
SWIG−1.3 Documentation

Table of Contents
SWIG−1.3 Development Documentation..1

Sections...1
SWIG Core Documentation..1
Language Module Documentation..1
Developer Documentation...1
Documentation that has not yet been updated...2

1 Preface...3
1.1 Introduction...3
1.2 Special Introduction for Version 1.3..3
1.3 SWIG Versions...3
1.4 SWIG resources..3
1.5 Prerequisites..4
1.6 Organization of this manual..4
1.7 How to avoid reading the manual...4
1.8 Backwards Compatibility...4
1.9 Credits...5
1.10 Bug reports..5

2 Introduction..6
2.1 What is SWIG?...6
2.2 Why use SWIG?...6
2.3 A SWIG example..7

2.3.1 SWIG interface file...7
2.3.2 The swig command...8
2.3.3 Building a Perl5 module...8
2.3.4 Building a Python module..8
2.3.5 Shortcuts...9

2.4 Supported C/C++ language features...9
2.5 Non−intrusive interface building..10
2.6 Incorporating SWIG into a build system..10
2.7 Hands off code generation..10
2.8 SWIG and freedom...10

3 Getting started on Windows..12
3.1 Installation on Windows...12

3.1.1 Windows Executable..12
3.2 SWIG Windows Examples...12

3.2.1 Instructions for using the Examples with Visual Studio..12
3.2.1.1 Python...13
3.2.1.2 TCL..13
3.2.1.3 Perl...13
3.2.1.4 Java...13
3.2.1.5 Ruby...13
3.2.1.6 C#...14

3.2.2 Instructions for using the Examples with other compilers...14
3.3 SWIG on Cygwin and MinGW..14

3.3.1 Building swig.exe on Windows..14
3.3.1.1 Building swig.exe using MinGW and MSYS..14
3.3.1.2 Building swig.exe using Cygwin...15
3.3.1.3 Building swig.exe alternatives...15

3.3.2 Running the examples on Windows using Cygwin..15
3.4 Microsoft extensions and other Windows quirks...15

SWIG−1.3 Documentation

i

Table of Contents
4 Scripting Languages..16

4.1 The two language view of the world..16
4.2 How does a scripting language talk to C?..16

4.2.1 Wrapper functions..17
4.2.2 Variable linking..17
4.2.3 Constants..18
4.2.4 Structures and classes...18
4.2.5 Proxy classes..19

4.3 Building scripting language extensions..19
4.3.1 Shared libraries and dynamic loading..19
4.3.2 Linking with shared libraries..20
4.3.3 Static linking...20

5 SWIG Basics...21
5.1 Running SWIG...22

5.1.1 Input format..22
5.1.2 SWIG Output..23
5.1.3 Comments...23
5.1.4 C Preprocessor..23
5.1.5 SWIG Directives..24
5.1.6 Parser Limitations...24

5.2 Wrapping Simple C Declarations...25
5.2.1 Basic Type Handling..25
5.2.2 Global Variables...27
5.2.3 Constants..27
5.2.4 A brief word aboutconst..28
5.2.5 A cautionary tale of char *...29

5.3 Pointers and complex objects...29
5.3.1 Simple pointers...29
5.3.2 Run time pointer type checking..30
5.3.3 Derived types, structs, and classes...30
5.3.4 Undefined datatypes...31
5.3.5 Typedef...31

5.4 Other Practicalities..32
5.4.1 Passing structures by value...32
5.4.2 Return by value...32
5.4.3 Linking to structure variables...33
5.4.4 Linking to char *..33
5.4.5 Arrays...34
5.4.6 Creating read−only variables..36
5.4.7 Renaming and ignoring declarations..36
5.4.8 Default/optional arguments..37
5.4.9 Pointers to functions and callbacks..38

5.5 Structures and unions..39
5.5.1 Typedef and structures...40
5.5.2 Character strings and structures..41
5.5.3 Array members...41
5.5.4 Structure data members..41
5.5.5 C constructors and destructors..42
5.5.6 Adding member functions to C structures..43
5.5.7 Nested structures..46
5.5.8 Other things to note about structure wrapping...47

5.6 Code Insertion...47
5.6.1 The output of SWIG...47

SWIG−1.3 Documentation

ii

Table of Contents
5 SWIG Basics

5.6.2 Code insertion blocks...48
5.6.3 Inlined code blocks...48
5.6.4 Initialization blocks..49

5.7 An Interface Building Strategy...49
5.7.1 Preparing a C program for SWIG...49
5.7.2 The SWIG interface file...49
5.7.3 Why use separate interface files?...50
5.7.4 Getting the right header files..50
5.7.5 What to do with main()...50

6 SWIG and C++...52
6.1 Comments on C++ Wrapping...52
6.2 Approach...53
6.3 Supported C++ features..53
6.4 Command line options and compilation...54
6.5 Simple C++ wrapping...54

6.5.1 Constructors and destructors..54
6.5.2 Default constructors, copy constructors and implicit destructors..55
6.5.3 When constructor wrappers aren't created..56
6.5.4 Copy constructors...57
6.5.5 Member functions...57
6.5.6 Static members...58
6.5.7 Member data...58

6.6 Default arguments...60
6.7 Protection..61
6.8 Enums and constants...61
6.9 Friends..61
6.10 References and pointers..62
6.11 Pass and return by value...63
6.12 Inheritance..63
6.13 A brief discussion of multiple inheritance, pointers, and type checking..65
6.14 Renaming..66
6.15 Wrapping Overloaded Functions and Methods..67

6.15.1 Dispatch function generation..67
6.15.2 Ambiguity in Overloading..69
6.15.3 Ambiguity resolution and renaming...70
6.15.4 Comments on overloading..73

6.16 Wrapping overloaded operators..73
6.17 Class extension...75
6.18 Templates..76
6.19 Namespaces..83
6.20 Exception specifications...88
6.21 Exception handling with %catches...88
6.22 Pointers to Members...89
6.23 Smart pointers and operator−>()...89
6.24 Using declarations and inheritance...91
6.25 Partial class definitions...93
6.26 A brief rant about const−correctness..93
6.27 Proxy classes...94

6.27.1 Construction of proxy classes...94
6.27.2 Resource management in proxies...95
6.27.3 Language specific details...96

6.28 Where to go for more information..96

SWIG−1.3 Documentation

iii

Table of Contents
7 Preprocessing..97

7.1 File inclusion..97
7.2 File imports...97
7.3 Conditional Compilation..97
7.4 Macro Expansion..98
7.5 SWIG Macros...99
7.6 C99 and GNU Extensions...99
7.7 Preprocessing and %{ ... %} blocks...100
7.8 Preprocessing and { ... }...100
7.9 Viewing preprocessor output..100
7.10 The #error and #warning directives..100

8 SWIG library..102
8.1 The %include directive and library search path...102
8.2 C Arrays and Pointers...102

8.2.1 cpointer.i...102
8.2.2 carrays.i..104
8.2.3 cmalloc.i...106
8.2.4 cdata.i..107

8.3 C String Handling...108
8.3.1 Default string handling...108
8.3.2 Passing binary data...109
8.3.3 Using %newobject to release memory...109
8.3.4 cstring.i...109

8.4 STL/C++ Library..113
8.4.1 std_string.i..113
8.4.2 std_vector.i...114
8.4.3 STL exceptions...116

8.5 Utility Libraries..117
8.5.1 exception.i..117

9 Argument Handling...118
9.1 The typemaps.i library..118

9.1.1 Introduction..118
9.1.2 Input parameters...119
9.1.3 Output parameters..120
9.1.4 Input/Output parameters...121
9.1.5 Using different names...121

9.2 Applying constraints to input values..122
9.2.1 Simple constraint example...122
9.2.2 Constraint methods...122
9.2.3 Applying constraints to new datatypes...122

10 Typemaps..124
10.1 Introduction...125

10.1.1 Type conversion...125
10.1.2 Typemaps...126
10.1.3 Pattern matching...127
10.1.4 Reusing typemaps...128
10.1.5 What can be done with typemaps?...128
10.1.6 What can't be done with typemaps?...129
10.1.7 The rest of this chapter...130

10.2 Typemap specifications..130
10.2.1 Defining a typemap..130

SWIG−1.3 Documentation

iv

Table of Contents
10 Typemaps

10.2.2 Typemap scope...131
10.2.3 Copying a typemap...132
10.2.4 Deleting a typemap...132
10.2.5 Placement of typemaps...132

10.3 Pattern matching rules..133
10.3.1 Basic matching rules...133
10.3.2 Typedef reductions...134
10.3.3 Default typemaps..136
10.3.4 Mixed default typemaps...137
10.3.5 Multi−arguments typemaps..137

10.4 Code generation rules...137
10.4.1 Scope..138
10.4.2 Declaring new local variables..138
10.4.3 Special variables...140

10.5 Common typemap methods..141
10.5.1 "in" typemap...141
10.5.2 "typecheck" typemap..142
10.5.3 "out" typemap...142
10.5.4 "arginit" typemap..142
10.5.5 "default" typemap...143
10.5.6 "check" typemap...143
10.5.7 "argout" typemap..143
10.5.8 "freearg" typemap...143
10.5.9 "newfree" typemap...144
10.5.10 "memberin" typemap..144
10.5.11 "varin" typemap..144
10.5.12 "varout" typemap..144
10.5.13 "throws" typemap...144

10.6 Some typemap examples..145
10.6.1 Typemaps for arrays...145
10.6.2 Implementing constraints with typemaps...148

10.7 Typemaps for multiple languages...148
10.8 Multi−argument typemaps..149
10.9 The run−time type checker...151

10.9.1 Implementation...152
10.9.2 Usage..154

10.10 Typemaps and overloading...154
10.11 More about%apply and%clear..158
10.12 Reducing wrapper code size...159
10.13 Passing data between typemaps..160
10.14 Where to go for more information?..160

11 Customization Features...161
11.1 Exception handling with %exception...161

11.1.1 Handling exceptions in C code...161
11.1.2 Exception handling with longjmp()..162
11.1.3 Handling C++ exceptions...163
11.1.4 Exception handlers for variables..163
11.1.5 Defining different exception handlers..164
11.1.6 Using The SWIG exception library..165

11.2 Object ownership and %newobject..166
11.3 Features and the %feature directive..167

11.3.1 Feature flags...168

SWIG−1.3 Documentation

v

Table of Contents
11 Customization Features

11.3.2 Clearing features...169
11.3.3 Features and default arguments..170
11.3.4 Feature example..171

12 Contracts...172
12.1 The %contract directive..172
12.2 %contract and classes...172
12.3 Constant aggregation and %aggregate_check..173
12.4 Notes...174

13 Variable Length Arguments...175
13.1 Introduction...175
13.2 The Problem..176
13.3 Default varargs support...177
13.4 Argument replacement using %varargs..177
13.5 Varargs and typemaps...178
13.6 Varargs wrapping with libffi ..179
13.7 Wrapping of va_list..182
13.8 C++ Issues..183
13.9 Discussion...183

14 Warning Messages...185
14.1 Introduction...185
14.2 Warning message suppression..185
14.3 Enabling additional warnings...186
14.4 Issuing a warning message...186
14.5 Commentary...187
14.6 Warnings as errors..187
14.7 Message output format...187
14.8 Warning number reference...187

14.8.1 Deprecated features (100−199)..187
14.8.2 Preprocessor (200−299)..188
14.8.3 C/C++ Parser (300−399)..188
14.8.4 Types and typemaps (400−499)...189
14.8.5 Code generation (500−599)..189
14.8.6 Language module specific (800−899)..190
14.8.7 User defined (900−999)..191

14.9 History..191

15 Working with Modules..192
15.1 The SWIG runtime code...192
15.2 External access to the runtime..192
15.3 A word of caution about static libraries..193
15.4 References...193
15.5 Reducing the wrapper file size...193

16 SWIG and Allegro Common Lisp..194
16.1 Basics..195

16.1.1 Running Swig...195
16.1.2 Command Line Options...197
16.1.3 Inserting user code into generated files..198

16.2 Wrapping Overview..198
16.2.1 Function Wrapping...198

SWIG−1.3 Documentation

vi

Table of Contents
16 SWIG and Allegro Common Lisp

16.2.2 Foreign Wrappers...199
16.2.3 FFI Wrappers..199
16.2.4 Non−overloaded Defuns...200
16.2.5 Overloaded Defuns...200
16.2.6 What about constant and variable access?..200
16.2.7 Object Wrapping..200

16.3 Wrapping Details..201
16.3.1 Namespaces..201
16.3.2 Constants..202
16.3.3 Variables...202
16.3.4 Enumerations..203
16.3.5 Arrays...204
16.3.6 Classes and Structs and Unions (oh my!)...206

16.3.6.1 CLOS wrapping of...206
16.3.6.2 CLOS Inheritance...206
16.3.6.3 Member fields and functions..207
16.3.6.4 Why not directly access C++ classes using foreign types?..207

16.3.7 Templates...207
16.3.7.1 Generating wrapper code for templates...207
16.3.7.2 Implicit Template instantiation..207

16.3.8 Typedef, Templates, and Synonym Types...207
16.3.8.1 Choosing a primary type..208

16.3.9 Function overloading/Parameter defaulting...208
16.3.10 Operator wrapping and Operator overloading..210
16.3.11 Varargs...212
16.3.12 C++ Exceptions..212
16.3.13 Pass by value, pass by reference...213

16.4 Typemaps..213
16.4.1 Code Generation in the C++ Wrapper..213

16.4.1.1 IN Typemap..213
16.4.1.2 OUT Typemap..214
16.4.1.3 CTYPE Typemap...214

16.4.2 Code generation in Lisp wrappers..214
16.4.2.1 LIN Typemap...214
16.4.2.2 LOUT Typemap...215
16.4.2.3 FFITYPE Typemap..215
16.4.2.4 LISPTYPE Typemap..216
16.4.2.5 LISPCLASS Typemap...216

16.4.3 Modifying SWIG behavior using typemaps...216
16.5 Identifier Converter functions...216

16.5.1 Creating symbols in the lisp environment..216
16.5.2 Existing identifier−converter functions..217

16.5.2.1 identifier−convert−null...217
16.5.2.2 identifier−convert−lispify...217
16.5.2.3 Default identifier to symbol conversions...217

16.5.3 Defining your own identifier−converter...217
16.5.4 Instructing SWIG to use a particular identifier−converter...218

17 SWIG and C#...219
17.1 Introduction...219
17.2 Differences to the Java module...219
17.3 C# Exceptions...222

17.3.1 C# exception example using "check" typemap..223

SWIG−1.3 Documentation

vii

Table of Contents
17 SWIG and C#

17.3.2 C# exception example using %exception...225
17.3.3 C# exception example using exception specifications...226
17.3.4 Custom C# ApplicationException example...226

17.4 C# Typemap examples...228
17.4.1 Memory management when returning references to member variables..228
17.4.2 Memory management for objects passed to the C++ layer..229

18 SWIG and Chicken..232
18.1 Preliminaries...232

18.1.1 Running SWIG in C mode...232
18.1.2 Running SWIG in C++ mode...233

18.2 Code Generation...233
18.2.1 Naming Conventions..233
18.2.2 Modules..233
18.2.3 Constants and Variables...233
18.2.4 Functions..234
18.2.5 Exceptions..234

18.3 TinyCLOS...234
18.4 Linkage...235

18.4.1 Static binary or shared library linked at compile time...235
18.4.2 Building chicken extension libraries..235
18.4.3 Linking multiple SWIG modules with TinyCLOS..236

18.5 Typemaps..236
18.6 Pointers...236

18.6.1 Garbage collection..237
18.7 Unsupported features and known problems...237

19 SWIG and Guile...238
19.1 Meaning of "Module"...238
19.2 Using the SCM or GH Guile API...238
19.3 Linkage...239

19.3.1 Simple Linkage...239
19.3.2 Passive Linkage..240
19.3.3 Native Guile Module Linkage..240
19.3.4 Old Auto−Loading Guile Module Linkage..240
19.3.5 Hobbit4D Linkage..240

19.4 Underscore Folding..241
19.5 Typemaps..241
19.6 Representation of pointers as smobs...242

19.6.1 GH Smobs..242
19.6.2 SCM Smobs..242
19.6.3 Garbage Collection...242

19.7 Exception Handling..242
19.8 Procedure documentation...243
19.9 Procedures with setters...243
19.10 GOOPS Proxy Classes..243

19.10.1 Naming Issues..245
19.10.2 Linking...246

20 SWIG and Java..248
20.1 Overview...249
20.2 Preliminaries...250

20.2.1 Running SWIG...250

SWIG−1.3 Documentation

viii

Table of Contents
20 SWIG and Java

20.2.2 Additional Commandline Options..250
20.2.3 Getting the right header files..251
20.2.4 Compiling a dynamic module..251
20.2.5 Using your module...251
20.2.6 Dynamic linking problems...252
20.2.7 Compilation problems and compiling with C++..252
20.2.8 Building on Windows...253

20.2.8.1 Running SWIG from Visual Studio...253
20.2.8.2 Using NMAKE...254

20.3 A tour of basic C/C++ wrapping..255
20.3.1 Modules, packages and generated Java classes..255
20.3.2 Functions..255
20.3.3 Global variables..255
20.3.4 Constants..256
20.3.5 Enumerations..258

20.3.5.1 Anonymous enums...258
20.3.5.2 Typesafe enums..259
20.3.5.3 Proper Java enums..260
20.3.5.4 Type unsafe enums...260
20.3.5.5 Simple enums...261

20.3.6 Pointers...261
20.3.7 Structures..262
20.3.8 C++ classes...263
20.3.9 C++ inheritance..264
20.3.10 Pointers, references, arrays and pass by value...264

20.3.10.1 Null pointers...265
20.3.11 C++ overloaded functions..265
20.3.12 C++ default arguments...266
20.3.13 C++ namespaces...267
20.3.14 C++ templates...267
20.3.15 C++ Smart Pointers..268

20.4 Further details on the generated Java classes...268
20.4.1 The intermediary JNI class...269

20.4.1.1 The intermediary JNI class pragmas..270
20.4.2 The Java module class..270

20.4.2.1 The Java module class pragmas...271
20.4.3 Java proxy classes...271

20.4.3.1 Memory management...272
20.4.3.2 Inheritance..274
20.4.3.3 Proxy classes and garbage collection...275

20.4.4 Type wrapper classes..276
20.4.5 Enum classes..277

20.4.5.1 Typesafe enum classes...277
20.4.5.2 Proper Java enum classes...278
20.4.5.3 Type unsafe enum classes..279

20.5 Cross language polymorphism using directors (experimental)..279
20.5.1 Enabling directors...280
20.5.2 Director classes...280
20.5.3 Overhead and code bloat..281
20.5.4 Simple directors example...281

20.6 Common customization features..282
20.6.1 C/C++ helper functions..282
20.6.2 Class extension with %extend..282

SWIG−1.3 Documentation

ix

Table of Contents
20 SWIG and Java

20.6.3 Exception handling with %exception and %javaexception..283
20.6.4 Method access with %javamethodmodifiers..285

20.7 Tips and techniques..285
20.7.1 Input and output parameters using primitive pointers and references..285
20.7.2 Simple pointers...287
20.7.3 Wrapping C arrays with Java arrays...287
20.7.4 Unbounded C Arrays..288

20.8 Java typemaps...289
20.8.1 Default primitive type mappings..289
20.8.2 Sixty four bit JVMs..291
20.8.3 What is a typemap?..291
20.8.4 Typemaps for mapping C/C++ types to Java types..292
20.8.5 Java typemap attributes..293
20.8.6 Java special variables...294
20.8.7 Typemaps for both C and C++ compilation...295
20.8.8 Java code typemaps..296
20.8.9 Director specific typemaps...298

20.9 Typemap Examples..300
20.9.1 Simpler Java enums for enums without initializers..300
20.9.2 Handling C++ exception specifications as Java exceptions...301
20.9.3 NaN Exception − exception handling for a particular type..302
20.9.4 Converting Java String arrays to char ** ...304
20.9.5 Expanding a Java object to multiple arguments...305
20.9.6 Using typemaps to return arguments..306
20.9.7 Adding Java downcasts to polymorphic return types...308
20.9.8 Adding an equals method to the Java classes...310
20.9.9 Void pointers and a common Java base class...311
20.9.10 Struct pointer to pointer..312
20.9.11 Memory management when returning references to member variables..314
20.9.12 Memory management for objects passed to the C++ layer..315

20.10 Living with Java Directors..316
20.11 Odds and ends...318

20.11.1 JavaDoc comments...318
20.11.2 Functional interface without proxy classes..319
20.11.3 Using your own JNI functions..319
20.11.4 Performance concerns and hints...320

20.12 Examples...320

21 SWIG and Common Lisp..321
21.1 Allegro Common Lisp..321
21.2 CLISP...321

21.2.1 Additional Commandline Options..321
21.2.2 Details on CLISP bindings...321

21.3 UFFI..323

22 SWIG and Lua...324
22.1 Preliminaries...324
22.2 Running SWIG...324

22.2.1 Compiling and Linking and Interpreter..325
22.2.2 Compiling a dynamic module..325
22.2.3 Using your module...326

22.3 A tour of basic C/C++ wrapping..326
22.3.1 Modules..326

SWIG−1.3 Documentation

x

Table of Contents
22 SWIG and Lua

22.3.2 Functions..326
22.3.3 Global variables..327
22.3.4 Constants and enums..327
22.3.5 Pointers...328
22.3.6 Structures..328
22.3.7 C++ classes...330
22.3.8 C++ inheritance..331
22.3.9 Pointers, references, values, and arrays..331
22.3.10 C++ overloaded functions..331
22.3.11 C++ operators...333
22.3.12 Class extension with %extend..334
22.3.13 C++ templates...335
22.3.14 C++ Smart Pointers..336

22.4 Details on the Lua binding..336
22.4.1 Binding global data into the module..337
22.4.2 Userdata and Metatables...338
22.4.3 Memory management...339

23 SWIG and Modula−3...340
23.1 Overview...340

23.1.1 Why not scripting ?..340
23.1.2 Why Modula−3 ?..341
23.1.3 Why C / C++ ?..341
23.1.4 Why SWIG ?..341

23.2 Conception..341
23.2.1 Interfaces to C libraries..341
23.2.2 Interfaces to C++ libraries..342

23.3 Preliminaries...343
23.3.1 Compilers...343
23.3.2 Additional Commandline Options..343

23.4 Modula−3 typemaps...344
23.4.1 Inputs and outputs...344
23.4.2 Subranges, Enumerations, Sets...345
23.4.3 Objects..345
23.4.4 Imports..345
23.4.5 Exceptions..346
23.4.6 Example..346

23.5 More hints to the generator...346
23.5.1 Features...346
23.5.2 Pragmas..347

23.6 Remarks..347

24 SWIG and MzScheme..348
24.1 Creating native MzScheme structures..348

25 SWIG and Ocaml...349
25.1 Preliminaries...349

25.1.1 Running SWIG...350
25.1.2 Compiling the code...350
25.1.3 The camlp4 module..350
25.1.4 Using your module...351
25.1.5 Compilation problems and compiling with C++..351

25.2 The low−level Ocaml/C interface...351

SWIG−1.3 Documentation

xi

Table of Contents
25 SWIG and Ocaml

25.2.1 The generated module..352
25.2.2 Enums...353

25.2.2.1 Enum typing in Ocaml...353
25.2.3 Arrays...353

25.2.3.1 Simple types of bounded arrays...353
25.2.3.2 Complex and unbounded arrays...354
25.2.3.3 Using an object...354
25.2.3.4 Example typemap for a function taking float * and int..354

25.2.4 C++ Classes..355
25.2.4.1 STL vector and string Example..355
25.2.4.2 C++ Class Example..356
25.2.4.3 Compiling the example..356
25.2.4.4 Sample Session...357

25.2.5 Director Classes..357
25.2.5.1 Director Introduction..357
25.2.5.2 Overriding Methods in Ocaml..357
25.2.5.3 Director Usage Example..357
25.2.5.4 Creating director objects..358
25.2.5.5 Typemaps for directors,directorin, directorout, directorargout...359
25.2.5.6directorin typemap..359
25.2.5.7directorout typemap..359
25.2.5.8directorargout typemap..359

25.2.6 Exceptions..359

26 SWIG and Perl5...360
26.1 Overview...361
26.2 Preliminaries...361

26.2.1 Getting the right header files..361
26.2.2 Compiling a dynamic module..361
26.2.3 Building a dynamic module with MakeMaker...362
26.2.4 Building a static version of Perl...362
26.2.5 Using the module..363
26.2.6 Compilation problems and compiling with C++..364
26.2.7 Compiling for 64−bit platforms..365

26.3 Building Perl Extensions under Windows..366
26.3.1 Running SWIG from Developer Studio...366
26.3.2 Using other compilers...366

26.4 The low−level interface..367
26.4.1 Functions..367
26.4.2 Global variables..367
26.4.3 Constants..368
26.4.4 Pointers...368
26.4.5 Structures..369
26.4.6 C++ classes...370
26.4.7 C++ classes and type−checking...371
26.4.8 C++ overloaded functions..371
26.4.9 Operators..372
26.4.10 Modules and packages..372

26.5 Input and output parameters...372
26.6 Exception handling...374
26.7 Remapping datatypes with typemaps...376

26.7.1 A simple typemap example..376
26.7.2 Perl5 typemaps...377

SWIG−1.3 Documentation

xii

Table of Contents
26 SWIG and Perl5

26.7.3 Typemap variables..378
26.7.4 Useful functions..379

26.8 Typemap Examples..379
26.8.1 Converting a Perl5 array to a char **...379
26.8.2 Return values..381
26.8.3 Returning values from arguments..381
26.8.4 Accessing array structure members..382
26.8.5 Turning Perl references into C pointers..382
26.8.6 Pointer handling..383

26.9 Proxy classes...384
26.9.1 Preliminaries...384
26.9.2 Structure and class wrappers..384
26.9.3 Object Ownership...386
26.9.4 Nested Objects..386
26.9.5 Proxy Functions..387
26.9.6 Inheritance..387
26.9.7 Modifying the proxy methods..388

26.10 Adding additional Perl code...388

27 SWIG and PHP4..390
27.1 Generating PHP4 Extensions..390

27.1.1 Building a loadable extension..390
27.1.2 Building extensions into PHP...391
27.1.3 Using PHP4 Extensions..392

27.2 Basic PHP4 interface..392
27.2.1 Constants..392
27.2.2 Global Variables...393
27.2.3 Functions..394
27.2.4 Overloading..394
27.2.5 Pointers and References...395
27.2.6 Structures and C++ classes...396

27.2.6.1 Using−noproxy..397
27.2.6.2 Constructors and Destructors...397
27.2.6.3 Static Member Variables..398
27.2.6.4 Static Member Functions...398

27.2.7 PHP4 Pragmas, Startup and Shutdown code..398

28 SWIG and Pike...400
28.1 Preliminaries...400

28.1.1 Running SWIG...400
28.1.2 Getting the right header files..400
28.1.3 Using your module...401

28.2 Basic C/C++ Mapping..401
28.2.1 Modules..401
28.2.2 Functions..401
28.2.3 Global variables..401
28.2.4 Constants and enumerated types..402
28.2.5 Constructors and Destructors...402
28.2.6 Static Members...402

29 SWIG and Python..403
29.1 Overview...404
29.2 Preliminaries...404

SWIG−1.3 Documentation

xiii

Table of Contents
29 SWIG and Python

29.2.1 Running SWIG...404
29.2.2 Getting the right header files..405
29.2.3 Compiling a dynamic module..405
29.2.4 Using distutils...406
29.2.5 Static linking...406
29.2.6 Using your module...406
29.2.7 Compilation of C++ extensions..408
29.2.8 Compiling for 64−bit platforms..409
29.2.9 Building Python Extensions under Windows...409

29.3 A tour of basic C/C++ wrapping..410
29.3.1 Modules..410
29.3.2 Functions..410
29.3.3 Global variables..410
29.3.4 Constants and enums..412
29.3.5 Pointers...412
29.3.6 Structures..413
29.3.7 C++ classes...415
29.3.8 C++ inheritance..416
29.3.9 Pointers, references, values, and arrays..416
29.3.10 C++ overloaded functions..417
29.3.11 C++ operators...418
29.3.12 C++ namespaces...419
29.3.13 C++ templates...420
29.3.14 C++ Smart Pointers..420
29.3.15 C++ Reference Counted Objects (ref/unref)..421

29.4 Further details on the Python class interface..423
29.4.1 Proxy classes..423
29.4.2 Memory management...424
29.4.3 Python 2.2 and classic classes..426

29.5 Cross language polymorphism...426
29.5.1 Enabling directors...426
29.5.2 Director classes...427
29.5.3 Ownership and object destruction..428
29.5.4 Exception unrolling..428
29.5.5 Overhead and code bloat..429
29.5.6 Typemaps...429
29.5.7 Miscellaneous...429

29.6 Common customization features..430
29.6.1 C/C++ helper functions..430
29.6.2 Adding additional Python code..431
29.6.3 Class extension with %extend..432
29.6.4 Exception handling with %exception...433

29.7 Tips and techniques..435
29.7.1 Input and output parameters...435
29.7.2 Simple pointers...437
29.7.3 Unbounded C Arrays..437
29.7.4 String handling...438
29.7.5 Arrays...438
29.7.6 String arrays..439
29.7.7 STL wrappers...439

29.8 Typemaps..439
29.8.1 What is a typemap?..439
29.8.2 Python typemaps..440

SWIG−1.3 Documentation

xiv

Table of Contents
29 SWIG and Python

29.8.3 Typemap variables..440
29.8.4 Useful Python Functions..441

29.9 Typemap Examples..442
29.9.1 Converting Python list to a char **..442
29.9.2 Expanding a Python object into multiple arguments..443
29.9.3 Using typemaps to return arguments..444
29.9.4 Mapping Python tuples into small arrays...445
29.9.5 Mapping sequences to C arrays..445
29.9.6 Pointer handling..446

29.10 Docstring Features..447
29.10.1 Module docstring..447
29.10.2 %feature("autodoc")...448

29.10.2.1 %feature("autodoc", "0")..448
29.10.2.2 %feature("autodoc", "1")..448
29.10.2.3 %feature("autodoc", "docstring")...448

29.10.3 %feature("docstring")...449
29.11 Python Packages...449

30 SWIG and Ruby...450
30.1 Preliminaries...451

30.1.1 Running SWIG...451
30.1.2 Getting the right header files..451
30.1.3 Compiling a dynamic module..451
30.1.4 Using your module...452
30.1.5 Static linking...452
30.1.6 Compilation of C++ extensions..453

30.2 Building Ruby Extensions under Windows 95/NT..453
30.2.1 Running SWIG from Developer Studio...453

30.3 The Ruby−to−C/C++ Mapping..454
30.3.1 Modules..454
30.3.2 Functions..455
30.3.3 Variable Linking...455
30.3.4 Constants..456
30.3.5 Pointers...456
30.3.6 Structures..456
30.3.7 C++ classes...457
30.3.8 C++ Inheritance..458
30.3.9 C++ Overloaded Functions..460
30.3.10 C++ Operators..461
30.3.11 C++ namespaces...461
30.3.12 C++ templates...462
30.3.13 C++ Smart Pointers..463
30.3.14 Cross−Language Polymorphism..464

30.3.14.1 Exception Unrolling...464
30.4 Naming...464

30.4.1 Defining Aliases...465
30.4.2 Predicate Methods..465
30.4.3 Bang Methods...466
30.4.4 Getters and Setters..466

30.5 Input and output parameters...467
30.6 Exception handling...468

30.6.1 Using the %exception directive..468
30.6.2 Raising exceptions..470

SWIG−1.3 Documentation

xv

Table of Contents
30 SWIG and Ruby

30.6.3 Exception classes..471
30.7 Typemaps..471

30.7.1 What is a typemap?..471
30.7.2 Ruby typemaps...473
30.7.3 Typemap variables..473
30.7.4 Useful Functions...474

30.7.4.1 C Datatypes to Ruby Objects...474
30.7.4.2 Ruby Objects to C Datatypes...474
30.7.4.3 Macros for VALUE..474
30.7.4.4 Exceptions..475
30.7.4.5 Iterators...476

30.7.5 Typemap Examples..476
30.7.6 Converting a Ruby array to a char **...476
30.7.7 Collecting arguments in a hash...477
30.7.8 Pointer handling..480

30.7.8.1 Ruby Datatype Wrapping...480
30.7.9 Example: STL Vector to Ruby Array...480

30.8 Advanced Topics..482
30.8.1 Operator overloading..482
30.8.2 Creating Multi−Module Packages..482
30.8.3 Specifying Mixin Modules...484

30.9 Memory Management...485
30.9.1 Mark and Sweep Garbage Collector...485
30.9.2 Object Ownership...485
30.9.3 Object Tracking..487
30.9.4 Mark Functions...490
30.9.5 Free Functions..492

31 SWIG and Tcl...495
31.1 Preliminaries...496

31.1.1 Getting the right header files..496
31.1.2 Compiling a dynamic module..496
31.1.3 Static linking...496
31.1.4 Using your module...497
31.1.5 Compilation of C++ extensions..498
31.1.6 Compiling for 64−bit platforms..499
31.1.7 Setting a package prefix...499
31.1.8 Using namespaces..499

31.2 Building Tcl/Tk Extensions under Windows 95/NT..499
31.2.1 Running SWIG from Developer Studio...500
31.2.2 Using NMAKE...500

31.3 A tour of basic C/C++ wrapping..501
31.3.1 Modules..501
31.3.2 Functions..501
31.3.3 Global variables..502
31.3.4 Constants and enums..502
31.3.5 Pointers...503
31.3.6 Structures..504
31.3.7 C++ classes...507
31.3.8 C++ inheritance..507
31.3.9 Pointers, references, values, and arrays..508
31.3.10 C++ overloaded functions..508
31.3.11 C++ operators...509

SWIG−1.3 Documentation

xvi

Table of Contents
31 SWIG and Tcl

31.3.12 C++ namespaces...510
31.3.13 C++ templates...511
31.3.14 C++ Smart Pointers..511

31.4 Further details on the Tcl class interface..512
31.4.1 Proxy classes..512
31.4.2 Memory management...513

31.5 Input and output parameters...515
31.6 Exception handling...516
31.7 Typemaps..518

31.7.1 What is a typemap?..518
31.7.2 Tcl typemaps..519
31.7.3 Typemap variables..520
31.7.4 Converting a Tcl list to a char ** ...521
31.7.5 Returning values in arguments...521
31.7.6 Useful functions..522
31.7.7 Standard typemaps..523
31.7.8 Pointer handling..523

31.8 Turning a SWIG module into a Tcl Package..524
31.9 Building new kinds of Tcl interfaces (in Tcl)...525

31.9.1 Proxy classes..526

32 Extending SWIG..528
32.1 Introduction...528
32.2 Prerequisites..529
32.3 The Big Picture...529
32.4 Execution Model...529

32.4.1 Preprocessing..530
32.4.2 Parsing..531
32.4.3 Parse Trees..531
32.4.4 Attribute namespaces..535
32.4.5 Symbol Tables..535
32.4.6 The %feature directive...536
32.4.7 Code Generation...537
32.4.8 SWIG and XML...538

32.5 Primitive Data Structures..538
32.5.1 Strings...538
32.5.2 Hashes...539
32.5.3 Lists..540
32.5.4 Common operations..541
32.5.5 Iterating over Lists and Hashes..541
32.5.6 I/O...541

32.6 Navigating and manipulating parse trees..542
32.7 Working with attributes..544
32.8 Type system..545

32.8.1 String encoding of types...545
32.8.2 Type construction...546
32.8.3 Type tests..547
32.8.4 Typedef and inheritance...547
32.8.5 Lvalues...548
32.8.6 Output functions...549

32.9 Parameters...549
32.10 Writing a Language Module...550

32.10.1 Execution model...550

SWIG−1.3 Documentation

xvii

Table of Contents
32 Extending SWIG

32.10.2 Starting out...550
32.10.3 Command line options..551
32.10.4 Configuration and preprocessing..552
32.10.5 Entry point to code generation...552
32.10.6 Module I/O and wrapper skeleton..553
32.10.7 Low−level code generators...553
32.10.8 Configuration files..553
32.10.9 Runtime support...555
32.10.10 Standard library files..555
32.10.11 Examples and test cases..555
32.10.12 Documentation...555

32.11 Typemaps..555
32.11.1 Proxy classes..555

32.12 Guide to parse tree nodes..555

SWIG−1.3 Documentation

xviii

SWIG−1.3 Development Documentation
Last update : SWIG−1.3.28 (February 12, 2006)

Sections

The SWIG documentation is being updated to reflect new SWIG features and enhancements. However, this update process is not
quite finished−−there is a lot of old SWIG−1.1 documentation and it is taking some time to update all of it. Please pardon our dust
(or volunteer to help!).

SWIG Core Documentation

Preface•
Introduction•
Getting started on Windows•
Scripting•
SWIG Basics (Read this!)•
SWIG and C++•
The SWIG preprocessor•
The SWIG Library•
Argument handling•
Typemaps•
Customization features•
Contracts•
Variable length arguments•
Warning messages•
Working with Modules•

Language Module Documentation

Allegro CL support•
C# support•
Chicken support•
Guile support•
Java support•
Lua support•
Common Lisp support•
Modula3 support•
MzScheme support•
Ocaml support•
Perl5 support•
PHP support•
Pike support•
Python support•
Ruby support•
Tcl support•

Developer Documentation

Extending SWIG•

SWIG−1.3 Development Documentation 1

Documentation that has not yet been updated

This documentation has not been completely updated from SWIG−1.1, but most of the topics still apply to the current release.
Make sure you read the SWIG Basics chapter before reading any of these chapters. Also, SWIG−1.3.10 features extensive
changes to the implementation of typemaps. Make sure you read the Typemaps chapter above if you are using this feature.

Advanced topics (see Modules for updated information).•

SWIG−1.3 Documentation

Documentation that has not yet been updated 2

1 Preface
Introduction•
Special Introduction for Version 1.3•
SWIG Versions•
SWIG resources•
Prerequisites•
Organization of this manual•
How to avoid reading the manual•
Backwards Compatibility•
Credits•
Bug reports•

1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces to
C and C++ programs. Originally developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Los
Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5
supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and a
constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for
solving these types of problems. SWIG simplifies development by largely automating the task of scripting language
integration−−allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is used
in a wide variety of applications−−in fact almost anything where C/C++ programming is involved.

1.2 Special Introduction for Version 1.3

Since SWIG was released in 1996, its user base and applicability has continued to grow. Although its rate of development has
varied, an active development effort has continued to make improvements to the system. Today, nearly a dozen developers are
working to create SWIG−2.0−−−a system that aims to provide wrapping support for nearly all of the ANSI C++ standard and
approximately ten target languages including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP, Python, Ruby, and Tcl.

1.3 SWIG Versions

For several years, the most stable version of SWIG has been release 1.1p5. Starting with version 1.3, a new version numbering
scheme has been adopted. Odd version numbers (1.3, 1.5, etc.) represent development versions of SWIG. Even version numbers
(1.4, 1.6, etc.) represent stable releases. Currently, developers are working to create a stable SWIG−2.0 release. Don't let the
development status of SWIG−1.3 scare you−−−it is much more stable (and capable) than SWIG−1.1p5.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and
implementation tricks.

You can also subscribe to the swig−user mailing list by visiting the page

http://www.swig.org/mail.html

1 Preface 3

http://www.swig.org
http://www.swig.org/mail.html

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and
future work.

CVS access to the latest version of SWIG is also available. More information about this can be obtained at:

http://www.swig.org/cvs.html

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages such as
Tcl, Python, and Perl. A detailed knowledge of these scripting languages is not required although some familiarity won't hurt. No
prior experience with building C extensions to these languages is required−−−after all, this is what SWIG does automatically.
However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language
extensions is somewhat more complicated than writing a normal C program.

Recent SWIG releases have become significantly more capable in their C++ handling−−especially support for advanced features
like namespaces, overloaded operators, and templates. Whenever possible, this manual tries to cover the technicalities of this
interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost certainly
want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining
chapters are devoted to specific SWIG language modules and are self contained. Thus, if you are using SWIG to build Python
interfaces, you can probably skip to that chapter and find almost everything you need to know. Caveat: we are currently working
on a documentation rewrite and many of the older language module chapters are still somewhat out of date.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction" which contains a few simple examples. These examples contain about
95% of everything you need to know to use SWIG. After that, simply use the language−specific chapters as a reference. The
SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards Compatibility

If you are a previous user of SWIG, don't expect recent versions of SWIG to provide backwards compatibility. In fact, backwards
compatibility issues may arise even between successive 1.3.x releases. Although these incompatibilities are regrettable,
SWIG−1.3 is an active development project. The primary goal of this effort is to make SWIG better−−−a process that would
simply be impossible if the developers are constantly bogged down with backwards compatibility issues.

On a positive note, a few incompatibilities are a small price to pay for the large number of new features that have been
added−−−namespaces, templates, smart pointers, overloaded methods, operators, and more.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION
preprocessor symbol which holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as
0x010311 (corresponding to SWIG−1.3.11). This can be used in an interface file to define different typemaps, take advantage of
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined
SWIG_VERSION since SWIG−1.3.11.

SWIG−1.3 Documentation

1.4 SWIG resources 4

http://www.swig.org/cvs.html

1.9 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people. Most recent SWIG
development has been supported by Matthias Köppe, William Fulton, Lyle Johnson, Richard Palmer, Thien−Thi Nguyen, Jason
Stewart, Loic Dachary, Masaki Fukushima, Luigi Ballabio, Sam Liddicott, Art Yerkes, Marcelo Matus, Harco de Hilster, John
Lenz, and Surendra Singhi.

Historically, the following people contributed to early versions of SWIG. Peter Lomdahl, Brad Holian, Shujia Zhou, Niels Jensen,
and Tim Germann at Los Alamos National Laboratory were the first users. Patrick Tullmann at the University of Utah suggested
the idea of automatic documentation generation. John Schmidt and Kurtis Bleeker at the University of Utah tested out the early
versions. Chris Johnson supported SWIG's developed at the University of Utah. John Buckman, Larry Virden, and Tom Schwaller
provided valuable input on the first releases and improving the portability of SWIG. David Fletcher and Gary Holt have provided
a great deal of input on improving SWIG's Perl5 implementation. Kevin Butler contributed the first Windows NT port.

1.10 Bug reports

Although every attempt has been made to make SWIG bug−free, we are also trying to make feature improvements that may
introduce bugs. To report a bug, either send mail to the SWIG developer list at the swig−devel mailing list or report a bug at the
SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core dump
occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper code.
We can only fix bugs if we know about them.

SWIG−1.3 Documentation

1.9 Credits 5

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

2 Introduction
What is SWIG?•
Why use SWIG?•
A SWIG example

SWIG interface file♦
The swig command♦
Building a Perl5 module♦
Building a Python module♦
Shortcuts♦

•

Supported C/C++ language features•
Non−intrusive interface building•
Incorporating SWIG into a build system•
Hands off code generation•
SWIG and freedom•

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a
nutshell, SWIG is a compiler that takes C declarations and creates the wrappers needed to access those declarations from other
languages including including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing
code and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

Building interpreted interfaces to existing C programs.•
Rapid prototyping and application development.•
Interactive debugging.•
Reengineering or refactoring of legacy software into a scripting language components.•
Making a graphical user interface (using Tk for example).•
Testing of C libraries and programs (using scripts).•
Building high performance C modules for scripting languages.•
Making C programming more enjoyable (or tolerable depending on your point of view).•
Impressing your friends.•
Obtaining vast sums of research funding (although obviously not applicable to the author).•

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software
without having to get a degree in software engineering. Because of this, the use of SWIG tends to be somewhat informal and
ad−hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL
compiler). Although this style of development isn't appropriate for every project, it is particularly well suited to software
development in the small; especially the research and development work that is commonly found in scientific and engineering
projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other
programming languages. However, why would anyone want to do that? To answer that question, it is useful to list a few strengths
of C/C++ programming:

Excellent support for writing programming libraries.•
High performance (number crunching, data processing, graphics, etc.).•
Systems programming and systems integration.•
Large user community and software base.•

Next, let's list a few problems with C/C++ programming

2 Introduction 6

Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other
libraries).

•

Testing is time consuming (the compile/debug cycle).•
Not easy to reconfigure or customize without recompilation.•
Modularization can be tricky.•
Security concerns (buffer overflow for instance).•

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programming
languages for different tasks. For instance, writing a graphical user interface may be significantly easier in a scripting language
like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you need more
proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might greatly
simplify the task of writing distributed computing software. The key point is that different programming languages offer different
strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by
combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of software
development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C
programming model which usually results in programs that resemble this:

A collection of functions and variables that do something useful.•
A main() program that starts everything.•
A horrible collection of hacks that form some kind of user interface (but which no−one really wants to touch).•

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less
code, better flexibility, and increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C
program and using the high−level language interface, but not the tedious and complex chore of making the two languages talk to
each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG has
such a large user manual ;−).

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:

/* File : example.c */

double My_variable = 3.0;

/* Compute factorial of n */
int fact(int n) {
 if (n <= 1) return 1;
 else return n*fact(n−1);
}

/* Compute n mod m */
int my_mod(int n, int m) {
 return(n % m);
}

Suppose that you wanted to access these functions and the global variable My_variable from Tcl. You start by making a
SWIG interface file as shown below (by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

/* File : example.i */
%module example

SWIG−1.3 Documentation

2.2 Why use SWIG? 7

%{
/* Put headers and other declarations here */
extern double My_variable;
extern int fact(int);
extern int my_mod(int n, int m);
%}

extern double My_variable;
extern int fact(int);
extern int my_mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The %module directive defines the name of the
module that will be created by SWIG. The %{,%} block provides a location for inserting additional code such as C header files or
additional C declarations.

2.3.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig −tcl example.i
unix > gcc −c −fpic example.c example_wrap.c −I/usr/local/include
unix > gcc −shared example.o example_wrap.o −o example.so
unix > tclsh
% load ./example.so
% fact 4
24
% my_mod 23 7
2
% expr $My_variable + 4.5
7.5
%

The swig command produced a new file called example_wrap.c that should be compiled along with the example.c file.
Most operating systems and scripting languages now support dynamic loading of modules. In our example, our Tcl module has
been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need
to worry about it.

2.3.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig −perl5 example.i
unix > gcc −c example.c example_wrap.c \
 −I/usr/local/lib/perl5/sun4−solaris/5.003/CORE
unix > ld −G example.o example_wrap.o −o example.so # This is for Solaris
unix > perl5.003
use example;
print example::fact(4), "\n";
print example::my_mod(23,7), "\n";
print $example::My_variable + 4.5, "\n";
<ctrl−d>
24
2
7.5
unix >

2.3.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig −python example.i

SWIG−1.3 Documentation

2.3.1 SWIG interface file 8

unix > gcc −c −fpic example.c example_wrap.c −I/usr/local/include/python2.0
unix > gcc −shared example.o example_wrap.o −o _example.so
unix > python
Python 2.0 (#6, Feb 21 2001, 13:29:45)
[GCC egcs−2.91.66 19990314/Linux (egcs−1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import example
>>> example.fact(4)
24
>>> example.my_mod(23,7)
2
>>> example.cvar.My_variable + 4.5
7.5

2.3.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do
without it. For example, you could also build a Perl5 module by just running SWIG on the C header file and specifying a module
name as follows

unix > swig −perl5 −module example example.h
unix > gcc −c example.c example_wrap.c \
 −I/usr/local/lib/perl5/sun4−solaris/5.003/CORE
unix > ld −G example.o example_wrap.o −o example.so
unix > perl5.003
use example;
print example::fact(4), "\n";
print example::my_mod(23,7), "\n";
print $example::My_variable + 4.5, "\n";
<ctrl−d>
24
2
7.5

2.4 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples
have been shown, SWIG is quite capable in supporting most of C++. Some of the major features include:

Full C99 preprocessing.•
All ANSI C and C++ datatypes.•
Functions, variables, and constants.•
Classes.•
Single and multiple inheritance.•
Overloaded functions and methods.•
Overloaded operators.•
C++ templates (including member templates, specialization, and partial specialization).•
Namespaces.•
Variable length arguments.•
C++ smart pointers.•

Currently, the only major C++ feature not supported is nested classes−−a limitation that will be removed in a future release.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools.
SWIG not only parses C++, it implements the full C++ type system and it is able to understand C++ semantics. SWIG generates
its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able handle C++ code that stresses the very limits of many
C++ compilers.

SWIG−1.3 Documentation

2.3.4 Building a Python module 9

2.5 Non−intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely
easy to use with existing packages and promotes software reuse and modularity. By making the C/C++ code independent of the
high level interface, you can change the interface and reuse the code in other applications. It is also possible to support different
types of interfaces depending on the application.

2.6 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external
tools/compilers. SWIG is most commonly invoked from within a Makefile, but is also known to be invoked from from popular
IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake/ Libtool) to configure SWIG use in your project, the SWIG Autoconf
macros can be used. The primary macro is ac_pkg_swig, see
http://www.gnu.org/software/ac−archive/htmldoc/ac_pkg_swig.html. The ac_python_devel macro is also helpful for
generating Python extensions. See the Autoconf Macro Archive for further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross−platform, open−source build manager with
built in support for SWIG. CMake can detect the SWIG executable and many of the target language libraries for linking against.
CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows easy cross
platform SWIG development. It also can generate the custom commands necessary for driving SWIG from IDE's and makefiles.
All of this can be done from a single cross platform input file. The following example is a CMake input file for creating a python
wrapper for the SWIG interface file, example.i:

This is a CMake example for Python

FIND_PACKAGE(SWIG REQUIRED)
INCLUDE(${SWIG_USE_FILE})

FIND_PACKAGE(PythonLibs)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_PATH})

INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})

SET(CMAKE_SWIG_FLAGS "")

SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES SWIG_FLAGS "−includeall")
SWIG_ADD_MODULE(example python example.i example.cxx)
SWIG_LINK_LIBRARIES(example ${PYTHON_LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke
SWIG and compile the generated C++ files into _example.so (UNIX) or _example.dll (Windows).

2.7 Hands off code generation

SWIG is designed to produce working code that needs no hand−modification (in fact, if you look at the output, you probably
won't want to modify it). You should think of your target language interface being defined entirely by the input to SWIG, not the
resulting output file. While this approach may limit flexibility for hard−core hackers, it allows others to forget about the low−level
implementation details.

2.8 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written with

SWIG−1.3 Documentation

2.5 Non−intrusive interface building 10

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.gnu.org/software/ac-archive/htmldoc/ac_pkg_swig.html
http://www.gnu.org/software/ac-archive/htmldoc/index.html
http://www.cmake.org

a certain "philosophy" about programming−−−namely that programmers are smart and that tools should just stay out of their way.
Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use SWIG to
go well beyond "shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedoom
may be exactly what is needed to work with complicated and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At it's core,
SWIG tries to distill even the most advanced C++ code down to a small well−defined set of interface building techniques based
on ANSI C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer's
way−−−−the last thing any developer wants to do is to spend their time debugging the output of a tool that relies on non−portable
or unreliable programming features.

SWIG−1.3 Documentation

2.8 SWIG and freedom 11

3 Getting started on Windows
Installation on Windows

Windows Executable♦
•

SWIG Windows Examples
Instructions for using the Examples with Visual Studio

Python◊
TCL◊
Perl◊
Java◊
Ruby◊
C#◊

♦

Instructions for using the Examples with other compilers♦

•

SWIG on Cygwin and MinGW
Building swig.exe on Windows

Building swig.exe using MinGW and MSYS◊
Building swig.exe using Cygwin◊
Building swig.exe alternatives◊

♦

Running the examples on Windows using Cygwin♦

•

Microsoft extensions and other Windows quirks•

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as
building the SWIG executable. Usage within the Unix like environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps
are:

Download the swigwin zip package from the SWIG website and unzip into a directory. This is all that needs
downloading for the Windows platform.

•

Set environment variables as described in the SWIG Windows Examples section in order to run examples using Visual
C++.

•

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows executable, swig.exe, which will run on 32 bit versions of Windows, ie
Windows 95/98/ME/NT/2000/XP. If you want to build your own swig.exe have a look at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has
a few Visual C++ project files (.dsp files). These were produced by Visual C++ 6, although they should also work in Visual C++
5. Later versions of Visual Studio should also be able to open and convert these project files. The C# examples come with .NET
2003 solution (.sln) and project files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG in a
custom build rule for the SWIG interface (.i) file. Alternatively run the examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).

3.2.1 Instructions for using the Examples with Visual Studio

Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages require
some environment variables to be set before running Visual C++. Note that Visual C++ must be re−started to pick up any changes
in environment variables. Open up an example .dsp file, Visual C++ will create a workspace for you (.dsw file). Ensure the

3 Getting started on Windows 12

http://www.swig.org

Release build is selected then do a Rebuild All from the Build menu. The required environment variables are displayed with their
current values.

The list of required environment variables for each module language is also listed below. They are usually set from the Control
Panel and System properties, but this depends on which flavour of Windows you are running. If you don't want to use
environment variables then change all occurences of the environment variables in the .dsp files with hard coded values. If you are
interested in how the project files are set up there is explanatory information in some of the language module's documentation.

3.2.1.1 Python

PYTHON_INCLUDE : Set this to the directory that contains python.h
PYTHON_LIB : Set this to the python library including path for linking

Example using Python 2.1.1:
PYTHON_INCLUDE: d:\python21\include
PYTHON_LIB: d:\python21\libs\python21.lib

3.2.1.2 TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: d:\tcl\include
TCL_LIB: d:\tcl\lib\tcl83.lib

3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\lib\CORE
PERL5_LIB: D:\nsPerl5.004_04\lib\CORE\perl.lib

3.2.1.4 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:
JAVA_INCLUDE: d:\jdk1.3\include
JAVA_BIN: d:\jdk1.3\bin

3.2.1.5 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:
RUBY_INCLUDE: D:\ruby\lib\ruby\1.6\i586−mswin32
RUBY_LIB: D:\ruby\lib\mswin32−ruby16.lib

SWIG−1.3 Documentation

3.2.1 Instructions for using the Examples with Visual Studio 13

3.2.1.6 C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solution
file in Visual Studio .NET 2003 and do a Rebuild All from the Build menu. The accompanying C# and C++ project file are
automatically used by the solution file.

3.2.2 Instructions for using the Examples with other compilers

If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a
section in each of the language modules detailing what needs setting up using Visual C++ which may be of some guidance.
Alternatively you may want to use Cygwin as described in the following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free
with gcc, an ANSI C/C++ compiler. However, this is not a recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows

If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not
necessary to use the supplied swig.exe. This information is provided for those that want to modify the SWIG source code in a
Windows environment. Normally this is not needed, so most people will want to ignore this section.

3.3.1.1 Building swig.exe using MinGW and MSYS

The short abbreviated instructions follow...

Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.•
Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW
command prompt.

•

The step by step instructions to download and install MinGW and MSYS, then download and build the latest version of SWIG
from cvs follow...

Pitfall note: Execute the steps in the order shown and don't use spaces in path names. In fact it is best to use the default
installation directories.

Download the following packages from the MinGW download page or MinGW SourceForge download page. Note that
at the time of writing, the majority of these are in the Current release list and some are in the Snapshot or Previous
release list.

1.

MinGW−3.1.0−1.exe♦
MSYS−1.0.11−2004.04.30−1.exe♦
msysDTK−1.0.1.exe♦
bison−2.0−MSYS.tar.gz♦
msys−autoconf−2.59.tar.bz2♦
msys−automake−1.8.2.tar.bz2♦

Install MinGW−3.1.0−1.exe (C:\MinGW is default location.)2.
Install MSYS−1.0.11−2004.04.30−1.exe. Make sure you install it on the same windows drive letter as MinGW
(C:\msys\1.0 is default). In the post install script,

3.

Answer y to the "do you wish to continue with the post install?"♦
Answer y to the "do you have MinGW installed?"♦
Type in the the folder in which you installed MinGW (C:/MinGW is default)♦

Install msysDTK−1.0.1.exe to the same folder that you installed MSYS (C:\msys\1.0 is default).4.
Copy the followig to the MSYS install folder (C:\msys\1.0 is default):5.

msys−automake−1.8.2.tar.bz2♦

SWIG−1.3 Documentation

3.2.1.6 C# 14

http://www.cygwin.com
http://www.mingw.org
http://www.mingw.org
http://www.mingw.org/download.shtml
http://sourceforge.net/project/showfiles.php?group_id=2435

msys−autoconf−2.59.tar.bz2♦
bison−2.0−MSYS.tar.gz♦

Start the MSYS command prompt and execute:
cd /
tar −jxf msys−automake−1.8.2.tar.bz2
tar −jxf msys−autoconf−2.59.tar.bz2
tar −zxf bison−2.0−MSYS.tar.gz

6.

To get the latest SWIG CVS, type in the following:
mkdir /usr/src
cd /usr/src
export CVSROOT=:pserver:anonymous@cvs.sourceforge.net:/cvsroot/swig
cvs login
 (Logging in to anonymous@cvs.sourceforge.net)
 CVS password: <Just Press Return Here>
cvs −z3 co SWIG

Pitfall note: If you want to check out SWIG to a different folder to the proposed /usr/src/SWIG, do not use MSYS
emulated windows drive letters, because the autotools will fail miserably on those.

7.

You are now ready to build SWIG. Execute the following commands to build swig.exe:
cd /usr/src/SWIG
./autogen.sh
./configure
make

8.

3.3.1.2 Building swig.exe using Cygwin

Note that SWIG can also be built using Cygwin. However, SWIG will then require the Cygwin DLL when executing. Follow the
Unix instructions in the README file in the SWIG root directory. Note that the Cygwin environment will also allow one to
regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen.sh script and will only need regenerating in circumstances such as changing the build system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can
be added to a Visual C++ project file in order to build swig.exe from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin

The examples and test−suite work as successfully on Cygwin as on any other Unix operating system. The modules which are
known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow the Unix instructions in the README file in the SWIG root
directory to build the examples.

3.4 Microsoft extensions and other Windows quirks

A common problem when using SWIG on Windows are the Microsoft function calling conventions which are not in the C++
standard. SWIG parses ISO C/C++ so cannot deal with proprietary conventions such as __declspec(dllimport),
__stdcall etc. There is a Windows interface file, windows.i, to deal with these calling conventions though. The file also
contains typemaps for handling commonly used Windows specific types such as __int64, BOOL, DWORD etc. Include it like you
would any other interface file, for example:

%include <windows.i>

__declspec(dllexport) ULONG __stdcall foo(DWORD, __int32);

SWIG−1.3 Documentation

3.3.1.1 Building swig.exe using MinGW and MSYS 15

4 Scripting Languages
The two language view of the world•
How does a scripting language talk to C?

Wrapper functions♦
Variable linking♦
Constants♦
Structures and classes♦
Proxy classes♦

•

Building scripting language extensions
Shared libraries and dynamic loading♦
Linking with shared libraries♦
Static linking♦

•

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting
language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality
of the C/C++ program is accessed through special scripting language "commands." If you have ever tried to write your own
simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model−−the interpreter executes user
commands and scripts. However, most of the underlying functionality is written in a low−level language like C or Fortran.

The two−language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be
used for maximal performance and complicated systems programming tasks. Scripting languages can be used for rapid
prototyping, interactive debugging, scripting, and access to high−level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a
mechanism for executing commands and accessing variables. Normally, this is used to implement the builtin features of the
language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these
new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special
"wrapper" function that serves as the glue between the interpreter and the underlying C function. Then you need to give the
interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The next
few sections illustrate the process.

4 Scripting Languages 16

4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {
 if (n <= 1) return 1;
 else return n*fact(n−1);
}

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the
glue between the scripting language and the underlying C function. A wrapper function must do three things :

Gather function arguments and make sure they are valid.•
Call the C function.•
Convert the return value into a form recognized by the scripting language.•

As an example, the Tcl wrapper function for the fact() function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp,
 int argc, char *argv[]) {
 int result;
 int arg0;
 if (argc != 2) {
 interp−>result = "wrong # args";
 return TCL_ERROR;
 }
 arg0 = atoi(argv[1]);
 result = fact(arg0);
 sprintf(interp−>result,"%d", result);
 return TCL_OK;
}

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually
done in an initialization function called by the language when the module is loaded. For example, adding the above function to the
Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
 Tcl_CreateCommand(interp, "fact", wrap_fact, (ClientData) NULL,
 (Tcl_CmdDeleteProc *) NULL);
 return TCL_OK;
}

When executed, Tcl will now have a new command called "fact" that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python.
Both require special wrappers to be written and both need additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpeter. For
example, suppose you had the following variable:

double Foo = 3.5;

It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3; # Evaluation
$Foo = $a + 2.0; # Assignment

SWIG−1.3 Documentation

4.2.1 Wrapper functions 17

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the value
of a variable is read, a "get" function is invoked. Similarly, whenever the value of a variable is changed, a "set" function is called.

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluating a
variable such as $Foo might implicitly call the get function. Similarly, typing $Foo = 4 would call the underlying set function
to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0xff0000
#define BLUE 0x0000ff
#define GREEN 0x00ff00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN.
Virtually all scripting languages provide C functions for creating variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and classes
present a different problem. This is because the implementation of structures is largely related to the problem of data
representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what does
C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the
underlying representation of a structure. For example,

struct Vector {
 Vector();
 ~Vector();
 double x,y,z;
};

can be transformed into the following set of functions :

Vector *new_Vector();
void delete_Vector(Vector *v);
double Vector_x_get(Vector *v);
double Vector_y_get(Vector *v);
double Vector_z_get(Vector *v);
void Vector_x_set(Vector *v, double x);
void Vector_y_set(Vector *v, double y);
void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

% set v [new_Vector]
% Vector_x_set $v 3.5
% Vector_y_get $v
% delete_Vector $v
% ...

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know
anything about the actual representation of a Vector.

SWIG−1.3 Documentation

4.2.2 Variable linking 18

4.2.5 Proxy classes

In certain cases, it is possible to use the low−level accessor functions to create a proxy class, also known as a shadow class. A
proxy class is a special kind of object that gets created in a scripting language to access a C/C++ class (or struct) in a way that
looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C definition :

class Vector {
public:
 Vector();
 ~Vector();
 double x,y,z;
};

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For example,
in Python, you might want to do this:

>>> v = Vector()
>>> v.x = 3
>>> v.y = 4
>>> v.z = −13
>>> ...
>>> del v

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v−>{x} = 3;
$v−>{y} = 4;
$v−>{z} = −13;

Finally, in Tcl :

Vector v
v configure −x 3 −y 4 −z 13

When proxy classes are used, two objects are at really work−−one in the scripting language, and an underlying C/C++ object.
Operations affect both objects equally and for all practical purposes, it appears as if you are simply manipulating a C/C++ object.

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itself.
There are two primary approaches for doing this. The preferred technique is to build a dynamically loadable extension in the form
a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the
procedure for a few common machines is shown below:

Build a shared library for Solaris
gcc −c example.c example_wrap.c −I/usr/local/include
ld −G example.o example_wrap.o −o example.so

Build a shared library for Linux
gcc −fpic −c example.c example_wrap.c −I/usr/local/include
gcc −shared example.o example_wrap.o −o example.so

Build a shared library for Irix

SWIG−1.3 Documentation

4.2.5 Proxy classes 19

gcc −c example.c example_wrap.c −I/usr/local/include
ld −shared example.o example_wrap.o −o example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). This
will import your module and allow you to start using it. For example:

% load ./example.so
% fact 4
24
%

When working with C++ codes, the process of building shared libraries may be more complicated−−primarily due to the fact that
C++ modules may need additional code in order to operate correctly. On many machines, you can build a shared C++ module by
following the above procedures, but changing the link line to the following :

c++ −shared example.o example_wrap.o −o example.so

4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your
machine. In order for the extension to work, it needs to be able to find all of these libraries at run−time. Otherwise, you may get
an error such as the following :

>>> import graph
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "/home/sci/data1/beazley/graph/graph.py", line 2, in ?
 import graphc
ImportError: 1101:/home/sci/data1/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "libgraph.so" that
the system was unable to locate. To fix this problem, there are a few approaches you can take.

Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done
with a special linker flag such as −R, −rpath, etc. This is not implemented in a standard manner so read the man pages
for your linker to find out more about how to set the search path for shared libraries.

•

Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operation on
non−Unix platforms.

•

Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before
running Python. Although this is an easy solution, it is not recommended. Consider setting the path using linker options
instead.

•

4.3.3 Static linking

With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a short
main program that adds your customized commands to the language and starts the interpreter. You then link your program with a
library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extensions.
In fact, there are very few practical reasons for doing this−−consider using shared libraries instead.

SWIG−1.3 Documentation

4.3.1 Shared libraries and dynamic loading 20

5 SWIG Basics
Running SWIG

Input format♦
SWIG Output♦
Comments♦
C Preprocessor♦
SWIG Directives♦
Parser Limitations♦

•

Wrapping Simple C Declarations
Basic Type Handling♦
Global Variables♦
Constants♦
A brief word aboutconst♦
A cautionary tale ofchar *♦

•

Pointers and complex objects
Simple pointers♦
Run time pointer type checking♦
Derived types, structs, and classes♦
Undefined datatypes♦
Typedef♦

•

Other Practicalities
Passing structures by value♦
Return by value♦
Linking to structure variables♦
Linking to char *♦
Arrays♦
Creating read−only variables♦
Renaming and ignoring declarations♦
Default/optional arguments♦
Pointers to functions and callbacks♦

•

Structures and unions
Typedef and structures♦
Character strings and structures♦
Array members♦
Structure data members♦
C constructors and destructors♦
Adding member functions to C structures♦
Nested structures♦
Other things to note about structure wrapping♦

•

Code Insertion
The output of SWIG♦
Code insertion blocks♦
Inlined code blocks♦
Initialization blocks♦

•

An Interface Building Strategy
Preparing a C program for SWIG♦
The SWIG interface file♦
Why use separate interface files?♦
Getting the right header files♦
What to do with main()♦

•

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ANSI C
declarations. C++ support is described in the next chapter. However, C++ programmers should still read this chapter to understand
the basics. Specific details about each target language are described in later chapters.

5 SWIG Basics 21

5.1 Running SWIG

To run SWIG, use the swig command with options options and a filename like this:

swig [options] filename

where filename is a SWIG interface file or a C/C++ header file. Below is a subset of options that can be used. Additional
options are also defined for each target language. A full list can be obtained by typing swig −help or swig −lang −help.

−allegrocl Generate ALLEGROCL wrappers
−chicken Generate CHICKEN wrappers
−clisp Generate CLISP wrappers
−cffi Generate CFFI wrappers
−csharp Generate C# wrappers
−guile Generate Guile wrappers
−java Generate Java wrappers
−lua Generate Lua wrappers
−modula3 Generate Modula 3 wrappers
−mzscheme Generate Mzscheme wrappers
−ocaml Generate Ocaml wrappers
−perl Generate Perl wrappers
−php Generate PHP wrappers
−pike Generate Pike wrappers
−python Generate Python wrappers
−ruby Generate Ruby wrappers
−sexp Generate Lisp S−Expressions wrappers
−tcl Generate Tcl wrappers
−uffi Generate Common Lisp / UFFI wrappers
−xml Generate XML wrappers

−c++ Enable C++ parsing
−Dsymbol Define a preprocessor symbol
−Fstandard Display error/warning messages in commonly used format
−Fmicrosoft Display error/warning messages in Microsoft format
−help Display all options
−Idir Add a directory to the file include path
−lfile Include a SWIG library file.
−module name Set the name of the SWIG module
−o outfile Name of output file
−outdir dir Set language specific files output directory
−swiglib Show location of SWIG library
−version Show SWIG version number

5.1.1 Input format

As input, SWIG expects a file containing ANSI C/C++ declarations and special SWIG directives. More often than not, this is a
special SWIG interface file which is usually denoted with a special .i or .swg suffix. In certain cases, SWIG can be used
directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you might
not want to do this (described later).

The most common format of a SWIG interface is as follows:

%module mymodule
%{
#include "myheader.h"
%}
// Now list ANSI C/C++ declarations
int foo;
int bar(int x);
...

SWIG−1.3 Documentation

5.1 Running SWIG 22

The name of the module is supplied using the special %module directive (or the −module command line option). This directive
must appear at the beginning of the file and is used to name the resulting extension module (in addition, this name often defines a
namespace in the target language). If the module name is supplied on the command line, it overrides the name specified with the
%module directive.

Everything in the %{ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is
almost always used to include header files and other declarations that are required to make the generated wrapper code compile. It
is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not automatically
appear in the generated wrapper code−−−therefore you need to make sure you include the proper header files in the %{ ... %}
section. It should be noted that the text enclosed in %{ ... %} is not parsed or interpreted by SWIG. The %{...%} syntax and
semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools such as yacc or
bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may
generate some additional files depending on the target language. By default, an input file with the name file.i is transformed
into a file file_wrap.c or file_wrap.cxx (depending on whether or not the −c++ option has been used). The name of the
output file can be changed using the −o option. In certain cases, file suffixes are used by the compiler to determine the source
language (C, C++, etc.). Therefore, you have to use the −o option to change the suffix of the SWIG−generated wrapper file if you
want something different than the default. For example:

$ swig −c++ −python −o example_wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct a extension module for the target
scripting language. SWIG is not a stub compiler nor is it usually necessary to edit the output file (and if you look at the output,
you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of
your C/C++ program to create a shared library.

Many target languages will also generate proxy class files in the target language. The default output directory for these language
specific files is the same directory as the generated C/C++ file. This can can be modified using the −outdir option. For
example:

$ swig −c++ −python −outdir pyfiles −o cppfiles/example_wrap.cpp example.i

If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example_wrap.cpp
pyfiles/example.py

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to
generate documentation files. However, this feature is currently under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor features
are supported including file inclusion, conditional compilation and macros. However, #include statements are ignored unless
the −includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes used to
process raw C header files. In this case, you usually only want the extension module to include functions in the supplied header
file rather than everything that might be included by that header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a %{...%} block. In addition, the preprocessor
includes a number of macro handling enhancements that make it more powerful than the normal C preprocessor. These extensions
are described in the "Preprocessor" chapter.

SWIG−1.3 Documentation

5.1.1 Input format 23

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal C
declarations. These directives are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG
directives can be included in C header files using conditional compilation like this:

/* header.h −−− Some header file */

/* SWIG directives −− only seen if SWIG is running */
#ifdef SWIG
%module foo
#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.

5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of these
limitations pertain to very complicated type declarations and certain advanced C++ features. Specifically, the following features
are not currently supported:

Non−conventional type declarations. For example, SWIG does not support declarations such as the following (even
though this is legal C):

/* Non−conventional placement of storage specifier (extern) */
const int extern Number;

/* Extra declarator grouping */
Matrix (foo); // A global variable

/* Extra declarator grouping in parameters */
void bar(Spam (Grok)(Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming
books. However, if you're feeling particularly obfuscated, you can certainly break SWIG (although why would you want
to?).

•

Running SWIG on C++ source files (what would appear in a .C or .cxx file) is not recommended. Even though SWIG
can parse C++ class declarations, it ignores declarations that are decoupled from their original class definition (the
declarations are parsed, but a lot of warning messages may be generated). For example:

/* Not supported by SWIG */
int foo::bar(int) {
 ... whatever ...
}

•

Certain advanced features of C++ such as nested classes are not yet supported. Please see the section on using SWIG
with C++ for more information.

•

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
... some bad declarations ...
#endif

Alternatively, you can just delete the offending code from the interface file.

One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with
incomplete specifications and to be very permissive in its handling of C/C++ datatypes (e.g., SWIG can generate interfaces even
when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to

SWIG−1.3 Documentation

5.1.5 SWIG Directives 24

implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex
declarations (for the truly curious, the primary complication in the implementation is that the SWIG parser does not utilize a
separate typedef−name terminal symbol as described on p. 234 of K&R).

5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be used
in a C program. For example, consider the following interface file:

%module example

%inline %{
extern double sin(double x);
extern int strcmp(const char *, const char *);
extern int Foo;
%}
#define STATUS 50
#define VERSION "1.1"

In this file, there are two functions sin() and strcmp(), a global variable Foo, and two constants STATUS and VERSION.
When SWIG creates an extension module, these declarations are accessible as scripting language functions, variables, and
constants respectively. For example, in Tcl:

% sin 3
5.2335956
% strcmp Dave Mike
−1
% puts $Foo
42
% puts $STATUS
50
% puts $VERSION
1.1

Or in Python:

>>> example.sin(3)
5.2335956
>>> example.strcmp('Dave','Mike')
−1
>>> print example.cvar.Foo
42
>>> print example.STATUS
50
>>> print example.VERSION
1.1

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle
differences between languages, run−time environments, and semantics, it is not always possible to do so. The next few sections
describes various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally,
scripting languages provide a more limited set of primitive types than C. Therefore, this conversion process involves a certain
amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following
list shows all of the C datatypes that SWIG will convert to and from integers in the target language:

int

SWIG−1.3 Documentation

5.1.6 Parser Limitations 25

short
long
unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16 bit
short in C may be promoted to a 32 bit integer. When integers are converted in the other direction, the value is cast back into the
original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8−bit integers. Normally, the char datatype
is mapped as a one−character ASCII string.

The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32−bit integers so mapping a 64−bit
long integer may lead to truncation errors. Similar problems may arise with 32 bit unsigned integers (which may appear as large
negative numbers). As a rule of thumb, the int datatype and all variations of char and short datatypes are safe to use. For
unsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been
wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long
usually exceeds the integer precision available in the target language. In certain modules such as Tcl and Perl5, long long
integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow long
long values to be used in arithmetic expressions. It should also be noted that although long long is part of the ISO C99
standard, it is not universally supported by all C compilers. Make sure you are using a compiler that supports long long before
trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost always a
C double. The rarely used datatype of long double is not supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language it
shows up as a tiny string containing the character value. When converting the value back into C, SWIG takes a character string
from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value `f'.

The char * datatype is handled as a NULL−terminated ASCII string. SWIG maps this into a 8−bit character string in the target
scripting language. SWIG converts character strings in the target language to NULL terminated strings before passing them into
C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG
typemap. See the chapter on Typemaps for details about this.

At this time, SWIG does not provide any special support for Unicode or wide−character strings (the C wchar_t type). This is a
delicate topic that is poorly understood by many programmers and not implemented in a consistent manner across languages. For
those scripting languages that provide Unicode support, Unicode strings are often available in an 8−bit representation such as
UTF−8 that can be mapped to the char * type (in which case the SWIG interface will probably work). If the program you are
wrapping uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal
representation (e.g., UCS−2 vs. UCS−4). You may need to write some special conversion functions.

SWIG−1.3 Documentation

5.2.1 Basic Type Handling 26

5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

%module example
double foo;

results in a scripting language variable like this:

Tcl
set foo [3.5] ;# Set foo to 3.5
puts $foo ;# Print the value of foo

Python
cvar.foo = 3.5 # Set foo to 3.5
print cvar.foo # Print value of foo

Perl
$foo = 3.5; # Set foo to 3.5
print $foo,"\n"; # Print value of foo

Ruby
Module.foo = 3.5 # Set foo to 3.5
print Module.foo, "\n" # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every
attempt to make global variables work like scripting language variables, it is not always possible to do so. For instance, in Python,
all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables are
accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the Java
module generates a pair of functions double get_foo() and set_foo(double val) that are used to manipulate the
value.

Finally, if a global variable has been declared as const, it only supports read−only access. Note: this behavior is new to
SWIG−1.3. Earlier versions of SWIG incorrectly handled const and created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special %constant directive. The following interface file shows a
few valid constant declarations :

#define I_CONST 5 // An integer constant
#define PI 3.14159 // A Floating point constant
#define S_CONST "hello world" // A string constant
#define NEWLINE '\n' // Character constant

enum boolean {NO=0, YES=1};
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
 SEP, OCT, NOV, DEC};
%constant double BLAH = 42.37;
#define F_CONST (double) 5 // A floating pointer constant with cast
#define PI_4 PI/4
#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to
be floating point. In addition, SWIG must be able to fully resolve all of the symbols used in a #define in order for a constant to
actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are definitely
not meant to be part of the scripting language interface. For example:

#define EXTERN extern

SWIG−1.3 Documentation

5.2.2 Global Variables 27

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will not
create constants for macros unless the value can be completely determined by the preprocessor. For instance, in the above
example, the declaration

#define PI_4 PI/4

defines a constant because PI was already defined as a constant and the value is known.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output file and
lets the C compiler perform the final evaluation (SWIG does perform a limited form of type−checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header file
or in the %{,%} block). SWIG only translates the enumeration into code needed to add the constants to a scripting language. It
needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The %constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not
usually not needed for simple values, it is more useful when working with pointers and other more complex datatypes. Typically,
%constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations−−especially when it is
mixed with pointers and other type modifiers. In fact, previous versions of SWIG handled const incorrectly−−a situation that
SWIG−1.3.7 and newer releases have fixed.

Starting with SWIG−1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a
declaration happens to be declared as const, it is wrapped as a read−only variable. To tell if a variable is const or not, you
need to look at the right−most occurrence of the const qualifier (that appears before the variable name). If the right−most
const occurs after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char a; // A constant character
char const b; // A constant character (the same)
char *const c; // A constant pointer to a character
const char *const d; // A constant pointer to a constant character

Here is an example of a declaration that is not const:

const char *e; // A pointer to a constant character. The pointer
 // may be modified.

In this case, the pointer e can change−−−it's only the value being pointed to that is read−only.

Compatibility Note: One reason for changing SWIG to handle const declarations as read−only variables is that there are many
situations where the value of a const variable might change. For example, a library might export a symbol as const in its
public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.
Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being
pointed to can be modified−−it's only the pointer itself that is constant. In an embedded system, a const declaration might refer
to a read−only memory address such as the location of a memory−mapped I/O device port (where the value changes, but writing
to the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the
new interpretation of const as "read−only" is simple and exactly matches the actual semantics of const in C/C++. If you really
want to create a constant as in older versions of SWIG, use the %constant directive instead. For example:

SWIG−1.3 Documentation

5.2.3 Constants 28

%constant double PI = 3.14159;

or

#ifdef SWIG
#define const %constant
#endif
const double foo = 3.4;
const double bar = 23.4;
const int spam = 42;
#ifdef SWIG
#undef const
#endif
...

5.2.5 A cautionary tale of char *

Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed
from a scripting language to a C char *, the pointer usually points to string data stored inside the interpreter. It is almost always
a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python, strings are
supposed be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module on
the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like
this:

char *strcat(char *s, const char *t)

Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your
application to crash with a segmentation fault or other memory related problem. This is because s refers to some internal data in
the target language−−−data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read−only input values. However, it must be noted that you could
change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects

Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these datatypes.

5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int *
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simply
encodes the pointer itself into a representation that contains the actual value of the pointer and a type−tag. Thus, the SWIG
representation of the above pointers (in Tcl), might look like this:

_10081012_p_int
_1008e124_ppp_double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

SWIG−1.3 Documentation

5.2.4 A brief word about const 29

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to other C
functions as needed. For all practical purposes, the scripting language interface works in exactly the same way as you would use
the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown look
like hexadecimal addresses, the numbers used may differ from the actual machine address (e.g., on little−endian machines, the
digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high−level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does
not do this:

There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, an
int * may indeed be an array of integers, but if it contains ten million elements, converting it into a list object is
probably a bad idea.

•

The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an
array at all−−perhaps it is an output value!

•

By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to error.•

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile−time type
checking in the C/C++ compiler. To prevent errors, a type signature is encoded into all pointer values and is used to perform
run−time type checking. This type−checking process is an integral part of SWIG and can not be disabled or modified without
using typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive a
pointer. Although this has the potential to cause a crash, NULL pointers are also sometimes used as sentinel values or to denote a
missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes

For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :

Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs make
heavy use of pointers and SWIG can use the type−checked pointer mechanism already present for handling pointers to basic
datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

%module fileio
FILE *fopen(char *, char *);
int fclose(FILE *);
unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc(int nbytes);
void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you
wrapped this module into Python, you can use the functions just like you expect :

Copy a file
def filecopy(source,target):
 f1 = fopen(source,"r")
 f2 = fopen(target,"w")
 buffer = malloc(8192)

SWIG−1.3 Documentation

5.3.1 Simple pointers 30

 nbytes = fread(buffer,8192,1,f1)
 while (nbytes > 0):
 fwrite(buffer,8192,1,f2)
 nbytes = fread(buffer,8192,1,f1)
 free(buffer)

In this case f1, f2, and buffer are all opaque objects containing C pointers. It doesn't matter what value they contain−−our
program works just fine without this knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose the
following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its
generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This
allows SWIG to generate interfaces from only partial or limited information. In some cases, you may not care what a Matrix
really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type
names. However, all unspecified types are internally handled as pointers to structures or classes! For example, consider the
following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described
shortly). As a result, the scripting interface might behave strangely. For example:

foo(40);
TypeError: expected a _p_size_t.

The only way to fix this problem is to make sure you properly declare type names using typedef.

5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:

typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either
need to be defined in an included header file or placed in the declarations section like this:

%{
/* Include in the generated wrapper file */
typedef unsigned int size_t;
%}
/* Tell SWIG about it */
typedef unsigned int size_t;

or

%inline %{
typedef unsigned int size_t;
%}

SWIG−1.3 Documentation

5.3.3 Derived types, structs, and classes 31

In certain cases, you might be able to include other header files to collect type information. For example:

%module example
%import "sys/types.h"

In this case, you might run SWIG as follows:

$ swig −I/usr/include −includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a
variety of non−standard C coding extensions (e.g., such as special directives to GCC). Unless you exactly specify the right include
directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run−time type checking. For instance, if you use the above
typedef and had the following function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int * or size_t *.

5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C
programs use idioms that are somewhat more difficult to map to a scripting language interface. This section describes some of
these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:

double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
 Vector x = *a;
 Vector y = *b;
 return dot_product(x,y);
}

In the target language, the dot_product() function now accepts pointers to Vectors instead of Vectors. For the most part, this
transformation is transparent so you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:

Vector cross_product(Vector v1, Vector v2);

This function wants to return Vector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *v1, Vector *v2) {
 Vector x = *v1;
 Vector y = *v2;
 Vector *result;
 result = (Vector *) malloc(sizeof(Vector));
 *(result) = cross(x,y);
 return result;
}

SWIG−1.3 Documentation

5.3.5 Typedef 32

or if SWIG was run with the −c++ option:

Vector *wrap_cross(Vector *v1, Vector *v2) {
 Vector x = *v1;
 Vector y = *v2;
 Vector *result = new Vector(cross(x,y)); // Uses default copy constructor
 return result;
}

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when it is
no longer in use. Clearly, this will leak memory if you are unaware of the implicit memory allocation and don't take steps to free
the result. That said, it should be noted that some language modules can now automatically track newly created objects and
reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code
fragments don't work correctly if Vector doesn't define a default constructor. The section on SWIG and C++ has more
information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example, a
global variable like this

Vector unit_i;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i_get() {
 return &unit_i;
}
void unit_i_set(Vector *value) {
 unit_i = *value;
}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting language.
It would be an extremely bad idea to free or destroy such a pointer. Also, C++ classes must supply a properly defined copy
constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG uses malloc() or new to allocate memory for the new value.
Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */
void foo_set(char *value) {
 if (foo) free(foo);
 foo = (char *) malloc(strlen(value)+1);
 strcpy(foo,value);
}

/* C++ mode. When −c++ option is used */
void foo_set(char *value) {
 if (foo) delete [] foo;
 foo = new char[strlen(value)+1];
 strcpy(foo,value);
}

SWIG−1.3 Documentation

5.4.2 Return by value 33

If this is not the behavior that you want, consider making the variable read−only using the %immutable directive. Alternatively,
you might write a short assist−function to set the value exactly like you want. For example:

%inline %{
 void set_foo(char *value) {
 strncpy(foo,value, 50);
 }
%}

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not
work like a variable). For example, in Python you will have to write:

>>> set_foo("Hello World")

A common mistake with char * variables is to link to a variable declared like this:

char *VERSION = "1.0";

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection fault.
This is due to the fact that SWIG is trying to release the old value using free or delete when the string literal value currently
assigned to the variable wasn't allocated using malloc() or new. To fix this behavior, you can either mark the variable as
read−only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to declare
the variable as an array:

char VERSION[64] = "1.0";

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However,
the default behavior does not release the previous contents (resulting in a possible memory leak). In fact, you may get a warning
message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory

The reason for this behavior is that const char * variables are often used to point to string literals. For example:

const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call free() on such a pointer. On the other hand, it is legal to change the pointer to point to
some other value. When setting a variable of this type, SWIG allocates a new string (using malloc or new) and changes the pointer
to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is not
released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object or
list in the target language. Thus, the following declarations :

int foobar(int a[40]);
void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points a suitably allocated
region of memory.

SWIG−1.3 Documentation

5.4.4 Linking to char * 34

Multi−dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10]; // Maps to int *
int [10][20]; // Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[][] is NOT equivalent to a single pointer *a or a
double pointer such as **a. Instead, a pointer to an array is used (as shown above) where the actual value of the pointer is the
starting memory location of the array. The reader is strongly advised to dust off their C book and re−read the section on arrays
before using them with SWIG.

Array variables are supported, but are read−only by default. For example:

int a[100][200];

In this case, reading the variable 'a' returns a pointer of type int (*)[200] that points to the first element of the array
&a[0][0]. Trying to modify 'a' results in an error. This is because SWIG does not know how to copy data from the target
language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

%inline %{
void a_set(int i, int j, int val) {
 a[i][j] = val;
}
int a_get(int i, int j) {
 return a[i][j];
}
%}

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For
example:

// Some array helpers
%inline %{
 /* Create any sort of [size] array */
 int *int_array(int size) {
 return (int *) malloc(size*sizeof(int));
 }
 /* Create a two−dimension array [size][10] */
 int (*int_array_10(int size))[10] {
 return (int (*)[10]) malloc(size*10*sizeof(int));
 }
%}

Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. For
example, if you have a declaration like this,

char pathname[256];

SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname_get() {
 return pathname;
}
void pathname_set(char *value) {
 strncpy(pathname,value,256);
}

In the target language, the value can be set like a normal variable.

SWIG−1.3 Documentation

5.4.5 Arrays 35

5.4.6 Creating read−only variables

A read−only variable can be created by using the %immutable directive as shown :

// File : interface.i

int a; // Can read/write
%immutable;
int b,c,d // Read only variables
%mutable;
double x,y // read/write

The %immutable directive enables read−only mode until it is explicitly disabled using the %mutable directive. As an
alternative to turning read−only mode off and on like this, individual declarations can also be tagged as immutable. For example:

%immutable x; // Make x read−only
...
double x; // Read−only (from earlier %immutable directive)
double y; // Read−write
...

The %mutable and %immutable directives are actually %feature directives defined like this:

#define %immutable %feature("immutable")
#define %mutable %feature("immutable","")

If you wanted to make all wrapped variables read−only, barring one or two, it might be easier to take this approach:

%immutable; // Make all variables read−only
%feature("immutable","0") x; // except, make x read/write
...
double x;
double y;
double z;
...

Read−only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */
char * const version="1.0"; /* Read only variable */

Compatibility note: Read−only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may
generate a conflict with a keyword or already existing function in the scripting language. To resolve a name conflict, you can use
the %rename directive as shown :

// interface.i

%rename(my_print) print;
extern void print(char *);

%rename(foo) a_really_long_and_annoying_name;
extern int a_really_long_and_annoying_name;

SWIG−1.3 Documentation

5.4.6 Creating read−only variables 36

SWIG still calls the correct C function, but in this case the function print() will really be called "my_print()" in the target
language.

The placement of the %rename directive is arbitrary as long as it appears before the declarations to be renamed. A common
technique is to write code for wrapping a header file like this:

// interface.i

%rename(my_print) print;
%rename(foo) a_really_long_and_annoying_name;

%include "header.h"

%rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class
and structure names, member functions, and member data. For example, if you had two−dozen C++ classes, all with a member
function named `print' (which is a keyword in Python), you could rename them all to `output' by specifying :

%rename(output) print; // Rename all `print' functions to `output'

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language.
However, if you are careful about namespaces and your use of modules, you can usually avoid these problems.

Closely related to %rename is the %ignore directive. %ignore instructs SWIG to ignore declarations that match a given
identifier. For example:

%ignore print; // Ignore all declarations named print
%ignore _HAVE_FOO_H; // Ignore an include guard constant
...
%include "foo.h" // Grab a header file
...

One use of %ignore is to selectively remove certain declarations from a header file without having to add conditional
compilation to the header. However, it should be stressed that this only works for simple declarations. If you need to remove a
whole section of problematic code, the SWIG preprocessor should be used instead.

More powerful variants of %rename and %ignore directives can be used to help wrap C++ overloaded functions and methods
or C++ methods which use default arguments. This is described in the Ambiguity resolution and renaming section in the C++
chapter.

Compatibility note: Older versions of SWIG provided a special %name directive for renaming declarations. For example:

%name(output) extern void print(char *);

This directive is still supported, but it is deprecated and should probably be avoided. The %rename directive is more powerful
and better supports wrapping of raw header file information.

5.4.8 Default/optional arguments

SWIG supports default arguments in both C and C++ code. For example:

int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this
function could be used in Tcl as follows :

% plot −3.4 7.5 # Use default value
% plot −3.4 7.5 10 # set color to 10 instead

SWIG−1.3 Documentation

5.4.7 Renaming and ignoring declarations 37

Although the ANSI C standard does not allow default arguments, default arguments specified in a SWIG interface work with both
C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When
default arguments are used in C code, the default values are emitted into the wrappers and the function is invoked with a full set of
arguments. This is different to when wrapping C++ where an overloaded wrapper method is generated for each defaulted
argument. Please refer to the section on default arguments in the C++ chapter for further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions−−possibly to serve as callbacks.
SWIG provides full support for function pointers provided that the callback functions are defined in C and not in the target
language. For example, consider a function like this:

int binary_op(int a, int b, int (*op)(int,int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For
instance, in Python:

>>> def add(x,y):
... return x+y
...
>>> binary_op(3,4,add)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_f_int_int__int
>>>

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However,
existing C functions can be used as arguments provided you install them as constants. One way to do this is to use the
%constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%constant int add(int,int);
%constant int sub(int,int);
%constant int mul(int,int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them
as follows:

>>> binary_op(3,4,add)
7
>>> binary_op(3,4,mul)
12
>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accesible as functions. For example:

>>> add(3,4)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: object is not callable: '_ff020efc_p_f_int_int__int'
>>>

If you want to make a function available as both a callback function and a function, you can use the %callback and
%nocallback directives like this:

/* Function with a callback */

SWIG−1.3 Documentation

5.4.8 Default/optional arguments 38

int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%callback("%s_cb")
int add(int,int);
int sub(int,int);
int mul(int,int);
%nocallback

The argument to %callback is a printf−style format string that specifies the naming convention for the callback constants (%s
gets replaced by the function name). The callback mode remains in effect until it is explicitly disabled using %nocallback.
When you do this, the interface now works as follows:

>>> binary_op(3,4,add_cb)
7
>>> binary_op(3,4,mul_cb)
12
>>> add(3,4)
7
>>> mul(3,4)
12

Notice that when the function is used as a callback, special names such as add_cb is used instead. To call the function normally,
just use the original function name such as add().

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the
following variation installs the callbacks as all upper−case constants such as ADD, SUB, and MUL:

/* Some callback functions */
%callback("%(upper)s")
int add(int,int);
int sub(int,int);
int mul(int,int);
%nocallback

A format string of "%(lower)s" converts all characters to lower−case. A string of "%(title)s" capitalizes the first
character and converts the rest to lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in
the target language, this can be accomplished with the use of typemaps and other advanced SWIG features. This is described in a
later chapter.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ANSI C structures and union declarations. Extensions to handle
C++ are described in the next section.

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need
structure definitions to build an interface, providing definitions make it possible to access structure members. The accessor
functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
 double x,y,z;
}

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
 return obj−>x;

SWIG−1.3 Documentation

5.4.9 Pointers to functions and callbacks 39

}
double Vector_y_get(struct Vector *obj) {
 return obj−>y;
}
double Vector_z_get(struct Vector *obj) {
 return obj−>z;
}
void Vector_x_set(struct Vector *obj, double value) {
 obj−>x = value;
}
void Vector_y_set(struct Vector *obj, double value) {
 obj−>y = value;
}
void Vector_z_set(struct Vector *obj, double value) {
 obj−>z = value;
}

In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
 return (Vector *) calloc(1,sizeof(struct Vector));
}
void delete_Vector(struct Vector *obj) {
 free(obj);
}

Using these low−level accessor functions, an object can be minimally manipulated from the target language using code like this:

v = new_Vector()
Vector_x_set(v,2)
Vector_y_set(v,10)
Vector_z_set(v,−5)
...
delete_Vector(v)

However, most of SWIG's language modules also provide a high−level interface that is more convenient. Keep reading.

5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
 double x,y,z;
} Vector;

When encountered, SWIG assumes that the name of the object is `Vector' and creates accessor functions like before. The only
difference is that the use of typedef allows SWIG to drop the struct keyword on its generated code. For example:

double Vector_x_get(Vector *obj) {
 return obj−>x;
}

If two different names are used like this :

typedef struct vector_struct {
 double x,y,z;
} Vector;

the name Vector is used instead of vector_struct since this is more typical C programming style. If declarations defined
later in the interface use the type struct vector_struct, SWIG knows that this is the same as Vector and it generates the

SWIG−1.3 Documentation

5.5 Structures and unions 40

appropriate type−checking code.

5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamically
allocated using malloc() and that they are NULL−terminated ASCII strings. When such a member is modified, the previously
contents will be released, and the new contents allocated. For example :

%module mymodule
...
struct Foo {
 char *name;
 ...
}

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
 return Foo−>name;
}

char *Foo_name_set(Foo *obj, char *c) {
 if (obj−>name) free(obj−>name);
 obj−>name = (char *) malloc(strlen(c)+1);
 strcpy(obj−>name,c);
 return obj−>name;
}

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See the
typemaps chapter for further details.

Note: If the −c++ option is used, new and delete are used to perform memory allocation.

5.5.3 Array members

Arrays may appear as the members of structures, but they will be read−only. SWIG will write an accessor function that returns the
pointer to the first element of the array, but will not write a function to change the contents of the array itself. When this situation
is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read−only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning
message is harmless.

5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
 int x;
} Foo;

typedef struct Bar {
 int y;
 Foo f; /* struct member */
} Bar;

When a structure member is wrapped, it is handled as a pointer, unless the %naturalvar directive is used where it is handled
more like a C++ reference (see C++ Member data). The accessors to the member variable as a pointer is effectively wrapped as

SWIG−1.3 Documentation

5.5.1 Typedef and structures 41

follows:

Foo *Bar_f_get(Bar *b) {
 return &b−>f;
}
void Bar_f_set(Bar *b, Foo *value) {
 b−>f = *value;
}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data
member. For example, suppose you wanted to modify the value of f.x of a Bar object like this:

Bar *b;
b−>f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following
code:

Bar *b;
Foo_x_set(Bar_f_get(b),37);

In this code, if the Bar_f_get() function were to return a Foo instead of a Foo *, then the resulting modification would be
applied to a copy of f and not the data member f itself. Clearly that's not what you want!

