this type has been opened in the application, and will
not be able to close it.
The placement of items on the form cannot be arbitrary either, although it is possible
to build fairly diverse pages by using the HTML table tools (HTMLTable component,
the <TABLE> tag).

53

Components
There are substantial differences between HTML objects and Delphi�s standard
controls (in the currently available browser versions):

� text font control capabilities are less flexible;

� conponents have no mouse- and keyboard-driven events;

� there are no customary drop-down or pop-up menus;

� there are no owner-draw components.
The peculiarities of the user-to-application interface via a browser have a bearing on
the way data-aware components are functioning. In the current version of the library,
data is updated as follows. The user may edit the contents of the input field
(HTMLDBEdit, HTMLDBMemo, HTMLDBCheckBox) and click a submit-type button.
The modified data will be sent to the application and saved in the database if:

� the data set is editable (i.e., the ReadOnly property for TTable is set to False or
the RequestLive property for TQuery is set to True);

� the field is allowed to be edited (i.e., the ReadOnly property of the input field
associated with the given element is set to False);

� the input data matches the field type (otherwise, an error message will be
generated);

� the new data does differ from the old one;
If the data set is in the data browse mode (dsBrowse) at the instant of arrival of fresh
data, it will be changed to the edit mode (dsEdit).
HTML tools are inadequate to organize verification of the input data on the client�s
side. The user may therefore input, for example, an incorrect date. An attempt to
save such a date will cause an exception, and a corresponding message will be
posted to the client. Verification of user-input data can be organized by utilizing
JavaScript capabilities.
In most cases, the HTMLNavigator component is employed to navigate through
tables, the process being as follows. The user modifies data in the input fields and
clicks the �Refresh� button or �Next� button. The forms� description is passed to the
application and a check is made of whether or not the contents of the input fields
have changed. If they have, the data is saved in the table.

Handling of Exceptions
All unhandled exceptions occurring between the receipt of a user request and the
sending of a response are intercepted and processed by the HTMLControl component.
By default, an HTML script with an error message is generated. The default error
message appears as shown in Figure 1.

54

Figure 1. Error Message

As an application developer, you can interfere into the exception handling process in
two ways: (a) with the help of a try ... except construct, or (b) by creating an
OnException event handler of the HTMLControl component. With such an event
handler, you can send an HTML script with a custom error message to the user, or
perform some actions before simply returning the current form�s script.
To have a custom error message sent as an HTML script, you can use the
SendErrorScript procedure of the HTMLControl component, as shown in the following
example:

procedure TForm1.HTMLControl1Exception(Sender: TObject;
E: Exception);

var

 s : string;

begin

 if E is EDivByZero then

 s:=�Division by zero.�

 else

 s:=E.Message;

 HTMLControl1.SendErrorScript(s);

end;

55

To perform certain actions and then send out the current form�s script, you can write
something like this:

procedure TForm1.HTMLControl1Exception(Sender: TObject;

 E: Exception);

var

 s: string;

begin

 StatusLabel.Caption:=E.Message;

 s:=HTMLPage1.HTMLPageScript;

 HTMLControl1.SendResource(@s[1], Length(s), �text/
html�);

end;

Debugging of Web applications
This version of the library does not support Web application run-time debugging
capability from Delphi�s integrated debugging environment (although this capability
will undoubtedly be built into subsequent versions). You can, however, debug
applications executed under the control of BAIKONUR with the aid of Borland�s
Turbo Debugger. To do so:

� Check the �Include TDW debug info� option on the Linker page in the project�s
settings.

� Compile your application.

� Run the application by issuing a request from the browser.

� Start the Turbo Debugger.

� Attach to the running program by checking the TDW option in the File|Attach
menu.

Application debugging can be performed in Windows NT (when BAIKONUR operates
in the debug mode) or Windows 95 environment.
While debugging an application, it is good practice to view the data received from
and sent to the client. The received data (which also includes the HTTP header) is
accessible in the OnReceive event handler of the HTMLControl component. The
sent-out data is accessible in the OnSend event handler of the HTMLControl
component.

56

Browser-Specific Features
Different HTML browsers display one and the same differently and support HTML 2.x
and 3.x standards in different ways. Some browsers have their own HTML extensions.
Therefore we recommend that you check your applications with various browser
versions.
This version of Baikonur HTML Controls Library supports the use of �multipart/mixed�
type documents. Documents of this type are currently supported only by Netscape 2.0
and above.
Delphi HTML Controls library may not contain some element which a certain browser
does support. For instance, there is no <marquee> element supported by Microsoft�s
Internet Explorer in the library. In order to place such a tag on a form, you must use
the HTMLTag component as follows:
Place the HTMLTag where you need it on the form.
Specify �<marquee> Some scrolling text </marquee>� in the Caption property.
In MS Internet Explorer, this element will be displayed as scrolling text.

57

Chapter II

In this Chapter we analyze a number of examples illustrating the techniques employed
to develop applications and control their behavior at run time.

Running and Closing of Application,
Passing of Parameters

Running of Application by the User
The user can run an application by specifying its URL in the browser, for example
as: http://web_serv/demo.exe. Obviously, this is not very convenient for the end
user. The best way is to place a reference to that application on one of the static
HTML pages. The application would then be launched when the user clicks on that
reference with the mouse.
One and the same application can be called for execution with the use of either the
application�s name or its alias. For example, if the alias for the DEMO.EXE program
is specified as baik_demo.html=c:\baikonur\home\demo.exe in the server settings,
an alternate way of running it would be to specify its URL as http://web_serv/
baik_demo.html.

Passing of Parameters to the Application
You can pass certain parameters to an application at start-up time as well as at run-
time. Since an application can be a muiltiuser one, the passing of parameters is
performed in a somewhat unusual way. To have a program called with parameters,
you must specify them in that program�s URL. For example, you can specify http:/
/web_serv/demo.exe?params=/p+/c+qqq+/D%3a90 (which will be equivalent to
launching the demo.exe program from the command line by specifying demo.exe /p
/c qqq /D:90). That is, you append the application�s URL with the question mark �?�
and the �params=� keyword followed by the parameters proper. Note that all space
characters should be replaced with the �plus� character (�+�), and any other
�dangerous� characters� with their hexadecimal equivalents. For example, the colon
character (�:�) must be replaced with %3a.

58

It is important to realize that parameters in an application are accessed via the
Params property set for a given user, and NOT via the ParamCount and ParamStr
variables. For example, if you specify
HTMLLabel1.Caption:=HTMLControl1.CurrentUser.Params somewhere in the
application, then HTMLLabel1 shall point to the string �/p /c qqq /D:90�.
You can specify an individual set of parameters for every user.
IMPORTANT. Parameters for an application can be specified not only at program
start-up time, but at any time during program execution as well. In the latter case,
the value of the Params property for the user will be changed to match the newly
specifuid parameters.

Closing Application
You can close a program from the browser by specifying �.!� after the �.exe� extension
in that program�s URL. For example, the URL specified as http://web_serv/demo.exe.!
will close the demo.exe application. If the application has �hung up� and does not
respond to any requests, you can still terminate it by issuing an URL like http://
web_serv/demo.exe.!?terminate - this will have the same effect as removing the
task via the Task Manager by clicking the �End Process� button.
You can also place a reference with a similar URL (http://web_serv/demo.exe.!) on
the application�s form; clicking on that reference will likewise terminate the task.
Besides, an application can be closed on the click of a button if you specify the
following in that button�s OnClick event handler:

procedure TForm1.HTMLButton1Click(Sender: TObject);

begin

 HTMLControl1.UserClose;

end;

When an application is closed, a screen form with a message informing the user
that the application is closed (default final page) will be posted to the user:

59

Figure 2. Default Final Page

It is often desirable to change the application�s default termination behavior and
display some static HTML page on the screen instead. If some URL is specified in
the FinalURL property of the HTMLControl component, then a corresponding page
will be show in a browser after closing application.

Termination of Task on TimeOut
The HTMLControl component includes a TimeOut property. Setting this property to
a positive value greater than zero will lead to automatic termination of the
corresponding application for the �idling� user. TimeOut is essentially the period of
time (in seconds) elapsing after the most recent instant of user access to the
application. Once the TimeOut period expires the application automatically deletes
the user information from memory (although this does not result in the release of
system resources captured by the user, if any). If the user is the last one to access
it, the application will be closed. If subsequently the user issues a request to the
application closed on timeout (for example, by clicking a button on the form of the
application that has already been closed), he/she will receive the following error
message:
Clicking the �OK� button will take the user to the application�s main form, and he/
she will have to start work
from the very beginning. You can individually set timeout value for every user in
application by using TimeOut property of TuserInfo class.
We shall discuss how an application is closed on timeout and how system resources
are released in greater detail later in the text, while describing a sample multiuser
SQL server application.

Deleting the User From Application
Apart from the normal program termination technique described above, there is yet
another method of deleting the user from the application (i.e., closing the application
for the user). The conditions under which this takes place are determined by the
program itself. Thus, you can have a user �disconnected� from the application if he/
she violates certain pre-defined rules (for example, exceeds the allowed time limit of

60

using the program). For deleting a user from the application, use is made of the
DeleteUserByID method of the HTMLControl component . For the user, this will
appear as a timeout. You can call this method at any time except while the incoming
request is being processed (most frequently, on timer). In the latter case, use should
be made of the UserClose method.
Like the UserClose method, the DeleteUserByID method merely deletes information
on a specific user from memory, but does not release the resources captured by
that user (the developer himself must see to it that the resources are freed).
Here is an example of the �delete user by ID� method:

procedure TForm1.Timer1Timer(Sender: TObject);

var

 i: Integer;

begin

 with HTMLControl1 do

 for i:=0 to UserCount-1 do

 if TimeLimitExceed(Users[i]) then begin

 FreeResource(Users[i]);

 DeleteUserByID(Users[i].ID);

 end;

end;

Designing a User Interface

Placement of Components on a Form
The way components are placed on a form at design time is conditioned by the
peculiarities of the Hypertext Markup Language. Since an HTML page can be thought
of as a set of lines in which individual items follow one another, these lines can be
�emulated� at design time by means of conventional Tpanel panels. The panels are
placed on the form and are top-aligned (Align=alTop). The components are placed in
a panel and are left-aligned (Align=alLeft). This guarantees that in a browser these
components will be placed exactly as they had been arranged at design time. The
horizontal distance, or spacing, between individual items (in character positions) is
determined by the Distance property of each visible HTML component.

61

An example of how a form can be built following this algorithm can be the DBTOTAL
program - a form designed to represent the BIO_GIF.DB table. The form�s view at
design time is shown in Figure 3.

Figure 3. View of Form at Design Time

The same form will appear in a browser as follows:

Figure 4. View of Form in a Browser

There are, however, certain alignment peculiarities in situations when an image must
be placed on a form. Graphic objects of the HTML components library have an
AlignImage property, which determines the alignment of the image on the page
relative to its other elements. In the above example, that property for the HTMLDBGIF
component was set to aiDefault. If you set this property to aiRight, the page will
appear as follows:

62

Figure 5. Image Alignment

Controlling the Appearance of Text on a Page
The way text will appear on a page is to a great extent dependent on the browser.
Although the HTML includes a large number of tags designed to control text properties,
not all of them are supported by different browsers. Besides, the name of the font
and its base size are normally conditioned by the browser�s current settings. You
can specify a different font name on an HTML page when FontFace property of
HTMLPage component is True. But it leads to increasing of HTML script size.
When working with Baikonur HTML Controls library�s text components, you can
specify:

� font type (proportional or monospaced);

� font face (when FontFace property of HTMLPage is True)

� font color;

� font size;

� font style (bold, italic, underlined, strike-out).
The text components include HTMLLabel and HTMLDBText, HTMLMemo and
HTMLDBMemo (when Style=msText), HTMLCheckBox and HTMLDBCheckBox,
HTMLRadio, HTMLList, etc.
The font of a component is assumed to be the base font if it matches the form�s font.
If that font�s properties differ in any way, then a corresponding tag must be placed on
the HTML page.
The font type is determined by the Preformat property of the corresponding
components. If you set this property to False, the browser will display the text in
proportional font and �autoformat� it (i.e., delete all �unnecessary� white spaces and
line breaks and adjust the text so that it would fit the width of the browser�s screen
page). If you set the Preformat property to True, the browser will display the text in
monospace (fixed-width) font, and no �autoformatting� will take place.
Figure 6 shows how preformatted and non-preformatted texts will appear on a form
(the TOTAL program):

63

Figure 6. Text Formatting Examples

The font color is determined by the components� Font.Color property. Note that
some browsers have no color font support capability.
The font size is determined by the components� Font.Size property. However, the
HTML supports only 7 font sizes. Therefore the size of the font of a component on
the page may differ somewhat from its size at design time.
The font style is determined by the components� Font.Style property. Again, not all
browsers support all the font styles that can be specified with HTML.
Figure7 gives an example of different font styles, sizes and colors:

Figure 7. Examples of Font Styles, Sizes and Colors

Apart from the text formatting capabilities implemented in the library, the HTML also
includes a multitude of other tags affecting the appearance of text. They can be
placed on a page by using the HTMLTag component. For example, if you assign a
string like
<SMALL>This text is smaller in size.</SMALL>
to the Caption property of the HTMLTag component, the text will be output in a
browser one size smaller than the base font.

64

Use of the THTMLTable Component
As is well known, a HTML document is little more than a set of lines that may
include text, pictures, input fields, buttons, etc. Therefore the onscreen appearance
of the user dialog turns out to be rather primitive. You cannot, for example, have
several vertically stacked input/edit fields placed to the right of a memo field.
To obtain a more complex and attractive interface, use can be made of the THTMLTable
component. This component is displayed in a browser in the form of a table (with or
without borders) in which you can place text or any objects (such as images, input
fields, button controls, etc.). Without the use of a table, for example, it is impossible
to build a page on which several radio buttons are located to the right of a Memo
object or a ListBox.
At design time, HTMLTable appears as a panel partitioned into several cells. The
number of rows and columns in the table is determined by its Rows and Cols
properties, respectively. The object placed into a table is assumed to be located in
the cell which its upper left-hand corner is located in. You can specify alignment
type for a component in the cell (for example, Align=alClient), in which case the
component will occupy the entire cell. You can place several objects and even
another HTMLTable component into one and the same cell. To simplify the placement
of several components in a table cell, you can first place a usual panel into the cell
and only then place the necessary components there. Components can be moved
from one table cell to another.
The way a table will appear in a browser is determined by the Border and
WidthOnPage parameters. The Border parameter sets the width of the table�s border.
If Border=0, your table will have no border around it. The WidthOnPage parameter
determines the width of the table on the browser page (in percent). If WidthOnPage
= 0, the browser will �autoadjust� the table to its screen page width.
If you use tables, bear in mind that pages containing tables take longer to be displayed
in browsers.
Here is an example of an HTML table at design time:

Figure 8. Table at Design Time

The same table will appear in a browser as follows:

65

Figure 9. Table in Browser

At design time, you can individually �tune up� every table cell by specifying its
background color, alignment and other parameters. To invoke the cells editor, double-
click on HTMLTable or invoke the Cells property editing dialog in the Objects Inspector.
An example of such a dialog is illustrated by the following picture:

Figure 10. Editing of HTML Table Cells

For each cell you can specify whether the text wrapping feature will be enabled
(NOWRAP), how many columns and rows a given cell will span (COLSPAN and
ROWSPAN), what background color the cell will have and how wide it will be (in
percent of the table width), and how it will be aligned horizontally and vertically
(Align and Valign, respectively).

Use of THTMLDynamicTable Component
Using a dynamic HTML table, the developer can place on the form a table the
appearance of which will vary dynamically at run time. Thus, you can add new rows
and columns to a dynamic HTML table, change color of its cells, etc. The version of
the library under discussion supports only the placement of text in dynamic table
cells. If, however, you add the text of an HTML tag into a cell, that object will be
visible there in a browser. Unlike a static HTML table, a dynamic table can include
up to 32767 columns and as many rows. It should be borne in mind, however, that
when the table contains a large number of cells, program execution speed slows
down considerably (both at design time and at run time).

66

At design time, the text in and the format of dynamic table cells are adjusted with
the help of the component�s cells editor (which can be invoked by double-clicking
the cell) or by accessing the DynCells property of the Objects Inspector. The dynamic
table cell editing dialog is illustrated below:

Figure 11. Dynamic Table Editor Session for Adjusting Cell Parameters

You can specify the text to be displayed in a specific cell by entering it in the input
field or by invoking the text input dialog (the �...� button). You can specify the properties
of individual cells or the properties of an entire row of cells. For each cell you can
specify whether it will be visible (Visible), whether the text wrapping feature will be
enabled (NOWRAP), whether the text will be preformatted (Preformat), how many
adjacent columns or rows the cell will span (COLSPAN and ROWSPAN), how wide
the cell will be (in percent of the table width), what background color it will have
(BGColor), what font will be used to display text in the cell (button A), and how the
cell will be aligned horizontally and vertically (Align and Valign, respectively).
The dynamic table will appear in a browser as shown below:

Figure 12. Dynamic HTML Table in Browser

At run time, you can control the properties of individual cells, columns and rows of
your dynamic HTML table by accessing its Cell, Col and Row properties, respectively.
See the component�s description to learn more about these properties.
If you wish to minimize the size of the HTML script sent from the application to the
client, you should set the component�s CoolTable property to False. You will still be

67

able to control the cell�s contents, its visibility, and COLSPAN and ROWSPAN
parameters. However, such parameters as background color, font color and type
and alignment will then be set to their default values.

Use of THTMLDBGrid Component
The THTMLDBGrid component is a direct descendant of TCustomDBGrid, but the
way it is presented on an HTML page is somewhat different.
You can navigate between records within the grid only with the help of the
THTMLNavigator. If data is marked as editable, the browser will display input fields
in the current record. If the field contains a list (i.e., Pick List was specified for the
field at design time), the browser will display a combobox with a list in that field, as
shown below:

Figure 13. View of HTML DBGrid in a Browser

There is also a grid operating mode that differs somewhat from what most
programmers are accustomed to. This mode takes effect when the ShowAll property
is set to True. In that case the browser will display all records from the source data
set, but you will not be able to navigate through the table or edit its data. Although
browsing through all the table records is often all that is needed, sometimes you
would want to be able to select one of them and perform some action with it.
Let us consider a sample program (see the DBTOTAL program). Here, we want all
records from the BIOLIFE.DB table to be visible onscreen, and a radio button
displayed against each record. When the user checks one of these buttons and
clicks the Submit button, the program should return a description from the
corresponding Memo field.
To have a radio button placed into the grid, you can use the following technique. Add
a computable string-type field to the table, and assign to it the string containing the
corresponding HTML tag in the OnCalcFields event handler for Ttable. In the browser,
this field will appear as a radio button. After the application receives a request from
the browser (OnUpdate event for HTMLPage), you will have to check which of the
buttons was selected and update the memo field contents accordingly.
Place the THTMLControl, THTMLPage, TTable, TDataSource, THTMLDBGrid,
THTMLMemo components and two THTMLButton buttons on the form. At design
time, your project�s form will appear approximately as shown in Figure 14:

68

Figure 14. Project Form in the Designer

1. Tune TTable to the BIOLIFE.DB table from the DBDEMOS alias, and use the
Fields Editor to add the SpeciesNo, SpeciesName, and Length(cm) fields to it.
Create a computable string-type field 100 characters long and name it Tag.

2. Set the grid�s ShowAll property to True and the dgIndicator option to False.

3. Write the OnCalcFields event handler for TTable:

procedure TForm1.Table1CalcFields(DataSet: TDataSet);

var

 s: string;

begin

 {generate radio button�s tag}

 s:=�<input type=radio name=»R1" value=� +

 Table1SpeciesNo.AsString;

 {is radio button associated with the viewed records
checked?}

 if Key=Table1SpeciesNo.AsString then s:=s+� checked�;

 s:=s+�>�;

 Table1Tag.AsString:=s;

end;

1. Write the OnUpdate event handler for HTMLPage:

69

procedure TForm1.HTMLPage1Update(Sender: TObject;

 ValueList: TStringList);

begin

 {what button is selected?}

 Key:=ValueList.Values[�R1�];

 {if selected, read memo field}

 if Key<>�� then begin

 Table1.FindKey([StrToInt(Key)]);

 HTMLMemo1.Text:=Table1Notes.AsString;

 HTMLMemo1.Visible:=True;

 {save selected record}

 Key:=Table1SpeciesNo.AsString;

 end;

end;

The Key variable should be declared as global.
Your project is now ready. In a browser, it will appear as follows:

Figure 15. View of Project in a Browser

70

Examples of Multiuser Applications
Obtaining a multiuser application is seemingly straightforward � all you have to do is
set the MultiUser property of the HTMLControl component to True. Once you do
that, all user requests will be addressed to one and the same instance of the
application. However, the developer in this case is sure to bug himself with questions
like �how do I know who the request has originated from?�; �how do I ensure that the
users would not �interfere� with one another while working with one and the same
form?�; �how do I determine when a user disconnects from the program?�, etc. Let
us see how these problems can be solved.

Connection to SQL server
An Intranet application developer often encounters the situation whereby several
users with their unique names and passwords must be able to access and use data
of an SQL server concurrently but independently from one another. As was already
said earlier, the obvious solution in such a case is to give every user access to his/
her own instance of a dynamically generated form. Let us see how this solution can
be implemented, using the InterBase table as an example (see the IB_CONN
example).
Obviously, a user wishing to gain access to the InterBase database must first specify
his/her name and password. Therefore the application�s form #1 (main form), which
is static and will be common for all users of the application, must prompt the user to
input his/her login name and password. When the user does that and clicks the
�OK� button, a second form (form #2) is dynamically generated, a connection with
the InterBase (the DataBase component) is established and the table is opened,
enabling the user to proceed with his/her work. Each user gets his/her own instance
of the second form to work with, and does not interfere with the work of other users.
If no connection takes place, the form #2 is deleted and the user receives an error
message. Clicking the �OK� button in the error message returns the user to the
main screen form.
So, our project�s form #1 will appear as follows at design time:

Figure 16. Form #1 at Design Time

71

Form #2 at design time will look like this:

Figure 17. Form #2 at Design Time

The �OK� button click event handler for Form #1:

procedure TForm1.HTMLButton1Click(Sender: TObject);

begin

 {create a new instance of Form 2}

 Form2:=TForm2.Create(Self);

 try

 with Form2.DataBase1 do begin

 {database name should be unique!!!!}

 DataBaseName:=�Temp�+IntToStr(HTMLControl1.CurrentUser.ID);

 {request user name and password}

 Params.Values[�USER NAME�]:=HTMLEdit1.Text;

 Params.Values[�PASSWORD�]:=HTMLEdit2.Text;

 end;

 {clear input fields - Form 1 is to be shared by all}

 HTMLEdit1.Text:=��;

72

 HTMLEdit2.Text:=��;

 {open table and display Form 2}

 Form2.Table1.DataBaseName:=Form2.DataBase1.DataBaseName;

 Form2.Table1.Open;

 Form2.Show;

 except

 {connect error - delete form}

 Form2.Free;

 raise Exception.Create(�Incorrect username or
password.�);

 end;

end;

Hence, an instance of Form #2 is automatically created for every user wishing to
access the database, provided that he or she enters a correct username and a valid
password. Now, we have to insure that this instance is deleted after the user leaves
the application. Judging by the application�s structure, this can be done in the
OnUserGone event handler of the HTMLControl component:

procedure TForm1.HTMLControl1UserGone(Sender: TObject;
UserID: Integer);

begin

 {which form is user in?}

 {if in Form 1 � Form 2 is not created yet}

 {if in TForm 2 � it should be destroyed}

 if HTMLControl1.CurrentUser.ActiveForm is TForm2 then

 HTMLControl1.CurrentUser.ActiveForm.Free;

end;

73

Organizing a User-to-User Interface in a Program
It is sometimes necessary to organize an interface between the users within the
framework of one and the same application. Let us see how this can be done, using
the CHAT (multiuser chat server) program as an example (see also the NN_DEMO
program).
Form #1 in this example prompts the user for his/her name. Generally, it is possible
to identify the user based on the CurrentUser or Users property of the HTMLControl
component, but BAIKONUR server can also work in a mode whereby no username
or password are polled for (see �User Authorization� Section).
So, the main form of our application will query the user for his/her name:

Figure 18. Requesting the User Name

The form�s module will contain the following:

...