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. For
instance, if you had a structure like this,

struct Foo {
 WORD w;
};

and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get(Foo *f) {
 return f−>w;
}
void Foo_w_set(FOO *f, WORD value) {
 f−>w = value;
}

Compatibility Note: SWIG−1.3.11 and earlier releases transformed all non−primitive member datatypes to pointers. Starting in
SWIG−1.3.12, this transformation only occurs if a datatype is known to be a structure, class, or union. This is unlikely to break
existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors

When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do
anything, SWIG will automatically generate functions for creating and destroying objects using malloc() and free(). Note:
the use of malloc() only applies when SWIG is used on C code (i.e., when the −c++ option is not supplied on the command
line). C++ is handled differently.

If you don't want SWIG to generate default constructors for your interfaces, you can use the %nodefaultctor directive or the
−nodefaultctor command line option. For example:

swig −nodefaultctor example.i

or

%module foo

SWIG−1.3 Documentation

5.5.4 Structure data members 42

...
%nodefaultctor; // Don't create default constructors
... declarations ...
%clearnodefaultctor; // Re−enable default constructors

If you need more precise control, %nodefaultctor can selectively target individual structure definitions. For example:

%nodefaultctor Foo; // No default constructor for Foo
...
struct Foo { // No default constructor generated.
};

struct Bar { // Default constructor generated.
};

Since ignoring the implicit or default destructors most of the times produce memory leaks, SWIG will always try to generate
them. If needed, however, you can selectively disable the generation of the default/implicit destructor by using
%nodefaultdtor

%nodefaultdtor Foo; // No default/implicit destructor for Foo
...
struct Foo { // No default destructor is generated.
};

struct Bar { // Default destructor generated.
};

Compatibility note: Prior to SWIG−1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned
them on using −make_default. However, it appears that most users want to have constructor and destructor functions so it has
now been enabled as the default behavior.

Note: There are also the −nodefault option and %nodefault directive, which disable both the default or implicit destructor
generation. This could lead to memory leaks across the target languages, and is highly recommended you don't use them.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint,
object oriented programming really just boils down to the process of attaching functions to structures. These functions normally
operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no direct
mechanism for utilizing it with C code. However, SWIG provides a special %extend directive that makes it possible to attach
methods to C structures for purposes of building an object oriented interface. Suppose you have a C header file with the following
declaration :

/* file : vector.h */
...
typedef struct {
 double x,y,z;
} Vector;

You can make a Vector look alot like a class by writing a SWIG interface like this:

// file : vector.i
%module mymodule
%{
#include "vector.h"
%}

%include vector.h // Just grab original C header file
%extend Vector { // Attach these functions to struct Vector
 Vector(double x, double y, double z) {
 Vector *v;

SWIG−1.3 Documentation

5.5.5 C constructors and destructors 43

 v = (Vector *) malloc(sizeof(Vector));
 v−>x = x;
 v−>y = y;
 v−>z = z;
 return v;
 }
 ~Vector() {
 free(self);
 }
 double magnitude() {
 return sqrt(self−>x*self−>x+self−>y*self−>y+self−>z*self−>z);
 }
 void print() {
 printf("Vector [%g, %g, %g]\n", self−>x,self−>y,self−>z);
 }
};

Now, when used with proxy classes in Python, you can do things like this :

>>> v = Vector(3,4,0) # Create a new vector
>>> print v.magnitude() # Print magnitude
5.0
>>> v.print() # Print it out
[3, 4, 0]
>>> del v # Destroy it

The %extend directive can also be used inside the definition of the Vector structure. For example:

// file : vector.i
%module mymodule
%{
#include "vector.h"
%}

typedef struct {
 double x,y,z;
 %extend {
 Vector(double x, double y, double z) { ... }
 ~Vector() { ... }
 ...
 }
} Vector;

Finally, %extend can be used to access externally written functions provided they follow the naming convention used in this
example :

/* File : vector.c */
/* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
 Vector *v;
 v = (Vector *) malloc(sizeof(Vector));
 v−>x = x;
 v−>y = y;
 v−>z = z;
 return v;
}
void delete_Vector(Vector *v) {
 free(v);
}

double Vector_magnitude(Vector *v) {
 return sqrt(v−>x*v−>x+v−>y*v−>y+v−>z*v−>z);
}

SWIG−1.3 Documentation

5.5.6 Adding member functions to C structures 44

// File : vector.i
// Interface file
%module mymodule
%{
#include "vector.h"
%}

typedef struct {
 double x,y,z;
 %extend {
 Vector(int,int,int); // This calls new_Vector()
 ~Vector(); // This calls delete_Vector()
 double magnitude(); // This will call Vector_magnitude()
 ...
 }
} Vector;

A little known feature of the %extend directive is that it can also be used to add synthesized attributes or to modify the behavior
of existing data attributes. For example, suppose you wanted to make magnitude a read−only attribute of Vector instead of a
method. To do this, you might write some code like this:

// Add a new attribute to Vector
%extend Vector {
 const double magnitude;
}
// Now supply the implementation of the Vector_magnitude_get function
%{
const double Vector_magnitude_get(Vector *v) {
 return (const double) return sqrt(v−>x*v−>x+v−>y*v−>y+v−>z*v−>z);
}
%}

Now, for all practial purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with problematic data members. For example, consider this interface:

struct Person {
 char name[50];
 ...
}

By default, the name attribute is read−only because SWIG does not normally know how to modify arrays. However, you can
rewrite the interface as follows to change this:

struct Person {
 %extend {
 char *name;
 }
...
}

// Specific implementation of set/get functions
%{
char *Person_name_get(Person *p) {
 return p−>name;
}
void Person_name_set(Person *p, char *val) {
 strncpy(p−>name,val,50);
}
%}

Finally, it should be stressed that even though %extend can be used to add new data members, these new members can not
require the allocation of additional storage in the object (e.g., their values must be entirely synthesized from existing attributes of

SWIG−1.3 Documentation

5.5.6 Adding member functions to C structures 45

the structure).

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
 int objtype;
 union {
 int ivalue;
 double dvalue;
 char *strvalue;
 void *ptrvalue;
 } intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the
following:

typedef union {
 int ivalue;
 double dvalue;
 char *strvalue;
 void *ptrvalue;
} Object_intRep;

typedef struct Object {
 int objType;
 Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both
structures. In this case, functions like this would be created :

Object_intRep *Object_intRep_get(Object *o) {
 return (Object_intRep *) &o−>intRep;
}
int Object_intRep_ivalue_get(Object_intRep *o) {
 return o−>ivalue;
}
int Object_intRep_ivalue_set(Object_intRep *o, int value) {
 return (o−>ivalue = value);
}
double Object_intRep_dvalue_get(Object_intRep *o) {
 return o−>dvalue;
}
... etc ...

Although this process is a little hairy, it works like you would expect in the target scripting language−−especially when proxy
classes are used. For instance, in Perl:

Perl5 script for accessing nested member
$o = CreateObject(); # Create an object somehow
$o−>{intRep}−>{ivalue} = 7 # Change value of o.intRep.ivalue

If you have a lot nested structure declarations, it is advisable to double−check them after running SWIG. Although, there is a good

SWIG−1.3 Documentation

5.5.7 Nested structures 46

chance that they will work, you may have to modify the interface file in certain cases.

5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a .i file exactly matches that used in the underlying C code (except in the
case of nested structures). For this reason, there are no problems omitting problematic members or simply omitting the structure
definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure definition.

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though structure
access has been described in terms of high−level accessor functions such as this,

double Vector_x_get(Vector *v) {
 return v−>x;
}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector_x_get()
actually exists in the generated wrapper file. For example, when creating a Tcl module, the following function is generated
instead:

static int
_wrap_Vector_x_get(ClientData clientData, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]) {
 struct Vector *arg1 ;
 double result ;

 if (SWIG_GetArgs(interp, objc, objv,"p:Vector_x_get self ",&arg0,
 SWIGTYPE_p_Vector) == TCL_ERROR)
 return TCL_ERROR;
 result = (double) (arg1−>x);
 Tcl_SetObjResult(interp,Tcl_NewDoubleObj((double) result));
 return TCL_OK;
}

The only exception to this rule are methods defined with %extend. In this case, the added code is contained in a separate
function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may
never use the low−level interface described here, most of SWIG's language modules use it in some way or another.

5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may want to
include additional C code to perform initialization or other operations. There are four common ways to insert code, but it's useful
to know how the output of SWIG is structured first.

5.6.1 The output of SWIG

When SWIG creates its output file, it is broken up into four sections corresponding to runtime code, headers, wrapper functions,
and module initialization code (in that order).

Runtime code.
This code is internal to SWIG and is used to include type−checking and other support functions that are used by the rest
of the module.

•

Header section.
This is user−defined support code that has been included by the %{ ... %} directive. Usually this consists of header
files and other helper functions.

•

Wrapper code.
These are the wrappers generated automatically by SWIG.

•

SWIG−1.3 Documentation

5.5.8 Other things to note about structure wrapping 47

Module initialization.
The function generated by SWIG to initialize the module upon loading.

•

5.6.2 Code insertion blocks

Code is inserted into the appropriate code section by using one of the following code insertion directives:

%runtime %{
 ... code in runtime section ...
%}

%header %{
 ... code in header section ...
%}

%wrapper %{
 ... code in wrapper section ...
%}

%init %{
 ... code in init section ...
%}

The bare %{ ... %} directive is a shortcut that is the same as %header %{ ... %}.

Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most SWIG input files
have at least one such block to include header files and support C code. Additional code blocks may be placed anywhere in a
SWIG file as needed.

%module mymodule
%{
#include "my_header.h"
%}
... Declare functions here
%{

void some_extra_function() {
 ...
}
%}

A common use for code blocks is to write "helper" functions. These are functions that are used specifically for the purpose of
building an interface, but which are generally not visible to the normal C program. For example :

%{
/* Create a new vector */
static Vector *new_Vector() {
 return (Vector *) malloc(sizeof(Vector));
}

%}
// Now wrap it
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as follows
:

%inline %{
/* Create a new vector */
Vector *new_Vector() {

SWIG−1.3 Documentation

5.6.1 The output of SWIG 48

 return (Vector *) malloc(sizeof(Vector));
}
%}

The %inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then
parsed by both the SWIG preprocessor and parser. Thus, the above example creates a new command new_Vector using only
one declaration. Since the code inside an %inline %{ ... %} block is given to both the C compiler and SWIG, it is illegal to
include any SWIG directives inside a %{ ... %} block.

5.6.4 Initialization blocks

When code is included in the %init section, it is copied directly into the module initialization function. For example, if you
needed to perform some extra initialization on module loading, you could write this:

%init %{
 init_variables();
%}

5.7 An Interface Building Strategy

This section describes the general approach for building interface with SWIG. The specifics related to a particular scripting
language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the results
might not be what you expect−−−in fact, they might be awful. Here's a series of steps you can follow to make an interface for a C
program :

Identify the functions that you want to wrap. It's probably not necessary to access every single function in a C
program−−thus, a little forethought can dramatically simplify the resulting scripting language interface. C header files
are particularly good source for finding things to wrap.

•

Create a new interface file to describe the scripting language interface to your program.•
Copy the appropriate declarations into the interface file or use SWIG's %include directive to process an entire C
source/header file.

•

Make sure everything in the interface file uses ANSI C/C++syntax.•
Make sure all necessary `typedef' declarations and type−information is available in the interface file.•
If your program has a main() function, you may need to rename it (read on).•
Run SWIG and compile.•

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is to
simply copy the offending code into a separate interface file and edit it. However, the SWIG developers have worked very hard to
improve the SWIG parser−−you should report parsing errors to the swig−devel mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);

SWIG−1.3 Documentation

5.6.3 Inlined code blocks 49

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

/* File : interface.i */
%module mymodule
%{
#include "header.h"
%}
extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could have made an interface file like this as well:

/* File : interface.i */
%module mymodule
%include header.h

Naturally, your mileage may vary.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special .i file defining the interface to a package.
There are several reasons why you might want to do this:

It is rarely necessary to access every single function in a large package. Many C functions might have little or no use in a
scripted environment. Therfore, why wrap them?

•

Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructed.•
Interface files can provide more structure and organization.•
SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work
around these problems.

•

Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go to the
interface file and immediately see what is available without having to dig it out of header files.

•

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure you
include certain header files by using a %{,%} block like this:

%module graphics
%{
#include <GL/gl.h>
#include <GL/glu.h>
%}

// Put rest of declarations here
...

5.7.5 What to do with main()

If your program defines a main() function, you may need to get rid of it or rename it in order to use a scripting language. Most
scripting languages define their own main() procedure that is called instead. main() also makes no sense when working with
dynamic loading. There are a few approaches to solving the main() conflict :

Get rid of main() entirely.•

SWIG−1.3 Documentation

5.7.2 The SWIG interface file 50

Rename main() to something else. You can do this by compiling your C program with an option like
−Dmain=oldmain.

•

Use conditional compilation to only include main() when not using a scripting language.•

Getting rid of main() may cause potential initialization problems of a program. To handle this problem, you may consider
writing a special function called program_init() that initializes your program upon startup. This function could then be
called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main() function to parse command line options and to set parameters.
However, by using a scripting language, you are probably trying to create a program that is more interactive. In many cases, the
old main() program can be completely replaced by a Perl, Python, or Tcl script.

Note: If some cases, you might be inclined to create a scripting language wrapper for main(). If you do this, the compilation
will probably work and your module might even load correctly. The only trouble is that when you call your main() wrapper,
you will find that it actually invokes the main() of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

SWIG−1.3 Documentation

5.7.5 What to do with main() 51

6 SWIG and C++
Comments on C++ Wrapping•
Approach•
Supported C++ features•
Command line options and compilation•
Simple C++ wrapping

Constructors and destructors♦
Default constructors, copy constructors and implicit destructors♦
When constructor wrappers aren't created♦
Copy constructors♦
Member functions♦
Static members♦
Member data♦

•

Default arguments•
Protection•
Enums and constants•
Friends•
References and pointers•
Pass and return by value•
Inheritance•
A brief discussion of multiple inheritance, pointers, and type checking•
Renaming•
Wrapping Overloaded Functions and Methods

Dispatch function generation♦
Ambiguity in Overloading♦
Ambiguity resolution and renaming♦
Comments on overloading♦

•

Wrapping overloaded operators•
Class extension•
Templates•
Namespaces•
Exception specifications•
Exception handling with %catches•
Pointers to Members•
Smart pointers and operator−>()•
Using declarations and inheritance•
Partial class definitions•
A brief rant about const−correctness•
Proxy classes

Construction of proxy classes♦
Resource management in proxies♦
Language specific details♦

•

Where to go for more information•

This chapter describes SWIG's support for wrapping C++. As a prerequisite, you should first read the chapter SWIG Basics to see
how SWIG wraps ANSI C. Support for C++ builds upon ANSI C wrapping and that material will be useful in understanding this
chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only
provides support for a subset of C++ features. Fortunately, this is now a rather large subset.

6 SWIG and C++ 52

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic) way to map many of its advanced
features into other languages. As a simple example, consider the problem of wrapping C++ multiple inheritance to a target
language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when no
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the
world of SWIG, you are really trying to create binary−level software components for use in other languages. In order for this to
work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its
functionality. Although templates are a powerful feature, they are largely orthogonal to the whole notion of binary components
and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper.
To further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly
basic operations (e.g., pointer dereferencing, procedure call, etc.) can be changed in dramatic and sometimes non−obvious ways.
Although this "magic" may present few problems in a C++−only universe, it greatly complicates the problem of crossing language
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedural
ANSI−C style wrappers. These wrappers take care of basic type conversion, type checking, error handling, and other low−level
details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built−in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. Optionally, SWIG
can also generate proxy classes that provide a natural OO interface to the underlying code. These proxies are built on top of the
low−level procedural wrappers and are typically written in the target language itself. For instance, in Python, a real Python class is
used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non−intrusive approach to C++ wrapping. SWIG
does not encapsulate C++ classes inside special C++ adaptor or proxy classes, it does not rely upon templates, nor does it use C++
inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting
wrapper code. You might say that SWIG has been written to follow the principle of least surprise−−it does not play sneaky tricks
with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Most of this chapter focuses on the low−level procedural interface to C++ that is used as the foundation for all language modules.
Keep in mind that most target languages also provide a high−level OO interface via proxy classes. A few general details about
proxies can be found at the end of this chapter. However, more detailed coverage can be found in the documentation for each
target language.

6.3 Supported C++ features

SWIG's currently supports the following C++ features :

Classes.•
Constructors and destructors•
Virtual functions•
Public inheritance (including multiple inheritance)•
Static functions•
Function and method overloading.•
Operator overloading for many standard operators•
References•
Templates (including specialization and member templates).•
Pointers to members•
Namespaces•

SWIG−1.3 Documentation

6.1 Comments on C++ Wrapping 53

The following C++ features are not currently supported :

Nested classes•
Overloaded versions of certain operators (new, delete, etc.)•

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no
promises. Also, submitting a bug report is a very good way to get problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the `−c++' option. This changes the way a number of critical
features such as memory management are handled. It also enables the recognition of C++ keywords. Without the −c++ flag,
SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig −c++ −tcl example.i
$ c++ −c example_wrap.cxx
$ c++ example_wrap.o $(OBJS) −o example.so

Unfortunately, the process varies slightly on each machine. Make sure you refer to the documentation on each target language for
further details. The SWIG Wiki also has further details.

6.5 Simple C++ wrapping

The following code shows a SWIG interface file for a simple C++ class.

%module list
%{
#include "list.h"
%}

// Very simple C++ example for linked list

class List {
public:
 List();
 ~List();
 int search(char *value);
 void insert(char *);
 void remove(char *);
 char *get(int n);
 int length;
static void print(List *l);
};

To generate wrappers for this class, SWIG first reduces the class to a collection of low−level C−style accessor functions. The next
few sections describe this process. Later parts of the chapter describe a higher level interface based on proxy classes.

6.5.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new_List(void) {
 return new List;
}
void delete_List(List *l) {
 delete l;
}

SWIG−1.3 Documentation

6.3 Supported C++ features 54

6.5.2 Default constructors, copy constructors and implicit destructors

Following the C++ rules for implicit constructor and destructors, SWIG will try to automatically generate them even when they
are not explicitly declared in the class interface.

In general then:

If a C++ class does not declare any explicit constructor, SWIG will automatically generate one.•
If a C++ class does not declare a explicit copy constructor, SWIG will automatically generate one.•
If a C++ class does not declare an explicit destructor, SWIG will automatically create one.•

And as in C++, a few rules that alters the previous behavior:

A default constructor is not created if a class already defines a constructor with arguments.•
Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract
class, but don't provide definitions for all of the pure methods.

•

A default constructor is not created unless all bases classes support a default constructor.•
Default constructors and implicit destructors are not created if a class defines them in a private or protected
section.

•

Default constructors and implicit destructors are not created if any base class defines a non−public default constructor or
destructor.

•

SWIG should never generate a default constructor, copy constructor or default destructor for a class in which it is illegal to do so.
In some cases, however, it could be necessary (if the complete class declaration is not visible from SWIG, and one of the above
rules is violated) or desired (to reduce the size of the final interface) to disable the implicit constructor/desctructor generation
manually.

To do so, the %nodefaultctor and %nodefaultdtor directives can be used. Note that these directives only affects the
implicit generation, and they have no effect if the default/copy constructors or destructor are explicitly declared in the class
interface.

For example:

%nodefaultctor Foo; // Disable the default constructor for class Foo.
class Foo { // No default constructor is generated, unless is declared
...
};
class Bar { // A default constructor is generated, if possible
...
};

The directive %nodefaultctor can also be applied "globally", as in:

%nodefaultctor; // Disable creation of default constructors
class Foo { // No default constructor is generated, unless is declared
...
};
class Bar {
public:
 Bar(); // The default constructor is generated, since is declared
};
%clearnodefaultctor; // Enable the creation of default constructors again

The corresponding %nodefaultdtor directive can be used to disable the generation of the default or implicit destructor, if
needed. Be aware, however, that this could lead to memory leaks in the target language. Hence, it is recommended to use this
directive only in well known cases. For example:

%nodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { // No destructor is generated, unless is declared

SWIG−1.3 Documentation

6.5.2 Default constructors, copy constructors and implicit destructors 55

...
};

Compatibility Note: The generation of default constructors/implicit destructors was made the default behavior in SWIG 1.3.7.
This may break certain older modules, but the old behavior can be easily restored using %nodefault or the −nodefault
command line option. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be able
to gather information from both the private and protected sections (specifically, it needs to know if a private or protected
constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or comment out the private
and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously generate
constructors for classes that define a constructor in those sections. Consider restoring those sections in the interface or using
%nodefault to fix the problem.

Note: The above described %nodefault directive/−nodefault option, which disable both the default constructor and the the
implicit destructors, could lead to memory leaks across the target languages, and is highly recommended you don't use them.

6.5.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a constructor
wrapper if it thinks that it will result in illegal wrapper code. There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:
 Foo(); // Not wrapped.
public:
 ...
};

Next, SWIG won't generate wrappers for a class if it appears to be abstract−−that is, it has undefined pure virtual methods. Here
are some examples:

class Bar {
public:
 Bar(); // Not wrapped. Bar is abstract.
 virtual void spam(void) = 0;
};

class Grok : public Bar {
public:
 Grok(); // Not wrapped. No implementation of abstract spam().
};

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caused
when classes are determined to be abstract. To see if this is the case, run SWIG with all of its warnings turned on:

% swig −Wall −python module.i

In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non−abstract using this:

%feature("notabstract") Foo;

class Foo : public Bar {
public:
 Foo(); // Generated no matter what−−−not abstract.
 ...
};

More information about %feature can be found in the Customization features chapter.

SWIG−1.3 Documentation

6.5.3 When constructor wrappers aren't created 56

6.5.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is
supported, the copy constructor is accessible using the normal constructor function. For example, if you have this:

class List {
public:
 List();
 List(const List &); // Copy constructor
 ...
};

then the copy constructor can be used as follows:

x = new_List() # Create a list
y = new_List(x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_List(List *f) {
 return new List(*f);
}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If
more than one copy constructor is defined, only the first definition that appears is used as the copy constructor−−other definitions
will result in a name−clash. Constructors such as X(const X &), X(X &), and X(X *) are handled as copy constructors in
SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the
treatment of default constructors and destructors.

Compatibility note: Special support for copy constructors was not added until SWIG−1.3.12. In previous versions, copy
constructors could be wrapped, but they had to be renamed. For example:

class Foo {
public:
 Foo();
 %name(CopyFoo) Foo(const Foo &);
 ...
};

For backwards compatibility, SWIG does not perform any special copy−constructor handling if the constructor has been manually
renamed. For instance, in the above example, the name of the constructor is set to new_CopyFoo(). This is the same as in older
versions.

6.5.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
 return obj−>search(value);
}

This translation is the same even if the member function has been declared as virtual.

It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access such
as obj−>search(value) is directly inlined into the generated wrapper functions. However, the name and calling convention
of the wrappers match the accessor function prototype described above.

SWIG−1.3 Documentation

6.5.4 Copy constructors 57

6.5.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member function
print(List *l) directly invokes List::print(List *l) in the generated wrapper code.

Usually, static members are accessed as functions with names in which the class name has been prepended with an underscore.
For example, List_print.

6.5.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are effectively created. For
example :

int List_length_get(List *obj) {
 return obj−>length;
}
int List_length_set(List *obj, int value) {
 obj−>length = value;
 return value;
}

A read−only member can be created using the %immutable and %mutable directives. For example, we probably wouldn't
want the user to change the length of a list so we could do the following to make the value available, but read−only.

class List {
public:
...
%immutable;
 int length;
%mutable;
...
};

Alternatively, you can specify an immutable member in advance like this:

%immutable List::length;
...
class List {
 ...
 int length; // Immutable by above directive
 ...
};

Similarly, all data attributes declared as const are wrapped as read−only members.

There are some subtle issues when wrapping data members that are themselves classes. For instance, if you had another class like
this,

class Foo {
public:
 List items;
 ...

then access to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
 return &self−>items;
}
void Foo_items_set(Foo *self, List *value) {
 self−>items = *value;

SWIG−1.3 Documentation

6.5.6 Static members 58

}

More information about this can be found in the SWIG Basics chapter, Structure data members section.

The wrapper code to generate the accessors for classes comes from the pointer typemaps. This can be somewhat unnatural for
some types. For example, a user would expect the STL std::string class member variables to be wrapped as a string in the target
language, rather than a pointer to this class. The const reference typemaps offer this type of marshalling, so there is a feature to
tell SWIG to use the const reference typemaps rather than the pointer typemaps. It is the %naturalvar feature and is used as
follows:

// All List variables will use const List& typemaps
%naturalvar List;

// Only Foo::myList will use const List& typemaps
%naturalvar Foo::myList;
struct Foo {
 List myList;
};

// All variables will use const reference typemaps
%naturalvar;

The observant reader will notice that %naturalvar works like any other feature, except it can also be attached to class types.
The first of the example usages above show %naturalvar attaching to the List class. Effectively this feature changes the way
accessors are generated to the following:

const List &Foo_items_get(Foo *self) {
 return self−>items;
}
void Foo_items_set(Foo *self, const List &value) {
 self−>items = value;
}

In fact it is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared to
the pointer typemaps. A pointer can be NULL, whereas a reference cannot, so the extra checking ensures that the target language
user does not pass in a value that translates to a NULL pointer and thereby preventing any potential NULL pointer dereferences.
The %naturalvar feature will also apply to global variables in some language modules, eg C# and Java.

Other alternatives for turning this feature on globally are to use the swig −naturalvar commandline option or the module
mode option, %module(naturalvar=1)

Compatibility note: The %naturalvar feature was introduced in SWIG−1.3.28, prior to which it was necessary to manually
apply the const reference typemaps, eg %apply const std::string & { std::string * }, but this example would
also apply the typemaps to methods taking a std::string pointer.

Compatibility note: Read−only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG−1.3.12, all members of unknown type were wrapped into accessor functions using pointers.
For example, if you had a structure like this

struct Foo {
 size_t len;
};

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG−1.3.12, this
behavior has been modified. Specifically, pointers will only be used if SWIG knows that a datatype corresponds to a structure or
class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths over a
few problems related to structure wrapping and some of SWIG's customization features.

SWIG−1.3 Documentation

6.5.7 Member data 59

6.6 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:
 void bar(int x, int y = 3, int z = 4);
};

SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively
handling methods with default arguments as if it had wrapped the equivalent overloaded methods. Thus for the example above, it
is as if we had instead given the following to SWIG:

class Foo {
public:
 void bar(int x, int y, int z);
 void bar(int x, int y);
 void bar(int x);
};

The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this is covered later in the
Wrapping Overloaded Functions and Methods section. This approach allows SWIG to wrap all possible default arguments, but
can be verbose. For example if a method has ten default arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using %feature with functions with default
arguments. The Ambiguity resolution and renaming section also deals with using %rename and %ignore on methods with
default arguments. If you are writing your own typemaps for types used in methods with default arguments, you may also need to
write a typecheck typemap. See the Typemaps and overloading section for details or otherwise use the
compactdefaultargs feature as mentioned below.

Compatibility note: Versions of SWIG prior to SWIG−1.3.23 wrapped default arguments slightly differently. Instead a single
wrapper method was generated and the default values were copied into the C++ wrappers so that the method being wrapped was
then called with all the arguments specified. If the size of the wrappers are a concern then this approach to wrapping methods with
default arguments can be re−activated by using the compactdefaultargsfeature.

%feature("compactdefaultargs") Foo::bar;
class Foo {
public:
 void bar(int x, int y = 3, int z = 4);
};

This is great for reducing the size of the wrappers, but the caveat is it does not work for the strongly typed languages which don't
have optional arguments in the language, such as C# and Java. Another restriction of this feature is that it cannot handle default
arguments that are not public. The following example illustrates this:

class Foo {
private:
 static const int spam;
public:
 void bar(int x, int y = spam); // Won't work with %feature("compactdefaultargs") −
 // private default value
};

This produces uncompileable wrapper code because default values in C++ are evaluated in the same scope as the member
function whereas SWIG evaluates them in the scope of a wrapper function (meaning that the values have to be public).

This feature is automatically turned on when wrapping C code with default arguments and whenever keyword arguments (kwargs)
are specified for either C or C++ code. Keyword arguments are a language feature of some scripting languages, for example Ruby
and Python. SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach cannot be used.

SWIG−1.3 Documentation

6.6 Default arguments 60

6.7 Protection

SWIG wraps class members that are public following the C++ conventions, i.e., by explicit public declaration or by the use of the
using directive. In general, anything specified in a private or protected section will be ignored, although the internal code
generator sometimes looks at the contents of the private and protected sections so that it can properly generate code for default
constructors and destructors. Directors could also modify the way non−public virtual protected members are treated.

By default, members of a class definition are assumed to be private until you explicitly give a `public:' declaration (This is the
same convention used by C++).

6.8 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the
appropriate language chapter. However, many languages map enums and constants in a class definition into constants with the
classname as a prefix. For example :

class Swig {
public:
 enum {ALE, LAGER, PORTER, STOUT};
};

Generates the following set of constants in the target scripting language :

Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER
Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read−only members and do not create constants.

6.9 Friends

Friend declarations are not longer ignored by SWIG. For example, if you have this code:

class Foo {
public:
 ...
 friend void blah(Foo *f);
 ...
};

then the friend declaration does result in a wrapper code equivalent to one generated for the following declaration

class Foo {
public:
 ...
};

void blah(Foo *f);

A friend declaration, as in C++, is understood to be in the same scope where the class is declared, hence, you can do

%ignore bar::blah(Foo *f);

namespace bar {

 class Foo {

SWIG−1.3 Documentation

6.7 Protection 61

 public:
 ...
 friend void blah(Foo *f);
 ...
 };
}

and a wrapper for the method 'blah' will not be generated.

6.10 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:
 double bar(double &a);
}

is accessed using a function similar to this:

double Foo_bar(Foo *obj, double *a) {
 obj−>bar(*a);
}

As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value
instead of pointers. For example, if you have a function like this,

void foo(const int &x);

it is called from a script as follows:

foo(3) # Notice pass by value

Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:
 Foo &spam();
};

Generates code like this:

Foo *Bar_spam(Bar *obj) {
 Foo &result = obj−>spam();
 return &result;
}

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value
rather than a pointer. For example, a function like this,

const int &bar();

will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.

Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this will
probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more
advanced C++ wrapping applications−−−especially related to templates and the STL. This was first added in SWIG−1.3.12.

SWIG−1.3 Documentation

6.9 Friends 62

6.11 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross_product(Vector a, Vector b);

If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
 Vector x = *a;
 Vector y = *b;
 Vector r = cross_product(x,y);
 return new Vector(r);
}

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If Vector is defined as class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by
encapsulating the arguments inside a special C++ template wrapper class. This produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
 SwigValueWrapper<Vector> x = *a;
 SwigValueWrapper<Vector> y = *b;
 SwigValueWrapper<Vector> r = cross_product(x,y);
 return new Vector(r);
}

This transformation is a little sneaky, but it provides support for pass−by−value even when a class does not provide a default
constructor and it makes it possible to properly support a number of SWIG's customization options. The definition of
SwigValueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper
around a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG−−−it should be transparent except that you may
see this code when reading the SWIG output file.

Note: This template transformation is new in SWIG−1.3.11 and may be refined in future SWIG releases. In practice, it is only
necessary to do this for classes that don't define a default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or
references.

Note: The performance of pass−by−value is especially bad for large objects and should be avoided if possible (consider using
references instead).

6.12 Inheritance

SWIG supports C++ inheritance of classes and allows both single and multiple inheritance, as limited or allowed by the target
language. The SWIG type−checker knows about the relationship between base and derived classes and allows pointers to any
object of a derived class to be used in functions of a base class. The type−checker properly casts pointer values and is safe to use
with multiple inheritance.

SWIG treats private or protected inheritance as close to the C++ spirit, and target language capabilities, as possible. In most of the
cases, this means that swig will parse the non−public inheritance declarations, but that will have no effect in the generated code,
besides the implicit policies derived for constructor and destructors.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

// shapes.i

SWIG−1.3 Documentation

6.11 Pass and return by value 63

%module shapes
%{
#include "shapes.h"
%}

class Shape {
public:
 double x,y;
 virtual double area() = 0;
 virtual double perimeter() = 0;
 void set_location(double x, double y);
};
class Circle : public Shape {
public:
 Circle(double radius);
 ~Circle();
 double area();
 double perimeter();
};
class Square : public Shape {
public:
 Square(double size);
 ~Square();
 double area();
 double perimeter();
}

When wrapped into Python, we can now perform the following operations :

$ python
>>> import shapes
>>> circle = shapes.new_Circle(7)
>>> square = shapes.new_Square(10)
>>> print shapes.Circle_area(circle)
153.93804004599999757
>>> print shapes.Shape_area(circle)
153.93804004599999757
>>> print shapes.Shape_area(square)
100.00000000000000000
>>> shapes.Shape_set_location(square,2,−3)
>>> print shapes.Shape_perimeter(square)
40.00000000000000000
>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making calls to
Circle_area, Square_area, and so on. However, the same results can be accomplished by simply using the Shape_area
function on either object.

One important point concerning inheritance is that the low−level accessor functions are only generated for classes in which they
are actually declared. For instance, in the above example, the method set_location() is only accessible as
Shape_set_location() and not as Circle_set_location() or Square_set_location(). Of course, the
Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the
attributes x and y are generated as Shape_x_get(), Shape_x_set(), Shape_y_get(), and Shape_y_set().
Functions such as Circle_x_get() are not available−−instead you should use Shape_x_get().

Although the low−level C−like interface is functional, most language modules also produce a higher level OO interface using
proxy classes. This approach is described later and can be used to provide a more natural C++ interface.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get an warning
message like this:

example:18. Nothing known about class 'Foo'. Ignored.

SWIG−1.3 Documentation

6.12 Inheritance 64

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will
accept any object derived from Foo regardless of whether or not SWIG actually wrapped the Foo class. If you really don't want
to generate wrappers for the base class, but you want to silence the warning, you might consider using the %import directive to
include the file that defines Foo. %import simply gathers type information, but doesn't generate wrappers. Alternatively, you
could just define Foo as an empty class in the SWIG interface.

Note: typedef−names can be used as base classes. For example:

class Foo {
...
};

typedef Foo FooObj;
class Bar : public FooObj { // Ok. Base class is Foo
...
};

Similarly, typedef allows unnamed structures to be used as base classes. For example:

typedef struct {
 ...
} Foo;

class Bar : public Foo { // Ok.
...
};

Compatibility Note: Starting in version 1.3.7, SWIG only generates low−level accessor wrappers for the declarations that are
actually defined in each class. This differs from SWIG1.1 which used to inherit all of the declarations defined in base classes and
regenerate specialized accessor functions such as Circle_x_get(), Square_x_get(), Circle_set_location(), and
Square_set_location(). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it
awkward to build applications spread across multiple modules (since accessor functions are duplicated in every single module). It
is also unnecessary to have such wrappers when advanced features like proxy classes are used. Note: Further optimizations are
enabled when using the −fvirtual option, which avoids the regenerating of wrapper functions for virtual members that are
already defined in a base class.

6.13 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value of the
pointer and a type string. For example, in Tcl, a C++ pointer might be encoded as a string like this:

_808fea88_p_Circle

A somewhat common question is whether or not the type−tag could be safely removed from the pointer. For instance, to get better
performance, could you strip all type tags and just use simple integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in the
target language. Typically this is the equivalent of casting a pointer to void *. This means that any C++ type information
associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features−−especially
multiple inheritance. For example, suppose you had code like this:

class A {
public:
 int x;
};

class B {
public:

SWIG−1.3 Documentation

6.13 A brief discussion of multiple inheritance, pointers, and type checking 65

 int y;
};

class C : public A, public B {
};

int A_function(A *a) {
 return a−>x;
}

int B_function(B *b) {
 return b−>y;
}

Now, consider the following code that uses void *.

C *c = new C();
void *p = (void *) c;
...
int x = A_function((A *) p);
int y = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type C * (via inheritance). However,
one of the functions will always return the wrong result when used as shown. The reason for this is that even though p points to an
object of type C, the casting operation doesn't work like you would expect. Internally, this has to do with the data representation of
C. With multiple inheritance, the data from each base class is stacked together. For example:

 −−−−−−−−−−−− <−−− (C *), (A *)
 | A |
 |−−−−−−−−−−−−| <−−− (B *)
 | B |
 −−−−−−−−−−−−

Because of this stacking, a pointer of type C * may change value when it is converted to a A * or B *. However, this adjustment
does not occur if you are converting from a void *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG
generated wrappers to correctly cast pointer values under inheritance (avoiding the above problem).

One might be inclined to fix this problem using some variation of dynamic_cast<>. The only problem is that it doesn't work
with void pointers, it requires RTTI support, and it only works with polymorphic classes (i.e., classes that define one or more
virtual functions).

The bottom line: learn to live with type−tagged pointers.

6.14 Renaming

C++ member functions and data can be renamed with the %name directive. The %name directive only replaces the member
function name. For example :

class List {
public:
 List();
%name(ListSize) List(int maxsize);
 ~List();
 int search(char *value);
%name(find) void insert(char *);
%name(delete) void remove(char *);
 char *get(int n);
 int length;
static void print(List *l);
};

SWIG−1.3 Documentation

6.14 Renaming 66

This will create the functions List_find, List_delete, and a function named new_ListSize for the overloaded
constructor.

The %name directive can be applied to all members including constructors, destructors, static functions, data members, and
enumeration values.

The class name prefix can also be changed by specifying

%name(newname) class List {
...
}

Although the %name() directive can be used to help deal with overloaded methods, it really doesn't work very well because it
requires a lot of additional markup in your interface. Keep reading for a better solution.

6.15 Wrapping Overloaded Functions and Methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example, if
you supply SWIG with overloaded functions like this:

void foo(int x) {
 printf("x is %d\n", x);
}
void foo(char *x) {
 printf("x is '%s'\n", x);
}

The function is used in a completely natural way. For example:

>>> foo(3)
x is 3
>>> foo("hello")
x is 'hello'
>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
 Foo();
 Foo(const Foo &); // Copy constructor
 void bar(int x);
 void bar(char *s, int y);
};

it might be used like this

>>> f = Foo() # Create a Foo
>>> f.bar(3)
>>> g = Foo(f) # Copy Foo
>>> f.bar("hello",2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting
languages. Unlike C++, which binds overloaded methods at compile time, SWIG must determine the proper function as a runtime
check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. For
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,

SWIG−1.3 Documentation

6.15 Wrapping Overloaded Functions and Methods 67

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the
scripting languages, SWIG generates a dispatch function that checks the number of passed arguments and their types. To create
this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

Number of required arguments. Methods are sorted by increasing number of required arguments.1.
Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by
the language module).

Type Precedence
−−−−−−−−−−−−−−−− −−−−−−−−−−
TYPE * 0 (High)
void * 20
Integers 40
Floating point 60
char 80
Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in increased
order of precedence values.

2.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);
void foo(int);
void foo(Bar *);
void foo();
void foo(int x, int y, int z, int w);
void foo(int x, int y, int z = 3);
void foo(double x, double y);
void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

rank
−−−−−
[0] foo()
[1] foo(double);
[2] foo(int);
[3] foo(Bar *);
[4] foo(int x, int y, int z = 3);
[5] foo(double x, double y)
[6] foo(double x, Bar *z)
[7] foo(int x, int y, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

rank
−−−−−
[0] foo()
[1] foo(Bar *);
[2] foo(int);
[3] foo(double);
[4] foo(int x, int y, int z = 3);
[5] foo(double x, Bar *z)
[6] foo(double x, double y)
[7] foo(int x, int y, int z, int w);

SWIG−1.3 Documentation

6.15.1 Dispatch function generation 68

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same order as
they appear in this ranking.

If you're still confused, don't worry about it−−−SWIG is probably doing the right thing.

6.15.2 Ambiguity in Overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore,
which one of these functions do you pick? Clearly, there is no way to truly make a distinction just by looking at the value of the
integer itself (int and long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate
a warning message like this for scripting languages:

example.i:4: Warning(509): Overloaded foo(long) is shadowed by foo(int) at example.i:3.

or for statically typed languages like Java:

example.i:4: Warning(516): Overloaded method foo(long) ignored. Method foo(int)
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped at
all. This is done as SWIG does not know how to disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:

Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown
above.

•

Floating point conversion. float and double can not be disambiguated in some languages.•
Pointers and references. For example, Foo * and Foo &.•
Pointers and arrays. For example, Foo * and Foo [4].•
Pointers and instances. For example, Foo and Foo *. Note: SWIG converts all instances to pointers.•
Qualifiers. For example, const Foo * and Foo *.•
Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).•

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier methods
will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get an error message like this:

example.i:3: Warning(467): Overloaded foo(int) not supported (no type checking
rule for 'int').

This error means that the target language module supports overloading, but for some reason there is no type−checking rule that
can be used to generate a working dispatch function. The resulting behavior is then undefined. You should report this as a bug to
the SWIG bug tracking database.

If you get an error message such as the following,

foo.i:6. Overloaded declaration ignored. Spam::foo(double)
foo.i:5. Previous declaration is Spam::foo(int)
foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *,Spam *,int)
foo.i:5. Previous declaration is Spam::foo(int)

SWIG−1.3 Documentation

6.15.2 Ambiguity in Overloading 69

http://www.swig.org/bugs.html

it means that the target language module has not yet implemented support for overloaded functions and methods. The only way to
fix the problem is to read the next section.

6.15.3 Ambiguity resolution and renaming

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing with
the problem. First, you can tell SWIG to ignore one of the methods. This is easy−−−simply use the %ignore directive. For
example:

%ignore foo(long);

void foo(int);
void foo(long); // Ignored. Oh well.

The other alternative is to rename one of the methods. This can be done using %rename. For example:

%rename("foo_short") foo(short);
%rename(foo_long) foo(long);

void foo(int);
void foo(short); // Accessed as foo_short()
void foo(long); // Accessed as foo_long()

Note that the quotes around the new name are optional, however, should the new name be a C/C++ keyword they would be
essential in order to avoid a parsing error. The %ignore and %rename directives are both rather powerful in their ability to
match declarations. When used in their simple form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
...
void foo(int); // Becomes 'foo_i'
void foo(char *c); // Stays 'foo' (not renamed)

class Spam {
public:
 void foo(int); // Becomes 'foo_i'
 void foo(double); // Becomes 'foo_d'
 ...
};

If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

%rename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
 // (will not rename class members)

%rename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam::foo(int), it is applied to that class and all derived classes. This
can be used to apply a consistent renaming across an entire class hierarchy with only a few declarations. For example:

%rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);

class Spam {
public:
 virtual void foo(int); // Renamed to foo_i
 virtual void foo(double); // Renamed to foo_d
 ...
};

class Bar : public Spam {
public:

SWIG−1.3 Documentation

6.15.3 Ambiguity resolution and renaming 70

 virtual void foo(int); // Renamed to foo_i
 virtual void foo(double); // Renamed to foo_d
...
};

class Grok : public Bar {
public:
 virtual void foo(int); // Renamed to foo_i
 virtual void foo(double); // Renamed to foo_d
...
};

It is also possible to include %rename specifications in the class definition itself. For example:

class Spam {
 %rename(foo_i) foo(int);
 %rename(foo_d) foo(double);
public:
 virtual void foo(int); // Renamed to foo_i
 virtual void foo(double); // Renamed to foo_d
 ...
};

class Bar : public Spam {
public:
 virtual void foo(int); // Renamed to foo_i
 virtual void foo(double); // Renamed to foo_d
...
};

In this case, the %rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to
explicitly specify the class prefix Spam::.

A special form of %rename can be used to apply a renaming just to class members (of all classes):

%rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.

Note: the *:: syntax is non−standard C++, but the '*' is meant to be a wildcard that matches any class name (we couldn't think of
a better alternative so if you have a better idea, send email to the swig−devel mailing list.

Although this discussion has primarily focused on %rename all of the same rules also apply to %ignore. For example:

%ignore foo(double); // Ignore all foo(double)
%ignore Spam::foo; // Ignore foo in class Spam
%ignore Spam::foo(double); // Ignore foo(double) in class Spam
%ignore *::foo(double); // Ignore foo(double) in all classes

When applied to a base class, %ignore forces all definitions in derived clases to disappear. For example, %ignore
Spam::foo(double) will eliminate foo(double) in Spam and all classes derived from Spam.

Notes on %rename and %ignore:

Since, the %rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface file.
This makes it possible to apply a consistent name resolution without having to modify header files. For example:

%module foo

/* Rename these overloaded functions */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

%include "header.h"

•

SWIG−1.3 Documentation

6.15.3 Ambiguity resolution and renaming 71

http://www.swig.org/mail.html

The scope qualifier (::) can also be used on simple names. For example:

%rename(bar) ::foo; // Rename foo to bar in global scope only
%rename(bar) Spam::foo; // Rename foo to bar in class Spam only
%rename(bar) *::foo; // Rename foo in classes only

•

Name matching tries to find the most specific match that is defined. A qualified name such as Spam::foo always has
higher precedence than an unqualified name foo. Spam::foo has higher precedence than *::foo and *::foo has
higher precedence than foo. A parameterized name has higher precedence than an unparameterized name within the
same scope level. However, an unparameterized name with a scope qualifier has higher precedence than a parameterized
name in global scope (e.g., a renaming of Spam::foo takes precedence over a renaming of foo(int)).

•

The order in which %rename directives are defined does not matter as long as they appear before the declarations to be
renamed. Thus, there is no difference between saying:

%rename(bar) foo;
%rename(foo_i) Spam::foo(int);
%rename(Foo) Spam::foo;

and this

%rename(Foo) Spam::foo;
%rename(bar) foo;
%rename(foo_i) Spam::foo(int);

(the declarations are not stored in a linked list and order has no importance). Of course, a repeated %rename directive
will change the setting for a previous %rename directive if exactly the same name, scope, and parameters are supplied.

•

For multiple inheritance where renaming rules are defined for multiple base classes, the first renaming rule found on a
depth−first traversal of the class hierarchy is used.

•

The name matching rules strictly follow member qualification rules. For example, if you have a class like this:

class Spam {
public:
 ...
 void bar() const;
 ...
};

the declaration

%rename(name) Spam::bar();

will not apply as there is no unqualified member bar(). The following will apply as the qualifier matches correctly:

%rename(name) Spam::bar() const;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their
qualifiers, like this:

class Spam {
public:
 ...
 void bar(); // Unqualified member
 void bar() const; // Qualified member
 ...
};

%rename can then be used to target each of the overloaded methods individually. For example we can give them separate
names in the target language:

%rename(name1) Spam::bar();
%rename(name2) Spam::bar() const;

•

SWIG−1.3 Documentation

6.15.3 Ambiguity resolution and renaming 72

Similarly, if you merely wanted to ignore one of the declarations, use %ignore with the full qualification. For example,
the following directive would tell SWIG to ignore the const version of bar() above:

%ignore Spam::bar() const; // Ignore bar() const, but leave other bar() alone

The name matching rules also use default arguments for finer control when wrapping methods that have default
arguments. Recall that methods with default arguments are wrapped as if the equivalent overloaded methods had been
parsed (Default arguments section). Let's consider the following example class:

class Spam {
public:
 ...
 void bar(int i=−1, double d=0.0);
 ...
};

The following %rename will match exactly and apply to all the target language overloaded methods because the
declaration with the default arguments exactly matches the wrapped method:

%rename(newbar) Spam::bar(int i=−1, double d=0.0);

The C++ method can then be called from the target language with the new name no matter how many arguments are
specified, for example: newbar(2, 2.0), newbar(2) or newbar(). However, if the %rename does not contain
the default arguments, it will only apply to the single equivalent target language overloaded method. So if instead we
have:

%rename(newbar) Spam::bar(int i, double d);

The C++ method must then be called from the target language with the new name newbar(2, 2.0) when both
arguments are supplied or with the original name as bar(2) (one argument) or bar() (no arguments). In fact it is
possible to use %rename on the equivalent overloaded methods, to rename all the equivalent overloaded methods:

%rename(bar_2args) Spam::bar(int i, double d);
%rename(bar_1arg) Spam::bar(int i);
%rename(bar_default) Spam::bar();

Similarly, the extra overloaded methods can be selectively ignored using %ignore.

Compatibility note: The %rename directive introduced the default argument matching rules in SWIG−1.3.23 at the
same time as the changes to wrapping methods with default arguments was introduced.

•

6.15.4 Comments on overloading

Support for overloaded methods was first added in SWIG−1.3.14. The implementation is somewhat unusual when compared to
similar tools. For instance, the order in which declarations appear is largely irrelevant in SWIG. Furthermore, SWIG does not rely
upon trial execution or exception handling to figure out which method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of
overloading support may vary from language to language. As a general rule, statically typed languages like Java are able to
provide more support than dynamically typed languages like Perl, Python, Ruby, and Tcl.

6.16 Wrapping overloaded operators

Starting in SWIG−1.3.10, C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

class Complex {
private:
 double rpart, ipart;
public:

SWIG−1.3 Documentation

6.15.4 Comments on overloading 73

 Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
 Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
 Complex &operator=(const Complex &c) {
 rpart = c.rpart;
 ipart = c.ipart;
 return *this;
 }
 Complex operator+(const Complex &c) const {
 return Complex(rpart+c.rpart, ipart+c.ipart);
 }
 Complex operator−(const Complex &c) const {
 return Complex(rpart−c.rpart, ipart−c.ipart);
 }
 Complex operator*(const Complex &c) const {
 return Complex(rpart*c.rpart − ipart*c.ipart,
 rpart*c.ipart + c.rpart*ipart);
 }
 Complex operator−() const {
 return Complex(−rpart, −ipart);
 }
 double re() const { return rpart; }
 double im() const { return ipart; }
};

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of these
methods are set to strings like "operator +" or "operator −". The problem with these names is that they are illegal
identifiers in most scripting languages. For instance, you can't just create a method called "operator +" in Python−−there
won't be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the target
language). However, the underlying implementation of this is really managed in a very general way using the %rename directive.
For example, in Python a declaration similar to this is used:

%rename(__add__) Complex::operator+;

This binds the + operator to a method called __add__ (which is conveniently the same name used to implement the Python +
operator). Internally, the generated wrapper code for a wrapped operator will look something like this pseudocode:

_wrap_Complex___add__(args) {
 ... get args ...
 obj−>operator+(args);
 ...
}

When used in the target language, it may now be possible to use the overloaded operator normally. For example:

>>> a = Complex(3,4)
>>> b = Complex(5,2)
>>> c = a + b # Invokes __add__ method

It is important to realize that there is nothing magical happening here. The %rename directive really only picks a valid method
name. If you wrote this:

%rename(add) operator+;

The resulting scripting interface might work like this:

a = Complex(3,4)
b = Complex(5,2)
c = a.add(b) # Call a.operator+(b)

All of the techniques described to deal with overloaded functions also apply to operators. For example:

SWIG−1.3 Documentation

6.16 Wrapping overloaded operators 74

%ignore Complex::operator=; // Ignore = in class Complex
%ignore *::operator=; // Ignore = in all classes
%ignore operator=; // Ignore = everywhere.

%rename(__sub__) Complex::operator−;
%rename(__neg__) Complex::operator−(); // Unary −

The last part of this example illustrates how multiple definitions of the operator− method might be handled.

Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

In C++, it is fairly common to define different versions of the operators to account for different types. For example, a
class might also include a friend function like this:

class Complex {
public:
 friend Complex operator+(Complex &, double);
};
Complex operator+(Complex &, double);

SWIG simply ignores all friend declarations. Furthermore, it doesn't know how to associate the associated
operator+ with the class (because it's not a member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

%rename(add_complex_double) operator+(Complex &, double);

•

Certain operators are ignored by default. For instance, new and delete operators are ignored as well as conversion
operators.

•

The semantics of certain C++ operators may not match those in the target language.•

6.17 Class extension

New methods can be added to a class using the %extend directive. This directive is primarily used in conjunction with proxy
classes to add additional functionality to an existing class. For example :

%module vector
%{
#include "vector.h"
%}

class Vector {
public:
 double x,y,z;
 Vector();
 ~Vector();
 ... bunch of C++ methods ...
 %extend {
 char *__str__() {
 static char temp[256];
 sprintf(temp,"[%g, %g, %g]", self−>x,self−>y,self−>z);
 return &temp[0];
 }
 }
};

This code adds a __str__ method to our class for producing a string representation of the object. In Python, such a method
would allow us to print the value of an object using the print command.

>>>
>>> v = Vector();
>>> v.x = 3
>>> v.y = 4

SWIG−1.3 Documentation

6.17 Class extension 75

>>> v.z = 0
>>> print(v)
[3.0, 4.0, 0.0]
>>>

The %extend directive follows all of the same conventions as its use with C structures. Please refer to the SWIG Basics chapter
for further details.

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

6.18 Templates

In all versions of SWIG, template type names may appear anywhere a type is expected in an interface file. For example:

void foo(vector<int> *a, int n);
void bar(list<int,100> *x);

There are some restrictions on the use of non−type arguments. Specifically, they have to be simple literals and not expressions.
For example:

void bar(list<int,100> *x); // OK
void bar(list<int,2*50> *x); // Illegal

The type system is smart enough to figure out clever games you might try to play with typedef. For instance, consider this
code:

typedef int Integer;
void foo(vector<int> *x, vector<Integer> *y);

In this case, vector<Integer> is exactly the same type as vector<int>. The wrapper for foo() will accept either
variant.

Starting with SWIG−1.3.7, simple C++ template declarations can also be wrapped. SWIG−1.3.12 greatly expands upon the earlier
implementation. Before discussing this any further, there are a few things you need to know about template wrapping. First, a bare
C++ template does not define any sort of runnable object−code for which SWIG can normally create a wrapper. Therefore, in
order to wrap a template, you need to give SWIG information about a particular template instantiation (e.g., vector<int>,
array<double>, etc.). Second, an instantiation name such as vector<int> is generally not a valid identifier name in most
target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector when creating
a wrapper.

To illustrate, consider the following template definition:

template<class T> class List {
private:
 T *data;
 int nitems;
 int maxitems;
public:
 List(int max) {
 data = new T [max];
 nitems = 0;
 maxitems = max;
 }
 ~List() {
 delete [] data;
 };
 void append(T obj) {
 if (nitems < maxitems) {
 data[nitems++] = obj;

SWIG−1.3 Documentation

6.18 Templates 76

 }
 }
 int length() {
 return nitems;
 }
 T get(int n) {
 return data[n];
 }
};

By itself, this template declaration is useless−−SWIG simply ignores it because it doesn't know how to generate any code until
unless a definition of T is provided.

One way to create wrappers for a specific template instantiation is to simply provide an expanded version of the class directly like
this:

%rename(intList) List<int>; // Rename to a suitable identifier
class List<int> {
private:
 int *data;
 int nitems;
 int maxitems;
public:
 List(int max);
 ~List();
 void append(int obj);
 int length();
 int get(int n);
};

The %rename directive is needed to give the template class an appropriate identifier name in the target language (most languages
would not recognize C++ template syntax as a valid class name). The rest of the code is the same as what would appear in a
normal class definition.

Since manual expansion of templates gets old in a hurry, the %template directive can be used to create instantiations of a
template class. Semantically, %template is simply a shortcut−−−it expands template code in exactly the same way as shown
above. Here are some examples:

/* Instantiate a few different versions of the template */
%template(intList) List<int>;
%template(doubleList) List<double>;

The argument to %template() is the name of the instantiation in the target language. The name you choose should not conflict
with any other declarations in the interface file with one exception−−−it is okay for the template name to match that of a typedef
declaration. For example:

%template(intList) List<int>;
...
typedef List<int> intList; // OK

SWIG can also generate wrappers for function templates using a similar technique. For example:

// Function template
template<class T> T max(T a, T b) { return a > b ? a : b; }

// Make some different versions of this function
%template(maxint) max<int>;
%template(maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

SWIG−1.3 Documentation

6.18 Templates 77

The number of arguments supplied to %template should match that in the original template definition. Template default
arguments are supported. For example:

template vector<typename T, int max=100> class vector {
...
};

%template(intvec) vector<int>; // OK
%template(vec1000) vector<int,1000>; // OK

The %template directive should not be used to wrap the same template instantiation more than once in the same scope. This
will generate an error. For example:

%template(intList) List<int>;
%template(Listint) List<int>; // Error. Template already wrapped.

This error is caused because the template expansion results in two identical classes with the same name. This generates a symbol
table conflict. Besides, it probably more efficient to only wrap a specific instantiation only once in order to reduce the potential for
code bloat.

Since the type system knows how to handle typedef, it is generally not necessary to instantiate different versions of a template
for typenames that are equivalent. For instance, consider this code:

%template(intList) vector<int>;
typedef int Integer;
...
void foo(vector<Integer> *x);

In this case, vector<Integer> is exactly the same type as vector<int>. Any use of Vector<Integer> is mapped
back to the instantiation of vector<int> created earlier. Therefore, it is not necessary to instantiate a new class for the type
Integer (doing so is redundant and will simply result in code bloat).

When a template is instantiated using %template, information about that class is saved by SWIG and used elsewhere in the
program. For example, if you wrote code like this,

...
%template(intList) List<int>;
...
class UltraList : public List<int> {
 ...
};

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance
correctly. If, on the other hand, nothing is known about List<int>, you will get a warning message similar to this:

example.h:42. Nothing known about class 'List<int >' (ignored).
example.h:42. Maybe you forgot to instantiate 'List<int >' using %template.

If a template class inherits from another template class, you need to make sure that base classes are instantiated before derived
classes. For example:

template<class T> class Foo {
...
};

template<class T> class Bar : public Foo<T> {
...
};

// Instantiate base classes first
%template(intFoo) Foo<int>;

SWIG−1.3 Documentation

6.18 Templates 78

%template(doubleFoo) Foo<double>;

// Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting
wrapper code (and base classes need to be wrapped before derived classes). Don't worry−−if you get the order wrong, SWIG
should generate a warning message.

Occassionally, you may need to tell SWIG about base classes that are defined by templates, but which aren't supposed to be
wrapped. Since SWIG is not able to automatically instantiate templates for this purpose, you must do it manually. To do this,
simply use %template with no name. For example:

// Instantiate traits<double,double>, but don't wrap it.
%template() traits<double,double>;

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For
example:

%define TEMPLATE_WRAP(T,prefix)
%template(prefix ## Foo) Foo<T>;
%template(prefix ## Bar) Bar<T>;
...
%enddef

TEMPLATE_WRAP(int, int)
TEMPLATE_WRAP(double, double)
TEMPLATE_WRAP(char *, String)
...

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {
private:
 int *data;
 int nitems;
 int maxitems;
public:
 List(int max);
 ~List();
 void append(int obj);
 int length();
 int get(int n);
};

then SWIG will use this code whenever the user expands List<int>. In practice, this may have very little effect on the
underlying wrapper code since specialization is often used to provide slightly modified method bodies (which are ignored by
SWIG). However, special SWIG directives such as %typemap, %extend, and so forth can be attached to a specialization to
provide customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when the
template argument is a pointer.

template<class T> class List<T*> {
private:
 T *data;
 int nitems;
 int maxitems;
public:
 List(int max);
 ~List();
 void append(int obj);

SWIG−1.3 Documentation

6.18 Templates 79

 int length();
 T get(int n);
};

SWIG should be able to handle most simple uses of partial specialization. However, it may fail to match templates properly in
more complicated cases. For example, if you have this code,

template<class T1, class T2> class Foo<T1, T2 *> { };

SWIG isn't able to match it properly for instantiations like Foo<int *, int *>. This problem is not due to parsing, but due
to the fact that SWIG does not currently implement all of the C++ argument deduction rules.

Member function templates are supported. The underlying principle is the same as for normal templates−−SWIG can't create a
wrapper unless you provide more information about types. For example, a class with a member template might look like this:

class Foo {
public:
 template<class T> void bar(T x, T y) { ... };
 ...
};

To expand the template, simply use %template inside the class.

class Foo {
public:
 template<class T> void bar(T x, T y) { ... };
 ...
 %template(barint) bar<int>;
 %template(bardouble) bar<double>;
};

Or, if you want to leave the original class definition alone, just do this:

class Foo {
public:
 template<class T> void bar(T x, T y) { ... };
 ...
};
...
%extend Foo {
 %template(barint) bar<int>;
 %template(bardouble) bar<double>;
};

or simply

class Foo {
public:
 template<class T> void bar(T x, T y) { ... };
 ...
};
...

%template(bari) Foo::bar<int>;
%template(bard) Foo::bar<double>;

In this case, the %extend directive is not needed, and %template does the exactly same job, i.e., it adds two new methods to
the Foo class.

Note: because of the way that templates are handled, the %template directive must always appear after the definition of the
template to be expanded.

SWIG−1.3 Documentation

6.18 Templates 80

Now, if your target language supports overloading, you can even try

%template(bar) Foo::bar<int>;
%template(bar) Foo::bar<double>;

and since the two new wrapped methods have the same name 'bar', they will be overloaded, and when called, the correct method
will be dispatched depending on the argument type.

When used with members, the %template directive may be placed in another template class. Here is a slightly perverse
example:

// A template
template<class T> class Foo {
public:
 // A member template
 template<class S> T bar(S x, S y) { ... };
 ...
};

// Expand a few member templates
%extend Foo {
 %template(bari) bar<int>;
 %template(bard) bar<double>;
}

// Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari() and bard() added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1, class T2> struct pair {
 T1 first;
 T2 second;
 pair() : first(T1()), second(T2()) { }
 pair(const T1 &x, const T2 &y) : first(x), second(y) { }
 template<class U1, class U2> pair(const pair<U1,U2> &x)
 : first(x.first),second(x.second) { }
};

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. To
do that, you could expand a few versions of the constructor in the template class itself. For example:

%extend pair {
 %template(pair) pair<T1,T2>; // Generate default copy constructor
};

When using %extend in this manner, notice how you can still use the template parameters in the original template definition.

Alternatively, you could expand the constructor template in selected instantiations. For example:

// Instantiate a few versions
%template(pairii) pair<int,int>;
%template(pairdd) pair<double,double>;

// Create a default constructor only
%extend pair<int,int> {
 %template(paird) pair<int,int>; // Default constructor
};

// Create default and conversion constructors

SWIG−1.3 Documentation

6.18 Templates 81

%extend pair<double,double> {
 %template(paird) pair<double,dobule>; // Default constructor
 %template(pairc) pair<int,int>; // Conversion constructor
};

And if your target language supports overloading, then you can try instead:

// Create default and conversion constructors
%extend pair<double,double> {
 %template(pair) pair<double,dobule>; // Default constructor
 %template(pair) pair<int,int>; // Conversion constructor
};

In this case, the default and conversion constructors have the same name. Hence, Swig will overload them and define an unique
visible constructor, that will dispatch the proper call depending on the argument type.

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as %rename,
%extend, and %typemap can be included directly in template definitions. For example:

// File : list.h
template<class T> class List {
 ...
public:
 %rename(__getitem__) get(int);
 List(int max);
 ~List();
 ...
 T get(int index);
 %extend {
 char *__str__() {
 /* Make a string representation */
 ...
 }
 }
};

In this example, the extra SWIG directives are propagated to every template instantiation.

It is also possible to separate these declarations from the template class. For example:

%rename(__getitem__) List::get;
%extend List {
 char *__str__() {
 /* Make a string representation */
 ...
 }
 /* Make a copy */
 T *__copy__() {
 return new List<T>(*self);
 }
};

...
template<class T> class List {
 ...
 public:
 List() { };
 ...
};

When %extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class
definition. These are replaced when the template is expanded. In addition, the %extend directive can be used to add additional
methods to a specific instantiation. For example:

SWIG−1.3 Documentation

6.18 Templates 82

%template(intList) List<int>;

%extend List<int> {
 void blah() {
 printf("Hey, I'm an List<int>!\n");
 }
};

SWIG even supports overloaded templated functions. As usual the %template directive is used to wrap templated functions.
For example:

template<class T> void foo(T x) { };
template<class T> void foo(T x, T y) { };

%template(foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take
two integer arguments.

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final
point is that SWIG does not perform extensive error checking of templates! Specifically, SWIG does not perform type
checking nor does it check to see if the actual contents of the template declaration make any sense. Since the C++ compiler will
hopefully check this when it compiles the resulting wrapper file, there is no practical reason for SWIG to duplicate this
functionality (besides, none of the SWIG developers are masochistic enough to want to implement this right now).

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor.
Templates have been more tightly integrated into the parser and type system in SWIG−1.3.12 and the preprocessor is no longer
used. Code that relied on preprocessing features in template expansion will no longer work. However, SWIG still allows the #
operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, the %template directive introduced a new class name. This name could then
be used with other directives. For example:

%template(vectori) vector<int>;
%extend vectori {
 void somemethod() { }
};

This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

%template(vectori) vector<int>;
%extend vector<int> {
 void somemethod() { }
};

Similar changes apply to typemaps and other customization features.

6.19 Namespaces

Support for C++ namespaces is a relatively late addition to SWIG, first appearing in SWIG−1.3.12. Before describing the
implementation, it is worth nothing that the semantics of C++ namespaces is extremely non−trivial−−especially with regard to the
C++ type system and class machinery. At a most basic level, namespaces are sometimes used to encapsulate common
functionality. For example:

namespace math {
 double sin(double);
 double cos(double);

 class Complex {
 double im,re;

SWIG−1.3 Documentation

6.19 Namespaces 83

 public:
 ...
 };
 ...
};

Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magnitude(math::Complex *c);
math::Complex c;
...

At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other ways a
namespace can be used. For example, selective symbols can be exported from a namespace with using.

using math::Complex;
double magnitude(Complex *c); // Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available like this:

using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);

Alternatively, a namespace can be aliased:

namespace M = math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);

Using combinations of these features, it is possible to write head−exploding code like this:

namespace A {
 class Foo {
 };
}

namespace B {
 namespace C {
 using namespace A;
 }
 typedef C::Foo FooClass;
}

namespace BIGB = B;

namespace D {
 using BIGB::FooClass;
 class Bar : public FooClass {
 }
};

class Spam : public D::Bar {
};

void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
 BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into the
target language. Clearly this code defines three different classes. However, one of those classes is accessible under at least six
different class names!

SWIG−1.3 Documentation

6.19 Namespaces 84

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it
will be parsed correctly, it will generate compilable wrapper code, and it will produce a working scripting language module.
However, the default wrapping behavior is to flatten namespaces in the target language. This means that the contents of all
namespaces are merged together in the resulting scripting language module. For example, if you have code like this,

%module foo
namespace foo {
 void bar(int);
 void spam();
}

namespace bar {
 void blah();
}

then SWIG simply creates three wrapper functions bar(), spam(), and blah() in the target language. SWIG does not
prepend the names with a namespace prefix nor are the functions packaged in any kind of nested scope.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a
natural correlation between the likely contents of a SWIG module and the contents of a namespace. For instance, it would not be
unreasonable to assume that a programmer might make a separate extension module for each C++ namespace. In this case, it
would be redundant to prepend everything with an additional namespace prefix when the module itself already serves as a
namespace in the target language. Or put another way, if you want SWIG to keep namespaces separate, simply wrap each
namespace with its own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in the
target language. For example:

namespace A {
 void foo(int);
}
namespace B {
 void foo(double);
}

When this conflict occurs, you will get an error message that resembles this:

example.i:26. Error. 'foo' is multiply defined in the generated module.
example.i:23. Previous declaration of 'foo'

To resolve this error, simply use %rename to disambiguate the declarations. For example:

%rename(B_foo) B::foo;
...
namespace A {
 void foo(int);
}
namespace B {
 void foo(double); // Gets renamed to B_foo
}

Similarly, %ignore can be used to ignore declarations.

using declarations do not have any effect on the generated wrapper code. They are ignored by SWIG language modules and they
do not result in any code. However, these declarations are used by the internal type system to track type−names. Therefore, if you
have code like this:

namespace A {
 typedef int Integer;
}

SWIG−1.3 Documentation

6.19 Namespaces 85

using namespace A;
void foo(Integer x);

SWIG knows that Integer is the same as A::Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the %template directive can be used to expand a template defined
in a different namespace. For example:

namespace foo {
 template<typename T> T max(T a, T b) { return a > b ? a : b; }
}

using foo::max;

%template(maxint) max<int>; // Okay.
%template(maxfloat) foo::max<float>; // Okay (qualified name).

namespace bar {
 using namespace foo;
 %template(maxdouble) max<double>; // Okay.
}

The combination of namespaces and other SWIG directives may introduce subtle scope−related problems. The key thing to keep
in mind is that all SWIG generated wrappers are produced in the global namespace. Symbols from other namespaces are always
accessed using fully qualified names−−−names are never imported into the global space unless the interface happens to do so with
a using declaration. In almost all cases, SWIG adjusts typenames and symbols to be fully qualified. However, this is not done in
code fragments such as function bodies, typemaps, exception handlers, and so forth. For example, consider the following:

namespace foo {
 typedef int Integer;
 class bar {
 public:
 ...
 };
}

%extend foo::bar {
 Integer add(Integer x, Integer y) {
 Integer r = x + y; // Error. Integer not defined in this scope
 return r;
 }
};

In this case, SWIG correctly resolves the added method parameters and return type to foo::Integer. However, since function
bodies aren't parsed and such code is emitted in the global namespace, this code produces a compiler error about Integer. To
fix the problem, make sure you use fully qualified names. For example:

%extend foo::bar {
 Integer add(Integer x, Integer y) {
 foo::Integer r = x + y; // Ok.
 return r;
 }
};

Note: SWIG does not propagate using declarations to the resulting wrapper code. If these declarations appear in an interface,
they should also appear in any header files that might have been included in a %{ ... %} section. In other words, don't insert
extra using declarations into a SWIG interface unless they also appear in the underlying C++ code.

Note: Code inclusion directives such as %{ ... %} or %inline %{ ... %} should not be placed inside a namespace
declaration. The code emitted by these directives will not be enclosed in a namespace and you may get very strange results. If you
need to use namespaces with these directives, consider the following:

SWIG−1.3 Documentation

6.19 Namespaces 86

// Good version
%inline %{
namespace foo {
 void bar(int) { ... }
 ...
}
%}

// Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{
 void bar(int) { ... } /* I'm bad */
 ...
%}
}

Note: When the %extend directive is used inside a namespace, the namespace name is included in the generated functions. For
example, if you have code like this,

namespace foo {
 class bar {
 public:
 %extend {
 int blah(int x);
 };
 };
}

the added method blah() is mapped to a function int foo_bar_blah(foo::bar *self, int x). This function
resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same namespace
conventions as used in the input file. Thus, if there are no symbol conflicts in the input, there will be no conflicts in the generated
code.

Note: Namespaces have a subtle effect on the wrapping of conversion operators. For instance, suppose you had an interface like
this:

namespace foo {
 class bar;
 class spam {
 public:
 ...
 operator bar(); // Conversion of spam −> bar
 ...
 };
}

To wrap the conversion function, you might be inclined to write this:

%rename(tofoo) foo::spam::operator bar();

The only problem is that it doesn't work. The reason it doesn't work is that bar is not defined in the global scope. Therefore, to
make it work, do this instead:

%rename(tofoo) foo::spam::operator foo::bar();

Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. Since namespaces are a new
addition to SWIG, none of the target language modules are currently programmed with any namespace awareness. In the future,
language modules may or may not provide more advanced namespace support.

SWIG−1.3 Documentation

6.19 Namespaces 87

6.20 Exception specifications

When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaration.
For example:

class Error { };

class Foo {
public:
 ...
 void blah() throw(Error);
 ...
};

If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and, when
possible, rethrowing it into the target language, or converting it into an error in the target language otherwise. For example, in
Python, you can write code like this:

f = Foo()
try:
 f.blah()
except Error,e:
 # e is a wrapped instance of "Error"

Details of how to tailor code for handling the caught C++ exception and converts it into the target language's exception/error
handling mechanism is outlined in the "throws" typemap section.

Since exception specifications are sometimes only used sparingly, this alone may not be enough to properly handle C++
exceptions. To do that, a different set of special SWIG directives are used. Consult the "Exception handling with %exception"
section for details. The next section details a way of simulating an exception specification or replacing an existing one.

6.21 Exception handling with %catches

Exceptions are automatically handled for methods with an exception specification. Similar handling can be achieved for methods
without exception specifications through the %catches feature. It is also possible to replace any declared exception specification
using the %catches feature. In fact, %catches uses the same "throws" typemaps that SWIG uses for exception specifications
in handling exceptions. The %catches feature must contain a list of possible types that can be thrown. For each type that is in
the list, SWIG will generate a catch handler, in the same way that it would for types declared in the exception specification. Note
that the list can also include the catch all specification "...". For example,

struct EBase { virtual ~EBase(); };
struct Error1 : EBase { };
struct Error2 : EBase { };
struct Error3 : EBase { };
struct Error4 : EBase { };

%catches(Error1,Error2,...) Foo::bar();
%catches(EBase) Foo::blah();

class Foo {
public:
 ...
 void bar();
 void blah() throw(Error1,Error2,Error3,Error4);
 ...
};

For the Foo::bar() method, which can throw anything, SWIG will generate catch handlers for Error1, Error2 as well as a
catch all handler (...). Each catch handler will convert the caught exception and convert it into a target language error/exception.
The catch all handler will convert the caught exception into an unknown error/exception.

SWIG−1.3 Documentation

6.20 Exception specifications 88

Without the %catches feature being attached to Foo::blah(), SWIG will generate catch handlers for all of the types in the
exception specification, that is, Error1, Error2, Error3, Error4. However, with the %catches feature above, just a
single catch handler for the base class, EBase will be generated to convert the C++ exception into a target language
error/exception.

6.22 Pointers to Members

Starting with SWIG1.3.7, there is limited parsing support for pointers to C++ class members. For example:

double do_op(Object *o, double (Object::*callback)(double,double));
extern double (Object::*fooptr)(double,double);
%constant double (Object::*FOO)(double,double) = &Object::foo;

Although these kinds of pointers can be parsed and represented by the SWIG type system, few language modules know how to
handle them due to implementation differences from standard C pointers. Readers are strongly advised to consult an advanced text
such as the "The Annotated C++ Manual" for specific details.

When pointers to members are supported, the pointer value might appear as a special string like this:

>>> print example.FOO
_ff0d54a800000000_m_Object__f_double_double__double
>>>

In this case, the hexadecimal digits represent the entire value of the pointer which is usually the contents of a small C++ structure
on most machines.

SWIG's type−checking mechanism is also more limited when working with member pointers. Normally SWIG tries to keep track
of inheritance when checking types. However, no such support is currently provided for member pointers.

6.23 Smart pointers and operator−>()

In some C++ programs, objects are often encapsulated by smart−pointers or proxy classes. This is sometimes done to implement
automatic memory management (reference counting) or persistence. Typically a smart−pointer is defined by a template class
where the −> operator has been overloaded. This class is then wrapped around some other class. For example:

// Smart−pointer class
template<class T> class SmartPtr {
 T *pointee;
public:
 ...
 T *operator−>() {
 return pointee;
 }
 ...
};

// Ordinary class
class Foo_Impl {
public:
 int x;
 virtual void bar();
 ...
};

// Smart−pointer wrapper
typedef SmartPtr<Foo_Impl> Foo;

// Create smart pointer Foo
Foo make_Foo() {
 return SmartPtr(new Foo_Impl());
}

SWIG−1.3 Documentation

6.21 Exception handling with %catches 89

// Do something with smart pointer Foo
void do_something(Foo f) {
 printf("x = %d\n", f−>x);
 f−>bar();
}

A key feature of this approach is that by defining operator−> the methods and attributes of the object wrapped by a smart
pointer are transparently accessible. For example, expressions such as these (from the previous example),

f−>x
f−>bar()

are transparently mapped to the following

(f.operator−>())−>x;
(f.operator−>())−>bar();

When generating wrappers, SWIG tries to emulate this functionality to the extent that it is possible. To do this, whenever
operator−>() is encountered in a class, SWIG looks at its returned type and uses it to generate wrappers for accessing
attributes of the underlying object. For example, wrapping the above code produces wrappers like this:

int Foo_x_get(Foo *f) {
 return (*f)−>x;
}
void Foo_x_set(Foo *f, int value) {
 (*f)−>x = value;
}
void Foo_bar(Foo *f) {
 (*f)−>bar();
}

These wrappers take a smart−pointer instance as an argument, but dereference it in a way to gain access to the object returned by
operator−>(). You should carefully compare these wrappers to those in the first part of this chapter (they are slightly
different).

The end result is that access looks very similar to C++. For example, you could do this in Python:

>>> f = make_Foo()
>>> print f.x
0
>>> f.bar()
>>>

When generating wrappers through a smart−pointer, SWIG tries to generate wrappers for all methods and attributes that might be
accessible through operator−>(). This includes any methods that might be accessible through inheritance. However, there are
a number of restrictions:

Member variables and methods are wrapped through a smart pointer. Enumerations, constructors, and destructors are not
wrapped.

•

If the smart−pointer class and the underlying object both define a method or variable of the same name, then the
smart−pointer version has precedence. For example, if you have this code

class Foo {
public:
 int x;
};

class Bar {
public:
 int x;
 Foo *operator−>();

•

SWIG−1.3 Documentation

6.23 Smart pointers and operator−>() 90

};

then the wrapper for Bar::x accesses the x defined in Bar, and not the x defined in Foo.

If your intent is to only expose the smart−pointer class in the interface, it is not necessary to wrap both the smart−pointer class and
the class for the underlying object. However, you must still tell SWIG about both classes if you want the technique described in
this section to work. To only generate wrappers for the smart−pointer class, you can use the %ignore directive. For example:

%ignore Foo;
class Foo { // Ignored
};

class Bar {
public:
 Foo *operator−>();
 ...
};

Alternatively, you can import the definition of Foo from a separate file using %import.

Note: When a class defines operator−>(), the operator itself is wrapped as a method __deref__(). For example:

f = Foo() # Smart−pointer
p = f.__deref__() # Raw pointer from operator−>

Note: To disable the smart−pointer behavior, use %ignore to ignore operator−>(). For example:

%ignore Bar::operator−>;

Note: Smart pointer support was first added in SWIG−1.3.14.

6.24 Using declarations and inheritance

using declarations are sometimes used to adjust access to members of base classes. For example:

class Foo {
public:
 int blah(int x);
};

class Bar {
public:
 double blah(double x);
};

class FooBar : public Foo, public Bar {
public:
 using Foo::blah;
 using Bar::blah;
 char *blah(const char *x);
};

In this example, the using declarations make different versions of the overloaded blah() method accessible from the derived
class. For example:

FooBar *f;
f−>blah(3); // Ok. Invokes Foo::blah(int)
f−>blah(3.5); // Ok. Invokes Bar::blah(double)
f−>blah("hello"); // Ok. Invokes FooBar::blah(const char *);

SWIG−1.3 Documentation

6.24 Using declarations and inheritance 91

SWIG emulates the same functionality when creating wrappers. For example, if you wrap this code in Python, the module works
just like you would expect:

>>> import example
>>> f = example.FooBar()
>>> f.blah(3)
>>> f.blah(3.5)
>>> f.blah("hello")

using declarations can also be used to change access when applicable. For example:

class Foo {
protected:
 int x;
 int blah(int x);
};

class Bar : public Foo {
public:
 using Foo::x; // Make x public
 using Foo::blah; // Make blah public
};

This also works in SWIG−−−the exposed declarations will be wrapped normally.

When using declarations are used as shown in these examples, declarations from the base classes are copied into the derived
class and wrapped normally. When copied, the declarations retain any properties that might have been attached using %rename,
%ignore, or %feature. Thus, if a method is ignored in a base class, it will also be ignored by a using declaration.

Because a using declaration does not provide fine−grained control over the declarations that get imported, it may be difficult to
manage such declarations in applications that make heavy use of SWIG customization features. If you can't get using to work
correctly, you can always change the interface to the following:

class FooBar : public Foo, public Bar {
public:
#ifndef SWIG
 using Foo::blah;
 using Bar::blah;
#else
 int blah(int x); // explicitly tell SWIG about other declarations
 double blah(double x);
#endif

 char *blah(const char *x);
};

Notes:

If a derived class redefines a method defined in a base class, then a using declaration won't cause a conflict. For
example:

class Foo {
public:
 int blah(int);
 double blah(double);
};

class Bar : public Foo {
public:
 using Foo::blah; // Only imports blah(double);
 int blah(int);
};

•

SWIG−1.3 Documentation

6.24 Using declarations and inheritance 92

Resolving ambiguity in overloading may prevent declarations from being imported by using. For example:

%rename(blah_long) Foo::blah(long);
class Foo {
public:
 int blah(int);
 long blah(long); // Renamed to blah_long
};

class Bar : public Foo {
public:
 using Foo::blah; // Only imports blah(int)
 double blah(double x);
};

•

6.25 Partial class definitions

Since SWIG is still limited in its support of C++, it may be necessary to use partial class information in an interface file. However,
since SWIG does not need the entire class specification to work, conditional compilation can be used to comment out problematic
parts. For example, if you had a nested class definition, you might do this:

class Foo {
public:
#ifndef SWIG
 class Bar {
 public:
 ...
 };
#endif
 Foo();
 ~Foo();
 ...
};

Also, as a rule of thumb, SWIG should not be used on raw C++ source files.

6.26 A brief rant about const−correctness

A common issue when working with C++ programs is dealing with all possible ways in which the const qualifier (or lack
thereof) will break your program, all programs linked against your program, and all programs linked against those programs.

Although SWIG knows how to correctly deal with const in its internal type system and it knows how to generate wrappers that
are free of const−related warnings, SWIG does not make any attempt to preserve const−correctness in the target language. Thus, it
is possible to pass const qualified objects to non−const methods and functions. For example, consider the following code in
C++:

const Object * foo();
void bar(Object *);

...
// C++ code
void blah() {
 bar(foo()); // Error: bar discards const
};

Now, consider the behavior when wrapped into a Python module:

>>> bar(foo()) # Okay
>>>

SWIG−1.3 Documentation

6.25 Partial class definitions 93

Although this is clearly a violation of the C++ type−system, fixing the problem doesn't seem to be worth the added
implementation complexity that would be required to support it in the SWIG run−time type system. There are no plans to change
this in future releases (although we'll never rule anything out entirely).

The bottom line is that this particular issue does not appear to be a problem for most SWIG projects. Of course, you might want to
consider using another tool if maintaining constness is the most important part of your project.

6.27 Proxy classes

In order to provide a more natural API, SWIG's target languages wrap C++ classes with special proxy classes. These proxy classes
are typically implemented in the target language itself. For example, if you're building a Python module, each C++ class is
wrapped by a Python class. Or if you're building a Java module, each C++ class is wrapped by a Java class.

6.27.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses the low−level accessor functions described in the
previous section. To illustrate, suppose you had a C++ class like this:

class Foo {
public:
 Foo();
 ~Foo();
 int bar(int x);
 int x;
};

Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
 Foo *self;
public:
 FooProxy() {
 self = new_Foo();
 }
 ~FooProxy() {
 delete_Foo(self);
 }
 int bar(int x) {
 return Foo_bar(self,x);
 }
 int x_get() {
 return Foo_x_get(self);
 }
 void x_set(int x) {
 Foo_x_set(self,x);
 }
};

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy might
look roughly like this:

class Foo:
 def __init__(self):
 self.this = new_Foo()
 def __del__(self):
 delete_Foo(self.this)
 def bar(self,x):
 return Foo_bar(self.this,x)
 def __getattr__(self,name):
 if name == 'x':
 return Foo_x_get(self.this)

SWIG−1.3 Documentation

6.26 A brief rant about const−correctness 94

 ...
 def __setattr__(self,name,value):
 if name == 'x':
 Foo_x_set(self.this,value)
 ...

Again, it's important to emphasize that the low−level accessor functions are always used to construct the proxy classes.

Whenever possible, proxies try to take advantage of language features that are similar to C++. This might include operator
overloading, exception handling, and other features.

6.27.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
 Foo();
 ~Foo();
 int bar(int x);
 int x;
};

class Spam {
public:
 Foo *value;
 ...
};

Now, consider some script code that uses these classes:

f = Foo() # Creates a new Foo
s = Spam() # Creates a new Spam
s.value = f # Stores a reference to f inside s
g = s.value # Returns stored reference
g = 4 # Reassign g to some other value
del f # Destroy f

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by newly
created proxy classes. That is, there is both a new proxy class instance and a new instance of the underlying C++ class. In this
example, both f and s are created in this way. However, the statement s.value is rather curious−−−when executed, a pointer to
f is stored inside another object. This means that the scripting proxy class AND another C++ class share a reference to the same
object. To make matters even more interesting, consider the statement g = s.value. When executed, this creates a new proxy
class g that provides a wrapper around the C++ object stored in s.value. In general, there is no way to know where this object
came from−−−it could have been created by the script, but it could also have been generated internally. In this particular example,
the assignment of g results in a second proxy class for f. In other words, a reference to f is now shared by two proxy classes and
a C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many
languages, this makes the old value of g available for garbage collection. Therefore, this causes one of the proxy classes to be
destroyed. Later on, the statement del f destroys the other proxy class. Of course, there is still a reference to the original object
stored inside another C++ object. What happens to it? Is it the object still valid?

To deal with memory management problems, proxy classes always provide an API for controlling ownership. In C++ pseudocode,
ownership control might look roughly like this:

class FooProxy {
public:
 Foo *self;
 int thisown;

SWIG−1.3 Documentation

6.27.1 Construction of proxy classes 95

 FooProxy() {
 self = new_Foo();
 thisown = 1; // Newly created object
 }
 ~FooProxy() {
 if (thisown) delete_Foo(self);
 }
 ...
 // Ownership control API
 void disown() {
 thisown = 0;
 }
 void acquire() {
 thisown = 1;
 }
};

class FooPtrProxy: public FooProxy {
public:
 FooPtrProxy(Foo *s) {
 self = s;
 thisown = 0;
 }
};

class SpamProxy {
 ...
 FooProxy *value_get() {
 return FooPtrProxy(Spam_value_get(self));
 }
 void value_set(FooProxy *v) {
 Spam_value_set(self,v−>self);
 v−>disown();
 }
 ...
};

Looking at this code, there are a few central features:

Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set.•
When new objects are created in the target language, the ownership flag is set.•
When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not have
ownership.

•

In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is lost.•
Manual ownership control is provided by special disown() and acquire() methods.•

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible
memory management problem. However, proxies do provide a mechanism for manual control that can be used (if necessary) to
address some of the more tricky memory management problems.

6.27.3 Language specific details

Language specific details on proxy classes are contained in the chapters describing each target language. This chapter has merely
introduced the topic in a very general way.

6.28 Where to go for more information

If you're wrapping serious C++ code, you might want to pick up a copy of "The Annotated C++ Reference Manual" by Ellis and
Stroustrup. This is the reference document we use to guide a lot of SWIG's C++ support.

SWIG−1.3 Documentation

6.27.2 Resource management in proxies 96

7 Preprocessing
File inclusion•
File imports•
Conditional Compilation•
Macro Expansion•
SWIG Macros•
C99 and GNU Extensions•
Preprocessing and %{ ... %} blocks•
Preprocessing and { ... }•
Viewing preprocessor output•
The #error and #warning directives•

SWIG includes its own enhanced version of the C preprocessor. The preprocessor supports the standard preprocessor directives
and macro expansion rules. However, a number of modifications and enhancements have been made. This chapter describes some
of these modifications.

7.1 File inclusion

To include another file into a SWIG interface, use the %include directive like this:

%include "pointer.i"

Unlike, #include, %include includes each file once (and will not reload the file on subsequent %include declarations).
Therefore, it is not necessary to use include−guards in SWIG interfaces.

By default, the #include is ignored unless you run SWIG with the −includeall option. The reason for ignoring traditional
includes is that you often don't want SWIG to try and wrap everything included in standard header system headers and auxilliary
files.

7.2 File imports

SWIG provides another file inclusion directive with the %import directive. For example:

%import "foo.i"

The purpose of %import is to collect certain information from another SWIG interface file or a header file without actually
generating any wrapper code. Such information generally includes type declarations (e.g., typedef) as well as C++ classes that
might be used as base−classes for class declarations in the interface. The use of %import is also important when SWIG is used
to generate extensions as a collection of related modules. This is an advanced topic and is described in a later chapter.

The −importall directive tells SWIG to follow all #include statements as imports. This might be useful if you want to
extract type definitions from system header files without generating any wrappers.

7.3 Conditional Compilation

SWIG fully supports the use of #if, #ifdef, #ifndef, #else, #endif to conditionally include parts of an interface. The
following symbols are predefined by SWIG when it is parsing the interface:

SWIG Always defined when SWIG is processing a file
SWIGIMPORTED Defined when SWIG is importing a file with %import
SWIGMAC Defined when running SWIG on the Macintosh
SWIGWIN Defined when running SWIG under Windows
SWIG_VERSION Hexadecimal number containing SWIG version,
 such as 0x010311 (corresponding to SWIG−1.3.11).

7 Preprocessing 97

SWIGCHICKEN Defined when using CHICKEN
SWIGCSHARP Defined when using C#
SWIGGUILE Defined when using Guile
SWIGJAVA Defined when using Java
SWIGLUA Defined when using Lua
SWIGMODULA3 Defined when using Modula−3
SWIGMZSCHEME Defined when using Mzscheme
SWIGOCAML Defined when using Ocaml
SWIGPERL Defined when using Perl
SWIGPERL5 Defined when using Perl5
SWIGPHP Defined when using PHP
SWIGPHP4 Defined when using PHP4
SWIGPIKE Defined when using Pike
SWIGPYTHON Defined when using Python
SWIGRUBY Defined when using Ruby
SWIGSEXP Defined when using S−expressions
SWIGTCL Defined when using Tcl
SWIGTCL8 Defined when using Tcl8.0
SWIGXML Defined when using XML

In addition, SWIG defines the following set of standard C/C++ macros:

__LINE__ Current line number
__FILE__ Current file name
__STDC__ Defined to indicate ANSI C
__cplusplus Defined when −c++ option used

Interface files can look at these symbols as necessary to change the way in which an interface is generated or to mix SWIG
directives with C code. These symbols are also defined within the C code generated by SWIG (except for the symbol `SWIG'
which is only defined within the SWIG compiler).

7.4 Macro Expansion

Traditional preprocessor macros can be used in SWIG interfaces. Be aware that the #define statement is also used to try and
detect constants. Therefore, if you have something like this in your file,

#ifndef _FOO_H 1
#define _FOO_H 1
...
#endif

you may get some extra constants such as _FOO_H showing up in the scripting interface.

More complex macros can be defined in the standard way. For example:

#define EXTERN extern
#ifdef __STDC__
#define _ANSI(args) (args)
#else
#define _ANSI(args) ()
#endif

The following operators can appear in macro definitions:

#x
Converts macro argument x to a string surrounded by double quotes ("x").

•

x ## y
Concatenates x and y together to form xy.

•

`x`
If x is a string surrounded by double quotes, do nothing. Otherwise, turn into a string like #x. This is a non−standard
SWIG extension.

•

SWIG−1.3 Documentation

7.3 Conditional Compilation 98

7.5 SWIG Macros

SWIG provides an enhanced macro capability with the %define and %enddef directives. For example:

%define ARRAYHELPER(type,name)
%inline %{
type *new_ ## name (int nitems) {
 return (type *) malloc(sizeof(type)*nitems);
}
void delete_ ## name(type *t) {
 free(t);
}
type name ## _get(type *t, int index) {
 return t[index];
}
void name ## _set(type *t, int index, type val) {
 t[index] = val;
}
%}
%enddef

ARRAYHELPER(int, IntArray)
ARRAYHELPER(double, DoubleArray)

The primary purpose of %define is to define large macros of code. Unlike normal C preprocessor macros, it is not necessary to
terminate each line with a continuation character (\)−−the macro definition extends to the first occurrence of %enddef.
Furthermore, when such macros are expanded, they are reparsed through the C preprocessor. Thus, SWIG macros can contain all
other preprocessor directives except for nested %define statements.

The SWIG macro capability is a very quick and easy way to generate large amounts of code. In fact, many of SWIG's advanced
features and libraries are built using this mechanism (such as C++ template support).

7.6 C99 and GNU Extensions

SWIG−1.3.12 and newer releases support variadic preprocessor macros. For example:

#define DEBUGF(fmt,...) fprintf(stderr,fmt,__VA_ARGS__)

When used, any extra arguments to ... are placed into the special variable __VA_ARGS__. This also works with special SWIG
macros defined using %define.

SWIG allows a variable number of arguments to be empty. However, this often results in an extra comma (,) and syntax error in
the resulting expansion. For example:

DEBUGF("hello"); −−> fprintf(stderr,"hello",);

To get rid of the extra comma, use ## like this:

#define DEBUGF(fmt,...) fprintf(stderr,fmt, ##__VA_ARGS__)

SWIG also supports GNU−style variadic macros. For example:

#define DEBUGF(fmt, args...) fprintf(stdout,fmt,args)

Comment: It's not entirely clear how variadic macros might be useful to interface building. However, they are used internally to
implement a number of SWIG directives and are provided to make SWIG more compatible with C99 code.

SWIG−1.3 Documentation

7.5 SWIG Macros 99

7.7 Preprocessing and %{ ... %} blocks

The SWIG preprocessor does not process any text enclosed in a code block %{ ... %}. Therefore, if you write code like this,

%{
#ifdef NEED_BLAH
int blah() {
 ...
}
#endif
%}

the contents of the %{ ... %} block are copied without modification to the output (including all preprocessor directives).

7.8 Preprocessing and { ... }

SWIG always runs the preprocessor on text appearing inside { ... }. However, sometimes it is desirable to make a
preprocessor directive pass through to the output file. For example:

%extend Foo {
 void bar() {
 #ifdef DEBUG
 printf("I'm in bar\n");
 #endif
 }
}

By default, SWIG will interpret the #ifdef DEBUG statement. However, if you really wanted that code to actually go into the
wrapper file, prefix the preprocessor directives with % like this:

%extend Foo {
 void bar() {
 %#ifdef DEBUG
 printf("I'm in bar\n");
 %#endif
 }
}

SWIG will strip the extra % and leave the preprocessor directive in the code.

7.9 Viewing preprocessor output

Like many compilers, SWIG supports a −E command line option to display the output from the preprocessor. When the −E switch
is used, SWIG will not generate any wrappers. Instead the results after the preprocessor has run are displayed. This might be
useful as an aid to debugging and viewing the results of macro expansions.

7.10 The #error and #warning directives

SWIG supports the commonly used #warning and #error preprocessor directives. The #warning directive will cause
SWIG to issue a warning then continue processing. The #error directive will cause SWIG to exit with a fatal error. Example
usage:

#error "This is a fatal error message"
#warning "This is a warning message"

The #error behaviour can be made to work like #warning if the −cpperraswarn commandline option is used.
Alternatively, the #pragma directive can be used to the same effect, for example:

 /* Modified behaviour: #error does not cause SWIG to exit with error */

SWIG−1.3 Documentation

7.7 Preprocessing and %{ ... %} blocks 100

 #pragma SWIG cpperraswarn=1
 /* Normal behaviour: #error does cause SWIG to exit with error */
 #pragma SWIG cpperraswarn=0

SWIG−1.3 Documentation

7.10 The #error and #warning directives 101

8 SWIG library
The %include directive and library search path•
C Arrays and Pointers

cpointer.i♦
carrays.i♦
cmalloc.i♦
cdata.i♦

•

C String Handling
Default string handling♦
Passing binary data♦
Using %newobject to release memory♦
cstring.i♦

•

STL/C++ Library
std_string.i♦
std_vector.i♦
STL exceptions♦

•

Utility Libraries
exception.i♦

•

To help build extension modules, SWIG is packaged with a library of support files that you can include in your own interfaces.
These files often define new SWIG directives or provide utility functions that can be used to access parts of the standard C and
C++ libraries. This chapter provides a reference to the current set of supported library files.

Compatibility note: Older versions of SWIG included a number of library files for manipulating pointers, arrays, and other
structures. Most these files are now deprecated and have been removed from the distribution. Alternative libraries provide similar
functionality. Please read this chapter carefully if you used the old libraries.

8.1 The %include directive and library search path

Library files are included using the %include directive. When searching for files, directories are searched in the following
order:

The current directory•
Directories specified with the −I command line option•
./swig_lib•
/usr/local/lib/swig_lib (or wherever you installed SWIG)•
On Windows, SWIG also looks for the library relative to the location of swig.exe.•

Within each directory, SWIG first looks for a subdirectory corresponding to a target language (e.g., python, tcl, etc.). If found,
SWIG will search the language specific directory first. This allows for language−specific implementations of library files.

You can override the location of the SWIG library by setting the SWIG_LIB environment variable.

8.2 C Arrays and Pointers

This section describes library modules for manipulating low−level C arrays and pointers. The primary use of these modules is in
supporting C declarations that manipulate bare pointers such as int *, double *, or void *. The modules can be used to
allocate memory, manufacture pointers, dereference memory, and wrap pointers as class−like objects. Since these functions
provide direct access to memory, their use is potentially unsafe and you should exercise caution.

8.2.1 cpointer.i

The cpointer.i module defines macros that can be used to used to generate wrappers around simple C pointers. The primary

8 SWIG library 102

use of this module is in generating pointers to primitive datatypes such as int and double.

%pointer_functions(type,name)

Generates a collection of four functions for manipulating a pointer type *:

type *new_name()

Creates a new object of type type and returns a pointer to it. In C, the object is created using calloc(). In C++, new
is used.

type *copy_name(type value)

Creates a new object of type type and returns a pointer to it. An initial value is set by copying it from value. In C, the
object is created using calloc(). In C++, new is used.

type *delete_name(type *obj)

Deletes an object type type.

void name_assign(type *obj, type value)

Assigns *obj = value.

type name_value(type *obj)

Returns the value of *obj.

When using this macro, type may be any type and name must be a legal identifier in the target language. name should not
correspond to any other name used in the interface file.

Here is a simple example of using %pointer_functions():

%module example
%include "cpointer.i"

/* Create some functions for working with "int *" */
%pointer_functions(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python:

>>> import example
>>> c = example.new_intp() # Create an "int" for storing result
>>> example.add(3,4,c) # Call function
>>> example.intp_value(c) # Dereference
7
>>> example.delete_intp(c) # Delete

%pointer_class(type,name)

Wraps a pointer of type * inside a class−based interface. This interface is as follows:

struct name {
 name(); // Create pointer object
 ~name(); // Delete pointer object
 void assign(type value); // Assign value

SWIG−1.3 Documentation

8.2.1 cpointer.i 103

 type value(); // Get value
 type *cast(); // Cast the pointer to original type
 static name *frompointer(type *); // Create class wrapper from existing
 // pointer
};

When using this macro, type is restricted to a simple type name like int, float, or Foo. Pointers and other complicated
types are not allowed. name must be a valid identifier not already in use. When a pointer is wrapped as a class, the "class"
may be transparently passed to any function that expects the pointer.

If the target language does not support proxy classes, the use of this macro will produce the example same functions as
%pointer_functions() macro.

It should be noted that the class interface does introduce a new object or wrap a pointer inside a special structure. Instead, the
raw pointer is used directly.

Here is the same example using a class instead:

%module example
%include "cpointer.i"

/* Wrap a class interface around an "int *" */
%pointer_class(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python (using proxy classes)

>>> import example
>>> c = example.intp() # Create an "int" for storing result
>>> example.add(3,4,c) # Call function
>>> c.value() # Dereference
7

Of the two macros, %pointer_class is probably the most convenient when working with simple pointers. This is
because the pointers are access like objects and they can be easily garbage collected (destruction of the pointer object
destroys the underlying object).

%pointer_cast(type1, type2, name)

Creates a casting function that converts type1 to type2. The name of the function is name. For example:

%pointer_cast(int *, unsigned int *, int_to_uint);

In this example, the function int_to_uint() would be used to cast types in the target language.

Note: None of these macros can be used to safely work with strings (char * or char **).

Note: When working with simple pointers, typemaps can often be used to provide more seamless operation.

8.2.2 carrays.i

This module defines macros that assist in wrapping ordinary C pointers as arrays. The module does not provide any safety or an
extra layer of wrapping−−it merely provides functionality for creating, destroying, and modifying the contents of raw C array
data.

%array_functions(type,name)

SWIG−1.3 Documentation

8.2.2 carrays.i 104

Creates four functions.

type *new_name(int nelements)

Creates a new array of objects of type type. In C, the array is allocated using calloc(). In C++, new [] is used.

type *delete_name(type *ary)

Deletes an array. In C, free() is used. In C++, delete [] is used.

type name_getitem(type *ary, int index)

Returns the value ary[index].

void name_setitem(type *ary, int index, type value)

Assigns ary[index] = value.

When using this macro, type may be any type and name must be a legal identifier in the target language. name should not
correspond to any other name used in the interface file.

Here is an example of %array_functions(). Suppose you had a function like this:

void print_array(double x[10]) {
 int i;
 for (i = 0; i < 10; i++) {
 printf("[%d] = %g\n", i, x[i]);
 }
}

To wrap it, you might write this:

%module example

%include "carrays.i"
%array_functions(double, doubleArray);

void print_array(double x[10]);

Now, in a scripting language, you might write this:

a = new_doubleArray(10) # Create an array
for i in range(0,10):
 doubleArray_setitem(a,i,2*i) # Set a value
print_array(a) # Pass to C
delete_doubleArray(a) # Destroy array

%array_class(type,name)

Wraps a pointer of type * inside a class−based interface. This interface is as follows:

struct name {
 name(int nelements); // Create an array
 ~name(); // Delete array
 type getitem(int index); // Return item
 void setitem(int index, type value); // Set item
 type *cast(); // Cast to original type
 static name *frompointer(type *); // Create class wrapper from
 // existing pointer
};

SWIG−1.3 Documentation

8.2.2 carrays.i 105

When using this macro, type is restricted to a simple type name like int or float. Pointers and other complicated types
are not allowed. name must be a valid identifier not already in use. When a pointer is wrapped as a class, it can be
transparently passed to any function that expects the pointer.

When combined with proxy classes, the %array_class() macro can be especially useful. For example:

%module example
%include "carrays.i"
%array_class(double, doubleArray);

void print_array(double x[10]);

Allows you to do this:

import example
c = example.doubleArray(10) # Create double[10]
for i in range(0,10):
 c[i] = 2*i # Assign values
example.print_array(c) # Pass to C

Note: These macros do not encapsulate C arrays inside a special data structure or proxy. There is no bounds checking or safety of
any kind. If you want this, you should consider using a special array object rather than a bare pointer.

Note: %array_functions() and %array_class() should not be used with types of char or char *.

8.2.3 cmalloc.i

This module defines macros for wrapping the low−level C memory allocation functions malloc(), calloc(), realloc(),
and free().

%malloc(type [,name=type])

Creates a wrapper around malloc() with the following prototype:

type *malloc_name(int nbytes = sizeof(type));

If type is void, then the size parameter nbytes is required. The name parameter only needs to be specified when
wrapping a type that is not a valid identifier (e.g., "int *", "double **", etc.).

%calloc(type [,name=type])

Creates a wrapper around calloc() with the following prototype:

type *calloc_name(int nobj =1, int sz = sizeof(type));

If type is void, then the size parameter sz is required.

%realloc(type [,name=type])

Creates a wrapper around realloc() with the following prototype:

type *realloc_name(type *ptr, int nitems);

Note: unlike the C realloc(), the wrapper generated by this macro implicitly includes the size of the corresponding type.
For example, realloc_int(p, 100) reallocates p so that it holds 100 integers.

%free(type [,name=type])

SWIG−1.3 Documentation

8.2.3 cmalloc.i 106

Creates a wrapper around free() with the following prototype:

void free_name(type *ptr);

%sizeof(type [,name=type])

Creates the constant:

%constant int sizeof_name = sizeof(type);

%allocators(type [,name=type])

Generates wrappers for all five of the above operations.

Here is a simple example that illustrates the use of these macros:

// SWIG interface
%module example
%include "cmalloc.i"

%malloc(int);
%free(int);

%malloc(int *, intp);
%free(int *, intp);

%allocators(double);

Now, in a script:

>>> from example import *
>>> a = malloc_int()
>>> a
'_000efa70_p_int'
>>> free_int(a)
>>> b = malloc_intp()
>>> b
'_000efb20_p_p_int'
>>> free_intp(b)
>>> c = calloc_double(50)
>>> c
'_000fab98_p_double'
>>> c = realloc_double(100000)
>>> free_double(c)
>>> print sizeof_double
8
>>>

8.2.4 cdata.i

The cdata.i module defines functions for converting raw C data to and from strings in the target language. The primary
applications of this module would be packing/unpacking of binary data structures−−−for instance, if you needed to extract data
from a buffer. The target language must support strings with embedded binary data in order for this to work.

char *cdata(void *ptr, int nbytes)

Converts nbytes of data at ptr into a string. ptr can be any pointer.

void memmove(void *ptr, char *s)

SWIG−1.3 Documentation

8.2.4 cdata.i 107

Copies all of the string data in s into the memory pointed to by ptr. The string may contain embedded NULL bytes. The
length of the string is implicitly determined in the underlying wrapper code.

One use of these functions is packing and unpacking data from memory. Here is a short example:

// SWIG interface
%module example
%include "carrays.i"
%include "cdata.i"

%array_class(int, intArray);

Python example:

>>> a = intArray(10)
>>> for i in range(0,10):
... a[i] = i
>>> b = cdata(a,40)
>>> b
'\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t'
>>> c = intArray(10)
>>> memmove(c,b)
>>> print c[4]
4
>>>

Since the size of data is not always known, the following macro is also defined:

%cdata(type [,name=type])

Generates the following function for extracting C data for a given type.

char *cdata_name(type* ptr, int nitems)

nitems is the number of items of the given type to extract.

Note: These functions provide direct access to memory and can be used to overwrite data. Clearly they are unsafe.

8.3 C String Handling

A common problem when working with C programs is dealing with functions that manipulate raw character data using char *.
In part, problems arise because there are different interpretations of char *−−−it could be a NULL−terminated string or it could
point to binary data. Moreover, functions that manipulate raw strings may mutate data, perform implicit memory allocations, or
utilize fixed−sized buffers.

The problems (and perils) of using char * are well−known. However, SWIG is not in the business of enforcing morality. The
modules in this section provide basic functionality for manipulating raw C strings.

8.3.1 Default string handling

Suppose you have a C function with this prototype:

char *foo(char *s);

The default wrapping behavior for this function is to set s to a raw char * that refers to the internal string data in the target
language. In other words, if you were using a language like Tcl, and you wrote this,

% foo Hello

SWIG−1.3 Documentation

8.3 C String Handling 108

then s would point to the representation of "Hello" inside the Tcl interpreter. When returning a char *, SWIG assumes that it is
a NULL−terminated string and makes a copy of it. This gives the target language its own copy of the result.

There are obvious problems with the default behavior. First, since a char * argument points to data inside the target language, it
is NOT safe for a function to modify this data (doing so may corrupt the interpreter and lead to a crash). Furthermore, the default
behavior does not work well with binary data. Instead, strings are assumed to be NULL−terminated.

8.3.2 Passing binary data

If you have a function that expects binary data,

int parity(char *str, int len, int initial);

you can wrap the parameters (char *str, int len) as a single argument using a typemap. Just do this:

%apply (char *STRING, int LENGTH) { (char *str, int len) };
...
int parity(char *str, int len, int initial);

Now, in the target language, you can use binary string data like this:

>>> s = "H\x00\x15eg\x09\x20"
>>> parity(s,0)

In the wrapper function, the passed string will be expanded to a pointer and length parameter.

8.3.3 Using %newobject to release memory

If you have a function that allocates memory like this,

char *foo() {
 char *result = (char *) malloc(...);
 ...
 return result;
}

then the SWIG generated wrappers will have a memory leak−−the returned data will be copied into a string object and the old
contents ignored.

To fix the memory leak, use the %newobject directive.

%newobject foo;
...
char *foo();

This will release the result.

8.3.4 cstring.i

The cstring.i library file provides a collection of macros for dealing with functions that either mutate string arguments or
which try to output string data through their arguments. An example of such a function might be this rather questionable
implementation:

void get_path(char *s) {
 // Potential buffer overflow−−−uh, oh.
 sprintf(s,"%s/%s", base_directory, sub_directory);
}
...
// Somewhere else in the C program

SWIG−1.3 Documentation

8.3.1 Default string handling 109

{
 char path[1024];
 ...
 get_path(path);
 ...
}

(Off topic rant: If your program really has functions like this, you would be well−advised to replace them with safer alternatives
involving bounds checking).

The macros defined in this module all expand to various combinations of typemaps. Therefore, the same pattern matching rules
and ideas apply.

%cstring_bounded_output(parm, maxsize)

Turns parameter parm into an output value. The output string is assumed to be NULL−terminated and smaller than
maxsize characters. Here is an example:

%cstring_bounded_output(char *path, 1024);
...
void get_path(char *path);

In the target language:

>>> get_path()
/home/beazley/packages/Foo/Bar
>>>

Internally, the wrapper function allocates a small buffer (on the stack) of the requested size and passes it as the pointer value.
Data stored in the buffer is then returned as a function return value. If the function already returns a value, then the return
value and the output string are returned together (multiple return values). If more than maxsize bytes are written, your
program will crash with a buffer overflow!

%cstring_chunk_output(parm, chunksize)

Turns parameter parm into an output value. The output string is always chunksize and may contain binary data. Here is
an example:

%cstring_chunk_output(char *packet, PACKETSIZE);
...
void get_packet(char *packet);

In the target language:

>>> get_packet()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>

This macro is essentially identical to %cstring_bounded_output. The only difference is that the result is always
chunksize characters. Furthermore, the result can contain binary data. If more than maxsize bytes are written, your
program will crash with a buffer overflow!

%cstring_bounded_mutable(parm, maxsize)

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL−terminated and smaller than
maxsize characters. The output string is also assumed to be NULL−terminated and less than maxsize characters.

%cstring_bounded_mutable(char *ustr, 1024);
...
void make_upper(char *ustr);

SWIG−1.3 Documentation

8.3.4 cstring.i 110

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'
>>>

Internally, this macro is almost exactly the same as %cstring_bounded_output. The only difference is that the
parameter accepts an input value that is used to initialize the internal buffer. It is important to emphasize that this function
does not mutate the string value passed−−−instead it makes a copy of the input value, mutates it, and returns it as a result. If
more than maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_mutable(parm [, expansion])

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL−terminated. An optional
parameter expansion specifies the number of extra characters by which the string might grow when it is modified. The
output string is assumed to be NULL−terminated and less than the size of the input string plus any expansion characters.

%cstring_mutable(char *ustr);
...
void make_upper(char *ustr);

%cstring_mutable(char *hstr, HEADER_SIZE);
...
void attach_header(char *hstr);

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'
>>> attach_header("Hello world")
'header: Hello world'
>>>

This macro differs from %cstring_bounded_mutable() in that a buffer is dynamically allocated (on the heap using
malloc/new). This buffer is always large enough to store a copy of the input value plus any expansion bytes that might
have been requested. It is important to emphasize that this function does not directly mutate the string value
passed−−−instead it makes a copy of the input value, mutates it, and returns it as a result. If the function expands the result
by more than expansion extra bytes, then the program will crash with a buffer overflow!

%cstring_output_maxsize(parm, maxparm)

This macro is used to handle bounded character output functions where both a char * and a maximum length parameter are
provided. As input, a user simply supplies the maximum length. The return value is assumed to be a NULL−terminated
string.

%cstring_output_maxsize(char *path, int maxpath);
...
void get_path(char *path, int maxpath);

In the target language:

>>> get_path(1024)
'/home/beazley/Packages/Foo/Bar'
>>>

This macro provides a safer alternative for functions that need to write string data into a buffer. User supplied buffer size is
used to dynamically allocate memory on heap. Results are placed into that buffer and returned as a string object.

%cstring_output_withsize(parm, maxparm)

SWIG−1.3 Documentation

8.3.4 cstring.i 111

This macro is used to handle bounded character output functions where both a char * and a pointer int * are passed.
Initially, the int * parameter points to a value containing the maximum size. On return, this value is assumed to contain
the actual number of bytes. As input, a user simply supplies the maximum length. The output value is a string that may
contain binary data.

%cstring_output_withsize(char *data, int *maxdata);
...
void get_data(char *data, int *maxdata);

In the target language:

>>> get_data(1024)
'x627388912'
>>> get_data(1024)
'xyzzy'
>>>

This macro is a somewhat more powerful version of %cstring_output_chunk(). Memory is dynamically allocated
and can be arbitrary large. Furthermore, a function can control how much data is actually returned by changing the value of
the maxparm argument.

%cstring_output_allocate(parm, release)

This macro is used to return strings that are allocated within the program and returned in a parameter of type char **. For
example:

void foo(char **s) {
 *s = (char *) malloc(64);
 sprintf(*s, "Hello world\n");
}

The returned string is assumed to be NULL−terminated. release specifies how the allocated memory is to be released (if
applicable). Here is an example:

%cstring_output_allocate(char **s, free(*$1));
...
void foo(char **s);

In the target language:

>>> foo()
'Hello world\n'
>>>

%cstring_output_allocate_size(parm, szparm, release)

This macro is used to return strings that are allocated within the program and returned in two parameters of type char **
and int *. For example:

void foo(char **s, int *sz) {
 *s = (char *) malloc(64);
 *sz = 64;
 // Write some binary data
 ...
}

The returned string may contain binary data. release specifies how the allocated memory is to be released (if applicable).
Here is an example:

%cstring_output_allocate_size(char **s, int *slen, free(*$1));
...

SWIG−1.3 Documentation

8.3.4 cstring.i 112

void foo(char **s, int *slen);

In the target language:

>>> foo()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>

This is the safest and most reliable way to return binary string data in SWIG. If you have functions that conform to another
prototype, you might consider wrapping them with a helper function. For example, if you had this:

char *get_data(int *len);

You could wrap it with a function like this:

void my_get_data(char **result, int *len) {
 *result = get_data(len);
}

Comments:

Support for the cstring.i module depends on the target language. Not all SWIG modules currently support this
library.

•

Reliable handling of raw C strings is a delicate topic. There are many ways to accomplish this in SWIG. This library
provides support for a few common techniques.

•

If used in C++, this library uses new and delete [] for memory allocation. If using ANSI C, the library uses
malloc() and free().

•

Rather than manipulating char * directly, you might consider using a special string structure or class instead.•

8.4 STL/C++ Library

The library modules in this section provide access to parts of the standard C++ library including the STL. SWIG support for the
STL is an ongoing effort. Support is quite comprehensive for some language modules but some of the lesser used modules do not
have quite as much library code written.

The following table shows which C++ classes are supported and the equivalent SWIG interface library file for the C++ library.

C++ class C++ Library file SWIG Interface library file

std::dequedeque std_deque.i

std::list list std_list.i

std::map map std_map.i

std::pair utility std_pair.i

std::set set std_set.i

std::string string std_string.i

std::vectorvector std_vector.i
The list is by no means complete; some language modules support a subset of the above and some support additional STL classes.
Please look for the library files in the appropriate language library directory.

8.4.1 std_string.i

The std_string.i library provides typemaps for converting C++ std::string objects to and from strings in the target
scripting language. For example:

%module example
%include "std_string.i"

SWIG−1.3 Documentation

8.4 STL/C++ Library 113

std::string foo();
void bar(const std::string &x);

In the target language:

x = foo(); # Returns a string object
bar("Hello World"); # Pass string as std::string

A common problem that people encounter is that of classes/structures containing a std::string. This can be overcome by
defining a typemap. For example:

%module example
%include "std_string.i"

%apply const std::string& {std::string* foo};

struct my_struct
{
 std::string foo;
};

In the target language:

x = my_struct();
x.foo="Hello World"; # assign with string
print x.foo; # print as string

This module only supports types std::string and const std::string &. Pointers and non−const references are left
unmodified and returned as SWIG pointers.

This library file is fully aware of C++ namespaces. If you export std::string or rename it with a typedef, make sure you
include those declarations in your interface. For example:

%module example
%include "std_string.i"

using namespace std;
typedef std::string String;
...
void foo(string s, const String &t); // std_string typemaps still applied

Note: The std_string library is incompatible with Perl on some platforms. We're looking into it.

8.4.2 std_vector.i

The std_vector.i library provides support for the C++ vector class in the STL. Using this library involves the use of the
%template directive. All you need to do is to instantiate different versions of vector for the types that you want to use. For
example:

%module example
%include "std_vector.i"

namespace std {
 %template(vectori) vector<int>;
 %template(vectord) vector<double>;
};

When a template vector<X> is instantiated a number of things happen:

SWIG−1.3 Documentation

8.4.1 std_string.i 114

A class that exposes the C++ API is created in the target language . This can be used to create objects, invoke methods,
etc. This class is currently a subset of the real STL vector class.

•

Input typemaps are defined for vector<X>, const vector<X> &, and const vector<X> *. For each of these,
a pointer vector<X> * may be passed or a native list object in the target language.

•

An output typemap is defined for vector<X>. In this case, the values in the vector are expanded into a list object in the
target language.

•

For all other variations of the type, the wrappers expect to receive a vector<X> * object in the usual manner.•
An exception handler for std::out_of_range is defined.•
Optionally, special methods for indexing, item retrieval, slicing, and element assignment may be defined. This depends
on the target language.

•

To illustrate the use of this library, consider the following functions:

/* File : example.h */

#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>

double average(std::vector<int> v) {
 return std::accumulate(v.begin(),v.end(),0.0)/v.size();
}

std::vector<double> half(const std::vector<double>& v) {
 std::vector<double> w(v);
 for (unsigned int i=0; i<w.size(); i++)
 w[i] /= 2.0;
 return w;
}

void halve_in_place(std::vector<double>& v) {
 std::transform(v.begin(),v.end(),v.begin(),
 std::bind2nd(std::divides<double>(),2.0));
}

To wrap with SWIG, you might write the following:

%module example
%{
#include "example.h"
%}

%include "std_vector.i"
// Instantiate templates used by example
namespace std {
 %template(IntVector) vector<int>;
 %template(DoubleVector) vector<double>;
}

// Include the header file with above prototypes
%include "example.h"

Now, to illustrate the behavior in the scripting interpreter, consider this Python example:

>>> from example import *
>>> iv = IntVector(4) # Create an vector<int>
>>> for i in range(0,4):
... iv[i] = i
>>> average(iv) # Call method
1.5
>>> average([0,1,2,3]) # Call with list
1.5
>>> half([1,2,3]) # Half a list

SWIG−1.3 Documentation

8.4.2 std_vector.i 115

(0.5,1.0,1.5)
>>> halve_in_place([1,2,3]) # Oops
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_std__vectorTdouble_t
>>> dv = DoubleVector(4)
>>> for i in range(0,4):
... dv[i] = i
>>> halve_in_place(dv) # Ok
>>> for i in dv:
... print i
...
0.0
0.5
1.0
1.5
>>> dv[20] = 4.5
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "example.py", line 81, in __setitem__
 def __setitem__(*args): return apply(examplec.DoubleVector___setitem__,args)
IndexError: vector index out of range
>>>

This library module is fully aware of C++ namespaces. If you use vectors with other names, make sure you include the
appropriate using or typedef directives. For example:

%include "std_vector.i"

namespace std {
 %template(IntVector) vector<int>;
}

using namespace std;
typedef std::vector Vector;

void foo(vector<int> *x, const Vector &x);

Note: This module makes use of several advanced SWIG features including templatized typemaps and template partial
specialization. If you are tring to wrap other C++ code with templates, you might look at the code contained in std_vector.i.
Alternatively, you can show them the code if you want to make their head explode.

Note: This module is defined for all SWIG target languages. However argument conversion details and the public API exposed to
the interpreter vary.

Note: std_vector.i was written by Luigi "The Amazing" Ballabio.

8.4.3 STL exceptions

Many of the STL wrapper functions add parameter checking and will throw a language dependent error/exception should the
values not be valid. The classic example is array bounds checking. The library wrappers are written to throw a C++ exception in
the case of error. The C++ exception in turn gets converted into an appropriate error/exception for the target language. By and
large this handling should not need customising, however, customisation can easily be achieved by supplying appropriate
"throws" typemaps. For example:

%module example
%include "std_vector.i"
%typemap(throws) std::out_of_range {
 // custom exception handler
}
%template(VectInt) std::vector<int>;

SWIG−1.3 Documentation

8.4.3 STL exceptions 116

The custom exception handler might, for example, log the exception then convert it into a specific error/exception for the target
language.

When using the STL it is advisable to add in an exception handler to catch all STL exceptions. The %exception directive can
be used by placing the following code before any other methods or libraries to be wrapped:

%include "exception.i"

%exception {
 try {
 $action
 } catch (const std::exception& e) {
 SWIG_exception(SWIG_RuntimeError, e.what());
 }
}

Any thrown STL exceptions will then be gracefully handled instead of causing a crash.

8.5 Utility Libraries

8.5.1 exception.i

The exception.i library provides a language−independent function for raising a run−time exception in the target language.
This library is largely used by the SWIG library writers. If possible, use the error handling scheme available to your target
language as there is greater flexibility in what errors/exceptions can be thrown.

SWIG_exception(int code, const char *message)

Raises an exception in the target language. code is one of the following symbolic constants:

SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError

message is a string indicating more information about the problem.

The primary use of this module is in writing language−independent exception handlers. For example:

%include "exception.i"
%exception std::vector::getitem {
 try {
 $action
 } catch (std::out_of_range& e) {
 SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
 }
}

SWIG−1.3 Documentation

8.5 Utility Libraries 117

9 Argument Handling
The typemaps.i library

Introduction♦
Input parameters♦
Output parameters♦
Input/Output parameters♦
Using different names♦

•

Applying constraints to input values
Simple constraint example♦
Constraint methods♦
Applying constraints to new datatypes♦

•

Disclaimer: This chapter is under construction.

In Chapter 3, SWIG's treatment of basic datatypes and pointers was described. In particular, primitive types such as int and
double are mapped to corresponding types in the target language. For everything else, pointers are used to refer to structures,
classes, arrays, and other user−defined datatypes. However, in certain applications it is desirable to change SWIG's handling of a
specific datatype. For example, you might want to return multiple values through the arguments of a function. This chapter
describes some of the techniques for doing this.

9.1 The typemaps.i library

This section describes the typemaps.i library file−−commonly used to change certain properties of argument conversion.

9.1.1 Introduction

Suppose you had a C function like this:

void add(double a, double b, double *result) {
 *result = a + b;
}

From reading the source code, it is clear that the function is storing a value in the double *result parameter. However, since
SWIG does not examine function bodies, it has no way to know that this is the underlying behavior.

One way to deal with this is to use the typemaps.i library file and write interface code like this:

// Simple example using typemaps
%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };
%inlne %{
extern void add(double a, double b, double *result);
%}

The %apply directive tells SWIG that you are going to apply a special type handling rule to a type. The "double *OUTPUT"
specification is the name of a rule that defines how to return an output value from an argument of type double *. This rule gets
applied to all of the datatypes listed in curly braces−− in this case "double *result".

When the resulting module is created, you can now use the function like this (shown for Python):

>>> a = add(3,4)
>>> print a
7
>>>

9 Argument Handling 118

In this case, you can see how the output value normally returned in the third argument has magically been transformed into a
function return value. Clearly this makes the function much easier to use since it is no longer necessary to manufacture a special
double * object and pass it to the function somehow.

Once a typemap has been applied to a type, it stays in effect for all future occurrences of the type and name. For example, you
could write the following:

%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inline %{
extern void add(double a, double b, double *result);
extern void sub(double a, double b, double *result);
extern void mul(double a, double b, double *result);
extern void div(double a, double b, double *result);
%}
...

In this case, the double *OUTPUT rule is applied to all of the functions that follow.

Typemap transformations can even be extended to multiple return values. For example, consider this code:

%include "typemaps.i"
%apply int *OUTPUT { int *width, int *height };

// Returns a pair (width,height)
void getwinsize(int winid, int *width, int *height);

In this case, the function returns multiple values, allowing it to be used like this:

>>> w,h = genwinsize(wid)
>>> print w
400
>>> print h
300
>>>

It should also be noted that although the %apply directive is used to associate typemap rules to datatypes, you can also use the
rule names directly in arguments. For example, you could write this:

// Simple example using typemaps
%module example
%include "typemaps.i"

%{
extern void add(double a, double b, double *OUTPUT);
%}
extern void add(double a, double b, double *OUTPUT);

Typemaps stay in effect until they are explicitly deleted or redefined to something else. To clear a typemap, the %clear directive
should be used. For example:

%clear double *result; // Remove all typemaps for double *result

9.1.2 Input parameters

The following typemaps instruct SWIG that a pointer really only holds a single input value:

int *INPUT
short *INPUT

SWIG−1.3 Documentation

9.1.1 Introduction 119

long *INPUT
unsigned int *INPUT
unsigned short *INPUT
unsigned long *INPUT
double *INPUT
float *INPUT

When used, it allows values to be passed instead of pointers. For example, consider this function:

double add(double *a, double *b) {
 return *a+*b;
}

Now, consider this SWIG interface:

%module example
%include "typemaps.i"
...
%{
extern double add(double *, double *);
%}
extern double add(double *INPUT, double *INPUT);

When the function is used in the scripting language interpreter, it will work like this:

result = add(3,4)

9.1.3 Output parameters

The following typemap rules tell SWIG that pointer is the output value of a function. When used, you do not need to supply the
argument when calling the function. Instead, one or more output values are returned.

int *OUTPUT
short *OUTPUT
long *OUTPUT
unsigned int *OUTPUT
unsigned short *OUTPUT
unsigned long *OUTPUT
double *OUTPUT
float *OUTPUT

These methods can be used as shown in an earlier example. For example, if you have this C function :

void add(double a, double b, double *c) {
 *c = a+b;
}

A SWIG interface file might look like this :

%module example
%include "typemaps.i"
...
%inline %{
extern void add(double a, double b, double *OUTPUT);
%}

In this case, only a single output value is returned, but this is not a restriction. An arbitrary number of output values can be
returned by applying the output rules to more than one argument (as shown previously).

SWIG−1.3 Documentation

9.1.2 Input parameters 120

If the function also returns a value, it is returned along with the argument. For example, if you had this:

extern int foo(double a, double b, double *OUTPUT);

The function will return two values like this:

iresult, dresult = foo(3.5, 2)

9.1.4 Input/Output parameters

When a pointer serves as both an input and output value you can use the following typemaps :

int *INOUT
short *INOUT
long *INOUT
unsigned int *INOUT
unsigned short *INOUT
unsigned long *INOUT
double *INOUT
float *INOUT

A C function that uses this might be something like this:

void negate(double *x) {
 *x = −(*x);
}

To make x function as both and input and output value, declare the function like this in an interface file :

%module example
%include typemaps.i
...
%{
extern void negate(double *);
%}
extern void negate(double *INOUT);

Now within a script, you can simply call the function normally :

a = negate(3); # a = −3 after calling this

One subtle point of the INOUT rule is that many scripting languages enforce mutability constraints on primitive objects (meaning
that simple objects like integers and strings aren't supposed to change). Because of this, you can't just modify the object's value in
place as the underlying C function does in this example. Therefore, the INOUT rule returns the modified value as a new object
rather than directly overwriting the value of the original input object.

Compatibility note : The INOUT rule used to be known as BOTH in earlier versions of SWIG. Backwards compatibility is
preserved, but deprecated.

9.1.5 Using different names

As previously shown, the %apply directive can be used to apply the INPUT, OUTPUT, and INOUT typemaps to different
argument names. For example:

// Make double *result an output value
%apply double *OUTPUT { double *result };

// Make Int32 *in an input value

SWIG−1.3 Documentation

9.1.3 Output parameters 121

%apply int *INPUT { Int32 *in };

// Make long *x inout
%apply long *INOUT {long *x};

To clear a rule, the %clear directive is used:

%clear double *result;
%clear Int32 *in, long *x;

Typemap declarations are lexically scoped so a typemap takes effect from the point of definition to the end of the file or a
matching %clear declaration.

9.2 Applying constraints to input values

In addition to changing the handling of various input values, it is also possible to use typemaps to apply constraints. For example,
maybe you want to insure that a value is positive, or that a pointer is non−NULL. This can be accomplished including the
constraints.i library file.

9.2.1 Simple constraint example

The constraints library is best illustrated by the following interface file :

// Interface file with constraints
%module example
%include "constraints.i"

double exp(double x);
double log(double POSITIVE); // Allow only positive values
double sqrt(double NONNEGATIVE); // Non−negative values only
double inv(double NONZERO); // Non−zero values
void free(void *NONNULL); // Non−NULL pointers only

The behavior of this file is exactly as you would expect. If any of the arguments violate the constraint condition, a scripting
language exception will be raised. As a result, it is possible to catch bad values, prevent mysterious program crashes and so on.

9.2.2 Constraint methods

The following constraints are currently available

POSITIVE Any number > 0 (not zero)
NEGATIVE Any number < 0 (not zero)
NONNEGATIVE Any number >= 0
NONPOSITIVE Any number <= 0
NONZERO Nonzero number
NONNULL Non−NULL pointer (pointers only).

9.2.3 Applying constraints to new datatypes

The constraints library only supports the primitive C datatypes, but it is easy to apply it to new datatypes using %apply. For
example :

// Apply a constraint to a Real variable
%apply Number POSITIVE { Real in };

// Apply a constraint to a pointer type
%apply Pointer NONNULL { Vector * };

SWIG−1.3 Documentation

9.1.5 Using different names 122

The special types of "Number" and "Pointer" can be applied to any numeric and pointer variable type respectively. To later
remove a constraint, the %clear directive can be used :

%clear Real in;
%clear Vector *;

SWIG−1.3 Documentation

9.2.3 Applying constraints to new datatypes 123

10 Typemaps
Introduction

Type conversion♦
Typemaps♦
Pattern matching♦
Reusing typemaps♦
What can be done with typemaps?♦
What can't be done with typemaps?♦
The rest of this chapter♦

•

Typemap specifications
Defining a typemap♦
Typemap scope♦
Copying a typemap♦
Deleting a typemap♦
Placement of typemaps♦

•

Pattern matching rules
Basic matching rules♦
Typedef reductions♦
Default typemaps♦
Mixed default typemaps♦
Multi−arguments typemaps♦

•

Code generation rules
Scope♦
Declaring new local variables♦
Special variables♦

•

Common typemap methods
"in" typemap♦
"typecheck" typemap♦
"out" typemap♦
"arginit" typemap♦
"default" typemap♦
"check" typemap♦
"argout" typemap♦
"freearg" typemap♦
"newfree" typemap♦
"memberin" typemap♦
"varin" typemap♦
"varout" typemap♦
"throws" typemap♦

•

Some typemap examples
Typemaps for arrays♦
Implementing constraints with typemaps♦

•

Typemaps for multiple languages•
Multi−argument typemaps•
The run−time type checker

Implementation♦
Usage♦

•

Typemaps and overloading•
More about%apply and %clear•
Reducing wrapper code size•
Passing data between typemaps•
Where to go for more information?•

Disclaimer: This chapter is under construction!

10 Typemaps 124

10.1 Introduction

Chances are, you are reading this chapter for one of two reasons; you either want to customize SWIG's behavior or you overheard
someone mumbling some incomprehensible drivel about "typemaps" and you asked yourself "typemaps, what are those?" That
said, let's start with a short disclaimer that "typemaps" are an advanced customization feature that provide direct access to SWIG's
low−level code generator. Not only that, they are an integral part of the SWIG C++ type system (a non−trivial topic of its own).
Typemaps are generally not a required part of using SWIG. Therefore, you might want to re−read the earlier chapters if you have
found your way to this chapter with only a vaque idea of what SWIG already does by default.

10.1.1 Type conversion

One of the most important problems in wrapper code generation is the conversion of datatypes between programming languages.
Specifically, for every C/C++ declaration, SWIG must somehow generate wrapper code that allows values to be passed back and
forth between languages. Since every programming language represents data differently, this is not a simple of matter of simply
linking code together with the C linker. Instead, SWIG has to know something about how data is represented in each language and
how it can be manipulated.

To illustrate, suppose you had a simple C function like this:

int factorial(int n);

To access this function from Python, a pair of Python API functions are used to convert integer values. For example:

long PyInt_AsLong(PyObject *obj); /* Python −−> C */
PyObject *PyInt_FromLong(long x); /* C −−> Python */

The first function is used to convert the input argument from a Python integer object to C long. The second function is used to
convert a value from C back into a Python integer object.

Inside the wrapper function, you might see these functions used like this:

PyObject *wrap_factorial(PyObject *self, PyObject *args) {
 int arg1;
 int result;
 PyObject *obj1;
 PyObject *resultobj;

 if (!PyArg_ParseTuple("O:factorial", &obj1)) return NULL;
arg1 = PyInt_AsLong(obj1);

 result = factorial(arg1);
resultobj = PyInt_FromLong(result);

 return resultobj;
}

Every target language supported by SWIG has functions that work in a similar manner. For example, in Perl, the following
functions are used:

IV SvIV(SV *sv); /* Perl −−> C */
void sv_setiv(SV *sv, IV val); /* C −−> Perl */

In Tcl:

int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *obj, long *value);
Tcl_Obj *Tcl_NewIntObj(long value);

The precise details are not so important. What is important is that all of the underlying type conversion is handled by collections
of utility functions and short bits of C code like this−−−you simply have to read the extension documentation for your favorite
language to know how it works (an exercise left to the reader).

SWIG−1.3 Documentation

10.1 Introduction 125

10.1.2 Typemaps

Since type handling is so central to wrapper code generation, SWIG allows it to be completely defined (or redefined) by the user.
To do this, a special %typemap directive is used. For example:

/* Convert from Python −−> C */
%typemap(in) int {
 $1 = PyInt_AsLong($input);
}

/* Convert from C −−> Python */
%typemap(out) int {
 $result = PyInt_FromLong($1);
}

At first glance, this code will look a little confusing. However, there is really not much to it. The first typemap (the "in" typemap)
is used to convert a value from the target language to C. The second typemap (the "out" typemap) is used to convert in the other
direction. The content of each typemap is a small fragment of C code that is inserted directly into the SWIG generated wrapper
functions. Within this code, a number of special variables prefixed with a $ are expanded. These are really just placeholders for C
variables that are generated in the course of creating the wrapper function. In this case, $input refers to an input object that
needs to be converted to C and $result refers to an object that is going to be returned by a wrapper function. $1 refers to a C
variable that has the same type as specified in the typemap declaration (an int in this example).

A short example might make this a little more clear. If you were wrapping a function like this:

int gcd(int x, int y);

A wrapper function would look approximately like this:

PyObject *wrap_gcd(PyObject *self, PyObject *args) {
 int arg1;
 int arg2;
 int result;
 PyObject *obj1;
 PyObject *obj2;
 PyObject *resultobj;

 if (!PyArg_ParseTuple("OO:gcd", &obj1, &obj2)) return NULL;

 /* "in" typemap, argument 1 */
 {
 arg1 = PyInt_AsLong(obj1);
 }

 /* "in" typemap, argument 2 */
 {
 arg2 = PyInt_AsLong(obj2);
 }

 result = gcd(arg1,arg2);

 /* "out" typemap, return value */
 {
 resultobj = PyInt_FromLong(result);
 }

 return resultobj;
}

In this code, you can see how the typemap code has been inserted into the function. You can also see how the special $ variables
have been expanded to match certain variable names inside the wrapper function. This is really the whole idea behind
typemaps−−they simply let you insert arbitrary code into different parts of the generated wrapper functions. Because arbitrary

SWIG−1.3 Documentation

10.1.2 Typemaps 126

code can be inserted, it possible to completely change the way in which values are converted.

10.1.3 Pattern matching

As the name implies, the purpose of a typemap is to "map" C datatypes to types in the target language. Once a typemap is defined
for a C datatype, it is applied to all future occurrences of that type in the input file. For example:

/* Convert from Perl −−> C */
%typemap(in) int {
 $1 = SvIV($input);
}

...
int factorial(int n);
int gcd(int x, int y);
int count(char *s, char *t, int max);

The matching of typemaps to C datatypes is more than a simple textual match. In fact, typemaps are fully built into the underlying
type system. Therefore, typemaps are unaffected by typedef, namespaces, and other declarations that might hide the underlying
type. For example, you could have code like this:

/* Convert from Ruby−−> C */
%typemap(in) int {
 $1 = NUM2INT($input);
}
...
typedef int Integer;
namespace foo {
 typedef Integer Number;
};

int foo(int x);
int bar(Integer y);
int spam(foo::Number a, foo::Number b);

In this case, the typemap is still applied to the proper arguments even though typenames don't always match the text "int". This
ability to track types is a critical part of SWIG−−in fact, all of the target language modules work merely define a set of typemaps
for the basic types. Yet, it is never necessary to write new typemaps for typenames introduced by typedef.

In addition to tracking typenames, typemaps may also be specialized to match against a specific argument name. For example,
you could write a typemap like this:

%typemap(in) double nonnegative {
 $1 = PyFloat_AsDouble($input);
 if ($1 < 0) {
 PyErr_SetString(PyExc_ValueError,"argument must be nonnegative.");
 return NULL;
 }
}

...
double sin(double x);
double cos(double x);
double sqrt(double nonnegative);

typedef double Real;
double log(Real nonnegative);
...

For certain tasks such as input argument conversion, typemaps can be defined for sequences of consecutive arguments. For
example:

%typemap(in) (char *str, int len) {

SWIG−1.3 Documentation

10.1.3 Pattern matching 127

 $1 = PyString_AsString($input); /* char *str */
 $2 = PyString_Size($input); /* int len */
}
...
int count(char *str, int len, char c);

In this case, a single input object is expanded into a pair of C arguments. This example also provides a hint to the unusual variable
naming scheme involving $1, $2, and so forth.

10.1.4 Reusing typemaps

Typemaps are normally defined for specific type and argument name patterns. However, typemaps can also be copied and reused.
One way to do this is to use assignment like this:

%typemap(in) Integer = int;
%typemap(in) (char *buffer, int size) = (char *str, int len);

A more general form of copying is found in the %apply directive like this:

%typemap(in) int {
 /* Convert an integer argument */
 ...
}
%typemap(out) int {
 /* Return an integer value */
 ...
}

/* Apply all of the integer typemaps to size_t */
%apply int { size_t };

%apply merely takes all of the typemaps that are defined for one type and applies them to other types. Note: you can include a
comma separated set of types in the { ... } part of %apply.

It should be noted that it is not necessary to copy typemaps for types that are related by typedef. For example, if you have this,

typedef int size_t;

then SWIG already knows that the int typemaps apply. You don't have to do anything.

10.1.5 What can be done with typemaps?

The primary use of typemaps is for defining wrapper generation behavior at the level of individual C/C++ datatypes. There are
currently six general categories of problems that typemaps address:

Argument handling

int foo(int x, double y, char *s);

Input argument conversion ("in" typemap).•
Input argument type checking ("typecheck" typemap).•
Output argument handling ("argout" typemap).•
Input argument value checking ("check" typemap).•
Input argument initialization ("arginit" typemap).•
Default arguments ("default" typemap).•
Input argument resource management ("freearg" typemap).•

Return value handling

SWIG−1.3 Documentation

10.1.4 Reusing typemaps 128

int foo(int x, double y, char *s);

Function return value conversion ("out" typemap).•
Return value resource management ("ret" typemap).•
Resource management for newly allocated objects ("newfree" typemap).•

Exception handling

int foo(int x, double y, char *s) throw(MemoryError, IndexError);

Handling of C++ exception specifications. ("throw" typemap).•

Global variables

int foo;

Assignment of a global variable. ("varin" typemap).•
Reading a global variable. ("varout" typemap).•

Member variables

struct Foo {
int x[20];

};

Assignment of data to a class/structure member. ("memberin" typemap).•

Constant creation

#define FOO 3
%constant int BAR = 42;
enum { ALE, LAGER, STOUT };

Creation of constant values. ("consttab" or "constcode" typemap).•

Details of each of these typemaps will be covered shortly. Also, certain language modules may define additional typemaps that
expand upon this list. For example, the Java module defines a variety of typemaps for controlling additional aspects of the Java
bindings. Consult language specific documentation for further details.

10.1.6 What can't be done with typemaps?

Typemaps can't be used to define properties that apply to C/C++ declarations as a whole. For example, suppose you had a
declaration like this,

Foo *make_Foo();

and you wanted to tell SWIG that make_Foo() returned a newly allocated object (for the purposes of providing better memory
management). Clearly, this property of make_Foo() is not a property that would be associated with the datatype Foo * by
itself. Therefore, a completely different SWIG customization mechanism (%feature) is used for this purpose. Consult the
Customization Features chapter for more information about that.

Typemaps also can't be used to rearrange or transform the order of arguments. For example, if you had a function like this:

void foo(int, char *);

you can't use typemaps to interchange the arguments, allowing you to call the function like this:

foo("hello",3) # Reversed arguments

SWIG−1.3 Documentation

10.1.5 What can be done with typemaps? 129

If you want to change the calling conventions of a function, write a helper function instead. For example:

%rename(foo) wrap_foo;
%inline %{
void wrap_foo(char *s, int x) {
 foo(x,s);
}
%}

10.1.7 The rest of this chapter

The rest of this chapter provides detailed information for people who want to write new typemaps. This information is of
particular importance to anyone who intends to write a new SWIG target language module. Power users can also use this
information to write application specific type conversion rules.

Since typemaps are strongly tied to the underlying C++ type system, subsequent sections assume that you are reasonably familiar
with the basic details of values, pointers, references, arrays, type qualifiers (e.g., const), structures, namespaces, templates, and
memory management in C/C++. If not, you would be well−advised to consult a copy of "The C Programming Language" by
Kernighan and Ritchie or "The C++ Programming Language" by Stroustrup before going any further.

10.2 Typemap specifications

This section describes the behavior of the %typemap directive itself.

10.2.1 Defining a typemap

New typemaps are defined using the %typemap declaration. The general form of this declaration is as follows (parts enclosed in
[...] are optional):

%typemap(method [, modifiers]) typelist code ;

method is a simply a name that specifies what kind of typemap is being defined. It is usually a name like "in", "out", or
"argout". The purpose of these methods is described later.

modifiers is an optional comma separated list of name="value" values. These are sometimes to attach extra information to a
typemap and is often target−language dependent.

typelist is a list of the C++ type patterns that the typemap will match. The general form of this list is as follows:

typelist : typepattern [, typepattern, typepattern, ...] ;

typepattern : type [(parms)]
 | type name [(parms)]
 | (typelist) [(parms)]

Each type pattern is either a simple type, a simple type and argument name, or a list of types in the case of multi−argument
typemaps. In addition, each type pattern can be parameterized with a list of temporary variables (parms). The purpose of these
variables will be explained shortly.

code specifies the C code used in the typemap. It can take any one of the following forms:

code : { ... }
 | " ... "
 | %{ ... %}

Here are some examples of valid typemap specifications:

SWIG−1.3 Documentation

10.1.6 What can't be done with typemaps? 130

/* Simple typemap declarations */
%typemap(in) int {
 $1 = PyInt_AsLong($input);
}
%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %{
 $1 = PyInt_AsLong($input);
%}

/* Typemap with extra argument name */
%typemap(in) int nonnegative {
 ...
}

/* Multiple types in one typemap */
%typemap(in) int, short, long {
 $1 = SvIV($input);
}

/* Typemap with modifiers */
%typemap(in,doc="integer") int "$1 = gh_scm2int($input);";

/* Typemap applied to patterns of multiple arguments */
%typemap(in) (char *str, int len),
 (char *buffer, int size)
{
 $1 = PyString_AsString($input);
 $2 = PyString_Size($input);
}

/* Typemap with extra pattern parameters */
%typemap(in, numinputs=0) int *output (int temp),
 long *output (long temp)
{
 $1 = &temp;
}

Admittedly, it's not the most readable syntax at first glance. However, the purpose of the individual pieces will become clear.

10.2.2 Typemap scope

Once defined, a typemap remains in effect for all of the declarations that follow. A typemap may be redefined for different
sections of an input file. For example:

// typemap1
%typemap(in) int {
...
}

int fact(int); // typemap1
int gcd(int x, int y); // typemap1

// typemap2
%typemap(in) int {
...
}

int isprime(int); // typemap2

One exception to the typemap scoping rules pertains to the %extend declaration. %extend is used to attach new declarations to
a class or structure definition. Because of this, all of the declarations in an %extend block are subject to the typemap rules that
are in effect at the point where the class itself is defined. For example:

class Foo {
 ...

SWIG−1.3 Documentation

10.2.1 Defining a typemap 131

};

%typemap(in) int {
 ...
}

%extend Foo {
 int blah(int x); // typemap has no effect. Declaration is attached to Foo which
 // appears before the %typemap declaration.
};

10.2.3 Copying a typemap

A typemap is copied by using assignment. For example:

%typemap(in) Integer = int;

or this:

%typemap(in) Integer, Number, int32_t = int;

Types are often managed by a collection of different typemaps. For example:

%typemap(in) int { ... }
%typemap(out) int { ... }
%typemap(varin) int { ... }
%typemap(varout) int { ... }

To copy all of these typemaps to a new type, use %apply. For example:

%apply int { Integer }; // Copy all int typemaps to Integer
%apply int { Integer, Number }; // Copy all int typemaps to both Integer and Number

The patterns for %apply follow the same rules as for %typemap. For example:

%apply int *output { Integer *output }; // Typemap with name
%apply (char *buf, int len) { (char *buffer, int size) }; // Multiple arguments

10.2.4 Deleting a typemap

A typemap can be deleted by simply defining no code. For example:

%typemap(in) int; // Clears typemap for int
%typemap(in) int, long, short; // Clears typemap for int, long, short
%typemap(in) int *output;

The %clear directive clears all typemaps for a given type. For example:

%clear int; // Removes all types for int
%clear int *output, long *output;

Note: Since SWIG's default behavior is defined by typemaps, clearing a fundamental type like int will make that type unusable
unless you also define a new set of typemaps immediately after the clear operation.

10.2.5 Placement of typemaps

Typemap declarations can be declared in the global scope, within a C++ namespace, and within a C++ class. For example:

%typemap(in) int {
 ...

SWIG−1.3 Documentation

10.2.2 Typemap scope 132

}

namespace std {
 class string;
 %typemap(in) string {
 ...
 }
}

class Bar {
public:
 typedef const int & const_reference;
 %typemap(out) const_reference {
 ...
 }
};

When a typemap appears inside a namespace or class, it stays in effect until the end of the SWIG input (just like before).
However, the typemap takes the local scope into account. Therefore, this code

namespace std {
 class string;
 %typemap(in) string {
 ...
 }
}

is really defining a typemap for the type std::string. You could have code like this:

namespace std {
 class string;
 %typemap(in) string { /* std::string */
 ...
 }
}

namespace Foo {
 class string;
 %typemap(in) string { /* Foo::string */
 ...
 }
}

In this case, there are two completely distinct typemaps that apply to two completely different types (std::string and
Foo::string).

It should be noted that for scoping to work, SWIG has to know that string is a typename defined within a particular namespace.
In this example, this is done using the class declaration class string.

10.3 Pattern matching rules

The section describes the pattern matching rules by which C datatypes are associated with typemaps.

10.3.1 Basic matching rules

Typemaps are matched using both a type and a name (typically the name of a argument). For a given TYPE NAME pair, the
following rules are applied, in order, to find a match. The first typemap found is used.

Typemaps that exactly match TYPE and NAME.•
Typemaps that exactly match TYPE only.•

SWIG−1.3 Documentation

10.2.5 Placement of typemaps 133

If TYPE includes qualifiers (const, volatile, etc.), they are stripped and the following checks are made:

Typemaps that match the stripped TYPE and NAME.•
Typemaps that match the stripped TYPE only.•

If TYPE is an array. The following transformation is made:

Replace all dimensions to [ANY] and look for a generic array typemap.•

To illustrate, suppose that you had a function like this:

int foo(const char *s);

To find a typemap for the argument const char *s, SWIG will search for the following typemaps:

const char *s Exact type and name match
const char * Exact type match
char *s Type and name match (stripped qualifiers)
char * Type match (stripped qualifiers)

When more than one typemap rule might be defined, only the first match found is actually used. Here is an example that shows
how some of the basic rules are applied:

%typemap(in) int *x {
 ... typemap 1
}

%typemap(in) int * {
 ... typemap 2
}

%typemap(in) const int *z {
 ... typemap 3
}

%typemap(in) int [4] {
 ... typemap 4
}

%typemap(in) int [ANY] {
 ... typemap 5
}

void A(int *x); // int *x rule (typemap 1)
void B(int *y); // int * rule (typemap 2)
void C(const int *x); // int *x rule (typemap 1)
void D(const int *z); // int * rule (typemap 3)
void E(int x[4]); // int [4] rule (typemap 4)
void F(int x[1000]); // int [ANY] rule (typemap 5)

10.3.2 Typedef reductions

If no match is found using the rules in the previous section, SWIG applies a typedef reduction to the type and repeats the typemap
search for the reduced type. To illustrate, suppose you had code like this:

%typemap(in) int {
 ... typemap 1
}

typedef int Integer;
void blah(Integer x);

SWIG−1.3 Documentation

10.3.1 Basic matching rules 134

To find the typemap for Integer x, SWIG will first search for the following typemaps:

Integer x
Integer

Finding no match, it then applies a reduction Integer −> int to the type and repeats the search.

int x
int −−> match: typemap 1

Even though two types might be the same via typedef, SWIG allows typemaps to be defined for each typename independently.
This allows for interesting customization possibilities based solely on the typename itself. For example, you could write code like
this:

typedef double pdouble; // Positive double

// typemap 1
%typemap(in) double {
 ... get a double ...
}
// typemap 2
%typemap(in) pdouble {
 ... get a positive double ...
}
double sin(double x); // typemap 1
pdouble sqrt(pdouble x); // typemap 2

When reducing the type, only one typedef reduction is applied at a time. The search process continues to apply reductions until a
match is found or until no more reductions can be made.

For complicated types, the reduction process can generate a long list of patterns. Consider the following:

typedef int Integer;
typedef Integer Row4[4];
void foo(Row4 rows[10]);

To find a match for the Row4 rows[10] argument, SWIG would check the following patterns, stopping only when it found a
match:

Row4 rows[10]
Row4 [10]
Row4 rows[ANY]
Row4 [ANY]

Reduce Row4 −−> Integer[4]
Integer rows[10][4]
Integer [10][4]
Integer rows[ANY][ANY]
Integer [ANY][ANY]

Reduce Integer −−> int
int rows[10][4]
int [10][4]
int rows[ANY][ANY]
int [ANY][ANY]

For parametized types like templates, the situation is even more complicated. Suppose you had some declarations like this:

typedef int Integer;
typedef foo<Integer,Integer> fooii;
void blah(fooii *x);

SWIG−1.3 Documentation

10.3.2 Typedef reductions 135

In this case, the following typemap patterns are searched for the argument fooii *x:

fooii *x
fooii *

Reduce fooii −−> foo<Integer,Integer>
foo<Integer,Integer> *x
foo<Integer,Integer> *

Reduce Integer −> int
foo<int, Integer> *x
foo<int, Integer> *

Reduce Integer −> int
foo<int, int> *x
foo<int, int> *

Typemap reductions are always applied to the left−most type that appears. Only when no reductions can be made to the left−most
type are reductions made to other parts of the type. This behavior means that you could define a typemap for
foo<int,Integer>, but a typemap for foo<Integer,int> would never be matched. Admittedly, this is rather
esoteric−−there's little practical reason to write a typemap quite like that. Of course, you could rely on this to confuse your
coworkers even more.

10.3.3 Default typemaps

Most SWIG language modules use typemaps to define the default behavior of the C primitive types. This is entirely
straightforward. For example, a set of typemaps are written like this:

%typemap(in) int "convert an int";
%typemap(in) short "convert a short";
%typemap(in) float "convert a float";
...

Since typemap matching follows all typedef declarations, any sort of type that is mapped to a primitive type through typedef
will be picked up by one of these primitive typemaps.

The default behavior for pointers, arrays, references, and other kinds of types are handled by specifying rules for variations of the
reserved SWIGTYPE type. For example:

%typemap(in) SWIGTYPE * { ... default pointer handling ... }
%typemap(in) SWIGTYPE & { ... default reference handling ... }
%typemap(in) SWIGTYPE [] { ... default array handling ... }
%typemap(in) enum SWIGTYPE { ... default handling for enum values ... }
%typemap(in) SWIGTYPE (CLASS::*) { ... default pointer member handling ... }

These rules match any kind of pointer, reference, or array−−even when multiple levels of indirection or multiple array dimensions
are used. Therefore, if you wanted to change SWIG's default handling for all types of pointers, you would simply redefine the rule
for SWIGTYPE *.

Finally, the following typemap rule is used to match against simple types that don't match any other rules:

%typemap(in) SWIGTYPE { ... handle an unknown type ... }

This typemap is important because it is the rule that gets triggered when call or return by value is used. For instance, if you have a
declaration like this:

double dot_product(Vector a, Vector b);

The Vector type will usually just get matched against SWIGTYPE. The default implementation of SWIGTYPE is to convert the
value into pointers (as described in chapter 3).

SWIG−1.3 Documentation

10.3.3 Default typemaps 136

By redefining SWIGTYPE it may be possible to implement other behavior. For example, if you cleared all typemaps for
SWIGTYPE, SWIG simply won't wrap any unknown datatype (which might be useful for debugging). Alternatively, you might
modify SWIGTYPE to marshal objects into strings instead of converting them to pointers.

The best way to explore the default typemaps is to look at the ones already defined for a particular language module. Typemaps
definitions are usually found in the SWIG library in a file such as python.swg, tcl8.swg, etc.

10.3.4 Mixed default typemaps

The default typemaps described above can be mixed with const and with each other. For example the SWIGTYPE * typemap is
for default pointer handling, but if a const SWIGTYPE * typemap is defined it will be used instead for constant pointers. Some
further examples follow:

%typemap(in) enum SWIGTYPE & { ... enum references ... }
%typemap(in) const enum SWIGTYPE & { ... const enum references ... }
%typemap(in) SWIGTYPE *& { ... pointers passed by reference ... }
%typemap(in) SWIGTYPE * const & { ... constant pointers passed by reference ... }
%typemap(in) SWIGTYPE[ANY][ANY] { ... 2D arrays ... }

Note that the the typedef reduction described earlier is also used with these mixed default typemaps. For example, say the
following typemaps are defined and SWIG is looking for the best match for the enum shown below:

%typemap(in) const Hello & { ... }
%typemap(in) const enum SWIGTYPE & { ... }
%typemap(in) enum SWIGTYPE & { ... }
%typemap(in) SWIGTYPE & { ... }
%typemap(in) SWIGTYPE { ... }

enum Hello {};
const Hello &hi;

The typemap at the top of the list will be chosen, not because it is defined first, but because it is the closest match for the type
being wrapped. If any of the typemaps in the above list were not defined, then the next one on the list would have precedence. In
other words the typemap chosen is the closest explicit match.

Compatibility note: The mixed default typemaps were introduced in SWIG−1.3.23, but were not used much in this version.
Expect to see them being used more and more within the various libraries in later versions of SWIG.

10.3.5 Multi−arguments typemaps

When multi−argument typemaps are specified, they take precedence over any typemaps specified for a single type. For example:

%typemap(in) (char *buffer, int len) {
 // typemap 1
}

%typemap(in) char *buffer {
 // typemap 2
}

void foo(char *buffer, int len, int count); // (char *buffer, int len)
void bar(char *buffer, int blah); // char *buffer

Multi−argument typemaps are also more restrictive in the way that they are matched. Currently, the first argument follows the
matching rules described in the previous section, but all subsequent arguments must match exactly.

10.4 Code generation rules

This section describes rules by which typemap code is inserted into the generated wrapper code.

SWIG−1.3 Documentation

10.3.4 Mixed default typemaps 137

10.4.1 Scope

When a typemap is defined like this:

%typemap(in) int {
 $1 = PyInt_AsLong($input);
}

the typemap code is inserted into the wrapper function using a new block scope. In other words, the wrapper code will look like
this:

wrap_whatever() {
 ...
 // Typemap code
 {
 arg1 = PyInt_AsLong(obj1);
 }
 ...
}

Because the typemap code is enclosed in its own block, it is legal to declare temporary variables for use during typemap
execution. For example:

%typemap(in) short {
 long temp; /* Temporary value */
 if (Tcl_GetLongFromObj(interp, $input, &temp) != TCL_OK) {
 return TCL_ERROR;
 }
 $1 = (short) temp;
}

Of course, any variables that you declare inside a typemap are destroyed as soon as the typemap code has executed (they are not
visible to other parts of the wrapper function or other typemaps that might use the same variable names).

Occasionally, typemap code will be specified using a few alternative forms. For example:

%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %{
$1 = PyInt_AsLong($input);
%}

These two forms are mainly used for cosmetics−−the specified code is not enclosed inside a block scope when it is emitted. This
sometimes results in a less complicated looking wrapper function.

10.4.2 Declaring new local variables

Sometimes it is useful to declare a new local variable that exists within the scope of the entire wrapper function. A good example
of this might be an application in which you wanted to marshal strings. Suppose you had a C++ function like this

int foo(std::string *s);

and you wanted to pass a native string in the target language as an argument. For instance, in Perl, you wanted the function to
work like this:

$x = foo("Hello World");

To do this, you can't just pass a raw Perl string as the std::string * argument. Instead, you have to create a temporary
std::string object, copy the Perl string data into it, and then pass a pointer to the object. To do this, simply specify the
typemap with an extra parameter like this:

SWIG−1.3 Documentation

10.4.1 Scope 138

%typemap(in) std::string * (std::string temp) {
 unsigned int len;
 char *s;
 s = SvPV($input,len); /* Extract string data */
 temp.assign(s,len); /* Assign to temp */
 $1 = &temp; /* Set argument to point to temp */
}

In this case, temp becomes a local variable in the scope of the entire wrapper function. For example:

wrap_foo() {
 std::string temp; <−−− Declaration of temp goes here
 ...

 /* Typemap code */
 {
 ...
 temp.assign(s,len);
 ...
 }
 ...
}

When you set temp to a value, it persists for the duration of the wrapper function and gets cleaned up automatically on exit.

It is perfectly safe to use more than one typemap involving local variables in the same declaration. For example, you could declare
a function as :

void foo(std::string *x, std::string *y, std::string *z);

This is safely handled because SWIG actually renames all local variable references by appending an argument number suffix.
Therefore, the generated code would actually look like this:

wrap_foo() {
 int *arg1; /* Actual arguments */
 int *arg2;
 int *arg3;
 std::string temp1; /* Locals declared in the typemap */
 std::string temp2;
 std::string temp3;
 ...
 {
 char *s;
 unsigned int len;
 ...
 temp1.assign(s,len);
 arg1 = *temp1;
 }
 {
 char *s;
 unsigned int len;
 ...
 temp2.assign(s,len);
 arg2 = &temp2;
 }
 {
 char *s;
 unsigned int len;
 ...
 temp3.assign(s,len);
 arg3 = &temp3;
 }
 ...
}

SWIG−1.3 Documentation

10.4.2 Declaring new local variables 139

Some typemaps do not recognize local variables (or they may simply not apply). At this time, only typemaps that apply to
argument conversion support this.

10.4.3 Special variables

Within all typemaps, the following special variables are expanded.

Variable Meaning

$n A C local variable corresponding to type n in the typemap pattern.

$argnum Argument number. Only available in typemaps related to argument conversion

$n_name Argument name

$n_type Real C datatype of type n.

$n_ltype ltype of type n

$n_mangle Mangled form of type n. For example _p_Foo

$n_descriptor
Type descriptor structure for type n. For example SWIGTYPE_p_Foo. This is primarily used when interacting
with the run−time type checker (described later).

$*n_type Real C datatype of type n with one pointer removed.

$*n_ltype ltype of type n with one pointer removed.

$*n_mangle Mangled form of type n with one pointer removed.

$*n_descriptorType descriptor structure for type n with one pointer removed.

$&n_type Real C datatype of type n with one pointer added.

$&n_ltype ltype of type n with one pointer added.

$&n_mangle Mangled form of type n with one pointer added.

$&n_descriptorType descriptor structure for type n with one pointer added.

$n_basetype Base typename with all pointers and qualifiers stripped.

Within the table, $n refers to a specific type within the typemap specification. For example, if you write this

%typemap(in) int *INPUT {

}

then $1 refers to int *INPUT. If you have a typemap like this,

%typemap(in) (int argc, char *argv[]) {
 ...
}

then $1 refers to int argc and $2 refers to char *argv[].

Substitutions related to types and names always fill in values from the actual code that was matched. This is useful when a
typemap might match multiple C datatype. For example:

%typemap(in) int, short, long {
 $1 = ($1_ltype) PyInt_AsLong($input);
}

In this case, $1_ltype is replaced with the datatype that is actually matched.

When typemap code is emitted, the C/C++ datatype of the special variables $1 and $2 is always an "ltype." An "ltype" is simply
a type that can legally appear on the left−hand side of a C assignment operation. Here are a few examples of types and ltypes:

type ltype
−−−−−− −−−−−−−−−−−−−−−−

SWIG−1.3 Documentation

10.4.3 Special variables 140

int int
const int int
conts int * int *
int [4] int *
int [4][5] int (*)[5]

In most cases a ltype is simply the C datatype with qualifiers stripped off. In addition, arrays are converted into pointers.

Variables such as $&1_type and $*1_type are used to safely modify the type by removing or adding pointers. Although not
needed in most typemaps, these substitutions are sometimes needed to properly work with typemaps that convert values between
pointers and values.

If necessary, type related substitutions can also be used when declaring locals. For example:

%typemap(in) int * ($*1_type temp) {
 temp = PyInt_AsLong($input);
 $1 = &temp;
}

There is one word of caution about declaring local variables in this manner. If you declare a local variable using a type
substitution such as $1_ltype temp, it won't work like you expect for arrays and certain kinds of pointers. For example, if you
wrote this,

%typemap(in) int [10][20] {
 $1_ltype temp;
}

then the declaration of temp will be expanded as

int (*)[20] temp;

This is illegal C syntax and won't compile. There is currently no straightforward way to work around this problem in SWIG due to
the way that typemap code is expanded and processed. However, one possible workaround is to simply pick an alternative type
such as void * and use casts to get the correct type when needed. For example:

%typemap(in) int [10][20] {
 void *temp;
 ...
 (($1_ltype) temp)[i][j] = x; /* set a value */
 ...
}

Another approach, which only works for arrays is to use the $1_basetype substitution. For example:

%typemap(in) int [10][20] {
 $1_basetype temp[10][20];
 ...
 temp[i][j] = x; /* set a value */
 ...
}

10.5 Common typemap methods

The set of typemaps recognized by a language module may vary. However, the following typemap methods are nearly universal:

10.5.1 "in" typemap

The "in" typemap is used to convert function arguments from the target language to C. For example:

%typemap(in) int {

SWIG−1.3 Documentation

10.5 Common typemap methods 141

 $1 = PyInt_AsLong($input);
}

The following special variables are available:

$input − Input object holding value to be converted.
$symname − Name of function/method being wrapped

This is probably the most commonly redefined typemap because it can be used to implement customized conversions.

In addition, the "in" typemap allows the number of converted arguments to be specified. For example:

// Ignored argument.
%typemap(in, numinputs=0) int *out (int temp) {
 $1 = &temp;
}

At this time, only zero or one arguments may be converted.

Compatibility note: Specifying numinputs=0 is the same as the old "ignore" typemap.

10.5.2 "typecheck" typemap

The "typecheck" typemap is used to support overloaded functions and methods. It merely checks an argument to see whether or
not it matches a specific type. For example:

%typemap(typecheck,precedence=SWIG_TYPECHECK_INTEGER) int {
 $1 = PyInt_Check($input) ? 1 : 0;
}

For typechecking, the $1 variable is always a simple integer that is set to 1 or 0 depending on whether or not the input argument is
the correct type.

If you define new "in" typemaps and your program uses overloaded methods, you should also define a collection of "typecheck"
typemaps. More details about this follow in a later section on "Typemaps and Overloading."

10.5.3 "out" typemap

The "out" typemap is used to convert function/method return values from C into the target language. For example:

%typemap(out) int {
 $result = PyInt_FromLong($1);
}

The following special variables are available.

$result − Result object returned to target language.
$symname − Name of function/method being wrapped

10.5.4 "arginit" typemap

The "arginit" typemap is used to set the initial value of a function argument−−before any conversion has occurred. This is not
normally necessary, but might be useful in highly specialized applications. For example:

// Set argument to NULL before any conversion occurs
%typemap(arginit) int *data {
 $1 = NULL;
}

SWIG−1.3 Documentation

10.5.1 "in" typemap 142

10.5.5 "default" typemap

The "default" typemap is used to turn an argument into a default argument. For example:

%typemap(default) int flags {
 $1 = DEFAULT_FLAGS;
}
...
int foo(int x, int y, int flags);

The primary use of this typemap is to either change the wrapping of default arguments or specify a default argument in a language
where they aren't supported (like C). Target languages that do not support optional arguments, such as Java and C#, effecively
ignore the value specified by this typemap as all arguments must be given.

Once a default typemap has been applied to an argument, all arguments that follow must have default values. See the
Default/optional arguments section for further information on default argument wrapping.

10.5.6 "check" typemap

The "check" typemap is used to supply value checking code during argument conversion. The typemap is applied after arguments
have been converted. For example:

%typemap(check) int positive {
 if ($1 <= 0) {
 SWIG_exception(SWIG_ValueError,"Expected positive value.");
 }
}

10.5.7 "argout" typemap

The "argout" typemap is used to return values from arguments. This is most commonly used to write wrappers for C/C++
functions that need to return multiple values. The "argout" typemap is almost always combined with an "in" typemap−−−possibly
to ignore the input value. For example:

/* Set the input argument to point to a temporary variable */
%typemap(in, numinputs=0) int *out (int temp) {
 $1 = &temp;
}

%typemap(argout) int *out {
 // Append output value $1 to $result
 ...
}

The following special variables are available.

$result − Result object returned to target language.
$input − The original input object passed.
$symname − Name of function/method being wrapped

The code supplied to the "argout" typemap is always placed after the "out" typemap. If multiple return values are used, the extra
return values are often appended to return value of the function.

See the typemaps.i library for examples.

10.5.8 "freearg" typemap

The "freearg" typemap is used to cleanup argument data. It is only used when an argument might have allocated resources that
need to be cleaned up when the wrapper function exits. The "freearg" typemap usually cleans up argument resources allocated by

SWIG−1.3 Documentation

10.5.5 "default" typemap 143

the "in" typemap. For example:

// Get a list of integers
%typemap(in) int *items {
 int nitems = Length($input);
 $1 = (int *) malloc(sizeof(int)*nitems);
}
// Free the list
%typemap(freearg) int *items {
 free($1);
}

The "freearg" typemap inserted at the end of the wrapper function, just before control is returned back to the target language. This
code is also placed into a special variable $cleanup that may be used in other typemaps whenever a wrapper function needs to
abort prematurely.

10.5.9 "newfree" typemap

The "newfree" typemap is used in conjunction with the %newobject directive and is used to deallocate memory used by the
return result of a function. For example:

%typemap(newfree) string * {
 delete $1;
}
%typemap(out) string * {
 $result = PyString_FromString($1−>c_str());
}
...

%newobject foo;
...
string *foo();

10.5.10 "memberin" typemap

The "memberin" typemap is used to copy data from an already converted input value into a structure member. It is typically used
to handle array members and other special cases. For example:

%typemap(memberin) int [4] {
 memmove($1, $input, 4*sizeof(int));
}

It is rarely necessary to write "memberin" typemaps−−−SWIG already provides a default implementation for arrays, strings, and
other objects.

10.5.11 "varin" typemap

The "varin" typemap is used to convert objects in the target language to C for the purposes of assigning to a C/C++ global
variable. This is implementation specific.

10.5.12 "varout" typemap

The "varout" typemap is used to convert a C/C++ object to an object in the target language when reading a C/C++ global variable.
This is implementation specific.

10.5.13 "throws" typemap

The "throws" typemap is only used when SWIG parses a C++ method with an exception specification or has the %catches
feature attached to the method. It provides a default mechanism for handling C++ methods that have declared the exceptions it

SWIG−1.3 Documentation

10.5.8 "freearg" typemap 144

will throw. The purpose of this typemap is to convert a C++ exception into an error or exception in the target language. It is
slightly different to the other typemaps as it is based around the exception type rather than the type of a parameter or variable. For
example:

%typemap(throws) const char * %{
 PyErr_SetString(PyExc_RuntimeError, $1);
 SWIG_fail;
%}
void bar() throw (const char *);

As can be seen from the generated code below, SWIG generates an exception handler with the catch block comprising the
"throws" typemap content.

...
try {
 bar();
}
catch(char const *_e) {
 PyErr_SetString(PyExc_RuntimeError, _e);
 SWIG_fail;

}
...

Note that if your methods do not have an exception specification yet they do throw exceptions, SWIG cannot know how to deal
with them. For a neat way to handle these, see the Exception handling with %exception section.

10.6 Some typemap examples

This section contains a few examples. Consult language module documentation for more examples.

10.6.1 Typemaps for arrays

A common use of typemaps is to provide support for C arrays appearing both as arguments to functions and as structure members.

For example, suppose you had a function like this:

void set_vector(int type, float value[4]);

If you wanted to handle float value[4] as a list of floats, you might write a typemap similar to this:

%typemap(in) float value[4] (float temp[4]) {
 int i;
 if (!PySequence_Check($input)) {
 PyErr_SetString(PyExc_ValueError,"Expected a sequence");
 return NULL;
 }
 if (PySequence_Length($input) != 4) {
 PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected 4 elements");
 return NULL;
 }
 for (i = 0; i < 4; i++) {
 PyObject *o = PySequence_GetItem($input,i);
 if (PyNumber_Check(o)) {
 temp[i] = (float) PyFloat_AsDouble(o);
 } else {
 PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
 return NULL;
 }
 }
 $1 = temp;

SWIG−1.3 Documentation

10.5.13 "throws" typemap 145

}

In this example, the variable temp allocates a small array on the C stack. The typemap then populates this array and passes it to
the underlying C function.

When used from Python, the typemap allows the following type of function call:

>>> set_vector(type, [1, 2.5, 5, 20])

If you wanted to generalize the typemap to apply to arrays of all dimensions you might write this:

%typemap(in) float value[ANY] (float temp[$1_dim0]) {
 int i;
 if (!PySequence_Check($input)) {
 PyErr_SetString(PyExc_ValueError,"Expected a sequence");
 return NULL;
 }
 if (PySequence_Length($input) != $1_dim0) {
 PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
 return NULL;
 }
 for (i = 0; i < $1_dim0; i++) {
 PyObject *o = PySequence_GetItem($input,i);
 if (PyNumber_Check(o)) {
 temp[i] = (float) PyFloat_AsDouble(o);
 } else {
 PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
 return NULL;
 }
 }
 $1 = temp;
}

In this example, the special variable $1_dim0 is expanded with the actual array dimensions. Multidimensional arrays can be
matched in a similar manner. For example:

%typemap(in) float matrix[ANY][ANY] (float temp[$1_dim0][$1_dim1]) {
 ... convert a 2d array ...
}

For large arrays, it may be impractical to allocate storage on the stack using a temporary variable as shown. To work with heap
allocated data, the following technique can be used.

%typemap(in) float value[ANY] {
 int i;
 if (!PySequence_Check($input)) {
 PyErr_SetString(PyExc_ValueError,"Expected a sequence");
 return NULL;
 }
 if (PySequence_Length($input) != $1_dim0) {
 PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
 return NULL;
 }
 $1 = (float *) malloc($1_dim0*sizeof(float));
 for (i = 0; i < $1_dim0; i++) {
 PyObject *o = PySequence_GetItem($input,i);
 if (PyNumber_Check(o)) {
 $1[i] = (float) PyFloat_AsDouble(o);
 } else {
 PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
 free($1);
 return NULL;
 }
 }

SWIG−1.3 Documentation

10.6.1 Typemaps for arrays 146

}
%typemap(freearg) float value[ANY] {
 if ($1) free($1);
}

In this case, an array is allocated using malloc. The freearg typemap is then used to release the argument after the function
has been called.

Another common use of array typemaps is to provide support for array structure members. Due to subtle differences between
pointers and arrays in C, you can't just "assign" to a array structure member. Instead, you have to explicitly copy elements into the
array. For example, suppose you had a structure like this:

struct SomeObject {
 float value[4];
 ...
};

When SWIG runs, it won't produce any code to set the vec member. You may even get a warning message like this:

swig −python example.i
Generating wrappers for Python
example.i:10. Warning. Array member value will be read−only.

These warning messages indicate that SWIG does not know how you want to set the vec field.

To fix this, you can supply a special "memberin" typemap like this:

%typemap(memberin) float [ANY] {
 int i;
 for (i = 0; i < $1_dim0; i++) {
 $1[i] = $input[i];
 }
}

The memberin typemap is used to set a structure member from data that has already been converted from the target language to C.
In this case, $input is the local variable in which converted input data is stored. This typemap then copies this data into the
structure.

When combined with the earlier typemaps for arrays, the combination of the "in" and "memberin" typemap allows the following
usage:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5, 10]

Related to structure member input, it may be desirable to return structure members as a new kind of object. For example, in this
example, you will get very odd program behavior where the structure member can be set nicely, but reading the member simply
returns a pointer:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5, 10]
>>> print s.x
_1008fea8_p_float
>>>

To fix this, you can write an "out" typemap. For example:

%typemap(out) float [ANY] {
 int i;
 $result = PyList_New($1_dim0);
 for (i = 0; i < $1_dim0; i++) {
 PyObject *o = PyFloat_FromDouble((double) $1[i]);

SWIG−1.3 Documentation

10.6.1 Typemaps for arrays 147

 PyList_SetItem($result,i,o);
 }
}

Now, you will find that member access is quite nice:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5, 10]
>>> print s.x
[1, 2.5, 5, 10]

Compatibility Note: SWIG1.1 used to provide a special "memberout" typemap. However, it was mostly useless and has since
been eliminated. To return structure members, simply use the "out" typemap.

10.6.2 Implementing constraints with typemaps

One particularly interesting application of typemaps is the implementation of argument constraints. This can be done with the
"check" typemap. When used, this allows you to provide code for checking the values of function arguments. For example :

%module math

%typemap(check) double posdouble {
 if ($1 < 0) {
 croak("Expecting a positive number");
 }
}

...
double sqrt(double posdouble);

This provides a sanity check to your wrapper function. If a negative number is passed to this function, a Perl exception will be
raised and your program terminated with an error message.

This kind of checking can be particularly useful when working with pointers. For example :

%typemap(check) Vector * {
 if ($1 == 0) {
 PyErr_SetString(PyExc_TypeError,"NULL Pointer not allowed");
 return NULL;
 }
}

will prevent any function involving a Vector * from accepting a NULL pointer. As a result, SWIG can often prevent a
potential segmentation faults or other run−time problems by raising an exception rather than blindly passing values to the
underlying C/C++ program.

Note: A more advanced constraint checking system is in development. Stay tuned.

10.7 Typemaps for multiple languages

The code within typemaps is usually language dependent, however, many languages support the same typemaps. In order to
distinguish typemaps across different languages, the preprocessor should be used. For example, the "in" typemap for Perl and
Ruby could be written as:

#if defined(SWIGPERL)
 %typemap(in) int "$1 = NUM2INT($input);"
#elif defined(SWIGRUBY)
 %typemap(in) int "$1 = ($1_ltype) SvIV($input);"
#else

SWIG−1.3 Documentation

10.6.2 Implementing constraints with typemaps 148

 #warning no "in" typemap defined
#endif

The full set of language specific macros is defined in the Conditional Compilation section. The example above also shows a
common approach of issuing a warning for an as yet unsupported language.

Compatibility note: In SWIG−1.1 different languages could be distinguished with the language name being put within the
%typemap directive, for example,
%typemap(ruby,in) int "$1 = NUM2INT($input);".

10.8 Multi−argument typemaps

So far, the typemaps presented have focused on the problem of dealing with single values. For example, converting a single input
object to a single argument in a function call. However, certain conversion problems are difficult to handle in this manner. As an
example, consider the example at the very beginning of this chapter:

int foo(int argc, char *argv[]);

Suppose that you wanted to wrap this function so that it accepted a single list of strings like this:

>>> foo(["ale","lager","stout"])

To do this, you not only need to map a list of strings to char *argv[], but the value of int argc is implicitly determined by
the length of the list. Using only simple typemaps, this type of conversion is possible, but extremely painful. Therefore, SWIG1.3
introduces the notion of multi−argument typemaps.

A multi−argument typemap is a conversion rule that specifies how to convert a single object in the target language to set of
consecutive function arguments in C/C++. For example, the following multi−argument maps perform the conversion described for
the above example:

%typemap(in) (int argc, char *argv[]) {
 int i;
 if (!PyList_Check($input)) {
 PyErr_SetString(PyExc_ValueError, "Expecting a list");
 return NULL;
 }
 $1 = PyList_Size($input);
 $2 = (char **) malloc(($1+1)*sizeof(char *));
 for (i = 0; i < $1; i++) {
 PyObject *s = PyList_GetItem($input,i);
 if (!PyString_Check(s)) {
 free($2);
 PyErr_SetString(PyExc_ValueError, "List items must be strings");
 return NULL;
 }
 $2[i] = PyString_AsString(s);
 }
 $2[i] = 0;
}

%typemap(freearg) (int argc, char *argv[]) {
 if ($2) free($2);
}

A multi−argument map is always specified by surrounding the arguments with parentheses as shown. For example:

%typemap(in) (int argc, char *argv[]) { ... }

Within the typemap code, the variables $1, $2, and so forth refer to each type in the map. All of the usual substitutions
apply−−just use the appropriate $1 or $2 prefix on the variable name (e.g., $2_type, $1_ltype, etc.)

SWIG−1.3 Documentation

10.7 Typemaps for multiple languages 149

Multi−argument typemaps always have precedence over simple typemaps and SWIG always performs longest−match searching.
Therefore, you will get the following behavior:

%typemap(in) int argc { ... typemap 1 ... }
%typemap(in) (int argc, char *argv[]) { ... typemap 2 ... }
%typemap(in) (int argc, char *argv[], char *env[]) { ... typemap 3 ... }

int foo(int argc, char *argv[]); // Uses typemap 2
int bar(int argc, int x); // Uses typemap 1
int spam(int argc, char *argv[], char *env[]); // Uses typemap 3

It should be stressed that multi−argument typemaps can appear anywhere in a function declaration and can appear more than once.
For example, you could write this:

%typemap(in) (int scount, char *swords[]) { ... }
%typemap(in) (int wcount, char *words[]) { ... }

void search_words(int scount, char *swords[], int wcount, char *words[], int maxcount);

Other directives such as %apply and %clear also work with multi−argument maps. For example:

%apply (int argc, char *argv[]) {
 (int scount, char *swords[]),
 (int wcount, char *words[])
};
...
%clear (int scount, char *swords[]), (int wcount, char *words[]);
...

Although multi−argument typemaps may seem like an exotic, little used feature, there are several situations where they make
sense. First, suppose you wanted to wrap functions similar to the low−level read() and write() system calls. For example:

typedef unsigned int size_t;

int read(int fd, void *rbuffer, size_t len);
int write(int fd, void *wbuffer, size_t len);

As is, the only way to use the functions would be to allocate memory and pass some kind of pointer as the second argument−−−a
process that might require the use of a helper function. However, using multi−argument maps, the functions can be transformed
into something more natural. For example, you might write typemaps like this:

// typemap for an outgoing buffer
%typemap(in) (void *wbuffer, size_t len) {
 if (!PyString_Check($input)) {
 PyErr_SetString(PyExc_ValueError, "Expecting a string");
 return NULL;
 }
 $1 = (void *) PyString_AsString($input);
 $2 = PyString_Size($input);
}

// typemap for an incoming buffer
%typemap(in) (void *rbuffer, size_t len) {
 if (!PyInt_Check($input)) {
 PyErr_SetString(PyExc_ValueError, "Expecting an integer");
 return NULL;
 }
 $2 = PyInt_AsLong($input);
 if ($2 < 0) {
 PyErr_SetString(PyExc_ValueError, "Positive integer expected");
 return NULL;
 }
 $1 = (void *) malloc($2);
}

SWIG−1.3 Documentation

10.8 Multi−argument typemaps 150

// Return the buffer. Discarding any previous return result
%typemap(argout) (void *rbuffer, size_t len) {
 Py_XDECREF($result); /* Blow away any previous result */
 if (result < 0) { /* Check for I/O error */
 free($1);
 PyErr_SetFromErrno(PyExc_IOError);
 return NULL;
 }
 $result = PyString_FromStringAndSize($1,result);
 free($1);
}

(note: In the above example, $result and result are two different variables. result is the real C datatype that was returned
by the function. $result is the scripting language object being returned to the interpreter.).

Now, in a script, you can write code that simply passes buffers as strings like this:

>>> f = example.open("Makefile")
>>> example.read(f,40)
'TOP = ../..\nSWIG = $(TOP)/.'
>>> example.read(f,40)
'./swig\nSRCS = example.c\nTARGET '
>>> example.close(f)
0
>>> g = example.open("foo", example.O_WRONLY | example.O_CREAT, 0644)
>>> example.write(g,"Hello world\n")
12
>>> example.write(g,"This is a test\n")
15
>>> example.close(g)
0
>>>

A number of multi−argument typemap problems also arise in libraries that perform matrix−calculations−−especially if they are
mapped onto low−level Fortran or C code. For example, you might have a function like this:

int is_symmetric(double *mat, int rows, int columns);

In this case, you might want to pass some kind of higher−level object as an matrix. To do this, you could write a multi−argument
typemap like this:

%typemap(in) (double *mat, int rows, int columns) {
 MatrixObject *a;
 a = GetMatrixFromObject($input); /* Get matrix somehow */

 /* Get matrix properties */
 $1 = GetPointer(a);
 $2 = GetRows(a);
 $3 = GetColumns(a);
}

This kind of technique can be used to hook into scripting−language matrix packages such as Numeric Python. However, it should
also be stressed that some care is in order. For example, when crossing languages you may need to worry about issues such as
row−major vs. column−major ordering (and perform conversions if needed).

10.9 The run−time type checker

Most scripting languages need type information at run−time. This type information can include how to construct types, how to
garbage collect types, and the inheritance relationships between types. If the language interface does not provide its own type
information storage, the generated SWIG code needs to provide it.

SWIG−1.3 Documentation

10.9 The run−time type checker 151

Requirements for the type system:

Store inheritance and type equivalence information and be able to correctly re−create the type pointer.•
Share type information between modules.•
Modules can be loaded in any order, irregardless of actual type dependency.•
Avoid the use of dynamically allocated memory, and library/system calls in general.•
Provide a reasonably fast implementation, minimizing the lookup time for all language modules.•
Custom, language specific information can be attached to types.•
Modules can be unloaded from the type system.•

10.9.1 Implementation

The run−time type checker is used by many, but not all, of SWIG's supported target languages. The run−time type checker
features are not required and are thus not used for strongly typed languages such as Java and C#. The scripting and scheme based
languages rely on it and it forms a critical part of SWIG's operation for these languages.

When pointers, arrays, and objects are wrapped by SWIG, they are normally converted into typed pointer objects. For example, an
instance of Foo * might be a string encoded like this:

_108e688_p_Foo

At a basic level, the type checker simply restores some type−safety to extension modules. However, the type checker is also
responsible for making sure that wrapped C++ classes are handled correctly−−−especially when inheritance is used. This is
especially important when an extension module makes use of multiple inheritance. For example:

class Foo {
 int x;
};

class Bar {
 int y;
};

class FooBar : public Foo, public Bar {
 int z;
};

When the class FooBar is organized in memory, it contains the contents of the classes Foo and Bar as well as its own data
members. For example:

FooBar −−> | −−−−−−−−−−−| <−− Foo
 | int x |
 |−−−−−−−−−−−−| <−− Bar
 | int y |
 |−−−−−−−−−−−−|
 | int z |
 |−−−−−−−−−−−−|

Because of the way that base class data is stacked together, the casting of a Foobar * to either of the base classes may change
the actual value of the pointer. This means that it is generally not safe to represent pointers using a simple integer or a bare void
*−−−type tags are needed to implement correct handling of pointer values (and to make adjustments when needed).

In the wrapper code generated for each language, pointers are handled through the use of special type descriptors and conversion
functions. For example, if you look at the wrapper code for Python, you will see code like this:

if ((SWIG_ConvertPtr(obj0,(void **) &arg1, SWIGTYPE_p_Foo,1)) == −1) return NULL;

In this code, SWIGTYPE_p_Foo is the type descriptor that describes Foo *. The type descriptor is actually a pointer to a
structure that contains information about the type name to use in the target language, a list of equivalent typenames (via typedef or

SWIG−1.3 Documentation

10.9.1 Implementation 152

inheritance), and pointer value handling information (if applicable). The SWIG_ConvertPtr() function is simply a utility
function that takes a pointer object in the target language and a type−descriptor objects and uses this information to generate a
C++ pointer. However, the exact name and calling conventions of the conversion function depends on the target language (see
language specific chapters for details).

The actual type code is in swigrun.swg, and gets inserted near the top of the generated swig wrapper file. The phrase "a type X
that can cast into a type Y" means that given a type X, it can be converted into a type Y. In other words, X is a derived class of Y
or X is a typedef of Y. The structure to store type information looks like this:

/* Structure to store information on one type */
typedef struct swig_type_info {
 const char *name; /* mangled name of this type */
 const char *str; /* human readable name for this type */
 swig_dycast_func dcast; /* dynamic cast function down a hierarchy */
 struct swig_cast_info *cast; /* Linked list of types that can cast into this type */
 void *clientdata; /* Language specific type data */
} swig_type_info;

/* Structure to store a type and conversion function used for casting */
typedef struct swig_cast_info {
 swig_type_info *type; /* pointer to type that is equivalent to this type */
 swig_converter_func converter; /* function to cast the void pointers */
 struct swig_cast_info *next; /* pointer to next cast in linked list */
 struct swig_cast_info *prev; /* pointer to the previous cast */
} swig_cast_info;

Each swig_type_info stores a linked list of types that it is equivalent to. Each entry in this doubly linked list stores a pointer
back to another swig_type_info structure, along with a pointer to a conversion function. This conversion function is used to solve
the above problem of the FooBar class, correctly returning a pointer to the type we want.

The basic problem we need to solve is verifying and building arguments passed to functions. So going back to the
SWIG_ConvertPtr() function example from above, we are expecting a Foo * and need to check if obj0 is in fact a Foo
*. From before, SWIGTYPE_p_Foo is just a pointer to the swig_type_info structure describing Foo *. So we loop though
the linked list of swig_cast_info structures attached to SWIGTYPE_p_Foo. If we see that the type of obj0 is in the linked
list, we pass the object through the associated conversion function and then return a positive. If we reach the end of the linked list
without a match, then obj0 can not be converted to a Foo * and an error is generated.

Another issue needing to be addressed is sharing type information between multiple modules. More explicitly, we need to have
ONE swig_type_info for each type. If two modules both use the type, the second module loaded must lookup and use the
swig_type_info structure from the module already loaded. Because no dynamic memory is used and the circular dependencies of
the casting information, loading the type information is somewhat tricky, and not explained here. A complete description is in the
Lib/swiginit.swg file (and near the top of any generated file).

Each module has one swig_module_info structure which looks like this:

/* Structure used to store module information
 * Each module generates one structure like this, and the runtime collects
 * all of these structures and stores them in a circularly linked list.*/
typedef struct swig_module_info {
 swig_type_info **types; /* Array of pointers to swig_type_info structs in this module */
 int size; /* Number of types in this module */
 struct swig_module_info *next; /* Pointer to next element in circularly linked list */
 swig_type_info **type_initial; /* Array of initially generated type structures */
 swig_cast_info **cast_initial; /* Array of initially generated casting structures */
 void *clientdata; /* Language specific module data */
} swig_module_info;

Each module stores an array of pointers to swig_type_info structures and the number of types in this module. So when a
second module is loaded, it finds the swig_module_info structure for the first module and searches the array of types. If any
of its own types are in the first module and have already been loaded, it uses those swig_type_info structures rather than
creating new ones. These swig_module_info structures are chained together in a circularly linked list.

SWIG−1.3 Documentation

10.9.1 Implementation 153

10.9.2 Usage

This section covers how to use these functions from typemaps. To learn how to call these functions from external files (not the
generated _wrap.c file), see the External access to the run−time system section.

When pointers are converted in a typemap, the typemap code often looks similar to this:

%typemap(in) Foo * {
 if ((SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == −1) return NULL;
}

The most critical part is the typemap is the use of the $1_descriptor special variable. When placed in a typemap, this is
expanded into the SWIGTYPE_* type descriptor object above. As a general rule, you should always use $1_descriptor
instead of trying to hard−code the type descriptor name directly.

There is another reason why you should always use the $1_descriptor variable. When this special variable is expanded,
SWIG marks the corresponding type as "in use." When type−tables and type information is emitted in the wrapper file, descriptor
information is only generated for those datatypes that were actually used in the interface. This greatly reduces the size of the type
tables and improves efficiency.

Occassionally, you might need to write a typemap that needs to convert pointers of other types. To handle this, a special macro
substition $descriptor(type) can be used to generate the SWIG type descriptor name for any C datatype. For example:

%typemap(in) Foo * {
 if ((SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == −1) {
 Bar *temp;
 if ((SWIG_ConvertPtr($input, (void **) &temp, $descriptor(Bar *)) == −1) {
 return NULL;
 }
 $1 = (Foo *) temp;
 }
}

The primary use of $descriptor(type) is when writing typemaps for container objects and other complex data structures.
There are some restrictions on the argument−−−namely it must be a fully defined C datatype. It can not be any of the special
typemap variables.

In certain cases, SWIG may not generate type−descriptors like you expect. For example, if you are converting pointers in some
non−standard way or working with an unusual combination of interface files and modules, you may find that SWIG omits
information for a specific type descriptor. To fix this, you may need to use the %types directive. For example:

%types(int *, short *, long *, float *, double *);

When %types is used, SWIG generates type−descriptor information even if those datatypes never appear elsewhere in the
interface file.

Further details about the run−time type checking can be found in the documentation for individual language modules. Reading the
source code may also help. The file Lib/swigrun.swg in the SWIG library contains all of the source code for type−checking.
This code is also included in every generated wrapped file so you probably just look at the output of SWIG to get a better sense
for how types are managed.