{user data record}

type

 UserData = record

 ID : DWord;

 Name : string;

 end;

{let no more that 10 users can be working concurrently}

const

 MaxUsers = 10;

var

74

 Ud : Array[1..MaxUsers] of UserData;

 Ui : Byte;

implementation

...

{initial settings}

procedure TForm3.FormCreate(Sender: TObject);

begin

 FillChar(Ud, SizeOf(Ud), #0);

 Ui:=0;

end;

{find free cell in usernames array}

function GetFreeCell: Byte;

var

 i: Byte;

begin

 Result:=0;

 for i:=1 to MaxUsers do

 if Ud[i].ID=0 then begin

 Result:=i;

 Break;

 end;

end;

When the user clicks the �OK� button, his/her name is entered into the array of

75

usernames:

procedure TForm3.HTMLButton1Click(Sender: TObject);

begin

 Ui:=GetFreeCell;

 {if there is free space in array}

 if Ui<>0 then begin

 {fill in user record}

 Ud[Ui].ID:=HTMLControl1.CurrentUser.ID;

 Ud[Ui].Name:=HTMLEdit1.Text;

 HTMLEdit1.Text:=��;

 {go to Form 2}

 Form1.Show;

 end

 {if the user is one too many}

 else

 raise Exception.Create(�Too many users�);

end;

An attempt of the 11th user to connect to the program should be �parried�:

procedure TForm3.HTMLControl1NewUser(Sender: TObject;

 UserID: Integer);

begin

 if GetFreeCell=0 then

 HTMLControl1.UserClose;

end;

76

Form #2 of the program is where the user-to-user chat will actually be displayed. In
our case, this form should be of the �multipart/mixed� type. To achieve this, we must
set the Multipart property of the HTMLPage component to True. Besides, we must
ensure that one and the same instance of the form is employed for all the users.
Our form #2 will look in the designer as follows:

Figure 19. Chat Demo Form in Designer

When the user types in a message in HTMLEdit and clicks the �Send� button, the
message must be moved into the HTMLMemo field, and the updated form should be
sent to all the users who are currently viewing it:

procedure TForm1.SendClick(Sender: TObject);

var

 UName: string;

begin

 UName:= UserByID(Form3.HTMLControl1.CurrentUser.ID);

 HTMLMemo1.Lines.Add(UName +�:�+HTMLEdit1.Text);

 HTMLEdit1.Text:=��;

 Form3.HTMLControl1.SendMultiPage(HTMLPage1, False);

end;

{UserByID returns username by his/her ID}

function UserByID(ID: DWord): string;

var

 i : Byte;

77

begin

 Result:=�Unknown�;

 for i:=1 to MaxUsers do

 if Ud[i].ID=ID then begin

 Result:=Ud[i].Name;

 if Result=�� then

 Result:=�No �+IntToStr(Ud[i].ID);

 Break;

 end;

end;

Clicking the �Clear� button should clear the Memo field:

procedure TForm1.ClearClick(Sender: TObject);

begin

 HTMLMemo1.Lines.Clear;

 Form3.HTMLControl1.SendMultiPage(HTMLPage1, False);

end;

When one of the users exits from the chat server program, his/her name should be
purged from the users list:

procedure TForm1.HTMLButton4Click(Sender: TObject);

var

 i: Byte;

begin

 for i:=1 to MaxUsers do

 if Ud[i].ID=Form3.HTMLControl1.CurrentUser.ID then

 begin

78

 Ud[i].ID:=0;

 Form3.HTMLControl1.UserClose;

 Break;

 end;

end;

IMPORTANT. Since the above program relies on the use of the �multipart/mixed�
document type, it will function only in Netscape Navigator 2.0 and above.
At program run time, form #2 will appear as shown in Figure 20.

Figure 20. Chat Form in a Browser

Special Types of Forms

Creating �Multipart/Mixed� Type Documents
This section demonstrates the use of �multipart/mixed� type documents (documents
of this type are presently supported only by Netscape 2.0 and above). An application
using this document type can update the contents of a page in the client�s browser
without waiting for a user request. If we want a form in our application to conform to
a �multipart/mixed� page type, we must set the Multipart property of the HTMLPage
component to True. When the browser receives such a form, the connect will not be
broken and the application will be able to update the form and send it to the client
when appropriate. This is done through the use of the SendMultiPage method of the
HTMLControl component.
In the following example (see the NN_DEMO program), a new page is sent on a
timer event:

79

procedure TForm1.Timer1Timer(Sender: TObject);

begin

 {update memo form�s contents}

 UpdateMemoLines;

 {send updated page}

 HTMLControl1.SendMultiPage(HTMLPage1, False);

end;

The second parameter in the SendMultiPage method denotes whether the page
being sent is the last one. If so, the connect will be terminated.
Whenever this method is called for execution, the page will be sent to all the clients
who are currently viewing it and did not break the connect.
You can have a page sent out not only on a timer event, but also when a certain
button in the application is clicked or when the database is updated.

Use of JavaScript in Application Development
This version of the library has JavaScript support built into it. JavaScript makes it
possible to noticeably extend the capabilities of the user interface in a browser.
However, not all browsers support JavaScript technology. Our library includes the
TJavaScript component, and it is there that you can place your JavaScript program
code. Besides, HTML components have some properties which you can use to link
certain browser events to certain JavaScript functions. These properties begin with
the letters JS followed by the event name. The THTMLCheckBox component, for
example, has the JSOnClick property, with the help of which the necessary JavaScript
function can be invoked when the user clicks on that component (for instance, to
have the form sent to the server, like in response to a submit-type button click
event). You can specify either the function described in the TJavaScript component
or a set of function or method calls to JavaScript objects separated by a semicolon
(�;�) in the properties of JavaScript-related components.
In the following example (see the JAVASCR program), JavaScript is employed to
have a page sent to the server when the CheckBox object is clicked and when a
ComboBox item is checked. To achieve this, place the components on the project�s
form as shown in Figure 21.

80

Figure 21. Form 1 in Designer

In this example, JavaScript is employed in a dual capacity, because:
(a) this.form.submit() is explicitly specified in the JSOnClick property of the
ComboBox component (case sensitive!), and (b) the name of the DoSubmit() function
whose text is enclosed in the TJavaScript component is specified in the JSOnClick
property of the CheckBox component.
Here is an implementation of the DoSubmit() function in the JavaScript component:

function DoSubmit() {

 document.Form1.submit()

}

The CheckBox component determines whether the HTMLHeader header will be visible
in the form:

procedure TForm1.HTMLCheckBox1Click(Sender: TObject);

begin

 HTMLHeader1.Visible:=HTMLCheckBox1.Checked;

end;

The ComboBox component determines the contents of the HTMLHeader header in
the form:

procedure TForm1.HTMLComboBox1Change(Sender: TObject);

begin

 HTMLHeader1.Caption:=HTMLComboBox1.Text;

81

end;

If you now run a program like this from a browser that supports JavaScript (Internet
Explorer 3.0 or Netscape 2.0 and above), the form will change whenever the user
selects one of the ComboBox items or clicks the CheckBox.
The TJavaScript component is employed in situations when large amounts of
JavaScript text need be placed on a page. It also allows you to indicate the name of
the function specified in that text in the components� properties.

Figure 22. View of Sample JavaScript in Browser

Updating of Form�s Data
The following example illustrates the use of the OnUpdate event of the HTMLPage
component. This event occurs every time a request describing a form is received
from the browser (such a request is sent by the browser whenever the user clicks a
Submit-type button). The event is invoked before the contents of the form�s controls
are updated, and can be used for preliminary verification or conversion of the user-
input data.
Suppose we have a form that contains a case-sensitive HTMLEdit (or HTMLDBEdit)
component, requiring that the text be input in uppercase. Obviously, we cannot
MAKE the user do so by means of HTML tools alone. What we can do, however, is
to convert the user-input text to uppercase before updating the corresponding data
(the same goal can be achieved in another way as well, but we just give you an
example here). The conversion is performed in the OnUpdate event of the HTMLPage
component:

procedure TForm1.HTMLPage1Update(Sender: TObject;

 ValueList: TStringList);

begin

 ValueList.Values[HTMLEdit1.Name]:=

82

 UpperCase(ValueList.Values[HTMLEdit1.Name]);

end;

This event can also be used for changing the text�s code page (for instance, from
KOI8-R to WIN1251).

Special Techniques

User Authentication
If the user authentication option has been enabled in the server�s initial settings, the
browser will query the user for his/her name and password when he/she first tries to
access the BAIKONUR server, as shown in Figure 23:

Figure 23. User Authentication Dialog

The user may enter any name and password and click �OK�. BAIKONUR users are
identified by their names and IP addresses. If user authentication is disabled (see
�BAIKONUR Server Administrator�s Guide�), the users will be distinguished only by
their IP addresses. In the latter case, users with identical IP addresses may interfere
with one another when working with applications. A situation like this may, for instance,
occur when the users work via Proxy servers.
Verification of the username and password can be done in-program. The developer
has all the necessary information on new users to decide how the program will
subsequently work with a given user.
Let us consider an example whereby the program performs username and password
verification when a new user tries to connect to it, and terminates if the newcomer is
not a registered user.
The name, password and IP address of the current user (i.e., the user currently
attempting to enter the program) are accessible in the CurrentUser property of the
HTMLControl component. The list of the program�s registered users is accessible in
the Users property.
It is most appropriate to perform verification of the user-supplied password at the
time a new user is attempting to log in to the program, i.e. in the OnNewUser event
handler of the HTMLControl component:

procedure TForm1.HTMLControl1NewUser(Sender: TObject;

 UserID: Integer);

83

begin

 with HTMLControl1.CurrentUser do begin

 {are parameters valid?}

 if NotAllowed(Name, Password, IPAddr) then

 {if no, close user}

 HTMLControl1.UserClose;

 end;

end;

The NotAllowed function in this case should return True if the user attempts to log in
with an invalid username/password combination or from an illegal IP address. In our
case, the user will receive the program�s final screen, although we could also arrange
for a special custom-message screen form to be posted to such a user instead of
executing the UserClose event.
IMPORTANT. Even if the user authentication option is not enabled in the server�s
settings, you can still make the application tell the browser that it must query the
user for his/her name and password. To do so, use the OnReceive event and the
SendResponse method of the HTMLControl component:

procedure TForm1.HTMLControl1Receive(Sender: TObject;
var Form: TForm;

 UserID: Integer; var Data: string; var Action:
TReceiveAction);

begin

 {if username and password are not supplied, then}

 if (HTMLControl1.CurrentUser.Name=��)and

 (HTMLControl1.CurrentUser.Password=��) then begin

 {cancel further processing of request}

 Action:=raCancel;

 {return �unauthorized access� resonse}

 HTMLControl1.SendResponse(HTMLControl1.CurrentUser.ID,

84

 �401 Unauthorized�,�WWW-Authenticate:
Basic�,��,��);

 HTMLControl1.DeleteUserByID(UserID);

 end;

end;

As a result of execution of the above code the browser will query the user for his/her
name and password, and then send out a fresh request.

Requesting a Resource
The following example demonstrates the use of the OnResource event of the
HTMLPage component. This event occurs every time the browser requests the
program for a resource the reference to which is placed on the form (for example, as
demo.exe?ImageRes1).
A reference like this will appear on the form if the THTMLImageRes, HTMLImageButton
or HTMLDBGIF component is used. The browser will then be able to request this
resource automatically, and the program will send in the requested image. In this
case, the developer does not need to interfere with the image send/receive mechanism.
However, you can utilize that mechanism for your specific needs. You can, for example,
place the HTMLLabel component on the form and specify the URL as
demo.exe?Some_Resource_ID. Once the user clicks on such a reference in the
browser, the application will receive a resource request, which will invoke the
OnResource event handler of the HTMLPage component. Since the application
doesn�t �know� what resource the browser actually needs, the developer must in this
case write such an event handler that would generate and send the requisite resource
(which can be of any type � a GIF or JPEG image, plain text, an HTML page or a file
of any type). If the requested resource is not sent, the browser will remain in the wait
mode.
The LINKFORM example shows how the user can go to another form in the application
by clicking on a resource reference rather than on a button. To achieve this, we must
place the HTMLLabel component on form #1 and specify the URL as
linkform.exe?GotoForm2. Then, we must write the OnResource event handler of the
HTMLPage1 component on form #1:

procedure TForm1.HTMLPage1Resource(Sender: TObject;
ResName: string;

 UserID: Integer; var ResourceWasSent: Boolean);

var

 s: string;

85

begin

 {what resource is requested?}

 if ResName=�GotoForm2' then begin

 {set flag if response was sent}

 ResourceWasSent:=True;

 {get HTML image of Form 2}

 s:=Form2.HTMLPage1.HTMLPageScript;

 {send HTML script to user}

 HTMLControl1.SendResource(UserID, @s[1], Length(s),
�text/html�);

 {�take� user to Form 2}

 HTMLControl1.CurrentUser.ActiveForm:=Form2;

 end;

end;

You can employ this method for solving such tasks as sending the selected file to
the user, navigating through the HTML pages of a database, etc.

Browser�s �Back� Button and Page Caching
Most browsers save the HTML pages which the user is browsing through in a special
RAM area or on the hard disk (in cache memory). Such browsers allow the user to
go back to previous pages simply by clicking the �Back� button. The necessary
HTML page is then retrieved from the cache memory rather than requested from the
Web server anew. This capability turns out to be very useful when static pages are
involved, but can well lead to incorrect results if the user works with an application.
Suppose that the user works with a program that allows him/her to navigate through
the records of a database table and modify (edit) its fields. If he/she clicks the
�Back� button and goes back to one of the previously viewed pages, the program�s
actual status (i.e., the table�s current record) may no longer correspond to what the
user sees on the screen. If the user now edits the record and saves it, the new data
might not be saved in the record it was expected to.
If the application consists of more than one form and the user clicks the �Back�
button to go back to one of the previous forms, he/she may cause its data to be sent
to the actual form, which likewise may result in an incorrect execution of the program.
Several solutions can be suggested to guarantee correct execution of the program

86

which the user works with from a browser.
The first solution (implemented in the BAIKONUR components library) consists in
verifying whether the page sent from the browser to the application is actual. Every
time a page describing a certain form of the application is sent to the user, it is
automatically assigned a unique number in a hidden field (the hidden tag). Once the
user fills in the page input fields and sends it back to the application (for example,
by clicking a Submit-type button on the form), the program verifies that unique number.
If it does not match the number of the most recently sent page, the user receives a
message stating that the page just sent is not actual (<Not actual form or timeout.
Don�t use �Back� button>). After the user clicks the button on the error-message
form, he/she receives the actual form the application. This is the default behavior of
the application. However, you can change it if you set the CheckFrame property of
the HTMLPage component to False. With this second solution, no page actuality
verification will be performed, and the developer will himself have see to it that the
above-described situation would not lead to incorrect program execution. We shall
discuss how this solution can be implemented later in the text.
The third solution is to prohibit the browser from caching the application�s pages.
This can be achieved by adding a �Cache-Control: no-cache� string to the HTTPAdd
property of the HTMLControl component. In response to a click on its �Back� button
the browser will then display a message stating that no data is available in the
cache memory and the user will have to access the application again for the current
form�s image (by clicking the �Reload� button). However, such a solution is not
always convenient.
Let us therefore go back and see how the second solution (allowing the user to click
the browser�s �Back� button without causing incorrect program execution) can be
implemented.
First, we must disable the form actuality verification feature by setting the
CheckFrame property of the HTMLPage component to False.
Second, we must keep a track of what kind of form has been sent in and act
accordingly. Indeed, there is a multitude of forms which require no additional actions
to be taken to ensure correct program execution without actuality verification. Forms
containing nothing but text and buttons or forms serving only for adding a record to
a database table (registration forms) are the obvious examples.
The most typical case requiring the developer to care about correct program execution
is an application that allows the user to view and modify (edit) certain table records.
In the way of an example, let us try and develop a single-form application designed
to display and edit records of the BIOLIFE table (see the BACKBTN example). To do
so, we must place on the new project�s form the THTMLControl, THTMLPage, TTable,
TDataSource, THTMLNavigator and THTMLHidden components and the
THTMLDBEdit and THTMLLabel components (three of each), and tune these
components to the BIOLIFE table from the DBDEMOS database. At design time,
the project will appear as follows:

87

Figure 24. Project at Design Time

Next, we must set the CheckFrame property of the HTMLPage component to False.
For the program to execute correctly, we must ensure that no record other than the
one sent in by the user will be modified. To achieve this, we must not rely on the
current record, but rather identify the requisite record by its primary key (which will
be stored on the form in the Hidden field).
Whenever the form is sent out, we should save the value of its primary key in the
HTMLHidden1 component; when data is received from the user, we must go to the
requisite record based on its primary key.
The key value should be saved in the OnScript event handler of the HTMLPage
component:

procedure TForm1.HTMLPage1Script(Sender: TObject);

begin

 HTMLHidden1.Caption:=Table1.FieldByName(�Species
No�).AsString;

end;

We can use the OnUpdate event handler of the HTMLPage component to actually
go to the requisite record:

procedure TForm1.HTMLPage1Update(Sender: TObject;
ValueList: TStringList);

begin

 Table1.Locate(�Species No�,
ValueList.Values[�HTMLHidden1�], []);

end;

We can now compile our program and call it for execution from a browser, where it
will appear like this:

88

Figure 25. Form�s View in Browser

While working in this program, the user may browse to the middle of the table with
the aid of the navigator buttons, click the �Back� button to go several records back,
edit a record field and then click the navigator�s corresponding button to have the
data saved. The program is guaranteed to save the data for the very record that the
user sees in his/her browser.
Of course, the developer of a real program must take other factors into account as
well (such as, for example, the possibility of another user deleting a certain record).
A multi-form application is a somewhat more complicated case. If the application
logic is such that the user is allowed to navigate to one of the available forms, input
certain data there and press a �save� button, then he/she must be able to do so
while working in a browser as well. However, the developer should in that case keep
track of what form the incoming data relates to, and post an error message to the
user if an exceptional situation occurs (for instance, if data for an already deleted
form is received).
To illustrate the above-said, let us make our previous sample program a bit more
complicated by adding a second form to it. Suppose we want this second form to
contain a memo field for the database records and be invoked by the click of a
button on the first form.
To achieve this, we must add the THTMLButton and THTMLHidden components to
the project�s first form, specify �Memo� in the button�s Caption property, and assign
�FormName� value to the Name property of the HTMLHidden component. At design
time, the first form of our project will appear as follows:

Figure 26. Modified Form 1

89

Clicking the �Memo� button will invoke the second form:

procedure TForm1.HTMLButton1Click(Sender: TObject);

begin

 Form2.Show;

end;

On the second form we shall place the THTMLPage, THTMLDBMemo, THTMLButton
and THTMLHidden components:

Figure 27. Form 2 of the Project

We must also set the CheckFrame property of the HTMLPage1 component to False,
change the name of the HTMLHidden component to FormName, tune HTMLDBMemo1
to the table�s NOTES field, and write a button click (�go back to first form�) event
handler:

procedure TForm2.HTMLButton1Click(Sender: TObject);

begin

 Close;

 Form1.SetFocus;

end;

Next, we must implement the basic idea of our sample program, i.e. verify the name
of the form for which data has been received from the browser, and take the current
user to that form.
At this point, it would be appropriate to recess briefly and recall how a multiuser
application �learns� which form a given user is currently working with. When a new

90

user gets connected to the program a record describing that user�s parameters is
created (whether it is a single-user or a multi-user application, the mechanism
remains basically the same). Access to these parameters can be gained via the
CurrentUser or Users properties of the HTMLControl component. The parameters
include a pointer to the instance of the current form opened for the user (ActiveForm).
It is this very parameter that we can employ to keep track of whether the current
form for the user is changed. Besides, the current form for the given user is accessible
in the HTMLControl component�s event handlers.
Returning to our example, we must see to it that information on the form�s name is
present in the page sent to the client (browser). To achieve this, we use the
THTMLHidden component named FormName on both of our forms. At first glance,
we could make the name assignment (i.e., assign the form�s name to the Caption
property) at design time. However, if an instance of the form is created at run time,
the name of that form will be determined dynamically, and might not coincide with
what had been specified at design time. Therefore in our case the form name
assignment will take place in the OnScript event handler of each form�s HTMLPage
components. For the first form:

procedure TForm1.HTMLPage1Script(Sender: TObject);

begin

 HTMLHidden1.Caption:=Table1.FieldByName(�Species
No�).AsString;

 FormName.Caption:=Name; // a new line

end;

For the second form:

procedure TForm2.HTMLPage1Script(Sender: TObject);

begin

 FormName.Caption:=Name;

end;

At run time, the program will send forms along with information on their names to the
browser, and receive data from the browser along with the name of the destination
form for that data. Specifically, the data will contain a FormName=Form1 or
FormName=Form2 substring.
We should use the OnReceive event handler of the HTMLControl component for
verifying the form�s name and making a transition (and re-directing the data) to

91

another form in:

procedure TForm1.HTMLControl1Receive(Sender: TObject;
var Form: TForm;

 UserID: Integer; var Data: string; var Action:
TReceiveAction);

var

 s: string;

 i: Integer;

begin

 {does form has a name?}

 if Pos(�FormName=�,Data)<>0 then begin

 {get form�s name}

 s:=��;

 i:=Pos(�FormName=�,Data)+9;

 while (i<=Length(Data))and(Data[i]<>�&�)and

 (Data[i]<>#13)and(data[i]<>#10) do begin

 s:=s+Data[i];

 Inc(i);

 end;

 {find form by its name}

 if Form.Name<>s then

 for i:=0 to Screen.FormCount-1 do

 if Screen.Forms[i].Name=s then begin

 Form:=Screen.Forms[i];

 Break;

92

 end;

 end;

end;

The parameters passed to the event handler include the Form parameter, which
identifies the active form for the user. We can change this parameter, thereby causing
the data to be re-directed to another form. The string-type Data parameter contains
a description of the form (with filled-in fields) sent by the browser. We parse this
string to extract the form�s name and, if it fails to match the name of the previous
form for the given user, search for the necessary form among all other forms available
in the application (for which the Screen object is used).
A more detailed description of the OnReceive event handler of the HTMLControl
component can be found in Annex A.
Anyone working with the above-described sample application from a browser can
use its �Back� and �Forward� buttons without any hesitation. Even if the application
has been closed or unloaded on timeout, it will still execute correctly and will produce
no error messages.
An application may contain both the forms that do require verification of the sent-in
data actuality, and the forms which do not require it.