10.10 Typemaps and overloading

In many target languages, SWIG fully supports C++ overloaded methods and functions. For example, if you have a collection of
functions like this:

int foo(int x);
int foo(double x);

SWIG−1.3 Documentation

10.9.2 Usage 154

int foo(char *s, int y);

You can access the functions in a normal way from the scripting interpreter:

Python
foo(3) # foo(int)
foo(3.5) # foo(double)
foo("hello",5) # foo(char *, int)

Tcl
foo 3 # foo(int)
foo 3.5 # foo(double)
foo hello 5 # foo(char *, int)

To implement overloading, SWIG generates a separate wrapper function for each overloaded method. For example, the above
functions would produce something roughly like this:

// wrapper pseudocode
_wrap_foo_0(argc, args[]) { // foo(int)
 int arg1;
 int result;
 ...
 arg1 = FromInteger(args[0]);
 result = foo(arg1);
 return ToInteger(result);
}

_wrap_foo_1(argc, args[]) { // foo(double)
 double arg1;
 int result;
 ...
 arg1 = FromDouble(args[0]);
 result = foo(arg1);
 return ToInteger(result);
}

_wrap_foo_2(argc, args[]) { // foo(char *, int)
 char *arg1;
 int arg2;
 int result;
 ...
 arg1 = FromString(args[0]);
 arg2 = FromInteger(args[1]);
 result = foo(arg1,arg2);
 return ToInteger(result);
}

Next, a dynamic dispatch function is generated:

_wrap_foo(argc, args[]) {
 if (argc == 1) {
 if (IsInteger(args[0])) {
 return _wrap_foo_0(argc,args);
 }
 if (IsDouble(args[0])) {
 return _wrap_foo_1(argc,args);
 }
 }
 if (argc == 2) {
 if (IsString(args[0]) && IsInteger(args[1])) {
 return _wrap_foo_2(argc,args);
 }
 }
 error("No matching function!\n");
}

SWIG−1.3 Documentation

10.10 Typemaps and overloading 155

The purpose of the dynamic dispatch function is to select the appropriate C++ function based on argument types−−−a task that
must be performed at runtime in most of SWIG's target languages.

The generation of the dynamic dispatch function is a relatively tricky affair. Not only must input typemaps be taken into account
(these typemaps can radically change the types of arguments accepted), but overloaded methods must also be sorted and checked
in a very specific order to resolve potential ambiguity. A high−level overview of this ranking process is found in the "SWIG and
C++" chapter. What isn't mentioned in that chapter is the mechanism by which it is implemented−−−as a collection of typemaps.

To support dynamic dispatch, SWIG first defines a general purpose type hierarchy as follows:

Symbolic Name Precedence Value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−
SWIG_TYPECHECK_POINTER 0
SWIG_TYPECHECK_VOIDPTR 10
SWIG_TYPECHECK_BOOL 15
SWIG_TYPECHECK_UINT8 20
SWIG_TYPECHECK_INT8 25
SWIG_TYPECHECK_UINT16 30
SWIG_TYPECHECK_INT16 35
SWIG_TYPECHECK_UINT32 40
SWIG_TYPECHECK_INT32 45
SWIG_TYPECHECK_UINT64 50
SWIG_TYPECHECK_INT64 55
SWIG_TYPECHECK_UINT128 60
SWIG_TYPECHECK_INT128 65
SWIG_TYPECHECK_INTEGER 70
SWIG_TYPECHECK_FLOAT 80
SWIG_TYPECHECK_DOUBLE 90
SWIG_TYPECHECK_COMPLEX 100
SWIG_TYPECHECK_UNICHAR 110
SWIG_TYPECHECK_UNISTRING 120
SWIG_TYPECHECK_CHAR 130
SWIG_TYPECHECK_STRING 140
SWIG_TYPECHECK_BOOL_ARRAY 1015
SWIG_TYPECHECK_INT8_ARRAY 1025
SWIG_TYPECHECK_INT16_ARRAY 1035
SWIG_TYPECHECK_INT32_ARRAY 1045
SWIG_TYPECHECK_INT64_ARRAY 1055
SWIG_TYPECHECK_INT128_ARRAY 1065
SWIG_TYPECHECK_FLOAT_ARRAY 1080
SWIG_TYPECHECK_DOUBLE_ARRAY 1090
SWIG_TYPECHECK_CHAR_ARRAY 1130
SWIG_TYPECHECK_STRING_ARRAY 1140

(These precedence levels are defined in swig.swg, a library file that's included by all target language modules.)

In this table, the precedence−level determines the order in which types are going to be checked. Low values are always checked
before higher values. For example, integers are checked before floats, single values are checked before arrays, and so forth.

Using the above table as a guide, each target language defines a collection of "typecheck" typemaps. The follow excerpt from the
Python module illustrates this:

/* Python type checking rules */
/* Note: %typecheck(X) is a macro for %typemap(typecheck,precedence=X) */

%typecheck(SWIG_TYPECHECK_INTEGER)
 int, short, long,
 unsigned int, unsigned short, unsigned long,
 signed char, unsigned char,
 long long, unsigned long long,
 const int &, const short &, const long &,
 const unsigned int &, const unsigned short &, const unsigned long &,
 const long long &, const unsigned long long &,
 enum SWIGTYPE,

SWIG−1.3 Documentation

10.10 Typemaps and overloading 156

 bool, const bool &
{
 $1 = (PyInt_Check($input) || PyLong_Check($input)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_DOUBLE)
 float, double,
 const float &, const double &
{
 $1 = (PyFloat_Check($input) || PyInt_Check($input) || PyLong_Check($input)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_CHAR) char {
 $1 = (PyString_Check($input) && (PyString_Size($input) == 1)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_STRING) char * {
 $1 = PyString_Check($input) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [] {
 void *ptr;
 if (SWIG_ConvertPtr($input, (void **) &ptr, $1_descriptor, 0) == −1) {
 $1 = 0;
 PyErr_Clear();
 } else {
 $1 = 1;
 }
}

%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE {
 void *ptr;
 if (SWIG_ConvertPtr($input, (void **) &ptr, $&1_descriptor, 0) == −1) {
 $1 = 0;
 PyErr_Clear();
 } else {
 $1 = 1;
 }
}

%typecheck(SWIG_TYPECHECK_VOIDPTR) void * {
 void *ptr;
 if (SWIG_ConvertPtr($input, (void **) &ptr, 0, 0) == −1) {
 $1 = 0;
 PyErr_Clear();
 } else {
 $1 = 1;
 }
}

%typecheck(SWIG_TYPECHECK_POINTER) PyObject *
{
 $1 = ($input != 0);
}

It might take a bit of contemplation, but this code has merely organized all of the basic C++ types, provided some simple
type−checking code, and assigned each type a precedence value.

Finally, to generate the dynamic dispatch function, SWIG uses the following algorithm:

Overloaded methods are first sorted by the number of required arguments.•
Methods with the same number of arguments are then sorted by precedence values of argument types.•
Typecheck typemaps are then emitted to produce a dispatch function that checks arguments in the correct order.•

SWIG−1.3 Documentation

10.10 Typemaps and overloading 157

If you haven't written any typemaps of your own, it is unnecessary to worry about the typechecking rules. However, if you have
written new input typemaps, you might have to supply a typechecking rule as well. An easy way to do this is to simply copy one
of the existing typechecking rules. Here is an example,

// Typemap for a C++ string
%typemap(in) std::string {
 if (PyString_Check($input)) {
 $1 = std::string(PyString_AsString($input));
 } else {
 SWIG_exception(SWIG_TypeError, "string expected");
 }
}
// Copy the typecheck code for "char *".
%typemap(typecheck) std::string = char *;

The bottom line: If you are writing new typemaps and you are using overloaded methods, you will probably have to write
typecheck code or copy existing code. Since this is a relatively new SWIG feature, there are few examples to work with.
However, you might look at some of the existing library files likes 'typemaps.i' for a guide.

Notes:

Typecheck typemaps are not used for non−overloaded methods. Because of this, it is still always necessary to check
types in any "in" typemaps.

•

The dynamic dispatch process is only meant to be a heuristic. There are many corner cases where SWIG simply can't
disambiguate types to the same degree as C++. The only way to resolve this ambiguity is to use the %rename directive to
rename one of the overloaded methods (effectively eliminating overloading).

•

Typechecking may be partial. For example, if working with arrays, the typecheck code might simply check the type of
the first array element and use that to dispatch to the correct function. Subsequent "in" typemaps would then perform
more extensive type−checking.

•

Make sure you read the section on overloading in the "SWIG and C++" chapter.•

10.11 More about %apply and %clear

In order to implement certain kinds of program behavior, it is sometimes necessary to write sets of typemaps. For example, to
support output arguments, one often writes a set of typemaps like this:

%typemap(in,numinputs=0) int *OUTPUT (int temp) {
 $1 = &temp;
}
%typemap(argout) int *OUTPUT {
 // return value somehow
}

To make it easier to apply the typemap to different argument types and names, the %apply directive performs a copy of all
typemaps from one type to another. For example, if you specify this,

%apply int *OUTPUT { int *retvalue, int32 *output };

then all of the int *OUTPUT typemaps are copied to int *retvalue and int32 *output.

However, there is a subtle aspect of %apply that needs more description. Namely, %apply does not overwrite a typemap rule if
it is already defined for the target datatype. This behavior allows you to do two things:

You can specialize parts of a complex typemap rule by first defining a few typemaps and then using %apply to
incorporate the remaining pieces.

•

Sets of different typemaps can be applied to the same datatype using repeated %apply directives.•

For example:

SWIG−1.3 Documentation

10.11 More about %apply and %clear 158

%typemap(in) int *INPUT (int temp) {
 temp = ... get value from $input ...;
 $1 = &temp;
}

%typemap(check) int *POSITIVE {
 if (*$1 <= 0) {
 SWIG_exception(SWIG_ValueError,"Expected a positive number!\n");
 return NULL;
 }
}

...
%apply int *INPUT { int *invalue };
%apply int *POSITIVE { int *invalue };

Since %apply does not overwrite or replace any existing rules, the only way to reset behavior is to use the %clear directive.
%clear removes all typemap rules defined for a specific datatype. For example:

%clear int *invalue;

10.12 Reducing wrapper code size

Since the code supplied to a typemap is inlined directly into wrapper functions, typemaps can result in a tremendous amount of
code bloat. For example, consider this typemap for an array:

%typemap(in) float [ANY] {
 int i;
 if (!PySequence_Check($input)) {
 PyErr_SetString(PyExc_ValueError,"Expected a sequence");
 return NULL;
 }
 if (PySequence_Length($input) != $1_dim0) {
 PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
 return NULL;
 }
 $1 = (float) malloc($1_dim0*sizeof(float));
 for (i = 0; i < $1_dim0; i++) {
 PyObject *o = PySequence_GetItem($input,i);
 if (PyNumber_Check(o)) {
 $1[i] = (float) PyFloat_AsDouble(o);
 } else {
 PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
 free(result);
 return NULL;
 }
 }
}

If you had a large interface with hundreds of functions all accepting array parameters, this typemap would be replicated
repeatedly−−generating a huge amount of code. A better approach might be to consolidate some of the typemap into a function.
For example:

%{
/* Define a helper function */
static float *
convert_float_array(PyObject *input, int size) {
 int i;
 float *result;
 if (!PySequence_Check(input)) {
 PyErr_SetString(PyExc_ValueError,"Expected a sequence");
 return NULL;
 }
 if (PySequence_Length(input) != size) {

SWIG−1.3 Documentation

10.12 Reducing wrapper code size 159

 PyErr_SetString(PyExc_ValueError,"Size mismatch. ");
 return NULL;
 }
 result = (float) malloc(size*sizeof(float));
 for (i = 0; i < size; i++) {
 PyObject *o = PySequence_GetItem(input,i);
 if (PyNumber_Check(o)) {
 result[i] = (float) PyFloat_AsDouble(o);
 } else {
 PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
 free(result);
 return NULL;
 }
 }
 return result;
}
%}

%typemap(in) float [ANY] {
 $1 = convert_float_array($input, $1_dim0);
 if (!$1) return NULL;
}
%}

10.13 Passing data between typemaps

It is also important to note that the primary use of local variables is to create stack−allocated objects for temporary use inside a
wrapper function (this is faster and less−prone to error than allocating data on the heap). In general, the variables are not intended
to pass information between different types of typemaps. However, this can be done if you realize that local names have the
argument number appended to them. For example, you could do this:

%typemap(in) int *(int temp) {
 temp = (int) PyInt_AsLong($input);
 $1 = &temp;
}

%typemap(argout) int * {
 PyObject *o = PyInt_FromLong(temp$argnum);
 ...
}

In this case, the $argnum variable is expanded into the argument number. Therefore, the code will reference the appropriate local
such as temp1 and temp2. It should be noted that there are plenty of opportunities to break the universe here and that accessing
locals in this manner should probably be avoided. At the very least, you should make sure that the typemaps sharing information
have exactly the same types and names.

10.14 Where to go for more information?

The best place to find out more information about writing typemaps is to look in the SWIG library. Most language modules define
all of their default behavior using typemaps. These are found in files such as python.swg, perl5.swg, tcl8.swg and so
forth. The typemaps.i file in the library also contains numerous examples. You should look at these files to get a feel for how
to define typemaps of your own. Some of the language modules support additional typemaps and further information is available
in the individual chapters for each target language.

SWIG−1.3 Documentation

10.13 Passing data between typemaps 160

11 Customization Features
Exception handling with %exception

Handling exceptions in C code♦
Exception handling with longjmp()♦
Handling C++ exceptions♦
Exception handlers for variables♦
Defining different exception handlers♦
Using The SWIG exception library♦

•

Object ownership and %newobject•
Features and the %feature directive

Feature flags♦
Clearing features♦
Features and default arguments♦
Feature example♦

•

In many cases, it is desirable to change the default wrapping of particular declarations in an interface. For example, you might
want to provide hooks for catching C++ exceptions, add assertions, or provide hints to the underlying code generator. This chapter
describes some of these customization techniques. First, a discussion of exception handling is presented. Then, a more
general−purpose customization mechanism known as "features" is described.

11.1 Exception handling with %exception

The %exception directive allows you to define a general purpose exception handler. For example, you can specify the
following:

%exception {
 try {
 $action
 }
 catch (RangeError) {
 PyErr_SetString(PyExc_IndexError,"index out−of−bounds");
 return NULL;
 }
}

When defined, the code enclosed in braces is inserted directly into the low−level wrapper functions. The special symbol
$action gets replaced with the actual operation to be performed (a function call, method invocation, attribute access, etc.). An
exception handler remains in effect until it is explicitly deleted. This is done by using either %exception or %noexception
with no code. For example:

%exception; // Deletes any previously defined handler

Compatibility note: Previous versions of SWIG used a special directive %except for exception handling. That directive is
deprecated−−%exception provides the same functionality, but is substantially more flexible.

11.1.1 Handling exceptions in C code

C has no formal exception handling mechanism so there are several approaches that might be used. A somewhat common
technique is to simply set a special error code. For example:

/* File : except.c */

static char error_message[256];
static int error_status = 0;

void throw_exception(char *msg) {
 strncpy(error_message,msg,256);

11 Customization Features 161

 error_status = 1;
}

void clear_exception() {
 error_status = 0;
}
char *check_exception() {
 if (error_status) return error_message;
 else return NULL;
}

To use these functions, functions simply call throw_exception() to indicate an error occurred. For example :

double inv(double x) {
 if (x != 0) return 1.0/x;
 else {
 throw_exception("Division by zero");
 return 0;
 }
}

To catch the exception, you can write a simple exception handler such as the following (shown for Perl5) :

%exception {
 char *err;
 clear_exception();
 $action
 if ((err = check_exception())) {
 croak(err);
 }
}

In this case, when an error occurs, it is translated into a Perl error. Each target language has its own approach to creating a runtime
error/exception in and for Perl it is the croak method shown above.

11.1.2 Exception handling with longjmp()

Exception handling can also be added to C code using the <setjmp.h> library. Here is a minimalistic implementation that relies
on the C preprocessor :

/* File : except.c
 Just the declaration of a few global variables we're going to use */

#include <setjmp.h>
jmp_buf exception_buffer;
int exception_status;

/* File : except.h */
#include <setjmp.h>
extern jmp_buf exception_buffer;
extern int exception_status;

#define try if ((exception_status = setjmp(exception_buffer)) == 0)
#define catch(val) else if (exception_status == val)
#define throw(val) longjmp(exception_buffer,val)
#define finally else

/* Exception codes */

#define RangeError 1
#define DivisionByZero 2
#define OutOfMemory 3

SWIG−1.3 Documentation

11.1.1 Handling exceptions in C code 162

Now, within a C program, you can do the following :

double inv(double x) {
 if (x) return 1.0/x;
 else throw(DivisionByZero);
}

Finally, to create a SWIG exception handler, write the following :

%{
#include "except.h"
%}

%exception {
 try {
 $action
 } catch(RangeError) {
 croak("Range Error");
 } catch(DivisionByZero) {
 croak("Division by zero");
 } catch(OutOfMemory) {
 croak("Out of memory");
 } finally {
 croak("Unknown exception");
 }
}

Note: This implementation is only intended to illustrate the general idea. To make it work better, you'll need to modify it to handle
nested try declarations.

11.1.3 Handling C++ exceptions

Handling C++ exceptions is also straightforward. For example:

%exception {
 try {
 $action
 } catch(RangeError) {
 croak("Range Error");
 } catch(DivisionByZero) {
 croak("Division by zero");
 } catch(OutOfMemory) {
 croak("Out of memory");
 } catch(...) {
 croak("Unknown exception");
 }
}

The exception types need to be declared as classes elsewhere, possibly in a header file :

class RangeError {};
class DivisionByZero {};
class OutOfMemory {};

11.1.4 Exception handlers for variables

By default all variables will ignore %exception, so it is effectively turned off for all variables wrappers. This applies to global
variables, member variables and static member variables. The approach is certainly a logical one when wrapping variables in C.

SWIG−1.3 Documentation

11.1.2 Exception handling with longjmp() 163

However, in C++, it is quite possible for an exception to be thrown while the variable is being assigned. To ensure %exception
is used when wrapping variables, it needs to be 'turned on' using the %allowexception feature. Note that
%allowexception is just a macro for %feature("allowexcept"), that is, it is a feature called "allowexcept". Any
variable which has this feature attached to it, will then use the %exception feature, but of course, only if there is a
%exception attached to the variable in the first place. The %allowexception feature works like any other feature and so
can be used globally or for selective variables.

%allowexception; // turn on globally
%allowexception Klass::MyVar; // turn on for a specific variable

%noallowexception Klass::MyVar; // turn off for a specific variable
%noallowexception; // turn off globally

11.1.5 Defining different exception handlers

By default, the %exception directive creates an exception handler that is used for all wrapper functions that follow it. Unless
there is a well−defined (and simple) error handling mechanism in place, defining one universal exception handler may be
unwieldy and result in excessive code bloat since the handler is inlined into each wrapper function.

To fix this, you can be more selective about how you use the %exception directive. One approach is to only place it around
critical pieces of code. For example:

%exception {
 ... your exception handler ...
}
/* Define critical operations that can throw exceptions here */

%exception;

/* Define non−critical operations that don't throw exceptions */

More precise control over exception handling can be obtained by attaching an exception handler to specific declaration name. For
example:

%exception allocate {
 try {
 $action
 }
 catch (MemoryError) {
 croak("Out of memory");
 }
}

In this case, the exception handler is only attached to declarations named "allocate". This would include both global and member
functions. The names supplied to %exception follow the same rules as for %rename described in the section on Ambiguity
resolution and renaming. For example, if you wanted to define an exception handler for a specific class, you might write this:

%exception Object::allocate {
 try {
 $action
 }
 catch (MemoryError) {
 croak("Out of memory");
 }
}

When a class prefix is supplied, the exception handler is applied to the corresponding declaration in the specified class as well as
for identically named functions appearing in derived classes.

%exception can even be used to pinpoint a precise declaration when overloading is used. For example:

SWIG−1.3 Documentation

11.1.4 Exception handlers for variables 164

%exception Object::allocate(int) {
 try {
 $action
 }
 catch (MemoryError) {
 croak("Out of memory");
 }
}

Attaching exceptions to specific declarations is a good way to reduce code bloat. It can also be a useful way to attach exceptions
to specific parts of a header file. For example:

%module example
%{
#include "someheader.h"
%}

// Define a few exception handlers for specific declarations
%exception Object::allocate(int) {
 try {
 $action
 }
 catch (MemoryError) {
 croak("Out of memory");
 }
}

%exception Object::getitem {
 try {
 $action
 }
 catch (RangeError) {
 croak("Index out of range");
 }
}
...
// Read a raw header file
%include "someheader.h"

Compatibility note: The %exception directive replaces the functionality provided by the deprecated "except" typemap. The
typemap would allow exceptions to be thrown in the target language based on the return type of a function and was intended to be
a mechanism for pinpointing specific declarations. However, it never really worked that well and the new %exception directive is
much better.

11.1.6 Using The SWIG exception library

The exception.i library file provides support for creating language independent exceptions in your interfaces. To use it,
simply put an "%include exception.i" in your interface file. This creates a function SWIG_exception() that can be
used to raise common scripting language exceptions in a portable manner. For example :

// Language independent exception handler
%include exception.i

%exception {
 try {
 $action
 } catch(RangeError) {
 SWIG_exception(SWIG_ValueError, "Range Error");
 } catch(DivisionByZero) {
 SWIG_exception(SWIG_DivisionByZero, "Division by zero");
 } catch(OutOfMemory) {
 SWIG_exception(SWIG_MemoryError, "Out of memory");
 } catch(...) {
 SWIG_exception(SWIG_RuntimeError,"Unknown exception");

SWIG−1.3 Documentation

11.1.5 Defining different exception handlers 165

 }
}

As arguments, SWIG_exception() takes an error type code (an integer) and an error message string. The currently supported
error types are :

SWIG_UnknownError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
SWIG_AttributeError
SWIG_MemoryError
SWIG_NullReferenceError

Since the SWIG_exception() function is defined at the C−level it can be used elsewhere in SWIG. This includes typemaps
and helper functions.

11.2 Object ownership and %newobject

A common problem in some applications is managing proper ownership of objects. For example, consider a function like this:

Foo *blah() {
 Foo *f = new Foo();
 return f;
}

If you wrap the function blah(), SWIG has no idea that the return value is a newly allocated object. As a result, the resulting
extension module may produce a memory leak (SWIG is conservative and will never delete objects unless it knows for certain
that the returned object was newly created).

To fix this, you can provide an extra hint to the code generator using the %newobject directive. For example:

%newobject blah;
Foo *blah();

%newobject works exactly like %rename and %exception. In other words, you can attach it to class members and
parameterized declarations as before. For example:

%newobject ::blah(); // Only applies to global blah
%newobject Object::blah(int,double); // Only blah(int,double) in Object
%newobject *::copy; // Copy method in all classes
...

When %newobject is supplied, many language modules will arrange to take ownership of the return value. This allows the
value to be automatically garbage−collected when it is no longer in use. However, this depends entirely on the target language (a
language module may also choose to ignore the %newobject directive).

Closely related to %newobject is a special typemap. The "newfree" typemap can be used to deallocate a newly allocated return
value. It is only available on methods for which %newobject has been applied and is commonly used to clean−up string results.
For example:

%typemap(newfree) char * "free($1);";
...
%newobject strdup;

SWIG−1.3 Documentation

11.1.6 Using The SWIG exception library 166

...
char *strdup(const char *s);

In this case, the result of the function is a string in the target language. Since this string is a copy of the original result, the data
returned by strdup() is no longer needed. The "newfree" typemap in the example simply releases this memory.

As a complement to the %newobject, from SWIG 1.3.28, you can use the %delobject directive. For example, if you have
two methods, one to create objects and one to destroy them, you can use:

%newobject create_foo;
%delobject destroy_foo;
...
Foo *create_foo();
void destroy_foo(Foo *foo);

or in a member method as:

%delobject Foo::destroy;

class Foo {
public:
 void destroy() { delete this;}

private:
 ~Foo();
};

%delobject instructs SWIG that the first argument passed to the method will be destroyed, and therefore, the target language
should not attempt to deallocate it twice. This is similar to use the DISOWN typemap in the first method argument, and in fact, it
also depends on the target language on implementing the 'disown' mechanism properly.

Compatibility note: Previous versions of SWIG had a special %new directive. However, unlike %newobject, it only applied to
the next declaration. For example:

%new char *strdup(const char *s);

For now this is still supported but is deprecated.

How to shoot yourself in the foot: The %newobject directive is not a declaration modifier like the old %new directive. Don't
write code like this:

%newobject
char *strdup(const char *s);

The results might not be what you expect.

11.3 Features and the %feature directive

Both %exception and %newobject are examples of a more general purpose customization mechanism known as "features."
A feature is simply a user−definable property that is attached to specific declarations. Features are attached using the %feature
directive. For example:

%feature("except") Object::allocate {
 try {
 $action
 }
 catch (MemoryError) {
 croak("Out of memory");
 }
}

SWIG−1.3 Documentation

11.2 Object ownership and %newobject 167

%feature("new","1") *::copy;

In fact, the %exception and %newobject directives are really nothing more than macros involving %feature:

#define %exception %feature("except")
#define %newobject %feature("new","1")

The name matching rules outlined in the Ambiguity resolution and renaming section applies to all %feature directives. In fact
the the %rename directive is just a special form of %feature. The matching rules mean that features are very flexible and can
be applied with pinpoint accuracy to specific declarations if needed. Additionally, if no declaration name is given, a global feature
is said to be defined. This feature is then attached to every declaration that follows. This is how global exception handlers are
defined. For example:

/* Define a global exception handler */
%feature("except") {
 try {
 $action
 }
 ...
}

... bunch of declarations ...

The %feature directive can be used with different syntax. The following are all equivalent:

%feature("except") Object::method { $action };
%feature("except") Object::method %{ $action %};
%feature("except") Object::method " $action ";
%feature("except","$action") Object::method;

The syntax in the first variation will generate the { } delimiters used whereas the other variations will not. The %feature
directive also accepts XML style attributes in the same way that typemaps will. Any number of attributes can be specified. The
following is the generic syntax for features:

%feature("name","value", attribute1="AttributeValue1") symbol;
%feature("name", attribute1="AttributeValue1") symbol {value};
%feature("name", attribute1="AttributeValue1") symbol %{value%};
%feature("name", attribute1="AttributeValue1") symbol "value";

More than one attribute can be specified using a comma separated list. The Java module is an example that uses attributes in
%feature("except"). The throws attribute specifies the name of a Java class to add to a proxy method's throws clause. In
the following example, MyExceptionClass is the name of the Java class for adding to the throws clause.

%feature("except", throws="MyExceptionClass") Object::method {
 try {
 $action
 } catch (...) {
 ... code to throw a MyExceptionClass Java exception ...
 }
};

Further details can be obtained from the Java exception handling section.

11.3.1 Feature flags

Feature flags are used to enable or disable a particular feature. Feature flags are a common but simple usage of %feature and
the feature value should be either 1 to enable or 0 to disable the feature.

%feature("name") // enables feature
%feature("name", "1") // enables feature
%feature("name", "x") // enables feature

SWIG−1.3 Documentation

11.3 Features and the %feature directive 168

%feature("name", "0") // disables feature
%feature("name", "") // clears feature

Actually any value other than zero will enable the feature. Note that if the value is omitted completely, the default value becomes
1, thereby enabling the feature. A feature is cleared by specifying no value, see Clearing features. The %immutable directive
described in the Creating read−only variables section, is just a macro for %feature("immutable"), and can be used to
demonstrates feature flags:

 // features are disabled by default
int red; // mutable

%feature("immutable"); // global enable
int orange; // immutable

%feature("immutable","0"); // global disable
int yellow; // mutable

%feature("immutable","1"); // another form of global enable
int green; // immutable

%feature("immutable",""); // clears the global feature
int blue; // mutable

Note that features are disabled by default and must be explicitly enabled either globally or by specifying a targeted declaration.
The above intersperses SWIG directives with C code. Of course you can target features explicitly, so the above could also be
rewritten as:

%feature("immutable","1") orange;
%feature("immutable","1") green;
int red; // mutable
int orange; // immutable
int yellow; // mutable
int green; // immutable
int blue; // mutable

The above approach allows for the C declarations to be separated from the SWIG directives for when the C declarations are
parsed from a C header file. The logic above can of course be inverted and rewritten as:

%feature("immutable","1");
%feature("immutable","0") red;
%feature("immutable","0") yellow;
%feature("immutable","0") blue;
int red; // mutable
int orange; // immutable
int yellow; // mutable
int green; // immutable
int blue; // mutable

11.3.2 Clearing features

A feature stays in effect until it is explicitly cleared. A feature is cleared by supplying a %feature directive with no value. For
example %feature("name",""). A cleared feature means that any feature exactly matching any previously defined feature is
no longer used in the name matching rules. So if a feature is cleared, it might mean that another name matching rule will apply. To
clarify, let's consider the except feature again (%exception):

// Define global exception handler
%feature("except") {
 try {
 $action
 } catch (...) {
 croak("Unknown C++ exception");
 }
}

SWIG−1.3 Documentation

11.3.1 Feature flags 169

// Define exception handler for all clone methods to log the method calls
%feature("except") *::clone() {
 try {
 logger.info("$action");
 $action
 } catch (...) {
 croak("Unknown C++ exception");
 }
}

... initial set of class declarations with clone methods ...

// clear the previously defined feature
%feature("except","") *::clone();

... final set of class declarations with clone methods ...

In the above scenario, the initial set of clone methods will log all method invocations from the target language. This specific
feature is cleared for the final set of clone methods. However, these clone methods will still have an exception handler (without
logging) as the next best feature match for them is the global exception handler.

Note that clearing a feature is not always the same as disabling it. Clearing the feature above with %feature("except","")
*::clone() is not the same as specifying %feature("except","0") *::clone(). The former will disable the feature
for clone methods − the feature is still a better match than the global feature. If on the other hand, no global exception handler had
been defined at all, then clearing the feature would be the same as disabling it as no other feature would have matched.

Note that the feature must match exactly for it to be cleared by any previously defined feature. For example the following attempt
to clear the initial feature will not work:

%feature("except") clone() { logger.info("$action"); $action }
%feature("except","") *::clone();

but this will:

%feature("except") clone() { logger.info("$action"); $action }
%feature("except","") clone();

11.3.3 Features and default arguments

SWIG treats methods with default arguments as separate overloaded methods as detailed in the default arguments section. Any
%feature targeting a method with default arguments will apply to all the extra overloaded methods that SWIG generates if the
default arguments are specified in the feature. If the default arguments are not specified in the feature, then the feature will match
that exact wrapper method only and not the extra overloaded methods that SWIG generates. For example:

%feature("except") void hello(int i=0, double d=0.0) { ... }
void hello(int i=0, double d=0.0);

will apply the feature to all three wrapper methods, that is:

void hello(int i, double d);
void hello(int i);
void hello();

If the default arguments are not specified in the feature:

%feature("except") void hello(int i, double d) { ... }
void hello(int i=0, double d=0.0);

then the feature will only apply to this wrapper method:

SWIG−1.3 Documentation

11.3.2 Clearing features 170

void hello(int i, double d);

and not these wrapper methods:

void hello(int i);
void hello();

If compactdefaultargs are being used, then the difference between specifying or not specifying default arguments in a feature is
not applicable as just one wrapper is generated.

Compatibility note: The different behaviour of features specified with or without default arguments was introduced in
SWIG−1.3.23 when the approach to wrapping methods with default arguments was changed.

11.3.4 Feature example

As has been shown earlier, the intended use for the %feature directive is as a highly flexible customization mechanism that can
be used to annotate declarations with additional information for use by specific target language modules. Another example is in
the Python module. You might use %feature to rewrite proxy/shadow class code as follows:

%module example
%rename(bar_id) bar(int,double);

// Rewrite bar() to allow some nice overloading

%feature("shadow") Foo::bar(int) %{
def bar(*args):
 if len(args) == 3:
 return apply(examplec.Foo_bar_id,args)
 return apply(examplec.Foo_bar,args)
%}

class Foo {
public:
 int bar(int x);
 int bar(int x, double y);
}

Further details of %feature usage is described in the documentation for specific language modules.

SWIG−1.3 Documentation

11.3.3 Features and default arguments 171

12 Contracts
The %contract directive•
%contract and classes•
Constant aggregation and %aggregate_check•
Notes•

A common problem that arises when wrapping C libraries is that of maintaining reliability and checking for errors. The fact of the
matter is that many C programs are notorious for not providing error checks. Not only that, when you expose the internals of an
application as a library, it often becomes possible to crash it simply by providing bad inputs or using it in a way that wasn't
intended.

This chapter describes SWIG's support for software contracts. In the context of SWIG, a contract can be viewed as a runtime
constraint that is attached to a declaration. For example, you can easily attach argument checking rules, check the output values of
a function and more. When one of the rules is violated by a script, a runtime exception is generated rather than having the program
continue to execute.

12.1 The %contract directive

Contracts are added to a declaration using the %contract directive. Here is a simple example:

%contract sqrt(double x) {
require:
 x >= 0;
ensure:
 sqrt >= 0;
}

...
double sqrt(double);

In this case, a contract is being added to the sqrt() function. The %contract directive must always appear before the
declaration in question. Within the contract there are two sections, both of which are optional. The require: section specifies
conditions that must hold before the function is called. Typically, this is used to check argument values. The ensure: section
specifies conditions that must hold after the function is called. This is often used to check return values or the state of the program.
In both cases, the conditions that must hold must be specified as boolean expressions.

In the above example, we're simply making sure that sqrt() returns a non−negative number (if it didn't, then it would be broken in
some way).

Once a contract has been specified, it modifies the behavior of the resulting module. For example:

>>> example.sqrt(2)
1.4142135623730951
>>> example.sqrt(−2)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
RuntimeError: Contract violation: require: (arg1>=0)
>>>

12.2 %contract and classes

The %contract directive can also be applied to class methods and constructors. For example:

%contract Foo::bar(int x, int y) {
require:
 x > 0;
ensure:

12 Contracts 172

 bar > 0;
}

%contract Foo::Foo(int a) {
require:
 a > 0;
}

class Foo {
public:
 Foo(int);
 int bar(int, int);
};

The way in which %contract is applied is exactly the same as the %feature directive. Thus, any contract that you specified
for a base class will also be attached to inherited methods. For example:

class Spam : public Foo {
public:
 int bar(int,int); // Gets contract defined for Foo::bar(int,int)
};

In addition to this, separate contracts can be applied to both the base class and a derived class. For example:

%contract Foo::bar(int x, int) {
require:
 x > 0;
}

%contract Spam::bar(int, int y) {
require:
 y > 0;
}

class Foo {
public:
 int bar(int,int); // Gets Foo::bar contract.
};

class Spam : public Foo {
public:
 int bar(int,int); // Gets Foo::bar and Spam::bar contract
};

When more than one contract is applied, the conditions specified in a "require:" section are combined together using a
logical−AND operation. In other words conditions specified for the base class and conditions specified for the derived class all
must hold. In the above example, this means that both the arguments to Spam::bar must be positive.

12.3 Constant aggregation and %aggregate_check

Consider an interface file that contains the following code:

#define UP 1
#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObject *, int direction, int distance);

One thing you might want to do is impose a constraint on the direction parameter to make sure it's one of a few accepted values.
To do that, SWIG provides an easy to use macro %aggregate_check() that works like this:

%aggregate_check(int, check_direction, UP, DOWN, LEFT, RIGHT);

SWIG−1.3 Documentation

12.2 %contract and classes 173

This merely defines a utility function of the form

int check_direction(int x);

That checks the argument x to see if it is one of the values listed. This utility function can be used in contracts. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);

%contract move(SomeObject *, int direction, in) {
require:
 check_direction(direction);
}

#define UP 1
#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObject *, int direction, int distance);

Alternatively, it can be used in typemaps and other directives. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);

%typemap(check) int direction {
 if (!check_direction($1)) SWIG_exception(SWIG_ValueError, "Bad direction");
}

#define UP 1
#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObject *, int direction, int distance);

Regrettably, there is no automatic way to perform similar checks with enums values. Maybe in a future release.

12.4 Notes

Contract support was implemented by Songyan (Tiger) Feng and first appeared in SWIG−1.3.20.

SWIG−1.3 Documentation

12.3 Constant aggregation and %aggregate_check 174

13 Variable Length Arguments
Introduction•
The Problem•
Default varargs support•
Argument replacement using %varargs•
Varargs and typemaps•
Varargs wrapping with libffi•
Wrapping of va_list•
C++ Issues•
Discussion•

(a.k.a, "The horror. The horror.")

This chapter describes the problem of wrapping functions that take a variable number of arguments. For instance, generating
wrappers for the C printf() family of functions.

This topic is sufficiently advanced to merit its own chapter. In fact, support for varargs is an often requested feature that was first
added in SWIG−1.3.12. Most other wrapper generation tools have wisely chosen to avoid this issue.

13.1 Introduction

Some C and C++ programs may include functions that accept a variable number of arguments. For example, most programmers
are familiar with functions from the C library such as the following:

int printf(const char *fmt, ...)
int fprintf(FILE *, const char *fmt, ...);
int sprintf(char *s, const char *fmt, ...);

Although there is probably little practical purpose in wrapping these specific C library functions in a scripting language (what
would be the point?), a library may include its own set of special functions based on a similar API. For example:

int traceprintf(const char *fmt, ...);

In this case, you may want to have some kind of access from the target language.

Before describing the SWIG implementation, it is important to discuss the common uses of varargs that you are likely to
encounter in real programs. Obviously, there are the printf() style output functions as shown. Closely related to this would be
scanf() style input functions that accept a format string and a list of pointers into which return values are placed. However,
variable length arguments are also sometimes used to write functions that accept a NULL−terminated list of pointers. A good
example of this would be a function like this:

int execlp(const char *path, const char *arg1, ...);
...

/* Example */
execlp("ls","ls","−l",NULL);

In addition, varargs is sometimes used to fake default arguments in older C libraries. For instance, the low level open() system
call is often declared as a varargs function so that it will accept two or three arguments:

int open(const char *path, int oflag, ...);
...

/* Examples */
f = open("foo", O_RDONLY);
g = open("bar", O_WRONLY | O_CREAT, 0644);

13 Variable Length Arguments 175

Finally, to implement a varargs function, recall that you have to use the C library functions defined in <stdarg.h>. For
example:

List make_list(const char *s, ...) {
 va_list ap;
 List x;
 ...
 va_start(ap, s);
 while (s) {
 x.append(s);
 s = va_arg(ap, const char *);
 }
 va_end(ap);
 return x;
}

13.2 The Problem

Generating wrappers for a variable length argument function presents a number of special challenges. Although C provides
support for implementing functions that receive variable length arguments, there are no functions that can go in the other
direction. Specifically, you can't write a function that dynamically creates a list of arguments and which invokes a varargs
function on your behalf.

Although it is possible to write functions that accept the special type va_list, this is something entirely different. You can't
take a va_list structure and pass it in place of the variable length arguments to another varargs function. It just doesn't work.

The reason this doesn't work has to do with the way that function calls get compiled. For example, suppose that your program has
a function call like this:

printf("Hello %s. Your number is %d\n", name, num);

When the compiler looks at this, it knows that you are calling printf() with exactly three arguments. Furthermore, it knows
that the number of arguments as well are their types and sizes is never going to change during program execution. Therefore, this
gets turned to machine code that sets up a three−argument stack frame followed by a call to printf().

In contrast, suppose you attempted to make some kind of wrapper around printf() using code like this:

int wrap_printf(const char *fmt, ...) {
 va_list ap;
 va_start(ap,fmt);
 ...
 printf(fmt,ap);
 ...
 va_end(ap);
};

Athough this code might compile, it won't do what you expect. This is because the call to printf() is compiled as a procedure
call involving only two arguments. However, clearly a two−argument configuration of the call stack is completely wrong if your
intent is to pass an arbitrary number of arguments to the real printf(). Needless to say, it won't work.

Unfortunately, the situation just described is exactly the problem faced by wrapper generation tools. In general, the number of
passed arguments will not be known until run−time. To make matters even worse, you won't know the types and sizes of
arguments until run−time as well. Needless to say, there is no obvious way to make the C compiler generate code for a function
call involving an unknown number of arguments of unknown types.

In theory, it is possible to write a wrapper that does the right thing. However, this involves knowing the underlying ABI for the
target platform and language as well as writing special purpose code that manually constructed the call stack before making a
procedure call. Unfortunately, both of these tasks require the use of inline assembly code. Clearly, that's the kind of solution you
would much rather avoid.

SWIG−1.3 Documentation

13.1 Introduction 176

With this nastiness in mind, SWIG provides a number of solutions to the varargs wrapping problem. Most of these solutions are
compromises that provide limited varargs support without having to resort to assembly language. However, SWIG can also
support real varargs wrapping (with stack−frame manipulation) if you are willing to get hands dirty. Keep reading.

13.3 Default varargs support

When variable length arguments appear in an interface, the default behavior is to drop the variable argument list entirely,
replacing them with a single NULL pointer. For example, if you had this function,

void traceprintf(const char *fmt, ...);

it would be wrapped as if it had been declared as follows:

void traceprintf(const char *fmt);

When the function is called inside the wrappers, it is called as follows:

traceprintf(arg1, NULL);

Arguably, this approach seems to defeat the whole point of variable length arguments. However, this actually provides enough
support for many simple kinds of varargs functions to still be useful. For instance, you could make function calls like this (in
Python):

>>> traceprintf("Hello World")
>>> traceprintf("Hello %s. Your number is %d\n" % (name, num))

Notice how string formatting is being done in Python instead of C.

13.4 Argument replacement using %varargs

Instead of dropping the variable length arguments, an alternative approach is to replace (...) with a set of suitable arguments.
SWIG provides a special %varargs directive that can be used to do this. For example,

%varargs(int mode = 0) open;
...
int open(const char *path, int oflags, ...);

is equivalent to this:

int open(const char *path, int oflags, int mode = 0);

In this case, %varargs is simply providing more specific information about the extra arguments that might be passed to a
function. If the parameters to a varargs function are of uniform type, %varargs can also accept a numerical argument count as
follows:

%varargs(10,char *arg = NULL) execlp;
...
int execlp(const char *path, const char *arg1, ...);

This would wrap execlp() as a function that accepted up to 10 optional arguments. Depending on the application, this may be
more than enough for practical purposes.

Argument replacement is most appropriate in cases where the types of the extra arguments is uniform and the maximum number
of arguments is known. When replicated argument replacement is used, at least one extra argument is added to the end of the
arguments when making the function call. This argument serves as a sentinel to make sure the list is properly terminated. It has
the same value as that supplied to the %varargs directive.

SWIG−1.3 Documentation

13.2 The Problem 177

Argument replacement is not as useful when working with functions that accept mixed argument types such as printf().
Providing general purpose wrappers to such functions presents special problems (covered shortly).

13.5 Varargs and typemaps

Variable length arguments may be used in typemap specifications. For example:

%typemap(in) (...) {
 // Get variable length arguments (somehow)
 ...
}

%typemap(in) (const char *fmt, ...) {
 // Multi−argument typemap
}

However, this immediately raises the question of what "type" is actually used to represent (...). For lack of a better alternative,
the type of (...) is set to void *. Since there is no way to dynamically pass arguments to a varargs function (as previously
described), the void * argument value is intended to serve as a place holder for storing some kind of information about the extra
arguments (if any). In addition, the default behavior of SWIG is to pass the void * value as an argument to the function.
Therefore, you could use the pointer to hold a valid argument value if you wanted.

To illustrate, here is a safer version of wrapping printf() in Python:

%typemap(in) (const char *fmt, ...) {
 $1 = "%s"; /* Fix format string to %s */
 $2 = (void *) PyString_AsString($input); /* Get string argument */
};
...
int printf(const char *fmt, ...);

In this example, the format string is implicitly set to "%s". This prevents a program from passing a bogus format string to the
extension. Then, the passed input object is decoded and placed in the void * argument defined for the (...) argument. When
the actual function call is made, the underlying wrapper code will look roughly like this:

wrap_printf() {
 char *arg1;
 void *arg2;
 int result;

 arg1 = "%s";
 arg2 = (void *) PyString_AsString(arg2obj);
 ...
 result = printf(arg1,arg2);
 ...
}

Notice how both arguments are passed to the function and it does what you would expect.

The next example illustrates a more advanced kind of varargs typemap. Disclaimer: this requires special support in the target
language module and is not guaranteed to work with all SWIG modules at this time. It also starts to illustrate some of the more
fundamental problems with supporting varargs in more generality.

If a typemap is defined for any form of (...), many SWIG modules will generate wrappers that accept a variable number of
arguments as input and will make these arguments available in some form. The precise details of this depends on the language
module being used (consult the appropriate chapter for more details). However, suppose that you wanted to create a Python
wrapper for the execlp() function shown earlier. To do this using a typemap instead of using %varargs, you might first write
a typemap like this:

%typemap(in) (...)(char *args[10]) {

SWIG−1.3 Documentation

13.4 Argument replacement using %varargs 178

 int i;
 int argc;
 for (i = 0; i < 10; i++) args[i] = 0;
 argc = PyTuple_Size(varargs);
 if (argc > 10) {
 PyErr_SetString(PyExc_ValueError,"Too many arguments");
 return NULL;
 }
 for (i = 0; i < argc; i++) {
 PyObject *o = PyTuple_GetItem(varargs,i);
 if (!PyString_Check(o)) {
 PyErr_SetString(PyExc_ValueError,"Expected a string");
 return NULL;
 }
 args[i] = PyString_AsString(o);
 }
 $1 = (void *) args;
}

In this typemap, the special variable varargs is a tuple holding all of the extra arguments passed (this is specific to the Python
module). The typemap then pulls this apart and sticks the values into the array of strings args. Then, the array is assigned to $1
(recall that this is the void * variable corresponding to (...)). However, this assignment is only half of the
picture−−−−clearly this alone is not enough to make the function work. To patch everything up, you have to rewrite the
underlying action code using the %feature directive like this:

%feature("action") execlp {
 char *args = (char **) arg3;
 result = execlp(arg1, arg2, args[0], args[1], args[2], args[3], args[4],
 args[5],args[6],args[7],args[8],args[9], NULL);
}

int execlp(const char *path, const char *arg, ...);

This patches everything up and creates a function that more or less works. However, don't try explaining this to your coworkers
unless you know for certain that they've had several cups of coffee. If you really want to elevate your guru status and increase
your job security, continue to the next section.

13.6 Varargs wrapping with libffi

All of the previous examples have relied on features of SWIG that are portable and which don't rely upon any low−level
machine−level details. In many ways, they have all dodged the real issue of variable length arguments by recasting a varargs
function into some weaker variation with a fixed number of arguments of known types. In many cases, this works perfectly fine.
However, if you want more generality than this, you need to bring out some bigger guns.

One way to do this is to use a special purpose library such as libffi (http://sources.redhat.com/libffi). libffi is a library that allows
you to dynamically construct call−stacks and invoke procedures in a relatively platform independent manner. Details about the
library can be found in the libffi distribution and are not repeated here.

To illustrate the use of libffi, suppose that you really wanted to create a wrapper for execlp() that accepted any number of
arguments. To do this, you might make a few adjustments to the previous example. For example:

/* Take an arbitrary number of extra arguments and place into an array
 of strings */

%typemap(in) (...) {
 char **argv;
 int argc;
 int i;

 argc = PyTuple_Size(varargs);
 argv = (char **) malloc(sizeof(char *)*(argc+1));
 for (i = 0; i < argc; i++) {

SWIG−1.3 Documentation

13.5 Varargs and typemaps 179

http://sources.redhat.com/libffi/

 PyObject *o = PyTuple_GetItem(varargs,i);
 if (!PyString_Check(o)) {
 PyErr_SetString(PyExc_ValueError,"Expected a string");
 free(argv);
 return NULL;
 }
 argv[i] = PyString_AsString(o);
 }
 argv[i] = NULL;
 $1 = (void *) argv;
}

/* Rewrite the function call, using libffi */

%feature("action") execlp {
 int i, vc;
 ffi_cif cif;
 ffi_type **types;
 void **values;
 char **args;

 vc = PyTuple_Size(varargs);
 types = (ffi_type **) malloc((vc+3)*sizeof(ffi_type *));
 values = (void **) malloc((vc+3)*sizeof(void *));
 args = (char **) arg3;

 /* Set up path parameter */
 types[0] = &ffi_type_pointer;
 values[0] = &arg1;

 /* Set up first argument */
 types[1] = &ffi_type_pointer;
 values[1] = &arg2;

 /* Set up rest of parameters */
 for (i = 0; i <= vc; i++) {
 types[2+i] = &ffi_type_pointer;
 values[2+i] = &args[i];
 }
 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+3,
 &ffi_type_uint, types) == FFI_OK) {
 ffi_call(&cif, (void (*)()) execlp, &result, values);
 } else {
 PyErr_SetString(PyExc_RuntimeError, "Whoa!!!!!");
 free(types);
 free(values);
 free(arg3);
 return NULL;
 }
 free(types);
 free(values);
 free(arg3);
}

/* Declare the function. Whew! */
int execlp(const char *path, const char *arg1, ...);

Looking at this example, you may start to wonder if SWIG is making life any easier. Given the amount of code involved, you
might also wonder why you didn't just write a hand−crafted wrapper! Either that or you're wondering "why in the hell am I trying
to wrap this varargs function in the first place?!?" Obviously, those are questions you'll have to answer for yourself.

As a more extreme example of libffi, here is some code that attempts to wrap printf(),

/* A wrapper for printf() using libffi */

%{

SWIG−1.3 Documentation

13.6 Varargs wrapping with libffi 180

/* Structure for holding passed arguments after conversion */
 typedef struct {
 int type;
 union {
 int ivalue;
 double dvalue;
 void *pvalue;
 } val;
 } vtype;
 enum { VT_INT, VT_DOUBLE, VT_POINTER };
%}

%typemap(in) (const char *fmt, ...) {
 vtype *argv;
 int argc;
 int i;

 /* Format string */
 $1 = PyString_AsString($input);

 /* Variable length arguments */
 argc = PyTuple_Size(varargs);
 argv = (vtype *) malloc(argc*sizeof(vtype));
 for (i = 0; i < argc; i++) {
 PyObject *o = PyTuple_GetItem(varargs,i);
 if (PyInt_Check(o)) {
 argv[i].type = VT_INT;
 argv[i].val.ivalue = PyInt_AsLong(o);
 } else if (PyFloat_Check(o)) {
 argv[i].type = VT_DOUBLE;
 argv[i].val.dvalue = PyFloat_AsDouble(o);
 } else if (PyString_Check(o)) {
 argv[i].type = VT_POINTER;
 argv[i].val.pvalue = (void *) PyString_AsString(o);
 } else {
 PyErr_SetString(PyExc_ValueError,"Unsupported argument type");
 free(argv);
 return NULL;
 }
 }
 $2 = (void *) argv;
}

/* Rewrite the function call using libffi */
%feature("action") printf {
 int i, vc;
 ffi_cif cif;
 ffi_type **types;
 void **values;
 vtype *args;

 vc = PyTuple_Size(varargs);
 types = (ffi_type **) malloc((vc+1)*sizeof(ffi_type *));
 values = (void **) malloc((vc+1)*sizeof(void *));
 args = (vtype *) arg2;

 /* Set up fmt parameter */
 types[0] = &ffi_type_pointer;
 values[0] = &arg1;

 /* Set up rest of parameters */
 for (i = 0; i < vc; i++) {
 switch(args[i].type) {
 case VT_INT:
 types[1+i] = &ffi_type_uint;
 values[1+i] = &args[i].val.ivalue;
 break;
 case VT_DOUBLE:

SWIG−1.3 Documentation

13.6 Varargs wrapping with libffi 181

 types[1+i] = &ffi_type_double;
 values[1+i] = &args[i].val.dvalue;
 break;
 case VT_POINTER:
 types[1+i] = &ffi_type_pointer;
 values[1+i] = &args[i].val.pvalue;
 break;
 default:
 abort(); /* Whoa! We're seriously hosed */
 break;
 }
 }
 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+1,
 &ffi_type_uint, types) == FFI_OK) {
 ffi_call(&cif, (void (*)()) printf, &result, values);
 } else {
 PyErr_SetString(PyExc_RuntimeError, "Whoa!!!!!");
 free(types);
 free(values);
 free(args);
 return NULL;
 }
 free(types);
 free(values);
 free(args);
}

/* The function */
int printf(const char *fmt, ...);

Much to your amazement, it even seems to work if you try it:

>>> import example
>>> example.printf("Grade: %s %d/60 = %0.2f%%\n", "Dave", 47, 47.0*100/60)
Grade: Dave 47/60 = 78.33%
>>>

Of course, there are still some limitations to consider:

>>> example.printf("la de da de da %s", 42)
Segmentation fault (core dumped)

And, on this note, we leave further exploration of libffi to the reader as an exercise. Although Python has been used as an
example, most of the techniques in this section can be extrapolated to other language modules with a bit of work. The only details
you need to know is how the extra arguments are accessed in each target language. For example, in the Python module, we used
the special varargs variable to get these arguments. Modules such as Tcl8 and Perl5 simply provide an argument number for
the first extra argument. This can be used to index into an array of passed arguments to get values. Please consult the chapter on
each language module for more details.

13.7 Wrapping of va_list

Closely related to variable length argument wrapping, you may encounter functions that accept a parameter of type va_list.
For example:

int vfprintf(FILE *f, const char *fmt, va_list ap);

As far as we know, there is no obvious way to wrap these functions with SWIG. This is because there is no documented way to
assemble the proper va_list structure (there are no C library functions to do it and the contents of va_list are opaque). Not only
that, the contents of a va_list structure are closely tied to the underlying call−stack. It's not clear that exporting a va_list
would have any use or that it would work at all.

SWIG−1.3 Documentation

13.7 Wrapping of va_list 182

13.8 C++ Issues

Wrapping of C++ member functions that accept a variable number of arguments presents a number of challenges. By far, the
easiest way to handle this is to use the %varargs directive. This is portable and it fully supports classes much like the %rename
directive. For example:

%varargs (10, char * = NULL) Foo::bar;

class Foo {
public:
 virtual void bar(char *arg, ...); // gets varargs above
};

class Spam: public Foo {
public:
 virtual void bar(char *arg, ...); // gets varargs above
};

%varargs also works with constructors, operators, and any other C++ programming construct that accepts variable arguments.

Doing anything more advanced than this is likely to involve a serious world of pain. In order to use a library like libffi, you will
need to know the underlying calling conventions and details of the C++ ABI. For instance, the details of how this is passed to
member functions as well as any hidden arguments that might be used to pass additional information. These details are
implementation specific and may differ between compilers and even different versions of the same compiler. Also, be aware that
invoking a member function is further complicated if it is a virtual method. In this case, invocation might require a table lookup to
obtain the proper function address (although you might be able to obtain an address by casting a bound pointer to a pointer to
function as described in the C++ ARM section 18.3.4).

If you do decide to change the underlying action code, be aware that SWIG always places the this pointer in arg1. Other
arguments are placed in arg2, arg3, and so forth. For example:

%feature("action") Foo::bar {
 ...
 result = arg1−>bar(arg2, arg3, etc.);
 ...
}

Given the potential to shoot yourself in the foot, it is probably easier to reconsider your design or to provide an alternative
interface using a helper function than it is to create a fully general wrapper to a varargs C++ member function.

13.9 Discussion

This chapter has provided a number of techniques that can be used to address the problem of variable length argument wrapping.
If you care about portability and ease of use, the %varargs directive is probably the easiest way to tackle the problem. However,
using typemaps, it is possible to do some very advanced kinds of wrapping.

One point of discussion concerns the structure of the libffi examples in the previous section. Looking at that code, it is not at all
clear that this is the easiest way to solve the problem. However, there are a number of subtle aspects of the solution to
consider−−mostly concerning the way in which the problem has been decomposed. First, the example is structured in a way that
tries to maintain separation between wrapper−specific information and the declaration of the function itself. The idea here is that
you might structure your interface like this:

%typemap(const char *fmt, ...) {
 ...
}
%feature("action") traceprintf {
 ...
}

SWIG−1.3 Documentation

13.8 C++ Issues 183

/* Include some header file with traceprintf in it */
%include "someheader.h"

Second, careful scrutiny will reveal that the typemaps involving (...) have nothing whatsoever to do with the libffi library. In
fact, they are generic with respect to the way in which the function is actually called. This decoupling means that it will be much
easier to consider other library alternatives for making the function call. For instance, if libffi wasn't supported on a certain
platform, you might be able to use something else instead. You could use conditional compilation to control this:

#ifdef USE_LIBFFI
%feature("action") printf {
 ...
}
#endif
#ifdef USE_OTHERFFI
%feature("action") printf {
...
}
#endif

Finally, even though you might be inclined to just write a hand−written wrapper for varargs functions, the techniques used in the
previous section have the advantage of being compatible with all other features of SWIG such as exception handling.

As a final word, some C programmers seem to have the assumption that the wrapping of variable length argument functions is an
easily solved problem. However, this section has hopefully dispelled some of these myths. All things being equal, you are better
off avoiding variable length arguments if you can. If you can't avoid them, please consider some of the simple solutions first. If
you can't live with a simple solution, proceed with caution. At the very least, make sure you carefully read the section "A7.3.2
Function Calls" in Kernighan and Ritchie and make sure you fully understand the parameter passing conventions used for varargs.
Also, be aware of the platform dependencies and reliability issues that this will introduce. Good luck.

SWIG−1.3 Documentation

13.9 Discussion 184

14 Warning Messages
Introduction•
Warning message suppression•
Enabling additional warnings•
Issuing a warning message•
Commentary•
Warnings as errors•
Message output format•
Warning number reference

Deprecated features (100−199)♦
Preprocessor (200−299)♦
C/C++ Parser (300−399)♦
Types and typemaps (400−499)♦
Code generation (500−599)♦
Language module specific (800−899)♦
User defined (900−999)♦

•

History•

14.1 Introduction

During compilation, SWIG may generate a variety of warning messages. For example:

example.i:16: Warning(501): Overloaded declaration ignored. bar(double)
example.i:15: Warning(501): Previous declaration is bar(int)

Typically, warning messages indicate non−fatal problems with the input where the generated wrapper code will probably compile,
but it may not work like you expect.

14.2 Warning message suppression

All warning messages have a numeric code that is shown in the warning message itself. To suppress the printing of a warning
message, a number of techniques can be used. First, you can run SWIG with the −w command line option. For example:

% swig −python −w501 example.i
% swig −python −w501,505,401 example.i

Alternatively, warnings can be suppressed by inserting a special preprocessor pragma into the input file:

%module example
#pragma SWIG nowarn=501
#pragma SWIG nowarn=501,505,401

Finally, code−generation warnings can be disabled on a declaration by declaration basis using the %warnfilter directive. For
example:

%module example
%warnfilter(501) foo;
...
int foo(int);
int foo(double); // Silently ignored.

The %warnfilter directive has the same semantics as other declaration modifiers like %rename, %ignore, and %feature.
For example, if you wanted to suppress a warning for a method in a class hierarchy, you could do this:

%warnfilter(501) Object::foo;
class Object {

14 Warning Messages 185

public:
 int foo(int);
 int foo(double); // Silently ignored
 ...
};

class Derived : public Object {
public:
 int foo(int);
 int foo(double); // Silently ignored
 ...
};

Warnings can be suppressed for an entire class by supplying a class name. For example:

%warnfilter(501) Object;

class Object {
public:
 ... // All 501 warnings ignored in class
};

There is no option to suppress all SWIG warning messages. The warning messages are there for a reason−−−to tell you that
something may be broken in your interface. Ignore the warning messages at your own peril.

14.3 Enabling additional warnings

Some warning messages are disabled by default and are generated only to provide additional diagnostics. All warning messages
can be enabled using the −Wall option. For example:

% swig −Wall −python example.i

When −Wall is used, all other warning filters are disabled.

To selectively turn on extra warning messages, you can use the directives and options in the previous section−−simply add a "+"
to all warning numbers. For example:

% swig −w+309,+452 example.i

or

#pragma SWIG nowarn=+309,+452

or

%warnfilter(+309,+452) foo;

Note: selective enabling of warnings with %warnfilter overrides any global settings you might have made using −w or
#pragma.

14.4 Issuing a warning message

Warning messages can be issued from an interface file using a number of directives. The %warn directive is the most simple:

%warn "750:This is your last warning!"

All warning messages are optionally prefixed by the warning number to use. If you are generating your own warnings, make sure
you don't use numbers defined in the table at the end of this section.

SWIG−1.3 Documentation

14.2 Warning message suppression 186

The %ignorewarn directive is the same as %ignore except that it issues a warning message whenever a matching declaration
is found. For example:

%ignorewarn("362:operator= ignored") operator=;

Warning messages can be associated with typemaps using the warning attribute of a typemap declaration. For example:

%typemap(in, warning="751:You are really going to regret this") blah * {
 ...
}

In this case, the warning message will be printed whenever the typemap is actually used.

14.5 Commentary

The ability to suppress warning messages is really only provided for advanced users and is not recommended in normal use. There
are no plans to provide symbolic names or options that identify specific types or groups of warning messages−−−the numbers
must be used explicitly.

Certain types of SWIG problems are errors. These usually arise due to parsing errors (bad syntax) or semantic problems for which
there is no obvious recovery. There is no mechanism for suppressing error messages.

14.6 Warnings as errors

Warnings can be handled as errors by using the −Werror command line option. This will cause SWIG to exit with a non
successful exit code if a warning is encountered.

14.7 Message output format

The output format for both warnings and errors can be selected for integration with your favourite IDE/editor. Editors and IDEs
can usually parse error messages and if in the appropriate format will easily take you directly to the source of the error. The
standard format is used by default except on Windows where the Microsoft format is used by default. These can be overridden
using command line options, for example:

$ swig −python −Fstandard example.i
example.i:4: Syntax error in input.
$ swig −python −Fmicrosoft example.i
example.i(4): Syntax error in input.

14.8 Warning number reference

14.8.1 Deprecated features (100−199)

101. Deprecated %extern directive.•
102. Deprecated %val directive.•
103. Deprecated %out directive.•
104. Deprecated %disabledoc directive.•
105. Deprecated %enabledoc directive.•
106. Deprecated %doconly directive.•
107. Deprecated %style directive.•
108. Deprecated %localstyle directive.•
109. Deprecated %title directive.•
110. Deprecated %section directive.•
111. Deprecated %subsection directive.•
112. Deprecated %subsubsection directive.•
113. Deprecated %addmethods directive.•

SWIG−1.3 Documentation

14.4 Issuing a warning message 187

114. Deprecated %readonly directive.•
115. Deprecated %readwrite directive.•
116. Deprecated %except directive.•
117. Deprecated %new directive.•
118. Deprecated %typemap(except).•
119. Deprecated %typemap(ignore).•
120. Deprecated command line option (−c).•
121. Deprecated %name directive.•

14.8.2 Preprocessor (200−299)

201. Unable to find 'filename'.•
202. Could not evaluate 'expr'.•

14.8.3 C/C++ Parser (300−399)

301. class keyword used, but not in C++ mode.•
302. Identifier 'name' redefined (ignored).•
303. %extend defined for an undeclared class 'name'.•
304. Unsupported constant value (ignored).•
305. Bad constant value (ignored).•
306. 'identifier' is private in this context.•
307. Can't set default argument value (ignored)•
308. Namespace alias 'name' not allowed here. Assuming 'name'•
309. [private | protected] inheritance ignored.•
310. Template 'name' was already wrapped as 'name' (ignored)•
311. Template partial specialization not supported.•
312. Nested classes not currently supported (ignored).•
313. Unrecognized extern type "name" (ignored).•
314. 'identifier' is a lang keyword.•
315. Nothing known about 'identifier'.•
316. Repeated %module directive.•
317. Specialization of non−template 'name'.•
318. Instantiation of template name is ambiguous. Using templ at file:line•
319. No access specifier given for base class name (ignored).•
320. Explicit template instantiation ignored.•
321. identifier conflicts with a built−in name.•
322. Redundant redeclaration of 'name'.•
350. operator new ignored.•
351. operator delete ignored.•
352. operator+ ignored.•
353. operator− ignored.•
354. operator* ignored.•
355. operator/ ignored.•
356. operator% ignored.•
357. operator^ ignored.•
358. operator& ignored.•
359. operator| ignored.•
360. operator~ ignored.•
361. operator! ignored.•
362. operator= ignored.•
363. operator< ignored.•
364. operator> ignored.•
365. operator+= ignored.•
366. operator−= ignored.•
367. operator*= ignored.•

SWIG−1.3 Documentation

14.8.1 Deprecated features (100−199) 188

368. operator/= ignored.•
369. operator%= ignored.•
370. operator^= ignored.•
371. operator&= ignored.•
372. operator|= ignored.•
373. operator<< ignored.•
374. operator>>ignored.•
375. operator<<= ignored.•
376. operator>>= ignored.•
377. operator== ignored.•
378. operator!= ignored.•
379. operator<= ignored.•
380. operator>= ignored.•
381. operator&& ignored.•
382. operator|| ignored.•
383. operator++ ignored.•
384. operator−− ignored.•
385. operator, ignored.•
386. operator−<* ignored.•
387. operator−< ignored.•
388. operator() ignored.•
389. operator[] ignored.•
390. operator+ ignored (unary).•
391. operator− ignored (unary).•
392. operator* ignored (unary).•
393. operator& ignored (unary).•
394. operator new[] ignored.•
395. operator delete[] ignored.•

14.8.4 Types and typemaps (400−499)

401. Nothing known about class 'name'. Ignored.•
402. Base class 'name' is incomplete.•
403. Class 'name' might be abstract.•
450. Deprecated typemap feature ($source/$target).•
451. Setting const char * variable may leak memory.•
452. Reserved•
453. Can't apply (pattern). No typemaps are defined.•
460. Unable to use type type as a function argument.•
461. Unable to use return type type in function name.•
462. Unable to set variable of type type.•
463. Unable to read variable of type type.•
464. Unsupported constant value.•
465. Unable to handle type type.•
466. Unsupported variable type type.•
467. Overloaded declaration not supported (no type checking rule for 'type')•
468. No 'throw' typemap defined for exception type type•
469. No or improper directorin typemap defined for type•
470. Thread/reentrant unsafe wrapping, consider returning by value instead.•
471. Unable to use return type type in director method•

14.8.5 Code generation (500−599)

501. Overloaded declaration ignored. decl•
502. Overloaded constructor ignored. decl•
503. Can't wrap 'identifier' unless renamed to a valid identifier.•

SWIG−1.3 Documentation

14.8.3 C/C++ Parser (300−399) 189

504. Function name must have a return type.•
505. Variable length arguments discarded.•
506. Can't wrap varargs with keyword arguments enabled.•
507. Adding native function name not supported (ignored).•
508. Declaration of 'name' shadows declaration accessible via operator−>() at file:line.•
509. Overloaded declaration is shadowed by declaration at file:line.•
510. Friend function 'name' ignored.•
511. Can't use keyword arguments with overloaded functions.•
512. Overloaded declaration const ignored. Non−const method at file:line used.•
513. Can't generate wrappers for unnamed struct/class.•
514.•
515.•
516. Overloaded method declaration ignored. Method declaration at file:line used.•
517.•
518. Portability warning: File file1 will be overwritten by file2 on case insensitive filesystems such as Windows' FAT32
and NTFS unless the class/module name is renamed.

•

14.8.6 Language module specific (800−899)

801. Wrong name (corrected to 'name'). (Ruby).•

810. No jni typemap defined for type (Java).•
811. No jtype typemap defined for type (Java).•
812. No jstype typemap defined for type (Java).•
813. Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in Java. (Java).•
814.•
815. No javafinalize typemap defined for type (Java).•
816. No javabody typemap defined for type (Java).•
817. No javaout typemap defined for type (Java).•
818. No javain typemap defined for type (Java).•
819. No javadirectorin typemap defined for type (Java).•
820. No javadirectorout typemap defined for type (Java).•
821.•
822. Covariant return types not supported in Java. Proxy method will return basetype (Java).•
823. No javaconstruct typemap defined for type (Java).•
824. Missing JNI descriptor in directorin typemap defined for type (Java).•

830. No ctype typemap defined for type (C#).•
831. No cstype typemap defined for type (C#).•
832. No cswtype typemap defined for type (C#).•
833. Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in C#. (C#).•
834.•
835. No csfinalize typemap defined for type (C#).•
836. No csbody typemap defined for type (C#).•
837. No csout typemap defined for type (C#).•
838. No csin typemap defined for type (C#).•
839.•
840.•
841.•
842. Covariant return types not supported in C#. Proxy method will return basetype (C#).•
843. No csconstruct typemap defined for type (C#).•
844. C# exception may not be thrown − no $excode or excode attribute in typemap typemap. (C#).•
845. Unmanaged code contains a call to a SWIG_CSharpSetPendingException method and C# code does not handle
pending exceptions via the canthrow attribute. (C#).

•

870. Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in Php4. (Php4).•

SWIG−1.3 Documentation

14.8.5 Code generation (500−599) 190

14.8.7 User defined (900−999)

These numbers can be used by your own application.

14.9 History

The ability to control warning messages was first added to SWIG−1.3.12.

SWIG−1.3 Documentation

14.8.7 User defined (900−999) 191

15 Working with Modules
The SWIG runtime code•
External access to the runtime•
A word of caution about static libraries•
References•
Reducing the wrapper file size•

When first working with SWIG, users commonly start by creating a single module. That is, you might define a single SWIG
interface that wraps some set of C/C++ code. You then compile all of the generated wrapper code into a module and use it. For
large applications, however, this approach is problematic−−−the size of the generated wrapper code can be rather large. Moreover,
it is probably easier to manage the target language interface when it is broken up into smaller pieces.

This chapter describes the problem of using SWIG in programs where you want to create a collection of modules.

15.1 The SWIG runtime code

Many of SWIG's target languages generate a set of functions commonly known as the "SWIG runtime." These functions are
primarily related to the runtime type system which checks pointer types and performs other tasks such as proper casting of pointer
values in C++. As a general rule, the statically typed target languages, such as Java, use the language's built in static type checking
and have no need for a SWIG runtime. All the dynamically typed / interpreted languages rely on the SWIG runtime.

The runtime functions are private to each SWIG−generated module. That is, the runtime functions are declared with "static"
linkage and are visible only to the wrapper functions defined in that module. The only problem with this approach is that when
more than one SWIG module is used in the same application, those modules often need to share type information. This is
especially true for C++ programs where SWIG must collect and share information about inheritance relationships that cross
module boundaries.

To solve the problem of sharing information across modules, a pointer to the type information is stored in a global variable in the
target language namespace. During module initialization, type information is loaded into the global data structure of type
information from all modules.

This can present a problem with threads. If two modules try and load at the same time, the type information can become corrupt.
SWIG currently does not provide any locking, and if you use threads, you must make sure that modules are loaded serially. Be
careful if you use threads and the automatic module loading that some scripting languages provide. One solution is to load all
modules before spawning any threads.

15.2 External access to the runtime

As described in The run−time type checker, the functions SWIG_TypeQuery, SWIG_NewPointerObj, and others sometimes
need to be called. Calling these functions from a typemap is supported, since the typemap code is embedded into the _wrap.c
file, which has those declerations available. If you need to call the SWIG run−time functions from another C file, there is one
header you need to include. To generate the header that needs to be included, run the following command:

$ swig −python −external−runtime <filename>

The filename argument is optional and if it is not passed, then the default filename will be something like swigpyrun.h,
depending on the language. This header file should be treated like any of the other _wrap.c output files, and should be regenerated
when the _wrap files are. After including this header, your code will be able to call SWIG_TypeQuery,
SWIG_NewPointerObj, SWIG_ConvertPtr and others. The exact argument paramaters for these functions might differ
between language modules; please check the language module chapters for more information.

Inside this header the functions are declared static and are included inline into the file, and thus the file does not need to be linked
against any SWIG libraries or code (you might still need to link against the language libraries like libpython−2.3). Data is shared
between this file and the _wrap.c files through a global variable in the scripting language. It is also possible to copy this header

15 Working with Modules 192

file along with the generated wrapper files into your own package, so that you can distribute a package that can be compiled
without SWIG installed (this works because the header file is self contained, and does not need to link with anything).

15.3 A word of caution about static libraries

When working with multiple SWIG modules, you should take care not to use static libraries. For example, if you have a static
library libfoo.a and you link a collection of SWIG modules with that library, each module will get its own private copy of the
library code inserted into it. This is very often NOT what you want and it can lead to unexpected or bizarre program behavior.
When working with dynamically loadable modules, you should try to work exclusively with shared libaries.

15.4 References

Due to the complexity of working with shared libraries and multiple modules, it might be a good idea to consult an outside
reference. John Levine's "Linkers and Loaders" is highly recommended.

15.5 Reducing the wrapper file size

Using multiple modules with the %import directive is the most common approach to modularising large projects. In this way a
number of different wrapper files can be generated, thereby avoiding the generation of a single large wrapper file. There are a
couple of alternative solutions for reducing the size of a wrapper file through the use of command line options and features.

−fcompact
This command line option will compact the size of the wrapper file without changing the code generated into the wrapper file. It
simply removes blank lines and joins lines of code together. This is useful for compilers that have a maximum file size that can be
handled.

−fvirtual
This command line option will remove the generation of superfluous virtual method wrappers. Consider the following inheritance
hierarchy:

struct Base {
 virtual void method();
 ...
};

struct Derived : Base {
 virtual void method();
 ...
};

Normally wrappers are generated for both methods, whereas this command line option will suppress the generation of a wrapper
for Derived::method. Normal polymorphic behaviour remains as Derived::method will still be called should you have a
Derived instance and call the wrapper for Base::method.

%feature("compactdefaultargs")
This feature can reduce the number of wrapper methods when wrapping methods with default arguments. The section on default
arguments discusses the feature and it's limitations.

SWIG−1.3 Documentation

15.2 External access to the runtime 193

16 SWIG and Allegro Common Lisp
Basics

Running Swig♦
Command Line Options♦
Inserting user code into generated files♦

•

Wrapping Overview
Function Wrapping♦
Foreign Wrappers♦
FFI Wrappers♦
Non−overloaded Defuns♦
Overloaded Defuns♦
What about constant and variable access?♦
Object Wrapping♦

•

Wrapping Details
Namespaces♦
Constants♦
Variables♦
Enumerations♦
Arrays♦
Classes and Structs and Unions (oh my!)

CLOS wrapping of◊
CLOS Inheritance◊
Member fields and functions◊
Why not directly access C++ classes using foreign types?◊

♦

Templates
Generating wrapper code for templates◊
Implicit Template instantiation◊

♦

Typedef, Templates, and Synonym Types
Choosing a primary type◊

♦

Function overloading/Parameter defaulting♦
Operator wrapping and Operator overloading♦
Varargs♦
C++ Exceptions♦
Pass by value, pass by reference♦

•

Typemaps
Code Generation in the C++ Wrapper

IN Typemap◊
OUT Typemap◊
CTYPE Typemap◊

♦

Code generation in Lisp wrappers
LIN Typemap◊
LOUT Typemap◊
FFITYPE Typemap◊
LISPTYPE Typemap◊
LISPCLASS Typemap◊

♦

Modifying SWIG behavior using typemaps♦

•

Identifier Converter functions
Creating symbols in the lisp environment♦
Existing identifier−converter functions

identifier−convert−null◊
identifier−convert−lispify◊
Default identifier to symbol conversions◊

♦

Defining your own identifier−converter♦
Instructing SWIG to use a particular identifier−converter♦

•

16 SWIG and Allegro Common Lisp 194

This chapter describes SWIG's support of Allegro Common Lisp. Allegro CL is a full−featured implementation of the Common
Lisp language standard that includes many vendor−specific enhancements and add−on modules for increased usability.

One such module included in Allegro CL is the Foreign Functions Interface (FFI). This module, tailored primarily toward
interfacing with C/C++ and, historically, Fortran, provides a means by which compiled foreign code can be loaded into a running
lisp environment and executed. The interface supports the calling of foreign functions and methods, allows for executing lisp
routines from foreign code (callbacks), and the passing of data between foreign and lisp code.

The goal of this module is to make it possible to quickly generate the necessary foreign function definitions so one can make use
of C/C++ foreign libraries directly from lisp without the tedium of having to code them by hand. When necessary, it will also
generate further C/C++ code that will need to be linked with the intended library for proper interfacing from lisp. It has been
designed with an eye toward flexibility. Some foreign function calls may release the heap, while other should not. Some foreign
functions should automatically convert lisp strings into native strings, while others should not. These adjustments and many more
are possible with the current module.

It is significant to note that, while this is a vendor−specific module, we would like to acknowledge the current and ongoing work
by developers in the open source lisp community that are working on similar interfaces to implementation−independent foreign
function interfaces (UFFI or CFFI, for example). Such work can only benefit the lisp community, and we would not be unhappy
to see some enterprising folk use this work to add to it.

16.1 Basics

16.1.1 Running Swig

If you're reading this, you must have some library you need to generate an interface for. In order for SWIG to do this work,
however, it needs a bit of information about how it should go about creating your interface, and what you are interfacing to.

SWIG expects a description of what in the foreign interface you wish to connect to. It must consisting of C/C++ declarations and
special SWIG directives. SWIG can be furnished with a header file, but an interface can also be generated without library headers
by supplying a simple text file−−called the interface file, which is typically named with a .i extension−−containing any foreign
declarations of identifiers you wish to use. The most common approach is to use a an interface file with directives to parse the
needed headers. A straight parse of library headers will result in usable code, but SWIG directives provides much freedom in how
a user might tailor the generated code to their needs or style of coding.

Note that SWIG does not require any function definitions; the declarations of those functions is all that is necessary. Be careful
when tuning the interface as it is quite possible to generate code that will not load or compile.

An example interface file is shown below. It makes use of two SWIG directives, one of which requests that the declarations in a
header file be used to generate part of the interface, and also includes an additional declaration to be added.

example.i

%module example

%include "header.h"

int fact(int n);

The contents of header.h are very simple:

header.h

int fact(char *statement); // pass it a fact, and it will rate it.

The contents of example.cl will look like this:

example.cl

SWIG−1.3 Documentation

16.1 Basics 195

(defpackage :example
 (:use :common−lisp :swig :ff :excl))

 ... helper routines for defining the interface ...

(swig−in−package ())

(swig−defun ("fact")
 ((PARM0_statement string (* :char)))
 (:returning (:int)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_statement))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("fact")
 ((PARM0_n integer :int))
 (:returning (:int)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_n))
 (swig−ff−call SWIG_arg0)))

(swig−dispatcher ("fact" :type :function :arities (1)))

The generated file contains calls to internal swig helper functions. In this case there are two calls to swig−defun. These calls will
expand into code that will make the appropriate definitions using the Allegro FFI. Note also, that this code is erroneous. Function
overloading is not supported in C, and this code will not compile even though SWIG did not complain.

In order to generate a C interface to Allegro CL using this code run swig using the −allegrocl option, as below:

% swig −allegrocl example.i

In C mode, a single example.cl file will be generated, containing declarations that when compiled/loaded into the Allegro CL
environment will define an interface for calling into the foreign library. To actually use the interface, you'll also need to load the
foreign library into lisp.

When building an interface to C++ code, include the −c++ option:

% swig −allegrocl −c++ example.i

In C++ mode, the same example.cl file will be generated, but SWIG will also generate example_wrap.cxx, containing
C/C++ wrapper code to facilitate access to C++ methods and enumeration values. Wrapper functions are necessary due to the lack
of a standard for mangling the names of symbols across all C++ compilers. These wrapper functions are exported from the shared
library as appropriate, using the C name mangling convention. The lisp code that is generated will interface to your foreign library
through these wrappers.

The generated wrapper file is below. It contains very simple wrappers by default, that simply pass the arguments to the actual
function.

example_wrap.i

 ... lots of SWIG internals ...

EXPORT int ACL___fact__SWIG_0 (char *larg1) {
 int lresult = (int)0 ;
 char *arg1 = (char *) 0 ;
 int result;

 arg1 = larg1;
 try {
 result = (int)fact(arg1);

 lresult = result;

SWIG−1.3 Documentation

16.1.1 Running Swig 196

 return lresult;
 } catch (...) {
 return (int)0;
 }
}

EXPORT int ACL___fact__SWIG_1 (int larg1) {
 int lresult = (int)0 ;
 int arg1 ;
 int result;

 arg1 = larg1;
 try {
 result = (int)fact(arg1);

 lresult = result;
 return lresult;
 } catch (...) {
 return (int)0;
 }
}

And again, the generated lisp code. Note that it differs from what is generated when parsing C code:

 ...

(swig−in−package ())

(swig−defmethod ("fact" "ACL___fact__SWIG_0" :type :function :arity 1)
 ((PARM0_statement string (* :char)))
 (:returning (:int)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_statement))
 (swig−ff−call SWIG_arg0)))

(swig−defmethod ("fact" "ACL___fact__SWIG_1" :type :function :arity 1)
 ((PARM0_n integer :int))
 (:returning (:int)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_n))
 (swig−ff−call SWIG_arg0)))

(swig−dispatcher ("fact" :type :function :arities (1)))

In this case, the interface generates two swig−defmethod forms and a swig−dispatcher form. This provides a single functional
interface for all overloaded routines. A more detailed description of this features is to be found in the section titled Function
overloading/Parameter defaulting.

In order to load a C++ interface, you will need to build a shared library from example_wrap.cxx. Be sure to link in the actual
library you created the interface for, as well as any other dependent shared libraries. For example, if you intend to be able to call
back into lisp, you will also need to link in the Allegro shared library. The library you create from the C++ wrapper will be what
you then load into Allegro CL.

16.1.2 Command Line Options

There are three Allegro CL specific command−line option:

swig −allegrocl [options] filename

 −identifier−converter [name] − Binds the variable swig:*swig−identifier−convert*
 in the generated .cl file to name.
 This function is used to generate symbols
 for the lisp side of the interface.

SWIG−1.3 Documentation

16.1.2 Command Line Options 197

 −cwrap − Generate a .cxx file containing C wrapper function when wrapping
 C code. The default is to only generate such a file for C++ wrapping.
 This will change how the C interface is generated for many constructs,
 such as enums and global variables.

 −nocwrap − explicitly turnoff generation of .cxx wrappers for C code.

See Section 17.5 Identifier converter functions for more details.

16.1.3 Inserting user code into generated files

It is often necessary to include user−defined code into the automatically generated interface files. For example, when building a
C++ interface, example_wrap.cxx will likely not compile unless you add a #include "header.h" directive. This can be
done using the SWIG %insert(section) %{ ...code... %} directive:

%module example

%insert("runtime") %{
#include "header.h"
%}

%include "header.h"

int fact(int n);

Additional sections have been added for inserting into the generated lisp interface file

lisphead − inserts before type declarations•
lisp − inserts after type declarations according to where it appears in the .i file•

Note that the block %{ ... %} is effectively a shortcut for %insert("runtime") %{ ... %}.

16.2 Wrapping Overview

New users to SWIG are encouraged to read SWIG Basics, and SWIG and C++, for those interested in generating an interface to
C++.

16.2.1 Function Wrapping

Writing lisp code that directly invokes functions at the foreign function interface level can be cumbersome. Data must often be
translated between lisp and foreign types, data extracted from objects, foreign objects allocated and freed upon completion of the
foreign call. Dealing with pointers can be unwieldy when it comes to keeping them distinct from other valid integer values.

We make an attempt to ease some of these burdens by making the interface to foreign code much more lisp−like, rather than C
like. How this is done is described in later chapters. The layers themselves, appear as follows:

 | | (foreign side)
 | Foreign Code | What we're generating an interface to.
 |______________|
 |
 |
 _______v______
 | | (foreign side)
 | Wrapper code | C++ only. extern "C" wrappers calling C++
 |______________| functions and methods.
 |
 . . . − − + − − . . .

SWIG−1.3 Documentation

16.1.3 Inserting user code into generated files 198

 _______v______
 | | (lisp side)
 | FFI Layer | Low level lisp interface. ff:def−foreign−call,
 |______________| ff:def−foreign−variable
 |
 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 _______v______ _______v______
 | | | | (lisp side)
 | Defuns | | Defmethods | wrapper for overloaded
 |______________| |______________| functions or those with
 (lisp side) | defaulted arguments
 Wrapper for non−overloaded |
 functions and methods _______v______
 | | (lisp side)
 | Defuns | dispatch function
 |______________| to overloads based
 on arity

16.2.2 Foreign Wrappers

These wrappers are as generated by SWIG default. The types of function parameters can be transformed in place using the
CTYPE typemap. This is use for converting pass−by−value parameters to pass−by−reference where necessary. All wrapper
parameters are then bound to local variables for possible transformation of values (see LIN typemap). Return values can be
transformed via the OUT typemap.

16.2.3 FFI Wrappers

These are the generated ff:def−foreign−call forms. No typemaps are applicable to this layer, but the %ffargs directive is
available for use in .i files, to specify which keyword arguments should be specified for a given function.

ffargs.i:

%module ffargs

%ffargs(strings_convert="nil",call_direct="t") foo;
%ffargs(strings_convert="nil",release_heap=":never",optimize_for_space="t") bar;

int foo(float f1, float f2);
int foo(float f1, char c2);

void bar(void *lisp_fn);

char *xxx();

Generates:

ffargs.cl:

(swig−in−package ())

(swig−defmethod ("foo" "ACL___foo__SWIG_0" :type :function :arity 2)
 ((PARM0_f1 single−float :float)
 (PARM1_f2 single−float :float))
 (:returning (:int)
 :call−direct t
 :strings−convert nil)
 (let ((SWIG_arg0 PARM0_f1))
 (let ((SWIG_arg1 PARM1_f2))
 (swig−ff−call SWIG_arg0 SWIG_arg1))))

(swig−defmethod ("foo" "ACL___foo__SWIG_1" :type :function :arity 2)

SWIG−1.3 Documentation

16.2.1 Function Wrapping 199

 ((PARM0_f1 single−float :float)
 (PARM1_c2 character :char character))
 (:returning (:int)
 :call−direct t
 :strings−convert nil)
 (let ((SWIG_arg0 PARM0_f1))
 (let ((SWIG_arg1 PARM1_c2))
 (swig−ff−call SWIG_arg0 SWIG_arg1))))

(swig−dispatcher ("foo" :type :function :arities (2)))
(swig−defun ("bar" "ACL___bar__SWIG_0" :type :function)
 ((PARM0_lisp_fn (* :void)))
 (:returning (:void)
 :release−heap :never
 :optimize−for−space t
 :strings−convert nil)
 (let ((SWIG_arg0 PARM0_lisp_fn))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("xxx" "ACL___xxx__SWIG_0" :type :function)
 (:void)
 (:returning ((* :char))
 :strings−convert t)
 (swig−ff−call))

%ffargs(strings_convert="t");

Is the only default value specified in allegrocl.swg to force the muffling of warnings about automatic string conversion
when defining ff:def−foreign−call's.

16.2.4 Non−overloaded Defuns

These are simple defuns. There is no typechecking of arguments. Parameters are bound to local variables for possible
transformation of values, such as pulling values out of instance slots or allocating temporary stack allocated structures, via the
lin typemap. These arguments are then passed to the foreign−call (where typechecking may occur). The return value from this
function can be manipulated via the lout typemap.

16.2.5 Overloaded Defuns

In the case of overloaded functions, mulitple layers are generated. First, all the overloads for a given name are separated out into
groups based on arity, and are wrapped in defmethods. Each method calls a distinct wrapper function, but are themselves
distinguished by the types of their arguments (see lispclass typemap). These are further wrapped in a dispatching function
(defun) which will invoke the appropriate generic−function based on arity. This provides a single functional interface to all
overloads. The return value from this function can be manipulated via the lout typemap.

16.2.6 What about constant and variable access?

Along with the described functional layering, this module will also generate defconstant and, for C,
ff:def−foreign−variable forms for accessing constants and global variables. For C++, getter and−−if not
immutable−−setter, functions are generated for variables as well. These, along with the defuns listed above are the intended API
for calling into the foreign module.

16.2.7 Object Wrapping

All non−primitive types (Classes in C++, and types declared via typedef) having a corresponding foreign−type defined on the lisp
side via ff:def−foreign−type.

SWIG−1.3 Documentation

16.2.3 FFI Wrappers 200

For C++, all classes are further represented by a CLOS class, created via defclass. An attempt is made to create the same class
hierarchy, with all classes inheriting directly or indirectly from ff:foreign−pointer. Further, wherever it is apparent, all pointers
returned from foreign code are wrapped in a CLOS instance of the appropriate class. For ff:def−foreign−calls that have been
defined to expect a :foreign−address type as argument, these CLOS instances can legally be passed and the pointer to the C++
object automatically extracted.

16.3 Wrapping Details

In this section is described how particular C/C++ constructs are translated into lisp.

16.3.1 Namespaces

C++ namespaces are translated into Lisp packages by SWIG. The Global namespace is mapped to a package named by the
%module directive or the −module command−line argument. Further namespaces are created using Allegro CLs nested
namespace convention. For example:

foo.i:

%module foo

%{
#include "foo.h"
%}

%include "foo.h"

namespace car {
 ...
 namespace tires {
 int do_something(int n);
 }
}

Generates the following code.

foo.cl

(defpackage :foo
 (:use :common−lisp :swig :ff :excl))

...

(swig−defpackage ("car"))
(swig−defpackage ("car" "tires"))

...

(swig−in−package ("car" "tires"))
(swig−defun ("do_something" "ACL_car_tires__do_something__SWIG_0" :type :function)
 ((PARM0_n :int))
 (:returning (:int)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_n))
 (swig−ff−call SWIG_arg0)))

The above interface file would cause packages foo, foo.car, and foo.car.tires to be created. One would find the function wrapper
for do_something defined in the foo.car.tires package(*).

SWIG−1.3 Documentation

16.2.7 Object Wrapping 201

(*) Except for the package named by the module, all namespace names are passed to the identifier−converter−function as strings
with a :type of :namespace. It is the job of this function to generate the desired symbol, accounting for case preferences,
additional naming cues, etc.

16.3.2 Constants

Constants, as declared by the preprocessor #define macro or SWIG %constant directive, are included in SWIGs parse tree
when it can be determined that they are, or could be reduced to, a literal value. Such values are translated into defconstant forms
in the generated lisp wrapper.

Here are examples of simple preprocessor constants.

#define A 1 => (swig−defconstant "A" 1)
#define B 'c' => (swig−defconstant "B" #\c)
#define C B => (swig−defconstant "C" #\c)
#define D 1.0e2 => (swig−defconstant "D" 1.0d2)
#define E 2222 => (swig−defconstant "E" 2222)
#define F (unsigned int)2222 => no code generated
#define G 1.02e2f => (swig−defconstant "G" 1.02f2)
#define H foo => no code generated

Note that where SWIG is unable to determine if a constant is a literal, no node is added to the SWIG parse tree, and so no values
can be generated.

For preprocessor constants containing expressions which can be reduced to literal values, nodes are created, but with no
simplification of the constant value. A very very simple infix to prefix converter has been implemented that does the right thing
for simple cases, but does not for more complex expressoins.

#define I A + E => (swig−defconstant "I" (+ 1 2222))
#define J 1|2 => (swig−defconstant "J" (logior 1 2))
#define Y 1 + 2 * 3 + 4 => (swig−defconstant "Y" (* (+ 1 2) (+ 3 4)))
#define Y1 (1 + 2) * (3 + 4) => (swig−defconstant "Y1" (* (+ 1 2) (+ 3 4)))
#define Y2 1 * 2 + 3 * 4 => (swig−defconstant "Y2" (* 1 (+ 2 3) 4)) ;; WRONG
#define Y3 (1 * 2) + (3 * 4) => (swig−defconstant "Y3" (* 1 (+ 2 3) 4)) ;; WRONG
#define Z 1 + 2 − 3 + 4 * 5 => (swig−defconstant "Z" (* (+ 1 (− 2 3) 4) 5)) ;; WRONG

Users are cautioned to get to know their constants before use.

16.3.3 Variables

For C wrapping, a def−foreign−variable call is generated for access to global variables.

When wrapping C++ code, both global and member variables, getter wrappers are generated for accessing their value, and if not
immutable, setter wrappers as well. In the example below, note the lack of a setter wrapper for global_var, defined as const.

vars.h

namespace nnn {
 int const global_var = 2;
 float glob_float = 2.0;
}

Generated code:

vars.cl

(swig−in−package ("nnn"))

SWIG−1.3 Documentation

16.3.1 Namespaces 202

(swig−defun ("global_var" "ACL_nnn__global_var_get__SWIG_0" :type :getter)
 (:void)
 (:returning (:int)
 :strings−convert t)
 (swig−ff−call))

(swig−defun ("glob_float" "ACL_nnn__glob_float_set__SWIG_0" :type :setter)
 ((PARM0_glob_float :float))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_glob_float))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("glob_float" "ACL_nnn__glob_float_get__SWIG_0" :type :getter)
 (:void)
 (:returning (:float)
 :strings−convert t)
 (swig−ff−call))

Note also, that where applicable, setter wrappers are implemented as setf methods on the getter function, providing a lispy
interface to the foreign code.

user> (load "globalvar.dll")
; Foreign loading globalvar.dll.
t
user> (load "globalvar.cl")
; Loading c:\mikel\src\swig\test\globalvar.cl
t
user>
globalvar> (globalvar.nnn::global_var)
2
globalvar> (globalvar.nnn::glob_float)
2.0
globalvar> (setf (globalvar.nnn::glob_float) 3.0)
3.0
globalvar> (globalvar.nnn::glob_float)
3.0

16.3.4 Enumerations

In C, an enumeration value is an integer value, while in C++ an enumeration value is implicitly convertible to an integer value,
but can also be distinguished by it's enum type. For each enum declaration a def−foreign−type is generated, assigning the enum a
default type of :int.

Enum values are a bit trickier as they can be initialized using any valid C/C++ expression. In C, we handle the typical cases
(simple integer initialization) and generate a defconstant form for each enum value. This has the advantage of it not being
necessary to probe into foreign space to retrieve enum values. For C++, a more general solution is employed. A wrapper variable
is created in the module_wrap.cxx file, and a ff:def−foreign−variable call is generated to retrieve it's value into lisp.

For example, the following header file

enum.h:

enum COL { RED, GREEN, BLUE };
enum FOO { FOO1 = 10, FOO2, FOO3 };

Processed as a C header, generates

SWIG−1.3 Documentation

16.3.3 Variables 203

enum.cl:

(swig−def−foreign−type "COL" :int)
(swig−defconstant "RED" 0)
(swig−defconstant "GREEN" (+ #.(swig−insert−id "RED" () :type :constant) 1))
(swig−defconstant "BLUE" (+ #.(swig−insert−id "GREEN" () :type :constant) 1))

(swig−def−foreign−type "FOO" :int)
(swig−defconstant "FOO1" 10)
(swig−defconstant "FOO2" (+ #.(swig−insert−id "FOO1" () :type :constant) 1))
(swig−defconstant "FOO3" (+ #.(swig−insert−id "FOO2" () :type :constant) 1))

And for C++ generates

enum_wrap.cxx:

EXPORT const int ACL_ENUM___RED__SWIG_0 = RED;
EXPORT const int ACL_ENUM___GREEN__SWIG_0 = GREEN;
EXPORT const int ACL_ENUM___BLUE__SWIG_0 = BLUE;
EXPORT const int ACL_ENUM___FOO1__SWIG_0 = FOO1;
EXPORT const int ACL_ENUM___FOO2__SWIG_0 = FOO2;
EXPORT const int ACL_ENUM___FOO3__SWIG_0 = FOO3;

and

enum.cl:

(swig−def−foreign−type "COL" :int)
(swig−defvar "RED" "ACL_ENUM___RED__SWIG_0" :type :constant)
(swig−defvar "GREEN" "ACL_ENUM___GREEN__SWIG_0" :type :constant)
(swig−defvar "BLUE" "ACL_ENUM___BLUE__SWIG_0" :type :constant)

(swig−def−foreign−type "FOO" :int)
(swig−defvar "FOO1" "ACL_ENUM___FOO1__SWIG_0" :type :constant)
(swig−defvar "FOO2" "ACL_ENUM___FOO2__SWIG_0" :type :constant)
(swig−defvar "FOO3" "ACL_ENUM___FOO3__SWIG_0" :type :constant)

16.3.5 Arrays

One limitation in the Allegro CL foreign−types module, is that, without macrology, expressions may not be used to specify the
dimensions of an array declaration. This is not a horrible drawback unless it is necessary to allocate foreign structures based on
the array declaration using ff:allocate−fobject. When it can be determined that an array bound is a valid numeric value, SWIG will
include this in the generated array declaration on the lisp side, otherwise the value will be included, but commented out.