Caching of Images
While processing HTML pages, browsers are also caching the images (GIF and
JPEG) which they encounter in these pages. Hence when a user browses through
different pages that refer to one and the same image, he/she actually sees the
image already stored in the browser�s cache memory. In situations involving static
images such a feature proves useful, and this has to be taken into account when
developing BAIKONUR applications.
The BAIKONUR HTML Controls library currently includes four components that
operate with images: HTMLImageButton, HTMLImageRef, HTMLImageRes and
HTMLDBGIF.
As far as the HTMLImageRef object is concerned, its logic is fairly straightforward -
it merely places a reference to a static image (a file stored on the disk) on the HTML
page.
Other objects place a reference like to
a program�s resource on the HTML page. When it first accesses the application, the
browser will query the latter for that image, and will retrieve it from the cache memory
thereafter. Even if the image in the program changes, the browser will have no way of
�knowing� it, and will still show the old image on a new page. For the browser to
display a new image on the page, the reference should be changed accordingly. For
some library components, this is done automatically.
An image reference is generated by the HTML Controls library according to the
following rule. The reference opens with the program�s name (for example,
project1.exe). Next goes the name of the component (HTMLImageRes1), followed
(for the HTMLImageRes and HTMLDBGIF components) by a (optionally variable)

93

character string.
Let us see how the image for various components can be updated.
In the case of the HTMLImageRef component, we must change the reference to the
image file if we want to update the onscreen image (i.e., we must place the new
image into a new file and assign the name of that new file to the component�s
FileName property).
In the case of HTMLImageRes and HTMLImageButton components, we must change
the ID property; as a result, the reference on the page will change, making the
browser request a new picture.
The HTMLDBGIF component is a somewhat special case, for a set of ID and IDType
properties can be specified for it. By assigning different values to the IDType property,
we can make the browser request a picture every time, or every time a jump to a
new record is made, or just when the ID property changes its value.
If you look attentively at the rule according to which a resource reference is generated,
you will see that the form�s name is not part of that reference. One implication of this
is that two different components (for example, HTMLImageRes with different images)
with identical references might turn out to be located on different forms of the
application. In a situation like that the browser will display one and the same image
(namely, the one received first) on those pages. To preclude such a situation, we
must assign different names to the image-displaying components, or else provide
unique values for their ID properties. Conversely, if components designed to display
one and the same image are to be present on different forms of the application, we
must see to it that these components have matching names - this will help the
browser work somewhat faster.

HTMLTag Example
Using the HTMLTag component, you can place on a form the text of those HTML
tags that are not represented in the HTML components library. In our HTMLTAG
example, we employ this technique to place the �marquee� (scrolling text) tag on
the form � a feature supported only by Microsoft�s Internet Explorer.
At design time, our program�s main form will appear as follows:

Figure 28. Form 1 at Design Time

The HTMLTag component has a Caption property in which �Marquee Control� is
specified. The Script property contains the text for the Marquee tag:

94

<marquee> Scrolling Text for MS IE! </marquee></
font>
In Microsoft�s Internet Explorer, the form will appear as follows:

Figure 29. Marquee in IE Browser

Passing of Data From Client To Server
(HTMLPutFile)

Originally, the HTML standard was conceived as a tool for the passing of resources
only from the server on the user request. But with the advent of application software
capable of executing under server control it became necessary to organize the flow
of data in the opposite direction as well. Partially, this problem can be solved in the
HTML through the use of forms and input/edit fields like Edit and Memo. However,
this technique is applicable basically to the passing of text, and then only limited
amounts of it. The situation becomes much more difficult when binary data is to be
transmitted.
At this time, only the browsers marketed by Netscape (2.0 and above) and Microsoft
(3.02 with patches and above) can be used to transmit binary files of any type and of
virtually any size to the server. These browsers support a special document type
known as �multipart/form-data� and a type File input tag. This tag is displayed in a
browser as an input field with a �Browse� button. This enables the user to select a
file on his/her computer and then send it to the server by clicking a Submit-type
button on the screen form. BAIKONUR HTML Controls library also supports the
�multipart/form-data� document type and the File tag.
Let us consider an example whereby the user must fill in a registration form and
send his/her photo. The user-originated data is to be saved in a table.
Place the components on the form as shown in Figure 30. Tune the table and the
HTMLDBEdit components. The table must include the FIO, Email and Photo fields
of the BLOB type.

95

Figure 30. View of Project at Design Time

Next, you must set the MaxSize property of the HTMLPutFile1 component to 50
(implying that it will be impossible to send a file larger than 50Ê bytes) and specify
its DstFileName property, for example as �Photo.img� (which means that the data
will be temporarily saved into a file named PHOTO.IMG).
Write the button click event handler:

procedure TForm1.HTMLButton1Click(Sender: TObject);

begin

 if Table1.State<>dsBrowse then Table1.Edit;

 Table1Photo.LoadFromFile(�photo.img�);

 Table1.Post;

end;

The project is ready. In a browser, the filled-in form will appear like this:

96

Figure 31. View of Form in Browser

If the user clicks the �Send� button, the browser will generate the appropriate data
(which will include the above-mentioned file), and send it to the program. The
HTMLPutFile component will place the image into a temporary file on the server�s
hard disk, wherefrom it can be read and copied into a type BLOB field of the table.
Besides, you can use the OnFileReceive event of the HTMLPutFile component to fill
the BLOB field.
There exist other techniques of passing files to the server as well, but special programs
that execute on the client�s computer need be developed to implement these. You
can do it with the help of the HTTPClient component, which is part of the BAIKONUR
Intranet Suite delivery package. A disadvantage of this approach is that these
programs will work under Windows only. And, of course, you will have to make sure
that the programs are indeed installed on the client�s machine.

A Non-HTML System
It is sometimes necessary to develop a system whereby the client�s application
runs as a stand-alone software and requests data from a remote application on a
time-to-time basis only. For example, BAIKONUR Web Server and a special server-
based application can be used in the capacity of a data replication server or a report
printing server. In that case, there is no need to develop a fully-fledged server application
(an Web application) with a user interface � the functions of a client can be performed
by any application that �knows� how to send out a request and receive a response.
Using the HTMLControl component, you can develop an application that will not use
the HTML standard to service a client. The functions of a client in this case are
performed by an application that uses the HTTP protocol to communicate with the
BAIKONUR server, so that the request and response data can be in any (including
HTML) format. To organize the passing of data to/from the server, use can be made
of the HTTPClient component. This component is a standard part of
BAIKONURstarting from its Enterprise version. In the version under discussion, the
developer has to care about the exchanged data format himself.
Let us discuss a simple example of a Delphi client application that accesses the

97

server application to receive from it a list of fish species names from the BIOLIFE
table and, when the user selects a specific kind of fish, display a picture of it on the
screen (see the GetFish example).
First, you must build a server application. Place the THTMLControl and TTable
components on the form, and tune TTable to the BIOLIFE.DB table from the
DBDEMOS alias. For the application to be able to respond to the client�s requests,
you must process the OnClick event of the THTMLControl component:

procedure TForm2.HTMLControl1Receive(Sender: TObject;
var Form: TForm;

 UserID: Integer; var Data: string; var Action:
TReceiveAction);

var

 s: string;

 BS: TBLOBStream;

 Buff: PBuff;

begin

 {is it a GetFishNames request?}

 if Pos(�GetFishNames�, Data)<>0 then begin

 Action:=raCancel;

 {generate response � a string with species names}

 Table1.First;

 s:=��;

 repeat

 s := s + Table1.FieldByName(�Species
Name�).AsString + #13#10;

 Table1.Next;

 until Table1.EOF;

98

 {send out response}

 HTMLControl1.SendResource(UserID, @s[1], Length(s),
�text/plain�);

 end;

 {is it a GetFishImage request?}

 if Pos(�GetFishImage=�, Data)<>0 then begin

 s:=UnEscapeText(Data);

 s:=Copy(s, Pos(�«�, Data)+1, Length(s)-Pos(�«�,
Data));

 s:=Copy(s, 1, Pos(�«�, s)-1);

 Table1.First;

 {generate response � species image}

 repeat

 if Table1.FieldByName(�Species Name�).AsString=s
then begin

 Action:=raCancel;

 BS:=TBLOBStream.Create(Table1.FieldByName(�Graphic�)
as TBLOBField, bmRead);

 GetMem(Buff, BS.Size);

 try

 BS.Read(Buff^, BS.Size);

 {send out response}

 HTMLControl1.SendResource(UserID, @Buff^[8],
BS.Size-8, �image/bitmap�);

99

 finally

 FreeMem(Buff, BS.Size);

 BS.Free;

 end;

 Break;

 end;

 Table1.Next;

 until Table1.EOF;

 end;

end;

Your server application is ready. You can now try it out by issuing a request from the
browser, specifying the URL as:
http://web_serv/project1.exe?GetFishNames
The browser should display a list of fish names.
Next, you must build a client application. This application will use the HTTPClient
component supplied with the HTMLControls library starting from BAIKONUR Enterprise
version. You could, of course, do without that component, but then you would have
to know how to work with sockets and send data in HTTP 1.0 format.
Figure 32 shows how the client application�s first form will appear at design time.
Do not forget to specify the IP address of the server, port number, and name of the
program on the server (FISHSERV.EXE) in the HTTPClient component�s properties.

Figure 32. Client Application Form at Design Time

100

Write the �Get Fish Names� button click event handler:

procedure TForm1.Button1Click(Sender: TObject);

var

 s: string;

begin

 with HTTPClient1 do

 {send request}

 if SendData(�GetFishNames�) then begin

 {analyze received data}

 s:=ReceivedData;

 {fill in fish names list}

 ListBox1.Clear;

 while Pos(#13#10, s)<>0 do begin

 ListBox1.Items.Add(Copy(s,1,Pos(#13#10, s)-1));

 Delete(s,1,Pos(#13#10, s)+1);

 end;

 end;

end;

Write the �View Image� button click event handler:

procedure TForm1.Button3Click(Sender: TObject);

var

 F: File;

 s: string;

begin

101

 if ListBox1.ItemIndex>=0 then begin

 {generate request}

 s:=�GetFishImage=»�+ListBox1.Items[ListBox1.ItemIndex]+�»�;

 {send request}

 if HTTPClient1.SendData(s) then begin

 {received data ...}

 s:=HTTPClient1.ReceivedData;

 {... save into a temporary file}

 AssignFile(F, �temp.bmp�);

 Rewrite(F, 1);

 BlockWrite(F, s[1], Length(s));

 CloseFile(F);

 {display received picrure}

 Image1.Picture.LoadFromFile(�temp.bmp�);

 end;

 end;

end;

Write the �Stop waiting� button click event handler:

procedure TForm1.Button2Click(Sender: TObject);

begin

 HTTPClient1.CancelOperation;

end;

At run time, the client application�s form will appear like this:

102

Figure 33. Client Application Form at Run Time

103

Chapter III

This Chapter discusses the ways of creating custom HTML components that can
be used for developing BAIKONUR applications.

Creating Custom Components
The principal function of the HTMLPage component is to generate an HTML script
describing a given form. The page is created by polling the HTML components parented
by that form and representing them as an HTML script. This is done by calling the
htmlScript method of each component�s parent (if any). In situations when the
component�s parent has no htmlScript method, the method of the component itself
is called.
There are several kinds of HTML components:

� components designed only to display information (for example, HTMLLabel,
HTMLHeader or HTMLRuler)

� components allowing information to be input, modified (edited) and displayed (for
example, HTMLEdit or HTMLCheckBox)

� components allowing images to be displayed on a form (for example,
HTMLImageRes)

� components allowing resource references to be placed on an HTML page (for
example, HTMLDBGIF)

� components representing Submit-type buttons (for example, HTMLButton or
HTMLImageButton)

� component for placing text in the header of an HTML page (for example, JavaScript)

There are complex components, for example, HTMLImageButton or HTMLDBGrid,
which contain images, response on Submit and place JavaScript on a page.

Requirements to Custom HTML Components
The process of creating a custom HTML component is practically no different from

104

that of creating a conventional component. Custom HTML components should met
the following requirements:

I. EVERY component should have in its PUBLISHED section a htmlScript function
declared as follows:

function htmlScipt : string;
This function should returm a string containing the description of an object in the
HTML format. For example, the HTMLButton object can return a string like
�<input type=submit name=»HTMLButton1" value=» OK «>�
To generate a string, use can be made of the set of functions of the HTMLWriter
object (from the HTMLOpen module) existing when the htmlScipt function is called.
Example Syntax:

THTMLLabel = class(TCustomLabel)

private

 FDistance : Integer;

 FPreformat : Boolean;

public

 constructor Create(AOwner: TComponent); override;

published

 property Align;

property AutoSize default False;

 function htmlScript:string;

 property Caption;

 property Color;

 property Distance : Integer read FDistance

 write FDistance;

 property Font;

 property Preformat : Boolean read FPreformat

 write FPreformat

 default True;

105

 property Visible;

end;

...

constructor THTMLLabel.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 Preformat:=True;

end;

function THTMLLabel.htmlScript:string;

begin

 Result:=��;

 if Not Visible then Exit;

 if Not Preformat then

 Result:=Result+HTMLWriter.TextEffectEnd(efPreformat);

 Result:=Result+StartFontDef(Font, HTMLWriter);

 Result:=Result+Space(Distance);

 if Preformat then

 Result:=Result+HTMLWriter.EscapeText(Caption)

 else

 Result:=Result+Caption;

 Result:=Result+EndFontDef(Font, HTMLWriter);

 if Not Preformat then

 Result:=Result+HTMLWriter.TextEffectStart(efPreformat);

106

end;

II. If the object represents an input field (like Edit, ListBox, Memo, etc.), then the
htmlUpdate procedure should be declared in the component�s PUBLISHED
section:

procedure htmlUpdate(RList : TStringList);
The procedure is passed a list of parameters arriving from the client when he/she
clicks a Submit-type button. The parameters describe the form�s status (i.e., contents
of the input fields), and are usually specified as <OBJECT NAME>=<NEW VALUE>.
You use the htmlUpdate procedure to select the parameter corresponding to an
object from that list, and update the object�s status accordingly.
Example Syntax:
The HTMLEdit1 object of the THTMLEdit type generates the following string in the
htmlScript function:
�<input type=text name=»HTMLEdit1" value=»Some Text» size=15>�
The Rlist will return something like this in one of the strings:
HTMLEdit1=New text
The htmlUpdate procedure executes the following for the THTMLEdit object:

procedure THTMLEdit.htmlUpdate(RList : TStringList);

begin

 if Visible then

 Text:=RList.Values[Name];

end;

Example Syntax:

THTMLCheckBox = class(TCustomCheckBox)

private

 FDistance : Integer;

public

 constructor Create(AOwner: TComponent); override;

published

 function htmlScript:string;

107

 procedure htmlUpdate(RList : TStringList);

 property Align;

 property Caption;

 property Checked;

 property Distance : Integer read FDistance

 write FDistance;

 property Font;

 property Visible;

 property OnClick;

end;

...

function THTMLCheckBox.htmlScript : string;

begin

 Result:=��;

 if Not Visible then Exit;

 Result:=StartFontDef(Font, HTMLWriter);

 Result:=Result+Space(Distance);

 Result:=Result+HTMLWriter.CheckboxField(Name, Name,

 Checked);

 Result:=Result+HTMLWriter.EscapeText(Caption);

 Result:=Result+EndFontDef(Font, HTMLWriter);

end;

procedure THTMLCheckBox.htmlUpdate(RList : TStringList);

108

begin

 if Visible then

 Checked:=RList.Values[Name]<>��;

end;

III. If the component represents a Submit-type button, it must include the htmlClick
procedure in its PUBLISHED section:

procedure htmlClick(RList:TStringList);
The procedure is used to check whether the given button was clicked:

if RList.Values[Name]<>�� then Click;

Example Syntax:

THTMLButton = class(TButton)

private

 FButtonType : TButtonType;

 FDistance : Integer;

published

 function htmlScript:string;

 procedure htmlClick(RList : TStringList);

 property Align;

 property Distance : Integer read FDistance write
FDistance;

 property ButtonType : TButtonType read FButtonType
write FButtonType;

end;

...

function THTMLButton.htmlScript:string;

109

begin

 Result:=��;

 if Not Visible then Exit;

 Result:=Space(Distance);

 if ButtonType=btSubmit then

 Result:=Result+HTMLWriter.SubmitField(Name,

 HTMLWriter.EscapeText(Caption))

 else

 Result := Result +
HTMLWriter.ResetField(HTMLWriter.EscapeText(Caption));

end;

procedure THTMLButton.htmlClick(RList : TStringList);

begin

 if RList.Values[Name]<>�� then

 Click;

end;

IV.The component can place in the HTML script a reference to the resource which
the program must send to the client on a request from the browser. A resource
reference can be of two types:

1. Reference to a physical file that must be sent on the browser�s request without
the program�s participation. It may, for instance, be a HTML-page reference
generated with the help of the HTMLLabel component (the server will send this
page will to the user when he/she clicks on the reference in the browser). Or it
may be a GIF-image reference generated with the help of the HTMLImageRef
component. If the appropriate option is checked, the referenced image will be
automatically requested by the browser and send by the server without the
program�s participation. A reference of this type will have the following syntax:

 «http://w_serv/images/dog.gif»

110

2. Reference to a resource stored in-program. Such a reference may, for example,
have a syntax like http://w_serv/demo.exe?IR1. In this case, the browser-originated
request will be addressed to the DEMO.EXE program, and it is this program that
will have to send the requested resource to the browser. One example of such a
component is HTMLImageRes. Besides, you can also create a custom component
that would represent the HTML pages stored in a database to the client.

 If the component places into an HTML script a resource reference (for example,
a GIF image) of the second type which must be send by the program to the client
on the browser�s request, the PUBLISHED section of that component should
include the htmlResource function of the following syntax:

function htmlResource(s: string): boolean;
Here, the S string is used to pass the name of the resource to be sent in. If this
name points to a resource containing the requested object, the function should form
a buffer to accommodate the data, call the SendHTMLResource procedure of the
HTMLOPEN module, and return True.
Example Syntax:
Object IR1 of type THTMLImageRes generates a string of the following pattern:
��
The htmlResource function generates a GIF-image buffer and call the �send� procedure:

...

 if Name=s then

 ...

 SendHTMLResource(Buffer, Size, MIME_GIF);

 Result:=True;

 ...

Example Syntax:
The THTMLImageRes component is a descendant of the TCustomHTMLImageRes
class that encapsulates a Buf field containing a GIF image and a BufSize field
specifying the buffer size.

THTMLImageRes = class(TCustomHTMLImageRes)

private

 FID : string;

published

 function htmlScript:string; override;

111

 function htmlResource(s:string): boolean;

 property AltName;

 property ID : string read FID write FID;

 property URL;

end;

. . .

function THTMLImageRes.htmlScript:string;

begin

 Result:=��;

 if Not Visible then Exit;

 Result:=Space(Distance);

 if URL=�� then

 Result:=Result+HTMLWriter.Image(BaseURLStr+�?�+Name+ID,

 AltName, AlignImage)

 else

 Result:=Result+HTMLWriter.Link(URL, ��,

 HTMLWriter.Image(BaseURLStr+�?�+Name+ID, AltName,

 AlignImage));

end;

function THTMLImageRes.htmlResource(s:string): boolean;

begin

 Result:=False;

 if s=Name+ID then begin

112

 SendHTMLResource(Buf, BufSize, �image/gif�);

 Result:=True;

 end;

end;

V. It is sometimes necessary create a custom component that would place some
text into the HTML script�s header. To be able to do so, the component should
contain a declaration of the htmlHeader function in its PUBLISHED section:

function htmlHeader: string;
This function must return the text to be placed into the header.
Example Syntax:
The TJavaScript component places the following Java-script text into the script
header:

TJavaScript = class(TComponent)

 private

 FScript: TStringList;

procedure SetScript(Value: TStringList);

 public

 constructor Create(AOwner: TComponent); override;

 destructor Destroy; override;

 published

 function htmlHeader: string;

 function htmlResource(s:string): Boolean;

 property Script: TStringList read FScript write
SetScript;

end;

. . .

113

function TJavaScript.htmlHeader: string;

var

 i: Integer;

begin

 if FScriptPlace=spPage then begin

 Result:=#13#10'<SCRIPT
LANGUAGE=»JavaScript»>�#13#10'<!� Java Script�#13#10;

 for i:=0 to FScript.Count-1 do

 Result:=Result+FScript.Strings[i]+#13#10;

 Result:=Result+�// end of Java Script !�>�#13#10'</
SCRIPT>�#13#10;

 end

 else

 Result:=#13#10'<SCRIPT LANGUAGE=»JavaScript» SRC=»�
+ BaseURLStr + �?� + Name

 + �«>�#13#10 + �</SCRIPT>�#13#10;

end;

Auxiliary Modules

HTMLOPEN

When creating a custom component, you should generate an HTML tag for that
component in the htmlScript method. To achieve this, you can (although not
necessarily) use the HTMLWriter object that exists when the given method is called
and is declared in the given module.
The same module also contains the SendHTMLResource procedure, which is
employed to send the requested HTML resource from the component�s htmlResource
procedure or from the OnResource event handler of the HTMLPage component.
You can use the TMIMEType type and the corresponding array of MIMETable strings
containing names of the MIME types when calling the SendHTMLResource procedure,
and adapt it to your specific needs.

114

HTMLWRTR

This module contains the THTMLWriter class, which encapsulates methods for
generating HTML tags. An HTMLWriter object becomes accessible whenever the
htmlScript method is called. The functions that these methods perform are self-
explanatory from their names. For instance, to obtain a tag describing, say, a reference,
you must use the Link method. Thus, a call like
s:=HTMLWriter.Link(�pictures/car.gif�, ��, �View CAR image�);
will generate a string of the following pattern:
View CAR image

115

ANNEX A

Delphi HTML Controls Library

TUserInfo Auxiliary Class
Purpose
An instant of this class, returned in the application by the CurrentUser and Users
properties or the GetUserInfo method of the HTMLControl component, contains
information on the user.

Properties

ActiveForm - (TForm). The form which the user currently works with. The
developer can, if necessary, re-define the current user form
(see expamples).

BaseURLStr - (String). Read only. The URL which the user specified in the
browser.

FinalURL � (String). If the FinalURL property contains a reference to a
certain page, the user, upon closing the application, will receive
this page.

ID - (DWord) Read only. The user ID; can have different values in
different applications.

IPAddr - (DWord). Read only. The user�s IP address.
Name - (String). Read only. The name which the user supplied in the

browser when he/she first logged into the Baikonur server.
Password - (String). Read only. The user�s login password.
Params - (String). Task launching parameters. See Examples for the

format employed to pass the parameters in an application.
The parameters for one and the same task can vary in the
course of the user�s work.

116

Tag � (Longint). The field to be used by the developer (for example,
to store the pointer to a structure associated with the given
user).

TimeOut � (Integer). Determines the application�s idling time (in seconds)
for the given user, after the expiration of which the user
information will be automatically deleted. If the user is the
last one, the application will be closed. TimeOut=-1 means
no time out.

Control Components

THTMLControl

Purpose
The THTMLControl component receives the user request from the Baikonur Web
server and sends the prepared HTML page back to the server. Besides, this component
determines the type and behavior of the application. The HTMLControl component
must be located on the application�s main form; there should be only one instance
of it.

Properties

CurrentUser � (TUserInfo) A run-time and read only property. Describes the
current user. You can access this property in order to receive
a correct information on the user only during the time interval
between the arrival of a request and the sending of a response
to the user (between the OnReceive and OnSend events). At
other times, you must use the Users property or the
GetUserInfo method.

FinalPage - (string) The name of the file containing the HTML page to be
passed to the user when he/she closes the application. If
this property and FinalURL property are empty or an incorrect
file name is specified, the default final page is passed.

FinalURL � (String). If the FinalURL property contains a reference to a
certain page, the user, upon closing the application, will receive
this page. This property is more prefferable to use than
FinalPage.

HideApp - (Boolean). If True, the application�s icon will be hidden and
will not appear in the task bar.

HTTPAdd � (TStringList). Serves for placing additional lines of text into
the HTTP header. Can be employed for passing additional
application-specific information to the client, for caching
control purposes, and for performing other tasks. Use this
property cautiously, since an incorrectly constructed header
may lead to application run-time errors.

117

HTTPHeader � (TStringList). A run-time and read only property. Contains
the received HTTP header from user�s browser.

MultiUser - (Boolean). If False, a separate instance of the application is
launched for every user. If True, the application becomes a
multi-user one (which means that all users work with a single
instance of Web application). See Examples to learn more
about the methods employed to implement multi-user
applications.

ServInfo - (TStringList). A run-time and read-only property. Contains the
information on the Baikonur server passed to the application
by the server itself (version 1.2 and later) along with the user-
originated request.

TimeOut - (Integer). Determines the application�s idling time (in seconds)
for the given user, after the expiration of which the user
information will be automatically deleted. If the user is the
last one, the application will be closed. If TimeOut=-1, the
application will never be closed. If TimeOut=0, the application
will start up, send out one screen, and close.

UserCount - (Integer). A run-time and read-only property. Specifies how
many users can work with the given application program.

Users � (Array of TUserInfo). A run-time and read-only property.
Contains an array describing all the users working with the
given application program.

Events

OnCommand � Invoked when the application receives an HTTP command other
than GET or POST (such as, for example, PUT or DELETE). If there is no appropriate
event handler (or Processed was not set to True), the application will respond by
returning the �501 Not implemented� message to the client. Normally, the
SendResponse method must be employed to return the response.

Declaration:

TOnCommand=procedure(Sender:TObject; UserID: Integer; HTTP_Command:
TSendMethod; var Data: string; var Processed: Boolean) of object;
UserID � User ID; a more detailed information on the user can be obtained by
invoking the component�s GetUserInfo method.
HTTP_Command - (smPut, smDelete, smUpdate, smUnknown). Determines the
command contained in the incoming request. If HTTP_Command=smUnknown, the
command can be obtained from the Data string (it will be the first word in that string).
Data � The string containing the entire text of the request arriving from the client,
including the HTTP header.
Processed - (Boolean). If you set Processed to False in the handler (and send no
response to the client), the application will respond be sending the �501 Not
implemented� message to the client. If an appropriate response to the command
was generated in the handler and sent to the client (SendResource), the Processed

118

parameter should be set to True.

OnException � Invoked in the event of an exceptional situation during the processing
of the received request. If no event handler for a given exception is defined, the
default script is generated and sent to the user. See �Exceptional Situations Handling�
chapter for details.

Declaration:

TExceptionEvent = procedure (Sender: TObject; E: Exception) of object;
property OnException : TExceptionEvent;
OnNewUser � Invoked when a new user gets connected to the application.

Declaration:

TOnNewUser = procedure(Sender: TObject; UserID: DWord) of object;
UserID � User ID; a more detailed information on the user can be obtained by
invoking the component�s GetUserInfo method.

OnReceive � Invoked upon receipt of a user request.

Declaration:

TOnReceive = procedure(Sender: TObject; var Form: TForm; UserID: DWord; var
Data: string; var Action: TReceiveAction) of object;
Form � The given user�s current form for which the request has arrived; can be
modified, although this is normally unnecessary.
UserID � User ID; a more detailed information on the user can be obtained by
invoking the component�s GetUserInfo method.
Data � The string containing the text of the request complete with the header.
Action - (raProcess, raCancel). If Action is set to raCancel, no further processing of
the incoming request will take place. The developer must then himself generate the
data for the client and have it sent out with the aid of the SendResource method of
the component.

OnScript � Invoked before the HTML script is received from the HTMLPage object.

Declaration:

TOnScript = procedure(Sender: TObject; var Form: TForm; UserID: DWord) of
Object;
Form � The given user�s current form for which the HTML script is to be generated;
can be modified, although this is normally unnecessary.
UserID � User ID; a more detailed information on the user can be obtained by
invoking the component�s GetUserInfo method.

OnSend - Invoked before the HTML script is sent to the user.

119

Declaration:

TOnSend = procedure(Sender: TObject; UserID: DWord; var Data: string) of
Object;
UserID - User ID; a more detailed information on the user can be obtained by invoking
the component�s GetUserInfo method.
Data � The string containing the text of the HTML script being sent (without the
header).

OnUserGone � Invoked when the user closes the program.

Declaration:

TOnUserGone = TOnNewUser; TOnNewUser = procedure(Sender: TObject; UserID:
DWord) of object;
UserID - User ID; a more detailed information on the user can be obtained by invoking
the component�s GetUserInfo method.

Methods
DeleteUserByID procedure
Declaration:
procedure DeleteUserByID(ID: Integer);
Used for deleting a user from the program. No message is sent in this case to the
user. Do not resort to this method unless absolutely necessary (for example, for
implementing your own TimeOut). Normally, use should be made of the UserClose
method.
ID � User ID in the program (for example, HTMLControl1.Users[i].ID).

GetUserInfo function

Declaration:

function GetUserInfo(ID : DWord): TUserInfo;
Returns an instance of the TUserInfo class describing the user by his/her ID.

SendErrorScript procedure

Declaration:

procedure SendErrorScript(UserID: DWord; S : string);
Employed for sending the default error-message HTML script. Should be used if the
client�s incoming request is processed �manually�, such as by the OnResource
event handler of the HTMLPage component or the OnCommand event handler of the
HTMLControl component.
UserID � ID of the user whom the error message is sent to.
S � The text of the error message.

120

SendMultiPage procedure

Declaration:

procedure SendMultiPage(Page : THTMLPage; StopPage : Boolean);
The SendMultiPage procedure is employed for sending a next form to the users in
situations involving documents of the �multipart/mixed� type (see description of the
MultiPart property of the HTMLPage component). The procedure is invoked when it
is necessary to send an updated page to the users without a request on their part.
Such a page will be received by all the users who are currently working with it in the
browser and did not break the connection.
IMPORTANT. At this time, documents of the �multipart/mixed� type are supported
only by Netscape Navigator 2.0 and later.
Page � The HTMLPage component responsible for generating the page to be sent
out.
StopPage - If True, the page will be sent out and the connection will be broken; if
False, the connection will not be broken.

SendResource procedure

Declaration:

procedure SendResource(UserID: Integer; Buffer: Pointer; Size: Longint;
MIME_Type: string);
Employed for sending a resource (usually a GIF image, text, or HTML) to a user in
response to a browser-originated request. SendResource is usually employed for
processing the OnCommand event or creating a custom HTML component that
places a resource reference into the HTML script. For details, see the chapter devoted
to the writing of custom components. Besides, if the developer places a resource
reference into a form himself, he must invoke this procedure in the OnResource
event handler of the HTMLPage component to have the resource sent out.
UserID �ID of the application�s current user (HTMLControl.CurrentUser).
Buffer � The pointer to the buffer containing the data to be sent. It is the developer�s
responsibility to allocate memory for the buffer and clear it.
Size � The size of the data to be sent.
MIME_Type � The type of the data to be sent (for example, �image/gif�).

SendResponse procedure

Declaration:

procedure SendResponse(UserID: DWord; StatusCode: string; http_Add, Content,
ContentType: string);
The SendResponse procedure is usually employed in the OnCommand event handler
for sending a response to the client upon receipt of an HTTP command other than
GET or POST, although it can also be used in the OnReceive event handler of the
HTMLControl component.

121

UserID - ID of the application�s current user (HTMLControl.CurrentUser).
StatusCode � The string containing the response in an HTTP-compliant format, for
example �200 OK�.
http_Add � The string containing additional text for the returned HTTP header, for
example �WWW-Authentication: Basic realm=�/��.
Content � The string containing contents of the application�s response; the type of
data to be returned is determined by the following parameter.
ContentType � The string containing the MIME type of the returned response, for
example �text/html�.

SendUserMultiPage procedure

Declaration:

procedure SendUserMultiPage(UserID: Integer; Page: THTMLPage; StopPage:
Boolean);
The SendUserMultiPage procedure is employed for sending a next form to a specific
user in situations involving documents of the �multipart/mixed� type (see description
of the MultiPart property of the HTMLPage component). The procedure is invoked
when it is necessary to send out an updated page to the user without a request on
his/her part. The user will then receive that page if he/she didn�t break the connection.
IMPORTANT. At this time, �multipart/mixed� documents are supported only by
Netscape Navigator 2.0 and later.
UserID - ID of the application�s user (HTMLControl.CurrentUser).
Page � The HTMLPage component responsible for generating the page to be sent
out.
StopPage - if True, the page will be sent out and the connection will be broken; if
False, the connection will not be broken.

UserClose procedure

Declaration:

procedure UserClose;
The UserClose procedure is employed when the user closes the application, for
instance by clicking a button in the application. In such a case, the page specified
in the FinalPage property or (if no such page is specified) the default page is sent.
The user can also close the application by sending out a URL request of the following
type: http://www.someweb.com/demo.exe.!
This request would close the program launched in response to the http://
www.someweb.com/demo.exe request.

122

THTMLPage

Purpose

THTMLPage is responsible for updating the form�s status upon receipt of a user-
originated request, as well as for generating an HTML script on the basis of the
current status of the active (for the given user) form. There must be one such
component on every single form in the application. If it is absent, the user will receive
an appropriate error message.

Properties

BackImage - (string) The URL of the file containing the background image
(GIF or JPEG) for the page.

CheckFrame - (Boolean). Indicates whether the form�s actuality must be
checked. When you work with an Web application, each
page being sent out is assigned a unique number by default.
Whenever a next request is received from the user, a check
is made of whether this request refers to the current form. If
not, an error message is produced. An error situation may,
for example, occur if the user clicks on the �Back� button in
the browser to go back to the application�s previous page.
The user might then click a Submit-type button on that
�obsolete� form, thereby originating an erroneous (in the
context of the current program) request. Usually, the default
value of this property needs not be altered. However, there
exists a variety of forms the actuality of which is not essential
(such as, for example, forms containing nothing but buttons).

clrActive, clrBackground, clrLinks, clrText, clrVisited - Type TColor. The colors to
be used in displaying text on the form.

Fixed - (Boolean). Indicates whether the background image must
scroll when the page in the browser is scrolled.

FontFace - (Boolean). Indicates whether the FACE attribute will include
to the HTML script (tag).

FontSize � Assumes a value in the range of -1 to 7. Denotes the size of
the base font in the browser.

JSOnLoad - (string) The JavaScript methods or functions to be invoked
when the page is loaded in the browser.

JSOnSubmit - (string) The JavaScript methods or functions to be invoked
when the page is sent to the server.

JSOnUnload - (string) The JavaScript methods or functions to be invoked
when the page is unloaded from the browser.

HeaderAdd - (TStringList). Employed to place additional tags into the HTML
page header area (i.e., into the <header> ... </header> area).

HideForm - (Boolean). Indicates if the form must be hidden when the
application is launched on the server.

MultiPart - (Boolean). Determines the document�s type. If False, the

123

sent-out page will have the type �text/html�. If True, the page
will have the type �multipart/mixed�.

IMPORTANT. At this time, �multipart/mixed� documents are supported only by
Netscape Navigator 2.0 and later.

MultiPartInterval � (Byte). Determines the minimum time interval, in seconds,
that must elapse before a next �multipart/mixed� type
document will be sent to the client. Normally, this property
can be left unused, but in any case it is good practice to
have the documents sent not oftener than the browser can
redraw them.

RefreshInterval - (Integer). Specifies the time interval, in seconds, that must
elapse before the browsers will automatically repeat their
request to the application for a new form. If the value of
RefreshInterval is less than zero, no repeated requesting
takes place; if it is equal to zero, repeated requesting takes
place as often as possible.

IMPORTANT. We recommend that you do not use this capability, since it may
cause network loading problems.
Title - (string) The title of the application to appear in the browser�s

caption.

Events

OnDataArrive � Invoked upon receipt of a user request.
Declaration:
TOnDataArrive = procedure(Sender: TObject; var Data: string; UserID: DWord) of
object;
Data � The string containing text of the request (without the HTTP header).
UserID � User ID; a more detailed information on the user can be obtained by
invoking the component�s GetUserInfo method. Besides, the information on the
addressee user is stored in the CurrentUser property of the HTMLControl component.

OnDataSend � Invoked before the HTML script is sent to the user.
Declaration:
TOnDataSend = procedure(Sender: TObject; UserID: Integer; var Data: string) of
object;
UserID � User ID; a more detailed information on the user can be obtained by
invoking the component�s GetUserInfo method. Besides, the information on the
addressee user is stored in the CurrentUser property of the HTMLControl component.
Data � The HTML script (without the HTTP header) sent to the user.

OnResource � Invoked when a resource request is received from the browser.

124

Declaration:

TOnResource = procedure(Sender: TObject; ResName: String; UserID: DWord;
var ResourceWasSent: Boolean) of object;
ResName � The name of the requested resource. It is expedient to process this
event in situations when the developer has himself placed a reference to some
resource onto the form (into the HTML script), for he must then himself care about
having this resource sent in response to a browser request. We recommend that the
SendResource method of the HTMLControl component be used for sending the
necessary data. A resource reference should follow the pattern <URL of Web
application>?<resource name>, for example: project1.exe?MyResource1-22-37. The
URL of the given Web application is stored in the BaseURLStr variable. The resource
name should be unique for the given form.
UserID � ID of the user requesting the resource.
ResourceWasSent � If you send the resource to the user yourself in the given event
handler, you must set this flag to True.

OnScript - Invoked every time before an HTML script is created.

Declaration:

TPageOnScript = procedure(Sender: TObject) of Object;

OnUpdate - Invoked when the form�s data is to be updated.
Declaration:
TOnUpdate = procedure(Sender: TObject; ValueList: TStringList) of Object;
ValueList � The list of the form�s components along with their values. Each line of
the list contains a description of the form �HTMLEdit1=New Value�. It is expedient to
process this event in situations when the developer has himself placed some object
that needs updating into HTML script, for he must then himself care about having
the values of that object timely updated. The object�s name should be unique for the
given form.

Methods

HTMLPageScript function

Declaration:

function HTMLPageScript: string;
Returns the HTML script describing the form that contains the given component.

Visual components (�HTML� Page)
Properties Common to Visual Components
Align � The alignment of the component at design time.
Distance � The distance, in characters, from the element located on the left.
Visible � Determines whether the component is to be visible on the form.

125

THTMLLabel

Purpose

An analog of TLabel. Places text into the HTML script. Also employed for placing
hypertext referencesto the page.

Properties

Caption - (string) The text of the image caption.
Font - (TFont). The font in which the component�s text is to be

displayed in the browser.

IMPORTANT. Different browsers support fonts differently.

JSOnClick - (string) The JavaScript to be invoked when a reference is
clicked (implying that the URL is not empty).

JSOnMouseOver - (string) The JavaScript to be invoked when the mouse cursor
is moved over the reference (implying that the URL is not
empty).

Preformat - (Boolean). If False, any «extra» white spaces are deleted,
and line feed characters are added if necessary.

URL - (string) The hypertext reference. If empty, only text is placed
onto the page.

THTMLTag

Purpose

With THTMLTag, you can place onto an HTML page those tags that have not been
included into the library (for example, the <marquee> tag for MS Internet Explorer or
ActiveX).
Properties
Caption - (string) The text of the tag caption, if the Script property is empty; ignored
if otherwise.
Font - (TFont). The font in which the tag�s text is to be presented in the browser.
Script � The text of the tag script. Can be a multi-line text and is used for inserting
text, HTML tags, Java applets and ActiveXs into the page.
Tag Example
<marquee>Scrollable text</marquee>

126

THTMLButton

Purpose

A button control. An object for which there is a corresponding click event that causes
the form�s data to be sent from the browser to the server.

Properties

ButtonType - If btSubmit, then licking on the button will cause the request
containing the form�s description to be sent to the server.
Specifying btCancel disables the form editing (no data will
be sent).

JSOnClick - (string) The JavaScript to be invoked when the button is
clicked.

Events

OnClick - An analog of the OnClick event for TButton.
Tag Example
<input type=submit name=»HTMLButton1" value=»Search»>

HTMLImageButton

Purpose

A button in the form of a picture. An object for which there is a corresponding click
event that causes the form�s data to be sent from the browser to the server. The
picture is stored in the component as a resource, which means that the picture file
needs not necessarily be available at runtime.

Properties

AlignHoriz - (ahDefault, ahLeft, ahCentre, ahRight). The alignment of the
object on the page in the browser.

AltName - (string) The alternate name that must appear in the browser
in place of the picture while the latter is being loaded.
Note: It must have unique value or be empty.

BorderWidth - (Byte). The width of the border around the picture.
FileName � The name of the picture file. In Delphi 2.x, only GIF-format

images are accessible. Delphi 3.0 permits the use of pictures
in BMP, GIF and JPEG formats.

Events

OnClick � Occurs when the given object is clicked with the mouse in the browser.

127

Declaration:

TOnClickImage = procedure(Sender : TObject; X,Y : Integer) of object;
X, Y � the coordinates of the point in which the mouse was clicked.
Tag Example
<input type=image name=»ImgBtn1" src=»demo.exe?ImgBtn1">

THTMLEdit

Purpose

A single-line text input/edit field. An analog of TEdit. The size of the field in the
browser is determined by the number of characters placed in the component onto
the application form.

Properties

JSOnBlur � (String). The JavaScript to be invoked when the object
becomes unfocused.

JSOnChange � (String). The JavaScript to be invoked when a text is input
into the object.

JSOnFocus - (string) The JavaScript to be invoked when the objects has
the focus.

JSOnSelect - (string) The JavaScript to be invoked when some text is
highlighted in the object.

MaxLength � The maximum length of input text in characters. If
MaxLength=0, the length is unlimited.

Password � (Boolean). If True then asterisk symbol (*) will display in place
of the actual characters typed in the control.

Events

OnChange - An analog of the Tedit�s OnChange.
Tag Example
<input type=text name=»HTMLEdit1" value=»Hi, world!» size=26>

THTMLMemo

Purpose

A multiple-line text input/edit field. An analog of TMemo. Also serves for placing
large amounts of text onto the page.

128

Properties

Alignment � The alignment of text on the HTML page (when Style=msText).
Cols - (Byte). The width of the text input field in character positions

(when Style=msMemo).
Font - (TFont). The type of the text font (when Style=msText).
JSOnBlur - (string) The JavaScript to be invoked when the object becomes

unfocused.
JSOnChange - (string) The JavaScript to be invoked when a text is input into

the object.
JSOnFocus - (string) The JavaScript to be invoked when the objects has

the focus.
JSOnSelect - (string) The JavaScript to be invoked when some text is

highlighted in the object.
Lines � (TStrings). The lines of text to be displayed.
Preformat - (Boolean). If False, any «extra» white spaces are deleted,

and line feed characters are added if necessary (when
Style=msText).

Rows - (Byte). The number of text rows (when Style=msMemo).
Style - (msMemo, msText). The text is displayed as an input/edit

field if Style=msMemo, and as plain text otherwise.

Events

OnChange - An analog of OnChange for TMemo.

Tag Example
<textarea name=»HTMLMemo1" rows=5 cols=20> Text to display </textarea>

THTMLCheckBox

Purpose

An analog of TCheckBox.

Properties

Font - The text font.
JSOnClick - (string) The JavaScript to be invoked when the object is clicked

with the mouse.
Preformat - (Boolean). If False, any «extra» white spaces are deleted,

and line feed characters are added if necessary (when
Style=msText).

Tag Example
<input type=checkbox name=»ChkBx1" value=»ChkBx1"> I�m using Netscape

129

Navigator

THTMLRadio

Purpose

An analog of TRadioButton.

Properties

Font � The text font type.
JSOnClick - (string) The JavaScript to be invoked when the object is clicked

with the mouse.
GroupIndex - (Integer). Determines the group which the object belongs to.
Preformat - (Boolean). If False, any «extra» white spaces are deleted,

and line feed characters are added if necessary (when
Style=msText).

Tag Example
<input type=radio name=»Radio1" value=»Radio1"> Variant No 1

THTMLListBox

Purpose

An analog of TListBox.

Properties

BlankChar - (Char). Since all «extra» white spaces are automatically
deleted, they can be replaced with another character.

Cols, Rows - (Byte). The dimensions of the object on the HTML page.
JSOnBlur - (string) The JavaScript to be invoked when the object becomes

unfocused.
JSOnChange - (string) The JavaScript to be invoked when another item of

the list is selected.
JSOnFocus - (string) The JavaScript to be invoked when the objects has

the focus.

Tag Example
<select name=»HTMLListBox1" size=5>
<option value=»0">Item 1
<option value=»1">Item 2
<option value=»2">Item 3
</select>

130

THTMLComboBox

Purpose

An analog of TComboBox.

Properties

BlankChar - Type Character (Char). Since all «extra» white spaces are
automatically deleted, they can be replaced with another
character.

Cols - (Byte). The size of the object on the HTML page.
JSOnBlur - (string) The JavaScript to be invoked when the object becomes

unfocused.
JSOnChange - (string) The JavaScript to be invoked when another item of

the list is selected.
JSOnFocus - (string) The JavaScript to be invoked when the objects has

the focus.

Tag Example
<select name=»HTMLComboBox1" size=1>
<option value=»0">Item 1
<option value=»1">Item 2
<option value=»2">Item 3
</select>

THTMLHeader

Purpose

Places a header on the form.