Below is a comprehensive example, showing a number of legal C/C++ array declarations and how they are translated into
foreign−type specifications in the generated lisp code.

array.h

#define MAX_BUF_SIZE 1024

namespace FOO {
 int global_var1[13];
 float global_var2[MAX_BUF_SIZE];

}

enum COLOR { RED = 10, GREEN = 20, BLUE, PURPLE = 50, CYAN };

SWIG−1.3 Documentation

16.3.4 Enumerations 204

namespace BAR {
 char global_var3[MAX_BUF_SIZE + 1];
 float global_var4[MAX_BUF_SIZE][13];
 signed short global_var5[MAX_BUF_SIZE + MAX_BUF_SIZE];

 int enum_var5[GREEN];
 int enum_var6[CYAN];

 COLOR enum_var7[CYAN][MAX_BUF_SIZE];
}

Generates:

array.cl

(in−package #.*swig−module−name*)

(swig−defpackage ("FOO"))
(swig−defpackage ("BAR"))

(swig−in−package ())
(swig−def−foreign−type "COLOR" :int)
(swig−defvar "RED" "ACL_ENUM___RED__SWIG_0" :type :constant)
(swig−defvar "GREEN" "ACL_ENUM___GREEN__SWIG_0" :type :constant)
(swig−defvar "BLUE" "ACL_ENUM___BLUE__SWIG_0" :type :constant)
(swig−defvar "PURPLE" "ACL_ENUM___PURPLE__SWIG_0" :type :constant)
(swig−defvar "CYAN" "ACL_ENUM___CYAN__SWIG_0" :type :constant)

(swig−in−package ())

(swig−defconstant "MAX_BUF_SIZE" 1024)
(swig−in−package ("FOO"))

(swig−defun ("global_var1" "ACL_FOO__global_var1_get__SWIG_0" :type :getter)
 (:void)
 (:returning ((* :int))
 :strings−convert t)
 (make−instance 'ff:foreign−pointer :foreign−address (swig−ff−call)))

(swig−defun ("global_var2" "ACL_FOO__global_var2_set__SWIG_0" :type :setter)
 ((global_var2 (:array :float 1024)))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 global_var2))
 (swig−ff−call SWIG_arg0)))

(swig−in−package ())
(swig−in−package ("BAR"))
(swig−defun ("global_var3" "ACL_BAR__global_var3_set__SWIG_0" :type :setter)
 ((global_var3 (:array :char #|1024+1|#)))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 global_var3))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("global_var4" "ACL_BAR__global_var4_set__SWIG_0" :type :setter)
 ((global_var4 (:array (:array :float 13) 1024)))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 global_var4))
 (swig−ff−call SWIG_arg0)))

SWIG−1.3 Documentation

16.3.5 Arrays 205

(swig−defun ("global_var4" "ACL_BAR__global_var4_get__SWIG_0" :type :getter)
 (:void)
 (:returning ((* (:array :float 13)))
 :strings−convert t)
 (make−instance 'ff:foreign−pointer :foreign−address (swig−ff−call)))

(swig−defun ("global_var5" "ACL_BAR__global_var5_set__SWIG_0" :type :setter)
 ((global_var5 (:array :short #|1024+1024|#)))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 global_var5))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("enum_var5" "ACL_BAR__enum_var5_set__SWIG_0" :type :setter)
 ((enum_var5 (:array :int #|GREEN|#)))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 enum_var5))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("enum_var6" "ACL_BAR__enum_var6_set__SWIG_0" :type :setter)
 ((enum_var6 (:array :int #|CYAN|#)))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 enum_var6))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("enum_var7" "ACL_BAR__enum_var7_set__SWIG_0" :type :setter)
 ((enum_var7 (:array (:array #.(swig−insert−id "COLOR" ()) 1024) #|CYAN|#)))
 (:returning (:void)
 :strings−convert t)
 (let ((SWIG_arg0 enum_var7))
 (swig−ff−call SWIG_arg0)))

(swig−defun ("enum_var7" "ACL_BAR__enum_var7_get__SWIG_0" :type :getter)
 (:void)
 (:returning ((* (:array #.(swig−insert−id "COLOR" ()) 1024)))
 :strings−convert t)
 (make−instance 'ff:foreign−pointer :foreign−address (swig−ff−call)))

16.3.6 Classes and Structs and Unions (oh my!)

16.3.6.1 CLOS wrapping of

Classes, unions, and structs are all treated the same way by the interface generator. For any of these objects, a def−foreign−type
and a defclass form are generated. For every function that returns an object (or pointer/reference) of C/C++ type X, the wrapping
defun (or defmethod) on the Lisp side will automatically wrap the pointer returned in an instance of the apropriate class. This
makes it much easier to write and debug code than if pointers were passed around as a jumble of integer values.

16.3.6.2 CLOS Inheritance

The CLOS class schema generated by the interface mirrors the inheritance of the classes in foreign code, with the
ff:foreign−pointer class at its root. ff:foreign−pointer is a thin wrapper for pointers that is made available by the foreign function
interface. It's key benefit is that it may be passed as an argument to any ff:def−foreign−call that is expecting a pointer as the
parameter.

SWIG−1.3 Documentation

16.3.6 Classes and Structs and Unions (oh my!) 206

16.3.6.3 Member fields and functions

All public fields will have accessor getter/setter functions generated for them, as appropriate. All public member functions will
have wrapper functions generated.

We currently ignore anything that isn't public (i.e. private or protected), because the C++ compiler won't allow the
wrapper functions to access such fields. Likewise, the interface does nothing for friend directives,

16.3.6.4 Why not directly access C++ classes using foreign types?

The def−foreign−type generated by the SWIG interface is currently incomplete. We can reliably generate the object layout of
simple structs and unions; they can be allocated via ff:allocate−fobject, and their member variables accessed directly using the
various ff:fslot−value−* functions. However, the layout of C++ classes is more complicated. Different compilers adjust class
layout based on inheritance patterns, and the presence of virtual member functions. The size of member function pointers vary
across compilers as well. As a result, it is recommended that users of any generated interface not attempt to access C++ instances
via the foreign type system, but instead use the more robust wrapper functions.

16.3.7 Templates

16.3.7.1 Generating wrapper code for templates

SWIG provides support for dealing with templates, but by default, it will not generate any member variable or function wrappers
for templated classes. In order to create these wrappers, you need to explicitly tell SWIG to instantiate them. This is done via the
%template directive.

16.3.7.2 Implicit Template instantiation

While no wrapper code is generated for accessing member variables, or calling member functions, type code is generated to
include these templated classes in the foreign−type and CLOS class schema.

16.3.8 Typedef, Templates, and Synonym Types

In C++ it is possible, via typedef, to have many names refer to the same type. In general, this is not a problem, though it can lead
to confusion. Assume the below C++ header file:

synonyms.h

class A {
 int x;
 int y;
};

typedef A Foo;

A *xxx(int i); /* sets A−>x = A−>y = i */
Foo *yyy(int i); /* sets Foo−>x = Foo−>y = i */

int zzz(A *inst = 0); /* return inst−>x + inst−>y */

The function zzz is an overloaded functions; the foreign function call to it will be wrapped in a generic−function whose
argument will be checked against a type of A. Assuming a simple implementation, a call to xxx(1) will return a pointer to an A
object, which will be wrapped in a CLOS instance of class A, and a call to yyy(1) will result in a CLOS instance of type Foo
being returned. Without establishing a clear type relationship between Foo and A, an attempt to call zzz(yyy(1)) will result in
an error.

We resolve this issue, by noting synonym relationships between types while generating the interface. A Primary type is selected
(more on this below) from the candidate list of synonyms. For all other synonyms, intead of generating a distinct CLOS class

SWIG−1.3 Documentation

16.3.6.3 Member fields and functions 207

definition, we generate a form that expands to:

(setf (find−class <synonym>) <primary>)
The result is that all references to synonym types in foreign code, are wrapped in the same CLOS wrapper, and, in particular,
method specialization in wrapping generic functions works as expected.

Given the above header file, synonym.h, a Lisp session would appear as follows:

CL−USER> (load "synonym.dll")
; Foreign loading synonym.dll.
t
CL−USER> (load "synonym.cl")
; Loading c:\mikel\src\swig\test\synonym.cl
t
CL−USER>
synonym> (setf a (xxx 3))
#<A nil #x3261a0 @ #x207299da>
synonym> (setf foo (yyy 10))
#<A nil #x3291d0 @ #x2072e982>
synonym> (zzz a)
6
synonym> (zzz foo)
20
synonym>

16.3.8.1 Choosing a primary type

The choice of a primary type is selected by the following criteria from a set of synonym types.

If a synonym type has a class definition, it is the primary type.•
If a synonym type is a class template and has been explicitly instantiated via %template, it is the primary type.•
For all other sets of synonymous types, the synonym which is parsed first becomes the primary type.•

16.3.9 Function overloading/Parameter defaulting

For each possible argument combination, a distinct wrapper function is created in the .cxx file. On the Lisp side, a generic
functions is defined for each possible arity the overloaded/defaulted call may have. Each distinct wrapper is then called from
within a defmethod on the appropriate generic function. These are further wrapped inside a dispatch function that checks the
number of arguments it is called with and passes them via apply to the appropriate generic−function. This allows for a single entry
point to overloaded functions on the lisp side.

Example:

overload.h:

class A {
 public:
 int x;
 int y;
};

float xxx(int i, int x = 0); /* return i * x */
float xxx(A *inst, int x); /* return x + A−>x + A−>y */

Creates the following three wrappers, for each of the possible argument combinations

overload_wrap.cxx

SWIG−1.3 Documentation

16.3.8 Typedef, Templates, and Synonym Types 208

EXPORT void ACL___delete_A__SWIG_0 (A *larg1) {
 A *arg1 = (A *) 0 ;

 arg1 = larg1;
 try {
 delete arg1;

 } catch (...) {

 }
}

EXPORT float ACL___xxx__SWIG_0 (int larg1, int larg2) {
 float lresult = (float)0 ;
 int arg1 ;
 int arg2 ;
 float result;

 arg1 = larg1;
 arg2 = larg2;
 try {
 result = (float)xxx(arg1,arg2);

 lresult = result;
 return lresult;
 } catch (...) {
 return (float)0;
 }
}

EXPORT float ACL___xxx__SWIG_1 (int larg1) {
 float lresult = (float)0 ;
 int arg1 ;
 float result;

 arg1 = larg1;
 try {
 result = (float)xxx(arg1);

 lresult = result;
 return lresult;
 } catch (...) {
 return (float)0;
 }
}

EXPORT float ACL___xxx__SWIG_2 (A *larg1, int larg2) {
 float lresult = (float)0 ;
 A *arg1 = (A *) 0 ;
 int arg2 ;
 float result;

 arg1 = larg1;
 arg2 = larg2;
 try {
 result = (float)xxx(arg1,arg2);

 lresult = result;
 return lresult;
 } catch (...) {
 return (float)0;
 }
}

SWIG−1.3 Documentation

16.3.9 Function overloading/Parameter defaulting 209

And the following foreign−function−call and method definitions on the lisp side:

overload.cl

(swig−defmethod ("xxx" "ACL___xxx__SWIG_0" :type :function :arity 2)
 ((PARM0_i integer :int)
 (PARM1_x integer :int))
 (:returning (:float)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_i))
 (let ((SWIG_arg1 PARM1_x))
 (swig−ff−call SWIG_arg0 SWIG_arg1))))

(swig−defmethod ("xxx" "ACL___xxx__SWIG_1" :type :function :arity 1)
 ((PARM0_i integer :int))
 (:returning (:float)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_i))
 (swig−ff−call SWIG_arg0)))

(swig−defmethod ("xxx" "ACL___xxx__SWIG_2" :type :function :arity 2)
 ((PARM0_inst #.(swig−insert−id "A" () :type :class) (* #.(swig−insert−id "A" ())))
 (PARM1_x integer :int))
 (:returning (:float)
 :strings−convert t)
 (let ((SWIG_arg0 PARM0_inst))
 (let ((SWIG_arg1 PARM1_x))
 (swig−ff−call SWIG_arg0 SWIG_arg1))))

(swig−dispatcher ("xxx" :type :function :arities (1 2)))

And their usage in a sample lisp session:

overload> (setf a (new_A))
#<A nil #x329268 @ #x206cf612>
overload> (setf (A_x a) 10)
10
overload> (setf (A_y a) 20)
20
overload> (xxx 1)
0.0
overload> (xxx 3 10)
30.0
overload> (xxx a 1)
31.0
overload> (xxx a 2)
32.0
overload>

16.3.10 Operator wrapping and Operator overloading

Wrappers to defined C++ Operators are automatically renamed, using %rename, to the following defaults:

/* name conversion for overloaded operators. */
#ifdef __cplusplus
%rename(__add__) *::operator+;
%rename(__pos__) *::operator+();
%rename(__pos__) *::operator+() const;

%rename(__sub__) *::operator−;
%rename(__neg__) *::operator−() const;
%rename(__neg__) *::operator−();

SWIG−1.3 Documentation

16.3.10 Operator wrapping and Operator overloading 210

%rename(__mul__) *::operator*;
%rename(__deref__) *::operator*();
%rename(__deref__) *::operator*() const;

%rename(__div__) *::operator/;
%rename(__mod__) *::operator%;
%rename(__logxor__) *::operator^;
%rename(__logand__) *::operator&;
%rename(__logior__) *::operator|;
%rename(__lognot__) *::operator~();
%rename(__lognot__) *::operator~() const;

%rename(__not__) *::operator!();
%rename(__not__) *::operator!() const;

%rename(__assign__) *::operator=;

%rename(__add_assign__) *::operator+=;
%rename(__sub_assign__) *::operator−=;
%rename(__mul_assign__) *::operator*=;
%rename(__div_assign__) *::operator/=;
%rename(__mod_assign__) *::operator%=;
%rename(__logxor_assign__) *::operator^=;
%rename(__logand_assign__) *::operator&=;
%rename(__logior_assign__) *::operator|=;

%rename(__lshift__) *::operator <>;
%rename(__rshift_assign__) *::operator>>=;

%rename(__eq__) *::operator==;
%rename(__ne__) *::operator!=;
%rename(__lt__) *::operator ;
%rename(__lte__) *::operator <=;
%rename(__gte__) *::operator>=;

%rename(__and__) *::operator&&;
%rename(__or__) *::operator||;

%rename(__preincr__) *::operator++();
%rename(__postincr__) *::operator++(int);
%rename(__predecr__) *::operator−−();
%rename(__postdecr__) *::operator−−(int);

%rename(__comma__) *::operator,();
%rename(__comma__) *::operator,() const;

%rename(__member_ref__) *::operator−>;
%rename(__member_func_ref__) *::operator−>*;

%rename(__funcall__) *::operator();
%rename(__aref__) *::operator[];

Name mangling occurs on all such renamed identifiers, so that wrapper name generated by B::operator= will be B___eq__,
i.e. <class−or−namespace>_ has been added. Users may modify these default names by adding %rename directives in
their own .i files.

Operator overloading can be achieved by adding functions based on the mangled names of the function. In the following example,
a class B is defined with a Operator== method defined. The swig %extend directive is used to add an overload method on
Operator==.

opoverload.h

class B {
 public:

SWIG−1.3 Documentation

16.3.10 Operator wrapping and Operator overloading 211

 int x;
 int y;
 bool operator==(B const& other) const;
};

and

opoverload.i

%module opoverload

%{
#include <fstream>
#include "opoverload.h"
%}

%{
bool B___eq__(B const *inst, int const x)
{
 // insert the function definition into the wrapper code before
 // the wrapper for it.
 // ... do stuff ...
}
%}

%include "opoverload.h"

%extend B {
 public:
 bool __eq__(int const x) const;
};

Either operator can be called via a single call to the dispatch function:

opoverload> (B___eq__ x1 x2)
nil
opoverload> (B___eq__ x1 3)
nil
opoverload>

16.3.11 Varargs

Variable length argument lists are not supported, by default. If such a function is encountered, a warning will generated to stderr.
Varargs are supported via the SWIG %vararg directive. This directive allows you to specify a (finite) argument list which will
be inserted into the wrapper in place of the variable length argument indicator. As an example, consider the function printf().
It's declaration would appear as follows:

See the following section on Variable Length arguments provides examples on how %vararg can be used, along with other ways
such functions can be wrapped.

16.3.12 C++ Exceptions

Each C++ wrapper includes a handler to catch any exceptions that may be thrown while in foreign code. This helps prevent simple
C++ errors from killing the entire lisp process. There is currently no mechanism to have these exceptions forwarded to the lisp
condition system.

SWIG−1.3 Documentation

16.3.11 Varargs 212

16.3.13 Pass by value, pass by reference

Allegro CL does not support the passing of non−primitive foreign structures by value. As a result, SWIG must automatically
detect and convert function parameters and return values to pointers whenever necessary. This is done via the use of typemaps,
and should not require any fine tuning by the user, even for newly defined types.

16.4 Typemaps

SWIG Typemaps provide a powerful tool for automatically generating code to handle various menial tasks required of writing an
interface to foreign code. The purpose of this section is to describe each of the typemaps used by the Allegro CL module. Please
read the chapter on Typemaps for more information.

16.4.1 Code Generation in the C++ Wrapper

Every C++ wrapper generated by SWIG has the following form:

return−val wrapper−name(parm0, parm1, ..., parmN)
{
 return−val lresult; /* return value from wrapper */
 <local−declaration>
 ... results; /* return value from function call */

 <binding locals to parameters>

 try {
 result = function−name(local0, local1, ..., localN);

 <convert and bind result to lresult>

 return lresult;
 catch (...) {
 return (int)0;
 }

16.4.1.1 IN Typemap

the in typemap is used to generate code to convert parameters passed to C++ wrapper functions into the arguments desired for the
call being wrapped. That is, it fills in the code for the <binding locals to parameters> section above. We use this
map to automatically convert parameters passed by reference to the wrapper function into by−value arguments for the wrapped
call, and also to convert boolean values, which are passed as integers from lisp (by default), into the appropriate type for the
language of code being wrapped.

These are the default specifications for the IN typemap. Here, $input refers to the parameter code is being generated for, and $1
is the local variable to which it is being assigned. The default settings of this typemap are as follows:

%typemap(in) bool "$1 = (bool)$input;";
%typemap(in) char, unsigned char, signed char,
 short, signed short, unsigned short,
 int, signed int, unsigned int,
 long, signed long, unsigned long,
 float, double, long double, char *, void *, void,
 enum SWIGTYPE, SWIGTYPE *,
 SWIGTYPE[ANY], SWIGTYPE & "$1 = $input;";
%typemap(in) SWIGTYPE "$1 = *$input;";

SWIG−1.3 Documentation

16.3.13 Pass by value, pass by reference 213

16.4.1.2 OUT Typemap

The out typemap is used to generate code to form the return value of the wrapper from the return value of the wrapped function.
This code is placed in the <convert and bind result to lresult> section of the above code diagram. It's default mapping is as
follows:

%typemap(out) bool "$result = (int)$1;";
%typemap(out) char, unsigned char, signed char,
 short, signed short, unsigned short,
 int, signed int, unsigned int,
 long, signed long, unsigned long,
 float, double, long double, char *, void *, void,
 enum SWIGTYPE, SWIGTYPE *,
 SWIGTYPE[ANY], SWIGTYPE & "$result = $1;";
%typemap(out) SWIGTYPE "$result = new $1_type($1);";

16.4.1.3 CTYPE Typemap

This typemap is not used for code generation, but purely for the transformation of types in the parameter list of the wrapper
function. It's primary use is to handle by−value to by−reference conversion in the wrappers parameter list. Its default settings are:

%typemap(ctype) bool "int";
%typemap(ctype) char, unsigned char, signed char,
 short, signed short, unsigned short,
 int, signed int, unsigned int,
 long, signed long, unsigned long,
 float, double, long double, char *, void *, void,
 enum SWIGTYPE, SWIGTYPE *,
 SWIGTYPE[ANY], SWIGTYPE & "$1_ltype";
%typemap(ctype) SWIGTYPE "$&1_type";

These three typemaps are specifically employed by the the Allegro CL interface generator. SWIG also implements a number of
other typemaps that can be used for generating code in the C/C++ wrappers. You can read about these common typemaps here.

16.4.2 Code generation in Lisp wrappers

A number of custom typemaps have also been added, to facilitate the generation of code in the lisp side of the interface. These are
described below. The basic code generation structure is applied as a series of nested expressions, one for each parameter, then one
for manipulating the return value, and last, the foreign function call itself.

16.4.2.1 LIN Typemap

The LIN typemap allows for the manipulating the lisp objects passed as arguments to the wrapping defun before passing them to
the foreign function call. For example, when passing lisp strings to foreign code, it is often necessary to copy the string into a
foreign structure of type (:char *) of appropriate size, and pass this copy to the foreign call. Using the LIN typemap, one could
arrange for the stack−allocation of a foreign char array, copy your string into it, and not have to worry about freeing the copy after
the function returns.

The LIN typemap accepts the following $variable references.

$in − expands to the name of the parameter being applied to this typemap•
$out − expands to the name of the local variable assigned to this typemap•
$body − very important. Instructs SWIG where subsequent code generation steps should be inserted into the current
typemap. Leaving out a $body reference will result in lisp wrappers that do very little by way of calling into foreign
code. Not recommended.

•

%typemap(lin) SWIGTYPE "(let (($out $in))\n $body)";

SWIG−1.3 Documentation

16.4.1.2 OUT Typemap 214

16.4.2.2 LOUT Typemap

The LOUT typemap is the means by which we effect the wrapping of foreign pointers in CLOS instances. It is applied after all
LIN typemaps, and immediately before the actual foreign−call.

The LOUT typemap uses the following $variable

$lclass − Expands to the CLOS class that represents foreign−objects of the return type matching this typemap.•
$body − Same as for the LIN map. Place this variable where you want the foreign−function call to occur.•
$ldestructor − Expands to the symbol naming the destructor for this class ($lclass) of object. Allows you to insert
finalization or automatic garbage collection into the wrapper code (see default mappings below).

•

%typemap(lout) bool, char, unsigned char, signed char,
 short, signed short, unsigned short,
 int, signed int, unsigned int,
 long, signed long, unsigned long,
 float, double, long double, char *, void *, void,
 enum SWIGTYPE "$body";
%typemap(lout) SWIGTYPE[ANY], SWIGTYPE *,
 SWIGTYPE & "(make−instance '$lclass :foreign−address $body)";
%typemap(lout) SWIGTYPE "(let* ((address $body)\n
 (ACL_result (make−instance '$lclass :foreign−address address)))\n
 (unless (zerop address)\n
 (excl:schedule−finalization ACL_result #'$ldestructor))\n
 ACL_result)";

16.4.2.3 FFITYPE Typemap

The FFITYPE typemap works as a helper for a body of code that converts C/C++ type specifications into Allegro CL
foreign−type specifications. These foreign−type specifications appear in ff:def−foreing−type declarations, and in the argument list
and return values of ff:def−foreign−calls. You would modify this typemap if you want to change how the FFI passes through
arguments of a given type. For example, if you know that a particular compiler represents booleans as a single byte, you might
add an entry for:

%typemap(ffitype) bool ":unsigned−char";

Note that this typemap is pure type transformation, and is not used in any code generations step the way the LIN and LOUT
typemaps are. The default mappings for this typemap are:

%typemap(ffitype) bool ":int";
%typemap(ffitype) char ":char";
%typemap(ffitype) unsigned char ":unsigned−char";
%typemap(ffitype) signed char ":char";
%typemap(ffitype) short, signed short ":short";
%typemap(ffitype) unsigned short ":unsigned−short";
%typemap(ffitype) int, signed int ":int";
%typemap(ffitype) unsigned int ":unsigned−int";
%typemap(ffitype) long, signed long ":long";
%typemap(ffitype) unsigned long ":unsigned−long";
%typemap(ffitype) float ":float";
%typemap(ffitype) double ":double";
%typemap(ffitype) char * "(* :char)";
%typemap(ffitype) void * "(* :void)";
%typemap(ffitype) void ":void";
%typemap(ffitype) enum SWIGTYPE ":int";
%typemap(ffitype) SWIGTYPE & "(* :void)";

SWIG−1.3 Documentation

16.4.2.2 LOUT Typemap 215

16.4.2.4 LISPTYPE Typemap

This is another type only transformation map, and is used to provide the lisp−type, which is the optional third argument in
argument specifier in a ff:def−foreign−call form. Specifying a lisp−type allows the foreign call to perform type checking on the
arguments passed in. The default entries in this typemap are:

%typemap(lisptype) bool "boolean";
%typemap(lisptype) char "character";
%typemap(lisptype) unsigned char "integer";
%typemap(lisptype) signed char "integer";

16.4.2.5 LISPCLASS Typemap

The LISPCLASS typemap is used to generate the method signatures for the generic−functions which wrap overloaded functions
and functions with defaulted arguments. The default entries are:

%typemap(lispclass) bool "t";
%typemap(lispclass) char "character";
%typemap(lispclass) unsigned char, signed char,
 short, signed short, unsigned short,
 int, signed int, unsigned int,
 long, signed long, unsigned long,
 enum SWIGTYPE "integer";
%typemap(lispclass) float "single−float";
%typemap(lispclass) double "double−float";
%typemap(lispclass) char * "string";

16.4.3 Modifying SWIG behavior using typemaps

The following example shows how we made use of the above typemaps to add support for the wchar_t type.

%typecheck(SWIG_TYPECHECK_UNICHAR) wchar_t { $1 = 1; };

%typemap(in) wchar_t "$1 = $input;";
%typemap(lin) wchar_t "(let (($out (char−code $in)))\n $body)";
%typemap(lin) wchar_t* "(excl:with−native−string
 ($out $in
 :external−format #+little−endian :fat−le
 #−little−endian :fat)\n
 $body)"

%typemap(out) wchar_t "$result = $1;";
%typemap(lout) wchar_t "(code−char $body)";
%typemap(lout) wchar_t* "(excl:native−to−string $body
 :external−format #+little−endian :fat−le
 #−little−endian :fat)";

%typemap(ffitype) wchar_t ":unsigned−short";
%typemap(lisptype) wchar_t "";
%typemap(ctype) wchar_t "wchar_t";
%typemap(lispclass) wchar_t "character";
%typemap(lispclass) wchar_t* "string";

16.5 Identifier Converter functions

16.5.1 Creating symbols in the lisp environment

Various symbols must be generated in the lisp environment to which class definitions, functions, constants, variables, etc. must be
bound. Rather than force a particular convention for naming these symbols, an identifier (to symbol) conversion function is used.

SWIG−1.3 Documentation

16.4.2.4 LISPTYPE Typemap 216

A user−defined identifier−converter can then implement any symbol naming, case−modifying, scheme desired.

In generated SWIG code, whenever some interface object must be referenced by its lisp symbol, a macro is inserted that calls the
identifier−converter function to generate the appropriate symbol reference. It is therefore expected that the identifier−converter
function reliably return the same (eq) symbol given the same set of arguments.

16.5.2 Existing identifier−converter functions

Two basic identifier routines have been defined.

16.5.2.1 identifier−convert−null

No modification of the identifier string is performed. Based on other arguments, the identifier may be concatenated with other
strings, from which a symbol will be created.

16.5.2.2 identifier−convert−lispify

All underscores in the identifier string are converted to hyphens. Otherwise, identifier−convert−lispify performs the same symbol
transformations.

16.5.2.3 Default identifier to symbol conversions

Check the definitions of the above two default identifier−converters in Lib/allegrocl/allegrocl.swg for default
naming conventions.

16.5.3 Defining your own identifier−converter

A user−defined identifier−converter function should conform to the following specification:

(defun identifier−convert−fn (id &key type class arity) ...body...)
result ==> symbol or (setf symbol)

The ID argument is a string representing an identifier in the foreign environment.

The :type keyword argument provides more information on the type of identifier. It's value is a symbol. This allows the
identifier−converter to apply different heuristics when mapping different types of identifiers to symbols. SWIG will generate calls
to your identifier−converter using the following types.

:class − names a CLOS class.•
:constant − names a defconstant•
:constructor − names a function for creating a foreign object•
:destructor − names a function for freeing a foreign object•
:function − names a CLOS wrapping defmethod or defun.•
:ff−operator − names a foreign call defined via ff:def−foreign−call•
:getter − getter function•
:namespace − names a C++ namespace•
:setter − names a setter function. May return a (setf symbol) reference•
:operator − names a C++ operator, such as Operator=, Operator*.•
:slot − names a slot in a struct/class/union declaration.•
:type − names a foreign−type defined via ff:def−foreign−type.•
:variable − names a variable defined via ff:def−foreign−variable.•

The :class keyword argument is a string naming a foreign class. When non−nil, it indicates that the current identifier has scope in
the specified class.

SWIG−1.3 Documentation

16.5.1 Creating symbols in the lisp environment 217

The :arity keyword argument only appears in swig:swig−defmethod forms generated for overloaded functions. It's value is an
integer indicating the number of arguments passed to the routine indicated by this identifier.

16.5.4 Instructing SWIG to use a particular identifier−converter

By default, SWIG will use identifier−converter−null. To specify another convert function, use the −identifier−converter
command−line argument. The value should be a string naming the function you wish the interface to use instead, when generating
symbols. ex:

% swig −allegrocl −c++ −module mymodule −identifier−converter my−identifier−converter

SWIG−1.3 Documentation

16.5.3 Defining your own identifier−converter 218

17 SWIG and C#
Introduction•
Differences to the Java module•
C# Exceptions

C# exception example using "check" typemap♦
C# exception example using %exception♦
C# exception example using exception specifications♦
Custom C# ApplicationException example♦

•

C# Typemap examples
Memory management when returning references to member variables♦
Memory management for objects passed to the C++ layer♦

•

17.1 Introduction

The purpose of the C# module is to offer an automated way of accessing existing C/C++ code from .NET languages. The wrapper
code implementation uses C# and the Platform Invoke (PInvoke) interface to access natively compiled C/C++ code. The PInvoke
interface has been chosen over Microsoft's Managed C++ interface as it is portable to both Microsoft Windows and
non−Microsoft platforms. PInvoke is part of the ECMA/ISO C# specification. It is also better suited for robust production
environments due to the Managed C++ flaw called the Mixed DLL Loading Problem. Swig C# works equally well on
non−Microsoft operating systems such as Linux, Solaris and Apple Mac using Mono and Portable.NET.

To get the most out of this chapter an understanding of interop is required. The Microsoft Developer Network (MSDN) has a good
reference guide in a section titled "Interop Marshaling". Monodoc, available from the Mono project, has a very useful section
titled Interop with native libraries.

17.2 Differences to the Java module

The C# module is very similar to the Java module, so until some more complete documentation has been written, please use the
Java documentation as a guide to using SWIG with C#. The rest of this section should be read in conjunction with the Java
documentation as it lists the main differences.

Director support (virtual method callbacks into C#) has not yet been implemented and is the main missing feature compared to
Java. Less of the STL is supported and there are also a few minor utility typemaps in the various.i library which are missing.

The most noteable differences to Java are the following:

When invoking SWIG use the −csharp command line option instead of −java.•
The −package command line option does not exist.•
The −namespace <name> commandline option will generate all code into the namespace specified by <name>.•
The −dllimport <name> commandline option specifies the name of the DLL for the DllImport attribute for
every PInvoke method. If this commandline option is not given, the DllImport DLL name is the same as the module
name. This option is useful for when one wants to invoke SWIG multiple times on different modules, yet compile all the
resulting code into a single DLL.

•

C/C++ variables are wrapped with C# properties and not JavaBean style getters and setters.•
Global constants are generated into the module class. There is no constants interface.•
There is no implementation for type unsafe enums − not deemed necessary.•
The default enum wrapping approach is proper C# enums, not typesafe enums.
Note that %csconst(0) will be ignored when wrapping C/C++ enums with proper C# enums. This is because C# enum
items must be initialised from a compile time constant. If an enum item has an initialiser and the initialiser doesn't
compile as C# code, then the %csconstvalue directive must be used as %csconst(0) will have no effect. If it was used, it
would generate an illegal runtime initialisation via a PInvoke call.

•

C# doesn't support the notion of throws clauses. Therefore there is no 'throws' typemap attribute support for adding
exception classes to a throws clause. Likewise there is no need for an equivalent to %javaexception. In fact,
throwing C# exceptions works quite differently, see C# Exceptions> below.

•

17 SWIG and C# 219

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vcconMixedDLLLoadingProblem.asp
http://www.mono-project.com/
http://www.dotgnu.org/pnet.html
http://msdn.microsoft.com
http://www.mono-project.com/Interop_with_Native_Libraries

Typemap equivalent names:

jni −> ctype
jtype −> imtype
jstype −> cstype
javain −> csin
javaout −> csout
javainterfaces −> csinterfaces and csinterfaces_derived
javabase −> csbase
javaclassmodifiers −> csclassmodifiers
javacode −> cscode
javaimports −> csimports
javabody −> csbody
javafinalize −> csfinalize
javadestruct −> csdestruct
javadestruct_derived −> csdestruct_derived

•

Additional typemaps:

csvarin C# code property set typemap
csvarout C# code property get typemap
csattributes C# attributes for attaching to proxy classes/enums

•

Feature equivalent names:

%javaconst −> %csconst
%javaconstvalue −> %csconstvalue
%javamethodmodifiers −> %csmethodmodifiers

•

Pragma equivalent names:

%pragma(java) −> %pragma(csharp)
jniclassbase −> imclassbase
jniclassclassmodifiers −> imclassclassmodifiers
jniclasscode −> imclasscode
jniclassimports −> imclassimports
jniclassinterfaces −> imclassinterfaces

•

Special variable equivalent names:

$javaclassname −> $csclassname
$javainput −> $csinput
$jnicall −> $imcall

•

The intermediary classname has PINVOKE appended after the module name instead of JNI, for example
modulenamePINVOKE.

•

Support for asymmetric type marshalling. The 'ctype', 'imtype' and 'cstype' typemaps support an optional out attribute
which is used for output types. If this typemap attribute is specified, then the type specified in the attribute is used for
output types and the type specified in the typemap itself is used for the input type. If this typemap attribute is not
specified, then the type used for both input and output is the type specified in the typemap. An example shows that char
* could be marshalled in different ways,

%typemap(imtype, out="IntPtr") char * "string"
char * function(char *);

The output type is thus IntPtr and the input type is string. The resulting intermediary C# code is:

public static extern IntPtr function(string jarg1);

•

Support for type attributes. The 'imtype' and 'cstype' typemaps can have an optional inattributes and
outattributes typemap attribute. There are C# attributes and typemap attributes, don't get confused!! The C#
attributes specified in these typemap attributes are generated wherever the type is used in the C# wrappers. These can be
used to specify any C# attribute associated with a C/C++ type, but are more typically used for the C# MarshalAs
attribute. For example:

%typemap(imtype,
 inattributes="[MarshalAs(UnmanagedType.LPStr)]",
 outattributes="[return: MarshalAs(UnmanagedType.LPStr)]") const char * "String"

•

SWIG−1.3 Documentation

17.2 Differences to the Java module 220

const char * GetMsg() {}
void SetMsg(const char *msg) {}

The intermediary class will then have the marshalling as specified by everything in the 'imtype' typemap:

class examplePINVOKE {
 ...
 [DllImport("example", EntryPoint="CSharp_GetMsg")]
 [return: MarshalAs(UnmanagedType.LPStr)]
 public static extern String GetMsg();

 [DllImport("example", EntryPoint="CSharp_SetMsg")]
 public static extern void SetMsg([MarshalAs(UnmanagedType.LPStr)]String jarg1);
}

Note that the DllImport attribute is always generated, irrespective of any additional attributes specified.

These attributes are associated with the C/C++ parameter type or return type, which is subtely different to the attribute
features and typemaps covered next. Note that all these different C# attributes can be combined so that a method has
more than one attribute.
Support for attaching C# attributes to wrapped methods and variables. This is done using the %csattributes feature,
see %feature directives. Note that C# attributes are attached to proxy classes and enums using the csattributes
typemap. For example, imagine we have a custom attribute class, ThreadSafeAttribute, for labelling thread
safety. The following SWIG code shows how to attach this C# attribute to some methods and the class declaration itself:

%typemap(csattributes) AClass "[ThreadSafe]"
%csattributes AClass::AClass(double d) "[ThreadSafe(false)]"
%csattributes AClass::AMethod() "[ThreadSafe(true)]"

%inline %{
class AClass {
public:
 AClass(double a) {}
 void AMethod() {}
};
%}

will generate a C# proxy class:

[ThreadSafe]
public class AClass : IDisposable {
 ...
 [ThreadSafe(false)]
 public AClass(double a) ...

 [ThreadSafe(true)]
 public void AMethod() ...
}

If C# attributes need adding to the set or get part of C# properties, when wrapping C/C++ variables, they can be added
using the 'csvarin' and 'csvarout' typemaps respectively.

•

The %csmethodmodifiers feature can also be applied to variables as well as methods. In addition to the default
public modifier that SWIG generates when %csmethodmodifiers is not specified, the feature will also replace the
virtual/new/override modifiers that SWIG thinks is appropriate. This feature is useful for some obscure cases
where SWIG might get the virtual/new/override modifiers incorrect, for example with multiple inheritance.

•

The name of the intermediary class can be changed from its default, that is, the module name with PINVOKE appended
after it. The module directive attribute imclassname is used to achieve this:

%module (imclassname="name") modulename

•

SWIG−1.3 Documentation

17.2 Differences to the Java module 221

If name is the same as modulename then the module class name gets changed from modulename to
modulenameModule.

$dllimport
This is a C# only special variable that can be used in typemaps, pragmas, features etc. The special variable will get translated into
the value specified by the −dllimport commandline option if specified, otherwise it is equivalent to the $module special
variable.

$imclassname
This special variable expands to the intermediary class name. For C# this is usually the same as '$modulePINVOKE'
('$moduleJNI' for Java), unless the imclassname attribute is specified in the %module directive.

The directory Examples/csharp has a number of simple examples. Visual Studio .NET 2003 solution and project files are
available for compiling with the Microsoft .NET C# compiler on Windows. If your SWIG installation went well on a Unix
environment and your C# compiler was detected, you should be able to type make in each example directory, then ilrun
runme.exe (Portable.NET C# compiler) or mono runme.exe (Mono C# compiler) to run the examples. Windows users can
also get the examples working using a Cygwin or MinGW environment for automatic configuration of the example makefiles.
Any one of the three C# compilers (Portable.NET, Mono or Microsoft) can be detected from within a Cygwin or Mingw
environment if installed in your path.

17.3 C# Exceptions

It is possible to throw a C# Exception from C/C++ code. SWIG already provides the framework for throwing C# exceptions if it is
able to detect that a C++ exception could be thrown. Automatically detecting that a C++ exception could be thrown is only
possible when a C++ exception specification is used, see Exception specifications. The Exception handling with %exception
section details the %exception feature. Customised code for handling exceptions with or without a C++ exception specification
is possible and the details follow. However anyone wishing to do this should be familiar with the contents of the sections referred
to above.

Unfortunately a C# exception cannot simply be thrown from unmanaged code for a variety of reasons. Most noteably being that
throwing a C# exception results in exceptions being thrown across the C PInvoke interface and C does not understand exceptions.
The design revolves around a C# exception being constructed and stored as a pending exception, to be thrown only when the
unmanaged code has completed. Implementing this is a tad involved and there are thus some unusual typemap constructs. Some
practical examples follow and they should be read in conjunction with the rest of this section.

First some details about the design that must be followed. Each typemap or feature that generates unmanaged code supports an
attribute called canthrow. This is simply a flag which when set indicates that the code in the typemap/feature has code which
might want to throw a C# exception. The code in the typemap/feature can then raise a C# exception by calling one of the C
functions, SWIG_CSharpSetPendingException() or SWIG_CSharpSetPendingExceptionArgument(). When
called, the function makes a callback into the managed world via a delegate. The callback creates and stores an exception ready
for throwing when the unmanaged code has finished. The typemap/feature unmanaged code is then expected to force an
immediate return from the unmanaged wrapper function, so that the pending managed exception can then be thrown. The support
code has been carefully designed to be efficient as well as thread−safe. However to achieve the goal of efficiency requires some
optional code generation in the managed code typemaps. Code to check for pending exceptions is generated if and only if the
unmanaged code has code to set a pending exception, that is if the canthrow attribute is set. The optional managed code is
generated using the excode typemap attribute and $excode special variable in the relevant managed code typemaps. Simply, if
any relevant unmanaged code has the canthrow attribute set, then any occurrences of $excode is replaced with the code in the
excode attribute. If the canthrow attribute is not set, then any occurrences of $excode are replaced with nothing.

The prototypes for the SWIG_CSharpSetPendingException() and
SWIG_CSharpSetPendingExceptionArgument() functions are

static void SWIG_CSharpSetPendingException(SWIG_CSharpExceptionCodes code,
 const char *msg);

static void SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpExceptionArgumentCodes code,
 const char *msg,

SWIG−1.3 Documentation

17.3 C# Exceptions 222

http://www.cygwin.com
http://www.mingw.org

 const char *param_name);

The first parameter defines which .NET exceptions can be thrown:

typedef enum {
 SWIG_CSharpApplicationException,
 SWIG_CSharpArithmeticException,
 SWIG_CSharpDivideByZeroException,
 SWIG_CSharpIndexOutOfRangeException,
 SWIG_CSharpInvalidOperationException,
 SWIG_CSharpIOException,
 SWIG_CSharpNullReferenceException,
 SWIG_CSharpOutOfMemoryException,
 SWIG_CSharpOverflowException,
 SWIG_CSharpSystemException
} SWIG_CSharpExceptionCodes;

typedef enum {
 SWIG_CSharpArgumentException,
 SWIG_CSharpArgumentNullException,
 SWIG_CSharpArgumentOutOfRangeException,
} SWIG_CSharpExceptionArgumentCodes;

where, for example, SWIG_CSharpApplicationException corresponds to the .NET exception,
ApplicationException. The msg and param_name parameters contain the C# exception message and parameter name
associated with the exception.

The %exception feature in C# has the canthrow attribute set. The %csnothrowexception feature is like %exception,
but it does not have the canthrow attribute set so should only be used when a C# exception is not created.

17.3.1 C# exception example using "check" typemap

Lets say we have the following simple C++ method:

void positivesonly(int number);

and we want to check that the input number is always positive and if not throw a C# ArgumentOutOfRangeException.
The "check" typemap is designed for checking input parameters. Below you will see the canthrow attribute is set because the
code contains a call to SWIG_CSharpSetPendingExceptionArgument(). The full example follows:

%module example

%typemap(check, canthrow=1) int number %{
if ($1 < 0) {
 SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
 "only positive numbers accepted", "number");
 return $null;
}
// SWIGEXCODE is a macro used by many other csout typemaps
%define SWIGEXCODE
 "\n if ($modulePINVOKE.SWIGPendingException.Pending)"
 "\n throw $modulePINVOKE.SWIGPendingException.Retrieve();"
%enddef
%typemap(csout, excode=SWIGEXCODE) void {
 $imcall;$excode
 }
%}

%inline %{

void positivesonly(int number) {
}

SWIG−1.3 Documentation

17.3.1 C# exception example using "check" typemap 223

%}

When the following C# code is executed:

public class runme {
 static void Main() {
 example.positivesonly(−1);
 }
}

The exception is thrown:

Unhandled Exception: System.ArgumentOutOfRangeException: only positive numbers accepted
Parameter name: number
in <0x00034> example:positivesonly (int)
in <0x0000c> runme:Main ()

Now let's analyse the generated code to gain a fuller understanding of the typemaps. The generated unmanaged C++ code is:

SWIGEXPORT void SWIGSTDCALL CSharp_positivesonly(int jarg1) {
 int arg1 ;

 arg1 = (int)jarg1;

 if (arg1 < 0) {
 SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
 "only positive numbers accepted", "number");
 return ;
 }

 positivesonly(arg1);

}

This largely comes from the "check" typemap. The managed code in the module class is:

public class example {
 public static void positivesonly(int number) {
 examplePINVOKE.positivesonly(number);
 if (examplePINVOKE.SWIGPendingException.Pending)
 throw examplePINVOKE.SWIGPendingException.Retrieve();
 }

}

This comes largely from the "csout" typemap.

The "csout" typemap is the same as the default void "csout" typemap so is not strictly necessary for the example. However, it is
shown to demonstrate what managed output code typemaps should contain, that is, a $excode special variable and an excode
attribute. Also note that $excode is expanded into the code held in the excode attribute. The $imcall as always expands into
examplePINVOKE.positivesonly(number). The exception support code in the intermediary class,
examplePINVOKE, is not shown, but is contained within the inner classes, SWIGPendingException and
SWIGExceptionHelper and is always generated. These classes can be seen in any of the generated wrappers. However, all
that is required of a user is as demonstrated in the "csin" typemap above. That is, is to check
SWIGPendingException.Pending and to throw the exception returned by SWIGPendingException.Retrieve().

If the "check" typemap did not exist, then the following module class would instead be generated:

public class example {
 public static void positivesonly(int number) {
 examplePINVOKE.positivesonly(number);
 }

SWIG−1.3 Documentation

17.3.1 C# exception example using "check" typemap 224

}

Here we see the pending exception checking code is omitted. In fact, the code above would be generated if the canthrow
attribute was not in the "check" typemap, such as:

%typemap(check) int number %{
if ($1 < 0) {
 SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
 "only positive numbers accepted", "number");
 return $null;
}
%}

Note that if SWIG detects you have used SWIG_CSharpSetPendingException() or
SWIG_CSharpSetPendingExceptionArgument() without setting the canthrow attribute you will get a warning
message similar to

example.i:21: Warning(845): Unmanaged code contains a call to a SWIG_CSharpSetPendingException
method and C# code does not handle pending exceptions via the canthrow attribute.

Actually it will issue this warning for any function beginning with SWIG_CSharpSetPendingException.

17.3.2 C# exception example using %exception

Let's consider a similar, but more common example that throws a C++ exception from within a wrapped function. We can use
%exception as mentioned in Exception handling with %exception.

%exception negativesonly(int value) %{
try {
 $action
} catch (std::out_of_range e) {
 SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
}
%}

%inline %{
#include <stdexcept>
void negativesonly(int value) {
 if (value >= 0)
 throw std::out_of_range("number should be negative");
}
%}

The generated unmanaged code this time catches the C++ exception and converts it into a C# ApplicationException.

SWIGEXPORT void SWIGSTDCALL CSharp_negativesonly(int jarg1) {
 int arg1 ;

 arg1 = (int)jarg1;

 try {
 negativesonly(arg1);

 } catch (std::out_of_range e) {
 SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
 return ;
 }

}

The managed code generated does check for the pending exception as mentioned earlier as the C# version of %exception has
the canthrow attribute set by default:

SWIG−1.3 Documentation

17.3.2 C# exception example using %exception 225

 public static void negativesonly(int value) {
 examplePINVOKE.negativesonly(value);
 if (examplePINVOKE.SWIGPendingException.Pending)
 throw examplePINVOKE.SWIGPendingException.Retrieve();
 }

17.3.3 C# exception example using exception specifications

When C++ exception specifications are used, SWIG is able to detect that the method might throw an exception. By default SWIG
will automatically generate code to catch the exception and convert it into a managed ApplicationException, as defined by
the default "throws" typemaps. The following example has a user supplied "throws" typemap which is used whenever an
exception specification contains a std::out_of_range, such as the evensonly method below.

%typemap(throws, canthrow=1) std::out_of_range {
 SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, $1.what(), NULL);
 return $null;
}

%inline %{
#include <stdexcept>
void evensonly(int input) throw (std::out_of_range) {
 if (input%2 != 0)
 throw std::out_of_range("number is not even");
}
%}

Note that the type for the throws typemap is the type in the exception specification. SWIG generates a try catch block with the
throws typemap code in the catch handler.

SWIGEXPORT void SWIGSTDCALL CSharp_evensonly(int jarg1) {
 int arg1 ;

 arg1 = (int)jarg1;
 try {
 evensonly(arg1);
 }
 catch(std::out_of_range &_e) {
 {
 SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, (&_e)−>what(), NULL);
 return ;
 }
 }

}

Multiple catch handlers are generated should there be more than one exception specifications declared.

17.3.4 Custom C# ApplicationException example

This example involves a user defined exception. The conventional .NET exception handling approach is to create a custom
ApplicationException and throw it in your application. The goal in this example is to convert the STL
std::out_of_range exception into one of these custom .NET exceptions.

The default exception handling is quite easy to use as the SWIG_CSharpSetPendingException() and
SWIG_CSharpSetPendingExceptionArgument() methods are provided by SWIG. However, for a custom C#
exception, the boiler plate code that supports these functions needs replicating. In essence this consists of some C/C++ code and
C# code. The C/C++ code can be generated into the wrapper file using the %insert(runtime) directive and the C# code can
be generated into the intermediary class using the imclasscode pragma as follows:

%insert(runtime) %{
 // Code to handle throwing of C# CustomApplicationException from C/C++ code.
 // The equivalent delegate to the callback, CSharpExceptionCallback_t, is CustomExceptionDelegate

SWIG−1.3 Documentation

17.3.3 C# exception example using exception specifications 226

 // and the equivalent customExceptionCallback instance is customDelegate
 typedef void (SWIGSTDCALL* CSharpExceptionCallback_t)(const char *);
 CSharpExceptionCallback_t customExceptionCallback = NULL;

 extern "C" SWIGEXPORT
 void SWIGSTDCALL CustomExceptionRegisterCallback(CSharpExceptionCallback_t customCallback) {
 customExceptionCallback = customCallback;
 }

 // Note that SWIG detects any method calls named starting with
 // SWIG_CSharpSetPendingException for warning 845
 static void SWIG_CSharpSetPendingExceptionCustom(const char *msg) {
 customExceptionCallback(msg);
 }
%}

%pragma(csharp) imclasscode=%{
 class CustomExceptionHelper {
 // C# delegate for the C/C++ customExceptionCallback
 public delegate void CustomExceptionDelegate(string message);
 static CustomExceptionDelegate customDelegate =
 new CustomExceptionDelegate(SetPendingCustomException);

 [DllImport("$dllimport", EntryPoint="CustomExceptionRegisterCallback")]
 public static extern
 void CustomExceptionRegisterCallback(CustomExceptionDelegate customCallback);

 static void SetPendingCustomException(string message) {
 SWIGPendingException.Set(new CustomApplicationException(message));
 }

 static CustomExceptionHelper() {
 CustomExceptionRegisterCallback(customDelegate);
 }
 }
 static CustomExceptionHelper exceptionHelper = new CustomExceptionHelper();
%}

The method stored in the C# delegate instance, customDelegate is what gets called by the C/C++ callback. However, the
equivalent to the C# delegate, that is the C/C++ callback, needs to be assigned before any unmanaged code is executed. This is
achieved by putting the initialisation code in the intermediary class. Recall that the intermediary class contains all the PInvoke
methods, so the static variables in the intermediary class will be initialised before any of the PInvoke methods in this class are
called. The exceptionHelper static variable ensures the C/C++ callback is initialised with the value in customDelegate
by calling the CustomExceptionRegisterCallback method in the CustomExceptionHelper static constructor.
Once this has been done, unmanaged code can make callbacks into the managed world as customExceptionCallback will
be initialised with a valid callback/delegate. Any calls to SWIG_CSharpSetPendingExceptionCustom() will make the
callback to create the pending exception in the same way that SWIG_CSharpSetPendingException() and
SWIG_CSharpSetPendingExceptionArgument() does. In fact the method has been similarly named so that SWIG can
issue the warning about missing canthrow attributes as discussed earlier. It is an invaluable warning as it is easy to forget the
canthrow attribute when writing typemaps/features.

The SWIGPendingException helper class is not shown, but is generated as an inner class into the intermediary class. It stores
the pending exception in Thread Local Storage so that the exception handling mechanism is thread safe.

The boiler plate code above must be used in addition to a handcrafted CustomApplicationException:

// Custom C# Exception
class CustomApplicationException : System.ApplicationException {
 public CustomApplicationException(string message)
 : base(message) {
 }
}

SWIG−1.3 Documentation

17.3.4 Custom C# ApplicationException example 227

and the SWIG interface code:

%typemap(throws, canthrow=1) std::out_of_range {
 SWIG_CSharpSetPendingExceptionCustom($1.what());
 return $null;
}

%inline %{
void oddsonly(int input) throw (std::out_of_range) {
 if (input%2 != 1)
 throw std::out_of_range("number is not odd");
}
%}

The "throws" typemap now simply calls our new SWIG_CSharpSetPendingExceptionCustom() function so that the
exception can be caught, as such:

try {
 example.oddsonly(2);
} catch (CustomApplicationException e) {
 ...
}

17.4 C# Typemap examples

This section includes a few examples of typemaps. For more examples, you might look at the files "csharp.swg" and
"typemaps.i" in the SWIG library.

17.4.1 Memory management when returning references to member variables

This example shows how to prevent early garbage collection of objects when the underlying C++ class returns a pointer or
reference to a member variable. The example is a direct equivalent to this Java equivalent.

Consider the following C++ code:

struct Wheel {
 int size;
 Wheel(int sz) : size(sz) {}
};

class Bike {
 Wheel wheel;
public:
 Bike(int val) : wheel(val) {}
 Wheel& getWheel() { return wheel; }
};

and the following usage from C# after running the code through SWIG:

 Wheel wheel = new Bike(10).getWheel();
 Console.WriteLine("wheel size: " + wheel.size);
 // Simulate a garbage collection
 System.GC.Collect();
 System.GC.WaitForPendingFinalizers();
 Console.WriteLine("wheel size: " + wheel.size);

Don't be surprised that if the resulting output gives strange results such as...

wheel size: 10
wheel size: 135019664

SWIG−1.3 Documentation

17.4 C# Typemap examples 228

What has happened here is the garbage collector has collected the Bike instance as it doesn't think it is needed any more. The
proxy instance, wheel, contains a reference to memory that was deleted when the Bike instance was collected. In order to
prevent the garbage collector from collecting the Bike instance a reference to the Bike must be added to the wheel instance.
You can do this by adding the reference when the getWheel() method is called using the following typemaps.

%typemap(cscode) Wheel %{
 // Ensure that the GC doesn't collect any Bike instance set from C#
 private Bike bikeReference;
 internal void addReference(Bike bike) {
 bikeReference = bike;
 }
%}

// Add a C# reference to prevent early garbage collection and resulting use
// of dangling C++ pointer. Intended for methods that return pointers or
// references to a member variable.
%typemap(csout, excode=SWIGEXCODE) Wheel& getWheel {
 IntPtr cPtr = $imcall;$excode
 $csclassname ret = null;
 if (cPtr != IntPtr.Zero) {
 ret = new $csclassname(cPtr, $owner);
 ret.addReference(this);
 }
 return ret;
 }

The code in the first typemap gets added to the Wheel proxy class. The code in the second typemap constitutes the bulk of the
code in the generated getWheel() function:

public class Wheel : IDisposable {
 ...
 // Ensure that the GC doesn't collect any Bike instance set from C#
 private Bike bikeReference;
 internal void addReference(Bike bike) {
 bikeReference = bike;
 }
}

public class Bike : IDisposable {
 ...
 public Wheel getWheel() {
 IntPtr cPtr = examplePINVOKE.Bike_getWheel(swigCPtr);
 Wheel ret = null;
 if (cPtr != IntPtr.Zero) {
 ret = new Wheel(cPtr, false);
 ret.addReference(this);
 }
 return ret;
 }
}

Note the addReference call.

17.4.2 Memory management for objects passed to the C++ layer

The example is a direct equivalent to this Java equivalent. Managing memory can be tricky when using C++ and C# proxy
classes. The previous example shows one such case and this example looks at memory management for a class passed to a C++
method which expects the object to remain in scope after the function has returned. Consider the following two C++ classes:

struct Element {
 int value;
 Element(int val) : value(val) {}
};
class Container {

SWIG−1.3 Documentation

17.4.1 Memory management when returning references to member variables 229

 Element* element;
public:
 Container() : element(0) {}
 void setElement(Element* e) { element = e; }
 Element* getElement() { return element; }
};

and usage from C++

 Container container;
 Element element(20);
 container.setElement(&element);
 cout << "element.value: " << container.getElement()−>value << endl;

and more or less equivalent usage from C#

 Container container = new Container();
 Element element = new Element(20);
 container.setElement(element);

The C++ code will always print out 20, but the value printed out may not be this in the C# equivalent code. In order to understand
why, consider a garbage collection occuring...

 Container container = new Container();
 Element element = new Element(20);
 container.setElement(element);
 Console.WriteLine("element.value: " + container.getElement().value);
 // Simulate a garbage collection
 System.GC.Collect();
 System.GC.WaitForPendingFinalizers();
 Console.WriteLine("element.value: " + container.getElement().value);

The temporary element created with new Element(20) could get garbage collected which ultimately means the container
variable is holding a dangling pointer, thereby printing out any old random value instead of the expected value of 20. One solution
is to add in the appropriate references in the C# layer...

public class Container : IDisposable {

 ...

 // Ensure that the GC doesn't collect any Element set from C#
 // as the underlying C++ class stores a shallow copy
 private Element elementReference;
 private HandleRef getCPtrAndAddReference(Element element) {
 elementReference = element;
 return Element.getCPtr(element);
 }

 public void setElement(Element e) {
 examplePINVOKE.Container_setElement(swigCPtr, getCPtrAndAddReference(e));
 }
}

The following typemaps will generate the desired code. The 'csin' typemap matches the input parameter type for the
setElement method. The 'cscode' typemap simply adds in the specified code into the C# proxy class.

%typemap(csin) Element *e "getCPtrAndAddReference($csinput)"

%typemap(cscode) Container %{
 // Ensure that the GC doesn't collect any Element set from C#
 // as the underlying C++ class stores a shallow copy
 private Element elementReference;
 private HandleRef getCPtrAndAddReference(Element element) {
 elementReference = element;

SWIG−1.3 Documentation

17.4.2 Memory management for objects passed to the C++ layer 230

 return Element.getCPtr(element);
 }
%}

SWIG−1.3 Documentation

17.4.2 Memory management for objects passed to the C++ layer 231

18 SWIG and Chicken
Preliminaries

Running SWIG in C mode♦
Running SWIG in C++ mode♦

•

Code Generation
Naming Conventions♦
Modules♦
Constants and Variables♦
Functions♦
Exceptions♦

•

TinyCLOS•
Linkage

Static binary or shared library linked at compile time♦
Building chicken extension libraries♦
Linking multiple SWIG modules with TinyCLOS♦

•

Typemaps•
Pointers

Garbage collection♦
•

Unsupported features and known problems•

This chapter describes SWIG's support of CHICKEN. CHICKEN is a Scheme−to−C compiler supporting most of the language
features as defined in the Revised^5 Report on Scheme. Its main attributes are that it

generates portable C code1.
includes a customizable interpreter2.
links to C libraries with a simple Foreign Function Interface3.
supports full tail−recursion and first−class continuations4.

When confronted with a large C library, CHICKEN users can use SWIG to generate CHICKEN wrappers for the C library.
However, the real advantages of using SWIG with CHICKEN are its support for C++ −− object−oriented code is difficult to wrap
by hand in CHICKEN −− and its typed pointer representation, essential for C and C++ libraries involving structures or classes.

18.1 Preliminaries

CHICKEN support was introduced to SWIG in version 1.3.18. SWIG relies on some recent additions to CHICKEN, which are
only present in releases of CHICKEN with version number greater than or equal to 1.89. To use a chicken version between 1.40
and 1.89, see the Garbage collection section below.

You may want to look at any of the examples in Examples/chicken/ or Examples/GIFPlot/Chicken for the basic steps to run
SWIG CHICKEN.

18.1.1 Running SWIG in C mode

To run SWIG CHICKEN in C mode, use the −chicken option.

% swig −chicken example.i

To allow the wrapper to take advantage of future CHICKEN code generation improvements, part of the wrapper is direct
CHICKEN function calls (example_wrap.c) and part is CHICKEN Scheme (example.scm). The basic Scheme code must
be compiled to C using your system's CHICKEN compiler or both files can be compiled directly using the much simpler csc.

% chicken example.scm −output−file oexample.c

18 SWIG and Chicken 232

So for the C mode of SWIG CHICKEN, example_wrap.c and oexample.c are the files that must be compiled to object
files and linked into your project.

18.1.2 Running SWIG in C++ mode

To run SWIG CHICKEN in C++ mode, use the −chicken −c++ option.

% swig −chicken −c++ example.i

This will generate example_wrap.cxx and example.scm. The basic Scheme code must be compiled to C using your
system's CHICKEN compiler or both files can be compiled directly using the much simpler csc.

% chicken example.scm −output−file oexample.c

So for the C++ mode of SWIG CHICKEN, example_wrap.cxx and oexample.c are the files that must be compiled to
object files and linked into your project.

18.2 Code Generation

18.2.1 Naming Conventions

Given a C variable, function or constant declaration named Foo_Bar, the declaration will be available in CHICKEN as an
identifier ending with Foo−Bar. That is, an underscore is converted to a dash.

You may control what the CHICKEN identifier will be by using the %rename SWIG directive in the SWIG interface file.

18.2.2 Modules

The name of the module must be declared one of two ways:

Placing %module example in the SWIG interface file.•
Using −module example on the SWIG command line.•

The generated example.scm file then exports (declare (unit modulename)). If you do not want SWIG to export the
(declare (unit modulename)), pass the −nounit option to SWIG.

CHICKEN will be able to access the module using the (declare (uses modulename)) CHICKEN Scheme form.

18.2.3 Constants and Variables

Constants may be created using any of the four constructs in the interface file:

#define MYCONSTANT1 ...1.
%constant int MYCONSTANT2 = ...2.
const int MYCONSTANT3 = ...3.
enum { MYCONSTANT4 = ... };4.

In all cases, the constants may be accessed from within CHICKEN using the form (MYCONSTANT1); that is, the constants may
be accessed using the read−only parameter form.

Variables are accessed using the full parameter form. For example, to set the C variable "int my_variable;", use the Scheme form
(my−variable 2345). To get the C variable, use (my−variable).

SWIG−1.3 Documentation

18.1.1 Running SWIG in C mode 233

18.2.4 Functions

C functions declared in the SWIG interface file will have corresponding CHICKEN Scheme procedures. For example, the C
function "int sqrt(double x);" will be available using the Scheme form (sqrt 2345.0). A void return value will give
C_SCHEME_UNDEFINED as a result.

A function may return more than one value by using the OUTPUT specifier (see Lib/chicken/typemaps.i). They will be returned as
multiple values using (values) if there is more than one result (that is, a non−void return value and at least one argout
parameter, or a void return value and at least two argout parameters). The return values can then be accessed with
(call−with−values).

18.2.5 Exceptions

The SWIG chicken module has support for exceptions thrown from C or C++ code to be caught in scheme. See Exception
handling with %exception for more information about declaring exceptions in the interface file.

Chicken supports both the SWIG_exception(int code, const char *msg) interface as well as a
SWIG_ThrowException(C_word val) function for throwing exceptions from inside the %exception blocks.
SWIG_exception will throw a list consisting of the code (as an integer) and the message. Both of these will throw an exception
using (abort), which can be handled by (handle−exceptions). See Chicken manual on Exceptions and SFRI−12. Since
the exception values are thrown directly, if (condition−case) is used to catch an exception the exception will come through
in the val () case.

The following simple module

%module exception_test

%inline %{
 void test_throw(int i) throws (int) {
 if (i == 1) throw 15;
 }
%}

could be run with

(handle−exceptions exvar
 (if (= exvar 15)
 (print "Correct!")
 (print "Threw something else " exvar))
 (test−throw 1))

18.3 TinyCLOS

The author of TinyCLOS, Gregor Kiczales, describes TinyCLOS as: "Tiny CLOS is a Scheme implementation of a `kernelized'
CLOS, with a metaobject protocol. The implementation is even simpler than the simple CLOS found in `The Art of the
Metaobject Protocol,' weighing in at around 850 lines of code, including (some) comments and documentation."

Almost all good Scheme books describe how to use metaobjects and generic procedures to implement an object−oriented Scheme
system. Please consult a Scheme book if you are unfamiliar with the concept.

CHICKEN has a modified version of TinyCLOS, which SWIG CHICKEN uses if the −proxy argument is given. If −proxy is
passed, then the generated example.scm file will contain TinyCLOS class definitions. A class named Foo is declared as <Foo>,
and each member variable is allocated a slot. Member functions are exported as generic functions.

Primitive symbols and functions (the interface that would be presented if −proxy was not passed) are hidden and no longer
accessable. If the −unhideprimitive command line argument is passed to SWIG, then the primitive symbols will be available, but
each will be prefixed by the string "primitive:"

SWIG−1.3 Documentation

18.2.4 Functions 234

http://www.call-with-current-continuation.org/manual/Exceptions.html#Exceptions
http://srfi.schemers.org/srfi-12/srfi-12.html

The exported symbol names can be controlled with the −closprefix and −useclassprefix arguments. If −useclassprefix is passed to
SWIG, every member function will be generated with the class name as a prefix. If the −closprefix mymod: argument is passed to
SWIG, then the exported functions will be prefixed by the string "mymod:". If −useclassprefix is passed, −closprefix is ignored.

18.4 Linkage

Please refer to CHICKEN − A practical and portable Scheme system − User's manual for detailed help on how to link object files
to create a CHICKEN Scheme program. Briefly, to link object files, be sure to add `chicken−config −extra−libs
−libs` or `chicken−config −shared −extra−libs −libs`to your linker options. Use the −shared option if you
want to create a dynamically loadable module. You might also want to use the much simpler csc or csc.bat.

Each scheme file that is generated by SWIG contains (declare (uses modname)). This means that to load the module
from scheme code, the code must include (declare (uses modname)).

18.4.1 Static binary or shared library linked at compile time

We can easily use csc to build a static binary.

$ swig −chicken example.i
$ csc −v example.scm example_impl.c example_wrap.c test_script.scm −o example
$./example

Similar to the above, any number of module.scm files could be compiled into a shared library, and then that shared library
linked when compiling the main application.

$ swig −chicken example.i
$ csc −sv example.scm example_wrap.c example_impl.c −o example.so

The exmaple.so file can then linked with test_script.scm when it is compiled, in which case test_script.scm
must have (declare (uses example)). Multiple SWIG modules could have been linked into example.so and each one
accessed with a (declare (uses ...)).

$ csc −v test_script.scm −lexample

An alternative is that the test_script.scm can have the code (load−library 'example "example.so"), in which case
the test script does not need to be linked with example.so. The test_script.scm file can then be run with csi.

18.4.2 Building chicken extension libraries

Building a shared library like in the above section only works if the library is linked at compile time with a script containing
(declare (uses ...)) or is loaded explicitly with (load−library 'example "example.so"). It is not the
format that CHICKEN expects for extension libraries and eggs. The problem is the (declare (unit modname)) inside the
modname.scm file. There are two possible solutions to this.

First, SWIG accepts a −nounit argument, in which case the (declare (unit modname)) is not generated. Then, the
modname.scm and modname_wrap.c files must be compiled into their own shared library.

$ csc −sv modname.scm modname_wrap.c modname_impl.c −o modname.so

This library can then be loaded by scheme code with the (require 'modname) function. See Loading−extension−libraries in
the eval unit inside the CHICKEN manual for more information.

Another alternative is to run SWIG normally and create a scheme file that contains (declare (uses modname)) and then
compile that file into the shared library as well. For example, inside the mod_load.scm file,

(declare (uses mod1))
(declare (uses mod2))

SWIG−1.3 Documentation

18.3 TinyCLOS 235

http://www.call-with-current-continuation.org/manual/Loading-extension-libraries.html

Which would then be compiled with

$ swig −chicken mod1.i
$ swig −chicken mod2.i
$ csc −sv mod_load.scm mod1.scm mod2.scm mod1_wrap.c mod2_wrap.c mod1_impl.c mod2_impl.c −o mod.so

Then the extension library can be loaded with (require 'mod). As we can see here, mod_load.scm contains the code that
gets exectued when the module is loaded. All this code does is load both mod1 and mod2. As we can see, this technique is more
useful when you want to combine a few SWIG modules into one chicken extension library, especially if modules are related by
%import

In either method, the files that are compiled into the shared library could also be packaged into an egg. The mod1_wrap.c and
mod2_wrap.c files that are created by SWIG are stand alone and do not need SWIG to be installed to be compiled. Thus the
egg could be distributed and used by anyone, even if SWIG is not installed.

See the Examples/chicken/egg directory in the SWIG source for an example that builds two eggs, one using the first
method and one using the second method.

18.4.3 Linking multiple SWIG modules with TinyCLOS

Linking together multiple modules that share type information using the %import directive while also using −proxy is more
complicated. For example, if mod2.i imports mod1.i, then the mod2.scm file contains references to symbols declared in
mod1.scm, and thus a (declare (uses mod1)) or (require 'mod1) must be exported to the top of mod2.scm. By
default, when SWIG encounters an %import "modname.i" directive, it exports (declare (uses modname)) into the
scm file. This works fine unless mod1 was compiled with the −nounit argument or was compiled into an extension library with
other modules under a different name.

One option is to override the automatic generation of (declare (uses mod1)) by passing the −noclosuses option to
SWIG when compiling mod2.i. SWIG then provides the %insert(closprefix) %{ %} directive. Any scheme code
inside that directive is inserted into the generated .scm file, and if mod1 was compiled with −nounit, the directive should
contain (require 'mod1). This option allows for mixed loading as well, where some modules are imported with (declare
(uses modname)) (which means they were compiled without −nounit) and some are imported with (require
'modname).

The other option is to use the second idea in the above section. Compile all the modules normally, without any
%insert(closprefix), −nounit, or −noclosuses. Then the modules will import each other correctly with (declare
(uses ...)). To create an extension library or an egg, just create a module_load.scm file that (declare (uses
...)) all the modules.

18.5 Typemaps

The Chicken module handles all types via typemaps. This information is read from Lib/chicken/typemaps.i and
Lib/chicken/chicken.swg.

18.6 Pointers

For pointer types, SWIG uses CHICKEN tagged pointers. A tagged pointer is an ordinary CHICKEN pointer with an extra slot for
a void *. With SWIG CHICKEN, this void * is a pointer to a type−info structure. So each pointer used as input or output from the
SWIG−generated CHICKEN wrappers will have type information attached to it. This will let the wrappers correctly determine
which method should be called according to the object type hierarchy exposed in the SWIG interface files.

To construct a Scheme object from a C pointer, the wrapper code calls the function SWIG_NewPointerObj(void *ptr,
swig_type_info *type, int owner), The function that calls SWIG_NewPointerObj must have a variable declared
C_word *known_space = C_alloc(C_SIZEOF_SWIG_POINTER); It is ok to call SWIG_NewPointerObj more
than once, just make sure known_space has enough space for all the created pointers.

SWIG−1.3 Documentation

18.4.2 Building chicken extension libraries 236

To get the pointer represented by a CHICKEN tagged pointer, the wrapper code calls the function
SWIG_ConvertPtr(C_word s, void **result, swig_type_info *type, int flags), passing a pointer to
a struct representing the expected pointer type. flags is either zero or SWIG_POINTER_DISOWN (see below).

18.6.1 Garbage collection

If the owner flag passed to SWIG_NewPointerObj is 1, NewPointerObj will add a finalizer to the type which will call the
destructor or delete method of that type. The destructor and delete functions are no longer exported for use in scheme code,
instead SWIG and chicken manage pointers. In situations where SWIG knows that a function is returning a type that should be
garbage collected, SWIG will automatically set the owner flag to 1. For other functions, the %newobject directive must be
specified for functions whose return values should be garbage collected. See Object ownership and %newobject for more
information.

In situations where a C or C++ function will assume ownership of a pointer, and thus chicken should no longer garbage collect it,
SWIG provides the DISOWN input typemap. After applying this typemap (see the Typemaps chapter for more information on how
to apply typemaps), any pointer that gets passed in will no longer be garbage collected. An object is disowned by passing the
SWIG_POINTER_DISOWN flag to SWIG_ConvertPtr. Warning: Since the lifetime of the object is now controlled by the
underlying code, the object might get deleted while the scheme code still holds a pointer to it. Further use of this pointer can lead
to a crash.

Adding a finalizer function from C code was added to chicken in the 1.89 release, so garbage collection does not work for chicken
versions below 1.89. If you would like the SWIG generated code to work with chicken 1.40 to 1.89, pass the −nocollection
argument to SWIG. This will not export code inside the _wrap.c file to register finalizers, and will then export destructor functions
which must be called manually.

18.7 Unsupported features and known problems

No director support.•
No support for c++ standard types like std::vector.•
The TinyCLOS wrappers for overloaded functions will not work correctly when using %feature(compactdefaultargs).•

TinyCLOS has a limitation such that generic methods do not properly work on methods with different number of specializers:
TinyCLOS assumes that every method added to a generic function will have the same number of specializers. SWIG generates
functions with different lengths of specializers when C/C++ functions are overloaded. For example, the code

class Foo {};
int foo(int a, Foo *b);
int foo(int a);

will produce scheme code

(define−method (foo (arg0 <top>) (arg1 <Foo>)) (call primitive function))
(define−method (foo (arg0 <top>)) (call primitive function))

Using unpatched TinyCLOS, the second (define−method) will replace the first one, so calling (foo 3 f) will produce an
error.

There are two solutions to this: the file Lib/chicken/tinyclos−multi−generic.patch in the SWIG source contains a
patch against tinyclos.scm inside the chicken source to add support into TinyCLOS for multi−argument generics. This requires
chicken to be rebuilt and custom install of chicken. An alternative is the Lib/chicken/multi−generic.scm file in the
SWIG source. This file can be loaded after TinyCLOS is loaded, and it will override some functions inside TinyCLOS to correctly
support multi−argument generics. This solution will work on any install of chicken. Please see the comments at the top of both
files for more information.

SWIG−1.3 Documentation

18.6 Pointers 237

19 SWIG and Guile
Meaning of "Module"•
Using the SCM or GH Guile API•
Linkage

Simple Linkage♦
Passive Linkage♦
Native Guile Module Linkage♦
Old Auto−Loading Guile Module Linkage♦
Hobbit4D Linkage♦

•

Underscore Folding•
Typemaps•
Representation of pointers as smobs

GH Smobs♦
SCM Smobs♦
Garbage Collection♦

•

Exception Handling•
Procedure documentation•
Procedures with setters•
GOOPS Proxy Classes

Naming Issues♦
Linking♦

•

This section details guile−specific support in SWIG.

19.1 Meaning of "Module"

There are three different concepts of "module" involved, defined separately for SWIG, Guile, and Libtool. To avoid horrible
confusion, we explicitly prefix the context, e.g., "guile−module".

19.2 Using the SCM or GH Guile API

The guile module can currently export wrapper files that use the guile GH interface or the SCM interface. This is controlled by an
argument passed to swig. The "−gh" argument causes swig to output GH code, and the "−scm" argument causes swig to output
SCM code. Right now the "−scm" argument is the default. The "−scm" wrapper generation assumes a guile version >= 1.6 and has
several advantages over the "−gh" wrapper generation including garbage collection and GOOPS support. The "−gh" wrapper
generation can be used for older versions of guile. The guile GH wrapper code generation is depreciated and the SCM interface is
the default. The SCM and GH interface differ greatly in how they store pointers and have completely different run−time code. See
below for more info.

The GH interface to guile is deprecated. Read more about why in the Guile manual. The idea of the GH interface was to provide a
high level API that other languages and projects could adopt. This was a good idea, but didn't pan out well for general
development. But for the specific, minimal uses that the SWIG typemaps put the GH interface to use is ideal for using a high level
API. So even though the GH interface is depreciated, SWIG will continue to use the GH interface and provide mappings from the
GH interface to whatever API we need. We can maintain this mapping where guile failed because SWIG uses a small subset of all
the GH functions which map easily. All the guile typemaps like typemaps.i and std_vector.i will continue to use the GH functions
to do things like create lists of values, convert strings to integers, etc. Then every language module will define a mapping between
the GH interface and whatever custom API the language uses. This is currently implemented by the guile module to use the SCM
guile API rather than the GH guile API. For example, here are some of the current mapping file for the SCM API

#define gh_append2(a, b) scm_append(scm_listify(a, b, SCM_UNDEFINED))
#define gh_apply(a, b) scm_apply(a, b, SCM_EOL)
#define gh_bool2scm SCM_BOOL
#define gh_boolean_p SCM_BOOLP
#define gh_car SCM_CAR

19 SWIG and Guile 238

http://www.gnu.org/software/guile/docs/guile-ref/GH-deprecation.html

#define gh_cdr SCM_CDR
#define gh_cons scm_cons
#define gh_double2scm scm_make_real
...

This file is parsed by SWIG at wrapper generation time, so every reference to a gh_ function is replaced by a scm_ function in the
wrapper file. Thus the gh_ function calls will never be seen in the wrapper; the wrapper will look exactly like it was generated for
the specific API. Currently only the guile language module has created a mapping policy from gh_ to scm_, but there is no reason
other languages (like mzscheme or chicken) couldn't also use this. If that happens, there is A LOT less code duplication in the
standard typemaps.

19.3 Linkage

Guile support is complicated by a lack of user community cohesiveness, which manifests in multiple shared−library usage
conventions. A set of policies implementing a usage convention is called a linkage.

19.3.1 Simple Linkage

The default linkage is the simplest; nothing special is done. In this case the function SWIG_init() is exported. Simple linkage
can be used in several ways:

Embedded Guile, no modules. You want to embed a Guile interpreter into your program; all bindings made by SWIG
shall show up in the root module. Then call SWIG_init() in the inner_main() function. See the "simple" and
"matrix" examples under Examples/guile.

•

Dynamic module mix−in. You want to create a Guile module using define−module, containing both Scheme code
and bindings made by SWIG; you want to load the SWIG modules as shared libraries into Guile.

(define−module (my module))
(define my−so (dynamic−link "./example.so"))
(dynamic−call "SWIG_init" my−so) ; make SWIG bindings
;; Scheme definitions can go here

Newer Guile versions provide a shorthand for dynamic−link and dynamic−call:

(load−extension "./example.so" "SWIG_init")

You need to explicitly export those bindings made by SWIG that you want to import into other modules:

(export foo bar)

In this example, the procedures foo and bar would be exported. Alternatively, you can export all bindings with the
following module−system hack:

(module−map (lambda (sym var)
 (module−export! (current−module) (list sym)))
 (current−module))

SWIG can also generate this Scheme stub (from define−module up to export) semi−automagically if you pass it
the command−line argument −scmstub. The code will be exported in a file called module.scm in the directory
specified by −outdir or the current directory if −outdir is not specified. Since SWIG doesn't know how to load your
extension module (with dynamic−link or load−extension), you need to supply this information by including a
directive like this in the interface file:

%scheme %{ (load−extension "./example.so" "SWIG_init") %}

(The %scheme directive allows to insert arbitrary Scheme code into the generated file module.scm; it is placed
between the define−module form and the export form.)

•

SWIG−1.3 Documentation

19.2 Using the SCM or GH Guile API 239

If you want to include several SWIG modules, you would need to rename SWIG_init via a preprocessor define to avoid symbol
clashes. For this case, however, passive linkage is available.

19.3.2 Passive Linkage

Passive linkage is just like simple linkage, but it generates an initialization function whose name is derived from the module and
package name (see below).

You should use passive linkage rather than simple linkage when you are using multiple modules.

19.3.3 Native Guile Module Linkage

SWIG can also generate wrapper code that does all the Guile module declarations on its own if you pass it the −Linkage
module command−line option. This requires Guile 1.5.0 or later.

The module name is set with the −package and −module command−line options. Suppose you want to define a module with
name (my lib foo); then you would have to pass the options −package my/lib −module foo. Note that the last part of
the name can also be set via the SWIG directive %module.

You can use this linkage in several ways:

Embedded Guile with SWIG modules. You want to embed a Guile interpreter into your program; the SWIG bindings
shall be put into different modules. Simply call the function scm_init_my_modules_foo_module in the
inner_main() function.

•

Dynamic Guile modules. You want to load the SWIG modules as shared libraries into Guile; all bindings are
automatically put in newly created Guile modules.

(define my−so (dynamic−link "./foo.so"))
;; create new module and put bindings there:
(dynamic−call "scm_init_my_modules_foo_module" my−so)

Newer Guile versions have a shorthand procedure for this:

(load−extension "./foo.so" "scm_init_my_modules_foo_module")

•

19.3.4 Old Auto−Loading Guile Module Linkage

Guile used to support an autoloading facility for object−code modules. This support has been marked deprecated in version 1.4.1
and is going to disappear sooner or later. SWIG still supports building auto−loading modules if you pass it the −Linkage
ltdlmod command−line option.

Auto−loading worked like this: Suppose a module with name (my lib foo) is required and not loaded yet. Guile will then
search all directories in its search path for a Scheme file my/modules/foo.scm or a shared library
my/modules/libfoo.so (or my/modules/libfoo.la; see the GNU libtool documentation). If a shared library is found that
contains the symbol scm_init_my_modules_foo_module, the library is loaded, and the function at that symbol is called
with no arguments in order to initialize the module.

When invoked with the −Linkage ltdlmod command−line option, SWIG generates an exported module initialization
function with an appropriate name.

19.3.5 Hobbit4D Linkage

The only other linkage supported at this time creates shared object libraries suitable for use by hobbit's (hobbit4d link)
guile module. This is called the "hobbit" linkage, and requires also using the "−package" command line option to set the part of
the module name before the last symbol. For example, both command lines:

swig −guile −package my/lib foo.i
swig −guile −package my/lib −module foo foo.i

SWIG−1.3 Documentation

19.3.1 Simple Linkage 240

would create module (my lib foo) (assuming in the first case foo.i declares the module to be "foo"). The installed files are
my/lib/libfoo.so.X.Y.Z and friends. This scheme is still very experimental; the (hobbit4d link) conventions are not well
understood.

19.4 Underscore Folding

Underscores are converted to dashes in identifiers. Guile support may grow an option to inhibit this folding in the future, but no
one has complained so far.

You can use the SWIG directives %name and %rename to specify the Guile name of the wrapped functions and variables (see
CHANGES).

19.5 Typemaps

The Guile module handles all types via typemaps. This information is read from Lib/guile/typemaps.i. Some
non−standard typemap substitutions are supported:

$descriptor expands to a type descriptor for use with the SWIG_NewPointerObj() and SWIG_ConvertPtr
functions.

•

For pointer types, $*descriptor expands to a descriptor for the direct base type (i.e., one pointer is stripped),
whereas $basedescriptor expands to a descriptor for the base type (i.e., all pointers are stripped).

•

A function returning void (more precisely, a function whose out typemap returns SCM_UNSPECIFIED) is treated as returning
no values. In argout typemaps, one can use the macro GUILE_APPEND_RESULT in order to append a value to the list of
function return values.

Multiple values can be passed up to Scheme in one of three ways:

Multiple values as lists. By default, if more than one value is to be returned, a list of the values is created and returned; to
switch back to this behavior, use

%values_as_list;

•

Multiple values as vectors. By issuing

%values_as_vector;

vectors instead of lists will be used.

•

Multiple values for multiple−value continuations. This is the most elegant way. By issuing

%multiple_values;

multiple values are passed to the multiple−value continuation, as created by call−with−values or the convenience
macro receive. The latter is available if you issue (use−modules (srfi srfi−8)). Assuming that your
divide function wants to return two values, a quotient and a remainder, you can write:

(receive (quotient remainder)
 (divide 35 17)

body...)

In body, the first result of divide will be bound to the variable quotient, and the second result to remainder.

•

See also the "multivalue" example.

SWIG−1.3 Documentation

19.3.5 Hobbit4D Linkage 241

19.6 Representation of pointers as smobs

For pointer types, SWIG uses Guile smobs. SWIG smobs print like this: #<swig struct xyzzy * 0x1234affe> Two of
them are equal? if and only if they have the same type and value.

To construct a Scheme object from a C pointer, the wrapper code calls the function SWIG_NewPointerObj(), passing a
pointer to a struct representing the pointer type. The type index to store in the upper half of the CAR is read from this struct. To
get the pointer represented by a smob, the wrapper code calls the function SWIG_ConvertPtr(), passing a pointer to a struct
representing the expected pointer type. See also The run−time type checker. If the Scheme object passed was not a SWIG smob
representing a compatible pointer, a wrong−type−arg exception is raised.

19.6.1 GH Smobs

In earlier versions of SWIG, C pointers were represented as Scheme strings containing a hexadecimal rendering of the pointer
value and a mangled type name. As Guile allows registering user types, so−called "smobs" (small objects), a much cleaner
representation has been implemented now. The details will be discussed in the following.

A smob is a cons cell where the lower half of the CAR contains the smob type tag, while the upper half of the CAR and the whole
CDR are available. Every module creates its own smob type in the clientdata field of the module. So the lower 16 bits of the car of
the smob store the tag and the upper 16 bits store the index this type is in the array. We can then, given a smob, find its
swig_type_info struct by using the tag (lower 16 bits of car) to find which module this type is in (since each tag is unique for the
module). Then we use the upper 16 bits to index into the array of types attached to this module. Looking up the module from the
tag is worst case O(# of modules) but average case O(1). This is because the modules are stored in a circularly linked list, and
when we start searching the modules for the tag, we start looking with the module that the function doing the lookup is in.
SWIG_Guile_ConvertPtr() takes as its first argument the swig_module_info * of the calling function, which is where we start
comparing tags. Most types will be looked up in the same module that created them, so the first module we check will most likely
be correct. Once we have a swig_type_info structure, we loop through the linked list of casts, using pointer comparisons.

19.6.2 SCM Smobs

The SCM interface (using the "−scm" argument to swig) uses swigrun.swg. The whole type system, when it is first initialized,
creates two smobs named "swig" and "collected_swig". The swig smob is used for non−garbage collected smobs, while the
collected_swig smob is used as described below. Each smob has the same format, which is a double cell created by
SCM_NEWSMOB2() The first word of data is the pointer to the object and the second word of data is the swig_type_info *
structure describing this type. This is a lot easier than the GH interface above because we can store a pointer to the type info
structure right in the type. With the GH interface, there was not enough room in the smob to store two whole words of data so we
needed to store part of the "swig_type_info address" in the smob tag. If a generated GOOPS module has been loaded, smobs will
be wrapped by the corresponding GOOPS class.

19.6.3 Garbage Collection

Garbage collection is a feature of the new SCM interface, and it is automatically included if you pass the "−scm" flag to swig.
Thus the swig garbage collection support requires guile >1.6. Garbage collection works like this. Every swig_type_info structure
stores in its clientdata field a pointer to the destructor for this type. The destructor is the generated wrapper around the delete
function. So swig still exports a wrapper for the destructor, it just does not call scm_c_define_gsubr() for the wrapped delete
function. So the only way to delete an object is from the garbage collector, since the delete function is not available to scripts.
How swig determines if a type should be garbage collected is exactly like described in Object ownership and %newobject in the
SWIG manual. All typemaps use an $owner var, and the guile module replaces $owner with 0 or 1 depending on feature:new.

19.7 Exception Handling

SWIG code calls scm_error on exception, using the following mapping:

 MAP(SWIG_MemoryError, "swig−memory−error");
 MAP(SWIG_IOError, "swig−io−error");

SWIG−1.3 Documentation

19.6 Representation of pointers as smobs 242

 MAP(SWIG_RuntimeError, "swig−runtime−error");
 MAP(SWIG_IndexError, "swig−index−error");
 MAP(SWIG_TypeError, "swig−type−error");
 MAP(SWIG_DivisionByZero, "swig−division−by−zero");
 MAP(SWIG_OverflowError, "swig−overflow−error");
 MAP(SWIG_SyntaxError, "swig−syntax−error");
 MAP(SWIG_ValueError, "swig−value−error");
 MAP(SWIG_SystemError, "swig−system−error");

The default when not specified here is to use "swig−error". See Lib/exception.i for details.

19.8 Procedure documentation

If invoked with the command−line option −procdoc file, SWIG creates documentation strings for the generated wrapper
functions, describing the procedure signature and return value, and writes them to file. You need Guile 1.4 or later to make use of
the documentation files.

SWIG can generate documentation strings in three formats, which are selected via the command−line option −procdocformat
format:

guile−1.4 (default): Generates a format suitable for Guile 1.4.•
plain: Generates a format suitable for Guile 1.4.1 and later.•
texinfo: Generates texinfo source, which must be run through texinfo in order to get a format suitable for Guile 1.4.1
and later.

•

You need to register the generated documentation file with Guile like this:

(use−modules (ice−9 documentation))
(set! documentation−files
 (cons "file" documentation−files))

Documentation strings can be configured using the Guile−specific typemap argument doc. See Lib/guile/typemaps.i for
details.

19.9 Procedures with setters

For global variables, SWIG creates a single wrapper procedure (variable :optional value), which is used for both getting
and setting the value. For struct members, SWIG creates two wrapper procedures (struct−member−get pointer) and
(struct−member−set pointer value).

If invoked with the command−line option −emit−setters (recommended), SWIG will additionally create procedures with
setters. For global variables, the procedure−with−setter variable is created, so you can use (variable) to get the value and
(set! (variable) value) to set it. For struct members, the procedure−with−setter struct−member is created, so you can use
(struct−member pointer) to get the value and (set! (struct−member pointer) value) to set it.

If invoked with the command−line option −only−setters, SWIG will only create procedures with setters, i.e., for struct
members, the procedures (struct−member−get pointer) and (struct−member−set pointer value) are not
generated.

19.10 GOOPS Proxy Classes

SWIG can also generate classes and generic functions for use with Guile's Object−Oriented Programming System (GOOPS).
GOOPS is a sophisticated object system in the spirit of the Common Lisp Object System (CLOS).

GOOPS support is only available with the new SCM interface (enabled with the −scm command−line option of SWIG). To
enable GOOPS support, pass the −proxy argument to swig. This will export the GOOPS wrapper definitions into the
module.scm file in the directory specified by −outdir or the current directory. GOOPS support requires either passive or

SWIG−1.3 Documentation

19.7 Exception Handling 243

module linkage.

The generated file will contain definitions of GOOPS classes mimicking the C++ class hierarchy.

Enabling GOOPS support implies −emit−setters.

If −emit−slot−accessors is also passed as an argument, then the generated file will contain accessor methods for all the
slots in the classes and for global variables. The input class

 class Foo {
 public:
 Foo(int i) : a(i) {}
 int a;
 int getMultBy(int i) { return a * i; }
 Foo getFooMultBy(int i) { return Foo(a * i); }
 };
 Foo getFooPlus(int i) { return Foo(a + i); }

will produce (if −emit−slot−accessors is not passed as a parameter)

(define−class <Foo> (<swig>)
 (a #:allocation #:swig−virtual
 #:slot−ref primitive:Foo−a−get
 #:slot−set! primitive:Foo−a−set)
 #:metaclass <swig−metaclass>
 #:new−function primitive:new−Foo
)
(define−method (getMultBy (swig_smob <Foo>) i)
 (primitive:Foo−getMultBy (slot−ref swig_smob 'smob) i))
(define−method (getFooMultBy (swig_smob <Foo>) i)
 (make <Foo> #:init−smob (primitive:Foo−getFooMultBy (slot−ref swig_smob 'smob) i)))

(define−method (getFooPlus i)
 (make <Foo> #:init−smob (primitive:getFooPlus i)))

(export <Foo> getMultBy getFooMultBy getFooPlus)

and will produce (if −emit−slot−accessors is passed as a parameter)

(define−class <Foo> (<swig>)
 (a #:allocation #:swig−virtual
 #:slot−ref primitive:Foo−a−get
 #:slot−set! primitive:Foo−a−set

#:accessor a)
 #:metaclass <swig−metaclass>
 #:new−function primitive:new−Foo
)
(define−method (getMultBy (swig_smob <Foo>) i)
 (primitive:Foo−getMultBy (slot−ref swig_smob 'smob) i))
(define−method (getFooMultBy (swig_smob <Foo>) i)
 (make <Foo> #:init−smob (primitive:Foo−getFooMultBy (slot−ref swig_smob 'smob) i)))

(define−method (getFooPlus i)
 (make <Foo> #:init−smob (primitive:getFooPlus i)))

(export <Foo> a getMultBy getFooMultBy getFooPlus)

which can then be used by this code

;; not using getters and setters
(define foo (make <Foo> #:args '(45)))
(slot−ref foo 'a)
(slot−set! foo 'a 3)
(getMultBy foo 4)

SWIG−1.3 Documentation

19.10 GOOPS Proxy Classes 244

(define foo2 (getFooMultBy foo 7))
(slot−ref foo 'a)
(slot−ref (getFooPlus foo 4) 'a)

;; using getters and setters
(define foo (make <Foo> #:args '(45)))
(a foo)
(set! (a foo) 5)
(getMultBy foo 4)
(a (getFooMultBy foo 7))

Notice that constructor arguments are passed as a list after the #:args keyword. Hopefully in the future the following will be
valid (make <Foo> #:a 5 #:b 4)

Also note that the order the declarations occur in the .i file make a difference. For example,

%module test

%{ #include "foo.h" %}

%inline %{
 int someFunc(Foo &a) {
 ...
 }
%}

%include "foo.h"

This is a valid SWIG file it will work as you think it will for primitive support, but the generated GOOPS file will be broken.
Since the someFunc definition is parsed by SWIG before all the declarations in foo.h, the generated GOOPS file will contain the
definition of someFunc() before the definition of <Foo>. The generated GOOPS file would look like

;;...

(define−method (someFunc (swig_smob <Foo>))
 (primitive:someFunc (slot−ref swig_smob 'smob)))

;;...

(define−class <Foo> (<swig>)
 ;;...
)

;;...

Notice that <Foo> is used before it is defined. The fix is to just put the %import "foo.h" before the %inline block.

19.10.1 Naming Issues

As you can see in the example above, there are potential naming conflicts. The default exported accessor for the Foo::a variable
is named a. The name of the wrapper global function is getFooPlus. If the −useclassprefix option is passed to swig, the
name of all accessors and member functions will be prepended with the class name. So the accessor will be called Foo−a and the
member functions will be called Foo−getMultBy. Also, if the −goopsprefix goops: argument is passed to swig, every
identifier will be prefixed by goops:

Two guile−modules are created by SWIG. The first module contains the primitive definitions of all the wrapped functions and
variables, and is located either in the _wrap.cxx file (with −Linkage module) or in the scmstub file (if −Linkage
passive −scmstub). The name of this guile−module is the swig−module name (given on the command line with the −module
argument or with the %module directive) concatenated with the string "−primitive". For example, if %module Test is set in the
swig interface file, the name of the guile−module in the scmstub or −Linkage module will be Test−primitive. Also, the
scmstub file will be named Test−primitive.scm. The string "primitive" can be changed by the −primsuffix swig

SWIG−1.3 Documentation

19.10.1 Naming Issues 245

argument. So the same interface, with the −primsuffix base will produce a module called Test−base. The second
generated guile−module contains all the GOOPS class definitions and is located in a file named module.scm in the directory
specified with −outdir or the current directory. The name of this guile−module is the name of the swig−module (given on the
command line or with the %module directive). In the previous example, the GOOPS definitions will be in a file named Test.scm.