Properties

Alignment � The alignment of the header on the HTML page.
Caption - (string) The caption text.
HeaderLevel � Determines the size of the header on the HTML page. Valid

values are 0 to 7.

Tag Example
<h1 align=left>My home page</h1>

131

THTMLRuler

Purpose

Something akin to TBevel. The width of the ruler on the HTML page is determined
automatically.

Properties

Height � Determines the object�s vertical size.
HorizAlign � The horizontal alignment on the HTML page.
VertAlign - An analog of the Align property, but for design-time only.
Shade - (Boolean). The appearance on the HTML page.

Tag Example
<hr size=3 width=100%>

THTMLImageRef

Purpose

Places onto the HTML page a hypertext reference to a file containing a GIF- or
JPEG-format image.
IMPORTANT. Note that the reference specifies a relative path. The image should
therefore be located in the same directory as the program itself, because otherwise
the server will not be able to find it at run time. If the program is launched via an alias,
the image must be located at design time in the sub-directory named exactly as the
alias.
IMPORTANT. In Delphi 2.x, only GIF-format images can be displayed at design
time.

Properties

AlignImage � The alignment of the object on the HTML page relative to
other elements.

AltName - (string) The alternate name that must appear in the browser
in place of the picture while the latter is being loaded.

FileName � The name of the image file. When a reference is placed into
the HTML script, it is converted into a relative path.

JSOnClick - (string) The JavaScript to be invoked when the picture is
clicked with the mouse, if there is a reference to that picture
(i.e., if the URL is not empty).

JSOnMouseOver - (string) The JavaScript to be invoked when the mouse cursor
is moved over the picture, if there is a reference to that picture
(i.e., if the URL is not empty).

132

URL - (string) The hypertext reference. If the URL is specified,
clicking on the picture will take the user to the appropriate
page.

Tag Example

THTMLImageRes

Purpose

An analog of THTNMImageRef, but places a reference to a resource into the HTML
script. The image is stored within the program and is sent to the browser by the
program itself.

Properties

AlignImage � The alignment of the object on the HTML page relative to
other elements.

AltName - (string) The alternate name that must appear in the browser
in place of the picture while the latter is being loaded.

FileName � The name of the picture file. In Delphi 2.x, only GIF-format
pictures are supported, while Delphi 3.0 permits the use of
pictures in the BMP, GIF and JPEG formats.

ID - (string) ID of the image. The browser usually stores the
pictures it receives in cache memory. Accordingly, when it
receives a page which contains a picture that has already
been received earlier, the browser does not request it from
the server anew, but rather uses the old one. Therefore if the
contents of the given component changes, the ID property
needs to be changed as well to make the browser repeatedly
request the picture from the server.

JSOnClick - (string) The JavaScript to be invoked when the picture is
clicked with the mouse, if there is a reference to that picture
(i.e., if the URL is not empty).

JSOnMouseOver - (string) The JavaScript to be invoked when the mouse cursor
is moved over the picture, if there is a reference to that picture
(i.e., if the URL is not empty).

URL - (string) The hypertext reference. If the URL is specified,
clicking on the picture will take the user to the appropriate

page.

Tag Example

133

THTMLRadioGroup

Purpose

An analog of TRadioGroup.

Properties

Orientation � (orVert, orHoriz) Defines a radio buttons orientation.
JSOnClick - (string) The JavaScript to be invoked when the radiobutton is

clicked.

Visual Components (�HTML Add� Page)

THTMLHidden

Purpose

Implements a �hidden field� on the page. Its value is not displayed on the form. Can
serve for the program�s housekeeping purposes and returning the JavaScript execution
result to the browser.

Properties

Caption - (string) The caption field value.

Events

OnChange - Invoked every time the field value is changed.
Declaration:
TOnChange =TNotifyEvent;

Tag Example
<input type=hidden name=»HTMLHidden1" value=»222">

THTMLList

Purpose

A numbered list. Can contain hypertext references. Supports single-level lists.

Properties

134

Items - Type TStrings. The items list.
NumberScheme � The items� numbering scheme.
Ordered - (Boolean). Indicates whether the list is to be ordered.
URLs - Type TStrings. The list of hypertext references; corresponds

to the Items property. A list item is displayed as plain text if
the corresponding line in this list is empty, and as a reference
otherwise.

Tag Example

Item 1
Item 2
Link 3

THTMLTable

Purpose

This component serves for placing tables onto the HTML page. At design time, you
can invoke the table editor and adjust parameters of the table cells as needed.

Properties

AddHeade � (string) Serves for placing additional attributes into the table
header. Use this property cautiously, since an incorrectly
constructed header may lead to incorrect view of table.

Alignment � Defines table alignment (�alignment� attribute of Table header).
BackImage - (string) The URL of the file containing the background image

(GIF or JPEG) for the table.
BgColor - Type TColor. Determines the background color of the table

cells. If this color coincides with the form�s background color,
transparent background is used.

Border - (Byte). Determines the width of the table border in the browser.
If Border=0, the table is drawn without cell-separating rules.
CellPadding, CellSpacing � (Byte). Values for corresponding
table header attributes.

Cells � Design time only. The property for editing the table cells at
design time.

Cols � Determines the number of columns in the table. Valid values
are 1 through 40.

HeightInPixels - (Integer). Determines the minimal height of the table in the
browser in pixels. If HeightInPage<=0, the HeightOnPage
property works.

HeightOnPage - (Byte). Determines the height of the table in the browser

135

when HeightInPixels<=0; HeightOnPage is specified in
percent of the browser window�s height. If HeightOnPage=0,
the browser determines the table height itself.

Rows - Determines the number of rows in the table. Valid values are
1 through 30.

WidthtInPixels - (Integer). Determines the minimal width of the table in the
browser in pixels. If WidthInPage<=0, the WidthOnPage
property works.

WidthOnPage - (Byte). Determines the width of the table in the browser when
WidthInPixels<=0; WidthOnPage is specified in percent of
the browser window�s width. If WidthOnPage=0, the browser
determines the table width itself.

THTMLDynamicTable

Purpose

This component serves (primarily) for displaying text as an HTML table, and makes
it possible to alter the table�s appearance at program run time (insert and delete
rows and columns, edit text, change its font and background color, etc.). Apart from
providing access to the properties of individual cells, this component allows the
properties of an entire row or column to be specified. At design time, you can invoke
the table editor and adjust parameters of the table cells as necessary.

Properties

AddHeade � (string) Serves for placing additional attributes into the table
header. Use this property cautiously, since an incorrectly
constructed header may lead to incorrect view of table.

Alignment � Defines table alignment (�alignment� attribute of Table header).
BackImage - (string) The URL of the file containing the background image

(GIF or JPEG) for the table.
BgColor - Type TColor. Determines the background color of the table

cells. If this color coincides with the form�s background color,
transparent background is used.

Border - (Byte). Determines the width of the table border in the browser.
If Border=0, the table is drawn without cell-separating rules.

Cell[i,j] � A run-time property. Serves to gain access to an individual
cell in the two-dimensional array of the table cells. This
property returns an instance of the TDynamicCell class. A
cell can have the following properties:

Align - (haDefault, haCenter, haLeft, haRight). The horizontal
alignment of text within the cell.

BGColor - Type TColor. The cell background color.
Caption - (string) The text to be displayed in the cell.

136

ColSpan - (Byte). The number of columns to be spanned by the given
cell.

NoWrap - (Boolean). Determines whether text wrapping is allowed in
the cell.

Preformat - (Boolean). Determines whether the text is to be preformatted.
RowSpan - (Byte). The number of rows to be spanned by the given cell.
Visible - (Boolean). Determines whether the cell is to be visible in the

table.
Valign - (vaDefault, vaCenter, vaTop, vaBottom). The vertical alignment

of text within the cell.
Width - (Byte). The width of the cell in percent of the table width.
Example: Cell[1,1].BGColor:=clRed sets background color of cell [1,1] to clRed.
CellPadding, CellSpacing � (Byte). Values for corresponding table header attributes.
Col[i] � A run-time property. Serves to gain access to an individual column in the
one-dimensional array of the table columns. This property returns an instance of the
TDynamicCol class. A column has only one property:
Visible - (Boolean). Determines whether the column is to be visible in the table.
Cols - (1..32767). Determines the number of columns in the table.
CoolTable - (Boolean). Determines how the table will be presented. If CoolTable=False,
the color, font and alignment settings will have no effect on the table�s appearance,
and the HTML script will then be somewhat smaller.
DynCells � The property for editing the table cells at design time.
HeightInPixels - (Integer). Determines the minimal height of the table in the browser
in pixels. If HeightInPage<=0, the HeightOnPage property works.
HeightOnPage - (Byte). Determines the height of the table in the browser when
HeightInPixels<=0; HeightOnPage is specified in percent of the browser window�s
height. If HeightOnPage=0, the browser determines the table height itself.
Row[i] � A run-time property. Serves to gain access to an individual row in the one-
dimensional array of the table rows. This property returns an instance of the
TDynamicRow class. A row can have the following properties:

Align - (haDefault, haCenter, haLeft, haRight). The horizontal
alignment of text within the row�s cell.

BGColor - Type TColor. The background color of the row�s cells.
Header - (Boolean). Determines if the row represents a header. If True,

the text is displayed in bold face.
Preformat - (Boolean). Determines if the text is preformatted.
Visible- (Boolean). Determines whether the row is to be visible in the

table.
VAlign - (vaDefault, vaCenter, vaTop, vaBottom). The vertical alignment

of text within the row�s cell.
Rows - Values (1 ... 32767). Determines the number of rows in the table.
WidthtInPixels - (Integer). Determines the minimal width of the table in the browser
in pixels. If WidthInPage<=0, the WidthOnPage property works.
WidthOnPage - (Byte). Determines the width of the table in the browser when
WidthInPixels<=0; WidthOnPage is specified in percent of the browser window�s
width. If WidthOnPage=0, the browser determines the table width itself.

137

This version of the library allows you to control basic parameters (color, style, size)
of the font in the table cells and rows at program run time with the aid of the FPDynCell
field (for cells) or the FPDynRow field (for rows). Either field is essentially a pointer to
a certain structure that describes the respective cell or row, and includes font-related
fields FontName, FontSize, FontColor and FontStyle.
For example, the following code alters the color and style of the text in the cell:

DynTabl.Cell[1,1].FPDynCell^.FontColor:=clLime;
DynTabl.Cell[1,1].FPDynCell^.FontStyle:=[fsItalic];

Methods

HideRow procedure
Hides a table row.

Declaration:

procedure HideRow(RowN: TDynColNumber);
RowN � The number of the row in the table (valid values are 1 through 32767).

HideCol procedure
Hides a table column.

Declaration:

procedure HideCol(ColN: TDynColNumber);
ColN - number of the column in the table (valid values are 1 through 32767).

ShowRow procedure
Unhides the hidden row in the table.

Declaration:

procedure ShowRow(RowN: TDynColNumber);
RowN � The number of the row in the table (valid values are 1 through 32767).

ShowCol procedure
Unhides the hidden column in the table.

Declaration:

procedure ShowCol(ColN: TDynColNumber);
ColN � The number of the column in the table (valid values are 1 through 32767).

AppendRow procedure
Appends an empty row to the table.

138

Declaration:

procedure AppendRow;

AppendCol procedure
Appends an empty column to the table.
Declaration:
procedure AppendCol;

InsertRow procedure
Inserts an empty row into the table at the specified location.

Declaration:

procedure InsertRow(RowN: TDynColNumber);
RowN � The number of the row in the table (valid values are 1 through 32767).

InsertCol procedure
Inserts an empty column into the table at the specified location.

Declaration:

procedure InsertCol(ColN: TDynColNumber);
ColN � number of the column in the table (valid values are 1 through 32767).

DeleteRow procedure
Deletes the specified row from the table.

Declaration:

procedure DeleteRow(RowN: TDynColNumber);
RowN � The number of the row in the table (valid values are 1 through 32767).

DeleteCol procedure
Deletes the specified column from the table.

Declaration:

procedure DeleteCol(ColN: TDynColNumber);
ColN � The number of the column in the table (valid values are 1 through 32767).

Clear procedure
Empties text from all cells of the table, and sets the color and other parameters to
their default values.

139

Declaration:

procedure Clear;

ClearRow procedure
Empties text from all cells of the specific row of the table, and sets the color and
other parameters to their default values.

Declaration:

procedure ClearRow(RowN: TDynColNumber);

ClearCol procedure
Empties text from all cells of the specific column of the table, and sets the color and
other parameters to their default values.

Declaration:

procedure ClearCol(ColN: TDynColNumber);

THTMLFileListBox, THTMLDirListBox,
THTMLDriveComboBox, THTMLFilterComboBox

Purpose

These four components are full analogs of the respective TFileListBox,
TDirectoryListBox, TDriveComboBox, TFilterComboBox standard components, and
can be used for constructing a file select dialog form. However, since changes in
type ComboBox or ListBox objects do not lead to the passing of appropriate data to
the server when you work in the browser (if JavaScriptOn is False), you must place
a Submit type button onto the form.

Properties

JavaScriptOn � (Boolean) Determines whether a Submit event executed by
the Java script will occur following a change in the component.

TJavaScript

Purpose

Serves for storing the JavaScript program placed into the HTML page header.

140

Properties

Script � (TStrings). The JavaScript program proper.

THTMLChart

Purpose

This component is accessible in Delphi 3.x only. It serves for displaying graphs on
the page. THTMLChart is a full analog of the TChart component. At application run
time, it converts the picture into JPEG format.

Properties

AlignImage � The alignment of the object on the HTML page relative to
other elements.

AltName - (string) The alternate name that must show in the browser in
the place of the picture while the latter is being loaded.

CompressQuality � Image quality. Depends on the size of the picture being
loaded. Valid values are 1 through 100).

ID - (string) ID of the image. The browser usually stores the
pictures it receives in cache memory. Accordingly when it
receives a page which contains a picture that has already
been received earlier, the browser does not request it from
the server anew, but rather uses the old one. Therefore if the
contents of the given component changes, the ID property
needs to be changed as well to make the browser repeatedly
request the picture from the server.

JSOnClick - (string) The JavaScript to be invoked when the picture is
clicked with the mouse, if there is a reference to that picture
(i.e., if the URL is not empty).

JSOnMouseOver - (string) The JavaScript to be invoked when the mouse cursor
is moved over the picture, if there is a reference to that picture
(i.e., if the URL is not empty).

URL - (string) The hypertext reference. If the URL is specified,
clicking on the picture will take the user to the appropriate

page.

THTMLPutFile

Purpose

This component makes it possible to select and send a file from the user�s browser.
It works in Netscape browsers starting from version 2.0 and in Microsoft Explorer

141

starting from version 3.02 (with updates).

Properties

DstFileName � (string) The name of the destination file on the server in which
the sent file must be saved.

MaxSize � (Integer) The maximum size of the received file in kilobytes.
If the file exceeds the specified size, two situations are
possible. If the file is small enough to be received completely
(this depends on the Baikonur server�s settings, see the
MaxReceiveBuffer parameter), the program will post a
corresponding message to the user. If the file is too large to
be received completely, the browser will notify the user that
the connection with the server has been terminated.

Events

OnFileReceive � This event occurs after the file is received completely.

Declaration:

TOnFileReceive = procedure(Sender: TObject; SrcFileName: string; Data: Pointer;
Size: Integer; var Action: TFileReceiveAction) of object;
SrcFileName � The name of the source file on the user�s machine.
Data � The pointer to the memory area containing the sent file.
Size � The size of the data received into the buffer.
Action � Determines the component�s further actions. If you assign frCancel, the
data will not be saved into a file. This is necessary if the event handler has already
saved the data (for example, into a database).

THTMLTreeView

Purpose

A tree view control displays a hierarchical list of items, such as the headings in a
document, the entries in an index, or the files and directories on a disk.
THTMLTreeView can display items in the form of hypertext references or any HTML
tags, defined by user.

Properties

Font � (TFont). Tree node font.
GoByClick - (Boolean). If True and OnGetNodeURL and OnGetNodeScript

are not assigned or return empty values for current node, it is
displayed as hypertext reference.

142

HideSelection - (Boolean). If True, there are no selected node font changing.
IndentCols � (Byte). Number of space symbols between parent and child

nodes. If Preformat is False, it is ignored. If value is 0, the
special tag is applied.

MaxCols � (Integer). Maximum number of symbols displayed in a tree
node. If the node caption exeeds MaxCols, the string is cut
and three dots are add («...»).

MaxVisibleNodes � (Integer). Maximum number of tree nodes displayed. If ShowAll
is False, this property is ignored. If property value is less
than zero (-1), all nodes are displayed.

Preformat - (Boolean). If False, any «extra» white spaces are deleted,
and line feed characters are added if necessary.

SelectedFont � (TFont). Selected tree node font. If HideSelection is True,
this property is ignored.

ShowAll - (Boolean). If True, the number of tree nodes defined in
MaxVisibleNodes and TopVisibleNode properties is
displayed. Else it depends of the TreeView size.

ShowButtons - (Boolean). If True, every tree node has �+� or �-� button,
depending on its state (expanded or collapsed).

TopVisibleNode � (TTreeNode). Run-time only. If ShowAll=True and
MaxVisibleNodes>0, it defines the first displayed node.

The following properties exist in Delphi 3.x only.

BMPCompressQuality - (1..100) Defines image JPEG compression quality.
Images � (TImageList). Images determines which image list is

associated with the tree view.
StateImages � (TImageList). StateImages determines which image list to

use for state images.

Events

OnGetScript - This event occurs when the control tries to get an user-defined HTML-
script for displaying a tree node.

Declaration:

THTMLTVGetNodeScriptEvent = function(Sender: TObject; Node: TTreeNode): string
of object;

OnGetURL � This event allows to define hypertext reference for a tree node.

Declaration:

THTMLTVGetNodeURLEvent = function(Sender: TObject; Node: TTreeNode): string
of object;

143

Visual Components (�HTML DB� Page)

THTMLDBGrid

Purpose

This component serves for displaying (and modifying) database data in the form of a
table. On the HTML page, the usual DBGrid resembles a table only remotely. To
navigate between the database records, use should be made of the HTMLNavigator.
If a field is editable, it is shown in the browser as an HTMLEdit. If PickList for that
field is defined, it will be displayed as a combo box.

Properties

AddHeade � (string) Serves for placing additional attributes into the table
header. Use this property cautiously, since an incorrectly
constructed header may lead to incorrect view of table.

Alignment � Defines table alignment (�alignment� attribute of Table header).
BackImage - (string) The URL of the file containing the background image

(GIF or JPEG) for the table.
Border - (Byte). Determines the width of the table border in the browser.

If Border=0, the table is drawn without cell-separating rules.
CellPadding, CellSpacing � (Byte). Values for corresponding
table header attributes.

Color - Type TColor. Determines the background color of the grid
cells. If this color coincides with the form�s background color,
transparent background is used.

CustomGrid - (Boolean). Determines how the table will be presented. If
CustomGrid=False, the color, font and alignment settings
for columns will have no effect on the grid�s appearance, and
the HTML script will then be somewhat smaller. See also
FontFace property of HTMLPage component.

FixedColor � (TColor). Defines the background color of the header row and
the indicator (most left) column.

GoByClick � (Boolean). If True, the user can change the current record by
clicking on the indicator field of the required record in the
grid.

GoByClickImageURL - (string) The URL of the file containing the non-selected row
indicator image (GIF or JPEG) for the grid. If no URL assigned,
the default transparent picture is displayed.

GoByClickAltName � (string). AltName for indicator image. At run-time a row number
is attached to AltName.

HeightInPixels - (Integer). Determines the minimal height of the grid in the
browser in pixels. If HeightInPage<=0, the HeightOnPage
property works.

144

HeightOnPage - (Byte). Determines the height of the grid in the browser when
HeightInPixels<=0; HeightOnPage is specified in percent of
the browser window�s height. If HeightOnPage=0, the browser
determines the grid height itself.

ShowAll - (Boolean). If set to True, all records of the data source will be
shown on the page, there will be no current record indicator,
and it will be impossible to navigate through the data set.

Options � Determines how the table will appear on the page:
dgTitles determines whether the table will have a header,
and dgIndicator determines whether the table will feature a
current record indicator.

TitleFont � (TFont). Header row and indicator column font. Note: TitleFont
property of DBGrid is not stored in a DFM file. You should
set title font for DBGrid and HTMLDBGrid at run time.

WidthtInPixels - (Integer). Determines the minimal width of the grid in the
browser in pixels. If WidthInPage<=0, the WidthOnPage
property works.

WidthOnPage - (Byte). Determines the width of the grid in the browser when
WidthInPixels<=0; WidthOnPage is specified in percent of
the browser window�s width. If WidthOnPage=0, the browser
determines the grid width itself.

THTMLNavigator

Purpose

This is an analog of TDBNavigator. By default, five button controls (First, Prior, Next,
Last and Refresh) are visible, although any other button(s) can be included as well.
The text to be displayed on the buttons (button captions) is stored in the NavCap
array of the HTMLGRDS module.

THTMLDBText

Purpose

An analog of TDBText.

Properties

Preformat - (Boolean). If False, any «extra» white spaces are deleted,
and line feed characters are added if necessary.

145

THTMLDBEdit

Purpose

An analog of TDBEdit. The field which the component is linked to is updated if the
data in the browser was modified by the user and the field updating option is enabled
(i.e., the ReadOnly property of the TDBEdit component is set to False and the data
set can be changed to the edit mode).

Properties

JSOnBlur - (string) The JavaScript to be invoked when the object becomes
unfocused.

JSOnChange - (string) The JavaScript to be invoked when a text is input in
the object.

JSOnFocus - (string) The JavaScript to be invoked when the objects has
the focus.

JSOnSelect - (string) The JavaScript to be invoked when some text is
highlighted in the object.

ReadOnly - (Boolean). If True, updating is enabled.

THTMLDBMemo

Purpose

This is an analog of TDBMemo.

Properties

Cols - (Byte). The width of the text input field in character positions
(when Style=msMemo).

JSOnBlur - (string) The JavaScript to be invoked when the object becomes
unfocused.

JSOnChange - (string) The JavaScript to be invoked when a text is input in
the object.

JSOnFocus - (string) The JavaScript to be invoked when the objects has
the focus.

JSOnSelect - (string) The JavaScript to be invoked when some text is
highlighted in the object.

Preformat - (Boolean). If False, any «extra» white spaces are deleted,
and line feed characters are added if necessary. (when
Style=msText).

Rows - (Byte). The number of rows (when Style=msMemo).
Style - (msMemo, msText). The text is displayed as an input field if

Style=msMemo, and as plain text otherwise.

146

ReadOnly - (Boolean). If True, modification is enabled.
UpdateMode - (umNoUpdate, umAlways, umModified). Determines the

memo field�s update mode. If umNoUpdate is specified, the
field is never updated. If umAlways is specified, the field is
always updated. If umModified is specified, the field is updated
only if the data has been modified.

THTMLDBCheckBox

Purpose

An analog of TDBCheckBox.

Properties

JSOnClick - (string) The JavaScript to be invoked when the object is clicked
with the mouse.

THTMLDBListBox

Purpose

An analog of TDBListBox.

Properties

BlankChar - (Char). Since all «extra» white spaces are automatically
deleted, they can be replaced with another character.

Cols, Rows - (Byte). The dimensions of the object on the HTML page.
JSOnBlur - (string) The JavaScript to be invoked when the object becomes

unfocused.
JSOnChange - (string) The JavaScript to be invoked when another item of

the list is selected.
JSOnFocus - (string) The JavaScript to be invoked when the objects has

the focus.

THTMLDBComboBox

Purpose

An analog of TDBComboBox.

147

Properties

BlankChar - (Char). Since all «extra» white spaces are automatically
deleted, they can be replaced with another character.

Cols - (Byte). The size of the object on the HTML page.
JSOnBlur - (string) The JavaScript to be invoked when the object becomes

unfocused.
JSOnChange - (string) The JavaScript to be invoked when another item of

the list is selected.
JSOnFocus - (string) The JavaScript to be invoked when the objects has

the focus.
NoValue � (string). If DataField contains a value not defined in the Items

property of the ComboBox control, the NoValue string is
displayed in ComboBox. If user selects NoValue item in the
ComboBox, the DataField value will not change.

THTMLDBLookupListBox

Purpose

An analog of TDBLookupListBox.

Properties

BlankChar - (Char). Since all «extra» white spaces are automatically
deleted, they can be replaced with another character.

Cols, Rows - (Byte). The dimensions of the object on the HTML page.
JSOnBlur - (string) The JavaScript to be invoked when the object becomes

unfocused.
JSOnChange - (string) The JavaScript to be invoked when another item of

the list is selected.
JSOnFocus - (string) The JavaScript to be invoked when the objects has

the focus.

THTMLDBLookupComboBox

Purpose

An analog of TDBLookupComboBox.

Properties

BlankChar - Type Character (Char). Since all «extra» white spaces are
automatically deleted, they can be replaced with another

148

character.
Cols - (Byte). The size of the object on the HTML page.
JSOnBlur - (string) The JavaScript to be invoked when the object becomes

unfocused.
JSOnChange - (string) The JavaScript to be invoked when another item of

the list is selected.
JSOnFocus - (string) The JavaScript to be invoked when the objects has

the focus.
NoValue � (string). If DataField contains a value not defined in the Items

property of the ComboBox control, the NoValue string is
displayed in ComboBox. If user selects NoValue item in the
ComboBox, the DataField value will not change.

THTMLDBRadioGroup

Purpose

An analog of TDBRadioGroup.

Properties

Orientation � (orVert, orHoriz) Defines a radio buttons orientation.
JSOnClick - (string) The JavaScript to be invoked when the radiobutton is

clicked.

THTMLDBGIF

Purpose

Serves for displaying the GIF image stored in the table. An analog of TDBImage,
except that it can handle images only in the GIF format.

Properties

AltName - (string) The alternate name that must appear in the browser
in place of the picture while the latter is being loaded.

ID - (string) The picture ID employed for generating the
component�s name in the HTML script if the IDType property
is set to itID or itKeyID. The browser usually stores the
pictures it receives in cache memory. Accordingly, when it
receives a page which contains a picture that has already
been received earlier, the browser does not request it from
the server anew, but rather uses the old one. Therefore if the
contents of the given component changes, the ID property
needs to be changed as well to make the browser repeatedly
request the picture from the server.

149

IDType � Valid value is itUnique, itKey, itID or itKeyID. Determines the
method by which component�s name in the HTML script will
be generated:

itUnique � in every request instance, a unique name is generated for
the component; the picture is sent to the browser every time
the current record is accessed.

itKey � the name is generated based on the record�s original key;
the picture for the current record is sent to the browser only
once; however, if the picture in that record is modified, it will
not be sent to the browser but rather retrieved by the browser
from its cache memory.

itID - the name is generated based on the ID property; unless its
value is changed, the browser will not request the picture but
will rather retrieve it from its cache memory; it is the
developer�s responsibility to timely track changes in the
picture ID.

itKeyID - the name is generated based on the record�s original key
and the ID property; this means that when the picture in the
record is changed, it suffices to change the ID of that record;
the ID can be of any nature (such as, for example, a
DataStamp-type field).

JSOnClick - (string) The JavaScript to be invoked when the picture is
clicked with the mouse, if there is a reference to that picture
(i.e., if the URL is not empty).

JSOnMouseOver - The JavaScript to be invoked when the mouse cursor is moved
over the picture, if there is a reference to that picture (i.e., if
the URL is not empty).

URL - (string) The hypertext reference. If the URL is specified,
clicking on the picture will take the user to the appropriate
page.

Tag Example
<img src=»demo.exe?DBGIF135353,5108045139" border=0 alt=»Picture from
table»>

THTMLDBImage

Purpose

THTMLDBImage is a complete analog of the THTMLDBGIF component, except that
it is available in Delphi 3.0 only and can handle images in the BMP, GIF and JPEG
formats.

150

THTMLDBChart

Purpose

The component is accessible in Delphi 3.0 only, and serves for displaying charts
based on the database table of the page. A complete analog of the TDBChart
component. Analogous of the THTMLChart component in terms of its additional
properties.

151

ANNEX B

HTML Elements
and Components of Delphi HTML Controls Library

Table B.1. Summary Table of HTML Elements

Tag Description

!�...� Comments. Any text surrounded by tags will be output in a browser
!DOCTYPE Describes the HTML version used in the current document
A Sets an anchor. HREF=attribute creates a hyperlink pointer.

NAME=attribute creates references by name
ADDRESS Specifies the mail address
APPLET Embeds a Java applet. See description of OBJECT
AREA Determines appearance of the active area in a picture
B Changes text face to bold. See description of STRONG
BASE Determines the URL for the document
BASEFONT Sets the base font value
BGSOUND Adds background sounds to be played back during initial loading
BIG Increases the font size
BLOCKQUOTE Highlights quoted text as a separate block
BODY Specifies the beginning and end of a document body. See description

of HEAD
BR Inserts a line break
CAPTION Specifies a caption for a table. Valid only within the TABLE element
CENTER Centers text and images
CITE Points to a citation. CITE is used to represent a book, document or

other published matter
CODE Represents a program code example
COL Sets the properties of a table column
COLGROUP Sets the properties of one or more columns as a group
COMMENT Point to a comment

152

DD Points to a data definition. See description of DL and DT
DFN Formats the term being defined
DIR Specifies a directory-like list
DIV Sets the document�s division(s). Groups related elements together

within the document
DL Denotes a list of definitions. DL is used with the list of terms being

defined. See description of DT and DD
DT Specifies the definition term. DT is used for formatting the term

being defined. See description of DL and DD
EM Marks up text, usually by presenting it in italics
EMBED Specified embedded objects. See description of OBJECT
FONT Formats font style, size and color
FORM Specifies the form to be employed by the user to input data. See

description of INPUT for a list of the form�s elements
FRAME Specifies independent frames within a page. See description of
FRAMESET Specifies the layout of frames within a page. See

description of FRAME
Hn Determines the style of the header text
HEAD Marks up the header of an HTML document
HR Draws a horizontal line. HR is used for separating sections
HTML Specifies the file as having an HTML-document format
I Presents text in italics
IMG Insets an image file
INPUT Determines the form�s control (such as, for example, an on/off button

or a radio button). See description of FORM
ISINDEX Points to the presence of a search index
KBD Specifies the text to be input from keyboard
LI Specifies a list item. Adds a special symbol or a digit, depending

on the use. See description of UL and OL.
LINK Establishes links between documents
LISTING Presents text in fixed-width font
MAP Maps the set of active areas within a picture
MARQUEE Outputs text in a marquee (�scrolling text�) window
MENU Specifies a menu-like list of items
META Presents information about the document in HTTP header
NOBR Disables line breaks
NOFRAMES Indicates that the contents can be viewed only by browsers that do

not support frames
OBJECT Inserts OLE control element
OL Specifies an ordered list of items. Each item on the list has an

alphabetic or numeric reference. See description of UL and LI
OPTION Specifies the item (option) selected in the list
P Inserts an end-of-paragraph symbol and marks up the beginning of

next paragraph
PARAM Sets parameters of the object�s properties
PLAINTEXT Presents text in fixed-width font without processing of tags
PRE Outputs text precisely as it was input, including all line breaks and white

153

spaces
S Presents text in strikethrough face
SAMP Defines a text sample. See description of CODE
SCRIPT Defines the inclusion of a script as a page component part
SELECT Designates a list or dropout list
SMALL Reduces font size
SPAN Specifies application of style information to the embedded text
STRIKE Presents text in strikeout face. See description of S
STRONG Highlights text, usually presenting it in bold face. See description

of Â
SUB Presents text as subscript
SUP Presents text as superscript
TABLE Creates a table. See description of TH, TR and TD to learn how

table rows and columns are defined
TBODY Determines the body of a table
TD Creates a table cell
TFOOT Creates a single-line footnote in a table
TH Creates a row or column header in a table
THEAD Defines table header
TEXTAREA Creates window in which the user can input and/or edit text
TITLE Defines title of the document
TR Creates a table row
TT Designates a teletype mode. Outputs text in fixed-width font
U Outputs text in underlined face
UL Formats text with positional markers. See description of LI
VAR Designates text to take place of a variable. Outputs text in small-

size fixed-width font
WBR Inserts a �soft� line break into a NOBR block of text
XMP Specifies a text example. Outputs text in fixed-width font

<!� ... �>

Description

Indicates that the enclosed text is the program author�s comment. Any text enclosed
between these tags will be ignored. You can include several lines of text between
the opening and closing tags.

Example
<!� This line text, enclosed in an HTML page, will not print.

This line of text will not print �>

Component
No direct analog. Programmers can use HTMLTag component

154

<!DOCTYPE>

Description

Specifies version of the HTML used in the document. !DOCTYPE is the first element
in any HTML document. !DOCTYPE is a mandatory element for any document
compatible with HTML 3.2 document.

Example
<!DOCTYPE HTML PUBLIC «-//W3C//DTD HTML 3.2//EN»>

Component
No direct analog. Programmers can use HTMLTag component

<A HREF=reference
NAME=name
REL=relationship
REV=revision
TARGET=window
TITLE=title>

Description

Sets an anchor. Tags À and /À may enclose text or graphics. The properties of the
elements following the À tag apply to the text or graphics enclosed in brackets. The
À tag can be employed to anchor a hyperlink pointer to certain text or graphics by
specifying HREF=attribute. The À tag can be employed to define text or graphics
as a reference by name by specifying NAME=attribute. Anchors can be embedded.
HREF=reference
References the destination address or destination file. The destination address must
be in URL format. The destination file should specify a file and have a format compatible
with the given file system. If no search path or domain is specified, the file is searched
for in the same location as the current document.
NAME=name
Sets a reference by name within the HTML document. Reference to a name can be
made in the given document and external documents (by prefixing the name with
the symbol #).
REL=relationship
Determines the relative relationship.
REV=revision - modification
Specifies the version (revision) number.
TARGET=window
Indicates that the linked document must be loaded into the destination window. This
attribute can be specified if you use frames and specify a frame in the FRAME
element. Valid value for window can be one of the following:

155

window Indicates that the linked document must be loaded into the
destination window. To be valid, window should begin with an
alphanumeric character, with the exception of the four destination
windows described in more detail below.

_blank Indicates that the linked document must be loaded into a new unfilled
window. This window has no name.

_parent Indicates that the linked document must be loaded directly into the
parent document of the document containing the link pointer.

_self Indicates that the linked document must be loaded into the same
window in which the link pointer was selected with a click of the
mouse.

_top Indicates that the linked document must be loaded into entire window
space.

TITLE=name
Names the title that must appear when the hyperlink pointer is selected.

Examples
This is a pointer to a link to Microsoft.
This is a pointer to a link to a htm file named Home.htm in
the same directory as this page.

Click here to load the link pointer into
the viewer�s window.

Component
A reference can be implemented with the help the HTMLLabel component, specifying
the destination address in the URL property. You can use HTMLTag to set the anchor.

<ADDRESS>

Description

Specifies the mail address. This element is usually employed in the bottom part of
a document. The address text is output in italics.

Example
<ADDRESS>This text will print in italics.
</ADDRESS>

Component
No direct analog. Programmers can use the HTMLTag component before and after
the tagged text.

156

<APPLET
ALIGN=LEFT|RIGHT|CENTER
ALT=alternateText
CODEBASE=codebaseURL
CODE=appletFile
HEIGHT=pixels
HSPACE=pixels >
NAME=appletInstanceName
[<PARAM NAME = AttributeName >]
WIDTH=pixels
VSPACE=pixels </APPLET>

Description

Loads a Java applet into an HTML document.
ALIGN=alignment
Specifies alignment type for the object in the text.
ALT=alternateAppletText
Alternate representation of the text for text-only browsers that do not support Java.
CODE=appletFile
The name of the Java applet.
CODEBASE=codebaseURL
Specifies the applet�s base URL (directory in which the applet is located).
HEIGHT=pixels
Specifies the initial height, in pixels, of the applet output area.
HSPACE=pixels
Specifies the horizontal size.
NAME=appletInstanceName
Assigns a name to identify the given applet among other applets within an HTML
page.
PARAM NAME=AttributeName
Employed for passing applet-specific arguments from the HTML page.
VSPACE=pixels
Specifies the amount of empty space, in pixels, above the applet.
WIDTH=pixels
Specifies the initial width, in pixels, of the applet output area.

Component
No direct analog. Programmers can use the HTMLTag component.

157

<AREA
COORDS=coords
SHAPE=shape-type
NOHREF
HREF=url
TARGET=window>

Description
Determines how the active area will appear in pictures.
COORDS=coords
Specifies the coordinates determining the appearance of the active area.
HREF=url
Specifies the destination point referenced to the active area.
NOHREF
Indicates that a mouse click in this area will produce no action.
SHAPE=shape-type
Specifies type of the outward appearance (shape) of the area. Valid value for shape-
type can be one of the following:

RECT, RECTANGLE Rectangle. Four coordinates (x1, y1, x2 and y2) need
be specified.

CIRC, CIRCLE Circle. Three coordinates (õ-center, ó-center and radius) need
be specified.

POLY, POLYGON Polygon. Three or more coordinate pairs defining the polygon�s
area need be specified.

TARGET=window
See above.

Examples:
<AREA SHAPE=»RECT» COORDS=»50, 25, 150, 125" HREF=»http://
www.sample.com»>
<AREA SHAPE=»RECT» COORDS=»50, 25, 150, 125" NOHREF>
<AREA TARGET=»viewer» HREF=»sample.htm» SHAPE=»CIRCLE»
COORDS=»50, 25, 150, 125">

Component
No direct analog. Programmers can use the HTMLTag component.

Description

Outputs text in bold face.
Example

158

This text will be displayed in bold face.

Component
Use the Font property for text components.

<BASE HREF=url
TARGET=window>

Description

Specifies the URL for the document.
HREF=url
Specifies the full URL for the document in case the latter is read in context-independent
mode but the user wishes to make a reference to the original.
TARGET=window
See above.

Examples
<BASE HREF=»http:// www.sample.com/hello.htm»>
<BASE HREF=»http:// www.sample.com/hello.htm» TARGET=»viewer»>

Component
No direct analog. Normally needs not to be used in programming. Programmers
wishing to add a header to their HTML page can use the HeaderAdd property of the
HTMLPage component.

<BASEFONT COLOR=color
NAME=name SIZE=n>

Description

Sets the base font size. Base font size is the size to be applied by default to the font
of any text that is not formatted with the help of a styles list or with the aid of the
FONT element.
COLOR=color
Specifies the base font color.
NAME=name
Specifies the base font name.
SIZE=n
Specifies the base font size. The value of n can be 1 through 7 inclusive. The default
value is 3, and 7 is the maximum value. Accordingly, relative font size settings can
be specified throughout the document (for example, by specifying).

Example
<BASEFONT SIZE=3> Set the base font size to 3.
 The font size is now equal to 7.

159

 Now, text will print in font size 2.

Component
No direct analog. Normally needs not be used in building programs.

<BGSOUND SRC=url LOOP=n >

Description

Adds background sounds or «sound tracks» to the page. Sounds recorded both in
a sampled (WAV or AU) format or a MIDI format are acceptable.
SRC=url
Specifies the source address of the sound to be played back.
LOOP=n
Specifies the number of playback loops after activation. If n =-1 or LOOP=INFINITE
is specified, the sound will be played back infinitely.

Component
No direct analog. Programmers can use the HTMLTag component.

<BIG>

Description

Makes the text one size bigger.

Example
<BIG>This text is bigger.
</BIG>

Component
No direct analog. Programmers can use the HTMLTag component.

<BLOCKQUOTE>

Description

Sets indents for the right and left margins. These are used to mark up citations in
the text.

Example
<P>He said:
<BLOCKQUOTE>»Hi, there!»</BLOCKQUOTE>

Component
No direct analog. Programmers can use the HTMLTag component.

160

<BODY BACKGROUND=url
BGCOLOR=color
BGPROPERTIES=FIXED
LINK=color TEXT=color
TOPMARGIN=n VLINK=color >

Description

Specifies the beginning and end of the document�s body. This element also allows
you to specify background image, background color, color of links, and top and left
margins of the page.
BACKGROUND=url
Specifies the background image of the page. This image is displayed tile-like behind
the text or graphics on the page.
BGCOLOR=color
Sets the background color of the page. The value of color can be specified in
hexadecimal or RGB format, or as a redefined color name. See description of Color.
BGPROPERTIES=FIXED
Specifies the «watermark» � an unscrollable (fixed-position) background picture.
LEFTMARGIN=n
Specifies the size of the left-hand margin for the entire body of the page and re-
defines the default margin settings. If LEFTMARGIN is set to zero, the left-hand
margin will be located exactly at the left-hand edge of the page.
LINK=color
Sets the color of pointers to the hyper links that have not been used yet. The value
of color can be specified in hexadecimal or RGB format, or as a redefined color
name. See description of Color.
TEXT=color
Sets the color of text on the page. The value of color can be specified in hexadecimal
or RGB format, or be a redefined color name. See description of Color.
TOPMARGIN=n
Sets the size of the top margin of the page and re-defines its default setting. If
TOPMARGIN is set to zero, the top margin will be located exactly at the top edge of
the page.
VLINK=color or colorname
Sets the color of the hyper link pointers that have already been used. The value of
color can be specified in hexadecimal or RGB format, or as a redefined color name.
See description of Color.

Examples
The following HTML example inserts a background image into the current page:
<BODY BACKGROUND=»/ie/images/watermrk.gif» BGPROPERTIES=FIXED
BGCOLOR=#FFFFFF TEXT=#000000 LINK=#ff6600 VLINK=#330099>
<HTML> <BODY>Here�s a Web page!</BODY></HTML>

161

Component
The tag is automatically produced by the HTMLPage component. The color settings
are determined by the FclrBackground, FclrText, FclrLinks, FclrVisited, and
FclrActive properties, and the background image is determined by the Background
property.

<BR
CLEAR=align-type>

Description

Inserts a line break.
CLEAR=align-type
Inserts vertical white spaces so that the text to be printed next would be located
below the «floating» images aligned to the left- or right-hand edge of the page. Valid
value for align-type can be one of the following:

LEFT Inserts white spaces so that the text to be output next would appear
aligned to the left-hand edge of the page immediately below the left-aligned
floating image.

RIGHT Inserts white spaces so that the text to be output next would appear
aligned to the right-hand edge of the page immediately below the right-
aligned floating image.

ALL Places text after all floating images.

Component
No direct analog. Programmers can use the HTMLTag component.

<CAPTION
ALIGN=align-type>

Description

Defines a table caption.
ALIGN=align-type
Sets the alignment type for the table caption. Valid value for align-type is LEFT,
RIGHT, TOP or BOTTOM. By default, the caption is centered and located at the
bottom of the table.
This element is valid only within the TABLE element. Use of closing tag is mandatory.

Example
<TABLE>
<CAPTION ALIGN=BOTTOM>
This caption appears centered at the table bottom.
</CAPTION>
<TR>

162

</TR>
</TABLE>

<CENTER>

Description

Centers text and images.

Example
<CENTER>Hi, there!</CENTER>

Component
No direct analog. Programmers can use the HTMLTag component.

<CITE>

Description

Indicates that this is a citation, and is employed to represent a book, a document or
some other published source.

Example
<CITE>Book Title.</CITE>

Component
No direct analog. Programmers can use the HTMLTag component.

<CODE>

Description

Indicates that this is a program code example. Presents text in small-size font. If no
font type is specified, a fixed-width font is used.

Example
<CODE>Here is a text in small-size fixed-width font.
</CODE>

Component
No direct analog. Programmers can use the HTMLTag component.

163

<COL ALIGN=align-type
SPAN=n>

Description

Sets the properties of one or more columns of the table. Use this element in
conjunction with the COLGROUP element to define properties of a column within a
group of columns.
ALIGN=align-type
Specifies the alignment type for the text, in font recticles, within the column. Valid
value for align-type is CENTER, LEFT or RIGHT.
SPAN=n
Sets the number of consecutive columns whose properties are being defined.
This element is valid only within the table. Use of closing tag is unnecessary and is
not recommended.
The properties set with the COL element always override and re-define the properties
specified with the preceding COLGROUP element.

Example
<TABLE>
<COLGROUP>
 <COL ALIGN=RIGHT>
 <COL ALIGN=LEFT>
<COLGROUP>
 <COL ALIGN=CENTER>
<TBODY>
 <TR>
 <TD>This is the first column in the group, and it is right-justified.
</TD>
 <TD> This is the second column in the group, and it is left-justified.
</TD>
 <TD>This column is in a new group, and it is centered.
</TD>
 </TR>
</TABLE>

<COLGROUP
ALIGN=align-type
SPAN=n>

Description

Sets the properties of a group of columns.
ALIGN=align-type
Specifies the alignment type for the text in the cells of the table column(s). Valid
value for align-type is CENTER, LEFT or RIGHT.

164

SPAN=n
Sets the number of consecutive columns making up the group for which the properties
are being defined.
This element is valid only within the table. Use of closing tag is unnecessary and is
not recommended. If different properties need be assigned to the columns in your
group, use COLGROUP in conjunction with one or more COL elements in order to
assign specific properties for each individual column. If groups in the table element
are defined with the use of RULES=attribute, this element also determines the way
table rules will drawn (vertical rules will then be drawn between groups of columns
rather than between individual columns).

Example
<TABLE>
<COLGROUP ALIGN=RIGHT>
<COLGROUP SPAN=2 ALIGN=LEFT>
<TBODY>
 <TR>
 <TD>This column is located in the first group, and will be right-justified.
</TD>
 <TD> This column is located in the second group, and will be left-justified.
</TD>
 <TD> This column is located in the second group, and will be left-justified.
</TD>
 </TR>
</TABLE>

<COMMENT>

Description

Defines the text as a comment. The text in the COMMENT element is not displayed
in a browser if it doesn�t contain a HTML code.

Example
<COMMENT>This text will not be output to the screen.</COMMENT>

Component
No direct analog. Programmers can use the HTMLTag component.