Because of the naming conflicts, you can't in general use both the −primitive and the GOOPS guile−modules at the same
time. To do this, you need to rename the exported symbols from one or both guile−modules. For example,

(use−modules ((Test−primitive) #:renamer (symbol−prefix−proc 'primitive:)))
(use−modules ((Test) #:renamer (symbol−prefix−proc 'goops:)))

TODO: Renaming class name prefixes?

19.10.2 Linking

The guile−modules generated above all need to be linked together. GOOPS support requires either passive or module linkage. The
exported GOOPS guile−module will be the name of the swig−module and should be located in a file called Module.scm. This
should be installed on the autoload path for guile, so that (use−modules (Package Module)) will load everything
needed. Thus, the top of the GOOPS guile−module will contain code to load everything needed by the interface (the shared
library, the scmstub module, etc.). The %goops directive inserts arbitrary code into the generated GOOPS guile−module, and
should be used to load the dependent libraries.

This breaks up into three cases

Passive Linkage without −scmstub: Note that this linkage style has the potential for naming conflicts, since the
primitive exported function and variable names are not wrapped in a guile−module and might conflict with names from
the GOOPS guile−module (see above). Pass the −goopsprefix argument to solve this problem. If the
−exportprimitive option is passed to SWIG the (export ...) code that would be exported into the scmstub
file is exported at the bottom of the generated GOOPS guile−module. The %goops directive should contain code to load
the .so library.

%goops %{ (load−extension "./foo.so" "scm_init_my_modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile−module (with the −package my/modules
−module foo command line arguments)

(define−module (my modules foo))

;; %goops directive goes here
(load−extension "./foo.so" "scm_init_my_modules_foo_module")

(use−modules (oop goops) (Swig common))

•

Passive Linkage with −scmstub: Here, the name of the scmstub file should be Module−primitive.scm (with
primitive replaced with whatever is given with the −primsuffix argument. The code to load the .so library should be
located in the %scheme directive, which will then be added to the scmstub file. Swig will automatically generate the line
(use−modules (Package Module−primitive)) into the GOOPS guile−module. So if Module−primitive.scm
is on the autoload path for guile, the %goops directive can be empty. Otherwise, the %goops directive should contain
whatever code is needed to load the Module−primitive.scm file into guile.

%scheme %{ (load−extension "./foo.so" "scm_init_my_modules_foo_module") %}
// only include the following definition if (my modules foo) cannot
// be loaded automatically
%goops %{
 (primitive−load "/path/to/foo−primitive.scm")
 (primitive−load "/path/to/Swig/common.scm")
%}

Produces the following code at the top of the generated GOOPS guile−module

(define−module (my modules foo))

•

SWIG−1.3 Documentation

19.10.2 Linking 246

;; %goops directive goes here (if any)
(primitive−load "/path/to/foo−primitive.scm")
(primitive−load "/path/to/Swig/common.scm")

(use−modules (oop goops) (Swig common))
(use−modules ((my modules foo−primitive) :renamer (symbol−prefix−proc
 'primitive:)))

Module Linkage: This is very similar to passive linkage with a scmstub file. Swig will also automatically generate the
line (use−modules (Package Module−primitive)) into the GOOPS guile−module. Again the %goops
directive should contain whatever code is needed to get that module loaded into guile.

%goops %{ (load−extension "./foo.so" "scm_init_my_modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile−module

(define−module (my modules foo))

;; %goops directive goes here (if any)
(load−extension "./foo.so" "scm_init_my_modules_foo_module")

(use−modules (oop goops) (Swig common))
(use−modules ((my modules foo−primitive) :renamer (symbol−prefix−proc
 'primitive:)))

•

(Swig common): The generated GOOPS guile−module also imports definitions from the (Swig common) guile−module. This
module is included with SWIG and should be installed by SWIG into the autoload path for guile (based on the configure script
and whatever arguments are passed). If it is not, then the %goops directive also needs to contain code to load the common.scm
file into guile. Also note that if you are trying to install the generated wrappers on a computer without SWIG installed, you will
need to include the common.swg file along with the install.

Multiple Modules: Type dependencies between modules is supported. For example, if mod1 includes definitions of some classes,
and mod2 includes some classes derived from classes in mod1, the generated GOOPS file for mod2 will declare the correct
superclasses. The only problem is that since mod2 uses symbols from mod1, the mod2 GOOPS file must include a
(use−modules (mod2)). Currently, SWIG does not automatically export this line; it must be included in the %goops
directive of mod2. Maybe in the future SWIG can detect dependencies and export this line. (how do other language modules
handle this problem?)

SWIG−1.3 Documentation

19.10.2 Linking 247

20 SWIG and Java
Overview•
Preliminaries

Running SWIG♦
Additional Commandline Options♦
Getting the right header files♦
Compiling a dynamic module♦
Using your module♦
Dynamic linking problems♦
Compilation problems and compiling with C++♦
Building on Windows

Running SWIG from Visual Studio◊
Using NMAKE◊

♦

•

A tour of basic C/C++ wrapping
Modules, packages and generated Java classes♦
Functions♦
Global variables♦
Constants♦
Enumerations

Anonymous enums◊
Typesafe enums◊
Proper Java enums◊
Type unsafe enums◊
Simple enums◊

♦

Pointers♦
Structures♦
C++ classes♦
C++ inheritance♦
Pointers, references, arrays and pass by value

Null pointers◊
♦

C++ overloaded functions♦
C++ default arguments♦
C++ namespaces♦
C++ templates♦
C++ Smart Pointers♦

•

Further details on the generated Java classes
The intermediary JNI class

The intermediary JNI class pragmas◊
♦

The Java module class
The Java module class pragmas◊

♦

Java proxy classes
Memory management◊
Inheritance◊
Proxy classes and garbage collection◊

♦

Type wrapper classes♦
Enum classes

Typesafe enum classes◊
Proper Java enum classes◊
Type unsafe enum classes◊

♦

•

Cross language polymorphism using directors (experimental)
Enabling directors♦
Director classes♦
Overhead and code bloat♦
Simple directors example♦

•

20 SWIG and Java 248

Common customization features
C/C++ helper functions♦
Class extension with %extend♦
Exception handling with %exception and %javaexception♦
Method access with %javamethodmodifiers♦

•

Tips and techniques
Input and output parameters using primitive pointers and references♦
Simple pointers♦
Wrapping C arrays with Java arrays♦
Unbounded C Arrays♦

•

Java typemaps
Default primitive type mappings♦
Sixty four bit JVMs♦
What is a typemap?♦
Typemaps for mapping C/C++ types to Java types♦
Java typemap attributes♦
Java special variables♦
Typemaps for both C and C++ compilation♦
Java code typemaps♦
Director specific typemaps♦

•

Typemap Examples
Simpler Java enums for enums without initializers♦
Handling C++ exception specifications as Java exceptions♦
NaN Exception − exception handling for a particular type♦
Converting Java String arrays to char **♦
Expanding a Java object to multiple arguments♦
Using typemaps to return arguments♦
Adding Java downcasts to polymorphic return types♦
Adding an equals method to the Java classes♦
Void pointers and a common Java base class♦
Struct pointer to pointer♦
Memory management when returning references to member variables♦
Memory management for objects passed to the C++ layer♦

•

Living with Java Directors•
Odds and ends

JavaDoc comments♦
Functional interface without proxy classes♦
Using your own JNI functions♦
Performance concerns and hints♦

•

Examples•

This chapter describes SWIG's support of Java. It covers most SWIG features, but certain low−level details are covered in less
depth than in earlier chapters.

20.1 Overview

The 100% Pure Java effort is a commendable concept, however in the real world programmers often either need to re−use their
existing code or in some situations want to take advantage of Java but are forced into using some native (C/C++) code. The Java
extension to SWIG makes it very easy to plumb in existing C/C++ code for access from Java, as SWIG writes the Java Native
Interface (JNI) code for you. It is different to using the 'javah' tool as SWIG will wrap existing C/C++ code, whereas javah takes
'native' Java function declarations and creates C/C++ function prototypes. SWIG wraps C/C++ code using Java proxy classes and
is very useful if you want to have access to large amounts of C/C++ code from Java. If only one or two JNI functions are needed
then using SWIG may be overkill. SWIG enables a Java program to easily call into C/C++ code from Java. Historically, SWIG
was not able to generate any code to call into Java code from C++. However, SWIG now supports full cross language
polymorphism and code is generated to call up from C++ to Java when wrapping C++ virtual methods.

SWIG−1.3 Documentation

20.1 Overview 249

Java is one of the few non−scripting language modules in SWIG. As SWIG utilizes the type safety that the Java language offers, it
takes a somewhat different approach to that used for scripting languages. In particular runtime type checking and the runtime
library are not used by Java. This should be borne in mind when reading the rest of the SWIG documentation. This chapter on
Java is relatively self contained and will provide you with nearly everything you need for using SWIG and Java. However, the
"SWIG Basics" chapter will be a useful read in conjunction with this one.

This chapter starts with a few practicalities on running SWIG and compiling the generated code. If you are looking for the
minimum amount to read, have a look at the sections up to and including the tour of basic C/C++ wrapping section which explains
how to call the various C/C++ code constructs from Java. Following this section are details of the C/C++ code and Java classes
that SWIG generates. Due to the complexities of C and C++ there are different ways in which C/C++ code could be wrapped and
called from Java. SWIG is a powerful tool and the rest of the chapter details how the default code wrapping can be tailored.
Various customisation tips and techniques using SWIG directives are covered. The latter sections cover the advanced techniques
of using typemaps for complete control of the wrapping process.

20.2 Preliminaries

SWIG 1.1 works with JDKs from JDK 1.1 to JDK1.4 (Java 2 SDK1.4) and should also work with any later versions. Given the
choice, you should probably use the latest version of Sun's JDK. The SWIG Java module is known to work using Sun's JVM on
Solaris, Linux and the various flavours of Microsoft Windows including Cygwin. The Kaffe JVM is known to give a few
problems and at the time of writing was not a fully fledged JVM with full JNI support. The generated code is also known to work
on vxWorks using WindRiver's PJava 3.1. The best way to determine whether your combination of operating system and JDK
will work is to test the examples and test−suite that comes with SWIG. Run make −k check from the SWIG root directory
after installing SWIG on Unix systems.

The Java module requires your system to support shared libraries and dynamic loading. This is the commonly used method to load
JNI code so your system will more than likely support this.

20.2.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example
%{
#include "header.h"
%}
int fact(int n);

To build a Java module, run SWIG using the −java option :

%swig −java example.i

If building C++, add the −c++ option:

$ swig −c++ −java example.i

This creates two different files; a C/C++ source file example_wrap.c or example_wrap.cxx and numerous Java files. The
generated C/C++ source file contains the JNI wrapper code that needs to be compiled and linked with the rest of your C/C++
application.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the −o option. It is also possible to change the output
directory that the Java files are generated into using −outdir.

20.2.2 Additional Commandline Options

The following table list the additional commandline options available for the Java module. They can also be seen by using:

SWIG−1.3 Documentation

20.2 Preliminaries 250

swig −java −help

Java specific options

−package <name> set name of the Java package to <name>

−noproxy generate the low−level functional interface instead of proxy classes
Their use will become clearer by the time you have finished reading this section on SWIG and Java.

20.2.3 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs the jni.h and jni_md.h header files which are part of the JDK.
They are usually in directories like this:

/usr/java/include
/usr/java/include/<operating_system>

The exact location may vary on your machine, but the above locations are typical.

20.2.4 Compiling a dynamic module

The JNI code exists in a dynamic module or shared library (DLL on Windows) and gets loaded by the JVM. To build a shared
library file, you need to compile your module in a manner similar to the following (shown for Solaris):

$ swig −java example.i
$ gcc −c example_wrap.c −I/usr/java/include −I/usr/java/include/solaris
$ ld −G example_wrap.o −o libexample.so

The exact commands for doing this vary from platform to platform. However, SWIG tries to guess the right options when it is
installed. Therefore, you may want to start with one of the examples in the Examples/java directory. If that doesn't work, you
will need to read the man−pages for your compiler and linker to get the right set of options. You might also check the SWIG Wiki
for additional information. JNI compilation is a useful reference for compiling on different platforms.

The name of the shared library output file is important. If the name of your SWIG module is "example", the name of the
corresponding shared library file should be "libexample.so" (or equivalent depending on your machine, see Dynamic linking
problems for more information). The name of the module is specified using the %module directive or −module command line
option.

20.2.5 Using your module

To load your shared native library module in Java, simply use Java's System.loadLibrary method in a Java class:

// main.java

public class main {
 static {
 System.loadLibrary("example");
 }

 public static void main(String argv[]) {
 System.out.println(example.fact(4));
 }
}

Compile all the Java files and run:

$ javac *.java
$ java main
24
$

SWIG−1.3 Documentation

20.2.2 Additional Commandline Options 251

http://www.dabeaz.com/cgi-bin/wiki.pl
http://weblogs.java.net/blog/kellyohair/archive/2006/01/compilation_of.html

If it doesn't work have a look at the following section which discusses problems loading the shared library.

20.2.6 Dynamic linking problems

As shown in the previous section the code to load a native library (shared library) is System.loadLibrary("name"). This
can fail with an UnsatisfiedLinkError exception and can be due to a number of reasons.

You may get an exception similar to this:

$ java main
Exception in thread "main" java.lang.UnsatisfiedLinkError: no example in java.library.path
 at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)
 at java.lang.Runtime.loadLibrary0(Runtime.java:749)
 at java.lang.System.loadLibrary(System.java:820)
 at main.<clinit>(main.java:5)

The most common cause for this is an incorrect naming of the native library for the name passed to the loadLibrary function.
The string passed to the loadLibrary function must not include the file extension name in the string, that is .dll or .so. The
string must be name and not libname for all platforms. On Windows the native library must then be called name.dll and on most
Unix systems it must be called libname.so.

Another common reason for the native library not loading is because it is not in your path. On Windows make sure the path
environment variable contains the path to the native library. On Unix make sure that your LD_LIBRARY_PATH contains the path
to the native library. Adding paths to LD_LIBRARY_PATH can slow down other programs on your system so you may want to
consider alternative approaches. For example you could recompile your native library with extra path information using −rpath
if you're using GNU, see the GNU linker documentation (ld man page). You could use a command such as ldconfig (Linux)
or crle (Solaris) to add additional search paths to the default system configuration (this requires root access and you will need to
read the man pages).

The native library will also not load if there are any unresolved symbols in the compiled C/C++ code. The following exception is
indicative of this:

$ java main
Exception in thread "main" java.lang.UnsatisfiedLinkError: libexample.so: undefined
symbol: fact
 at java.lang.ClassLoader$NativeLibrary.load(Native Method)
 at java.lang.ClassLoader.loadLibrary0(ClassLoader.java, Compiled Code)
 at java.lang.ClassLoader.loadLibrary(ClassLoader.java, Compiled Code)
 at java.lang.Runtime.loadLibrary0(Runtime.java, Compiled Code)
 at java.lang.System.loadLibrary(System.java, Compiled Code)
 at main.<clinit>(main.java:5)
$

This error usually indicates that you forgot to include some object files or libraries in the linking of the native library file. Make
sure you compile both the SWIG wrapper file and the code you are wrapping into the native library file. Also make sure you pass
all of the required libraries to the linker. The java −verbose:jni commandline switch is also a great way to get more
information on unresolved symbols. One last piece of advice is to beware of the common faux pas of having more than one native
library version in your path.

In summary, ensure that you are using the correct C/C++ compiler and linker combination and options for successful native
library loading. If you are using the examples that ship with SWIG, then the Examples/Makefile must have these set up correctly
for your system. The SWIG installation package makes a best attempt at getting these correct but does not get it right 100% of the
time. The SWIG Wiki also has some settings for commonly used compiler and operating system combinations. The following
section also contains some C++ specific linking problems and solutions.

20.2.7 Compilation problems and compiling with C++

On most machines, shared library files should be linked using the C++ compiler. For example:

SWIG−1.3 Documentation

20.2.5 Using your module 252

http://www.dabeaz.com/cgi-bin/wiki.pl

% swig −c++ −java example.i
% g++ −c −fpic example.cxx
% g++ −c −fpic example_wrap.cxx −I/usr/java/j2sdk1.4.1/include −I/usr/java/
j2sdk1.4.1/include/linux
% g++ −shared example.o example_wrap.o −o libexample.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

% swig −c++ −java example.i
% CC −c example.cxx
% CC −c example_wrap.cxx −I/usr/java/include −I/usr/java/include/solaris
% CC −G example.o example_wrap.o −L/opt/SUNWspro/lib −o libexample.so −lCrun

If you aren't entirely sure about the linking for C++, you might look at an existing C++ program. On many Unix machines, the
ldd command will list library dependencies. This should give you some clues about what you might have to include when you
link your shared library. For example:

$ ldd swig
 libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)
 libm.so.6 => /lib/libm.so.6 (0x4005b000)
 libc.so.6 => /lib/libc.so.6 (0x40077000)
 /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)
$

Finally make sure the version of JDK header files matches the version of Java that you are running as incompatibilities could lead
to compilation problems or unpredictable behaviour.

20.2.8 Building on Windows

Building on Windows is roughly similar to the process used with Unix. You will want to produce a DLL that can be loaded by the
Java Virtual Machine. This section covers the process of using SWIG with Microsoft Visual C++ 6 although the procedure may
be similar with other compilers. In order for everything to work, you will need to have a JDK installed on your machine in order
to read the JNI header files.

20.2.8.1 Running SWIG from Visual Studio

If you are developing your application within Microsoft Visual studio, SWIG can be invoked as a custom build option. The
Examples\java directory has a few Windows Examples containing Visual Studio project (.dsp) files. The process to re−create the
project files for a C project are roughly:

Open up a new workspace and use the AppWizard to select a DLL project.•
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Don't worry if the wrapper file doesn't exist yet−−Visual Studio will keep a
reference to it.

•

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.•
Enter "SWIG" in the description field.•
Enter "swig −java −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s)
field"

•

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".•
Next, select the settings for the entire project and go to C/C++ tab and select the Preprocessor category . Add the include
directories to the JNI header files under "Additional include directories", eg "C:\jdk1.3\include,C:\jdk1.3\include\win32".

•

Next, select the settings for the entire project and go to Link tab and select the General category. Set the name of the
output file to match the name of your Java module (ie. example.dll).

•

Next, select the example.c and example_wrap.c files and go to the C/C++ tab and select the Precompiled Headers tab in
the project settings. Disabling precompiled headers for these files will overcome any precompiled header errors while
building.

•

Finally, add the java compilation as a post build rule in the Post−build step tab in project settings, eg, "c:\jdk1.3\bin\javac•

SWIG−1.3 Documentation

20.2.7 Compilation problems and compiling with C++ 253

*.java"
Build your project.•

Note: If using C++, choose a C++ suffix for the wrapper file, for example example_wrap.cxx. Use _wrap.cxx instead of
_wrap.c in the instructions above and add −c++ when invoking swig.

Now, assuming all went well, SWIG will be automatically invoked when you build your project. When doing a build, any changes
made to the interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file.

The Java classes that SWIG output should also be compiled into .class files. To run the native code in the DLL (example.dll),
make sure that it is in your path then run your Java program which uses it, as described in the previous section. If the library fails
to load have a look at Dynamic linking problems.

20.2.8.2 Using NMAKE

Alternatively, a Makefile for use by NMAKE can be written. Make sure the environment variables for MSVC++ are available and
the MSVC++ tools are in your path. Now, just write a short Makefile like this :

Makefile for using SWIG and Java for C code

SRCS = example.c
IFILE = example
INTERFACE = $(IFILE).i
WRAPFILE = $(IFILE)_wrap.c

Location of the Visual C++ tools (32 bit assumed)

TOOLS = c:\msdev
TARGET = example.dll
CC = $(TOOLS)\bin\cl.exe
LINK = $(TOOLS)\bin\link.exe
INCLUDE32 = −I$(TOOLS)\include
MACHINE = IX86

C Library needed to build a DLL

DLLIBC = msvcrt.lib oldnames.lib

Windows libraries that are apparently needed
WINLIB = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib winspool.lib

Libraries common to all DLLs
LIBS = $(DLLIBC) $(WINLIB)

Linker options
LOPT = −debug:full −debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO \
 /MACHINE:$(MACHINE) −entry:_DllMainCRTStartup@12 −dll

C compiler flags

CFLAGS = /Z7 /Od /c /nologo
JAVA_INCLUDE = −ID:\jdk1.3\include −ID:\jdk1.3\include\win32

java::
 swig −java −o $(WRAPFILE) $(INTERFACE)
 $(CC) $(CFLAGS) $(JAVA_INCLUDE) $(SRCS) $(WRAPFILE)
 set LIB=$(TOOLS)\lib
 $(LINK) $(LOPT) −out:example.dll $(LIBS) example.obj example_wrap.obj
 javac *.java

To build the DLL and compile the java code, run NMAKE (you may need to run vcvars32 first). This is a pretty simplistic
Makefile, but hopefully its enough to get you started. Of course you may want to make changes for it to work for C++ by adding
in the −c++ command line switch for swig and replacing .c with .cxx.

SWIG−1.3 Documentation

20.2.8.1 Running SWIG from Visual Studio 254

20.3 A tour of basic C/C++ wrapping

By default, SWIG attempts to build a natural Java interface to your C/C++ code. Functions are wrapped as functions, classes are
wrapped as classes, variables are wrapped with JavaBean type getters and setters and so forth. This section briefly covers the
essential aspects of this wrapping.

20.3.1 Modules, packages and generated Java classes

The SWIG %module directive specifies the name of the Java module. When you specify `%module example', the module
name determines the name of some of the generated files in the module. The generated code consists of a module class file
example.java, an intermediary JNI class file, exampleJNI.java as well as numerous other Java proxy class files. Each
proxy class is named after the structs, unions and classes you are wrapping. You may also get a constants interface file if you are
wrapping any unnamed enumerations or constants, for example exampleConstants.java. When choosing a module name,
make sure you don't use the same name as one of the generated proxy class files nor a Java keyword. Sometimes a C/C++ type
cannot be wrapped by a proxy class, for example a pointer to a primitive type. In these situations a type wrapper class is
generated. Wrapping an enum generates an enum class, either a proper Java enum or a Java class that simulates the enums pattern.
Details of all these generated classes will unfold as you read this section.

The JNI (C/C++) code is generated into a file which also contains the module name, for example example_wrap.cxx or
example_wrap.c. These C or C++ files complete the contents of the module.

The generated Java classes can be placed into a Java package by using the −package commandline option. This is often
combined with the −outdir to specify a package directory for generating the Java files.

swig −java −package com.bloggs.swig −outdir com/bloggs/swig example.i

SWIG won't create the directory, so make sure it exists beforehand.

20.3.2 Functions

There is no such thing as a global Java function so global C functions are wrapped as static methods in the module class. For
example,

%module example
int fact(int n);

creates a static function that works exactly like you think it might:

public class example {
 public static int fact(int n) {
 // makes call using JNI to the C function
 }
}

The Java class example is the module class. The function can be used as follows from Java:

System.out.println(example.fact(4));

20.3.3 Global variables

C/C++ global variables are fully supported by SWIG. Java does not allow the overriding of the dot operator so all variables are
accessed through getters and setters. Again because there is no such thing as a Java global variable, access to C/C++ global
variables is done through static getter and setter functions in the module class.

// SWIG interface file with global variables
%module example

SWIG−1.3 Documentation

20.3 A tour of basic C/C++ wrapping 255

...
%inline %{
extern int My_variable;
extern double density;
%}
...

Now in Java :

// Print out value of a C global variable
System.out.println("My_variable = " + example.getMy_variable());
// Set the value of a C global variable
example.setDensity(0.8442);

The value returned by the getter will always be up to date even if the value is changed in C. Note that the getters and setters
produced follow the JavaBean property design pattern. That is the first letter of the variable name is capitalized and preceded with
set or get. If you have the misfortune of wrapping two variables that differ only in the capitalization of their first letters, use
%rename to change one of the variable names. For example:

%rename Clash RenamedClash;
float Clash;
int clash;

If a variable is declared as const, it is wrapped as a read−only variable. That is only a getter is produced.

To make ordinary variables read−only, you can use the %immutable directive. For example:

%{
extern char *path;
%}
%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled or cleared using %mutable. See the Creatng read−only
variables section for further details.

If you just want to make a specific variable immutable, supply a declaration name. For example:

%{
extern char *path;
%}
%immutable path;
...
extern char *path; // Read−only (due to %immutable)

20.3.4 Constants

C/C++ constants are wrapped as Java static final variables. To create a constant, use #define or the %constant directive. For
example:

#define PI 3.14159
#define VERSION "1.0"
%constant int FOO = 42;
%constant const char *path = "/usr/local";

By default the generated static final variables are initialized by making a JNI call to get their value. The constants are generated
into the constants interface and look like this:

public interface exampleConstants {
 public final static double PI = exampleJNI.PI_get();

SWIG−1.3 Documentation

20.3.3 Global variables 256

 public final static String VERSION = exampleJNI.VERSION_get();
 public final static int FOO = exampleJNI.FOO_get();
 public final static String path = exampleJNI.path_get();
}

Note that SWIG has inferred the C type and used an appropriate Java type that will fit the range of all possible values for the C
type. By default SWIG generates runtime constants. They are not compiler constants that can, for example, be used in a switch
statement. This can be changed by using the %javaconst(flag) directive. It works like all the other %feature directives. The
default is %javaconst(0). It is possible to initialize all wrapped constants from pure Java code by placing a
%javaconst(1) before SWIG parses the constants. Putting it at the top of your interface file would ensure this. Here is an
example:

%javaconst(1);
%javaconst(0) BIG;
%javaconst(0) LARGE;

#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL

generates:

public interface exampleConstants {
 public final static int EXPRESSION = (0x100+5);
 public final static long BIG = exampleJNI.BIG_get();
 public final static java.math.BigInteger LARGE = exampleJNI.LARGE_get();
}

Note that SWIG has inferred the C long long type from BIG and used an appropriate Java type (long) as a Java long is the
smallest sized Java type that will take all possible values for a C long long. Similarly for LARGE.

Be careful using the %javaconst(1) directive as not all C code will compile as Java code. For example neither the 1000LL
value for BIG nor 2000ULL for LARGE above would generate valid Java code. The example demonstrates how you can target
particular constants (BIG and LARGE) with %javaconst. SWIG doesn't use %javaconst(1) as the default as it tries to
generate code that will always compile. However, using a %javaconst(1) at the top of your interface file is strongly
recommended as the preferred compile time constants will be generated and most C constants will compile as Java code and in
anycase the odd constant that doesn't can be fixed using %javaconst(0).

There is an alternative directive which can be used for these rare constant values that won't compile as Java code. This is the
%javaconstvalue(value) directive, where value is a Java code replacement for the C constant and can be either a string
or a number. This is useful if you do not want to use either the parsed C value nor a JNI call, such as when the C parsed value will
not compile as Java code and a compile time constant is required. The same example demonstrates this:

%javaconst(1);
%javaconstvalue("new java.math.BigInteger(\"2000\")") LARGE;
%javaconstvalue(1000) BIG;

#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL

Note the string quotes for "2000" are escaped. The following is then generated:

public interface exampleConstants {
 public final static int EXPRESSION = (0x100+5);
 public final static long BIG = 1000;
 public final static java.math.BigInteger LARGE = new java.math.BigInteger("2000");
}

Note: declarations declared as const are wrapped as read−only variables and will be accessed using a getter as described in the
previous section. They are not wrapped as constants.

SWIG−1.3 Documentation

20.3.4 Constants 257

Compatibility Note: In SWIG−1.3.19 and earlier releases, the constants were generated into the module class and the constants
interface didn't exist. Backwards compatibility is maintained as the module class implements the constants interface (even though
some consider this type of interface implementation to be bad practice):

public class example implements exampleConstants {
}

You thus have the choice of accessing these constants from either the module class or the constants interface, for example,
example.EXPRESSION or exampleConstants.EXPRESSION. Or if you decide this practice isn't so bad and your own
class implements exampleConstants, you can of course just use EXPRESSION.

20.3.5 Enumerations

SWIG handles both named and unnamed (anonymous) enumerations. There is a choice of approaches to wrapping named C/C++
enums. This is due to historical reasons as SWIG's initial support for enums was limited and Java did not originally have support
for enums. Each approach has advantages and disadvantages and it is important for the user to decide which is the most
appropriate solution. There are four approaches of which the first is the default approach based on the so called Java typesafe
enum pattern. The second generates proper Java enums. The final two approaches use simple integers for each enum item. Before
looking at the various approaches for wrapping named C/C++ enums, anonymous enums are considered.

20.3.5.1 Anonymous enums

There is no name for anonymous enums and so they are handled like constants. For example:

enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

is wrapped into the constants interface, in a similar manner as constants (see previous section):

public interface exampleConstants {
 public final static int ALE = exampleJNI.ALE_get();
 public final static int LAGER = exampleJNI.LAGER_get();
 public final static int STOUT = exampleJNI.STOUT_get();
 public final static int PILSNER = exampleJNI.PILSNER_get();
 public final static int PILZ = exampleJNI.PILZ_get();
}

The %javaconst(flag) and %javaconstvalue(value) directive introduced in the previous section on constants can
also be used with enums. As is the case for constants, the default is %javaconst(0) as not all C values will compile as Java
code. However, it is strongly recommended to add in a %javaconst(1) directive at the top of your interface file as it is only on
very rare occasions that this will produce code that won't compile under Java. Using %javaconst(1) will ensure compile time
constants are generated, thereby allowing the enum values to be used in Java switch statements. Example usage:

%javaconst(1);
%javaconst(0) PILSNER;
enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

generates:

public interface exampleConstants {
 public final static int ALE = 0;
 public final static int LAGER = 10;
 public final static int STOUT = LAGER + 1;
 public final static int PILSNER = exampleJNI.PILSNER_get();
 public final static int PILZ = PILSNER;
}

As in the case of constants, you can access them through either the module class or the constants interface, for example,
example.ALE or exampleConstants.ALE.

SWIG−1.3 Documentation

20.3.5 Enumerations 258

20.3.5.2 Typesafe enums

This is the default approach to wrapping named enums. The typesafe enum pattern is a relatively well known construct to work
around the lack of enums in versions of Java prior to JDK 1.5. It basically defines a class for the enumeration and permits a
limited number of final static instances of the class. Each instance equates to an enum item within the enumeration. The
implementation is in the "enumtypesafe.swg" file. Let's look at an example:

%include "enumtypesafe.swg" // optional as typesafe enums are the default
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
 public final static Beverage ALE = new Beverage("ALE");
 public final static Beverage LAGER = new Beverage("LAGER", exampleJNI.LAGER_get());
 public final static Beverage STOUT = new Beverage("STOUT");
 public final static Beverage PILSNER = new Beverage("PILSNER");
 public final static Beverage PILZ = new Beverage("PILZ", exampleJNI.PILZ_get());
 [... additional support methods omitted for brevity ...]
}

See Typesafe enum classes to see the omitted support methods. Note that the enum item with an initializer (LAGER) is initialized
with the enum value obtained via a JNI call. However, as with anonymous enums and constants, use of the %javaconst
directive is strongly recommended to change this behaviour:

%include "enumtypesafe.swg" // optional as typesafe enums are the default
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
 public final static Beverage ALE = new Beverage("ALE");
 public final static Beverage LAGER = new Beverage("LAGER", 10);
 public final static Beverage STOUT = new Beverage("STOUT");
 public final static Beverage PILSNER = new Beverage("PILSNER");
 public final static Beverage PILZ = new Beverage("PILZ", PILSNER);
 [... additional support methods omitted for brevity ...]
}

The generated code is easier to read and more efficient as a true constant is used instead of a JNI call. As is the case for constants,
the default is %javaconst(0) as not all C values will compile as Java code. However, it is recommended to add in a
%javaconst(1) directive at the top of your interface file as it is only on very rare occasions that this will produce code that
won't compile under Java. The %javaconstvalue(value) directive can also be used for typesafe enums. Note that global
enums are generated into a Java class within whatever package you are using. C++ enums defined within a C++ class are
generated into a static final inner Java class within the Java proxy class.

Typesafe enums have their advantages over using plain integers in that they they can be used in a typesafe manner. However,
there are limitations. For example, they cannot be used in switch statements and serialization is an issue. Please look at the
following references for further information: Replace Enums with Classes in Effective Java Programming on the Sun website,
Create enumerated constants in Java JavaWorld article, Java Tip 133: More on typesafe enums and Java Tip 122: Beware of Java
typesafe enumerations JavaWorld tips.

Note that the syntax required for using typesafe enums is the same as that for proper Java enums. This is useful during the period
that a project has to support legacy versions of Java. When upgrading to JDK 1.5 or later, proper Java enums could be used
instead, without users having to change their code. The following section details proper Java enum generation.

SWIG−1.3 Documentation

20.3.5.2 Typesafe enums 259

http://java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
http://www.javaworld.com/javaworld/jw-07-1997/jw-07-enumerated.html
http://www.javaworld.com/javaworld/javatips/jw-javatip133.html
http://www.javaworld.com/javaworld/javatips/jw-javatip122.html
http://www.javaworld.com/javaworld/javatips/jw-javatip122.html

20.3.5.3 Proper Java enums

Proper Java enums were only introduced in JDK 1.5 so this approach is only compatible with more recent versions of Java. Java
enums have been designed to overcome all the limitations of both typesafe and type unsafe enums and should be the choice
solution, provided older versions of Java do not have to be supported. In this approach, each named C/C++ enum is wrapped by a
Java enum. Java enums, by default, do not support enums with initializers. Java enums are in many respects similar to Java classes
in that they can be customised with additional methods. SWIG takes advantage of this feature to facilitate wrapping C/C++ enums
that have initializers. In order to wrap all possible C/C++ enums using proper Java enums, the "enums.swg" file must be used.
Let's take a look at an example.

%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public enum Beverage {
 ALE,
 LAGER(10),
 STOUT,
 PILSNER,
 PILZ(PILSNER);
 [... additional support methods omitted for brevity ...]
}

See Proper Java enum classes to see the omitted support methods. The generated Java enum has numerous additional methods to
support enums with initializers, such as LAGER above. Note that as with the typesafe enum pattern, enum items with initializers
are by default initialized with the enum value obtained via a JNI call. However, this is not the case above as we have used the
recommended %javaconst(1) to avoid the JNI call. The %javaconstvalue(value) directive covered in the Constants
section can also be used for proper Java enums.

The additional support methods need not be generated if none of the enum items have initializers and this is covered later in the
Simpler Java enums for enums without initializers section.

20.3.5.4 Type unsafe enums

In this approach each enum item in a named enumeration is wrapped as a static final integer in a class named after the C/C++
enum name. This is a commonly used pattern in Java to simulate C/C++ enums, but it is not typesafe. However, the main
advantage over the typesafe enum pattern is enum items can be used in switch statements. In order to use this approach, the
"enumtypeunsafe.swg" file must be used. Let's take a look at an example.

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
 public final static int ALE = 0;
 public final static int LAGER = 10;
 public final static int STOUT = LAGER + 1;
 public final static int PILSNER = STOUT + 1;
 public final static int PILZ = PILSNER;
}

As is the case previously, the default is %javaconst(0) as not all C/C++ values will compile as Java code. However, again it
is recommended to add in a %javaconst(1) directive. and the %javaconstvalue(value) directive covered in the
Constants section can also be used for type unsafe enums. Note that global enums are generated into a Java class within whatever
package you are using. C++ enums defined within a C++ class are generated into a static final inner Java class within the Java
proxy class.

SWIG−1.3 Documentation

20.3.5.3 Proper Java enums 260

Note that unlike typesafe enums, this approach requires users to mostly use different syntax compared with proper Java enums.
Thus the upgrade path to proper enums provided in JDK 1.5 is more painful.

20.3.5.5 Simple enums

This approach is similar to the type unsafe approach. Each enum item is also wrapped as a static final integer. However, these
integers are not generated into a class named after the C/C++ enum. Instead, global enums are generated into the constants
interface. Also, enums defined in a C++ class have their enum items generated directly into the Java proxy class rather than an
inner class within the Java proxy class. In fact, this approach is effectively wrapping the enums as if they were anonymous enums
and the resulting code is as per anonymous enums. The implementation is in the "enumsimple.swg" file.

Compatibility Note: SWIG−1.3.21 and earlier versions wrapped all enums using this approach. The type unsafe approach is
preferable to this one and this simple approach is only included for backwards compatibility with these earlier versions of SWIG.

20.3.6 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Here is a rather simple interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Java. For example:

SWIGTYPE_p_FILE f = example.fopen("junk","w");
example.fputs("Hello World\n", f);
example.fclose(f);

C pointers in the Java module are stored in a Java long and cross the JNI boundary held within this 64 bit number. Many other
SWIG language modules use an encoding of the pointer in a string. These scripting languages use the SWIG runtime type checker
for dynamic type checking as they do not support static type checking by a compiler. In order to implement static type checking of
pointers within Java, they are wrapped by a simple Java class. In the example above the FILE * pointer is wrapped with a type
wrapper class called SWIGTYPE_p_FILE.

Once obtained, a type wrapper object can be freely passed around to different C functions that expect to receive an object of that
type. The only thing you can't do is dereference the pointer from Java. Of course, that isn't much of a concern in this example.

As much as you might be inclined to modify a pointer value directly from Java, don't. The value is not necessarily the same as the
logical memory address of the underlying object. The value will vary depending on the native byte−ordering of the platform (i.e.,
big−endian vs. little−endian). Most JVMs are 32 bit applications so any JNI code must also be compiled as 32 bit. The net result is
pointers in JNI code are also 32 bits and are stored in the high order 4 bytes on big−endian machines and in the low order 4 bytes
on little−endian machines. By design it is also not possible to manually cast a pointer to a new type by using Java casts as it is
particularly dangerous especially when casting C++ objects. If you need to cast a pointer or change its value, consider writing
some helper functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {
 return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
 return dynamic_cast<Foo*>(b);
}

SWIG−1.3 Documentation

20.3.5.4 Type unsafe enums 261

Foo *IncrFoo(Foo *f, int i) {
 return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return a NULL pointer if the conversion can't be performed.

20.3.7 Structures

If you wrap a C structure, it is wrapped by a Java class with getters and setters for access to the member variables. For example,

struct Vector {
 double x,y,z;
};

is used as follows:

Vector v = new Vector();
v.setX(3.5);
v.setY(7.2);
double x = v.getX();
double y = v.getY();

The variable setters and getters are also based on the JavaBean design pattern already covered under the Global variables section.
Similar access is provided for unions and the public data members of C++ classes.

This object is actually an instance of a Java class that has been wrapped around a pointer to the C structure. This instance doesn't
actually do anything−−it just serves as a proxy. The pointer to the C object is held in the Java proxy class in much the same way
as pointers are held by type wrapper classes. Further details about Java proxy classes are covered a little later.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
 ...
 %immutable;
 int x; /* Read−only members */
 char *name;
 %mutable;
 ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:

struct Bar {
 int x[16];
};

If accessed in Java, you will see behavior like this:

Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();

SWIG−1.3 Documentation

20.3.6 Pointers 262

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an
array member using another pointer. For example:

Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();
Bar c = new Bar();
c.setX(x); // Copy contents of b.x to c.x

For array assignment (setters not getters), SWIG copies the entire contents of the array starting with the data pointed to by b.x. In
this example, 16 integers would be copied. Like C, SWIG makes no assumptions about bounds checking−−−if you pass a bad
pointer, you may get a segmentation fault or access violation. The default wrapping makes it hard to set or get just one element of
the array and so array access from Java is somewhat limited. This can be changed easily though by using the approach outlined
later in the Wrapping C arrays with Java arrays and Unbounded C Arrays sections.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like
this:

struct Foo {
 int a;
};

struct Bar {
 Foo f;
};

Now, suppose that you access the f member of Bar like this:

Bar b = new Bar();
Foo x = b.getF();

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b−>f; /* Points inside b */

Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. For
example:

Bar b = new Bar();
b.getF().setA(3); // Modify b.f.a
Foo x = b.getF();
x.setA(3); // Modify x.a − this is the same as b.f.a

20.3.8 C++ classes

C++ classes are wrapped by Java classes as well. For example, if you have this class,

class List {
public:
 List();
 ~List();
 int search(char *item);
 void insert(char *item);
 void remove(char *item);
 char *get(int n);
 int length;
};

you can use it in Java like this:

List l = new List();

SWIG−1.3 Documentation

20.3.7 Structures 263

l.insert("Ale");
l.insert("Stout");
l.insert("Lager");
String item = l.get(2);
int length = l.getLength();

Class data members are accessed in the same manner as C structures.

Static class members are unsurprisingly wrapped as static members of the Java class:

class Spam {
public:
 static void foo();
 static int bar;
};

The static members work like any other Java static member:

Spam.foo();
int bar = Spam.getBar();

20.3.9 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

those classes are wrapped into a hierarchy of Java classes that reflect the same inheritance structure:

Bar b = new Bar();
Class c = b.getClass();
System.out.println(c.getSuperclass().getName());

will of course display:

Foo

Furthermore, if you have functions like this

void spam(Foo *f);

then the Java function spam() accepts instances of Foo or instances of any other proxy classes derived from Foo.

Note that Java does not support multiple inheritance so any multiple inheritance in the C++ code is not going to work. A warning
is given when multiple inheritance is detected and only the first base class is used.

20.3.10 Pointers, references, arrays and pass by value

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(Foo x); // Pass by value
void spam4(Foo x[]); // Array of objects

SWIG−1.3 Documentation

20.3.8 C++ classes 264

In Java, there is no detailed distinction like this−−specifically, there are only instances of classes. There are no pointers nor
references. Because of this, SWIG unifies all of these types together in the wrapper code. For instance, if you actually had the
above functions, it is perfectly legal to do this from Java:

Foo f = new Foo(); // Create a Foo
example.spam1(f); // Ok. Pointer
example.spam2(f); // Ok. Reference
example.spam3(f); // Ok. Value.
example.spam4(f); // Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spam6();
Foo spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocated
memory is used to hold the result and a pointer is returned (Java will release this memory when the returned object's finalizer is
run by the garbage collector).

20.3.10.1 Null pointers

Working with null pointers is easy. A Java null can be used whenever a method expects a proxy class or typewrapper class.
However, it is not possible to pass null to C/C++ functions that take parameters by value or by reference. If you try you will get a
NullPointerException.

example.spam1(null); // Pointer − ok
example.spam2(null); // Reference − NullPointerException
example.spam3(null); // Value − NullPointerException
example.spam4(null); // Array − ok

For spam1 and spam4 above the Java null gets translated into a NULL pointer for passing to the C/C++ function. The
converse also occurs, that is, NULL pointers are translated into null Java objects when returned from a C/C++ function.

20.3.11 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

%module example

void foo(int);
void foo(char *c);

You can use them in Java in a straightforward manner:

example.foo(3); // foo(int)
example.foo("Hello"); // foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
 Foo();
 Foo(const Foo &);
 ...
};

you can write Java code like this:

SWIG−1.3 Documentation

20.3.10 Pointers, references, arrays and pass by value 265

Foo f = new Foo(); // Create a Foo
Foo g = new Foo(f); // Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG cannot disambiguate as there can
be more than one C++ type mapping onto a single Java type. For example:

void spam(int);
void spam(unsigned short);

Here both int and unsigned short map onto a Java int. Here is another example:

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(515): Overloaded method spam(unsigned short) ignored.
Method spam(int) at example.i:11 used.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);
void spam(short); // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);
void spam(short); // Ignored

20.3.12 C++ default arguments

Any function with a default argument is wrapped by generating an additional function for each argument that is defaulted. For
example, if we have the following C++:

%module example

void defaults(double d=10.0, int i=0);

The following methods are generated in the Java module class:

public class example {
 public static void defaults(double d, int i) { ... }
 public static void defaults(double d) { ... }
 public static void defaults() { ... }
}

It is as if SWIG had parsed three separate overloaded methods. The same approach is taken for static methods, constructors and
member methods.

Compatibility note: Versions of SWIG prior to SWIG−1.3.23 wrapped these with a single wrapper method and so the default
values could not be taken advantage of from Java. Further details on default arguments and how to restore this approach are given
in the more general Default arguments section.

SWIG−1.3 Documentation

20.3.11 C++ overloaded functions 266

20.3.13 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
 int fact(int n);
 struct Vector {
 double x,y,z;
 };
};

it works in Java as follows:

int f = example.fact(3);
Vector v = new Vector();
v.setX(3.4);
double y = v.getY();

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
 int spam();
}

namespace Bar {
 int spam();
}

If you have more than one namespace and you want to keep their symbols separate, consider wrapping them as separate SWIG
modules. Each SWIG module can be placed into a separate package.

20.3.14 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example
%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;
 pair();
 pair(const T1&, const T2&);
 ~pair();
};

%template(pairii) pair<int,int>;

In Java:

pairii p = new pairii(3,4);
int first = p.getFirst();

SWIG−1.3 Documentation

20.3.13 C++ namespaces 267

int second = p.getSecond();

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter.

20.3.15 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
 ...
 T *operator−>();
 ...
}

Then, if you have a class like this,

class Foo {
public:
 int x;
 int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)
...
p−>x = 3; // Foo::x
int y = p−>bar(); // Foo::bar

To wrap this in Java, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Java, everything should just "work":

SmartPtrFoo p = example.CreateFoo(); // Create a smart−pointer somehow
p.setX(3); // Foo::x
int y = p.bar(); // Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

Foo f = p.__deref__(); // Returns underlying Foo *

20.4 Further details on the generated Java classes

In the previous section, a high−level view of Java wrapping was presented. A key component of this wrapping is that structures
and classes are wrapped by Java proxy classes and type wrapper classes are used in situations where no proxies are generated.
This provides a very natural, type safe Java interface to the C/C++ code and fits in with the Java programing paradigm. However,
a number of low−level details were omitted. This section provides a brief overview of how the proxy classes work and then covers
the type wrapper classes. Finally enum classes are covered. First, the crucial intermediary JNI class is considered.

SWIG−1.3 Documentation

20.3.14 C++ templates 268

20.4.1 The intermediary JNI class

In the "SWIG basics" and "SWIG and C++" chapters, details of low−level structure and class wrapping are described. To
summarize those chapters, if you have a global function and class like this

class Foo {
public:
 int x;
 int spam(int num, Foo* foo);
};
void egg(Foo* chips);

then SWIG transforms the class into a set of low−level procedural wrappers. These procedural wrappers essentially perform the
equivalent of this C++ code:

Foo *new_Foo() {
 return new Foo();
}
void delete_Foo(Foo *f) {
 delete f;
}
int Foo_x_get(Foo *f) {
 return f−>x;
}
void Foo_x_set(Foo *f, int value) {
 f−>x = value;
}
int Foo_spam(Foo *f, int num, Foo* foo) {
 return f−>spam(num, foo);
}

These procedural function names don't actually exist, but their functionality appears inside the generated JNI functions. The JNI
functions have to follow a particular naming convention so the function names are actually:

JNIEXPORT jlong JNICALL Java_exampleJNI_new_1Foo(JNIEnv *jenv, jclass jcls);
JNIEXPORT void JNICALL Java_exampleJNI_delete_1Foo(JNIEnv *jenv, jclass jcls,
 jlong jarg1);
JNIEXPORT void JNICALL Java_exampleJNI_Foo_1x_1set(JNIEnv *jenv, jclass jcls,
 jlong jarg1, jint jarg2);
JNIEXPORT jint JNICALL Java_exampleJNI_Foo_1x_1get(JNIEnv *jenv, jclass jcls,
 jlong jarg1);
JNIEXPORT jint JNICALL Java_exampleJNI_Foo_1spam(JNIEnv *jenv, jclass jcls,
 jlong jarg1, jint jarg2, jlong jarg3);
JNIEXPORT void JNICALL Java_exampleJNI_egg(JNIEnv *jenv, jclass jcls, jlong jarg1);

For every JNI C function there has to be a static native Java function. These appear in the intermediary JNI class:

class exampleJNI {
 public final static native long new_Foo();
 public final static native void delete_Foo(long jarg1);
 public final static native void Foo_x_set(long jarg1, int jarg2);
 public final static native int Foo_x_get(long jarg1);
 public final static native int Foo_spam(long jarg1, int jarg2, long jarg3);
 public final static native void egg(long jarg1);
}

This class contains the complete Java − C/C++ interface so all function calls go via this class. As this class acts as a go−between
for all JNI calls to C/C++ code from the Java proxy classes, type wrapper classes and module class, it is known as the
intermediary JNI class.

You may notice that SWIG uses a Java long wherever a pointer or class object needs traversing the Java−C/C++ boundary. This
approach leads to minimal JNI code which makes for better performance as JNI code involves a lot of string manipulation. SWIG

SWIG−1.3 Documentation

20.4.1 The intermediary JNI class 269

uses Java code wherever possible as it is compiled into byte code which requires fewer string operations.

The functions in the intermediary JNI class cannot be accessed outside of its package. Access to them is gained through the
module class for globals otherwise the appropriate proxy class.

The name of the intermediary JNI class can be changed from its default, that is, the module name with JNI appended after it. The
module directive attribute jniclassname is used to achieve this:

%module (jniclassname="name") modulename

If name is the same as modulename then the module class name gets changed from modulename to modulenameModule.

20.4.1.1 The intermediary JNI class pragmas

The intermediary JNI class can be tailored through the use of pragmas, but is not commonly done. The pragmas for this class are:

Pragma Description

jniclassbase Base class for the intermediary JNI class

jniclassclassmodifiersClass modifiers and class type for the intermediary JNI class

jniclasscode Java code is copied verbatim into the intermediary JNI class

jniclassimports Java code, usually one or more import statements, placed before the intermediary JNI class definition

jniclassinterfaces Comma separated interface classes for the intermediary JNI class
The pragma code appears in the generated intermediary JNI class where you would expect:

[jniclassimports pragma]
[jniclassclassmodifiers pragma] jniclassname extends [jniclassbase pragma]
 implements [jniclassinterfaces pragma] {
[jniclasscode pragma]
... SWIG generated native methods ...
}

The jniclasscode pragma is quite useful for adding in a static block for loading the shared library / dynamic link library and
demonstrates how pragmas work:

%pragma(java) jniclasscode=%{
 static {
 try {
 System.loadLibrary("example");
 } catch (UnsatisfiedLinkError e) {
 System.err.println("Native code library failed to load. \n" + e);
 System.exit(1);
 }
 }
%}

Pragmas will take either "" or %{ %} as delimeters. For example, let's change the intermediary JNI class access to public.

%pragma(java) jniclassclassmodifiers="public class"

All the methods in the intermediary JNI class will then be callable outside of the package as the method modifiers are public by
default.

20.4.2 The Java module class

All global functions and variable getters/setters appear in the module class. For our example, there is just one function:

public class example {

SWIG−1.3 Documentation

20.4.1.1 The intermediary JNI class pragmas 270

 public static void egg(Foo chips) {
 exampleJNI.egg(Foo.getCPtr(chips));
 }
}

The module class is necessary as there is no such thing as a global in Java so all the C globals are put into this class. They are
generated as static functions and so must be accessed as such by using the module name in the static function call:

example.egg(new Foo());

The primary reason for having the module class wrapping the calls in the intermediary JNI class is to implement static type
checking. In this case only a Foo can be passed to the egg function, whereas any long can be passed to the egg function in the
intermediary JNI class.

20.4.2.1 The Java module class pragmas

The module class can be tailored through the use of pragmas, in the same manner as the intermediary JNI class. The pragmas are
similarly named and are used in the same way. The complete list follows:

Pragma Description

modulebase Base class for the module class

moduleclassmodifiers Class modifiers and class type for the module class

modulecode Java code is copied verbatim into the module class

moduleimports
Java code, usually one or more import statements, placed before the module class
definition

moduleinterfaces Comma separated interface classes for the module class
The pragma code appears in the generated module class like this:

[moduleimports pragma]
[modulemodifiers pragma] modulename extends [modulebase pragma]
 implements [moduleinterfaces pragma] {
[modulecode pragma]
... SWIG generated wrapper functions ...
}

See The intermediary JNI class pragmas section for further details on using pragmas.

20.4.3 Java proxy classes

A Java proxy class is generated for each structure, union or C++ class that is wrapped. The default proxy class for our previous
example looks like this:

public class Foo {
 private long swigCPtr;
 protected boolean swigCMemOwn;

 protected Foo(long cPtr, boolean cMemoryOwn) {
 swigCMemOwn = cMemoryOwn;
 swigCPtr = cPtr;
 }

 protected static long getCPtr(Foo obj) {
 return obj.swigCPtr;
 }

 protected void finalize() {
 delete();
 }

SWIG−1.3 Documentation

20.4.2 The Java module class 271

 public void delete() {
 if(swigCPtr != 0 && swigCMemOwn) {
 exampleJNI.delete_Foo(swigCPtr);
 swigCMemOwn = false;
 }
 swigCPtr = 0;
 }

 public void setX(int x) {
 exampleJNI.Foo_x_set(swigCPtr, x);
 }

 public int getX() {
 return exampleJNI.Foo_x_get(swigCPtr);
 }

 public int spam(int num, Foo foo) {
 return exampleJNI.Foo_spam(swigCPtr, num, Foo.getCPtr(foo));
 }

 public Foo() {
 this(exampleJNI.new_Foo(), true);
 }
}

This class merely holds a pointer to the underlying C++ object (swigCPtr). It also contains all the methods in the C++ class it is
proxying plus getters and setters for public member variables. These functions call the native methods in the intermediary JNI
class. The advantage of having this extra layer is the type safety that the proxy class functions offer. It adds static type checking
which leads to fewer surprises at runtime. For example, you can see that if you attempt to use the spam() function it will only
compile when the parameters passed are an int and a Foo. From a user's point of view, it makes the class work as if it were a
Java class:

Foo f = new Foo();
f.setX(3);
int y = f.spam(5, new Foo());

20.4.3.1 Memory management

Each proxy class has an ownership flag swigCMemOwn. The value of this flag determines who is responsible for deleting the
underlying C++ object. If set to true, the proxy class's finalizer will destroy the C++ object when the proxy class is garbage
collected. If set to false, then the destruction of the proxy class has no effect on the C++ object.

When an object is created by a constructor or returned by value, Java automatically takes ownership of the result. On the other
hand, when pointers or references are returned to Java, there is often no way to know where they came from. Therefore, the
ownership is set to false. For example:

class Foo {
public:
 Foo();
 Foo bar1();
 Foo &bar2();
 Foo *bar2();
};

In Java:

Foo f = new Foo(); // f.swigCMemOwn = true
Foo f1 = f.bar1(); // f1.swigCMemOwn = true
Foo f2 = f.bar2(); // f2.swigCMemOwn = false
Foo f3 = f.bar3(); // f3.swigCMemOwn = false

This behavior for pointers and references is especially important for classes that act as containers. For example, if a method

SWIG−1.3 Documentation

20.4.3 Java proxy classes 272

returns a pointer to an object that is contained inside another object, you definitely don't want Java to assume ownership and
destroy it!

For the most part, memory management issues remain hidden. However, there are situations where you might have to manually
change the ownership of an object. For instance, consider code like this:

class Obj {};
class Node {
 Obj *value;
public:
 void set_value(Obj *v) { value = v; }
};

Now, consider the following Java code:

Node n = new Node(); // Create a node
{
 Obj o = new Obj(); // Create an object
 n.set_value(o); // Set value
} // o goes out of scope

In this case, the Node n is holding a reference to o internally. However, SWIG has no way to know that this has occurred. The
Java proxy class still thinks that it has ownership of o. As o has gone out of scope, it could be garbage collected in which case the
C++ destructor will be invoked and n will then be holding a stale−pointer to o. If you're lucky, you will only get a segmentation
fault.

To work around this, the ownership flag of o needs changing to false. The ownership flag is a private member variable of the
proxy class so this is not possible without some customization of the proxy class. This can be achieved by using a typemap to
customise the proxy class with pure Java code as detailed later in the section on Java typemaps.

Sometimes a function will create memory and return a pointer to a newly allocated object. SWIG has no way of knowing this so
by default the proxy class does not manage the returned object. However, you can tell the proxy class to manage the memory if
you specify the %newobject directive. Consider:

class Obj {...};
class Factory {
public:
 static Obj *createObj() { return new Obj(); }
};

If we call the factory function, then we have to manually delete the memory:

Obj obj = Factory.createObj(); // obj.swigCMemOwn = false
...
obj.delete();

Now add in the %newobject directive:

%newobject Factory::createObj();

class Obj {...};
class Factory {
public:
 static Obj *createObj() { return new Obj(); }
};

A call to delete() is no longer necessary as the garbage collector will make the C++ destructor call because swigCMemOwn is
now true.

Obj obj = Factory.createObj(); // obj.swigCMemOwn = true;
...

SWIG−1.3 Documentation

20.4.3.1 Memory management 273

Some memory management issues are quite tricky to fix and may only be noticeable after using for a long time. One such issue is
early garbage collection of an object created from Java and resultant usage from C++ code. The section on typemap examples
cover two such scenarios, Memory management for objects passed to the C++ layer and Memory management when returning
references to member variables

20.4.3.2 Inheritance

Java proxy classes will mirror C++ inheritance chains. For example, given the base class Base and its derived class Derived:

class Base {
public:
 virtual double foo();
};

class Derived : public Base {
public:
 virtual double foo();
};

The base class is generated much like any other proxy class seen so far:

public class Base {
 private long swigCPtr;
 protected boolean swigCMemOwn;

 protected Base(long cPtr, boolean cMemoryOwn) {
 swigCMemOwn = cMemoryOwn;
 swigCPtr = cPtr;
 }

 protected static long getCPtr(Base obj) {
 return obj.swigCPtr;
 }

 protected void finalize() {
 delete();
 }

 public void delete() {
 if(swigCPtr != 0 && swigCMemOwn) {
 exampleJNI.delete_Base(swigCPtr);
 swigCMemOwn = false;
 }
 swigCPtr = 0;
 }

 public double foo() {
 return exampleJNI.Base_foo(swigCPtr);
 }

 public Base() {
 this(exampleJNI.new_Base(), true);
 }
}

The Derived class extends Base mirroring the C++ class inheritance hierarchy.

public class Derived extends Base {
 private long swigCPtr;

 protected Derived(long cPtr, boolean cMemoryOwn) {
 super(exampleJNI.SWIGDerivedUpcast(cPtr), cMemoryOwn);
 swigCPtr = cPtr;
 }

SWIG−1.3 Documentation

20.4.3.2 Inheritance 274

 protected static long getCPtr(Derived obj) {
 return obj.swigCPtr;
 }

 protected void finalize() {
 delete();
 }

 public void delete() {
 if(swigCPtr != 0 && swigCMemOwn) {
 exampleJNI.delete_Derived(swigCPtr);
 swigCMemOwn = false;
 }
 swigCPtr = 0;
 super.delete();
 }

 public double foo() {
 return exampleJNI.Derived_foo(swigCPtr);
 }

 public Derived() {
 this(exampleJNI.new_Derived(), true);
 }
}

Note the memory ownership is controlled by the base class. However each class in the inheritance hierarchy has its own pointer
value which is obtained during construction. The SWIGDerivedUpcast() call converts the pointer from a Derived * to a
Base *. This is a necessity as C++ compilers are free to implement pointers in the inheritance hierarchy with different values.

It is of course possible to extend Base using your own Java classes. If Derived is provided by the C++ code, you could for
example add in a pure Java class Extended derived from Base. There is a caveat and that is any C++ code will not know about
your pure Java class Extended so this type of derivation is restricted. However, true cross language polymorphism can be
achieved using the directors feature.

20.4.3.3 Proxy classes and garbage collection

By default each proxy class has a delete() and a finalize() method. The finalize() method calls delete() which
frees any malloc'd memory for wrapped C structs or calls the C++ class destructors. The idea is for delete() to be called when
you have finished with the C/C++ object. Ideally you need not call delete(), but rather leave it to the garbage collector to call
it from the finalizer. The unfortunate thing is that Sun, in their wisdom, do not guarantee that the finalizers will be called. When a
program exits, the garbage collector does not always call the finalizers. Depending on what the finalizers do and which operating
system you use, this may or may not be a problem.

If the delete() call into JNI code is just for memory handling, there is not a problem when run on most operating systems, for
example Windows and Unix. Say your JNI code creates memory on the heap which your finalizers should clean up, the finalizers
may or may not be called before the program exits. In Windows and Unix all memory that a process uses is returned to the system
on exit, so this isn't a problem. This is not the case in some operating systems like vxWorks. If however, your finalizer calls into
JNI code invoking the C++ destructor which in turn releases a TCP/IP socket for example, there is no guarantee that it will be
released. Note that with long running programs the garbage collector will eventually run, thereby calling any unreferenced object's
finalizers.

Some not so ideal solutions are:

Call the System.runFinalizersOnExit(true) or
Runtime.getRuntime().runFinalizersOnExit(true) to ensure the finalizers are called before the
program exits. The catch is that this is a deprecated function call as the documenation says:

This method is inherently unsafe. It may result in finalizers being called on live objects while other threads are
concurrently manipulating those objects, resulting in erratic behavior or deadlock.

1.

SWIG−1.3 Documentation

20.4.3.3 Proxy classes and garbage collection 275

In many cases you will be lucky and find that it works, but it is not to be advocated. Have a look at Sun's Java web site
and search for runFinalizersOnExit.
From jdk1.3 onwards a new function, addShutdownHook(), was introduced which is guaranteed to be called when
your program exits. You can encourage the garbage collector to call the finalizers, for example, add this static block to
the class that has the main() function:

 static {
 Runtime.getRuntime().addShutdownHook(
 new Thread() {
 public void run() { System.gc(); System.runFinalization(); }
 }
);
 }

Although this usually works, the documentation doesn't guarantee that runFinalization() will actually call the
finalizers. As the the shutdown hook is guaranteed you could also make a JNI call to clean up any resources that are
being tracked by the C/C++ code.

2.

Call the delete() function manually which will immediately invoke the C++ destructor. As a suggestion it may be a
good idea to set the object to null so that should the object be inadvertantly used again a Java null pointer exception is
thrown, the alternative would crash the JVM by using a null C pointer. For example given a SWIG generated class A:

A myA = new A();
// use myA ...
myA.delete();
// any use of myA here would crash the JVM
myA=null;
// any use of myA here would cause a Java null pointer exception to be thrown

The SWIG generated code ensures that the memory is not deleted twice, in the event the finalizers get called in addition
to the manual delete() call.

3.

Write your own object manager in Java. You could derive all SWIG classes from a single base class which could track
which objects have had their finalizers run, then call the rest of them on program termination. The section on Java
typemaps details how to specify a pure Java base class.

4.

20.4.4 Type wrapper classes

The generated type wrapper class, for say an int *, looks like this:

public class SWIGTYPE_p_int {
 private long swigCPtr;

 protected SWIGTYPE_p_int(long cPtr, boolean bFutureUse) {
 swigCPtr = cPtr;
 }

 protected SWIGTYPE_p_int() {
 swigCPtr = 0;
 }

 protected static long getCPtr(SWIGTYPE_p_int obj) {
 return obj.swigCPtr;
 }
}

The methods do not have public access, so by default it is impossible to do anything with objects of this class other than pass them
around. The methods in the class are part of the inner workings of SWIG. If you need to mess around with pointers you will have
to use some typemaps specific to the Java module to achieve this. The section on Java typemaps details how to modify the
generated code.

Note that if you use a pointer or reference to a proxy class in a function then no type wrapper class is generated because the proxy
class can be used as the function parameter. If however, you need anything more complicated like a pointer to a pointer to a proxy

SWIG−1.3 Documentation

20.4.4 Type wrapper classes 276

http://java.sun.com

class then a typewrapper class is generated for your use.

Note that SWIG generates a type wrapper class and not a proxy class when it has not parsed the definition of a type that gets used.
For example, say SWIG has not parsed the definition of class Snazzy because it is in a header file that you may have
forgotten to use the %include directive on. Should SWIG parse Snazzy * being used in a function parameter, it will then
generates a type wrapper class around a Snazzy pointer. Also recall from earlier that SWIG will use a pointer when a class is
passed by value or by reference:

void spam(Snazzy *x, Snazzy &y, Snazzy z);

Should SWIG not know anything about Snazzy then a SWIGTYPE_p_Snazzy must be used for all 3 parameters in the spam
function. The Java function generated is:

public static void spam(SWIGTYPE_p_Snazzy x, SWIGTYPE_p_Snazzy y, SWIGTYPE_p_Snazzy z) {
 ...
}

Note that typedefs are tracked by SWIG and the typedef name is used to construct the type wrapper class name. For example,
consider the case where Snazzy is a typedef to an int which SWIG does parse:

typedef int Snazzy;
void spam(Snazzy *x, Snazzy &y, Snazzy z);

Because the typedefs have been tracked the Java function generated is:

public static void spam(SWIGTYPE_p_int x, SWIGTYPE_p_int y, int z) { ... }

20.4.5 Enum classes

SWIG can generate three types of enum classes. The Enumerations section discussed these but omitted all the details. The
following sub−sections detail the various types of enum classes that can be generated.

20.4.5.1 Typesafe enum classes

The following example demonstrates the typesafe enum classes which SWIG generates:

%include "enumtypesafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

The following is the code that SWIG generates:

public final class Beverage {
 public final static Beverage ALE = new Beverage("ALE");
 public final static Beverage LAGER = new Beverage("LAGER", 10);
 public final static Beverage STOUT = new Beverage("STOUT");
 public final static Beverage PILSNER = new Beverage("PILSNER");
 public final static Beverage PILZ = new Beverage("PILZ", PILSNER);

 public final int swigValue() {
 return swigValue;
 }

 public String toString() {
 return swigName;
 }

 public static Beverage swigToEnum(int swigValue) {
 if (swigValue < swigValues.length && swigValue >= 0 &&
 swigValues[swigValue].swigValue == swigValue)
 return swigValues[swigValue];

SWIG−1.3 Documentation

20.4.5 Enum classes 277

 for (int i = 0; i < swigValues.length; i++)
 if (swigValues[i].swigValue == swigValue)
 return swigValues[i];
 throw new IllegalArgumentException("No enum " + Beverage.class + " with value " +
 swigValue);
 }

 private Beverage(String swigName) {
 this.swigName = swigName;
 this.swigValue = swigNext++;
 }

 private Beverage(String swigName, int swigValue) {
 this.swigName = swigName;
 this.swigValue = swigValue;
 swigNext = swigValue+1;
 }

 private Beverage(String swigName, Beverage swigEnum) {
 this.swigName = swigName;
 this.swigValue = swigEnum.swigValue;
 swigNext = this.swigValue+1;
 }

 private static Beverage[] swigValues = { ALE, LAGER, STOUT, PILSNER, PILZ };
 private static int swigNext = 0;
 private final int swigValue;
 private final String swigName;
}

As can be seen, there are a fair number of support methods for the typesafe enum pattern. The typesafe enum pattern involves
creating a fixed number of static instances of the enum class. The constructors are private to enforce this. Three constructors are
available − two for C/C++ enums with an initializer and one for those without an initializer. Note that the two enums with
initializers, LAGER and PILZ, each call one the two different initializer constructors. In order to use one of these typesafe enums,
the swigToEnum static method must be called to return a reference to one of the static instances. The JNI layer returns the enum
value from the C/C++ world as an integer and this method is used to find the appropriate Java enum static instance. The
swigValue method is used for marshalling in the other direction. The toString method is overridden so that the enum name
is available.

20.4.5.2 Proper Java enum classes

The following example demonstrates the Java enums approach:

%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

SWIG will generate the following Java enum:

public enum Beverage {
 ALE,
 LAGER(10),
 STOUT,
 PILSNER,
 PILZ(PILSNER);

 public final int swigValue() {
 return swigValue;
 }

 public static Beverage swigToEnum(int swigValue) {
 Beverage[] swigValues = Beverage.class.getEnumConstants();
 if (swigValue < swigValues.length && swigValue >= 0 &&
 swigValues[swigValue].swigValue == swigValue)

SWIG−1.3 Documentation

20.4.5.1 Typesafe enum classes 278

 return swigValues[swigValue];
 for (Beverage swigEnum : swigValues)
 if (swigEnum.swigValue == swigValue)
 return swigEnum;
 throw new IllegalArgumentException("No enum " + Beverage.class +
 " with value " + swigValue);
 }

 private Beverage() {
 this.swigValue = SwigNext.next++;
 }

 private Beverage(int swigValue) {
 this.swigValue = swigValue;
 SwigNext.next = swigValue+1;
 }

 private Beverage(Beverage swigEnum) {
 this.swigValue = swigEnum.swigValue;
 SwigNext.next = this.swigValue+1;
 }

 private final int swigValue;

 private static class SwigNext {
 private static int next = 0;
 }
}

The enum items appear first. Like the typesafe enum pattern, the constructors are private. The constructors are required to handle
C/C++ enums with initializers. The next variable is in the SwigNext inner class rather than in the enum class as static
primitive variables cannot be modified from within enum constructors. Marshalling between Java enums and the C/C++ enum
integer value is handled via the swigToEnum and swigValue methods. All the constructors and methods in the Java enum are
required just to handle C/C++ enums with initializers. These needn't be generated if the enum being wrapped does not have any
initializers and the Simpler Java enums for enums without initializers section describes how typemaps can be used to achieve this.

20.4.5.3 Type unsafe enum classes

The following example demonstrates type unsafe enums:

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

SWIG will generate the following simple class:

public final class Beverage {
 public final static int ALE = 0;
 public final static int LAGER = 10;
 public final static int STOUT = LAGER + 1;
 public final static int PILSNER = STOUT + 1;
 public final static int PILZ = PILSNER;
}

20.5 Cross language polymorphism using directors (experimental)

Proxy classes provide a natural, object−oriented way to wrap C++ classes. as described earlier, each proxy instance has an
associated C++ instance, and method calls from Java to the proxy are passed to the C++ instance transparently via C wrapper
functions.

This arrangement is asymmetric in the sense that no corresponding mechanism exists to pass method calls down the inheritance
chain from C++ to Java. In particular, if a C++ class has been extended in Java (by deriving from the proxy class), these classes

SWIG−1.3 Documentation

20.4.5.2 Proper Java enum classes 279

will not be visible from C++ code. Virtual method calls from C++ are thus not able to access the lowest implementation in the
inheritance chain.

SWIG can address this problem and make the relationship between C++ classes and proxy classes more symmetric. To achieve
this goal, new classes called directors are introduced at the bottom of the C++ inheritance chain. The job of the directors is to
route method calls correctly, either to C++ implementations higher in the inheritance chain or to Java implementations lower in
the inheritance chain. The upshot is that C++ classes can be extended in Java and from C++ these extensions look exactly like
native C++ classes. Neither C++ code nor Java code needs to know where a particular method is implemented: the combination of
proxy classes, director classes, and C wrapper functions transparently takes care of all the cross−language method routing.

20.5.1 Enabling directors

The director feature is disabled by default. To use directors you must make two changes to the interface file. First, add the
"directors" option to the %module directive, like this:

%module(directors="1") modulename

Without this option no director code will be generated. Second, you must use the %feature("director") directive to tell SWIG
which classes and methods should get directors. The %feature directive can be applied globally, to specific classes, and to specific
methods, like this:

// generate directors for all classes that have virtual methods
%feature("director");

// generate directors for all virtual methods in class Foo
%feature("director") Foo;

// generate a director for just Foo::bar()
%feature("director") Foo::bar;

You can use the %feature("nodirector") directive to turn off directors for specific classes or methods. So for example,

%feature("director") Foo;
%feature("nodirector") Foo::bar;

will generate directors for all virtual methods of class Foo except bar().

Directors can also be generated implicitly through inheritance. In the following, class Bar will get a director class that handles the
methods one() and two() (but not three()):

%feature("director") Foo;
class Foo {
public:
 virtual void one();
 virtual void two();
};

class Bar: public Foo {
public:
 virtual void three();
};

20.5.2 Director classes

For each class that has directors enabled, SWIG generates a new class that derives from both the class in question and a special
Swig::Director class. These new classes, referred to as director classes, can be loosely thought of as the C++ equivalent of
the Java proxy classes. The director classes store a pointer to their underlying Java proxy classes.

For simplicity let's ignore the Swig::Director class and refer to the original C++ class as the director's base class. By default,

SWIG−1.3 Documentation

20.5 Cross language polymorphism using directors (experimental) 280

a director class extends all virtual methods in the inheritance chain of its base class (see the preceding section for how to modify
this behavior). Thus all virtual method calls, whether they originate in C++ or in Java via proxy classes, eventually end up in at
the implementation in the director class. The job of the director methods is to route these method calls to the appropriate place in
the inheritance chain. By "appropriate place" we mean the method that would have been called if the C++ base class and its Java
derived classes were seamlessly integrated. That seamless integration is exactly what the director classes provide, transparently
skipping over all the messy JNI glue code that binds the two languages together.

In reality, the "appropriate place" is one of only two possibilities: C++ or Java. Once this decision is made, the rest is fairly easy.
If the correct implementation is in C++, then the lowest implementation of the method in the C++ inheritance chain is called
explicitly. If the correct implementation is in Java, the Java API is used to call the method of the underlying Java object (after
which the usual virtual method resolution in Java automatically finds the right implementation).

20.5.3 Overhead and code bloat

Enabling directors for a class will generate a new director method for every virtual method in the class' inheritance chain. This
alone can generate a lot of code bloat for large hierarchies. Method arguments that require complex conversions to and from Java
types can result in large director methods. For this reason it is recommended that directors are selectively enabled only for specific
classes that are likely to be extended in Java and used in C++.

Although directors make it natural to mix native C++ objects with Java objects (as director objects), one should be aware of the
obvious fact that method calls to Java objects from C++ will be much slower than calls to C++ objects. Additionally, compared to
classes that do not use directors, the call routing in the director methods adds a small overhead. This situation can be optimized by
selectively enabling director methods (using the %feature directive) for only those methods that are likely to be extended in Java.

20.5.4 Simple directors example

Consider the following SWIG interface file:

%module(directors="1") example;

%feature("director") DirectorBase;

class DirectorBase {
public:
 virtual ~DirectorBase() {}
 virtual void upcall_method() {}
};

void callup(DirectorBase *director) {
 director−>upcall_method();
}

The following directorDerived Java class is derived from the Java proxy class DirectorBase and overrides
upcall_method(). When C++ code invokes upcall_method(), the SWIG−generated C++ code redirects the call via JNI
to the Java directorDerived subclass. Naturally, the SWIG generated C++ code and the generated Java intermediate class
marshall and convert arguments between C++ and Java when needed.

public class directorDerived extends DirectorBase {
 public directorDerived() {
 }

 public void upcall_method() {
 System.out.println("directorDerived::upcall_method() invoked.");
 }
}

Running the following Java code

directorDerived director = new directorDerived();
example.callup(director);

SWIG−1.3 Documentation

20.5.2 Director classes 281

will result in the following being output:

directorDerived::upcall_method() invoked.

20.6 Common customization features

An earlier section presented the absolute basics of C/C++ wrapping. If you do nothing but feed SWIG a header file, you will get
an interface that mimics the behavior described. However, sometimes this isn't enough to produce a nice module. Certain types of
functionality might be missing or the interface to certain functions might be awkward. This section describes some common
SWIG features that are used to improve the interface to existing C/C++ code.

20.6.1 C/C++ helper functions

Sometimes when you create a module, it is missing certain bits of functionality. For example, if you had a function like this

typedef struct Image {...};
void set_transform(Image *im, double m[4][4]);

it would be accessible from Java, but there may be no easy way to call it. The problem here is that a type wrapper class is
generated for the two dimensional array parameter so there is no easy way to construct and manipulate a suitable double
[4][4] value. To fix this, you can write some extra C helper functions. Just use the %inline directive. For example:

%inline %{
/* Note: double[4][4] is equivalent to a pointer to an array double (*)[4] */
double (*new_mat44())[4] {
 return (double (*)[4]) malloc(16*sizeof(double));
}
void free_mat44(double (*x)[4]) {
 free(x);
}
void mat44_set(double x[4][4], int i, int j, double v) {
 x[i][j] = v;
}
double mat44_get(double x[4][4], int i, int j) {
 return x[i][j];
}
%}

From Java, you could then write code like this:

Image im = new Image();
SWIGTYPE_p_a_4__double a = example.new_mat44();
example.mat44_set(a,0,0,1.0);
example.mat44_set(a,1,1,1.0);
example.mat44_set(a,2,2,1.0);
...
example.set_transform(im,a);
example.free_mat44(a);

Admittedly, this is not the most elegant looking approach. However, it works and it wasn't too hard to implement. It is possible to
improve on this using Java code, typemaps, and other customization features as covered in later sections, but sometimes helper
functions are a quick and easy solution to difficult cases.

20.6.2 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods or constructors. Here
is a simple example:

%module example
%{

SWIG−1.3 Documentation

20.5.4 Simple directors example 282

#include "someheader.h"
%}

struct Vector {
 double x,y,z;
};

%extend Vector {
 char *toString() {
 static char tmp[1024];
 sprintf(tmp,"Vector(%g,%g,%g)", self−>x,self−>y,self−>z);
 return tmp;
 }
 Vector(double x, double y, double z) {
 Vector *v = (Vector *) malloc(sizeof(Vector));
 v−>x = x;
 v−>y = y;
 v−>z = z;
 return v;
 }
};

Now, in Java

Vector v = new Vector(2,3,4);
System.out.println(v);

will display

Vector(2,3,4)

%extend works with both C and C++ code. It does not modify the underlying object in any way−−−the extensions only show up
in the Java interface.

20.6.3 Exception handling with %exception and %javaexception

If a C or C++ function throws an error, you may want to convert that error into a Java exception. To do this, you can use the
%exception directive. The %exception directive simply lets you rewrite part of the generated wrapper code to include an
error check. It is detailed in full in the Exception handling with %exception section.

In C, a function often indicates an error by returning a status code (a negative number or a NULL pointer perhaps). Here is a
simple example of how you might handle that:

%exception malloc {
 $action
 if (!result) {
 jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/OutOfMemoryError");
 (*jenv)−>ThrowNew(jenv, clazz, "Not enough memory");
 return $null;
 }
}
void *malloc(size_t nbytes);

In Java,

SWIGTYPE_p_void a = example.malloc(2000000000);

will produce a familiar looking Java exception:

Exception in thread "main" java.lang.OutOfMemoryError: Not enough memory
 at exampleJNI.malloc(Native Method)
 at example.malloc(example.java:16)

SWIG−1.3 Documentation

20.6.2 Class extension with %extend 283

 at main.main(main.java:112)

If a library provides some kind of general error handling framework, you can also use that. For example:

%exception malloc {
 $action
 if (err_occurred()) {
 jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/OutOfMemoryError");
 (*jenv)−>ThrowNew(jenv, clazz, "Not enough memory");
 return $null;
 }
}
void *malloc(size_t nbytes);

No declaration name is given to %exception, it is applied to all wrapper functions. The $action is a SWIG special variable
and is replaced by the C/C++ function call being wrapped. The return $null; handles all native method return types, namely
those that have a void return and those that do not. This is useful for typemaps that will be used in native method returning all
return types. See the section on Java special variables for further explanation.

C++ exceptions are also easy to handle. We can catch the C++ exception and rethrow it as a Java exception like this:

%exception getitem {
 try {
 $action
 } catch (std::out_of_range &e) {
 jclass clazz = jenv−>FindClass("java/lang/Exception");
 jenv−>ThrowNew(clazz, "Range error");
 return $null;
 }
}

class FooClass {
public:
 FooClass *getitem(int index); // Might throw std::out_of_range exception
 ...
};

In the example above, java.lang.Exception is a checked exception class and so ought to be declared in the throws clause
of getitem. Classes can be specified for adding to the throws clause using %javaexception(classes) instead of
%exception, where classes is a string containing one or more comma separated Java classes. The %nojavaexception
feature is the equivalent to %noexception and clears previously declared exception handlers.

%javaexception("java.lang.Exception") getitem {
 try {
 $action
 } catch (std::out_of_range &e) {
 jclass clazz = jenv−>FindClass("java/lang/Exception");
 jenv−>ThrowNew(clazz, "Range error");
 return $null;
 }
}

class FooClass {
public:
 FooClass *getitem(int index); // Might throw std::out_of_range exception
 ...
};

The generated proxy method now generates a throws clause containing java.lang.Exception:

public class FooClass {
 ...
 public FooClass getitem(int index) throws java.lang.Exception { ... }
 ...

SWIG−1.3 Documentation

20.6.3 Exception handling with %exception and %javaexception 284

}

The examples above first use the C JNI calling syntax then the C++ JNI calling syntax. The C++ calling syntax will not compile
as C and also visa versa. It is however possible to write JNI calls which will compile under both C and C++ and is covered in the
Typemaps for both C and C++ compilation section.

The language−independent exception.i library file can also be used to raise exceptions. See the SWIG Library chapter. The
typemap example Handling C++ exception specifications as Java exceptions provides further exception handling capabilities.

20.6.4 Method access with %javamethodmodifiers

A Java feature called %javamethodmodifiers can be used to change the method modifiers from the default public. It
applies to both module class methods and proxy class methods. For example:

%javamethodmodifiers protect_me() "protected";
void protect_me();

Will produce the method in the module class with protected access.

protected static void protect_me() {
 exampleJNI.protect_me();
}

20.7 Tips and techniques

Although SWIG is largely automatic, there are certain types of wrapping problems that require additional user input. Examples
include dealing with output parameters, strings and arrays. This chapter discusses the common techniques for solving these
problems.

20.7.1 Input and output parameters using primitive pointers and references

A common problem in some C programs is handling parameters passed as simple pointers or references. For example:

void add(int x, int y, int *result) {
 *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
 return *x−*y;
}

The typemaps.i library file will help in these situations. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);

In Java, this allows you to pass simple values. For example:

int result = example.sub(7,4);
System.out.println("7 − 4 = " + result);
int[] sum = {0};
example.add(3,4,sum);
System.out.println("3 + 4 = " + sum[0]);

SWIG−1.3 Documentation

20.6.4 Method access with %javamethodmodifiers 285

Which will display:

7 − 4 = 3
3 + 4 = 7

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter will
return the result in the first element of the integer array.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
 *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Java, the input parameter is the first element in a 1 element array and is replaced by the output of the function. For example:

int[] neg = {3};
example.negate(neg);
System.out.println("Negative of 3 = " + neg[0]);

And no prizes for guessing the output:

Negative of 3 = −3

These typemaps can also be applied to C++ references. The above examples would work the same if they had been defined using
references instead of pointers. For example, the Java code to use the negate function would be the same if it were defined either
as it is above:

void negate(int *INOUT);

or using a reference:

void negate(int &INOUT);

Note: Since most Java primitive types are immutable and are passed by value, it is not possible to perform in−place modification
of a type passed as a parameter.

Be aware that the primary purpose of the typemaps.i file is to support primitive datatypes. Writing a function like this

void foo(Bar *OUTPUT);

will not have the intended effect since typemaps.i does not define an OUTPUT rule for Bar.

SWIG−1.3 Documentation

20.7.1 Input and output parameters using primitive pointers and references 286

20.7.2 Simple pointers

If you must work with simple pointers such as int * or double * another approach to using typemaps.i is to use the
cpointer.i pointer library file. For example:

%module example
%include "cpointer.i"

%inline %{
extern void add(int x, int y, int *result);
%}

%pointer_functions(int, intp);

The %pointer_functions(type,name) macro generates five helper functions that can be used to create, destroy, copy,
assign, and dereference a pointer. In this case, the functions are as follows:

int *new_intp();
int *copy_intp(int *x);
void delete_intp(int *x);
void intp_assign(int *x, int value);
int intp_value(int *x);

In Java, you would use the functions like this:

SWIGTYPE_p_int intPtr = example.new_intp();
example.add(3,4,intPtr);
int result = example.intp_value(intPtr);
System.out.println("3 + 4 = " + result);

If you replace %pointer_functions(int,intp) by %pointer_class(int,intp), the interface is more class−like.

intp intPtr = new intp();
example.add(3,4,intPtr.cast());
int result = intPtr.value();
System.out.println("3 + 4 = " + result);

See the SWIG Library chapter for further details.

20.7.3 Wrapping C arrays with Java arrays

SWIG can wrap arrays in a more natural Java manner than the default by using the arrays_java.i library file. Let's consider
an example:

%include "arrays_java.i";
int array[4];
void populate(int x[]) {
 int i;
 for (i=0; i

These one dimensional arrays can then be used as if they were Java arrays:

int[] array = new int[4];
example.populate(array);

System.out.print("array: ");
for (int i=0; i<array.length; i++)
 System.out.print(array[i] + " ");

example.setArray(array);

int[] global_array = example.getArray();

SWIG−1.3 Documentation

20.7.2 Simple pointers 287

System.out.print("\nglobal_array: ");
for (int i=0; i<array.length; i++)
 System.out.print(global_array[i] + " ");

Java arrays are always passed by reference, so any changes a function makes to the array will be seen by the calling function. Here
is the output after running this code:

array: 100 101 102 103
global_array: 100 101 102 103

Note that for assigning array variables the length of the C variable is used, so it is possible to use a Java array that is bigger than
the C code will cope with. Only the number of elements in the C array will be used. However, if the Java array is not large enough
then you are likely to get a segmentation fault or access violation, just like you would in C. When arrays are used in functions like
populate, the size of the C array passed to the function is determined by the size of the Java array.

Please be aware that the typemaps in this library are not efficient as all the elements are copied from the Java array to a C array
whenever the array is passed to and from JNI code. There is an alternative approach using the SWIG array library and this is
covered in the next section.

20.7.4 Unbounded C Arrays

Sometimes a C function expects an array to be passed as a pointer. For example,

int sumitems(int *first, int nitems) {
 int i, sum = 0;
 for (i = 0; i < nitems; i++) {
 sum += first[i];
 }
 return sum;
}

One of the ways to wrap this is to apply the Java array typemaps that come in the arrays_java.i library file:

%include "arrays_java.i"
%apply int[] {int *};

The ANY size will ensure the typemap is applied to arrays of all sizes. You could narrow the typemap matching rules by
specifying a particular array size. Now you can use a pure Java array and pass it to the C code:

int[] array = new int[10000000]; // Array of 10−million integers
for (int i=0; i<array.length; i++) { // Set some values
 array[i] = i;
}
int sum = example.sumitems(array,10000);
System.out.println("Sum = " + sum);

and the sum would be displayed:

Sum = 49995000

This approach is probably the most natural way to use arrays. However, it suffers from performance problems when using large
arrays as a lot of copying of the elements occurs in transferring the array from the Java world to the C++ world. An alternative
approach to using Java arrays for C arrays is to use an alternative SWIG library file carrays.i. This approach can be more
efficient for large arrays as the array is accessed one element at a time. For example:

%include "carrays.i"
%array_functions(int, intArray);

SWIG−1.3 Documentation

20.7.3 Wrapping C arrays with Java arrays 288

The %array_functions(type,name) macro generates four helper functions that can be used to create and destroy arrays
and operate on elements. In this case, the functions are as follows:

int *new_intArray(int nelements);
void delete_intArray(int *x);
int intArray_getitem(int *x, int index);
void intArray_setitem(int *x, int index, int value);

In Java, you would use the functions like this:

SWIGTYPE_p_int array = example.new_intArray(10000000); // Array of 10−million integers
for (int i=0; i

If you replace %array_functions(int,intp) by %array_class(int,intp), the interface is more class−like and a
couple more helper functions are available for casting between the array and the type wrapper class.

%include "carrays.i"
%array_class(int, intArray);

The %array_class(type, name) macro creates wrappers for an unbounded array object that can be passed around as a
simple pointer like int * or double *. For instance, you will be able to do this in Java:

intArray array = new intArray(10000000); // Array of 10−million integers
for (int i=0; i

The array "object" created by %array_class() does not encapsulate pointers inside a special array object. In fact, there is no
bounds checking or safety of any kind (just like in C). Because of this, the arrays created by this library are extremely low−level
indeed. You can't iterate over them nor can you even query their length. In fact, any valid memory address can be accessed if you
want (negative indices, indices beyond the end of the array, etc.). Needless to say, this approach is not going to suit all
applications. On the other hand, this low−level approach is extremely efficient and well suited for applications in which you need
to create buffers, package binary data, etc.

20.8 Java typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. You are advised to be familiar with the the material in the "Typemaps" chapter. While not absolutely essential
knowledge, this section assumes some familiarity with the Java Native Interface (JNI). JNI documentation can be consulted either
online at Sun's Java web site or from a good JNI book. The following two books are recommended:

Title: 'Essential JNI: Java Native Interface.' Author: Rob Gordon. Publisher: Prentice Hall. ISBN: 0−13−679895−0.•
Title: 'The Java Native Interface: Programmer's Guide and Specification.' Author: Sheng Liang. Publisher:
Addison−Wesley. ISBN: 0−201−32577−2.

•

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the generated code.

20.8.1 Default primitive type mappings

The following table lists the default type mapping from Java to C/C++.

C/C++ type Java type
JNI
type

bool
const bool &

boolean jboolean

char
const char &

char jchar

SWIG−1.3 Documentation

20.7.4 Unbounded C Arrays 289

http://java.sun.com

signed char
const signed char &

byte jbyte

unsigned char
const unsigned char &

short jshort

short
const short &

short jshort

unsigned short
const unsigned short &

int jint

int
const int &

int jint

unsigned int
const unsigned int &

long jlong

long
const long &

int jint

unsigned long
const unsigned long &

long jlong

long long
const long long &

long jlong

unsigned long long
const unsigned long long &

java.math.BigIntegerjobject

float
const float &

float jfloat

double
const double &

double jdouble

char *
char []

String jstring

Note that SWIG wraps the C char type as a character. Pointers and arrays of this type are wrapped as strings. The signed
char type can be used if you want to treat char as a signed number rather than a character. Also note that all const references to
primitive types are treated as if they are passed by value.

Given the following C function:

void func(unsigned short a, char *b, const long &c, unsigned long long d);

The module class method would be:

public static void func(int a, String b, int c, java.math.BigInteger d) {...}

The intermediary JNI class would use the same types:

public final static native void func(int jarg1, String jarg2, int jarg3,
 java.math.BigInteger jarg4);

and the JNI function would look like this:

JNIEXPORT void JNICALL Java_exampleJNI_func(JNIEnv *jenv, jclass jcls,
 jint jarg1, jstring jarg2, jint jarg3, jobject jarg4) {...}

The mappings for C int and C long are appropriate for 32 bit applications which are used in the 32 bit JVMs. There is no
perfect mapping between Java and C as Java doesn't support all the unsigned C data types. However, the mappings allow the full
range of values for each C type from Java.

SWIG−1.3 Documentation

20.8.1 Default primitive type mappings 290

20.8.2 Sixty four bit JVMs

If you are using a 64 bit JVM you may have to override the C long, but probably not C int default mappings. Mappings will be
system dependent, for example long will need remapping on Unix LP64 systems (long, pointer 64 bits, int 32 bits), but not on
Microsoft 64 bit Windows which will be using a P64 IL32 (pointer 64 bits and int, long 32 bits) model. This may be automated in
a future version of SWIG. Note that the Java write once run anywhere philosophy holds true for all pure Java code when moving
to a 64 bit JVM. Unfortunately it won't of course hold true for JNI code.

20.8.3 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Java to C, you might define a typemap like this:

%module example

%typemap(in) int {
 $1 = $input;
 printf("Received an integer : %d\n", $1);
}
%inline %{
extern int fact(int nonnegative);
%}

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variables prefaced by a $ are used. The $1 variable is a
placeholder for a local variable of type int. The $input variable contains the Java data, the JNI jint in this case.

When this example is compiled into a Java module, it can be used as follows:

System.out.println(example.fact(6));

and the output will be:

Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int nonnegative {
 $1 = $input;
 printf("Received an integer : %d\n", $1);
}

%inline %{
extern int fact(int nonnegative);
%}

In this case, the typemap code is only attached to arguments that exactly match int nonnegative.

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG C++ type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int nonnegative {
 $1 = $input;
 printf("Received an integer : %d\n", $1);

SWIG−1.3 Documentation

20.8.2 Sixty four bit JVMs 291

}
%inline %{
typedef int Integer;
extern int fact(Integer nonnegative); // Above typemap is applied
%}

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to
arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
...
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Java parameter. This allows the
function to be used like this (notice how the length parameter is omitted):

int c = example.count('e',"Hello World");

20.8.4 Typemaps for mapping C/C++ types to Java types

The typemaps available to the Java module include the common typemaps listed in the main typemaps section. There are a
number of additional typemaps which are necessary for using SWIG with Java. The most important of these implement the
mapping of C/C++ types to Java types:

Typemap Description

jni
JNI C types. These provide the default mapping of types from C/C++ to JNI for use in the JNI (C/C++)
code.

jtype
Java intermediary types. These provide the default mapping of types from C/C++ to Java for use in the
native functions in the intermediary JNI class. The type must be the equivalent Java type for the JNI C
type specified in the "jni" typemap.

jstype
Java types. These provide the default mapping of types from C/C++ to Java for use in the Java module
class, proxy classes and type wrapper classes.

javain

Conversion from jstype to jtype. These are Java code typemaps which transform the type used in the Java
module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap) to the type
used in the Java intermediary JNI class (as specified in the "jtype" typemap). In other words the typemap
provides the conversion to the native method call parameter types.

javaout

Conversion from jtype to jstype. These are Java code typemaps which transform the type used in the Java
intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in the Java module class,
proxy classes and type wrapper classes (as specified in the "jstype" typemap). In other words the typemap
provides the conversion from the native method call return type.

javadirectorin

Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the
type used in the Java intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in
the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap). This
typemap provides the conversion for the parameters in the director methods when calling up from C++ to
Java. See Director typemaps.

javadirectorout Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the
type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype"
typemap) to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap). This
typemap provides the conversion for the return type in the director methods when returning from the C++

SWIG−1.3 Documentation

20.8.3 What is a typemap? 292

to Java upcall. See Director typemaps.

directorin
Conversion from C++ type to jni type for director methods. These are C++ typemaps which converts the
parameters used in the C++ director method to the appropriate JNI intermediary type. The conversion is
done in JNI code prior to calling the Java function from the JNI code. See Director typemaps.

If you are writing your own typemaps to handle a particular type, you will normally have to write a collection of them. The default
typemaps are in "java.swg" and so might be a good place for finding typemaps to base any new ones on.

The "jni", "jtype" and "jstype" typemaps are usually defined together to handle the Java to C/C++ type mapping. An "in" typemap
should be accompanied by a "javain" typemap and likewise an "out" typemap by a "javaout" typemap. If an "in" typemap is
written, a "freearg" and "argout" typemap may also need to be written as some types have a default "freearg" and/or "argout"
typemap which may need overriding. The "freearg" typemap sometimes releases memory allocated by the "in" typemap. The
"argout" typemap sometimes sets values in function parameters which are passed by reference in Java.