<DD>

Description

Points to a definition in the definitions list. Indicates that the text is the definition of
a term, and must therefore be output in the right-hand column of the definitions list.
Example
<DL><DT>Cat<DD>A clever furred animal who purrs and loves milk.

165

<DT>Lizard<DD>A mysterious desert animal with a long tongue.
</DL>

<DFN>

Description

Indicates that this is a definition. Formats the term when it first appears in the
document.

Example
<DFN>HTML stands for Hypertext Markup Language.
</DFN>

Component
No direct analog. Programmers can use the HTMLTag component.

<DIR>

Description

Denotes a directory-like list. Indicates that the following block of text is made up of
individual items each of which begins with the element. The items must be no
more than 20 characters long and be output column-wise.

Example
<DIR> Art
Hystory
Literature
Sports
Entertainment
Science
</DIR>

Component
No direct analog. Programmers can use the HTMLList component. See description
of the tag.

<DIV
ALIGN=align-type
</DIV>

Description

Sets the document divisions. Groups related elements together.
ALIGN=align-type

166

Sets the alignment type for the block items within the DIV elements. Valid value for
align-type is LEFT, CENTER or RIGHT. The default value is LEFT.

Example
<DIV>
This text represents a section (division).
</DIV>
<ex><DIV ALIGN=CENTER>
This text represents another division.
</DIV>

Component
No direct analog. Programmers can use the HTMLTag component.

<DL>

Description

Indicates that the following block of text is a definitions list (i.e., an automatically
formatted two-column list whereby terms are listed on the left and their respective
definitions appear opposite them on the right).

Example
<DL>
<DT>Cat
<DD>A clever furred animal who purrs and loves milk.
<DT>Lizard
<DD>A mysterious desert animal with a long tongue.
</DL>

Component
No direct analog. Programmers can use the HTMLTag component.

<DT>

Description

Indicates that this is a definitions list term. Indicates that the text is a term to be
defined, and must therefore be output in the left-hand column of the definitions list.

Example
<DL> <DT>Cat<DD>A clever furred animal who purrs and loves milk.
<DT>Lizard<DD>A mysterious desert animal with a long tongue.
</DL>

167

Description

Marks up the text, usually by presenting it in italic face.

Example
This text will print in italics.

Component
No direct analog. Programmers can use the HTMLTag component.

<EMBED HEIGHT=size of object
NAME=programmatic name
OPTIONAL PARAM="value" ...
OPTIONAL PARAM=
PALETTE=foreground | background
SRC=data to object
WIDTH=size of object>

Description

Indicates that the object is an embedded one. Although OBJECT is a more preferable
option for inserting objects, EMBED has been included for compatibility with the
earlier versions of HTML documents. See description of OBJECT.
HEIGHT=size of object
Defines the height of the object on the page in pixels.
NAME=programmatic name
Specifies the name by which other objects or elements would reference the given
object.
OPTIONAL PARAM=value
Indicates the optional parameters (if any) specific for the given object.
PALETTE=foreground | background;
Sets the foreground or background color palette.
SRC=data to object
Specifies the name of any source of code to be added to the object.
WIDTH=size of object
Specifies the width of the object on the page in pixels.

Example
<EMBED SRC="MyMovie.AVI" WIDTH=100 HEIGHT=250
AUTOSTART=TRUE PLAYBACK=FALSE></code></pre>

168

Component
No direct analog. Programmers can use the HTMLTag component.

<FONT SIZE=n
FACE=name
COLOR=color>

Description

Sets font, size and color of the text.
COLOR=color
Sets the font color. The value of color can be specified in hexadecimal or RGB
format, or as a redefined color name. See description of Color.
FACE=»name [,name2[,name3]]»
Sets the font face type. You can specify a list of font names. If the very first font on
the list is accessible, the system will use it. Otherwise the system will attempt to
use the second font on the list, etc. If none of the fonts on your list is accessible, the
default font will be used.
SIZE=n
Specifies the font size. This is a number from 1 to 7, with 7 corresponding to the
largest font size. The �plus� or �minus� sign prepended to the number specifies the
font size relative to the base font�s current setting (BASEFONT). Note that relative
font size specifications are not cumulative, and therefore specifying twice in one line will not increase the font size by 2.

Component
Automatically generated for all text elements. Programmers can also use the
HTMLTag component.

<FORM ACTION=url
METHOD=get-post
TARGET=window>

Description

Denotes a form.
ACTION=url
Specifies the address to be used for posting the results of actions with the form. If
nothing is specified, the document�s base URL will be used.
METHOD=get-post
Indicates how the form�s data are to be posted to the server. Valid value for get-post
can be one of the following:

GET Adds arguments to the current URL and opens it just as if it were
an anchor.

POST Posts data via the ÍÒÒÐ post transaction.

169

TARGET=window
See above.

Example
<FORM TARGET=»viewer» ACTION=»http://www.sample.com/bin/search»>
 ...
</FORM>
Component
Automatically generated by the HTMLPage component.

<FRAME ALIGN=align-type
FRAMEBORDER=1|0
MARGINHEIGHT=height
MARGINWIDTH=width
NAME=name
SCROLLING=yes|no
SRC=address>

Description

Describes one frame in a frame set. There is no corresponding closing tag, and it is
not a container.
ALIGN=align-type
Sets the alignment type for the frame or surrounding text. Valid value for align-type
can be one of the following:

TOP The surrounding text is aligned to the top of the frame.
MIDDLE The surrounding text is aligned to the middle of the frame.
BOTTOM The surrounding text is aligned to the bottom of the frame.
LEFT The frame is drawn as a left-aligned «floating frame», with the text

placed around it.
RIGHT The frame is drawn as a right-aligned «floating frame», with the text

placed around it.

FRAMEBORDER=0|1
Indicates whether a 3D-style border is to be drawn around the frame. The default
value is 1 (add border). 0 means that the frame is to have no border around it.
MARGINHEIGHT=height
Controls the height of the frame margin in pixels.
MARGINWIDTH=width
Controls the width of the frame margin in pixels.
NAME=name - name
Provides a name for the frame.
NORESIZE
Disallows resizing of the frame by the user.

170

SCROLLING=yes|no
Creates a scrollable frame.
SRC=address
Specifies the address of the frame�s source text.

Example
<FRAME FRAMEBORDER=0 SCROLLING=NO SRC=»sample.htm»>

Component
Not implemented in this version of the library.

<FRAMESET COLS=col-widths
FRAMEBORDER=1|0
FRAMESPACING=spacing
ROWS=row-heights>

Description

A container that encapsulates the FRAME, FRAMESET and NOFRAMES elements.
COLS=col-widths
Creates a column-style frame. You can define column width in terms of percent (%),
pixels or relative size (*).
FRAMEBORDER=1|0
Indicates whether a 3D-style border is to be drawn around the frame. The default
value is 1 (draw frame). 0 means that the frame is to have no border around it.
FRAMESPACING=spacing
Defines the size (in pixels) of the additional spacing to be created between successive
frames.
ROWS=row-heights
Creates a row-style document frame. You can define row height in terms of percent
(%), pixels or relative size (*).
The FRAMEBORDER= and FRAMESPACING= attributes are inherited from any
FRAMESET container element. This means that you only have to specify attributes
for a single (outermost) FRAMESET tag to have them apply to all FRAME tags on
the same page.

Example
<FRAMESET SCROLLING=YES COLS=»25%, 50%, *»>
 <FRAME SRC=»contents.htm»>
 <FRAME SRC=»info.htm»>
 <FRAME SCROLLING=NO SRC=»graphic.htm»>
</FRAMESET>

Component
Not implemented in this version of the library.

171

<Hn ALIGN=align-type>

Description

Presents the text in the header style. You can use values Í1 through Í7 to specify
various header sizes and styles.
n
Sets the section level. This is an integer number from 1 to 6.
ALIGN=align-type
Sets the alignment type for the header text. Valid value for àlign-type is CENTER,
LEFT or RIGHT. The default value is LEFT.
Use of closing tag is mandatory.

Example
<H1>Welcome to Internet!
</H1>

Component
Implemented in the HTMLHeader component. The header font size is determined by
the HeaderLevel property.

<HEAD>

Description

Marks up the text as the ÍÒÌL document�s header.

Example
<HEAD>
<TITLE>A simple document</TITLE>
</HEAD>

Component
Automatically generated by the HTMLPage component.

<HR ALIGN=align-type
COLOR=color
NOSHADE SIZE=n
WIDTH=n>

Description

Draws a horizontal line.
ALIGN=align-type
Draws a left-aligned, right-aligned or centered line. Valid value for àlign-type is LEFT,
RIGHT or CENTER.

172

COLOR=color
Sets the color of the line of text. The value of color can be specified in hexadecimal
or RGB format, or as a redefined color name. See description of Color.
NOSHADE
Draws a line without 3D-style shading.
SIZE=n
Sets the height of the line in pixels.
WIDTH=n
Sets the width of the line either in pixels or in percent of window width.

Example
<HR SIZE=5 WIDTH=80% NOSHADE>

Component
HTMLRuler. The appearance is determined by the Shade property. The horizontal
and vertical sizes are calculated automatically.

<HTML>

Description

Marks up the file as an HTML document. This element has no attributes.

Example
<HTML><BODY> <P>This is an HTML document.</BODY>
</HTML>

Component
Generated automatically by the HTMLPage component.

<I>

Description

Presents the text in italic face.

Example
<I>This text will be printed in italics.</I>

Component
Use the Font property for text components.

173

<IFRAME ALIGN=align-type
FRAMEBORDER=1|0
MARGINHEIGHT=height
MARGINWIDTH=width
NAME=name
SCROLLING=yes|no
SRC=address>

Description

Specifies a floating frame.
ALIGN=align-type
Sets the alignment type for the frame or surrounding text. Valid value of align-type is
one of the following:
TOP The surrounding text is aligned to the top of the frame.
MIDDLE The surrounding text aligned to the middle of the frame.
BOTTOM The surrounding text aligned to the bottom of the frame.
LEFT The frame is drawn as a left-aligned «floating frame», with the text placed
around it.
RIGHT The frame is drawn as a right-aligned «floating frame», with the text placed
around it.
FRAMEBORDER=0|1
Indicates whether a 3D-style border is to be drawn around the frame. The default
value is 1 (add border). 0 means that the frame is to have no border around it.
MARGINHEIGHT=height
Controls the frame height.
MARGINWIDTH=width
Controls the frame width.
NAME=name
Describes the frame name.
NORESIZE
Disallows resizing of the frame by the user.
SCROLLING=yes|no
Creates a scrollable frame.
SRC=address
Outputs the address of the frame�s source text.

Example
<IFRAME FRAMEBORDER=0 SCROLLING=NO SRC=»sample.htm»>

Component
Not implemented in this version of the library.

174

<IMG ALIGN=align-type
ALT=text BORDER=n
CONTROLS DYNSRC=url
HEIGHT=n HSPACE=n
ISMAP LOOP=n
SRC=address START=start-event
USEMAP=map-name VSPACE=n
WIDTH=n>

Description

Inserts an image.
ALIGN=align-type
Sets the alignment type for the image or surrounding text. Valid value for align-type
can be one of the following:

TOP The surrounding text is aligned to the top of the image.
MIDDLE The surrounding text aligned to the middle of the image.
BOTTOM The surrounding text aligned to the bottom of the image.
LEFT The picture is drawn as a left-aligned «floating image», with the text

placed around it.
RIGHT The picture is drawn as a right-aligned «floating image», with the

text placed around it.

ALT=text
Specifies the text to be output in place of the picture if the Show Pictures option is
unchecked.
BORDER=n
Determines the size of the border to be drawn around the image. If the image is a
hyperlink pointer, the border is drawn in the corresponding color of that hyperlink
pointer. If the image is not a hyperlink pointer, the border is invisible.
CONTROLS
If a video clip is available, a set of controls is output under it.
DYNSRC=url
Specifies the address of the video clip or VRML to be output in the window. It is used
instead of the Dynamic Source.
HEIGHT=n
Determines, in conjunction with WIDTH=, the dimensions of the picture to be drawn.
If the picture�s actual dimensions differ from those specified, the picture is stretched
so that its dimensions would correspond to what is specified. Internet Explorer also
uses this to draw an image occupying the area of corresponding dimensions before
loading the picture.
HSPACE=n
Determines, in conjunction with VSPACE=, the horizontal spacing for the image.

175

HSPACE= is similar to BORDER= except that the margins are not painted in a
definite color when the image is a hyperlink pointer.
ISMAP
Clicking on the picture results in the mouse click coordinates being passed back to
the server, which takes you to another page.
LOOP=n
Determines how many cycles of the video clip will be played back once it is activated.
If n=1 or LOOP=INFINITE is specified, the clip will loop indefinitely.
SRC=address
Specifies the source address of the picture to be inserted.
START=start-event
Indicates when playback of the file specified as DYNSRC=attribute should start.
Valid value for start-event can be one or both of the following:

FILEOPEN Start playback immediately after the file is opened. This is a default
value.

MOUSEOVER Start playback when the user moves the mouse cursor over the
animation.

You can specify both values, but they should be separated with a comma.
USEMAP=map-name
Determines the MAP to be used in performing the operations corresponding to the
user-generated mouse clicks.
VSPACE=n
Determines, in conjunction with HSPACE=, the image spacing margins. VSPACE=
is similar to BORDER=, except that the margins are not painted a definite color
when the image is a hyperlink pointer.
WIDTH=n
Determines, in conjunction with HEIGHT=, the dimensions of the picture to be drawn.
If the picture�s actual dimensions differ from the specified ones, the picture is stretched
so that it would eventually correspond to what is specified. Internet Explorer also
uses this to draw an image occupying the area of corresponding dimensions before
loading the picture.

Component
HTMLImageRef, HTMLImageRes, HTMLDBGIF. The image alignment type is
determined by the AlignImage property. The alternative name is specified in the
AltName property. The SRC is generated automatically. Support of other attributes
is not implemented in this version of the library.

176

<INPUT ALIGN=align-type
[CHECKED|]
MAXLENGTH=length
NAME=name SIZE=size
SRC=address
TYPE=type VALUE=value>

Description

Determines the form�s control.
ALIGN=align-type
Used if TYPE=IMAGE is specified. Determines how the next line of text will be
aligned relative to the image. Valid value for align-type is TOP, MIDDLE or BOTTOM.
CHECKED
Activates the CHECKED option to establish that the on/off or radio button will appear
«checked» (selected) when the form is initially loaded.
MAXLENGTH=length
Indicates the maximum number of characters that can be input into the control.
NAME=name
Specifies the name of the control.
SIZE=size
Specifies the size of the control (in characters). For controls of TEXTAREA type,
both height and width parameters can be specified if the «width,height» format is
used.
SRC=address
Specifies the source address of the image to be used. It is employed if TYPE=IMAGE
is specified.
TYPE=type
Indicates what type of control is to be used:

CHECKBOX Used for simple Boolean attributes or attributes that can assume
more than one value at a time. This control is presented in the form
of several fields of on/off buttons (checkboxes), each of which has
the same name. Each selected on/off button in the presented data
generates a separate name/value pair, even if this results in duplicate
names. The default value for on/off buttons is «on» («checked»).

HIDDEN No field is made visible to the user, but the field�s contents are
passed together with the form to be executed. This value can be
used for passing information on the status of the client/server
interface.

IMAGE The image field on which you can click to have it immediately
activated. The selected point�s coordinates are mapped and
measured in pixels relative to the top left-hand corner of the image
and are returned (together with the rest of the form�s contents) in
two name/value pairs. The x-coordinate is passed in the field name

177

appended with «.x», while the y-coordinate is passed in the field
name appended with «.y». All VALUE attributes are ignored.
Parameters of the image proper are determined by the SRC attribute
in exactly the same way as for the Image element.

PASSWORD Similar to the ÒÅÕÒ attribute, except that the text input by the user
is not displayed.

RADIO Used for those attributes which assume one out of a set of alternative
values. Each field of radio buttons in a group should be assigned a
unique name. Only the selected radio button in the group generates
a name/value pair in the presented data. Radio buttons require that
the VALUE attribute be explicitly specified.

RESET A button that, when clicked, resets the form�s fields to their originally
defined values. The glyph to be displayed on this button can be
specified in the same way as for the SUBMIT button.

SUBMIT A button that, when clicked, activates the form. You can use the
VALUE attribute to have a non-editable glyph to be displayed on the button.

The default glyph is application-specific. If the SUBMIT button is
clicked in order to activate a form and has a certain NAME attribute,
then this button produces a name/value pair in the posted data.
Otherwise, the SUBMIT button contributes nothing to the posted
data.

TEXT Employed for single-line text input fields. Use this jointly with the
SIZE and MAXLENGTH attributes.

The default control type is ÒÅÕÒ.
VALUE=value
Specifies the default value of the control (for text/numeric controls). If the control is
of Boolean type, determines the value to be returned when such a control is activated.
Example
<FORM ACTION=»http://intranet/survey» METHOD=POST>
<P>Name

<INPUT NAME=»CONTROL1" TYPE=TEXT VALUE=»Your Name»>
<P>Password

<INPUT TYPE=»PASSWORD» NAME=»CONTROL2">
<P>Color

<INPUT TYPE=»RADIO» NAME=»CONTROL3" VALUE=»0" CHECKED>Red
<INPUT TYPE=»RADIO» NAME=»CONTROL3" VALUE=»1">Green
<INPUT TYPE=»RADIO» NAME=»CONTROL3" VALUE=»2">Blue
<P>Comments

<INPUT TYPE=»TEXTAREA» NAME=»CONTROL4" SIZE=»20,5"
MAXLENGTH=»250">
<P><INPUT NAME=»CONTROL5" TYPE=CHECKBOX CHECKED>Send receipt
<P><INPUT TYPE=»SUBMIT» VALUE=»OK»><INPUT TYPE=»RESET»
VALUE=»Reset»>
</FORM>

Components
This tag generates such components as HTMLButton (this control will have the type

178

SUBMIT if the ButtonType property is set to btSubmit, or the type RESET otherwise),
HTMLCheckBox (CHECKBOX), HTMLRadio(RADIO), HTMLImageButton (IMAGE),
HTMLEdit (this control will have the type TEXT if the Password property is set to
False, and the type PASSWORD otherwise), HTMLHidden (HIDDEN), HTMLDBEdit
(see HTMLEdit), and HTMLDBCheckBox (see HTMLCheckBox).

<ISINDEX ACTION=url
PROMPT=prompt-text>

Description

Indicates whether a search index is specified.
ACTION=url
Determines the CGI (Common Gateway Interface) program which the line in the text
input field should be passed to.
PROMPT=prompt-text
Determines the custom prompt to be used instead of the default prompt.
If PROMPT=attributes is omitted, the element outputs the following message followed
by a text input field: «You can start the index search. Please enter the search
keyword(s)». Once the user enters a text and presses ENTER, this text will be sent
back to the page�s URL as a request.

Example
<ISINDEX ACTION=»http://intranet/search» PROMPT=»Enter key words here�»>

Component
Not implemented in this version of the library.

<KBD>

Description
The text to be entered from keyboard. The text is printed in fixed-width bold-face
font.
Example
<KBD>This user must enter this text.</KBD>
Component
No direct analog. Programmers can use the HTMLTag component.

<LI
TYPE=order-type
VALUE=n>

Description

Denotes a list item. In the DIR, MENU, OL, or UL blocks of text denotes a new item
of the list.

179

TYPE=order-type
Changes style of an ordered list. Valid values for order-type are as follows:
A Use capital (upper-case) letters.
a Use lower-case letters.
I Use Roman numerals.
i Use lower-case Roman numerals.
1 Use numbers.
VALUE=n
Changes the order hierarchy of the list items.
Example
<DIR>
Art
Hystory
Literature
Sports
Intertainment
Science </DIR>
Component
See description of the tag.

<LINK HREF=URL>

Description

The LINK element establishes the hierarchy of navigation through various documents.
LINK should be part of the HEAD element. The HEAD element can encapsulate
more than one LINK elements.
HREF=URL
Determines the URL referenced to the current document.

Example
<LINK HREF=»http://www.microsoft.com/newdocnewdoc.htm»>

Component
Usually needs not be used. Programmers can use the AddHeader property of the
HTMLPage component to place text into the header.

<LISTING>

Description

Presents the text in fixed-width font.

Example
<LISTING>Here�s some plain text.</LISTING>

180

Component
No direct analog. Programmers can use the HTMLTag component.

<MAP NAME=name>

Description

Maps the active areas within a picture.
NAME=name
Gives the MAP object a name by which it could be subsequently referenced.

Example
<MAP NAME=»map1">
 <AREA ... >
 <AREA ... >
</MAP>

Component
No direct analog. Programmers can use the HTMLTag component.

<MARQUEE ALIGN=align-type
BEHAVIOR=type
BGCOLOR=color
DIRECTION=direction
HEIGHT=n
HSPACE=n
LOOP=n
SCROLLAMOUNT=n
SCROLLDELAY=n
VSPACE=n
WIDTH=n>

Description

Creates a marquee (�scrolling-text�) window.
ALIGN=align-type
Determines how the surrounding text is to be aligned relative to the marquee window.
Valid value for align-type can be one of the following:

TOP The surrounding text is aligned to the top of the window.
MIDDLE The surrounding text aligned to the middle of the window.
BOTTOM The surrounding text aligned to the bottom of the window.
BEHAVIOR=type

181

Determines the mode in which the object will be operating. Valid value for type is one
of the following:

SCROLL The text begins entirely outside the marquee window on one side
and scrolls through completely until it is fully outside the window on
the opposite side, after which the cycle is repeated. This is the
default mode.

SLIDE The text begins entirely outside the marquee window on one side
and slides across the window until it touches the opposite margin.

ALTERNATE The text bounces back and forth within the marquee window.
BGCOLOR=color
Determines the background color of the marquee window. The value of color can be
specified either as a hexadecimal number (optionally prefixed with the symbol #), in
the RGB format, or as a redefined color name. See description of Color.
DIRECTION=direction
Determines the direction in which the text will be scrolling. Valid value for direction is
either LEFT or RIGHT. The default value is LEFT (text scrolls from right to left).
HEIGHT=n
Determines the height of the marquee window, either in pixels or as percent of the
screen height. In the latter case, the n value should be followed with the percent
character (%).
HSPACE=n
Determines the size of the marquee window�s right- and left-hand margins in pixels.
LOOP=n
Determines the number of scroll cycles through the window after scrolling is activated.
If n=-1 or if LOOP=INFINITE is specified, text scrolling will loop indefinitely.
SCROLLAMOUNT=n
Determines the amount of scroll, in pixels, between each successive output of text
in the marquee window.
SCROLLDELAY=n
Determines the scroll delay, in milliseconds, between each successive output of
text in the marquee window
VSPACE=n
Determines the size, in pixels, of the margins above and below the marquee window.
WIDTH=n
Determines the width of the marquee window, either in pixels or in percent of the
screen width. In the latter case, the n value should be followed with the percent
character (%).

Example
<MARQUEE DIRECTION=RIGHT BEHAVIOR=SCROLL SCROLLAMOUNT=10
SCROLLDELAY=200>This is a line of «scrolling» text.</MARQUEE>

Component
No direct analog. Programmers can use the HTMLTag component.

182

<MENU>

Description

Denotes a menu. Implies that the following block of text consists of individual items
each of which begins with the LI element.

Example
<MENU>This is menu item #1.And this is menu item #2.
</MENU>

Component
No direct analog. See description of the tag.

<META HTTP-EQUIV=response
 CONTENT=description
 NAME=description
 URL=url>

Description

Presents information about HTML documents.
HTTP-EQUIV=description
Links item to the HTTP header. This information is subsequently used by the
application when it reads the header. See examples below.
CONTENT=description
Determines the contents of the meta information that must be linked to the specified
name or HTTP header. Can be used together with URL= and date/time specification
to load the document repeatedly after expiration of a certain time period.
NAME=description
Describes the name of the document.
URL=description
Describes the URL of the document.

Examples
If the document contains the text:
<META HTTP-EQUIV=»Expires»

CONTENT=»Tue, 04 Dec 1996 21:29:02 GMT»>
<meta http-equiv=»Keywords» CONTENT=»HTML, Reference»>
<META HTTP-EQUIV=»Reply-to» content=»anybody@microsoft.com»>
<Meta Http-equiv=»Keywords» CONTENT=»HTML Reference Guide»>
the server may include header fields
Expires: Tue, 04 Dec 1996 21:29:02 GMT
Keywords: HTML, Reference
Reply-to: anybody@microsoft.com
as part of the HTTP response to the �GET� or �HEAD� queries about this document.

183

<ex><HTML>
<HEAD>
<META HTTP-EQUIV=»REFRESH» CONTENT=2>
<TITLE>Re-load the document</TITLE>
</HEAD>
<BODY>
<P>This document will be re-loaded every 2 seconds.
</BODY>
</HTML>

<HTML>
<HEAD>
<META HTTP-EQUIV=»REFRESH» CONTENT=»5; URL=http://www.sample.com/
next.htm»>
<TITLE>Load next document.</TITLE>
</HEAD>
<BODY>
<P>After expiration of five seconds the document «http://www.sample.com/next.htm»
will be loaded.
</BODY>
</HTML>

Component
Programmers can use the AddHeader property of the HTMLPage component to add
the necessary information to the header.

<NOBR>

Description

Disables line breaks. Presents the text without line breaks.

Example
<NOBR>Here is a line of text which I don�t want to break . . . This is the end of the
line.
</NOBR>

Component
No direct analog. Programmers can use the HTMLTag component.

<NOFRAMES>

Description

Contents that can be viewed only by browsers which have no frame-support feature.
Browsers that do support frames will not output anything contained between the

184

opening and closing tags of NOFRAMES. Using NOFRAMES, you can create a
page compatible with browsers of both types.

Example
<FRAMESET>
<NOFRAMES>You will need a browser supporting HTML 3.2 to view frames!
</NOFRAMES>
</FRAMESET>

Component
Not implemented in this version of the library.

<OBJECT ALIGN=align-type
BORDER=n
CLASSID=url
CODEBASE=url
CODETYPE=codetype
DATA=url
DECLARE HEIGHT=n
HSPACE=n
NAME=url
SHAPES STANDBY=message
TYPE=type
USEMAP=url
VSPACE=n
WIDTH=n>

Description

Inserts a specific object (such as an image, a document, an applet or a control) into
the HTML document.
ALIGN=align-type
Sets the object�s alignment type. Valid values for align-type are as follows:

BASELINE The object�s bottom is aligned to the base line of the surrounding
text.

CENTER The object is centered between the left- and right-hand margins;
subsequent text begins on the very first line following the object.

LEFT The object is aligned to the left-hand margin; subsequent text is
wrapped along the object�s right-hand edge.

MIDDLE The object�s middle is aligned to the surrounding text�s base line.
RIGHT The object is aligned to the right-hand margin; subsequent text is

185

wrapped along the object�s left-hand edge.
TEXTBOTTOM The object�s bottom is aligned to the bottom of the surrounding

text.
TEXTMIDDLE The object�s middle is aligned to a middle point between the base

line and õ-height of the surrounding text.
TEXTTOP The object�s top is aligned to the top of the surrounding text.
BORDER=n
Determines the width of the object�s border, if the object has been defined as a
hyperlink pointer.
CLASSID=url
Identifies the object�s implementation. The url syntax depends on the object type.
For example, for ActiveX registered controls the syntax is as follow: CLSID:class-
identifier.
CODEBASE=url
Identifies the object�s code base. The url syntax is object-dependent.
CODETYPE=codetype
Determines the code media type.
DATA=url
Identifies the data for the object. The url syntax is object-dependent.
DECLARE
Declares the object without implementing it. Use DECLARE further in the document
to create cross references to the object or when you use the object as a parameter
in another object.
HEIGHT=n
Specifies the suggested height of the object.
HSPACE=n
Determines the horizontal spacing (an additional unfilled space between the object
and any text or images to the right or left of it).
NAME=url
Establishes the name of the object when the latter is posted as part of a form.
SHAPES
Indicates that the object has a hyperlink pointer.
STANDBY=message
Describes the message to be displayed while the object is being loaded.
TYPE=type
Determines the data media type.
USEMAP=url
Determines the picture to be used jointly with the object.
VSPACE=n
Determines the vertical spacing (an additional unfilled space between the object and
any text or images above or below of it).
WIDTH=n
Specifies the suggested width of the object.
Use of closing tag is mandatory.
The object can encapsulate any elements normally used within the body of an
HTML document, including section headers, paragraphs, lists, forms, and even
embedded objects.

186

Component
No direct analog. Programmers can use the HTMLTag component.

<OL START=n
TYPE=order-type>

Description

Outputs lines of text in the form of an ordered list. Indicates that the following block
of text is made up of individual items, each of which begins with the LI tag. The list�s
items are numbered.
START=n
Specifies the starting number in the list.
TYPE=order-type
Changes style of an ordered list. Valid values for order-type are as follows:
A Use capital (upper-case) letters.
a Use lower-case letters.
I Use Roman numerals.
i Use lower-case Roman numerals.
1 Use numbers.

Example

This is item #1 on the list.
And this is item #2 on the list.

<ex><OL START=3>
This is item #3.

<OL TYPE=A>
This is item À.

Component
See description of the tag.

<SELECT SELECTED
VALUE=value>

Description

Denotes the selection of a list item.
SELECTED
Specifies the item selected by default. If nothing is specified, item #1 becomes the

187

default item.
VALUE=value
Specifies the value to be returned if the given element is selected.

<P ALIGN=align-type>

Description

Denotes a paragraph. Inserts an end-of-paragraph symbol and signifies the beginning
of a next paragraph.
ALIGN=align-type
Establishes the alignment type for the paragraph. Valid value for align-type is CENTER,
LEFT or RIGHT. The default alignment type is LEFT.
Use of closing tag is optional.

Example
<P>This is a paragraph.</P>

Component
No direct analog. Programmers can use the HTMLTag component.

<PARAM NAME=name
VALUE=value
VALUETYPE=type
TYPE=type>

Description

Establishes property parameters for the specified object.
NAME=name
Sets name of the property.
VALUE=value
Sets the property�s value. This value is passed to the object unchanged, except that
any strings of alphabetic or numeric characters are replaced by their respective
values.
VALUETYPE=type
Determines how the value is to be interpreted. Valid value for type can be one of the
following:

DATA The value type is data. This is the default value type.
REF The value type is the URL.
OBJECT The value type is the URL of an object in the same document.

TYPE=type
Specifies the Internet media type.
This element is valid only within the OBJECT element. Use of closing tag is optional.

188

<PLAINTEXT>

Description

Presents text in fixed-width font without tag processing. Also disables HTML parsing
until the browser encounters the </PLAINTEXT> tag.

Example
<PLAINTEXT>Here is an HTML sample: This is a shortcut
to the sample.
</PLAINTEXT>

Component
No direct analog. Programmers can use the HTMLTag component.

<PRE>

Description
Presents text in fixed-width font.
Example
<PRE>Here is some plain text.</PRE>
Component
You should use the Preformat property for text components.

<S>

Description

Presents text in strike-out face.

Example
<S>This text is struck out.</S>

Component
You should use the Font property for text components.

<SAMP>

Description

Determines the text of the sample. Presents text in small-size font (if FONT FACE
is not specified, the sample text is presented in fixed-width font).

Example
<SAMP>Here is some text in small-size fixed-width font.
</SAMP>

189

Component
No direct analog. Programmers can use the HTMLTag component.

<SCRIPT
LANGUAGE=scripting language>

Indicates that a script is included. Scripts are executed and activated in exactly the
same order in which they appear in the HTML document. Named objects can be
referenced only in the order these objects appear in the document.
LANGUAGE=scripting language
Specifies language in which the script is created. Examples of such languages are
«VBScript» and «JavaScript».

Example
<SCRIPT>
<SCRIPT language=»VBScript»>
</SCRIPT>

Component
In this version of the library, it is represented by the TJavaScript component exclusively
to ensure support of Java scripts.

<SELECT MULTIPLE
NAME=name
SIZE=n>

Description

Denotes a view list or a drop-down list.
MULTIPLE
Indicates that more than one item can be selected at a time.
NAME=name
Assigns a name to the list.
SIZE=n
Determines the height of the list.

Example
<SELECT NAME=»Cars» MULTIPLE SIZE=»1">
 <OPTION VALUE=»1">BMW
 <OPTION VALUE=»2">PORSCHE
 <OPTION VALUE=»3" SELECTED>MERCEDES
</SELECT>

Components
HTMLListBox, HTMLComboBox.

190

<SMALL>

Description

Makes the text one size smaller.

Example
<SMALL>This text is of a smaller size. </SMALL>

Component
No direct analog. Programmers can use the HTMLTag component.

SPAN is used to specify style information within the document. SPAN can be used
for local text formatting with the use of STYLE as the attribute.

Example
This paragraph is located 1.0 inch from the
left-hand margin.

Component
No direct analog. Programmers can use the HTMLTag component.

<STRIKE>

Description

Presents text in strike-out face.

Example
<STRIKE>This text is struck out.</STRIKE>

Component
No direct analog. Programmers can use the HTMLTag component.

Description

Highlights the text, normally presenting it in bold face.

Example
This text will be printed in bold face.

191

Component
No direct analog. Programmers can use the HTMLTag component.

<SUB>

Presents the text in subscript.

Example
<SUB>This text will appear as subscript test.
</SUB>

Component
No direct analog. Programmers can use the HTMLTag component.

<SUP>

Description

Presents the text in superscript.

Example
<SUP>This text will appear as superscript.
</SUP>

Component
No direct analog. Programmers can use the HTMLTag component.

<TABLE ALIGN=align-type
BACKGROUND=url BGCOLOR=color
BORDER=n BORDERCOLOR=color
BORDERCOLORDARK=color
BORDERCOLORLIGHT=color
CELLPADDING=n CELLSPACING=n
COLS=n FRAME=frame-type
RULES=rules WIDTH=n >

Description

Creates a table. The table is assumed to be empty unless you create rows and cells
for it with the aid of the TR, TD and TH elements.
ALIGN=align-type
Determines the alignment type for the table. Valid value for align-type can be one of
the following:

192

LEFT The table is left-aligned. This is the default alignment type.
RIGHT The table is right-aligned. If the table is narrower than the window,

the text following the table will wrap along the table�s left-hand edge.

BACKGROUND=url
Determines the background picture. The picture is arranged tile-style behind any
text and graphics in the table, its header or cell.
BGCOLOR=color
Sets the background color. The value of color can be specified in hexadecimal or
RGB format, or as a redefined color name. See description of Color.
BORDER=n
Specifies the size, in pixels, of the table�s border. The default value of Border is zero.
BORDERCOLOR=color
Sets the color of the table�s border. Should be used in conjunction with the BORDER
attribute. The value of color can be specified in hexadecimal or RGB format, or as a
redefined color name. See description of Color.
BORDERCOLORLIGHT=color
BORDERCOLORDARK=color
Set the drawing color for the table�s 3D border.
CELLPADDING=n
The distance, in pixels, between the sides of a cell and its contents.
CELLSPACING=n
The distance, in pixels, between the border (outer part) of the table and its cells.
COLS=n
The number of columns in the table. If specified, this attribute can speed up the
processing of tables (especially long ones).
WIDTH=n
Sets the width of the table in pixels or as percent of the window width. In the latter
case, the n value should be followed with the percent character (%).
FRAME=frame-type
Determines which sides of the table�s frame (outer borders) will be output. Valid
value for frame-type can be one of the following:

VOID Removes all outer borders of the table.
ABOVE Outputs a border in the top part of the table frame.
BELOW Outputs a border in the bottom part of the table frame.
HSIDES Outputs a border in the top and bottom parts of the table frame.
LHS Outputs a border on the left-hand side of the table frame.
RHS Outputs a border on the right-hand side of the table frame.
VSIDES Outputs a border on the left- and right-hand sides of the table frame.
BOX Outputs a border on all sides of the table frame.
BORDER Outputs a border on all sides of the table frame.

RULES=rule-type
Determines what rules (inner borders) of the table will be output. Valid value for rule-
type can be one of the following:

193

NONE Removes all inner borders of the table.
GROUPS Outputs horizontal borders between all groups in the table. The

groups are specified with the aid of the THEAD, TBODY, TFOOT
and COLGROUP elements.

ROWS Outputs horizontal borders between all rows of the table.
COLS Outputs vertical borders between all columns of the table.
ALL Outputs a border between all rows and columns of the table.

Use of closing tag is mandatory.
The THEAD, TBODY, TFOOT, COLGROUP and COL elements are optional, and
can be used to format the table and change individual characteristics of its columns
and column groups.

Example
<TABLE BORDER=1 WIDTH=80%>
<THEAD>
<TR>
 <TH>Heading 1</TH>
 <TH>Heading 2</TH>
</TR>
<TBODY>
<TR>
 <TD>Row 1, Column 1 text.</TD>
 <TD>Row 1, Column 2 text.</TD>
</TR>
<TR>
 <TD>Row 2, Column 1 text.</TD>
 <TD>Row 2, Column 2 text.</TD>
</TR>
</TABLE>

Component
In this version of the library, the HTMLTable component implements table formatting
capabilities only to a limited extent (you cannot merge cells, for instance). Table
width is determined by the WidthOnPage property. Border width is determined by
the Border property.

<TBODY>

Description

If the table has no header or footnote (no THEAD or TFOOT element), then the
TBODY element is optional. Use of closing tag is always optional.
You can use the TBODY element in a table more than once. This feature proves to
be useful for breaking long tables into shorter parts as well as for controlling the
arrangement of horizontal lines.

194

Example
<TABLE>
<THEAD>
<TR>
 ...
</TR>
<TBODY>
<TR>
 ...
</TR>
</TBODY>
</TABLE>

<TD ALIGN=align-type
 BACKGROUND=url BGCOLOR=color
 BORDERCOLOR=color
 BORDERCOLORLIGHT=color
 BORDERCOLORDARK=color
 COLSPAN=n NOWRAP=NOWRAP
 ROWSPAN=n VALIGN=align-type>

Description

Creates a table cell.
ALIGN=align-type
Determines the horizontal alignment type for the cell text. Valid value for align-type
can be one of the following:
LEFT The cell text is left-justified.
CENTER The cell text is centered.
RIGHT The cell text is right-justified.
By default, the text is centered.
BACKGROUND=url
Determines the background picture. The picture is arranged tile-style behind any
text and graphics in the table, its header or cell.
BGCOLOR=color
Sets the background color. The value of color can be specified in hexadecimal or
RGB format, or as a redefined color name. See description of Color.
BORDERCOLOR=color
Sets the color of the border. Should be used jointly with the BORDER attribute. The
value of color can be specified in hexadecimal or RGB format, or as a redefined color
name. See description of Color.
BORDERCOLORLIGHT=color
BORDERCOLORDARK=color
Set the drawing color for the 3D border.
BORDER=n

195

Specifies the size, in pixels, of the table border. The default value of Border is zero.
VALIGN=align-type
Determines the vertical alignment type for the cell text. Valid value for align-type can
be one of the following:

TOP The text is aligned to the top of each cell.
MIDDLE The text is aligned to the middle if each cell.
BOTTOM The text is aligned to the bottom of each cell.
BASELINE Text in adjacent cells of the same row is aligned to a common base

line.

By default, text is aligned to the middle of each cell.
This element is valid only within one row of the table. This implies that you must use
the TR elements before using the TD element. All attributes are optional. Use of
closing tag is likewise optional.

<TEXTAREA
COLS=n
NAME=name
ROWS=n>

Description

Creates a control for a multiple-line input area in which the user can input and edit
text.
COLS=n
Sets the width of the text input/edit area in characters.
NAME=n
Establishes the name of the text input/edit area. The name is used when this element
is employed within a FORM element.
ROWS=n
Sets the height of the text input/edit area in characters.
Use of closing tag is mandatory. Any text enclosed between the opening and closing
tags is used as the control�s default value(s).

Component
The tag is represented by the HTMLMemo and HTMLDBMemo components.
Dimensions are specified with the aid of the Cols and Rows properties.

<TFOOT>

Marks up the text as a table footnote. Use this element to separate lines of text in
the footnote to the table form lines of text in the table header or lines of text in the
table body. A table footnote is optional but, if specified, only one footnote is allowed.
The TFOOT element is valid only within the relevant table. You must use the TABLE
element before using this element. Use of closing tag is optional.

196

Example
<TABLE>
<TBODY>
 <TR>
 ...
 </TR>
<TFOOT>
 <TR>
 ...
 </TR>
</TABLE>

<TH ALIGN=align-type
BACKGROUND=url
BGCOLOR=color
BORDERCOLOR=color
BORDERCOLORLIGHT=color
BORDERCOLORDARK=color
COLSPAN=n NOWRAP=NOWRAP
ROWSPAN=n VALIGN=align-type>

Description

Creates the header of a row or column in the table. This element is similar to the TD
element, except that it highlights text in the TH cell to distinguish it from the text in
the TD cells.
ALIGN=align-type
Determines the horizontal alignment type for the cell text. Valid value for align-type
can be one of the following:

LEFT The text is left-aligned.
CENTER The text is centered.
RIGHT The text is right-aligned.

By default, the text is centered.
BACKGROUND=url
Determines the background picture. The picture is arranged tile-style behind any
text and graphics in the table, its header or cell.
BGCOLOR=color
Sets the background color. The value of color can be specified in hexadecimal or
RGB format, or as a redefined color name. See description of Color.
BORDERCOLOR=color
Sets the color of the border. Should be used jointly with the BORDER attribute. The
value of color can be specified in hexadecimal or RGB format, or as a redefined color

197

name. See description of Color.
BORDERCOLORLIGHT=color
BORDERCOLORDARK=color
Set the drawing color for the 3D border.
COLSPAN=n
Specifies the number of the table columns to be spanned by the given cell.
NOWRAP=NOWRAP
Disables word wrapping within the cell. Lines of text appear in the cell precisely as
they are specified in the HTML document.
ROWSPAN=n
Specifies the number of the table rows to be spanned by the given cell.
VALIGN=align-type
Determines the vertical alignment type for the table text. Valid value for align-type
can be one of the following:

TOP The text is aligned to the top of each cell.
MIDDLE The text is aligned to the middle of each cell.
BOTTOM The text is aligned to the bottom of each cell.
BASELINE The text in adjacent cells of the same row is aligned to the common

base line.

By default, the text is aligned to the middle of each cell.
This element is effective only within one row of the table. This implies that you must
use the TR element before using the TH element.

<THEAD>

Description

Marks up the text as a table header. Use this element to separate lines of text in the
table�s header form lines of text in the table footnote or lines of text in the table body.
A table header is optional but, if specified, only a single header is allowed. The
THEAD element is valid only within the relevant table. You must use the TABLE
element before using this element. Use of closing tag is optional.

Example
<TABLE>
<THEAD>
 <TR>
 ...
 </TR>
<TBODY>
 <TR>
 ...
 </TR>
</TABLE>

198

<TITLE>

Description

Determines the title of the document. The browser uses this element as a window
caption. This element is valid only within the HEAD element. Use of closing tag is
mandatory.

Example
<HEAD>
<TITLE>»Welcome to Internet!»</TITLE>
</HEAD>

Component
The title is determined the Title property of the HTMLPage component.

<TR ALIGN=align-type
BACKGROUND=url
BGCOLOR=color BORDERCOLOR=color
BORDERCOLORLIGHT=color
BORDERCOLORDARK=color
VALIGN=align-type>

Description

Creates a table row.
ALIGN=align-type
Determines the alignment type for text in the row�s cells. Valid value for align-type
can be one of the following:

LEFT The text is left-aligned.
CENTER The text is centered.
RIGHT The text is right-aligned.

By default, the text is centered.
BACKGROUND=url
Determines the background picture. The picture is arranged tile-style behind any
text and graphics in the table, its header or cell.
BGCOLOR=color
Sets the background color. The value of color can be specified in hexadecimal or
RGB format, or as a redefined color name. See description of Color.
BORDERCOLOR=color
Sets the color of the border. Should be used jointly with the BORDER attribute. The
value of color can be specified in hexadecimal or RGB format, or as a redefined color
name. See description of Color.

199

BORDERCOLORLIGHT=color
BORDERCOLORDARK=color
Set the drawing color for the 3D border.
VALIGN=align-type
Determines the vertical alignment type for text in the row cells. Valid value for align-
type can be one of the following:

TOP The text is aligned to the top of each cell.
MIDDLE The text is aligned to the middle of each cell.
BOTTOM The text is aligned to the bottom of each cell.
BASELINE The text in adjacent cells of the same row is aligned to the common

base line.

By default, the text is aligned to the middle of each cell.

<TT>

Description

The Teletype mode. The text is presented in fixed-width font.

Example
<TT>Here is some plain text.</TT>

Component
No direct analog. Programmers can use the HTMLTag component.

<U>

Description

Text is presented is underlined face.

Example
<U>This text is underlined.</U>

Component
Use the Font property for text components.

Description

Outputs lines of text along with their positional markers. Denotes that the next
block of text is made up of separate items each of which begins with the LI tag. The
list items are marked with positional markers.

200

Example

 This is item #1 of the list, marked with its positional marker.
 And this is item #2 of the list, marked with its positional marker.

Component
HTMLList. Embedded lists are not supported in this version of the library. For each
individual item, you can specify a separate reference in the URL properties.

<VAR>

Description

Specifies the text to take the place of a variable. Outputs the text in small fixed
width font.

Example
Enter <VAR>filename</VAR>

Component
No direct analog. Programmers can use the HTMLTag component.

<WBR>

Description

Insert a «soft» line break character into a NOBR block of text.

Example
<NOBR>This line of text will not be broken no matter how narrow the window will be.
<WBR>And this line, however, <WBR>will be broken.</NOBR>

Component
No direct analog. Programmers can use the HTMLTag component.

<XMP>

Description

An example text. The text is output in fixed-width font.

Example
<XMP>Here is some plain text.</XMP>

Component
No direct analog. Programmers can use the HTMLTag component.