The default code generated by SWIG for the Java module comes from the typemaps in the "java.swg" library file which
implements the Default primitive type mappings covered earlier. There are other type mapping typemaps in the Java library.
These are listed below:

C Type Typemap File Kind Java Type Function

primitive pointers and
references

INPUT typemaps.i input
Java basic
types

Allows values to be used for C
functions taking pointers for data
input.

primitive pointers and
references

OUTPUT typemaps.i output
Java basic
type arrays

Allows values held within an
array to be used for C functions
taking pointers for data output.

primitive pointers and
references

INOUT typemaps.i
input
output

Java basic
type arrays

Allows values held within an
array to be used for C functions
taking pointers for data input
and output.

string
wstring

[unnamed] std_string.i
input
output

String
Use for std::string mapping to
Java String.

arrays of primitive types[unnamed] arrays_java.i
input
output

arrays of
primitive Java
types

Use for mapping C arrays to
Java arrays.

arrays of
classes/structs/unions

JAVA_ARRAYSOFCLASSES
macro

arrays_java.i
input
output

arrays of
proxy classes

Use for mapping C arrays to
Java arrays.

arrays of enums ARRAYSOFENUMS arrays_java.i
input
output

int[]

Use for mapping C arrays to
Java arrays (typeunsafe and
simple enum wrapping
approaches only).

char * BYTE various.i input byte[] Java byte array is converted to
char array

char ** STRING_ARRAY various.i
input
output

String[]
Use for mapping NULL
terminated arrays of C strings to
Java String arrays

20.8.5 Java typemap attributes

There is an additional typemap attribute that the Java module supports. This is the 'throws' attribute. The throws attribute is
optional and specified after the typemap name and contains one or more comma separated classes for adding to the throws clause
for any methods that use that typemap. It is analogous to the %javaexception feature's throws attribute.

SWIG−1.3 Documentation

20.8.4 Typemaps for mapping C/C++ types to Java types 293

%typemap(typemapname, throws="ExceptionClass1, ExceptionClass2") type { ... }

The attribute is necessary for supporting Java checked exceptions and can be added to just about any typemap. The list of
typemaps include all the C/C++ (JNI) typemaps in the "Typemaps" chapter and the Java specific typemaps listed in the previous
section, barring the "jni", "jtype" and "jstype" typemaps as they could never contain code to throw an exception.

The throws clause is generated for the proxy method as well as the JNI method in the JNI intermediary class. If a method uses
more than one typemap and each of those typemaps have classes specified in the throws clause, the union of the exception classes
is added to the throws clause ensuring there are no duplicate classes. See the NaN exception example for further usage.

20.8.6 Java special variables

The standard SWIG special variables are available for use within typemaps as described in the Typemaps documentation, for
example $1, $input,$result etc.

The Java module uses a few additional special variables:

$javaclassname
$javaclassname is similar to $1_type. It expands to the class name for use in Java. When wrapping a union, struct or class,
it expands to the Java proxy class name. Otherwise it expands to the type wrapper class name. For example, $javaclassname
is replaced by Foo when the wrapping a struct Foo or struct Foo * and SWIGTYPE_p_unsigned_short is used
for unsigned short *.

$null
Used in input typemaps to return early from JNI functions that have either void or a non−void return type. Example:

%typemap(check) int * %{
 if (error) {
 SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
 return $null;
 }
%}

If the typemap gets put into a function with void as return, $null will expand to nothing:

JNIEXPORT void JNICALL Java_jnifn(...) {
 if (error) {
 SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
 return ;
 }
 ...
}

otherwise $null expands to NULL

JNIEXPORT jobject JNICALL Java_jnifn(...) {
 if (error) {
 SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
 return NULL;
 }
 ...
}

$javainput, $jnicall and $owner
The $javainput special variable is used in "javain" typemaps and $jnicall and $owner are used in "javaout" typemaps. $jnicall is
analogous to $action in %exception. It is replaced by the call to the native method in the intermediary JNI class. $owner is
replaced by either true if %newobject has been used, otherwise false. $javainput is analogous to the $input special variable. It
is replaced by the parameter name.

SWIG−1.3 Documentation

20.8.5 Java typemap attributes 294

Here is an example:

%typemap(javain) Class "Class.getCPtr($javainput)"
%typemap(javain) unsigned short "$javainput"
%typemap(javaout) Class * {
 return new Class($jnicall, $owner);
 }

%inline %{
 class Class {...};
 Class * bar(Class cls, unsigned short ush) { return new Class(); };
%}

The generated proxy code is then:

public static Class bar(Class cls, int ush) {
 return new Class(exampleJNI.bar(Class.getCPtr(cls), ush), false);
}

Here $javainput has been replaced by cls and ush. $jnicall has been replaced by the native method call,
exampleJNI.bar(...) and $owner has been replaced by false. If %newobject is used by adding the following at the
beginning of our example:

%newobject bar(Class cls, unsigned short ush);

The generated code constructs the return type using true indicating the proxy class Class is responsible for destroying the C++
memory allocated for it in bar:

public static Class bar(Class cls, int ush) {
 return new Class(exampleJNI.bar(Class.getCPtr(cls), ush), true);
}

$static
This special variable expands to either static or nothing depending on whether the class is an inner Java class or not. It is used in
the "javaclassmodifiers" typemap so that global classes can be wrapped as Java proxy classes and nested C++ classes/enums can
be wrapped with the Java equivalent, that is, static inner proxy classes.

$jniinput, $javacall and $packagepath
These special variables are used in the directors typemaps. See Director specific typemaps for details.

$module
This special variable expands to the module name, as specified by %module or the −module commandline option.

$imclassname
This special variable expands to the intermediary class name. Usually this is the same as '$moduleJNI', unless the jniclassname
attribute is specified in the %module directive.

20.8.7 Typemaps for both C and C++ compilation

JNI calls must be written differently depending on whether the code is being compiled as C or C++. For example C compilation
requires the pointer to a function pointer struct member syntax like

const jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/String");

whereas C++ code compilation of the same function call is a member function call using a class pointer like

const jclass clazz = jenv−>FindClass("java/lang/String");

SWIG−1.3 Documentation

20.8.6 Java special variables 295

To enable typemaps to be used for either C or C++ compilation, a set of JCALLx macros have been defined in
Lib/java/javahead.swg, where x is the number of arguments in the C++ version of the JNI call. The above JNI calls would be
written in a typemap like this

const jclass clazz = JCALL1(FindClass, jenv, "java/lang/String");

Note that the SWIG preprocessor expands these into the appropriate C or C++ JNI calling convention. The C calling convention is
emitted by default and the C++ calling convention is emitted when using the −c++ SWIG commandline option. If you do not
intend your code to be targeting both C and C++ then your typemaps can use the appropriate JNI calling convention and need not
use the JCALLx macros.

20.8.8 Java code typemaps

Most of SWIG's typemaps are used for the generation of C/C++ code. The typemaps in this section are used solely for the
generation of Java code. Elements of proxy classes and type wrapper classes come from the following typemaps (the defaults).

%typemap(javabase)

base (extends) for Java class: empty default
%typemap(javabody)

the essential support body for proxy classes (proxy base classes only), typewrapper classes and enum classes. Default
contains extra constructors, memory ownership control member variables (swigCMemOwn, swigCPtr), the getCPtr
method etc.

%typemap(javabody_derived)

the essential support body for proxy classes (derived classes only). Same as "javabody" typemap, but only used for proxy
derived classes.

%typemap(javaclassmodifiers)

class modifiers for the Java class: default is "public class"
%typemap(javacode)

Java code is copied verbatim to the Java class: empty default
%typemap(javadestruct, methodname="delete")

destructor wrapper − the delete() method (proxy classes only), used for all proxy classes except those which have a base
class : default calls C++ destructor (or frees C memory) and resets swigCPtr and swigCMemOwn flags

Note that the delete() method name is configurable and is specified by the methodname attribute.
%typemap(javadestruct_derived, methodname="delete")

destructor wrapper − the delete() method (proxy classes only), same as "javadestruct" but only used for derived proxy
classes : default calls C++ destructor (or frees C memory) and resets swigCPtr and swigCMemOwn flags

Note that the delete() method name is configurable and is specified by the methodname attribute.
%typemap(javaimports)

import statements for Java class: empty default
%typemap(javainterfaces)

interfaces (extends) for Java class: empty default
%typemap(javafinalize)

the finalize() method (proxy classes only): default calls the delete() method

SWIG−1.3 Documentation

20.8.7 Typemaps for both C and C++ compilation 296

Compatibility Note: In SWIG−1.3.21 and earlier releases, typemaps called "javagetcptr" and "javaptrconstructormodifiers" were
available. These are deprecated and the "javabody" typemap can be used instead.

In summary the contents of the typemaps make up a proxy class like this:

[javaimports typemap]
[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
 implements [javainterfaces typemap] {
[javabody or javabody_derived typemap]
[javafinalize typemap]
public void delete() [javadestruct OR javadestruct_derived typemap]
[javacode typemap]
... proxy functions ...
}

Note the delete() methodname is configurable, see "javadestruct" and "javadestruct_derived" typemaps above.

The type wrapper class is similar in construction:

[javaimports typemap]
[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
 implements [javainterfaces typemap] {
[javabody typemap]
[javacode typemap]
}

The enum class is also similar in construction:

[javaimports typemap]
[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
 implements [javainterfaces typemap] {
... Enum values ...
[javabody typemap]
[javacode typemap]
}

The "javaimports" typemap is ignored if the enum class is wrapped by an inner Java class, that is when wrapping an enum
declared within a C++ class.

The defaults can be overridden to tailor these classes. Here is an example which will change the getCPtr method and
constructor from the default protected access to public access. This has a practical application if you are invoking SWIG more
than once and generating the wrapped classes into different packages in each invocation. If the classes in one package are using
the classes in another package, then these methods need to be public.

%typemap(javabody) SWIGTYPE %{
 private long swigCPtr;
 protected boolean swigCMemOwn;

 public $javaclassname(long cPtr, boolean cMemoryOwn) {
 swigCMemOwn = cMemoryOwn;
 swigCPtr = cPtr;
 }

 public static long getCPtr($javaclassname obj) {
 return (obj == null) ? 0 : obj.swigCPtr;
 }
%}

The typemap code is the same that is in "java.swg", barring the two method modifiers. Note that SWIGTYPE will target all
proxy classes, but not the type wrapper classes. Also the above typemap is only used for proxy classes that are potential base
classes. To target proxy classes that are derived from a wrapped class as well, the "javabody_derived" typemap should also be
overridden.

SWIG−1.3 Documentation

20.8.8 Java code typemaps 297

For the typemap to be used in all type wrapper classes, all the different types that type wrapper classes could be used for should be
targeted:

%typemap(javabody) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [], SWIGTYPE (CLASS::*) %{
 private long swigCPtr;

 public $javaclassname(long cPtr, boolean bFutureUse) {
 swigCPtr = cPtr;
 }

 protected $javaclassname() {
 swigCPtr = 0;
 }

 public static long getCPtr($javaclassname obj) {
 return (obj == null) ? 0 : obj.swigCPtr;
 }
%}

Again this is the same that is in "java.swg", barring the method modifier for getCPtr.

20.8.9 Director specific typemaps

The Java directors feature requires the "javadirectorin", "javadirectorout" and the "directorin" typemaps in order to work properly.
The "javapackage" typemap is an optional typemap used to identify the Java package path for individual SWIG generated proxy
classes.

%typemap(directorin)

The "directorin" typemap is used for converting arguments in the C++ director class to the appropriate JNI type before the
upcall to Java. This typemap also specifies the JNI field descriptor for the type in the "descriptor" attribute. For example,
integers are converted as follows:

%typemap(directorin,descriptor="I") int "$input = (jint) $1;"

$input is the SWIG name of the JNI temporary variable passed to Java in the upcall. The descriptor="I" will put an
I into the JNI field descriptor that identifies the Java method that will be called from C++. For more about JNI field
descriptors and their importance, refer to the JNI documentation mentioned earlier. A typemap for C character strings is:

%typemap(directorin,descriptor="Ljava/lang/String;") char *
 %{ $input = jenv−>NewStringUTF($1); %}

User−defined types have the default "descriptor" attribute "L$packagepath/$javaclassname;" where
$packagepath is the package name passed from the SWIG command line and $javaclassname is the Java proxy
class' name. If the −package commandline option is not used to specify the package, then '$packagepath/' will be removed
from the resulting output JNI field descriptor. Do not forget the terminating ';' for JNI field descriptors starting with 'L'.
If the ';' is left out, Java will generate a "method not found" runtime error.

%typemap(javadirectorin)

Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the type used in the
Java intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in the Java module class, proxy
classes and type wrapper classes (as specified in the "jstype" typemap). This typemap provides the conversion for the
parameters in the director methods when calling up from C++ to Java.

For primitive types, this typemap is usually specified as:

%typemap(javadirectorin) int "$jniinput"

SWIG−1.3 Documentation

20.8.9 Director specific typemaps 298

The $jniinput special variable is analogous to $javainput special variable. It is replaced by the input parameter
name.

%typemap(javadirectorout)

Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the type used in the
Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap) to the type used in the Java
intermediary JNI class (as specified in the "jtype" typemap). This typemap provides the conversion for the return type in the
director methods when returning from the C++ to Java upcall.

For primitive types, this typemap is usually specified as:

%typemap(javadirectorout) int "$javacall"

The $javacall special variable is analogous to the $jnicall special variable. It is replaced by the call to the target Java
method. The target method is the method in the Java proxy class which overrides the virtual C++ method in the C++ base
class.

%typemap(javapackage)

The "javapackage" typemap is optional; it serves to identify a class's Java package. This typemap should be used in
conjunction with classes that are defined outside of the current SWIG interface file. For example:

// class Foo is handled in a different interface file:
%import "Foo.i"

%feature("director") Example;

%inline {
 class Bar { };

 class Example {
 public:
 virtual ~Example();
 void ping(Foo *arg1, Bar *arg2);
 };
}

Assume that the Foo class is part of the Java package com.wombat.foo but the above interface file is part of the Java package
com.wombat.example. Without the "javapackage" typemap, SWIG will assume that the Foo class belongs to
com.wombat.example class. The corrected interface file looks like:

// class Foo is handled in a different interface file:
%import "Foo.i"
%typemap("javapackage") Foo, Foo *, Foo & "com.wombat.foo";
%feature("director") Example;

%inline {
 class Bar { };

 class Example {
 public:
 virtual ~Example();
 void ping(Foo *arg1, Bar *arg2);
 };
}

SWIG looks up the package based on the actual type (plain Foo, Foo pointer and Foo reference), so it is important to
associate all three types with the desired package. Practically speaking, you should create a separate SWIG interface file,
which is %import−ed into each SWIG interface file, when you have multiple Java packages. Note the helper macros below,
OTHER_PACKAGE_SPEC and ANOTHER_PACKAGE_SPEC, which reduce the amount of extra typing. "TYPE..." is

SWIG−1.3 Documentation

20.8.9 Director specific typemaps 299

useful when passing templated types to the macro, since multiargument template types appear to the SWIG preprocessor as
multiple macro arguments.

%typemap("javapackage") SWIGTYPE, SWIGTYPE *, SWIGTYPE &
 "package.for.most.classes";

%define OTHER_PACKAGE_SPEC(TYPE...)
%typemap("javapackage") TYPE, TYPE *, TYPE & "package.for.other.classes";
%enddef

%define ANOTHER_PACKAGE_SPEC(TYPE...)
%typemap("javapackage") TYPE, TYPE *, TYPE & "package.for.another.set";
%enddef

OTHER_PACKAGE_SPEC(Package_2_class_one)
ANOTHER_PACKAGE_SPEC(Package_3_class_two)
/* etc */

The basic strategy here is to provide a default package typemap for the majority of the classes, only providing "javapackage"
typemaps for the exceptions.

20.9 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "java.swg" and
"typemaps.i" in the SWIG library.

20.9.1 Simpler Java enums for enums without initializers

The default Proper Java enums approach to wrapping enums is somewhat verbose. This is to handle all possible C/C++ enums, in
particular enums with initializers. The generated code can be simplified if the enum being wrapped does not have any initializers.

The following shows how to remove the support methods that are generated by default and instead use the methods in the Java
enum base class java.lang.Enum and java.lang.Class for marshalling enums between C/C++ and Java. The type used
for the typemaps below is enum SWIGTYPE which is the default type used for all enums. The "enums.swg" file should be
examined in order to see the original overridden versions of the typemaps.

%include "enums.swg"

%typemap(javain) enum SWIGTYPE "$javainput.ordinal()"
%typemap(javaout) enum SWIGTYPE {
 return $javaclassname.class.getEnumConstants()[$jnicall];
 }
%typemap(javabody) enum SWIGTYPE ""

%inline %{
 enum HairType { blonde, ginger, brunette };
 void setHair(HairType h);
 HairType getHair();
%}

SWIG will generate the following Java enum, which is somewhat simpler than the default:

public enum HairType {
 blonde,
 ginger,
 brunette;
}

and the two Java proxy methods will be:

public static void setHair(HairType h) {

SWIG−1.3 Documentation

20.9 Typemap Examples 300

 exampleJNI.setHair(h.ordinal());
}

public static HairType getHair() {
 return HairType.class.getEnumConstants()[exampleJNI.getHair()];
}

For marshalling Java enums to C/C++ enums, the ordinal method is used to convert the Java enum into an integer value for
passing to the JNI layer, see the "javain" typemap. For marshalling C/C++ enums to Java enums, the C/C++ enum value is cast to
an integer in the C/C++ typemaps (not shown). This integer value is then used to index into the array of enum constants that the
Java language provides. See the getEnumConstants method in the "javaout" typemap.

These typemaps can often be used as the default for wrapping enums as in many cases there won't be any enum initializers. In fact
a good strategy is to always use these typemaps and to specifically handle enums with initializers using %apply. This would be
done by using the original versions of these typemaps in "enums.swg" under another typemap name for applying using %apply.

20.9.2 Handling C++ exception specifications as Java exceptions

This example demonstrates various ways in which C++ exceptions can be tailored and converted into Java exceptions. Let's
consider a simple file class SimpleFile and an exception class FileException which it may throw on error:

%include "std_string.i" // for std::string typemaps
#include <string>

class FileException {
 std::string message;
public:
 FileException(const std::string& msg) : message(msg) {}
 std::string what() {
 return message;
 }
};

class SimpleFile {
 std::string filename;
public:
 SimpleFile(const std::string& filename) : filename(filename) {}
 void open() throw(FileException) {
 ...
 }
};

As the open method has a C++ exception specification, SWIG will parse this and know that the method can throw an exception.
The "throws" typemap is then used when SWIG encounters an exception specification. The default generic "throws" typemap
looks like this:

%typemap(throws) SWIGTYPE, SWIGTYPE &, SWIGTYPE *, SWIGTYPE [ANY] %{
 SWIG_JavaThrowException(jenv, SWIG_JavaRuntimeException,
 "C++ $1_type exception thrown");
 return $null;
%}

Basically SWIG will generate a C++ try catch block and the body of the "throws" typemap constitutes the catch block. The above
typemap calls a SWIG supplied method which throws a java.lang.RuntimeException. This exception class is a runtime
exception and therefore not a checked exception. If, however, we wanted to throw a checked exception, say
java.io.IOException, then we could use the following typemap:

%typemap(throws, throws="java.io.IOException") FileException {
 jclass excep = jenv−>FindClass("java/io/IOException");
 if (excep)
 jenv−>ThrowNew(excep, $1.what().c_str());
 return $null;

SWIG−1.3 Documentation

20.9.1 Simpler Java enums for enums without initializers 301

}

Note that this typemap uses the 'throws' typemap attribute to ensure a throws clause is generated. The generated proxy method
then specifies the checked exception by containing java.io.IOException in the throws clause:

public class SimpleFile {
 ...
 public void open() throws java.io.IOException { ... }
}

Lastly, if you don't want to map your C++ exception into one of the standard Java exceptions, the C++ class can be wrapped and
turned into a custom Java exception class. If we go back to our example, the first thing we must do is get SWIG to wrap
FileException and ensure that it derives from java.lang.Exception. Additionally, we might want to override the
java.lang.Exception.getMessage() method. The typemaps to use then are as follows:

%typemap(javabase) FileException "java.lang.Exception";
%typemap(javacode) FileException %{
 public String getMessage() {
 return what();
 }
%}

This generates:

public class FileException extends java.lang.Exception {
 ...
 public String getMessage() {
 return what();
 }

 public FileException(String msg) { ... }

 public String what() {
 return exampleJNI.FileException_what(swigCPtr);
 }
}

We could alternatively have used %rename to rename what() into getMessage().

20.9.3 NaN Exception − exception handling for a particular type

A Java exception can be thrown from any Java or JNI code. Therefore, as most typemaps contain either Java or JNI code, just
about any typemap could throw an exception. The following example demonstrates exception handling on a type by type basis by
checking for 'Not a number' (NaN) whenever a parameter of type float is wrapped.

Consider the following C++ code:

bool calculate(float first, float second);

To validate every float being passed to C++, we could preceed the code being wrapped by the following typemap which throws
a runtime exception whenever the float is 'Not a Number':

%module example
%typemap(javain) float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
 /** Simply returns the input value unless it is not a number,
 whereupon an exception is thrown. */
 static protected float CheckForNaN(float num) {
 if (Float.isNaN(num))
 throw new RuntimeException("Not a number");
 return num;
 }

SWIG−1.3 Documentation

20.9.2 Handling C++ exception specifications as Java exceptions 302

%}

Note that the CheckForNaN support method has been added to the module class using the modulecode pragma. The
following shows the generated code of interest:

public class example {
 ...

 /** Simply returns the input value unless it is not a number,
 whereupon an exception is thrown. */
 static protected float CheckForNaN(float num) {
 if (Float.isNaN(num))
 throw new RuntimeException("Not a number");
 return num;
 }

 public static boolean calculate(float first, float second) {
 return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));
 }
}

Note that the "javain" typemap is used for every occurrence of a float being used as an input. Of course, we could have
targetted the typemap at a particular parameter by using float first, say, instead of just float. If we decide that what we
actually want is a checked exception instead of a runtime exception, we can change this easily enough. The proxy method that
uses float as an input, must then add the exception class to the throws clause. SWIG can handle this as it supports the 'throws'
typemap attribute for specifying classes for the throws clause. Thus we can modify the pragma and the typemap for the throws
clause:

%typemap(javain, throws="java.lang.Exception") float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
 /** Simply returns the input value unless it is not a number,
 whereupon an exception is thrown. */
 static protected float CheckForNaN(float num) throws java.lang.Exception {
 if (Float.isNaN(num))
 throw new RuntimeException("Not a number");
 return num;
 }
%}

The calculate method now has a throws clause and even though the typemap is used twice for both float first and
float second, the throws clause contains a single instance of java.lang.Exception:

public class example {
 ...

 /** Simply returns the input value unless it is not a number,
 whereupon an exception is thrown. */
 static protected float CheckForNaN(float num) throws java.lang.Exception {
 if (Float.isNaN(num))
 throw new RuntimeException("Not a number");
 return num;
 }

 public static boolean calculate(float first, float second) throws java.lang.Exception {
 return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));
 }
}

If we were a martyr to the JNI cause, we could replace the succinct code within the "javain" typemap with a few pages of JNI
code. If we had, we would have put it in the "in" typemap which, like all JNI and Java typemaps, also supports the 'throws'
attribute.

SWIG−1.3 Documentation

20.9.3 NaN Exception − exception handling for a particular type 303

20.9.4 Converting Java String arrays to char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Java String array to be used as a char ** object.

%module example

/* This tells SWIG to treat char ** as a special case when used as a parameter
 in a function call */
%typemap(in) char ** (jint size) {
 int i = 0;
 size = (*jenv)−>GetArrayLength(jenv, $input);
 $1 = (char **) malloc((size+1)*sizeof(char *));
 /* make a copy of each string */
 for (i = 0; i<size; i++) {
 jstring j_string = (jstring)(*jenv)−>GetObjectArrayElement(jenv, $input, i);
 const char * c_string = (*jenv)−>GetStringUTFChars(jenv, j_string, 0);
 $1[i] = malloc(strlen((c_string)+1)*sizeof(const char *));
 strcpy($1[i], c_string);
 (*jenv)−>ReleaseStringUTFChars(jenv, j_string, c_string);
 (*jenv)−>DeleteLocalRef(jenv, j_string);
 }
 $1[i] = 0;
}

/* This cleans up the memory we malloc'd before the function call */
%typemap(freearg) char ** {
 int i;
 for (i=0; i<size$argnum−1; i++)
 free($1[i]);
 free($1);
}

/* This allows a C function to return a char ** as a Java String array */
%typemap(out) char ** {
 int i;
 int len=0;
 jstring temp_string;
 const jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/String");

 while ($1[len]) len++;
 jresult = (*jenv)−>NewObjectArray(jenv, len, clazz, NULL);
 /* exception checking omitted */

 for (i=0; i<len; i++) {
 temp_string = (*jenv)−>NewStringUTF(jenv, *result++);
 (*jenv)−>SetObjectArrayElement(jenv, jresult, i, temp_string);
 (*jenv)−>DeleteLocalRef(jenv, temp_string);
 }
}

/* These 3 typemaps tell SWIG what JNI and Java types to use */
%typemap(jni) char ** "jobjectArray"
%typemap(jtype) char ** "String[]"
%typemap(jstype) char ** "String[]"

/* These 2 typemaps handle the conversion of the jtype to jstype typemap type
 and visa versa */
%typemap(javain) char ** "$javainput"
%typemap(javaout) char ** {
 return $jnicall;
 }

/* Now a few test functions */
%inline %{

SWIG−1.3 Documentation

20.9.4 Converting Java String arrays to char ** 304

int print_args(char **argv) {
 int i = 0;
 while (argv[i]) {
 printf("argv[%d] = %s\n", i, argv[i]);
 i++;
 }
 return i;
}

char **get_args() {
 static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
 return &values[0];
}

%}

Note that the 'C' JNI calling convention is used. Checking for any thrown exceptions after JNI function calls has been omitted.
When this module is compiled, our wrapped C functions can be used by the following Java program:

// File main.java

public class main {

 static {
 try {
 System.loadLibrary("example");
 } catch (UnsatisfiedLinkError e) {
 System.err.println("Native code library failed to load. " + e);
 System.exit(1);
 }
 }

 public static void main(String argv[]) {
 String animals[] = {"Cat","Dog","Cow","Goat"};
 example.print_args(animals);
 String args[] = example.get_args();
 for (int i=0; i<args.length; i++)
 System.out.println(i + ":" + args[i]);
 }
}

When compiled and run we get:

$ java main
argv[0] = Cat
argv[1] = Dog
argv[2] = Cow
argv[3] = Goat
0:Dave
1:Mike
2:Susan
3:John
4:Michelle

In the example, a few different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for the array, the "freearg" typemap is used to later release
this memory after the execution of the C function. The "out" typemap is used for function return values. Lastly the "jni", "jtype"
and "jstype" typemaps are also required to specify what Java types to use.

20.9.5 Expanding a Java object to multiple arguments

Suppose that you had a collection of C functions with arguments such as the following:

int foo(int argc, char **argv);

SWIG−1.3 Documentation

20.9.5 Expanding a Java object to multiple arguments 305

In the previous example, a typemap was written to pass a Java String array as the char **argv. This allows the function to be
used from Java as follows:

example.foo(4, new String[]{"red", "green", "blue", "white"});

Although this works, it's a little awkward to specify the argument count. To fix this, a multi−argument typemap can be defined.
This is not very difficult−−you only have to make slight modifications to the previous example's typemaps:

%typemap(in) (int argc, char **argv) {
 int i = 0;
 $1 = (*jenv)−>GetArrayLength(jenv, $input);
 $2 = (char **) malloc(($1+1)*sizeof(char *));
 /* make a copy of each string */
 for (i = 0; i<$1; i++) {
 jstring j_string = (jstring)(*jenv)−>GetObjectArrayElement(jenv, $input, i);
 const char * c_string = (*jenv)−>GetStringUTFChars(jenv, j_string, 0);
 $2[i] = malloc(strlen((c_string)+1)*sizeof(const char *));
 strcpy($2[i], c_string);
 (*jenv)−>ReleaseStringUTFChars(jenv, j_string, c_string);
 (*jenv)−>DeleteLocalRef(jenv, j_string);
 }
 $2[i] = 0;
}

%typemap(freearg) (int argc, char **argv) {
 int i;
 for (i=0; i<$1−1; i++)
 free($2[i]);
 free($2);
}

%typemap(jni) (int argc, char **argv) "jobjectArray"
%typemap(jtype) (int argc, char **argv) "String[]"
%typemap(jstype) (int argc, char **argv) "String[]"

%typemap(javain) (int argc, char **argv) "$javainput"

When writing a multiple−argument typemap, each of the types is referenced by a variable such as $1 or $2. The typemap code
simply fills in the appropriate values from the supplied Java parameter.

With the above typemap in place, you will find it no longer necessary to supply the argument count. This is automatically set by
the typemap code. For example:

example.foo(new String[]{"red", "green", "blue", "white"});

20.9.6 Using typemaps to return arguments

A common problem in some C programs is that values may be returned in function parameters rather than in the return value of a
function. The typemaps.i file defines INPUT, OUTPUT and INOUT typemaps which can be used to solve some instances of
this problem. This library file uses an array as a means of moving data to and from Java when wrapping a C function that takes
non const pointers or non const references as parameters.

Now we are going to outline an alternative approach to using arrays for C pointers. The INOUT typemap uses a double[] array
for receiving and returning the double* parameters. In this approach we are able to use a Java class myDouble instead of
double[] arrays where the C pointer double* is required.

Here is our example function:

/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2);

SWIG−1.3 Documentation

20.9.6 Using typemaps to return arguments 306

If we define a structure MyDouble containing a double member variable and use some typemaps we can solve this problem.
For example we could put the following through SWIG:

%module example

/* Define a new structure to use instead of double * */
%inline %{
typedef struct {
 double value;
} MyDouble;
%}

%{
/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2) {
 int status = 1;
 *out1 = a*10.0;
 *out2 = b*100.0;
 return status;
};
%}

/*
This typemap will make any double * function parameters with name OUTVALUE take an
argument of MyDouble instead of double *. This will
allow the calling function to read the double * value after returning from the function.
*/
%typemap(in) double *OUTVALUE {
 jclass clazz = jenv−>FindClass("MyDouble");
 jfieldID fid = jenv−>GetFieldID(clazz, "swigCPtr", "J");
 jlong cPtr = jenv−>GetLongField($input, fid);
 MyDouble *pMyDouble = NULL;
 *(MyDouble **)(void *)&pMyDouble = *(MyDouble **)(void *)&cPtr;
 $1 = &pMyDouble−>value;
}

%typemap(jtype) double *OUTVALUE "MyDouble"
%typemap(jstype) double *OUTVALUE "MyDouble"
%typemap(jni) double *OUTVALUE "jobject"

%typemap(javain) double *OUTVALUE "$javainput"

/* Now we apply the typemap to the named variables */
%apply double *OUTVALUE { double *out1, double *out2 };
int spam(double a, double b, double *out1, double *out2);

Note that the C++ JNI calling convention has been used this time and so must be compiled as C++ and the −c++ commandline
must be passed to SWIG. JNI error checking has been omitted for clarity.

What the typemaps do are make the named double* function parameters use our new MyDouble wrapper structure. The "in"
typemap takes this structure, gets the C++ pointer to it, takes the double value member variable and passes it to the C++
spam function. In Java, when the function returns, we use the SWIG created getValue() function to get the output value. The
following Java program demonstrates this:

// File: main.java

public class main {

 static {
 try {
 System.loadLibrary("example");
 } catch (UnsatisfiedLinkError e) {
 System.err.println("Native code library failed to load. " + e);
 System.exit(1);

SWIG−1.3 Documentation

20.9.6 Using typemaps to return arguments 307

 }
 }

 public static void main(String argv[]) {
 MyDouble out1 = new MyDouble();
 MyDouble out2 = new MyDouble();
 int ret = example.spam(1.2, 3.4, out1, out2);
 System.out.println(ret + " " + out1.getValue() + " " + out2.getValue());
 }
}

When compiled and run we get:

$ java main
1 12.0 340.0

20.9.7 Adding Java downcasts to polymorphic return types

SWIG support for polymorphism works in that the appropriate virtual function is called. However, the default generated code
does not allow for downcasting. Let's examine this with the following code:

%include "std_string.i"

#include <iostream>
using namespace std;
class Vehicle {
public:
 virtual void start() = 0;
...
};

class Ambulance : public Vehicle {
 string vol;
public:
 Ambulance(string volume) : vol(volume) {}
 virtual void start() {
 cout << "Ambulance started" << endl;
 }
 void sound_siren() {
 cout << vol << " siren sounded!" << endl;
 }
...
};

Vehicle *vehicle_factory() {
 return new Ambulance("Very loud");
}

If we execute the following Java code:

Vehicle vehicle = example.vehicle_factory();
vehicle.start();

Ambulance ambulance = (Ambulance)vehicle;
ambulance.sound_siren();

We get:

Ambulance started
java.lang.ClassCastException
 at main.main(main.java:16)

Even though we know from examination of the C++ code that vehicle_factory returns an object of type Ambulance, we
are not able to use this knowledge to perform the downcast in Java. This occurs because the runtime type information is not

SWIG−1.3 Documentation

20.9.7 Adding Java downcasts to polymorphic return types 308

completely passed from C++ to Java when returning the type from vehicle_factory(). Usually this is not a problem as
virtual functions do work by default, such as in the case of start(). There are a few solutions to getting downcasts to work.

The first is not to use a Java cast but a call to C++ to make the cast. Add this to your code:

%exception Ambulance::dynamic_cast(Vehicle *vehicle) {
 $action
 if (!result) {
 jclass excep = jenv−>FindClass("java/lang/ClassCastException");
 if (excep) {
 jenv−>ThrowNew(excep, "dynamic_cast exception");
 }
 }
}
%extend Ambulance {
 static Ambulance *dynamic_cast(Vehicle *vehicle) {
 return dynamic_cast<Ambulance *>(vehicle);
 }
};

It would then be used from Java like this

Ambulance ambulance = Ambulance.dynamic_cast(vehicle);
ambulance.sound_siren();

Should vehicle not be of type ambulance then a Java ClassCastException is thrown. The next solution is a purer
solution in that Java downcasts can be performed on the types. Add the following before the definition of vehicle_factory:

%typemap(out) Vehicle * {
 Ambulance *downcast = dynamic_cast<Ambulance *>($1);
 *(Ambulance **)(void *)&$result = downcast;
}

%typemap(javaout) Vehicle * {
 return new Ambulance($jnicall, $owner);
 }

Here we are using our knowledge that vehicle_factory always returns type Ambulance so that the Java proxy is created as
a type Ambulance. If vehicle_factory can manufacture any type of Vehicle and we want to be able to downcast using
Java casts for any of these types, then a different approach is needed. Consider expanding our example with a new Vehicle type
and a more flexible factory function:

class FireEngine : public Vehicle {
public:
 FireEngine() {}
 virtual void start() {
 cout << "FireEngine started" << endl;
 }
 void roll_out_hose() {
 cout << "Hose rolled out" << endl;
 }
 ...
};
Vehicle *vehicle_factory(int vehicle_number) {
 if (vehicle_number == 0)
 return new Ambulance("Very loud");
 else
 return new FireEngine();
}

To be able to downcast with this sort of Java code:

FireEngine fireengine = (FireEngine)example.vehicle_factory(1);

SWIG−1.3 Documentation

20.9.7 Adding Java downcasts to polymorphic return types 309

fireengine.roll_out_hose();
Ambulance ambulance = (Ambulance)example.vehicle_factory(0);
ambulance.sound_siren();

the following typemaps targeted at the vehicle_factory function will achieve this. Note that in this case, the Java class is
constructed using JNI code rather than passing a pointer across the JNI boundary in a Java long for construction in Java code.

%typemap(jni) Vehicle *vehicle_factory "jobject"
%typemap(jtype) Vehicle *vehicle_factory "Vehicle"
%typemap(jstype) Vehicle *vehicle_factory "Vehicle"
%typemap(javaout) Vehicle *vehicle_factory {
 return $jnicall;
 }

%typemap(out) Vehicle *vehicle_factory {
 Ambulance *ambulance = dynamic_cast<Ambulance *>($1);
 FireEngine *fireengine = dynamic_cast<FireEngine *>($1);
 if (ambulance) {
 // call the Ambulance(long cPtr, boolean cMemoryOwn) constructor
 jclass clazz = jenv−>FindClass("Ambulance");
 if (clazz) {
 jmethodID mid = jenv−>GetMethodID(clazz, "<init>", "(JZ)V");
 if (mid) {
 jlong cptr = 0;
 *(Ambulance **)(void *)&cptr = ambulance;
 $result = jenv−>NewObject(clazz, mid, cptr, false);
 }
 }
 } else if (fireengine) {
 // call the FireEngine(long cPtr, boolean cMemoryOwn) constructor
 jclass clazz = jenv−>FindClass("FireEngine");
 if (clazz) {
 jmethodID mid = jenv−>GetMethodID(clazz, "<init>", "(JZ)V");
 if (mid) {
 jlong cptr = 0;
 *(FireEngine **)(void *)&cptr = fireengine;
 $result = jenv−>NewObject(clazz, mid, cptr, false);
 }
 }
 }
 else {
 cout << "Unexpected type " << endl;
 }

 if (!$result)
 cout << "Failed to create new java object" << endl;
}

Better error handling would need to be added into this code. There are other solutions to this problem, but this last example
demonstrates some more involved JNI code. SWIG usually generates code which constructs the proxy classes using Java code as
it is easier to handle error conditions and is faster. Note that the JNI code above uses a number of string lookups to call a
constructor, whereas this would not occur using byte compiled Java code.

20.9.8 Adding an equals method to the Java classes

When a pointer is returned from a JNI function, it is wrapped using a new Java proxy class or type wrapper class. Even when the
pointers are the same, it will not be possible to know that the two Java classes containing those pointers are actually the same
object. It is common in Java to use the equals() method to check whether two objects are equivalent. An equals method is
easily added to all proxy classes. For example:

%typemap(javacode) SWIGTYPE %{
 public boolean equals(Object obj) {
 boolean equal = false;
 if (obj instanceof $javaclassname)

SWIG−1.3 Documentation

20.9.8 Adding an equals method to the Java classes 310

 equal = ((($javaclassname)obj).swigCPtr == this.swigCPtr);
 return equal;
 }
%}

class Foo { };
Foo* returnFoo(Foo *foo) { return foo; }

The following would display false without the javacode typemap above. With the typemap defining the equals method the
result is true.

Foo foo1 = new Foo();
Foo foo2 = example.returnFoo(foo1);
System.out.println("foo1? " + foo1.equals(foo2));

20.9.9 Void pointers and a common Java base class

One might wonder why the common code that SWIG emits for the proxy and type wrapper classes is not pushed into a base class.
The reason is that although swigCPtr could be put into a common base class for all classes wrapping C structures, it would not
work for C++ classes involved in an inheritance chain. Each class derived from a base needs a separate swigCPtr because C++
compilers sometimes use a different pointer value when casting a derived class to a base. Additionally as Java only supports single
inheritance, it would not be possible to derive wrapped classes from your own pure Java classes if the base class has been 'used up'
by SWIG. However, you may want to move some of the common code into a base class. Here is an example which uses a
common base class for all proxy classes and type wrapper classes:

%typemap(javabase) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [],
 SWIGTYPE (CLASS::*) "SWIG"

%typemap(javacode) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [],
 SWIGTYPE (CLASS::*) %{
 protected long getPointer() {
 return swigCPtr;
 }
%}

Define new base class called SWIG:

public abstract class SWIG {
 protected abstract long getPointer();

 public boolean equals(Object obj) {
 boolean equal = false;
 if (obj instanceof SWIG)
 equal = (((SWIG)obj).getPointer() == this.getPointer());
 return equal;
 }

 SWIGTYPE_p_void getVoidPointer() {
 return new SWIGTYPE_p_void(getPointer(), false);
 }
}

This example contains some useful functionality which you may want in your code.

It has an equals() method. Unlike the previous example, the method code isn't replicated in all classes.•
It also has a function which effectively implements a cast from the type of the proxy/type wrapper class to a void pointer.
This is necessary for passing a proxy class or a type wrapper class to a function that takes a void pointer.

•

SWIG−1.3 Documentation

20.9.9 Void pointers and a common Java base class 311

20.9.10 Struct pointer to pointer

Pointers to pointers are often used as output parameters in C factory type functions. These are a bit more tricky to handle.
Consider the following situation where a Butler can be hired and fired:

typedef struct {
 int hoursAvailable;
 char *greeting;
} Butler;

// Note: HireButler will allocate the memory
// The caller must free the memory by calling FireButler()!!
extern int HireButler(Butler **ppButler);
extern void FireButler(Butler *pButler);

C code implementation:

int HireButler(Butler **ppButler) {
 Butler *pButler = (Butler *)malloc(sizeof(Butler));
 pButler−>hoursAvailable = 24;
 pButler−>greeting = (char *)malloc(32);
 strcpy(pButler−>greeting, "At your service Sir");
 *ppButler = pButler;
 return 1;
}
void FireButler(Butler *pButler) {
 free(pButler−>greeting);
 free(pButler);
}

Let's take two approaches to wrapping this code. The first is to provide a functional interface, much like the original C interface.
The following Java code shows how we intend the code to be used:

 Butler jeeves = new Butler();
 example.HireButler(jeeves);
 System.out.println("Greeting: " + jeeves.getGreeting());
 System.out.println("Availability: " + jeeves.getHoursAvailable() + " hours per day");
 example.FireButler(jeeves);

Resulting in the following output when run:

Greeting: At your service Sir
Availability: 24 hours per day

Note the usage is very much like it would be used if we were writing C code, that is, explicit memory management is needed. No
C memory is allocated in the construction of the Butler proxy class and the proxy class will not destroy the underlying C
memory when it is collected. A number of typemaps and features are needed to implement this approach. The following interface
file code should be placed before SWIG parses the above C code.

%module example

// Do not generate the default proxy constructor or destructor
%nodefaultctor Butler;
%nodefaultdtor Butler;

// Add in pure Java code proxy constructor
%typemap(javacode) Butler %{
 /** This constructor creates the proxy which initially does not create nor own any C memory */
 public Butler() {
 this(0, false);
 }
%}

SWIG−1.3 Documentation

20.9.10 Struct pointer to pointer 312

// Type typemaps for marshalling Butler **
%typemap(jni) Butler ** "jobject"
%typemap(jtype) Butler ** "Butler"
%typemap(jstype) Butler ** "Butler"

// Typemaps for Butler ** as a parameter output type
%typemap(in) Butler ** (Butler *ppButler = 0) %{
 $1 = &ppButler;
%}
%typemap(argout) Butler ** {
 // Give Java proxy the C pointer (of newly created object)
 jclass clazz = (*jenv)−>FindClass(jenv, "Butler");
 jfieldID fid = (*jenv)−>GetFieldID(jenv, clazz, "swigCPtr", "J");
 jlong cPtr = 0;
 *(Butler **)(void *)&cPtr = *$1;
 (*jenv)−>SetLongField(jenv, $input, fid, cPtr);
}
%typemap(javain) Butler ** "$javainput"

Note that the JNI code sets the proxy's swigCPtr member variable to point to the newly created object. The swigCMemOwn
remains unchanged (at false), so that the proxy does not own the memory.

Note: The old %nodefault directive disabled the default constructor and destructor at the same time. This is unsafe in most of the
cases, and you can use the explicit %nodefaultctor and %nodefaultdtor directives to achieve the same result if needed.

The second approach offers a more object oriented interface to the Java user. We do this by making the Java proxy class's
constructor call the HireButler() method to create the underlying C object. Additionally we get the proxy to take ownership
of the memory so that the finalizer will call the FireButler() function. The proxy class will thus take ownership of the
memory and clean it up when no longer needed. We will also prevent the user from being able to explicitly call the
HireButler() and FireButler() functions. Usage from Java will simply be:

Butler jeeves = new Butler();
System.out.println("Greeting: " + jeeves.getGreeting());
System.out.println("Availability: " + jeeves.getHoursAvailable() + " hours per day");

Note that the Butler class is used just like any other Java class and no extra coding by the user needs to be written to clear up the
underlying C memory as the finalizer will be called by the garbage collector which in turn will call the FireButler()
function. To implement this, we use the above interface file code but remove the javacode typemap and add the following:

// Don't expose the memory allocation/de−allocation functions
%ignore FireButler(Butler *pButler);
%ignore HireButler(Butler **ppButler);

// Add in a custom proxy constructor and destructor
%extend Butler {
 Butler() {
 Butler *pButler = 0;
 HireButler(&pButler);
 return pButler;
 }
 ~Butler() {
 FireButler(self);
 }
}

Note that the code in %extend is using a C++ type constructor and destructor, yet the generated code will still compile as C
code, see Adding member functions to C structures. The C functional interface has been completely morphed into an
object−oriented interface and the Butler class would behave much like any pure Java class and feel more natural to Java users.

SWIG−1.3 Documentation

20.9.10 Struct pointer to pointer 313

20.9.11 Memory management when returning references to member variables

This example shows how to prevent early garbage collection of objects when the underlying C++ class returns a pointer or
reference to a member variable.

Consider the following C++ code:

struct Wheel {
 int size;
 Wheel(int sz) : size(sz) {}
};

class Bike {
 Wheel wheel;
public:
 Bike(int val) : wheel(val) {}
 Wheel& getWheel() { return wheel; }
};

and the following usage from Java after running the code through SWIG:

 Wheel wheel = new Bike(10).getWheel();
 System.out.println("wheel size: " + wheel.getSize());
 // Simulate a garbage collection
 System.gc();
 System.runFinalization();
 System.out.println("wheel size: " + wheel.getSize());

Don't be surprised that if the resulting output gives strange results such as...

wheel size: 10
wheel size: 135019664

What has happened here is the garbage collector has collected the Bike instance as it doesn't think it is needed any more. The
proxy instance, wheel, contains a reference to memory that was deleted when the Bike instance was collected. In order to
prevent the garbage collector from collecting the Bike instance a reference to the Bike must be added to the wheel instance.
You can do this by adding the reference when the getWheel() method is called using the following typemaps.

%typemap(javacode) Wheel %{
 // Ensure that the GC doesn't collect any Bike instance set from Java
 private Bike bikeReference;
 protected void addReference(Bike bike) {
 bikeReference = bike;
 }
%}

// Add a Java reference to prevent early garbage collection and resulting use
// of dangling C++ pointer. Intended for methods that return pointers or
// references to a member variable.
%typemap(javaout) Wheel& getWheel {
 long cPtr = $jnicall;
 $javaclassname ret = null;
 if (cPtr != 0) {
 ret = new $javaclassname(cPtr, $owner);
 ret.addReference(this);
 }
 return ret;
 }

The code in the first typemap gets added to the Wheel proxy class. The code in the second typemap constitutes the bulk of the
code in the generated getWheel() function:

public class Wheel {

SWIG−1.3 Documentation

20.9.11 Memory management when returning references to member variables 314

 ...
 // Ensure that the GC doesn't collect any bike set from Java
 private Bike bikeReference;
 protected void addReference(Bike bike) {
 bikeReference = bike;
 }
}

public class Bike {
 ...
 public Wheel getWheel() {
 long cPtr = exampleJNI.Bike_getWheel(swigCPtr);
 Wheel ret = null;
 if (cPtr != 0) {
 ret = new Wheel(cPtr, false);
 ret.addReference(this);
 }
 return ret;
 }
}

Note the addReference call.

20.9.12 Memory management for objects passed to the C++ layer

Managing memory can be tricky when using C++ and Java proxy classes. The previous example shows one such case and this
example looks at memory management for a class passed to a C++ method which expects the object to remain in scope after the
function has returned. Consider the following two C++ classes:

struct Element {
 int value;
 Element(int val) : value(val) {}
};
class Container {
 Element* element;
public:
 Container() : element(0) {}
 void setElement(Element* e) { element = e; }
 Element* getElement() { return element; }
};

and usage from C++

 Container container;
 Element element(20);
 container.setElement(&element);
 cout << "element.value: " << container.getElement()−>value << endl;

and more or less equivalent usage from Java

 Container container = new Container();
 container.setElement(new Element(20));
 System.out.println("element value: " + container.getElement().getValue());

The C++ code will always print out 20, but the value printed out may not be this in the Java equivalent code. In order to
understand why, consider a garbage collection occuring...

 Container container = new Container();
 container.setElement(new Element(20));
 // Simulate a garbage collection
 System.gc();
 System.runFinalization();
 System.out.println("element value: " + container.getElement().getValue());

SWIG−1.3 Documentation

20.9.12 Memory management for objects passed to the C++ layer 315

The temporary element created with new Element(20) could get garbage collected which ultimately means the container
variable is holding a dangling pointer, thereby printing out any old random value instead of the expected value of 20. One solution
is to add in the appropriate references in the Java layer...

public class Container {

 ...

 // Ensure that the GC doesn't collect any Element set from Java
 // as the underlying C++ class stores a shallow copy
 private Element elementReference;
 private long getCPtrAndAddReference(Element element) {
 elementReference = element;
 return Element.getCPtr(element);
 }

 public void setElement(Element e) {
 exampleJNI.Container_setElement(swigCPtr, getCPtrAndAddReference(e));
 }
}

The following typemaps will generate the desired code. The 'javain' typemap matches the input parameter type for the
setElement method. The 'javacode' typemap simply adds in the specified code into the Java proxy class.

%typemap(javain) Element *e "getCPtrAndAddReference($javainput)"

%typemap(javacode) Container %{
 // Ensure that the GC doesn't collect any element set from Java
 // as the underlying C++ class stores a shallow copy
 private Element elementReference;
 private long getCPtrAndAddReference(Element element) {
 elementReference = element;
 return Element.getCPtr(element);
 }
%}

20.10 Living with Java Directors

This section is intended to address frequently asked questions and frequently encountered problems when using Java directors.

When my program starts up, it complains that method_foo cannot be found in a Java method called swig_module_init.
How do I fix this?

Open up the C++ wrapper source code file and look for "method_foo" (include the double quotes, they are
important!) Look at the JNI field descriptor and make sure that each class that occurs in the descriptor has the correct
package name in front of it. If the package name is incorrect, put a "javapackage" typemap in your SWIG interface file.

1.

I'm compiling my code and I'm using templates. I provided a javapackage typemap, but SWIG doesn't generate the right
JNI field descriptor.

Use the template's renamed name as the argument to the "javapackage" typemap:

%typemap(javapackage) std::vector<int> "your.package.here"
%template(VectorOfInt) std::vector<int>;

2.

When I pass class pointers or references through a C++ upcall and I try to type cast them, Java complains with a
ClassCastException. What am I doing wrong?

Normally, a non−director generated Java proxy class creates temporary Java objects as follows:

public static void MyClass_method_upcall(MyClass self, long jarg1)
{
 Foo darg1 = new Foo(jarg1, false);

3.

SWIG−1.3 Documentation

20.10 Living with Java Directors 316

 self.method_upcall(darg1);
}

Unfortunately, this loses the Java type information that is part of the underlying Foo director proxy class's Java object
pointer causing the type cast to fail. The SWIG Java module's director code attempts to correct the problem, but only for
director−enabled classes, since the director class retains a global reference to its Java object. Thus, for director−enabled
classes and only for director−enabled classes, the generated proxy Java code looks something like:

public static void MyClass_method_upcall(MyClass self, long jarg1,
 Foo jarg1_object)
{
 Foo darg1 = (jarg1_object != null ? jarg1_object : new Foo(jarg1, false));

 self.method_upcall(darg1);
}

When you import a SWIG interface file containing class definitions, the classes you want to be director−enabled must be
have the feature("director") enabled for type symmetry to work. This applies even when the class being
wrapped isn't a director−enabled class but takes parameters that are director−enabled classes.

The current "type symmetry" design will work for simple C++ inheritance, but will most likely fail for anything more
compicated such as tree or diamond C++ inheritance hierarchies. Those who are interested in challenging problems are
more than welcome to hack the Java::Java_director_declaration method in
Source/Modules/java.cxx.

If all else fails, you can use the downcastXXXXX() method to attempt to recover the director class's Java object pointer.
For the Java Foo proxy class, the Foo director class's java object pointer can be accessed through the javaObjectFoo()
method. The generated method's signature is:

 public static Foo javaObjectFoo(Foo obj);

From your code, this method is invoked as follows:

public class MyClassDerived {
 public void method_upcall(Foo foo_object)
 {
 FooDerived derived = (foo_object != null ?
 (FooDerived) Foo.downcastFoo(foo_object) : null);
 /* rest of your code here */
 }
}

An good approach for managing downcasting is placing a static method in each derived class that performs the downcast
from the superclass, e.g.,

public class FooDerived extends Foo {
 /* ... */
 public static FooDerived downcastFooDerived(Foo foo_object)
 {
 try {
 return (foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object);
 }

 catch (ClassCastException exc) {
 // Wasn't a FooDerived object, some other sublcass of Foo
 return null;
 }
 }
}

Then change the code in MyClassDerived as follows:

SWIG−1.3 Documentation

20.10 Living with Java Directors 317

public class MyClassDerived extends MyClass {
 /* ... */
 public void method_upcall(Foo foo_object)
 {
 FooDerived derived = FooDerived.downcastFooDerived(foo_object);
 /* rest of your code here */
 }
}

Why isn't the proxy class declared abstract? Why aren't the director upcall methods in the proxy class declared abstract?

Declaring the proxy class and its methods abstract would break the JNI argument marshalling and SWIG's downcall
functionality (going from Java to C++.) Create an abstract Java subclass that inherits from the director−enabled class
instead. Using the previous Foo class example:

public abstract class UserVisibleFoo extends Foo {
 /** Make sure user overrides this method, it's where the upcall
 * happens.
 */
 public abstract void method_upcall(Foo foo_object);

 /// Downcast from Foo to UserVisibleFoo
 public static UserVisibleFoo downcastUserVisibleFoo(Foo foo_object)
 {
 try {
 return (foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object) : null);
 }

 catch (ClassCastException exc) {
 // Wasn't a FooDerived object, some other sublcass of Foo
 return null;
 }
 }
}

This doesn't prevent the user from creating subclasses derived from Foo, however, UserVisibleFoo provides the safety
net that reminds the user to override the method_upcall() method.

4.

20.11 Odds and ends

20.11.1 JavaDoc comments

The SWIG documentation system is currently deprecated. When it is resurrected JavaDoc comments will be fully supported. If
you can't wait for the full documentation system a couple of workarounds are available. The %javamethodmodifiers feature
can be used for adding proxy class method comments and module class method comments. The "javaimports" typemap can be
hijacked for adding in proxy class JavaDoc comments. The jniclassimports or jniclassclassmodifiers pragmas
can also be used for adding intermediary JNI class comments and likewise the moduleimports or
moduleclassmodifiers pragmas for the module class. Here is an example adding in a proxy class and method comment:

%javamethodmodifiers Barmy::lose_marbles() "
 /**
 * Calling this method will make you mad.
 * Use with utmost caution.
 */
 public";

%typemap(javaimports) Barmy "
/** The crazy class. Use as a last resort. */"

class Barmy {
public:
 void lose_marbles() {}
};

SWIG−1.3 Documentation

20.11 Odds and ends 318

Note the "public" added at the end of the %javamethodmodifiers as this is the default for this feature. The generated proxy
class with JavaDoc comments is then as follows:

/** The crazy class. Use as a last resort. */
public class Barmy {
...
 /**
 * Calling this method will make you mad.
 * Use with utmost caution.
 */
 public void lose_marbles() {
 ...
 }
...
}

20.11.2 Functional interface without proxy classes

It is possible to run SWIG in a mode that does not produce proxy classes by using the −noproxy commandline option. The
interface is rather primitive when wrapping structures or classes and is accessed through function calls to the module class. All the
functions in the module class are wrapped by functions with identical names as those in the intermediary JNI class.

Consider the example we looked at when examining proxy classes:

class Foo {
public:
 int x;
 int spam(int num, Foo* foo);
};

When using −noproxy, type wrapper classes are generated instead of proxy classes. Access to all the functions and variables is
through a C like set of functions where the first parameter passed is the pointer to the class, that is an instance of a type wrapper
class. Here is what the module class looks like:

public class example {
 public static void Foo_x_get(SWIGTYPE_p_Foo self, int x) {...}
 public static int Foo_x_get(SWIGTYPE_p_Foo self) {...}
 public static int Foo_spam(SWIGTYPE_p_Foo self, int num, SWIGTYPE_p_Foo foo) {...}
 public static SWIGTYPE_p_Foo new_Foo() {...}
 public static void delete_Foo(SWIGTYPE_p_Foo self) {...}
}

This approach is not nearly as natural as using proxy classes as the functions need to be used like this:

SWIGTYPE_p_Foo foo = example.new_Foo();
example.Foo_x_set(foo, 10);
int var = example.Foo_x_get(foo);
example.Foo_spam(foo, 20, foo);
example.delete_Foo(foo);

Unlike proxy classes, there is no attempt at tracking memory. All destructors have to be called manually for example the
delete_Foo(foo) call above.

20.11.3 Using your own JNI functions

You may have some hand written JNI functions that you want to use in addition to the SWIG generated JNI functions. Adding
these to your SWIG generated package is possible using the %native directive. If you don't want SWIG to wrap your JNI
function then of course you can simply use the %ignore directive. However, if you want SWIG to generate just the Java code
for a JNI function then use the %native directive. The C types for the parameters and return type must be specified in place of
the JNI types and the function name must be the native method name. For example:

SWIG−1.3 Documentation

20.11.1 JavaDoc comments 319

%native (HandRolled) void HandRolled(int, char *);
%{
JNIEXPORT void JNICALL Java_packageName_moduleName_HandRolled(JNIEnv *, jclass,
 jlong, jstring);
%}

No C JNI function will be generated and the Java_packageName_moduleName_HandRolled function will be accessible
using the SWIG generated Java native method call in the intermediary JNI class which will look like this:

 public final static native void HandRolled(int jarg1, String jarg2);

and as usual this function is wrapped by another which for a global C function would appear in the module class:

 public static void HandRolled(int arg0, String arg1) {
 exampleJNI.HandRolled(arg0, arg1);
 }

The packageName and moduleName must of course be correct else you will get linker errors when the JVM dynamically
loads the JNI function. You may have to add in some "jtype", "jstype", "javain" and "javaout" typemaps when wrapping some JNI
types. Here the default typemaps work for int and char *.

In summary the %native directive is telling SWIG to generate the Java code to access the JNI C code, but not the JNI C
function itself. This directive is only really useful if you want to mix your own hand crafted JNI code and the SWIG generated
code into one Java class or package.

20.11.4 Performance concerns and hints

If you're directly manipulating huge arrays of complex objects from Java, performance may suffer greatly when using the array
functions in arrays_java.i. Try and minimise the expensive JNI calls to C/C++ functions, perhaps by using temporary Java
variables instead of accessing the information directly from the C/C++ object.

Java classes without any finalizers generally speed up code execution as there is less for the garbage collector to do. Finalizer
generation can be stopped by using an empty javafinalize typemap:

%typemap(javafinalize) SWIGTYPE ""

However, you will have to be careful about memory management and make sure that you code in a call to the delete()
member function. This method normally calls the C++ destructor or free() for C code.

20.12 Examples

The directory Examples/java has a number of further examples. Take a look at these if you want to see some of the techniques
described in action. The Examples/index.html file in the parent directory contains the SWIG Examples Documentation and is a
useful starting point. If your SWIG installation went well Unix users should be able to type make in each example directory, then
java main to see them running. For the benefit of Windows users, there are also Visual C++ project files in a couple of the
Windows Examples.

SWIG−1.3 Documentation

20.11.3 Using your own JNI functions 320

21 SWIG and Common Lisp
Allegro Common Lisp•
CLISP

Additional Commandline Options♦
Details on CLISP bindings♦

•

UFFI•

Common Lisp is a high−level, all−purpose, object−oriented, dynamic, functional programming language with long history.
Common Lisp is used in many fields, ranging from web development to finance, and also common in computer science education.
There are more than 9 different implementations of common lisp which are available, all have different foreign function
interfaces. SWIG currently supports only the Allegro Common Lisp, CLisp and UFFI foreign function interfaces.

21.1 Allegro Common Lisp

Allegro Common Lisp support in SWIG has been updated to include support for both C and C++. You can read about the
interface here

21.2 CLISP

CLISP is a feature−loaded implementation of common lisp which is portable across most of the operating system environments
and hardware. CLISP includes an interpreter, a compiler, a debugger, CLOS, MOP, a foreign language interface, i18n, regular
expressions, a socket interface, and more. An X11 interface is available through CLX, Garnet and CLUE/CLIO. Command line
editing is provided by readline. CLISP runs Maxima, ACL2 and many other Common Lisp packages.
To run the SWIG module of clisp requires very little effort, you just need to execute:

swig −clispcl −module module−name file−name

Because of the high level nature of the CLISP FFI, the bindings generated by SWIG may not be absolutely correct, and you may
need to modify them. The good thing is that you don't need to complex interface file for the CLISP module. The CLISP module
tries to produce code which is both human readable and easily modifyable.

21.2.1 Additional Commandline Options

The following table list the additional commandline options available for the CLISP module. They can also be seen by using:

swig −clisp −help

CLISP specific options

−extern−all
If this option is given then clisp definitions for all the functions
and global variables will be created otherwise only definitions for
externed functions and variables are created.

−generate−typedef
If this option is given then def−c−type will be used to generate
shortcuts according to the typedefs in the input.

21.2.2 Details on CLISP bindings

As mentioned earlier the CLISP bindings generated by SWIG may need some modifications. The clisp module creates a lisp file
with the same name as the module name. This lisp file contains a 'defpackage' declaration, with the package name same as the
module name. This package uses the 'common−lisp' and 'ffi' packages. Also, package exports all the functions, structures and
variables for which an ffi binding was generated.
After generating the defpackage statement, the clisp module also sets the default language.

21 SWIG and Common Lisp 321

http://clisp.cons.org

(defpackage :test
 (:use :common−lisp :ffi)
 (:export
 :make−bar
 :bar−x
 :bar−y
 :bar−a
 :bar−b
 :bar−z
 :bar−n
 :pointer_func
 :func123
 :make−cfunr
 :lispsort_double
 :test123))

(in−package :test)

(default−foreign−language :stdc)

The ffi wrappers for functions and variables are generated as shown below. When functions have arguments of type "double *
array", SWIG doesn't knows whether it is an 'out' argument or it is an array which will be passed, so SWIG plays it safe by
declaring it as an '(array (ffi:c−ptr DOUBLE−FLOAT))'. For arguments of type "int **z[100]" where SWIG has more
information, i.e., it knows that 'z' is an array of pointers to pointers of integers, SWIG defines it to be '(z (ffi:c−ptr (ffi:c−array
(ffi:c−ptr (ffi:c−ptr ffi:int)) 100)))'

extern "C" {
int pointer_func(void (*ClosureFun)(void* _fun, void* _data, void* _evt), int y);

int func123(div_t * x,int **z[100],int y[][1000][10]);

void lispsort_double (int n, double * array);

void test123(float x , double y);

}

(ffi:def−call−out pointer_func
 (:name "pointer_func")
 (:arguments (ClosureFun (ffi:c−function (:arguments (arg0 (ffi:c−pointer NIL))
 (arg1 (ffi:c−pointer NIL))
 (arg2 (ffi:c−pointer NIL)))
 (:return−type NIL)))
 (y ffi:int))
 (:return−type ffi:int)
 (:library +library−name+))

(ffi:def−call−out func123
 (:name "func123")
 (:arguments (x (ffi:c−pointer div_t))
 (z (ffi:c−ptr (ffi:c−array (ffi:c−ptr (ffi:c−ptr ffi:int)) 100)))
 (y (ffi:c−ptr (ffi:c−ptr (ffi:c−array ffi:int (1000 10))))))
 (:return−type ffi:int)
 (:library +library−name+))

(ffi:def−call−out lispsort_double
 (:name "lispsort_double")
 (:arguments (n ffi:int)
 (array (ffi:c−ptr DOUBLE−FLOAT)))
 (:return−type NIL)
 (:library +library−name+))

(ffi:def−call−out test123
 (:name "test")
 (:arguments (x SINGLE−FLOAT)

SWIG−1.3 Documentation

21.2.2 Details on CLISP bindings 322

 (y DOUBLE−FLOAT))
 (:return−type NIL)
 (:library +library−name+))

The module also handles strutcures and #define constants as shown below. SWIG automatically adds the constructors and
accessors created for the struct to the list of symbols exported by the package.

struct bar {
 short x, y;
 char a, b;
 int *z[1000];
 struct bar * n;
};

#define max 1000

(ffi:def−c−struct bar
 (x :type ffi:short)
 (y :type ffi:short)
 (a :type character)
 (b :type character)
 (z :type (ffi:c−array (ffi:c−ptr ffi:int) 1000))
 (n :type (ffi:c−pointer bar)))

(defconstant max 1000)

21.3 UFFI

SWIG−1.3 Documentation

21.3 UFFI 323

22 SWIG and Lua
Preliminaries•
Running SWIG

Compiling and Linking and Interpreter♦
Compiling a dynamic module♦
Using your module♦

•

A tour of basic C/C++ wrapping
Modules♦
Functions♦
Global variables♦
Constants and enums♦
Pointers♦
Structures♦
C++ classes♦
C++ inheritance♦
Pointers, references, values, and arrays♦
C++ overloaded functions♦
C++ operators♦
Class extension with %extend♦
C++ templates♦
C++ Smart Pointers♦

•

Details on the Lua binding
Binding global data into the module.♦
Userdata and Metatables♦
Memory management♦

•

Lua is an extension programming language designed to support general procedural programming with data description facilities. It
also offers good support for object−oriented programming, functional programming, and data−driven programming. Lua is
intended to be used as a powerful, light−weight configuration language for any program that needs one. Lua is implemented as a
library, written in clean C (that is, in the common subset of ANSI C and C++). Its also a really tiny language, less than 6000 lines
of code, which compiles to <100 kilobytes of binary code. It can be found at http://www.lua.org

22.1 Preliminaries

The current SWIG implementation is designed to work with Lua 5.0. It should work with later versions of Lua, but certainly not
with Lua 4.0 due to substantial API changes. ((Currently SWIG generated code has only been tested on Windows with MingW,
though given the nature of Lua, is should not have problems on other OS's)). It is possible to either static link or dynamic link a
Lua module into the interpreter (normally Lua static links its libraries, as dynamic linking is not available on all platforms).

Note: Lua 5.1 (alpha) has just (as of September 05) been released. The current version of SWIG will produce wrappers which are
compatible with Lua 5.1, though the dynamic loading mechanism has changed (see below). The configure script and makefiles
should work correctly with with Lua 5.1, though some small tweaks may be needed.

22.2 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example
%{
#include "example.h"
%}
int gcd(int x, int y);
extern double Foo;

To build a Lua module, run SWIG using the −lua option.

22 SWIG and Lua 324

http://www.lua.org

$ swig −lua example.i

If building a C++ extension, add the −c++ option:

$ swig −c++ −lua example.i

This creates a C/C++ source file example_wrap.c or example_wrap.cxx. The generated C source file contains the
low−level wrappers that need to be compiled and linked with the rest of your C/C++ application to create an extension module.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the −o option. The wrappered module will export one
function "int Example_Init(LuaState* L)" which must be called to register the module with the Lua interpreter. The
name "Example_Init" depends upon the name of the module. Note: SWIG will automatically capitalise the module name, so
"module example;" becomes "Example_Init".

22.2.1 Compiling and Linking and Interpreter

Normally Lua is embedded into another program and will be statically linked. An extremely simple stand−alone interpreter
(min.c) is given below:

#include <stdio.h>
#include "lua.h"
#include "lualib.h"
#include "lauxlib.h"

extern int Example_Init(LuaState* L); // declare the wrapped module

int main(int argc,char* argv[])
{
 lua_State *L;
 if (argc

A much improved set of code can be found in the Lua distribution src/lua/lua.c. Include your module, just add the external
declaration & add a #define LUA_EXTRALIBS {"example",Example_Init}, at the relevant place.

The exact commands for doing this vary from platform to platform. Here is a possible set of commands of doing this:

$ swig −lua example.i
$ gcc −I/usr/include/lua −c min.c −o min.o
$ gcc −I/usr/include/lua −c example_wrap.c −o example_wrap.o
$ gcc −c example.c −o example.o
$ gcc −I/usr/include/lua −L/usr/lib/lua min.o example_wrap.o example.o −o my_lua

22.2.2 Compiling a dynamic module

Most, but not all platforms support the dynamic loading of modules (Windows & Linux do). Refer to the Lua manual to determine
if your platform supports it. For compiling a dynamically loaded module the same wrapper can be used. The commands will be
something like this:

$ swig −lua example.i
$ gcc −I/usr/include/lua −c example_wrap.c −o example_wrap.o
$ gcc −c example.c −o example.o
$ gcc −shared −I/usr/include/lua −L/usr/lib/lua example_wrap.o example.o −o example.so

You will also need an interpreter with the loadlib function (such as the default interpreter compiled with Lua). In order to
dynamically load a module you must call the loadlib function with two parameters: the filename of the shared library, and the
function exported by SWIG. Calling loadlib should return the function, which you then call to initialise the module

my_init=loadlib("example.so","Example_Init") −− for Unix/Linux
−−my_init=loadlib("example.dll","Example_Init") −− for Windows

SWIG−1.3 Documentation

22.2 Running SWIG 325

assert(my_init) −− name sure its not nil
my_init() −− call the init fn of the lib

Or can be done in a single line of Lua code

assert(loadlib("example.so","Example_Init"))()

Update for Lua 5.1 (alpha):
The wrappers produced by SWIG can be compiled and linked with Lua 5.1. The loading is now much simpler.

require("example")

22.2.3 Using your module

Assuming all goes well, you will be able to this:

$./my_lua
> print(example.gcd(4,6))
2
> print(example.Foo)
3
> example.Foo=4
> print(example.Foo)
4
>

22.3 A tour of basic C/C++ wrapping

By default, SWIG tries to build a very natural Lua interface to your C/C++ code. This section briefly covers the essential aspects
of this wrapping.

22.3.1 Modules

The SWIG module directive specifies the name of the Lua module. If you specify `module example', then everything is wrapped
into a Lua table 'example' containing all the functions and variables. When choosing a module name, make sure you don't use the
same name as a built−in Lua command or standard module name.

22.3.2 Functions

Global functions are wrapped as new Lua built−in functions. For example,

%module example
int fact(int n);

creates a built−in function example.fact(n) that works exactly like you think it does:

> print example.fact(4)
24
>

To avoid name collisions, SWIG create a Lua table which it keeps all the functions and global variables in. It is possible to copy
the functions out of this and into the global environment with the following code. This can easily overwrite existing functions, so
this must be used with care.

> for k,v in pairs(example) do _G[k]=v end
> print(fact(4))
24
>

SWIG−1.3 Documentation

22.2.2 Compiling a dynamic module 326

It is also possible to rename the module with an assignment.

> e=example
> print(e.fact(4))
24
> print(example.fact(4))
24

22.3.3 Global variables

Global variables (which are linked to C code) are supported, and appear to be just another variable in Lua. However the actual
mechanism is more complex. Given a global variable:

%module example
extern double Foo;

SWIG will actually generate two functions example.Foo_set() and example.Foo_get(). It then adds a metatable to the
table 'example' to call these functions at the correct time (when you attempt to set or get examples.Foo). Therefore if you were to
attempt to assign the global to another variable, you will get a local copy within the interpreter, which is no longer linked to the C
code.

> print(example.Foo)
3
> c=example.Foo −− c is a COPY of example.Foo, not the same thing
> example.Foo=4
> print(c)
3
> c=5 −− this will not effect the original example.Foo
> print(example.Foo,c)
4 5

Its is therefore not possible to 'move' the global variable into the global namespace as it is with functions. It is however, possible
to rename the module with an assignment, to make it more convenient.

> e=example
> −− e and example are the same table
> −− so e.Foo and example.Foo are the same thing
> example.Foo=4
> print(e.Foo)
4

If a variable is marked with the immutable directive then any attempts to set this variable are silently ignored.

Another interesting feature is that it is not possible to add new values into the module from within the interpreter, this is because
of the metatable to deal with global variables. It is possible (though not recommended) to use rawset() to add a new value.

> −− example.PI does not exist
> print(example.PI)
nil
> example.PI=3.142 −− assign failed, example.PI does still not exist
> print(example.PI)
nil
> −− a rawset will work, after this the value is added
> rawset(example,"PI",3.142)
> print(example.PI)
3.142

22.3.4 Constants and enums

Because Lua doesn't really have the concept of constants, C/C++ constants are not really constant in Lua. They are actually just a
copy of the value into the Lua interpreter. Therefore they can be changed just as any other value. For example given some

SWIG−1.3 Documentation

22.3.2 Functions 327

constants:

%module example
%constant int ICONST=42;
#define SCONST "Hello World"
enum Days{SUNDAY,MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY,SATURDAY};

This is 'effectively' converted into the following Lua code:

example.ICONST=42
example.SCONST="Hello World"
example.SUNDAY=0
....

Constants are not guaranteed to remain constant in Lua. The name of the constant could be accidentally reassigned to refer to
some other object. Unfortunately, there is no easy way for SWIG to generate code that prevents this. You will just have to be
careful.

22.3.5 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Given a wrapping of the <file.h> interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Lua. For example:

> f=example.fopen("junk","w")
> example.fputs("Hello World",f)
> example.fclose(f)

Unlike many scripting languages, Lua has had support for pointers to C/C++ object built in for a long time. They are called
'userdata'. Unlike many other SWIG versions which use some kind of encoded character string, all objects will be represented as a
userdata. The SWIG−Lua bindings provides a special function swig_type(), which if given a userdata object will return the
type of object pointed to as a string (assuming it was a SWIG wrappered object).

> print(f)
userdata: 003FDA80
> print(swig_type(f))
_p_FILE −− its a FILE*

Lua enforces the integrity of its userdata, so it is virtually impossible to corrupt the data. But as the user of the pointer, you are
responsible for freeing it, or closing any resources associated with it (just as you would in a C program). This does not apply so
strictly to classes & structs (see below). One final note: if a function returns a NULL pointer, this is not encoded as a userdata, but
as a Lua nil.

> f=example.fopen("not there","r") −− this will return a NULL in C
> print(f)
nil

22.3.6 Structures

If you wrap a C structure, it is also mapped to a Lua userdata. By adding a metatable to the userdata, this provides a very natural
interface. For example,

struct Point{

SWIG−1.3 Documentation

22.3.4 Constants and enums 328

 int x,y;
};

is used as follows:

> p=example.Point()
> p.x=3
> p.y=5
> print(p.x,p.y)
3 5
>

Similar access is provided for unions and the data members of C++ classes.
SWIG will also create a function new_Point() which also creates a new Point structure.

If you print out the value of p in the above example, you will see something like this:

> print(p)
userdata: 003FA320

Like the pointer in the previous section, this is held as a userdata. However, additional features have been added to make this more
usable. SWIG creates some accessor/mutator functions Point_set_x() and Point_get_x(). These will be wrappered, and
then added to the metatable added to the userdata. This provides the natural access to the member variables that were shown
above (see end of the document for full details).

const members of a structure are read−only. Data members can also be forced to be read−only using the immutable directive.
As with other immutable's, setting attempts will be silently ignored. For example:

struct Foo {
 ...
 %immutable;
 int x; // Read−only members
 char *name;
 %mutable;
 ...
};

The mechanism for managing char* members as well as array members is similar to other languages. It is somewhat cumbersome
and should probably be better handled by defining of typemaps (described later).

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like
this:

struct Foo {
 int a;
};

struct Bar {
 Foo f;
};

Now, suppose that you access the f attribute of Bar like this:

> b = Bar()
> x = b.f

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b−>f; // Points inside b

SWIG−1.3 Documentation

22.3.6 Structures 329

Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. For
example:

> b = Bar()
> b.f.a = 3 −− Modify attribute of structure member
> x = b.f
> x.a = 3 −− Modifies the same structure

22.3.7 C++ classes

C++ classes are wrapped by a Lua userdata as well. For example, if you have this class,

class List {
public:
 List();
 ~List();
 int search(char *item);
 void insert(char *item);
 void remove(char *item);
 char *get(int n);
 int length;
};

you can use it in Lua like this:

> l = example.List()
> l:insert("Ale")
> l:insert("Stout")
> l:insert("Lager")
> print(l:get(1))
Stout
> print(l:length)
3
>

(Note: for calling methods of a class, you use class:method(args), not class.method(args), its an easy mistake to
make. However for data attributes it is class.attribute)

Class data members are accessed in the same manner as C structures. Static class members present a special problem for Lua, as
Lua doesn't have support for such features. Therefore, SWIG generates wrappers that try to work around some of these issues. To
illustrate, suppose you have a class like this:

class Spam {
public:
 static void foo();
 static int bar;

};

In Lua, the static members can be accessed as follows:

> example.Spam_foo() −− Spam::foo() the only way currently
> a=example.Spam_bar_get() −− Spam::bar the hard way
> a=example.Spam_bar −− Spam::bar the nicer way
> example.Spam_bar_set(b) −− Spam::bar the hard way
> example.Spam_bar=b −− Spam::bar the nicer way

It is not (currently) possible to access static members of an instance:

> s=example.Spam() −− s is a Spam instance
> s.foo() −− Spam::foo() via an instance
 −− does NOT work

SWIG−1.3 Documentation

22.3.7 C++ classes 330

22.3.8 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

And if you have functions like this

void spam(Foo *f);

then the function spam() accepts a Foo pointer or a pointer to any class derived from Foo.

It is safe to use multiple inheritance with SWIG.

22.3.9 Pointers, references, values, and arrays

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(Foo x); // Pass by value
void spam4(Foo x[]); // Array of objects

In SWIG, there is no detailed distinction like this−−specifically, there are only "objects". There are no pointers, references, arrays,
and so forth. Because of this, SWIG unifies all of these types together in the wrapper code. For instance, if you actually had the
above functions, it is perfectly legal to do this:

> f = Foo() −− Create a Foo
> spam1(f) −− Ok. Pointer
> spam2(f) −− Ok. Reference
> spam3(f) −− Ok. Value.
> spam4(f) −− Ok. Array (1 element)

Similar behaviour occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spam6();
Foo spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocated
memory is used to hold the result and a pointer is returned (Lua will release this memory when the return value is garbage
collected). The other two are pointers which are assumed to be managed by the C code and so will not be garbage collected.

22.3.10 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

void foo(int);
void foo(char *c);

You can use them in Lua in a straightforward manner:

> foo(3) −− foo(int)

SWIG−1.3 Documentation

22.3.8 C++ inheritance 331

> foo("Hello") −− foo(char *c)

However due to Lua's coercion mechanism is can sometimes do strange things.

> foo("3") −− "3" can be coerced into an int, so it calls foo(int)!

As this coercion mechanism is an integral part of Lua, there is no easy way to get around this other than renaming of functions
(see below).

Similarly, if you have a class like this,

class Foo {
public:
 Foo();
 Foo(const Foo &);
 ...
};

you can write Lua code like this:

> f = Foo() −− Create a Foo
> g = Foo(f) −− Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For example:

void spam(int);
void spam(short);

or

VOID FOO(bAR *B);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);
void spam(short); // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);
void spam(short); // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according to a
set of type−precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises−−in this case, the first declaration takes precedence.

Please refer to the "SWIG and C++" chapter for more information about overloading.

Dealing with the Lua coercion mechanism, the priority is roughly (integers, floats, strings, userdata). But it is better to rename the
functions rather than rely upon the ordering.

SWIG−1.3 Documentation

22.3.10 C++ overloaded functions 332

22.3.11 C++ operators

Certain C++ overloaded operators can be handled automatically by SWIG. For example, consider a class like this:

class Complex {
private:
 double rpart, ipart;
public:
 Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
 Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
 Complex &operator=(const Complex &c);
 Complex operator+(const Complex &c) const;
 Complex operator−(const Complex &c) const;
 Complex operator*(const Complex &c) const;
 Complex operator−() const;

 double re() const { return rpart; }
 double im() const { return ipart; }
};

When wrapped, it works like you expect:

> c = Complex(3,4)
> d = Complex(7,8)
> e = c + d
> e:re()
10.0
> e:im()
12.0

One restriction with operator overloading support is that SWIG is not able to fully handle operators that aren't defined as part of
the class. For example, if you had code like this

class Complex {
...
friend Complex operator+(double, const Complex &c);
...
};

then SWIG doesn't know what to do with the friend function−−in fact, it simply ignores it and issues a warning. You can still
wrap the operator, but you may have to encapsulate it in a special function. For example:

%rename(Complex_add_dc) operator+(double, const Complex &);
...
Complex operator+(double, const Complex &c);

There are ways to make this operator appear as part of the class using the %extend directive. Keep reading.

Also, be aware that certain operators don't map cleanly to Lua, and some Lua operators don't map cleanly to C++ operators. For
instance, overloaded assignment operators don't map to Lua semantics and will be ignored, and C++ doesn't support Lua's
concatenation operator (..).

In order to keep maximum compatibility within the different languages in SWIG, the Lua bindings uses the same set of operator
names as python. Although internally it renames the functions to something else (on order to work with Lua).

The current list of operators which can be overloaded (and the alternative function names) are:

__add__ operator+•
__sub__ operator−•
__mul__ operator *•
__div__ operator/•

SWIG−1.3 Documentation

22.3.11 C++ operators 333

__neg__ unary minus•
__call__ operator() (often used in functor classes)•
__pow__ the exponential fn (no C++ equivalent, Lua uses ^)•
__concat__ the concatenation operator (SWIG maps C++'s ~ to Lua's ..)•
__eq__ operator==•
__lt__ operator<•
__le__ operator<=•

Note: in Lua, only the equals, less than, and less than equals operators are defined. The other operators (!=,>,>=) are achieved by
using a logical not applied to the results of other operators.

The following operators cannot be overloaded (mainly because they are not supported in Lua)

++ and −−•
+=,−=,*= etc•
% operator (you have to use math.mod)•
assignment operator•
all bitwise/logical operations•

SWIG also accepts the __str__() member function which converts an object to a string. This function should return a const
char*, preferably to static memory. This will be used for the print() and tostring() functions in Lua. Assuming the
complex class has a function

const char* __str__()
{
 static char buffer[255];
 sprintf(buffer,"Complex(%g,%g)",this−>re(),this−>im());
 return buffer;
}

Then this will support the following code in Lua

> c = Complex(3,4)
> d = Complex(7,8)
> e = c + d
> print(e)
Complex(10,12)
> s=tostring(e) −− s is the number in string form
> print(s)
Complex(10,12)

It is also possible to overload the operator[], but currently this cannot be automatically performed. To overload the operator[]
you need to provide two functions, __getitem__() and __setitem__()

class Complex
{
 //....
 double __getitem__(int i)const; // i is the index, returns the data
 void __setitem__(int i,double d); // i is the index, d is the data
};

22.3.12 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods. In the previous
section, the Complex class would have benefited greatly from an __str__() method as well as some repairs to the operator
overloading. It can also be used to add additional functions to the class if they are needed.

Take the original Complex class

class Complex {

SWIG−1.3 Documentation

22.3.12 Class extension with %extend 334

private:
 double rpart, ipart;
public:
 Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
 Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
 Complex &operator=(const Complex &c);
 Complex operator+(const Complex &c) const;
 Complex operator−(const Complex &c) const;
 Complex operator*(const Complex &c) const;
 Complex operator−() const;

 double re() const { return rpart; }
 double im() const { return ipart; }
};

Now we extend it with some new code

%extend Complex {
 const char *__str__() {
 static char tmp[1024];
 sprintf(tmp,"Complex(%g,%g)", self−>re(),self−>im());
 return tmp;
 }
 bool operator==(const Complex& c)
 { return (self−>re()==c.re() && self−>im()==c.im();}
};

Now, in Lua

> c = Complex(3,4)
> d = Complex(7,8)
> e = c + d
> print(e) −− print uses __str__ to get the string form to print
Complex(10,12)
> print(e==Complex(10,12)) −− testing the == operator
true
> print(e!=Complex(12,12)) −− the != uses the == operator
true

Extend works with both C and C++ code, on classes and structs. It does not modify the underlying object in any way−−−the
extensions only show up in the Lua interface. The only item to take note of is the code has to use the 'self' instead of 'this', and that
you cannot access protected/private members of the code (as you are not officially part of the class).

22.3.13 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the template directive. For example:

%module example
%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;
 pair();
 pair(const T1&, const T2&);
 ~pair();
};

SWIG−1.3 Documentation

22.3.13 C++ templates 335

%template(pairii) pair<int,int>;

In Lua:

> p = example.pairii(3,4)
> print(p.first,p.second)
3 4

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter. Some more complicated examples will appear later.

22.3.14 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
 ...
 T *operator−>();
 ...
}

Then, if you have a class like this,

class Foo {
public:
 int x;
 int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)
...
p−>x = 3; // Foo::x
int y = p−>bar(); // Foo::bar

To wrap this, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate SmartPtr using
template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Lua, everything should just "work":

> p = example.CreateFoo() −− Create a smart−pointer somehow
> p.x = 3 −− Foo::x
> print(p:bar()) −− Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

> f = p:__deref__() −− Returns underlying Foo *

22.4 Details on the Lua binding

In the previous section, a high−level view of Lua wrapping was presented. Obviously a lot of stuff happens behind the scenes to
make this happen. This section will explain some of the low−level details on how this is achieved.

SWIG−1.3 Documentation

22.3.14 C++ Smart Pointers 336

If you just want to use SWIG and don't care how it works, then stop reading here. This is going into the guts of the code and how
it works. Its mainly for people who need to know whats going on within the code.

22.4.1 Binding global data into the module.

Assuming that you had some global data that you wanted to share between C and Lua. How does SWIG do it?

%module example;
extern double Foo;

SWIG will effectively generate the pair of functions

void Foo_set(double);
double Foo_get();

At initialisation time, it will then add to the interpreter a table called 'example', which represents the module. It will then add all its
functions to the module. But it also adds a metatable to this table, which has two functions (__index and __newindex) as well
as two tables (.get and .set) The following Lua code will show these hidden features.

> print(example)
table: 003F8F90
> m=getmetatable(example)
> table.foreach(m,print)
.set table: 003F9088
.get table: 003F9038
__index function: 003F8FE0
__newindex function: 003F8FF8
> g=m['.get']
> table.foreach(g,print)
Foo function: 003FAFD8
>

The .get and .set tables are lookups connecting the variable name 'Foo' to the accessor/mutator functions (Foo_set,Foo_get)

The Lua equivalent of the code for the __index and __newindex looks a bit like this

function __index(mod,name)
 local g=getmetatable(mod)['.get'] −− gets the table
 if not g then return nil end
 local f=g[name] −− looks for the function
 −− calls it & returns the value
 if type(f)=="function" then return f() end
 return nil
end

function __newindex(mod,name,value)
 local s=getmetatable(mod)['.set'] −− gets the table
 if not s then return end
 local f=s[name] −− looks for the function
 −− calls it to set the value
 if type(f)=="function" then f(value) end
end

That way when you call 'a=example.Foo', the interpreter looks at the table 'example' sees that there is no field 'Foo' and calls
__index. This will in turn check in '.get' table and find the existence of 'Foo' and then return the value of the C function call
'Foo_get()'. Similarly for the code 'example.Foo=10', the interpreter will check the table, then call the __newindex which will
then check the '.set' table and call the C function 'Foo_set(10)'.

SWIG−1.3 Documentation

22.4 Details on the Lua binding 337

22.4.2 Userdata and Metatables

As mentioned earlier, classes and structures, are all held as pointer, using the Lua 'userdata' structure. This structure is actually a
pointer to a C structure 'swig_lua_userdata', which contains the pointer to the data, a pointer to the swig_type_info (an internal
SWIG struct) and a flag which marks if the object is to be disposed of when the interpreter no longer needs it. The actual
accessing of the object is done via the metatable attached to this userdata.

The metatable is a Lua 5.0 feature (which is also why SWIG cannot wrap Lua 4.0). Its a table which holds a list of functions,
operators and attributes. This is what gives the userdata the feeling that it is a real object and not just a hunk of memory.

Given a class

%module excpp;

class Point
{
public:
 int x,y;
 Point(){x=y=0;}
 ~Point(){}
 virtual void Print(){printf("Point @%p (%d,%d)\n",this,x,y);}
};

SWIG will create a module excpp, with all the various function inside. However to allow the intuitive use of the userdata is also
creates up a set of metatables. As seen in the above section on global variables, use of the metatables allows for wrappers to be
used intuitively. To save effort, the code creates one metatable per class and stores it inside Lua's registry. Then when an new
object is instantiated, the metatable is found in the registry and the userdata associated to the metatable. Currently derived classes
make a complete copy of the base classes table and then add on their own additional function.

Some of the internals can be seen by looking at a classes metatable.

> p=excpp.Point()
> print(p)
userdata: 003FDB28
> m=getmetatable(p)
> table.foreach(m,print)
.type Point
__gc function: 003FB6C8
__newindex function: 003FB6B0
__index function: 003FB698
.get table: 003FB4D8
.set table: 003FB500
.fn table: 003FB528

The '.type' attribute is the string which is returned from a call to swig_type(). The '.get' and '.set' tables work in a similar manner to
the modules, the main difference is the '.fn' table which also holds all the member functions. (The '__gc' function is the classes
destructor function)

The Lua equivalent of the code for enabling functions looks a little like this

function __index(obj,name)
 local m=getmetatable(obj) −− gets the metatable
 if not m then return nil end
 local g=m['.get'] −− gets the attribute table
 if not g then return nil end
 local f=g[name] −− looks for the get_attribute function
 −− calls it & returns the value
 if type(f)=="function" then return f() end
 −− ok, so it not an attribute, maybe its a function
 local fn=m['.fn'] −− gets the function table
 if not fn then return nil end
 local f=fn[name] −− looks for the function

SWIG−1.3 Documentation

22.4.2 Userdata and Metatables 338

 −− if found the fn then return the function
 −− so the interpreter can call it
 if type(f)=="function" then return f end
 return nil
end

So when 'p:Print()' is called, the __index looks on the object metatable for a 'Print' attribute, then looks for a 'Print' function. When
it finds the function, it returns the function, and then interpreter can call 'Point_Print(p)'

In theory, you can play with this usertable & add new features, but remember that it is a shared table between all instances of one
class, and you could very easily corrupt the functions in all the instances.

Note: Both the opaque structures (like the FILE*) and normal wrappered classes/structs use the same 'swig_lua_userdata'
structure. Though the opaque structures has do not have a metatable attached, or any information on how to dispose of them when
the interpreter has finished with them.

Note: Operator overloads are basically done in the same way, by adding functions such as '__add' & '__call' to the classes
metatable. The current implementation is a bit rough as it will add any member function beginning with '__' into the metatable
too, assuming its an operator overload.

22.4.3 Memory management

Lua is very helpful with the memory management. The 'swig_lua_userdata' is fully managed by the interpreter itself. This means
that neither the C code nor the Lua code can damage it. Once a piece of userdata has no references to it, it is not instantly
collected, but will be collected when Lua deems is necessary. (You can force collection by calling the Lua function
collectgarbage()). Once the userdata is about to be free'ed, the interpreter will check the userdata for a metatable and for a
function '__gc'. If this exists this is called. For all complete types (ie normal wrappered classes & structs) this should exist. The
'__gc' function will check the 'swig_lua_userdata' to check for the 'own' field and if this is true (which is will be for all owned
data's) it will then call the destructor on the pointer.

It is currently not recommended to edit this field or add some user code, to change the behaviour. Though for those who wish to
try, here is where to look.

It is also currently not possible to change the ownership flag on the data (unlike most other scripting languages, Lua does not
permit access to the data from within the interpreter)

SWIG−1.3 Documentation

22.4.3 Memory management 339

23 SWIG and Modula−3
Overview

Why not scripting ?♦
Why Modula−3 ?♦
Why C / C++ ?♦
Why SWIG ?♦

•

Conception
Interfaces to C libraries♦
Interfaces to C++ libraries♦

•

Preliminaries
Compilers♦
Additional Commandline Options♦

•

Modula−3 typemaps
Inputs and outputs♦
Subranges, Enumerations, Sets♦
Objects♦
Imports♦
Exceptions♦
Example♦

•

More hints to the generator
Features♦
Pragmas♦

•

Remarks•

This chapter describes SWIG's support of Modula−3. You should be familiar with the basics of SWIG, especially typemaps.

23.1 Overview

The Modula−3 support is very basic and highly experimental! Many features are still not designed satisfyingly and I need more
discussion about the odds and ends. Don't rely on any feature, incompatible changes are likely in the future! The Modula−3
generator was already useful for interfacing to the libraries

PLPlot1.
FFTW .2.

I took some more time to explain why I think it's right what I'm doing. So the introduction got a bit longer than it should ... ;−)

23.1.1 Why not scripting ?

SWIG started as wrapper from the fast compiled languages C and C++ to high level scripting languages like Python. Although
scripting languages are designed to make programming life easier by hiding machine internals from the programmer there are
several aspects of todays scripting languages that are unfavourable in my opinion.

Besides C, C++, Cluster (a Modula derivate for Amiga computers) I evaluated several scripting like languages in the past:
Different dialects of BASIC, Perl, ARexx (a variant of Rexx for Amiga computers), shell scripts. I found them too inconsistent,
too weak in distinguishing types, too weak in encapsulating pieces of code. Eventually I have started several projects in Python
because of the fine syntax. But when projects became larger I lost the track. I got convinced that one can not have maintainable
code in a language that is not statically typed. In fact the main advantages of scripting languages e.g. matching regular
expressions, complex built−in datatypes like lists, dictionaries, are not advantages of the language itself but can be provided by
function libraries.

23 SWIG and Modula−3 340

http://www.m3.org/
http://www.elegosoft.com/cgi-bin/cvsweb.cgi/cm3/m3-libs/plplot/
http://www.elegosoft.com/cgi-bin/cvsweb.cgi/cm3/m3-libs/fftw/

23.1.2 Why Modula−3 ?

Modula−3 is a compiler language in the tradition of Niklaus Wirth's Modula 2, which is in turn a successor of the popular Pascal.
I have chosen Modula−3 because of its logical syntax, strong modularization, the type system which is very detailed for machine
types compared to other languages. Of course it supports all of the modern games like exceptions, objects, garbage collection,
threads. While C++ programmers must control three languages, namely the preprocessor, C and ++, Modula−3 is made in one go
and the language definition is really compact.

On the one hand Modula−3 can be safe (but probably less efficient) in normal modules while providing much static and dynamic
safety. On the other hand you can write efficient but less safe code in the style of C within UNSAFE modules.

Unfortunately Modula's safety and strength requires more writing than scripting languages do. Today if I want to safe characters I
prefer Haskell (similar to OCAML) − it's statically typed, too.

23.1.3 Why C / C++ ?

Although it is no problem to write Modula−3 programs that performs as fast as C most libraries are not written in Modula−3 but
in C. Fortunately the binary interface of most function libraries can be addressed by Modula−3. Even more fortunately even
non−C libraries may provide C header files. This is where SWIG becomes helpful.

23.1.4 Why SWIG ?

The C headers and the possibility to interface to C libraries still leaves the work for you to write Modula−3 interfaces to them. To
make things comfortable you will also need wrappers that convert between high−level features of Modula−3 (garbage collecting,
exceptions) and the low level of the C libraries.

SWIG converts C headers to Modula−3 interfaces for you. You could call the C functions without loss of efficiency but it won't
be joy because you could not pass TEXTs or open arrays and you would have to process error return codes rather then exceptions.
But using some typemaps SWIG will also generate wrappers that bring the whole Modula−3 comfort to you. If the library API is
ill designed writing appropriate typemaps can be still time−consuming. E.g. C programmers are very creative to work−around
missing data types like (real) enumerations and sets. You should turn such work−arounds back to the Modula−3 way otherwise
you lose static safety and consistency.

But you have still a problem: C library interfaces are often ill. They lack for certain information because C compilers wouldn't
care about. You should integrate detailed type information by adding typedefs and consts and you should persuade the C
library programmer to add this information to his interface. Only this way other language users can benefit from your work and
only this way you can easily update your interfaces when a new library version is released. You will realise that writing good
SWIG interfaces is very costly and it will only amortise when considering evolving libraries.

Without SWIG you would probably never consider to call C++ libraries from Modula−3. But with SWIG this is worth a
consideration. SWIG can write C wrappers to C++ functions and object methods that may throw exceptions. In fact it breaks
down C++ libraries to C interfaces which can be in turn called from Modula−3. To make it complete you can hide the C interface
with Modula−3 classes and exceptions.

Although SWIG does the best it can do it can only serve as a one−way strategy. That means you can use C++ libraries with
Modula−3 (even with call back functions), but it's certainly not possible to smoothly integrate Modula−3 code into a C / C++
project.

23.2 Conception

23.2.1 Interfaces to C libraries

Modula−3 has an integrated support for calling C functions. This is also extensively used by the standard Modula−3 libraries to
call OS functions. The Modula−3 part of SWIG and the corresponding SWIG library modula3.swg contain code that uses these
features. Because of the built−in support there is no need for calling the SWIG kernel to generate wrappers written in C. All

SWIG−1.3 Documentation

23.1.2 Why Modula−3 ? 341

conversion and argument checking can be done in Modula−3 and the interfacing is quite efficient. All you have to do is to write
pieces of Modula−3 code that SWIG puts together.

C library support integrated in Modula−3

Pragma <* EXTERNAL
*>

Precedes a declaration of a PROCEDURE that is implemented in an external library instead of a
Modula−3 module.

Pragma <* CALLBACK
*>

Precedes a declaration of a PROCEDURE that should be called by external library code.

Module Ctypes Contains Modula−3 types that match some basic C types.

Module M3toC Contains routines that convert between Modula−3's TEXT type and C's char * type.
In each run of SWIG the Modula−3 part generates several files:

Module name
scheme

Identifier for
%insert

Description

ModuleRaw.i3 m3rawintf
Declaration of types that are equivalent to those of the C library, EXTERNAL
procedures as interface to the C library functions

ModuleRaw.m3 m3rawimpl Almost empty.

Module.i3 m3wrapintf Declaration of comfortable wrappers to the C library functions.

Module.m3 m3wrapimpl
Implementation of the wrappers that convert between Modula−3 and C types,
check for validity of values, hand−over resource management to the garbage
collector using WeakRefs and raises exceptions.

m3makefile m3makefile

Add the modules above to the Modula−3 project and specify the name of the
Modula−3 wrapper library to be generated. Today I'm not sure if it is a good idea
to create a m3makefile in each run, because SWIG must be started for each
Modula−3 module it creates. Thus the m3makefile is overwritten each time. :−(

Here's a scheme of how the function calls to Modula−3 wrappers are redirected to C library functions:

Modula−3 wrapper
Module.i3

generated by Modula−3 part of SWIG

|
v

Modula−3 interface to C
ModuleRaw.i3

generated by Modula−3 part of SWIG
−−> C library

I have still no good conception how one can split C library interfaces into type oriented interfaces. A Module in Modula−3
represents an Abstract DataType (or call it a static classes, i.e. a class without virtual methods). E.g. if you have a principal type,
say Database, it is good Modula−3 style to set up one Module with the name Database where the database type is declared
with the name T and where all functions are declared that operates on it.

The normal operation of SWIG is to generate a fixed set of files per call. To generate multiple modules one has to write one
SWIG interface (different SWIG interfaces can share common data) per module. Identifiers belonging to a different module may
ignored (%ignore) and the principal type must be renamed (%typemap).

23.2.2 Interfaces to C++ libraries

Interfaces to C++ files are much more complicated and there are some more design decisions that are not made, yet. Modula−3
has no support for C++ functions but C++ compilers should support generating C++ functions with a C interface.

Here's a scheme of how the function calls to Modula−3 wrappers a redirected to C library functions:

C++ library

SWIG−1.3 Documentation

23.2.1 Interfaces to C libraries 342

Modula−3 wrapper
Module.i3

generated by Modula−3 part of SWIG

|
v

^
|

Modula−3 interface to C
ModuleRaw.i3

generated by Modula−3 part of SWIG
−−>

C interface to C++
module_wrap.cxx

generated by the SWIG core
Wrapping C++ libraries arises additional problems:

Is it sensible to wrap C++ classes with Modula−3 classes?•
How to find the wrapping Modula−3 class for a class pointer that is returned by a C++ routine?•
How to deal with multiple inheritance which was neglected for Modula−3 for good reasons?•
Is it possible to sub−class C++ classes with Modula−3 code? This issue is addressed by directors, a feature that was
experimentally added to some Language modules like Java and Python.

•

How to manage storage with the garbage collector of Modula−3? Support for %newobject and
%typemap(newfree) isn't implemented, yet. What's about resources that are managed by the garbage collector but
shall be passed back to the storage management of the C++ library? This is a general issue which is not solved in a
satisfying fashion as far as I know.

•

How to turn C++ exceptions into Modula−3 exceptions? There's also no support for %exception, yet.•

Be warned: There is no C++ library I wrote a SWIG interface for, so I'm not sure if this is possible or sensible, yet.

23.3 Preliminaries

23.3.1 Compilers

There are different Modula−3 compilers around: cm3, pm3, ezm3, Klagenfurth Modula−3, Cambridge Modula−3. SWIG itself
does not contain compiler specific code but the library file modula3.swg may do so. For testing examples I use Critical Mass
cm3.

23.3.2 Additional Commandline Options

There are some experimental command line options that prevent SWIG from generating interface files. Instead files are emitted
that may assist you when writing SWIG interface files.

Modula−3 specific
options

Description

−generateconst
<file>

Disable generation of interfaces and wrappers. Instead write code for computing numeric values of constants
to the specified file.
C code may contain several constant definitions written as preprocessor macros. Other language modules of
SWIG use compute−once−use−readonly variables or functions to wrap such definitions. All of them can
invoke C code dynamically for computing the macro values. But if one wants to turn them into Modula−3
integer constants, enumerations or set types, the values of these expressions has to be known statically.
Although definitions like (1 << FLAG_MAXIMIZEWINDOW) must be considered as good C style they are
hard to convert to Modula−3 since the value computation can use every feature of C.
Thus I implemented these switch to extract all constant definitions and write a C program that output the
values of them. It works for numeric constants only and treats all of them as double. Future versions may
generate a C++ program that can detect the type of the macros by overloaded output functions. Then strings
can also be processed.

−generaterename
<file>

Disable generation of interfaces and wrappers. Instead generate suggestions for %rename.
C libraries use a naming style that is neither homogenous nor similar to that of Modula−3. C function names
often contain a prefix denoting the library and some name components separated by underscores or
capitalization changes. To get library interfaces that are really Modula−3 like you should rename the

SWIG−1.3 Documentation

23.2.2 Interfaces to C++ libraries 343

function names with the %rename directive. This switch outputs a list of such directives with a name
suggestion generated by a simple heuristic.

−generatetypemap
<file>

Disable generation of interfaces and wrappers. Instead generate templates for some basic typemaps.

23.4 Modula−3 typemaps

23.4.1 Inputs and outputs

Each C procedure has a bunch of inputs and outputs. Inputs are passed as function arguments, outputs are updated referential
arguments and the function value.

Each C type can have several typemaps that apply only in case if a type is used for an input argument, for an output argument, or
for a return value. A further typemap may specify the direction that is used for certain parameters. I have chosen this separation in
order to be able to write general typemaps for the typemap library modula3.swg . In the library code the final usage of the type
is not known. Using separate typemaps for each possible use allows appropriate definitions for each case. If these pre−definitions
are fine then the direction of the function parameter is the only hint the user must give.

The typemaps specific to Modula−3 have a common name scheme: A typemap name starts with "m3", followed by "raw" or
"wrap" depending on whether it controls the generation of the ModuleRaw.i3 or the Module.i3, respectively. It follows an "in"
for typemaps applied to input argument, "out" for output arguments, "arg" for all kind of arguments, "ret" for returned values.

The main task of SWIG is to build wrapper function, i.e. functions that convert values between C and Modula−3 and call the
corresponding C function. Modula−3 wrapper functions generated by SWIG consist of the following parts:

Generate PROCEDURE signature.•
Declare local variables.•
Convert input values from Modula−3 to C.•
Check for input value integrity.•
Call the C function.•
Check returned values, e.g. error codes.•
Convert and write back values into Modula−3 records.•
Free temporary storage.•
Return values.•

Typemap Example Description

m3wrapargvar $1: INTEGER := $1_name;
Declaration of some variables needed for temporary
results.

m3wrapargconst$1 = "$1_name";
Declaration of some constant, maybe for debug
purposes.

m3wrapargraw ORD($1_name)
The expression that should be passed as argument to
the raw Modula−3 interface function.

m3wrapargdir out
Referential arguments can be used for input, output,
update. ???

m3wrapinmode READONLY
One of Modula−3 parameter modes VALUE (or
empty), VAR, READONLY

m3wrapinname New name of the input argument.

m3wrapintype Modula−3 type of the input argument.

m3wrapindefault Default value of the input argument

m3wrapinconv $1 := M3toC.SharedTtoS($1_name);
Statement for converting the Modula−3 input value to
C compliant value.

m3wrapincheck
IF Text.Length($1_name) > 10 THEN
RAISE E("str too long"); END;

Check the integrity of the input value.

SWIG−1.3 Documentation

23.3.2 Additional Commandline Options 344

m3wrapoutname
Name of the RECORD field to be used for returning
multiple values. This applies to referential output
arguments that shall be turned into return values.

m3wrapouttype
Type of the value that is returned instead of a
referential output argument.

m3wrapoutconv

m3wrapoutcheck

m3wrapretraw

m3wrapretname

m3wraprettype

m3wrapretvar

m3wrapretconv

m3wrapretcheck

m3wrapfreearg M3toC.FreeSharedS(str,arg1);

Free resources that were temporarily used in the
wrapper. Since this step should never be skipped,
SWIG will put it in the FINALLY branch of a TRY
.. FINALLY structure.

23.4.2 Subranges, Enumerations, Sets

Subranges, enumerations, and sets are machine oriented types that make Modula very strong and expressive compared with the
type systems of many other languages.

Subranges are used for statically restricted choices of integers.•
Enumerations are used for named choices.•
Sets are commonly used for flag (option) sets.•

Using them extensively makes Modula code very safe and readable.

C supports enumerations, too, but they are not as safe as the ones of Modula. Thus they are abused for many things: For named
choices, for integer constant definitions, for sets. To make it complete every way of defining a value in C (#define, const
int, enum) is somewhere used for defining something that must be handled completely different in Modula−3 (INTEGER,
enumeration, SET).

I played around with several %features and %pragmas that split the task up into converting the C bit patterns (integer or bit
set) into Modula−3 bit patterns (integer or bit set) and change the type as requested. See the corresponding example. This is quite
messy and not satisfying. So the best what you can currently do is to rewrite constant definitions manually. Though this is a
tedious work that I'd like to automate.

23.4.3 Objects

Declarations of C++ classes are mapped to OBJECT types while it is tried to retain the access hierarchy "public − protected −
private" using partial revelation. Though the implementation is not really useful, yet.

23.4.4 Imports

Pieces of Modula−3 code provided by typemaps may contain identifiers from foreign modules. If the typemap m3wrapinconv
for blah * contains code using the function M3toC.SharedTtoS you may declare
%typemap("m3wrapinconv:import") blah * %{M3toC%}. Then the module M3toC is imported if the
m3wrapinconv typemap for blah * is used at least once. Use %typemap("m3wrapinconv:import") blah *
%{MyConversions AS M3toC%} if you need module renaming. Unqualified import is not supported.

It is cumbersome to add this typemap to each piece of Modula−3 code. It is especially useful when writing general typemaps for
the typemap library modula3.swg . For a monolithic module you might be better off if you add the imports directly:

SWIG−1.3 Documentation

23.4.1 Inputs and outputs 345

%insert(m3rawintf) %{
IMPORT M3toC;
%}

23.4.5 Exceptions

Modula−3 provides another possibility of an output of a function: exceptions.

Any piece of Modula−3 code that SWIG inserts due to a typemap can raise an exception. This way you can also convert an error
code from a C function into a Modula−3 exception.

The RAISES clause is controlled by typemaps with the throws extension. If the typemap m3wrapinconv for blah *
contains code that may raise the exceptions OSError.E you should declare %typemap("m3wrapinconv:throws")
blah * %{OSError.E%}.

23.4.6 Example

The generation of wrappers in Modula−3 needs very fine control to take advantage of the language features. Here is an example of
a generated wrapper where almost everything is generated by a typemap:

 (* %relabel m3wrapinmode m3wrapinname m3wrapintype m3wrapindefault *)
 PROCEDURE Name (READONLY str : TEXT := "")
 (* m3wrapoutcheck:throws *)
 : NameResult RAISES {E} =
 CONST
 arg1name = "str"; (* m3wrapargconst *)
 VAR
 arg0 : C.char_star; (* m3wrapretvar *)
 arg1 : C.char_star; (* m3wrapargvar *)
 arg2 : C.int;
 result : RECORD
 (*m3wrapretname m3wraprettype*)
 unixPath : TEXT;
 (*m3wrapoutname m3wrapouttype*)
 checksum : CARDINAL;
 END;
 BEGIN
 TRY
 arg1 := M3toC.SharedTtoS(str); (* m3wrapinconv *)
 IF Text.Length(arg1) > 10 THEN (* m3wrapincheck *)
 RAISE E("str too long");
 END;
 (* m3wrapretraw m3wrapargraw *)
 arg0 := MessyToUnix (arg1, arg2);
 result.unixPath := M3toC.CopyStoT(arg0); (* m3wrapretconv *)
 result.checksum := arg2; (* m3wrapoutconv *)
 IF result.checksum = 0 THEN (* m3wrapoutcheck *)
 RAISE E("invalid checksum");
 END;
 FINALLY
 M3toC.FreeSharedS(str,arg1); (* m3wrapfreearg *)
 END;
 END Name;

23.5 More hints to the generator

23.5.1 Features

Feature Example Description

multiretval %m3multiretval get_box; or
%feature("modula3:multiretval")

Let the denoted function return a RECORD
rather than a plain value. This RECORD

SWIG−1.3 Documentation

23.4.4 Imports 346

get_box; contains all arguments with "out" direction
including the return value of the C function (if
there is one). If more than one argument is
"out" then the function must have the
multiretval feature activated, but it is
explicitly requested from the user to prevent
mistakes.

constnumeric
%constnumeric(12) twelve; or
%feature("constnumeric","12") twelve;

This feature can be used to tell Modula−3's
back−end of SWIG the value of an identifier.
This is necessary in the cases where it was
defined by a non−trivial C expression. This
feature is used by the −generateconst
option. In future it may be generalized to other
kind of values such as strings.

23.5.2 Pragmas

Pragma Example Description

unsafe
%pragma(modula3)
unsafe="true";

Mark the raw interface modules as UNSAFE. This will be necessary in
many cases.

library
%pragma(modula3)
library="m3fftw";

Specifies the library name for the wrapper library to be created. It
should be distinct from the name of the library to be wrapped.

23.6 Remarks

The Modula−3 part of SWIG doesn't try to generate nicely formatted code. Use m3pp to postprocess the Modula files, it
does a very good job here.

•

SWIG−1.3 Documentation

23.5.1 Features 347

24 SWIG and MzScheme
Creating native MzScheme structures•

This section contains information on SWIG's support of MzScheme.

24.1 Creating native MzScheme structures

Example interface file:

/* define a macro for the struct creation */
%define handle_ptr(TYPE,NAME)
%typemap(argout) TYPE *NAME{
 Scheme_Object *o = SWIG_NewStructFromPtr($1, $*1_mangle);
 SWIG_APPEND_VALUE(o);
}

%typemap(in,numinputs=0) TYPE *NAME (TYPE temp) {
 $1 = &temp;
}
%enddef

/* setup the typemaps for the pointer to an output parameter cntrs */
handle_ptr(struct diag_cntrs, cntrs);

Then in scheme, you can use regular struct access procedures like

 ; suppose a function created a struct foo as
 ; (define foo (make−diag−cntrs (#x1 #x2 #x3) (make−inspector))
 ; Then you can do
 (format "0x~x" (diag−cntrs−field1 foo))
 (format "0x~x" (diag−cntrs−field2 foo))
 ;etc...

That's pretty much it. It works with nested structs as well.

24 SWIG and MzScheme 348

25 SWIG and Ocaml
Preliminaries

Running SWIG♦
Compiling the code♦
The camlp4 module♦
Using your module♦
Compilation problems and compiling with C++♦

•

The low−level Ocaml/C interface
The generated module♦
Enums

Enum typing in Ocaml◊
♦

Arrays
Simple types of bounded arrays◊
Complex and unbounded arrays◊
Using an object◊
Example typemap for a function taking float * and int◊

♦

C++ Classes
STL vector and string Example◊
C++ Class Example◊
Compiling the example◊
Sample Session◊

♦

Director Classes
Director Introduction◊
Overriding Methods in Ocaml◊
Director Usage Example◊
Creating director objects◊
Typemaps for directors,directorin, directorout, directorargout◊
directorin typemap◊
directorout typemap◊
directorargout typemap◊

♦

Exceptions♦

•

This chapter describes SWIG's support of Ocaml. Ocaml is a relatively recent addition to the ML family, and is a recent addition
to SWIG. It's the second compiled, typed language to be added. Ocaml has widely acknowledged benefits for engineers, mostly
derived from a sophistocated type system, compile−time checking which eliminates several classes of common programming
errors, and good native performance. While all of this is wonderful, there are well−written C and C++ libraries that Ocaml users
will want to take advantage of as part of their arsenal (such as SSL and gdbm), as well as their own mature C and C++ code.
SWIG allows this code to be used in a natural, type−safe way with Ocaml, by providing the necessary, but repetetive glue code
which creates and uses Ocaml values to communicate with C and C++ code. In addition, SWIG also produces the needed Ocaml
source that binds variants, functions, classes, etc.

If you're not familiar with the Objective Caml language, you can visit The Ocaml Website.

25.1 Preliminaries

SWIG 1.3 works with Ocaml 3.04 and above. Given the choice, you should use the latest stable release. The SWIG Ocaml module
has been tested on Linux (x86,PPC,Sparc) and Cygwin on Windows. The best way to determine whether your system will work is
to compile the examples and test−suite which come with SWIG. You can do this by running make check from the SWIG root
directory after installing SWIG. The Ocaml module has been tested using the system's dynamic linking (the usual −lxxx against
libxxx.so, as well as with Gerd Stolpmann's Dl package . The ocaml_dynamic and ocaml_dynamic_cpp targets in the file
Examples/Makefile illustrate how to compile and link SWIG modules that will be loaded dynamically. This has only been tested
on Linux so far.

25 SWIG and Ocaml 349

http://www.ocaml.org/
http://www.ocaml-programming.de/packages/documentation/dl/

25.1.1 Running SWIG

The basics of getting a SWIG Ocaml module up and running can be seen from one of SWIG's example Makefiles, but is also
described here. To build an Ocaml module, run SWIG using the −ocaml option.

%swig −ocaml example.i

This will produce 3 files. The file example_wrap.c contains all of the C code needed to build an Ocaml module. To build the
module, you will compile the file example_wrap.c with ocamlc or ocamlopt to create the needed .o file. You will need to
compile the resulting .ml and .mli files as well, and do the final link with −custom (not needed for native link).

25.1.2 Compiling the code

The O'Caml SWIG module now requires you to compile a module (Swig) separately. In addition to aggregating common SWIG
functionality, the Swig module contains the data structure that represents C/C++ values. This allows easier data sharing between
modules if two or more are combined, because the type of each SWIG'ed module's c_obj is derived from Swig.c_obj_t. This also
allows SWIG to acquire new conversions painlessly, as well as giving the user more freedom with respect to custom typing. Use
ocamlc or ocamlopt to compile your SWIG interface like:

% swig −ocaml −co swig.mli ; swig −ocaml co swig.ml
% ocamlc −c swig.mli ; ocamlc −c swig.ml
% ocamlc −c −ccopt "−I/usr/include/foo" example_wrap.c
% ocamlc −c example.mli
% ocamlc −c example.ml

ocamlc is aware of .c files and knows how to handle them. Unfortunately, it does not know about .cxx, .cc, or .cpp files, so when
SWIG is invoked in C++ mode, you must:

% cp example_wrap.cxx example_wrap.cxx.c
% ocamlc −c ... −ccopt −xc++ example_wrap.cxx.c
% ...

25.1.3 The camlp4 module

The camlp4 module (swigp4.ml −> swigp4.cmo) contains a simple rewriter which makes C++ code blend more seamlessly with
objective caml code. It's use is optional, but encouraged. The source file is included in the Lib/ocaml directory of the SWIG
source distribution. You can checkout this file with "swig −ocaml −co swigp4.ml". You should compile the file with
"ocamlc −I `camlp4 −where` −pp 'camlp4o pa_extend.cmo q_MLast.cmo' −c swigp4.ml"

The basic principle of the module is to recognize certain non−caml expressions and convert them for use with C++ code as
interfaced by SWIG. The camlp4 module is written to work with generated SWIG interfaces, and probably isn't great to use with
anything else.

Here are the main rewriting rules:

Input Rewritten to

f'(...) as in
atoi'("0") or
_exit'(0)

f(C_list [...]) as in
atoi (C_list [C_string "0"]) or
_exit (C_list [C_int 0])

object −> method (...)
(invoke object) "method" (C_list
[...])

object 'binop argument as in
a '+= b

(invoke object) "+=" argument
as in

SWIG−1.3 Documentation

25.1.1 Running SWIG 350

(invoke a) "+=" b

Note that because camlp4 always recognizes << and >>, they are replaced by lsl and lsr in operator
names.

'unop object as in
'! a

(invoke a) "!" C_void

Smart pointer access like this
object '−> method (args)

(invoke (invoke object "−>"
C_void))

Invoke syntax
object . '(...)

(invoke object) "()" (C_list [...])

Array syntax
object '[10]

(invoke object) "[]" (C_int 10)

Assignment syntax
let a = '10 and b = '"foo" and c = '1.0 and d = 'true

let a = C_int 10 and b = C_string
"foo" and c = C_double 1.0 and
d = C_bool true

Cast syntax
let a = _atoi '("2") as int
let b = (getenv "PATH") to string
This works for int, string, float, bool

let a = get_int (_atoi (C_string
"2"))
let b = C_string (getenv
"PATH")

25.1.4 Using your module

You can test−drive your module by building a toplevel ocaml interpreter. Consult the ocaml manual for details.

When linking any ocaml bytecode with your module, use the −custom option to build your functions into the primitive list. This
option is not needed when you build native code.

25.1.5 Compilation problems and compiling with C++

As mentioned above, .cxx files need special handling to be compiled with ocamlc. Other than that, C code that uses class as a
non−keyword, and C code that is too liberal with pointer types may not compile under the C++ compiler. Most code meant to be
compiled as C++ will not have problems.

25.2 The low−level Ocaml/C interface

In order to provide access to overloaded functions, and provide sensible outputs from them, all C entites are represented as
members of the c_obj type:

In the code as seen by the typemap writer, there is a value, swig_result, that always contains the current return data. It is a list, and
must be appended with the caml_list_append function, or with functions and macros provided by objective caml.

type c_obj =
 C_void
 | C_bool of bool
 | C_char of char
 | C_uchar of char
 | C_short of int
 | C_ushort of int
 | C_int of int
 | C_uint of int32
 | C_int32 of int32
 | C_int64 of int64
 | C_float of float
 | C_double of float
 | C_ptr of int64 * int64
 | C_array of c_obj array
 | C_list of c_obj list
 | C_obj of (string −> c_obj −> c_obj)

SWIG−1.3 Documentation

25.1.3 The camlp4 module 351

 | C_string of string
 | C_enum of c_enum_t

A few functions exist which generate and return these:

caml_ptr_val receives a c_obj and returns a void *. This should be used for all pointer purposes.•
caml_long_val receives a c_obj and returns a long. This should be used for most integral purposes.•
caml_val_ptr receives a void * and returns a c_obj.•
caml_val_bool receives a C int and returns a c_obj representing it's bool value.•
caml_val_(u)?(char|short|int|long|float|double) receives an appropriate C value and returns a c_obj representing it.•
caml_val_string receives a char * and returns a string value.•
caml_val_string_len receives a char * and a length and returns a string value.•
caml_val_obj receives a void * and an object type and returns a C_obj, which contains a closure giving method access.•

Because of this style, a typemap can return any kind of value it wants from a function. This enables out typemaps and inout
typemaps to work well. The one thing to remember about outputting values is that you must append them to the return list with
swig_result = caml_list_append(swig_result,v).

 This function will return a new list that has your element appended. Upon return to caml space, the fnhelper function beautifies
the result. A list containing a single item degrades to only that item (i.e. [C_int 3] −> C_int 3), and a list containing more than
one item is wrapped in C_list (i.e. [C_char 'a' ; C_char 'b' −> C_list [C_char 'a' ; C_char b]). This is in order to make return
values easier to handle when functions have only one return value, such as constructors, and operators. In addition, string,
pointer, and object values are interchangable with respect to caml_ptr_val, so you can allocate memory as caml strings and still
use the resulting pointers for C purposes, even using them to construct simple objects on. Note, though, that foreign C++ code
does not respect the garbage collector, although the SWIG interface does.

The wild card type that you can use in lots of different ways is C_obj. It allows you to wrap any type of thing you like as an object
using the same mechanism that the ocaml module does. When evaluated in caml_ptr_val, the returned value is the result of a call
to the object's "&" operator, taken as a pointer.

You should only construct values using objective caml, or using the functions caml_val_* functions provided as static functions to
a SWIG ocaml module, as well as the caml_list_* functions. These functions provide everything a typemap needs to produce
values. In addition, value items pass through directly, but you must make your own type signature for a function that uses value in
this way.

25.2.1 The generated module

The SWIG %module directive specifies the name of the Ocaml module to be generated. If you specified `%module example',
then your Ocaml code will be accessible in the module Example. The module name is always capitalized as is the ocaml
convention. Note that you must not use any Ocaml keyword to name your module. Remember that the keywords are not the same
as the C++ ones.

You can introduce extra code into the output wherever you like with SWIG. These are the places you can introduce code:

"header" This code is inserted near the beginning of the C wrapper file, before any function definitions.

"wrapper" This code is inserted in the function definition section.

"runtime" This code is inserted near the end of the C wrapper file.

"mli" This code is inserted into the caml interface file. Special signatures should be inserted here.

"ml"
This code is inserted in the caml code defining the interface to your C code. Special caml code, as well as any
initialization which should run when the module is loaded may be inserted here.

"classtemplate"The "classtemplate" place is special because it describes the output SWIG will generate for class definitions.

SWIG−1.3 Documentation

25.2 The low−level Ocaml/C interface 352

25.2.2 Enums

SWIG will wrap enumerations as polymorphic variants in the output Ocaml code, as above in C_enum. In order to support all
C++−style uses of enums, the function int_to_enum and enum_to_int are provided for ocaml code to produce and consume these
values as integers. Other than that, correct uses of enums will not have a problem. Since enum labels may overlap between
enums, the enum_to_int and int_to_enum functions take an enum type label as an argument. Example:

%module enum_test
%{
enum c_enum_type { a = 1, b, c = 4, d = 8 };
%}
enum c_enum_type { a = 1, b, c = 4, d = 8 };

The output mli contains:

type c_enum_type = [
 `unknown
| `c_enum_type
]
type c_enum_tag = [
 `int of int
| `a
| `b
| `c
| `d
]
val int_to_enum c_enum_type −> int −> c_obj
val enum_to_int c_enum_type −> c_obj −> c_obj

So it's possible to do this:

bash−2.05a$ ocamlmktop −custom enum_test_wrap.o enum_test.cmo −o enum_test_top
bash−2.05a$./enum_test_top
 Objective Caml version 3.04

open Enum_test ;;
let x = C_enum `a ;;
val x : Enum_test.c_obj = C_enum `a
enum_to_int `c_enum_type x ;;
− : Enum_test.c_obj = C_int 1
int_to_enum `c_enum_type 4 ;;
− : Enum_test.c_obj = C_enum `c

25.2.2.1 Enum typing in Ocaml

The ocaml SWIG module now has support for loading and using multiple SWIG modules at the same time. This enhances
modularity, but presents problems when used with a language which assumes that each module's types are complete at compile
time. In order to achieve total soundness enum types are now isolated per−module. The type issue matters when values are shared
between functions imported from different modules. You must convert values to master values using the swig_val function before
sharing them with another module.

25.2.3 Arrays

25.2.3.1 Simple types of bounded arrays

SWIG has support for array types, but you generally will need to provide a typemap to handle them. You can currently roll your
own, or expand some of the macros provided (but not included by default) with the SWIG distribution.

By including "carray.i", you will get access to some macros that help you create typemaps for array types fairly easily.

SWIG−1.3 Documentation

25.2.2 Enums 353

%make_simple_array_typemap is the easiest way to get access to arrays of simple types with known bounds in your code,
but this only works for arrays whose bounds are completely specified.

25.2.3.2 Complex and unbounded arrays

Unfortunately, unbounded arrays and pointers can't be handled in a completely general way by SWIG, because the end−condition
of such an array can't be predicted. In some cases, it will be by consent (e.g. an array of four or more chars), sometimes by explicit
length (char *buffer, int len), and sometimes by sentinel value (0,−1,etc.). SWIG can't predict which of these methods will be used
in the array, so you have to specify it for yourself in the form of a typemap.

25.2.3.3 Using an object

It's possible to use C++ to your advantage by creating a simple object that provides access to your array. This may be more
desirable in some cases, since the object can provide bounds checking, etc., that prevents crashes.

Consider writing an object when the ending condition of your array is complex, such as using a required centinel, etc.

25.2.3.4 Example typemap for a function taking float * and int

This is a simple example in typemap for an array of float, where the length of the array is specified as an extra parameter. Other
such typemaps will work similarly. In the example, the function printfloats is called with a float array, and specified length. The
actual length reported in the len argument is the length of the array passed from ocaml, making passing an array into this type of
function convenient.

tarray.i
%module tarray
%{
#include <stdio.h>

void printfloats(float *tab, int len) {
 int i;

 for(i = 0; i < len; i++) {
 printf("%f ", tab[i]);
 }

 printf("\n");
}
%}

%typemap(in) (float *tab, int len) {
 int i;
 /* $*1_type */
 $2 = caml_array_len($input);
 $1 = ($*1_type *)malloc($2 * sizeof(float));
 for(i = 0; i < $2; i++) {
 $1[i] = caml_double_val(caml_array_nth($input,i));
 }
}

void printfloats(float *tab, int len);

Sample Run
open Tarray ;;
_printfloats (C_array [| C_double 1.0 ; C_double 3.0 ; C_double 5.6666 |]) ;;
1.000000 3.000000 5.666600
− : Tarray.c_obj = C_void

SWIG−1.3 Documentation

25.2.3.1 Simple types of bounded arrays 354

25.2.4 C++ Classes

C++ classes, along with structs and unions are represented by C_obj (string −> c_obj −> c_obj) wrapped closures. These objects
contain a method list, and a type, which allow them to be used like C++ objects. When passed into typemaps that use pointers,
they degrade to pointers through their "&" method. Every method an object has is represented as a string in the object's method
table, and each method table exists in memory only once. In addition to any other operators an object might have, certain builtin
ones are provided by SWIG: (all of these take no arguments (C_void))

"~" Delete this object

"&" Return an ordinary C_ptr value representing this object's address

"sizeof" If enabled with ("sizeof"="1") on the module node, return the object's size in char.

":methods" Returns a list of strings containing the names of the methods this object contains

":classof" Returns the name of the class this object belongs to.

":parents" Returns a list of all direct parent classes which have been wrapped by SWIG.

"::[parent−class]"
Returns a view of the object as the indicated parent class. This is mainly used internally by the
SWIG module, but may be useful to client programs.

"[member−variable]"
Each member variable is wrapped as a method with an optional parameter. Called with one
argument, the member variable is set to the value of the argument. With zero arguments, the value
is returned.

Note that this string belongs to the wrapper object, and not the underlying pointer, so using create_[x]_from_ptr alters the returned
value for the same object.

25.2.4.1 STL vector and string Example

Standard typemaps are now provided for STL vector and string. More are in the works. STL strings are passed just like normal
strings, and returned as strings. STL string references don't mutate the original string, (which might be surprising), because Ocaml
strings are mutable but have fixed length. Instead, use multiple returns, as in the argout_ref example.

example.i
%module example
%{
#include "example.h"
%}

%include stl.i

namespace std {
 %template(StringVector) std::vector < string >;
};

%include example.h

This example is in Examples/ocaml/stl

Since there's a makefile in that directory, the example is easy to build.

Here's a sample transcript of an interactive session using a string vector after making a toplevel (make toplevel). This example
uses the camlp4 module.

bash−2.05a$./example_top
 Objective Caml version 3.06

 Camlp4 Parsing version 3.06

open Swig ;;
open Example ;;
let x = new_StringVector '() ;;
val x : Example.c_obj = C_obj <fun>
x −> ":methods" () ;;

SWIG−1.3 Documentation

25.2.4 C++ Classes 355

− : Example.c_obj =
C_list
 [C_string "nop"; C_string "size"; C_string "empty"; C_string "clear";
 C_string "push_back"; C_string "[]"; C_string "="; C_string "set";
 C_string "~"; C_string "&"; C_string ":parents"; C_string ":classof";
 C_string ":methods"]
x −> push_back ("foo") ;;
− : Example.c_obj = C_void
x −> push_back ("bar") ;;
− : Example.c_obj = C_void
x −> push_back ("baz") ;;
− : Example.c_obj = C_void
x '[1] ;;
− : Example.c_obj = C_string "bar"
x −> set (1,"spam") ;;
− : Example.c_obj = C_void
x '[1] ;;
− : Example.c_obj = C_string "spam"
for i = 0 to (x −> size() as int) − 1 do
 print_endline ((x '[i to int]) as string)
 done ;;
foo
bar
baz
− : unit = ()

25.2.4.2 C++ Class Example

Here's a simple example using Trolltech's Qt Library:

qt.i
%module qt
%{
#include <qapplication.h>
#include <qpushbutton.h>
%}
class QApplication {
public:
 QApplication(int argc, char **argv);
 void setMainWidget(QWidget *widget);
 void exec();
};

class QPushButton {
public:
 QPushButton(char *str, QWidget *w);
 void resize(int x, int y);
 void show();
};

25.2.4.3 Compiling the example

bash−2.05a$ QTPATH=/your/qt/path
bash−2.05a$ for file in swig.mli swig.ml swigp4.ml ; do swig −ocaml −co $file ; done
bash−2.05a$ ocamlc −c swig.mli ; ocamlc −c swig.ml
bash−2.05a$ ocamlc −I `camlp4 −where` −pp "camlp4o pa_extend.cmo q_MLast.cmo" −c swigp4.ml
bash−2.05a$ swig −ocaml −c++ −I$QTPATH/include qt.i
bash−2.05a$ mv qt_wrap.cxx qt_wrap.c
bash−2.05a$ ocamlc −c −ccopt −xc++ −ccopt −g −g −ccopt −I$QTPATH/include qt_wrap.c
bash−2.05a$ ocamlc −c qt.mli
bash−2.05a$ ocamlc −c qt.ml
bash−2.05a$ ocamlmktop −custom swig.cmo −I `camlp4 −where` \
 camlp4o.cma swigp4.cmo qt_wrap.o qt.cmo −o qt_top −cclib \
 −L$QTPATH/lib −cclib −lqt

SWIG−1.3 Documentation

25.2.4.1 STL vector and string Example 356

25.2.4.4 Sample Session

bash−2.05a$./qt_top
 Objective Caml version 3.06

 Camlp4 Parsing version 3.06

open Swig ;;
open Qt ;;
let a = new_QApplication '(0,0) ;;
val a : Qt.c_obj = C_obj <fun>
let hello = new_QPushButton '("hi",0) ;;
val hello : Qt.c_obj = C_obj <fun>
hello −> resize (100,30) ;;
− : Qt.c_obj = C_void
hello −> show () ;;
− : Qt.c_obj = C_void
a −> exec () ;;

Assuming you have a working installation of QT, you will see a window containing the string "hi" in a button.

25.2.5 Director Classes

25.2.5.1 Director Introduction

Director classes are classes which allow Ocaml code to override the public methods of a C++ object. This facility allows the user
to use C++ libraries that require a derived class to provide application specific functionality in the context of an application or
utility framework.

You can turn on director classes by using an optional module argument like this:

%module(directors="1")

...

// Turn on the director class for a specific class like this:
%feature("director")
class foo {
 ...
};

25.2.5.2 Overriding Methods in Ocaml

Because the Ocaml language module treats C++ method calls as calls to a certain function, all you need to do is to define the
function that will handle the method calls in terms of the public methods of the object, and any other relevant information. The
function new_derived_object uses a stub class to call your methods in place of the ones provided by the underlying
implemenation. The object you receive is the underlying object, so you are free to call any methods you want from within your
derived method. Note that calls to the underlying object do not invoke Ocaml code. You need to handle that yourself.

new_derived_object receives your function, the function that creates the underlying object, and any constructor arguments,
and provides an object that you can use in any usual way. When C++ code calls one of the object's methods, the object invokes
the Ocaml function as if it had been invoked from Ocaml, allowing any method definitions to override the C++ ones.

In this example, I'll examine the objective caml code involved in providing an overloaded class. This example is contained in
Examples/ocaml/shapes.

25.2.5.3 Director Usage Example

example_prog.ml
open Swig

SWIG−1.3 Documentation

25.2.4.4 Sample Session 357

open Example

...

let triangle_class pts ob meth args =
 match meth with
 "cover" −>
 (match args with
 C_list [x_arg ; y_arg] −>
 let xa = x_arg as float
 and ya = y_arg as float in
 (point_in_triangle pts xa ya) to bool
 | _ −> raise (Failure "cover needs two double arguments."))
 | _ −> (invoke ob) meth args ;;

let triangle =
 new_derived_object
 new_shape
 (triangle_class ((0.0,0.0),(0.5,1.0),(1.0,0.0)))
 '() ;;

let _ = _draw_shape_coverage '(triangle, C_int 60, C_int 20) ;;

This is the meat of what you need to do. The actual "class" definition containing the overloaded method is defined in the function
triangle_class. This is a lot like the class definitions emitted by SWIG, if you look at example.ml, which is generated when SWIG
consumes example.i. Basically, you are given the arguments as a c_obj and the method name as a string, and you must intercept
the method you are interested in and provide whatever return value you need. Bear in mind that the underlying C++ code needs
the right return type, or an exception will be thrown. This exception will generally be Failure, or NotObject. You must call other
ocaml methods that you rely on yourself. Due to the way directors are implemented, method calls on your object from with ocaml
code will always invoke C++ methods even if they are overridden in ocaml.

In the example, the draw_shape_coverage function plots the indicated number of points as either covered (x) or uncovered ()
between 0 and 1 on the X and Y axes. Your shape implementation can provide any coverage map it likes, as long as it responds to
the "cover" method call with a boolean return (the underlying method returns bool). This might allow a tricky shape
implementation, such as a boolean combination, to be expressed in a more effortless style in ocaml, while leaving the "engine"
part of the program in C++.

25.2.5.4 Creating director objects

The definition of the actual object triangle can be described this way:

let triangle =
 new_derived_object
 new_shape
 (triangle_class ((0.0,0.0),(0.5,1.0),(1.0,0.0)))
 '()

The first argument to new_derived_object, new_shape is the method which returns a shape instance. This function will be
invoked with the third argument will be appended to the argument list [C_void]. In the example, the actual argument list is sent
as (C_list [C_void ; C_void]). The augmented constructor for a director class needs the first argument to determine whether it is
being constructed as a derived object, or as an object of the indicated type only (in this case shape). The Second argument is a
closure that will be added to the final C_obj.

The actual object passed to the self parameter of the director object will be a C_director_core, containing a c_obj option ref and a
c_obj. The c_obj provided is the same object that will be returned from new_derived object, that is, the object exposing the
overridden methods. The other part is an option ref that will have its value extracted before becoming the ob parameter of your
class closure. This ref will contain None if the C++ object underlying is ever destroyed, and will consequently trigger an
exception when any method is called on the object after that point (the actual raise is from an inner function used by
new_derived_object, and throws NotObject). This prevents a deleted C++ object from causing a core dump, as long as the object
is destroyed properly.

SWIG−1.3 Documentation

25.2.5.3 Director Usage Example 358

25.2.5.5 Typemaps for directors, directorin, directorout, directorargout

Special typemaps exist for use with directors, the directorin, directorout, directorargout are used in place of
in, out, argout typemaps, except that their direction is reversed. They provide for you to provide argout values, as well as
a function return value in the same way you provide function arguments, and to receive arguments the same way you normally
receive function returns.

25.2.5.6 directorin typemap

The directorin typemap is used when you will receive arguments from a call made by C++ code to you, therefore, values will
be translated from C++ to ocaml. You must provide some valid C_obj value. This is the value your ocaml code receives when you
are called. In general, a simple directorin typemap can use the same body as a simple out typemap.

25.2.5.7 directorout typemap

The directorout typemap is used when you will send an argument from your code back to the C++ caller. That is; directorout
specifies a function return conversion. You can usually use the same body as an in typemap for the same type, except when there
are special requirements for object ownership, etc.

25.2.5.8 directorargout typemap

C++ allows function arguments which are by pointer (*) and by reference (&) to receive a value from the called function, as well
as sending one there. Sometimes, this is the main purpose of the argument given. directorargout typemaps allow your caml
code to emulate this by specifying additional return values to be put into the output parameters. The SWIG ocaml module is a bit
loose in order to make code eaiser to write. In this case, your return to the caller must be a list containing the normal function
return first, followed by any argout values in order. These argout values will be taken from the list and assigned to the values to be
returned to C++ through directorargout typemaps. In the event that you don't specify all of the necessary values, integral values
will read zero, and struct or object returns have undefined results.

25.2.6 Exceptions

Catching exceptions is now supported using SWIG's %exception feature. A simple but not too useful example is provided by the
throw_exception testcase in Examples/test−suite. You can provide your own exceptions, too.

SWIG−1.3 Documentation

25.2.5.5 Typemaps for directors, directorin, directorout, directorargout 359

26 SWIG and Perl5
Overview•
Preliminaries

Getting the right header files♦
Compiling a dynamic module♦
Building a dynamic module with MakeMaker♦
Building a static version of Perl♦
Using the module♦
Compilation problems and compiling with C++♦
Compiling for 64−bit platforms♦

•

Building Perl Extensions under Windows
Running SWIG from Developer Studio♦
Using other compilers♦

•

The low−level interface
Functions♦
Global variables♦
Constants♦
Pointers♦
Structures♦
C++ classes♦
C++ classes and type−checking♦
C++ overloaded functions♦
Operators♦
Modules and packages♦

•

Input and output parameters•
Exception handling•
Remapping datatypes with typemaps

A simple typemap example♦
Perl5 typemaps♦
Typemap variables♦
Useful functions♦

•

Typemap Examples
Converting a Perl5 array to a char **♦
Return values♦
Returning values from arguments♦
Accessing array structure members♦
Turning Perl references into C pointers♦
Pointer handling♦

•

Proxy classes
Preliminaries♦
Structure and class wrappers♦
Object Ownership♦
Nested Objects♦
Proxy Functions♦
Inheritance♦
Modifying the proxy methods♦

•

Adding additional Perl code•

Caution: This chapter is under repair!

This chapter describes SWIG's support of Perl5. Although the Perl5 module is one of the earliest SWIG modules, it has continued
to evolve and has been improved greatly with the help of SWIG users. For the best results, it is recommended that SWIG be used
with Perl5.003 or later. Earlier versions are problematic and SWIG generated extensions may not compile or run correctly.

26 SWIG and Perl5 360

26.1 Overview

To build Perl extension modules, SWIG uses a layered approach. At the lowest level, simple procedural wrappers are generated
for functions, classes, methods, and other declarations in the input file. Then, for structures and classes, an optional collection of
Perl proxy classes can be generated in order to provide a more natural object oriented Perl interface. These proxy classes simply
build upon the low−level interface.

In describing the Perl interface, this chapter begins by covering the essentials. First, the problem of configuration, compiling, and
installing Perl modules is discussed. Next, the low−level procedural interface is presented. Finally, proxy classes are described.
Advanced customization features, typemaps, and other options are found near the end of the chapter.

26.2 Preliminaries

To build a Perl5 module, run Swig using the −perl option as follows :

swig −perl example.i

This produces two files. The first file, example_wrap.c contains all of the C code needed to build a Perl5 module. The second
file, example.pm contains supporting Perl code needed to properly load the module.

To build the module, you will need to compile the file example_wrap.c and link it with the rest of your program.

26.2.1 Getting the right header files

In order to compile, SWIG extensions need the following Perl5 header files :

#include "Extern.h"
#include "perl.h"
#include "XSUB.h"

These are typically located in a directory like this

/usr/lib/perl5/5.00503/i386−linux/CORE

The SWIG configuration script automatically tries to locate this directory so that it can compile examples. However, if you need
to find out where the directory is loaded, an easy way to find out is to run Perl itself.

% perl −e 'use Config; print $Config{archlib};'
/usr/lib/perl5/5.00503/i386−linux

26.2.2 Compiling a dynamic module

The preferred approach to building an extension module is to compile it into a shared object file or DLL. To do this, you will need
to compile your program using comands like this (shown for Linux):

$ swig −perl example.i
% gcc example.c
% gcc −c example_wrap.c −I/usr/lib/perl5/5.00503/i386−linux/CORE −Dbool=char
% gcc −shared example.o example_wrap.o −o example.so

The exact compiler options vary from platform to platform. SWIG tries to guess the right options when it is installed. Therefore,
you may want to start with one of the examples in the SWIG/Examples/perl5 directory. If that doesn't work, you will need to
read the man−pages for your compiler and linker to get the right set of options. You might also check the SWIG Wiki for
additional information.

SWIG−1.3 Documentation

26.1 Overview 361

http://www.dabeaz.com/cgi-bin/wiki.pl

When linking the module, the name of the shared object file must match the module name used in the SWIG interface file. If you
used `%module example', then the target should be named `example.so', `example.sl', or the appropriate dynamic
module name on your system.

26.2.3 Building a dynamic module with MakeMaker

It is also possible to use Perl to build dynamically loadable modules for you using the MakeMaker utility. To do this, write a Perl
script such as the following :

File : Makefile.PL
use ExtUtils::MakeMaker;
WriteMakefile(
 `NAME' => `example', # Name of package
 `LIBS' => [`−lm'], # Name of custom libraries
 `OBJECT' => `example.o example_wrap.o' # Object files
);

Now, to build a module, simply follow these steps :

% perl Makefile.PL
% make
% make install

If you are planning to distribute a SWIG−generated module, this is the preferred approach to compilation. More information about
MakeMaker can be found in "Programming Perl, 2nd ed." by Larry Wall, Tom Christiansen, and Randal Schwartz.

26.2.4 Building a static version of Perl

If you machine does not support dynamic loading or if you've tried to use it without success, you can build a new version of the
Perl interpreter with your SWIG extensions added to it. To build a static extension, you first need to invoke SWIG as follows :

% swig −perl −static example.i

By default SWIG includes code for dynamic loading, but the −static option takes it out.

Next, you will need to supply a main() function that initializes your extension and starts the Perl interpreter. While, this may
sound daunting, SWIG can do this for you automatically as follows :

%module example

%inline %{
extern double My_variable;
extern int fact(int);
%}

// Include code for rebuilding Perl
%include perlmain.i

The same thing can be accomplished by running SWIG as follows :

% swig −perl −static −lperlmain.i example.i

The permain.i file inserts Perl's main() function into the wrapper code and automatically initializes the SWIG generated
module. If you just want to make a quick a dirty module, this may be the easiest way. By default, the perlmain.i code does
not initialize any other Perl extensions. If you need to use other packages, you will need to modify it appropriately. You can do
this by just copying perlmain.i out of the SWIG library, placing it in your own directory, and modifying it to suit your
purposes.

SWIG−1.3 Documentation

26.2.2 Compiling a dynamic module 362

To build your new Perl executable, follow the exact same procedure as for a dynamic module, but change the link line to
something like this:

% gcc example.o example_wrap.o −L/usr/lib/perl5/5.00503/i386−linux/CORE \
 −lperl −lsocket −lnsl −lm −o myperl

This will produce a new version of Perl called myperl. It should be functionality identical to Perl with your C/C++ extension
added to it. Depending on your machine, you may need to link with additional libraries such as −lsocket, −lnsl, −ldl,
etc.

26.2.5 Using the module

To use the module, simply use the Perl use statement. If all goes well, you will be able to do this:

$ perl
use example;
print example::fact(4),"\n";
24

A common error received by first−time users is the following:

use example;
Can't locate example.pm in @INC (@INC contains: /usr/lib/perl5/5.00503/i386−lin
ux /usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386−linux /usr/lib/pe
rl5/site_perl/5.005 .) at − line 1.
BEGIN failed−−compilation aborted at − line 1.

This error is almost caused when the name of the shared object file you created doesn't match the module name you specified with
the %module directive.

A somewhat related, but slightly different error is this:

use example;
Can't find 'boot_example' symbol in ./example.so
 at − line 1
BEGIN failed−−compilation aborted at − line 1.

This error is generated because Perl can't locate the module bootstrap function in the SWIG extension module. This could be
caused by a mismatch between the module name and the shared library name. However, another possible cause is forgetting to
link the SWIG−generated wrapper code with the rest of your application when you linked the extension module.

Another common error is the following:

use example;
Can't load './example.so' for module example: ./example.so:
undefined symbol: Foo at /usr/lib/perl5/5.00503/i386−linux/DynaLoader.pm line 169.

 at − line 1
BEGIN failed−−compilation aborted at − line 1.

This error usually indicates that you forgot to include some object files or libraries in the linking of the shared library file. Make
sure you compile both the SWIG wrapper file and your original program into a shared library file. Make sure you pass all of the
required libraries to the linker.

Sometimes unresolved symbols occur because a wrapper has been created for a function that doesn't actually exist in a library.
This usually occurs when a header file includes a declaration for a function that was never actually implemented or it was
removed from a library without updating the header file. To fix this, you can either edit the SWIG input file to remove the
offending declaration or you can use the %ignore directive to ignore the declaration. Better yet, update the header file so that it
doesn't have an undefined declaration.

SWIG−1.3 Documentation

26.2.4 Building a static version of Perl 363

Finally, suppose that your extension module is linked with another library like this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
 −o example.so

If the foo library is compiled as a shared library, you might get the following error when you try to use your module:

use example;
Can't load './example.so' for module example: libfoo.so: cannot open shared object file:
No such file or directory at /usr/lib/perl5/5.00503/i386−linux/DynaLoader.pm line 169.

 at − line 1
BEGIN failed−−compilation aborted at − line 1.
>>>

This error is generated because the dynamic linker can't locate the libfoo.so library. When shared libraries are loaded, the
system normally only checks a few standard locations such as /usr/lib and /usr/local/lib. To get the loader to look in
other locations, there are several things you can do. First, you can recompile your extension module with extra path information.
For example, on Linux you can do this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
−Xlinker −rpath /home/beazley/projects/lib \

 −o example.so

Alternatively, you can set the LD_LIBRARY_PATH environment variable to include the directory with your shared libraries. If
setting LD_LIBRARY_PATH, be aware that setting this variable can introduce a noticeable performance impact on all other
applications that you run. To set it only for Perl, you might want to do this instead:

$ env LD_LIBRARY_PATH=/home/beazley/projects/lib perl

Finally, you can use a command such as ldconfig (Linux) or crle (Solaris) to add additional search paths to the default
system configuration (this requires root access and you will need to read the man pages).

26.2.6 Compilation problems and compiling with C++

Compilation of C++ extensions has traditionally been a tricky problem. Since the Perl interpreter is written in C, you need to take
steps to make sure C++ is properly initialized and that modules are compiled correctly.

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

% swig −c++ −perl example.i
% g++ −c example.cxx
% g++ −c example_wrap.cxx −I/usr/lib/perl5/5.00503/i386−linux/CORE
% g++ −shared example.o example_wrap.o −o example.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

% swig −c++ −perl example.i
% g++ −c example.cxx
% g++ −c example_wrap.cxx −I/usr/lib/perl5/5.00503/i386−linux/CORE
% g++ −shared example.o example_wrap.o −o example.so −lCrun

Of course, the names of the extra libraries are completely non−portable−−−you will probably need to do some experimentation.

Another possible compile problem comes from recent versions of Perl (5.8.0) and the GNU tools. If you see errors having to do
with _crypt_struct, that means _GNU_SOURCE is not defined and it needs to be. So you should compile the wrapper like:

% g++ −c example_wrap.cxx −I/usr/lib/perl/5.8.0/CORE −D_GNU_SOURCE

SWIG−1.3 Documentation

26.2.5 Using the module 364

−D_GNU_SOURCE is also included in the Perl ccflags, which can be found by running

% perl −e 'use Config; print $Config{ccflags};'

So you could also compile the wrapper like

% g++ −c example_wrap.cxx −I/usr/lib/perl/5.8.0/CORE \
`perl −e 'use Config; print $Config{ccflags}'`

Sometimes people have suggested that it is necessary to relink the Perl interpreter using the C++ compiler to make C++ extension
modules work. In the experience of this author, this has never actually appeared to be necessary on most platforms. Relinking the
interpreter with C++ really only includes the special run−time libraries described above−−−as long as you link your extension
modules with these libraries, it should not be necessary to rebuild Perl.

If you aren't entirely sure about the linking of a C++ extension, you might look at an existing C++ program. On many Unix
machines, the ldd command will list library dependencies. This should give you some clues about what you might have to
include when you link your extension module. For example, notice the first line of output here:

$ ldd swig
libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)

 libm.so.6 => /lib/libm.so.6 (0x4005b000)
 libc.so.6 => /lib/libc.so.6 (0x40077000)
 /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)
$

If linking wasn't enough of a problem, another major complication of C++ is that it does not define any sort of standard for binary
linking of libraries. This means that C++ code compiled by different compilers will not link together properly as libraries nor is
the memory layout of classes and data structures implemented in any kind of portable manner. In a monolithic C++ program, this
problem may be unnoticed. However, in Perl, it is possible for different extension modules to be compiled with different C++
compilers. As long as these modules are self−contained, this probably won't matter. However, if these modules start sharing data,
you will need to take steps to avoid segmentation faults and other erratic program behavior. Also, be aware that certain C++
features, especially RTTI, can behave strangely when working with multiple modules.

It should be noted that you may get alot of error messages about the `bool' datatype when compiling a C++ Perl module. If you
experience this problem, you can try the following :

Use −DHAS_BOOL when compiling the SWIG wrapper code•
Or use −Dbool=char when compiling.•

Finally, recent versions of Perl (5.8.0) have namespace conflict problems. Perl defines a bunch of short macros to make the Perl
API function names shorter. For example, in /usr/lib/perl/5.8.0/CORE/embed.h there is a line:

#define do_open Perl_do_open

The problem is, in the <iostream> header from GNU libstdc++v3 there is a private function named do_open. If <iostream> is
included after the perl headers, then the Perl macro causes the iostream do_open to be renamed, which causes compile errors.
Hopefully in the future Perl will support a PERL_NO_SHORT_NAMES flag, but for now the only solution is to undef the macros
that conflict. Lib/perl5/noembed.h in the SWIG source has a list of macros that are known to conflict with either standard headers
or other headers. But if you get macro type conflicts from other macros not included in Lib/perl5/noembed.h while compiling the
wrapper, you will have to find the macro that conflicts and add an #undef into the .i file. Please report any conflicting macros you
find to swig−user mailing list.

26.2.7 Compiling for 64−bit platforms

On platforms that support 64−bit applications (Solaris, Irix, etc.), special care is required when building extension modules. On
these machines, 64−bit applications are compiled and linked using a different set of compiler/linker options. In addition, it is not
generally possible to mix 32−bit and 64−bit code together in the same application.

SWIG−1.3 Documentation

26.2.6 Compilation problems and compiling with C++ 365

http://www.swig.org/mail.html

To utilize 64−bits, the Perl executable will need to be recompiled as a 64−bit application. In addition, all libraries, wrapper code,
and every other part of your application will need to be compiled for 64−bits. If you plan to use other third−party extension
modules, they will also have to be recompiled as 64−bit extensions.

If you are wrapping commercial software for which you have no source code, you will be forced to use the same linking standard
as used by that software. This may prevent the use of 64−bit extensions. It may also introduce problems on platforms that support
more than one linking standard (e.g., −o32 and −n32 on Irix).

26.3 Building Perl Extensions under Windows

Building a SWIG extension to Perl under Windows is roughly similar to the process used with Unix. Normally, you will want to
produce a DLL that can be loaded into the Perl interpreter. This section assumes you are using SWIG with Microsoft Visual C++
although the procedure may be similar with other compilers.

26.3.1 Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked as a custom build option. The
process roughly requires these steps :

Open up a new workspace and use the AppWizard to select a DLL project.•
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer studio will keep a reference to it
around.

•

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.•
Enter "SWIG" in the description field.•
Enter "swig −perl5 −o $(ProjDir)\$(InputName)_wrap.cxx $(InputPath)" in the "Build
command(s) field"

•

Enter "$(ProjDir)\$(InputName)_wrap.cxx" in the "Output files(s) field".•
Next, select the settings for the entire project and go to "C++:Preprocessor". Add the include directories for your Perl 5
installation under "Additional include directories".

•

Define the symbols WIN32 and MSWIN32 under preprocessor options. If using the ActiveWare port, also define the
symbol PERL_OBJECT. Note that all extensions to the ActiveWare port must be compiled with the C++ compiler since
Perl has been encapsulated in a C++ class.

•

Finally, select the settings for the entire project and go to "Link Options". Add the Perl library file to your link libraries.
For example "perl.lib". Also, set the name of the output file to match the name of your Perl module (ie. example.dll).

•

Build your project.•

Now, assuming you made it this far, SWIG will be automatically invoked when you build your project. Any changes made to the
interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file. To run your new Perl
extension, simply run Perl and use the use command as normal. For example :

DOS > perl
use example;
$a = example::fact(4);
print "$a\n";

26.3.2 Using other compilers

SWIG is known to work with Cygwin and may work with other compilers on Windows. For general hints and suggestions refer to
the Windows chapter.

SWIG−1.3 Documentation

26.2.7 Compiling for 64−bit platforms 366

26.4 The low−level interface

At its core, the Perl module uses a simple low−level interface to C function, variables, constants, and classes. This low−level
interface can be used to control your application. However, it is also used to construct more user−friendly proxy classes as
described in the next section.

26.4.1 Functions

C functions are converted into new Perl built−in commands (or subroutines). For example:

%module example
int fact(int a);
...

Now, in Perl:

use example;
$a = &example::fact(2);

26.4.2 Global variables

Global variables are handled using Perl's magic variable mechanism. SWIG generates a pair of functions that intercept read/write
operations and attaches them to a Perl variable with the same name as the C global variable. Thus, an interface like this

%module example;
...
double Spam;
...

is accessed as follows :

use example;
print $example::Spam,"\n";
$example::Spam = $example::Spam + 4
... etc ...

If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can also use the %immutable directive. For example:

%{
extern char *path;
%}
%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled or cleared using %mutable. See the Creatng read−only
variables section for further details.

It is also possible to tag a specific variable as read−only like this:

%{
extern char *path;
%}
%immutable path;
...
...
extern char *path; // Declared later in the input

SWIG−1.3 Documentation

26.4 The low−level interface 367

26.4.3 Constants

Constants are wrapped as read−only Perl variables. For example:

%module example

#define FOO 42

In Perl:

use example;
print $example::FOO,"\n"; # OK
$example::FOO = 2; # Error

26.4.4 Pointers

SWIG represents pointers as blessed references. A blessed reference is the same as a Perl reference except that it has additional
information attached to it indicating what kind of reference it is. That is, if you have a C declaration like this :

Matrix *new_Matrix(int n, int m);

The module returns a value generated as follows:

$ptr = new_Matrix(int n, int m); # Save pointer return result
bless $ptr, "p_Matrix"; # Bless it as a pointer to Matrix

SWIG uses the "blessing" to check the datatype of various pointers. In the event of a mismatch, an error or warning message is
generated.

To check to see if a value is the NULL pointer, use the defined() command :

if (defined($ptr)) {
 print "Not a NULL pointer.";
} else {
 print "Is a NULL pointer.";
}

To create a NULL pointer, you should pass the undef value to a function.

The "value" of a Perl reference is not the same as the underlying C pointer that SWIG wrapper functions return. Suppose that $a
and $b are two references that point to the same C object. In general, $a and $b will be different−−since they are different
references. Thus, it is a mistake to check the equality of $a and $b to check the equality of two C pointers. The correct method to
check equality of C pointers is to dereference them as follows :

if ($$a == $$b) {
 print "a and b point to the same thing in C";
} else {
 print "a and b point to different objects.";
}

As much as you might be inclined to modify a pointer value directly from Perl, don't. Manipulating pointer values is architecture
dependent and could cause your program to crash. Similarly, don't try to manually cast a pointer to a new type by reblessing a
pointer. This may not work like you expect and it is particularly dangerous when casting C++ objects. If you need to cast a pointer
or change its value, consider writing some helper functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {

SWIG−1.3 Documentation

26.4.3 Constants 368

 return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
 return dynamic_cast<Foo*>(b);
}

Foo *IncrFoo(Foo *f, int i) {
 return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return NULL if the conversion can't be performed.

Compatibility Note: In earlier versions, SWIG tried to preserve the same pointer naming conventions as XS and xsubpp. Given
the advancement of the SWIG typesystem and the growing differences between SWIG and XS, this is no longer supported.

26.4.5 Structures

Access to the contents of a structure are provided through a set of low−level accessor functions as described in the "SWIG Basics"
chapter. For example,

struct Vector {
 double x,y,z;
};

gets mapped into the following collection of accessor functions:

struct Vector *new_Vector();
void delete_Vector(Vector *v);
double Vector_x_get(Vector *obj)
void Vector_x_set(Vector *obj, double x)
double Vector_y_get(Vector *obj)
void Vector_y_set(Vector *obj, double y)
double Vector_z_get(Vector *obj)
void Vector_z_set(Vector *obj, double z)

These functions are then used to access structure data from Perl as follows:

$v = example::new_Vector();
print example::Vector_x_get($v),"\n"; # Get x component
example::Vector_x_set($v,7.8); # Change x component

Similar access is provided for unions and the data members of C++ classes.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
 ...
 %immutable;
 int x; /* Read−only members */
 char *name;
 %mutable;
 ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be

SWIG−1.3 Documentation

26.4.4 Pointers 369

released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

Array members are normally wrapped as read−only. For example,

struct Foo {
 int x[50];
};

produces a single accessor function like this:

int *Foo_x_get(Foo *self) {
 return self−>x;
};

If you want to set an array member, you will need to supply a "memberin" typemap described later in this chapter. As a special
case, SWIG does generate code to set array members of type char (allowing you to store a Python string in the structure).

When structure members are wrapped, they are handled as pointers. For example,

struct Foo {
 ...
};

struct Bar {
 Foo f;
};

generates accessor functions such as this:

Foo *Bar_f_get(Bar *b) {
 return &b−>f;
}

void Bar_f_set(Bar *b, Foo *val) {
 b−>f = *val;
}

26.4.6 C++ classes

C++ classes are wrapped by building a set of low level accessor functions. Consider the following class :

class List {
public:
 List();
 ~List();
 int search(char *item);
 void insert(char *item);
 void remove(char *item);
 char *get(int n);
 int length;
static void print(List *l);
};

When wrapped by SWIG, the following functions are created :

List *new_List();
void delete_List(List *l);
int List_search(List *l, char *item);
void List_insert(List *l, char *item);
void List_remove(List *l, char *item);
char *List_get(List *l, int n);
int List_length_get(List *l);
void List_length_set(List *l, int n);

SWIG−1.3 Documentation

26.4.5 Structures 370

void List_print(List *l);

In Perl, these functions are used in a straightforward manner:

use example;
$l = example::new_List();
example::List_insert($l,"Ale");
example::List_insert($l,"Stout");
example::List_insert($l,"Lager")
example::List_print($l)
Lager
Stout
Ale
print example::List_length_get($l),"\n";
3

At this low level, C++ objects are really just typed pointers. Member functions are accessed by calling a C−like wrapper with an
instance pointer as the first argument. Although this interface is fairly primitive, it provides direct access to C++ objects. A higher
level interface using Perl proxy classes can be built using these low−level accessors. This is described shortly.

26.4.7 C++ classes and type−checking

The SWIG type−checker is fully aware of C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

and a function

void spam(Foo *f);

then the function spam() accepts Foo * or a pointer to any class derived from Foo. If necesssary, the type−checker also adjusts
the value of the pointer (as is necessary when multiple inheritance is used).

26.4.8 C++ overloaded functions

If you have a C++ program with overloaded functions or methods, you will need to disambiguate those methods using %rename.
For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
...
void foo(int); // Becomes 'foo_i'
void foo(char *c); // Stays 'foo' (not renamed)

class Spam {
public:
 void foo(int); // Becomes 'foo_i'
 void foo(double); // Becomes 'foo_d'
 ...
};

Now, in Perl, the methods are accessed as follows:

use example;

SWIG−1.3 Documentation

26.4.6 C++ classes 371

example::foo_i(3);
$s = example::new_Spam();
example::Spam_foo_i($s,3);
example::Spam_foo_d($s,3.14);

Please refer to the "SWIG Basics" chapter for more information.

26.4.9 Operators

As of version 1.3.27 SWIG automatically renames the most common C++ operators, and maps them into the perl module with the
proper 'use overload ...' so you don't need to do any work.

The following C++ operators are currently supported by the Perl module:

operator++•
operator−−•
operator+•
operator−•
operator*•
operator/•
operator==•
operator!=•
operator%•
operator>•
operator<•
operator and•
operator or•

26.4.10 Modules and packages

When you create a SWIG extension, everything gets placed into a single Perl module. The name of the module is determined by
the %module directive. To use the module, do the following :

% perl5
use example; # load the example module
print example::fact(4),"\n" # Call a function in it
24

Usually, a module consists of a collection of code that is contained within a single file. A package, on the other hand, is the Perl
equivalent of a namespace. A package is alot like a module, except that it is independent of files. Any number of files may be part
of the same package−−or a package may be broken up into a collection of modules if you prefer to think about it in this way.

SWIG installs its functions into a package with the same name as the module.

Incompatible Change: previous versions of SWIG enabled you to change the name of the package by using the −package option,
this feature has been removed in order to properly support modules that used nested namespaces, e.g. Foo::Bar::Baz. To give your
module a nested namespace simply provide the fully qualified name in your %module directive:

%module "Foo::Bar::Baz"

NOTE: the double quotes are necessary.

26.5 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {

SWIG−1.3 Documentation

26.4.8 C++ overloaded functions 372

 *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
 return *x+*y;
}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);

In Perl, this allows you to pass simple values. For example:

$a = example::add(3,4);
print "$a\n";
7
$b = example::sub(7,4);
print "$b\n";
3

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
 *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Perl, a mutated parameter shows up as a return value. For example:

$a = example::negate(3);
print "$a\n";
−3

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, along with success code */

SWIG−1.3 Documentation

26.5 Input and output parameters 373

int send_message(char *text, int len, int *success);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *success };
...
int send_message(char *text, int *success);

When used in Perl, the function will return multiple values.

($bytes, $success) = example::send_message("Hello World");

Another common use of multiple return values are in query functions. For example:

void get_dimensions(Matrix *m, int *rows, int *columns);

To wrap this, you might use the following:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, *columns);

Now, in Perl:

($r,$c) = example::get_dimensions($m);

In certain cases, it is possible to treat Perl references as C pointers. To do this, use the REFERENCE typemap. For example:

%module example
%include typemaps.i

void add(int x, int y, int *REFERENCE);

In Perl:

use example;
$c = 0.0;
example::add(3,4,\$c);
print "$c\n";
7

Note: The REFERENCE feature is only currently supported for numeric types (integers and floating point).

26.6 Exception handling

The SWIG %exception directive can be used to create a user−definable exception handler for converting exceptions in your
C/C++ program into Perl exceptions. The chapter on customization features contains more details, but suppose you have a C++
class like the following :

class RangeError {}; // Used for an exception

class DoubleArray {
 private:
 int n;
 double *ptr;
 public:
 // Create a new array of fixed size

SWIG−1.3 Documentation

26.6 Exception handling 374

 DoubleArray(int size) {
 ptr = new double[size];
 n = size;
 }
 // Destroy an array
 ~DoubleArray() {
 delete ptr;
 }
 // Return the length of the array
 int length() {
 return n;
 }

 // Get an item from the array and perform bounds checking.
 double getitem(int i) {
 if ((i >= 0) && (i < n))
 return ptr[i];
 else
 throw RangeError();
 }

 // Set an item in the array and perform bounds checking.
 void setitem(int i, double val) {
 if ((i >= 0) && (i < n))
 ptr[i] = val;
 else {
 throw RangeError();
 }
 }
 };

Since several methods in this class can throw an exception for an out−of−bounds access, you might want to catch this in the Perl
extension by writing the following in an interface file:

%exception {
 try {
 $action
 }
 catch (RangeError) {
 croak("Array index out−of−bounds");
 }
}

class DoubleArray {
...
};

The exception handling code is inserted directly into generated wrapper functions. The $action variable is replaced with the
C/C++ code being executed by the wrapper. When an exception handler is defined, errors can be caught and used to gracefully
generate a Perl error instead of forcing the entire program to terminate with an uncaught error.

As shown, the exception handling code will be added to every wrapper function. Since this is somewhat inefficient. You might
consider refining the exception handler to only apply to specific methods like this:

%exception getitem {
 try {
 $action
 }
 catch (RangeError) {
 croak("Array index out−of−bounds");
 }
}

%exception setitem {
 try {

SWIG−1.3 Documentation

26.6 Exception handling 375

 $action
 }
 catch (RangeError) {
 croak("Array index out−of−bounds");
 }
}

In this case, the exception handler is only attached to methods and functions named getitem and setitem.

If you had a lot of different methods, you can avoid extra typing by using a macro. For example:

%define RANGE_ERROR
{
 try {
 $action
 }
 catch (RangeError) {
 croak("Array index out−of−bounds");
 }
}
%enddef

%exception getitem RANGE_ERROR;
%exception setitem RANGE_ERROR;

Since SWIG's exception handling is user−definable, you are not limited to C++ exception handling. See the chapter on
"Customization features" for more examples.

Compatibility note: In SWIG1.1, exceptions were defined using the older %except directive:

%except(python) {
 try {
 $function
 }
 catch (RangeError) {
 croak("Array index out−of−bounds");
 }
}

This is still supported, but it is deprecated. The newer %exception directive provides the same functionality, but it has
additional capabilities that make it more powerful.

26.7 Remapping datatypes with typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Perl C API as well as the material in the "Typemaps"
chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Perl interface.

26.7.1 A simple typemap example

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Perl to C, you might define a typemap like this:

%module example

%typemap(in) int {
 $1 = (int) SvIV($input);
 printf("Received an integer : %d\n", $1);

SWIG−1.3 Documentation

26.7 Remapping datatypes with typemaps 376

}
...
%inline %{
extern int fact(int n);
%}

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variable prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input object (usually a SV *).

When this example is used in Perl5, it will operate as follows :

use example;
$n = example::fact(6);
print "$n\n";
...

Output :
Received an integer : 6
720

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int n {
 $1 = (int) SvIV($input);
 printf("n = %d\n",$1);
}
%inline %{
typedef int Integer;
extern int fact(Integer n); // Above typemap is applied
%}

It should be noted that the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not
applied to arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, unsigned len) {
 $1 = SvPV($input,$2);
};

int count(char c, char *str, unsigned len);

When a multi−argument typemap is defined, the arguments are always handled as a single Perl object. This allows the function to
be used like this (notice how the length parameter is ommitted):

example::count("e","Hello World");
1
>>>

26.7.2 Perl5 typemaps

The previous section illustrated an "in" typemap for converting Perl objects to C. A variety of different typemap methods are
defined by the Perl module. For example, to convert a C integer back into a Perl object, you might define an "out" typemap like
this:

%typemap(out) int {

SWIG−1.3 Documentation

26.7.1 A simple typemap example 377

 $result = sv_newmortal();
 set_setiv($result, (IV) $1);
 argvi++;
}

The following typemap methods are available:

%typemap(in)

Converts Perl5 object to input function arguments.
%typemap(out)

Converts function return value to a Perl5 value.
%typemap(varin)

Converts a Perl5 object to a global variable.
%typemap(varout)

Converts a global variable to a Perl5 object.
%typemap(freearg)

Cleans up a function argument after a function call
%typemap(argout)

Output argument handling
%typemap(ret)

Clean up return value from a function.
%typemap(memberin)

Setting of C++ member data (all languages).
%typemap(memberout)

Return of C++ member data (all languages).
%typemap(check)

Check value of input parameter.

26.7.3 Typemap variables

Within typemap code, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this is a C local
variable that's supposed to hold an argument value. For output values, this is the raw result that's supposed to be returned to
Perl.

$input

A Perl object holding the value of an argument of variable value.
$result

A Perl object that holds the result to be returned to Perl.
$1_name

The parameter name that was matched.
$1_type

SWIG−1.3 Documentation

26.7.2 Perl5 typemaps 378

The actual C datatype matched by the typemap.
$1_ltype

An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of a C
assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All arguments and
local variables in wrapper functions are declared using this type so that their values can be properly assigned.

$symname

The Perl name of the wrapper function being created.

26.7.4 Useful functions

When writing typemaps, it is necessary to work directly with Perl5 objects. This, unfortunately, can be a daunting task. Consult
the "perlguts" man−page for all of the really ugly details. A short summary of commonly used functions is provided here for
reference. It should be stressed that SWIG can be usef quite effectively without knowing any of these details−−especially now that
there are typemap libraries that can already been written.

Perl Integer Functions

int SvIV(SV *);
void sv_setiv(SV *sv, IV value);
SV *newSViv(IV value);
int SvIOK(SV *);

Perl Floating Point Functions

double SvNV(SV *);
void sv_setnv(SV *, double value);
SV *newSVnv(double value);
int SvNOK(SV *);

Perl String Functions

char *SvPV(SV *, STRLEN len);
void sv_setpv(SV *, char *val);
void sv_setpvn(SV *, char *val, STRLEN len);
SV *newSVpv(char *value, STRLEN len);
int SvPOK(SV *);
void sv_catpv(SV *, char *);
void sv_catpvn(SV *, char *, STRLEN);

Perl References

void sv_setref_pv(SV *, char *, void *ptr);
int sv_isobject(SV *);
SV *SvRV(SV *);
int sv_isa(SV *, char *0;

26.8 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "perl5.swg" and
"typemaps.i" in the SWIG library.

26.8.1 Converting a Perl5 array to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Perl5 array reference to be used as a char ** datatype.

%module argv

SWIG−1.3 Documentation

26.7.3 Typemap variables 379

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
 AV *tempav;
 I32 len;
 int i;
 SV **tv;
 if (!SvROK($input))
 croak("Argument $argnum is not a reference.");
 if (SvTYPE(SvRV($input)) != SVt_PVAV)
 croak("Argument $argnum is not an array.");
 tempav = (AV*)SvRV($input);
 len = av_len(tempav);
 $1 = (char **) malloc((len+2)*sizeof(char *));
 for (i = 0; i <= len; i++) {
 tv = av_fetch(tempav, i, 0);
 $1[i] = (char *) SvPV(*tv,PL_na);
 }
 $1[i] = NULL;
};

// This cleans up the char ** array after the function call
%typemap(freearg) char ** {
 free($1);
}

// Creates a new Perl array and places a NULL−terminated char ** into it
%typemap(out) char ** {
 AV *myav;
 SV **svs;
 int i = 0,len = 0;
 /* Figure out how many elements we have */
 while ($1[len])
 len++;
 svs = (SV **) malloc(len*sizeof(SV *));
 for (i = 0; i < len ; i++) {
 svs[i] = sv_newmortal();
 sv_setpv((SV*)svs[i],$1[i]);
 };
 myav = av_make(len,svs);
 free(svs);
 $result = newRV((SV*)myav);
 sv_2mortal($result);
 argvi++;
}

// Now a few test functions
%inline %{
int print_args(char **argv) {
 int i = 0;
 while (argv[i]) {
 printf("argv[%d] = %s\n", i,argv[i]);
 i++;
 }
 return i;
}

// Returns a char ** list
char **get_args() {
 static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
 return &values[0];
}
%}

When this module is compiled, the wrapped C functions can be used in a Perl script as follows :

use argv;

SWIG−1.3 Documentation

26.8.1 Converting a Perl5 array to a char ** 380

@a = ("Dave", "Mike", "John", "Mary"); # Create an array of strings
argv::print_args(\@a); # Pass it to our C function
$b = argv::get_args(); # Get array of strings from C
print @$b,"\n"; # Print it out

26.8.2 Return values

Return values are placed on the argument stack of each wrapper function. The current value of the argument stack pointer is
contained in a variable argvi. Whenever a new output value is added, it is critical that this value be incremented. For multiple
output values, the final value of argvi should be the total number of output values.

The total number of return values should not exceed the number of input values unless you explicitly extend the argument stack.
This can be done using the EXTEND() macro as in :

%typemap(argout) int *OUTPUT {
 if (argvi >= items) {
 EXTEND(sp,1); /* Extend the stack by 1 object */
 }
 $result = sv_newmortal();
 sv_setiv($target,(IV) *($1));
 argvi++;
}

26.8.3 Returning values from arguments

Sometimes it is desirable for a function to return a value in one of its arguments. This example describes the implementation of
the OUTPUT typemap.

%module return

// This tells SWIG to treat an double * argument with name 'OutDouble' as
// an output value.

%typemap(argout) double *OUTPUT {
 $result = sv_newmortal();
 sv_setnv($result, *$input);
 argvi++; /* Increment return count −− important! */
}

// We don't care what the input value is. Ignore, but set to a temporary variable

%typemap(in,numinputs=0) double *OUTPUT(double junk) {
 $1 = &junk;
}

// Now a function to test it
%{
/* Returns the first two input arguments */
int multout(double a, double b, double *out1, double *out2) {
 *out1 = a;
 *out2 = b;
 return 0;
};
%}

// If we name both parameters OutDouble both will be output

int multout(double a, double b, double *OUTPUT, double *OUTPUT);
...

When this function is called, the output arguments are appended to the stack used to return results. This shows up an array in Perl.
For example :

SWIG−1.3 Documentation

26.8.2 Return values 381

@r = multout(7,13);
print "multout(7,13) = @r\n";
($x,$y) = multout(7,13);

26.8.4 Accessing array structure members

Consider the following data structure :

#define SIZE 8
typedef struct {
 int values[SIZE];
 ...
} Foo;

By default, SWIG doesn't know how to the handle the values structure member it's an array, not a pointer. In this case, SWIG
makes the array member read−only. Reading will simply return a pointer to the first item in the array. To make the member
writable, a "memberin" typemap can be used.

%typemap(memberin) int [SIZE] {
 int i;
 for (i = 0; i < SIZE; i++) {
 $1[i] = $input[i];
 }
}

Whenever a int [SIZE] member is encountered in a structure or class, this typemap provides a safe mechanism for setting its
value.

As in the previous example, the typemap can be generalized for any dimension. For example:

%typemap(memberin) int [ANY] {
 int i;
 for (i = 0; i < $1_dim0; i++) {
 $1[i] = $input[i];
 }
}

When setting structure members, the input object is always assumed to be a C array of values that have already been converted
from the target language. Because of this, the memberin typemap is almost always combined with the use of an "in" typemap.
For example, the "in" typemap in the previous section would be used to convert an int[] array to C whereas the "memberin"
typemap would be used to copy the converted array into a C data structure.

26.8.5 Turning Perl references into C pointers

A frequent confusion on the SWIG mailing list is errors caused by the mixing of Perl references and C pointers. For example,
suppose you have a C function that modifies its arguments like this :

void add(double a, double b, double *c) {
 *c = a + b;
}

A common misinterpretation of this function is the following Perl script :

Perl script
$a = 3.5;
$b = 7.5;
$c = 0.0; # Output value
add($a,$b,\$c); # Place result in c (Except that it doesn't work)

SWIG−1.3 Documentation

26.8.3 Returning values from arguments 382

To make this work with a reference, you can use a typemap such as this:

%typemap(in) double * (double dvalue) {
 SV* tempsv;
 if (!SvROK($input)) {
 croak("expected a reference\n");
 }
 tempsv = SvRV($input);
 if ((!SvNOK(tempsv)) && (!SvIOK(tempsv))) {
 croak("expected a double reference\n");
 }
 dvalue = SvNV(tempsv);
 $1 = &dvalue;
}

%typemap(argout) double * {
 SV *tempsv;
 tempsv = SvRV($input);
 sv_setnv(tempsv, *$1);
}

Now, if you place this before the add function, you can do this :

$a = 3.5;
$b = 7.5;
$c = 0.0;
add($a,$b,\$c); # Now it works!
print "$c\n";

26.8.6 Pointer handling

Occasionally, it might be necessary to convert pointer values that have been stored using the SWIG typed−pointer representation.
To convert a pointer from Perl to C, the following function is used:

int SWIG_ConvertPtr(SV *obj, void **ptr, swig_type_info *ty, int flags)

Converts a Perl object obj to a C pointer. The result of the conversion is placed into the pointer located at ptr. ty is a
SWIG type descriptor structure. flags is used to handle error checking and other aspects of conversion. flags is currently
undefined and reserved for future expansion. Returns 0 on success and −1 on error.

void *SWIG_MakePtr(SV *obj, void *ptr, swig_type_info *ty, int flags)

Creates a new Perl pointer object. obj is a Perl SV that has been initialized to hold the result, ptr is the pointer to convert,
ty is the SWIG type descriptor structure that describes the type, and flags is a flag that controls properties of the
conversion. flags is currently undefined and reserved.

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *f;
if (SWIG_ConvertPtr($input, (void **) &f, SWIGTYPE_p_Foo, 0) == −1) return NULL;

SV *sv = sv_newmortal();
SWIG_MakePtr(sv, f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
 if ((SWIG_ConvertPtr($input,(void **) &$1, $1_descriptor,0)) == −1) return NULL;
}

SWIG−1.3 Documentation

26.8.5 Turning Perl references into C pointers 383

If necessary, the descriptor for any type can be obtained using the $descriptor() macro in a typemap. For example:

%typemap(in) Foo * {
 if ((SWIG_ConvertPtr($input,(void **) &$1, $descriptor(Foo *), 0)) == −1) return NULL;
}

26.9 Proxy classes

Out of date. Needs update.

Using the low−level procedural interface, SWIG can also construct a high−level object oriented interface to C structures and C++
classes. This is done by constructing a Perl proxy class (also known as a shadow class) that provides an OO wrapper to the
underlying code. This section describes the implementation details of the proxy interface.

26.9.1 Preliminaries

Proxy classes, are generated by default. If you want to turn them off, use the −noproxy command line option. For example:

$ swig −c++ −perl −noproxy example.i

When proxy classes are used, SWIG moves all of the low−level procedural wrappers to another package name. By default, this
package is named 'modulec' where 'module' is the name of the module you provided with the %module directive. Then, in place
of the original module, SWIG creates a collection of high−level Perl wrappers. In your scripts, you will use these high level
wrappers. The wrappers, in turn, interact with the low−level procedural module.

26.9.2 Structure and class wrappers

Suppose you have the following SWIG interface file :

%module example
struct Vector {
 Vector(double x, double y, double z);
 ~Vector();
 double x,y,z;
};

When wrapped, SWIG creates the following set of low−level accessor functions as described in previous sections.

Vector *new_Vector(double x, double y, double z);
void delete_Vector(Vector *v);
double Vector_x_get(Vector *v);
double Vector_x_set(Vector *v, double value);
double Vector_y_get(Vector *v);
double Vector_y_set(Vector *v, double value);
double Vector_z_get(Vector *v);
double Vector_z_set(Vector *v, double value);

However, when proxy classes are enabled, these accessor functions are wrapped inside a Perl class like this:

package example::Vector;
@ISA = qw(example);
%OWNER = ();
%BLESSEDMEMBERS = ();

sub new () {
 my $self = shift;
 my @args = @_;
 $self = vectorc::new_Vector(@args);

SWIG−1.3 Documentation

26.8.6 Pointer handling 384

 return undef if (!defined($self));
 bless $self, "example::Vector";
 $OWNER{$self} = 1;
 my %retval;
 tie %retval, "example::Vector", $self;
 return bless \%retval,"Vector";
}

sub DESTROY {
 return unless $_[0]−>isa('HASH');
 my $self = tied(%{$_[0]});
 delete $ITERATORS{$self};
 if (exists $OWNER{$self}) {
 examplec::delete_Vector($self));
 delete $OWNER{$self};
}

sub FETCH {
 my ($self,$field) = @_;
 my $member_func = "vectorc::Vector_${field}_get";
 my $val = &$member_func($self);
 if (exists $BLESSEDMEMBERS{$field}) {
 return undef if (!defined($val));
 my %retval;
 tie %retval,$BLESSEDMEMBERS{$field},$val;
 return bless \%retval, $BLESSEDMEMBERS{$field};
 }
 return $val;
}

sub STORE {
 my ($self,$field,$newval) = @_;
 my $member_func = "vectorc::Vector_${field}_set";
 if (exists $BLESSEDMEMBERS{$field}) {
 &$member_func($self,tied(%{$newval}));
 } else {
 &$member_func($self,$newval);
 }
}

Each structure or class is mapped into a Perl package of the same name. The C++ constructors and destructors are mapped into
constructors and destructors for the package and are always named "new" and "DESTROY". The constructor always returns a tied
hash table. This hash table is used to access the member variables of a structure in addition to being able to invoke member
functions. The %OWNER and %BLESSEDMEMBERS hash tables are used internally and described shortly.

To use our new proxy class we can simply do the following:

Perl code using Vector class
$v = new Vector(2,3,4);
$w = Vector−>new(−1,−2,−3);

Assignment of a single member
$v−>{x} = 7.5;

Assignment of all members
%$v = (x=>3,
 y=>9,
 z=>−2);

Reading members
$x = $v−>{x};

Destruction
$v−>DESTROY();

SWIG−1.3 Documentation

26.9.2 Structure and class wrappers 385

26.9.3 Object Ownership

In order for proxy classes to work properly, it is necessary for Perl to manage some mechanism of object ownership. Here's the
crux of the problem−−−suppose you had a function like this :

Vector *Vector_get(Vector *v, int index) {
 return &v[i];
}

This function takes a Vector pointer and returns a pointer to another Vector. Such a function might be used to manage arrays or
lists of vectors (in C). Now contrast this function with the constructor for a Vector object :

Vector *new_Vector(double x, double y, double z) {
 Vector *v;
 v = new Vector(x,y,z); // Call C++ constructor
 return v;
}

Both functions return a Vector, but the constructor is returning a brand−new Vector while the other function is returning a Vector
that was already created (hopefully). In Perl, both vectors will be indistinguishable−−−clearly a problem considering that we
would probably like the newly created Vector to be destroyed when we are done with it.

To manage these problems, each class contains two methods that access an internal hash table called %OWNER. This hash keeps a
list of all of the objects that Perl knows that it has created. This happens in two cases: (1) when the constructor has been called,
and (2) when a function implicitly creates a new object (as is done when SWIG needs to return a complex datatype by value).
When the destructor is invoked, the Perl proxy class module checks the %OWNER hash to see if Perl created the object. If so, the
C/C++ destructor is invoked. If not, we simply destroy the Perl object and leave the underlying C object alone (under the
assumption that someone else must have created it).

This scheme works remarkably well in practice but it isn't foolproof. In fact, it will fail if you create a new C object in Perl, pass it
on to a C function that remembers the object, and then destroy the corresponding Perl object (this situation turns out to come up
frequently when constructing objects like linked lists and trees). When C takes possession of an object, you can change Perl's
owership by simply deleting the object from the %OWNER hash. This is done using the DISOWN method.

Perl code to change ownership of an object
$v = new Vector(x,y,z);
$v−>DISOWN();

To acquire ownership of an object, the ACQUIRE method can be used.

Given Perl ownership of a file
$u = Vector_get($v);
$u−>ACQUIRE();

As always, a little care is in order. SWIG does not provide reference counting, garbage collection, or advanced features one might
find in sophisticated languages.

26.9.4 Nested Objects

Suppose that we have a new object that looks like this :

struct Particle {
 Vector r;
 Vector v;
 Vector f;
 int type;
}

SWIG−1.3 Documentation

26.9.3 Object Ownership 386

In this case, the members of the structure are complex objects that have already been encapsulated in a Perl proxy class. To handle
these correctly, we use the %BLESSEDMEMBERS hash which would look like this (along with some supporting code) :

package Particle;
...
%BLESSEDMEMBERS = (
 r => `Vector',
 v => `Vector',
 f => `Vector',
);

When fetching members from the structure, %BLESSEDMEMBERS is checked. If the requested field is present, we create a
tied−hash table and return it. If not, we just return the corresponding member unmodified.

This implementation allows us to operate on nested structures as follows :

Perl access of nested structure
$p = new Particle();
$p−>{f}−>{x} = 0.0;
%${$p−>{v}} = (x=>0, y=>0, z=>0);

26.9.5 Proxy Functions

When functions take arguments involving a complex object, it is sometimes necessary to write a proxy function. For example :

double dot_product(Vector *v1, Vector *v2);

Since Vector is an object already wrapped into a proxy class, we need to modify this function to accept arguments that are given
in the form of tied hash tables. This is done by creating a Perl function like this :

sub dot_product {
 my @args = @_;
 $args[0] = tied(%{$args[0]}); # Get the real pointer values
 $args[1] = tied(%{$args[1]});
 my $result = vectorc::dot_product(@args);
 return $result;
}

This function replaces the original function, but operates in an identical manner.

26.9.6 Inheritance

Simple C++ inheritance is handled using the Perl @ISA array in each class package. For example, if you have the following
interface file :

// shapes.i
// SWIG interface file for shapes class
%module shapes
%{
#include "shapes.h"
%}

class Shape {
public:
 virtual double area() = 0;
 virtual double perimeter() = 0;
 void set_location(double x, double y);
};
class Circle : public Shape {
public:
 Circle(double radius);

SWIG−1.3 Documentation

26.9.4 Nested Objects 387

 ~Circle();
 double area();
 double perimeter();
};
class Square : public Shape {
public:
 Square(double size);
 ~Square();
 double area();
 double perimeter();
}

The resulting, Perl wrapper class will create the following code :

Package Shape;
@ISA = (shapes);
...
Package Circle;
@ISA = (shapes Shape);
...
Package Square;
@ISA = (shapes Shape);

The @ISA array determines where to look for methods of a particular class. In this case, both the Circle and Square classes
inherit functions from Shape so we'll want to look in the Shape base class for them. All classes also inherit from the top−level
module shapes. This is because certain common operations needed to implement proxy classes are implemented only once and
reused in the wrapper code for various classes and structures.

Since SWIG proxy classes are implemented in Perl, it is easy to subclass from any SWIG generated class. To do this, simply put
the name of a SWIG class in the @ISA array for your new class. However, be forewarned that this is not a trivial problem. In
particular, inheritance of data members is extremely tricky (and I'm not even sure if it really works).

26.9.7 Modifying the proxy methods

It is possible to override the SWIG generated proxy/shadow methods, using %feature("shadow"). It works like all the other
%feature directives. Here is a simple example showing how to add some Perl debug code to the constructor:

/* Let's make the constructor of the class Square more verbose */
%feature("shadow") Square(double w)
%{
 sub new {
 my $pkg = shift;
 my $self = examplec::new_Square(@_);
 print STDERR "Constructed an @{[ref($self)]}\n";
 bless $self, $pkg if defined($self);
 }
%}

class Square {
public:
 Square(double w);
 ...
};

26.10 Adding additional Perl code

If writing support code in C isn't enough, it is also possible to write code in Perl. This code gets inserted in to the .pm file created
by SWIG. One use of Perl code might be to supply a high−level interface to certain functions. For example:

void set_transform(Image *im, double x[4][4]);

SWIG−1.3 Documentation

26.9.6 Inheritance 388

...
/* Rewrite the high level interface to set_transform */
%perlcode %{
sub set_transform
{
 my ($im, $x) = @_;
 my $a = new_mat44();
 for (my $i = 0; $i <4, $i++)
 {
 for (my $j = 0; $j <4, $j++)
 {
 mat44_set($a, $i, $j, $x−>[i][j])
 }
 }
 example.set_transform($im, $a);
 free_mat44($a);
}
%}

In this example, set_transform() provides a high−level Perl interface built on top of low−level helper functions. For
example, this code now seems to work:

my $a =
 [[1,0,0,0],
 [0,1,0,0],
 [0,0,1,0],
 [0,0,0,1]];
set_transform($im, $a);

SWIG−1.3 Documentation

26.10 Adding additional Perl code 389

27 SWIG and PHP4
Generating PHP4 Extensions

Building a loadable extension♦
Building extensions into PHP♦
Using PHP4 Extensions♦

•

Basic PHP4 interface
Constants♦
Global Variables♦
Functions♦
Overloading♦
Pointers and References♦
Structures and C++ classes

Using−noproxy◊
Constructors and Destructors◊
Static Member Variables◊
Static Member Functions◊

♦

PHP4 Pragmas, Startup and Shutdown code♦

•

Caution: This chapter (and module!) is still under construction

In this chapter, we discuss SWIG's support of PHP4. The PHP4 module has been extensively rewritten in release 1.3.26. Although
it is significantly more functional, it still does not implement all the features available in other languages.

The examples and test cases have been developed with PHP4. Support for PHP5 at this time is limited to wrapping C libraries or
C++ libraries while using the −noproxy flag. This deficiency will be fixed in a subsequent release of SWIG.

In order to use this module, you will need to have a copy of the PHP 4.0 (or above) include files to compile the SWIG generated
files. You can find these files by running 'php−config −−includes'. To test the modules you will need either the php
binary or the Apache php module. If you want to build your extension into php directly (without having the overhead of loading it
into each script), you will need the complete PHP source tree available.

27.1 Generating PHP4 Extensions

To build a PHP4 extension, run swig using the −php4 option as follows :

swig −php4 example.i

This will produce 3 files example_wrap.c, php_example.h and example.php. The first file, example_wrap.c contains all of the
C code needed to build a PHP4 extension. The second file, php_example.h contains the header information needed to
statically link the extension into PHP. The third file, example.php can be included by php scripts. It attempts to dynamically
load the extension and contains extra php code specified in the interface file.

Swig can generate PHP4 extensions from C++ libraries as well when given the −c++ option. The support for C++ is discussed in
more detail in section 24.2.6.

To finish building the extension, you have two choices. You can either build the extension as a separate shared object file which
will then have to be explicitly loaded by each script. Or you can rebuild the entire php source tree and build the extension into the
php executable/library so it will be available in every script. The first choice is the default, however it can be changed by passing
the '−phpfull' command line switch to select the second build method.

27.1.1 Building a loadable extension

There are two methods to build the extension as a dynamically loaded module: using standard compilation utilities (make, gcc), or
using PHP4's phpize utility.

27 SWIG and PHP4 390

To build manually, use a compile string similar to this (different for each OS):

 cc −I.. $(PHPINC) −fpic −c example_wrap.c
 cc −shared example_wrap.o −o libexample.so

The −make command line argument to swig will generate an additional file Makefile. This Makefile can usually build the
extension itself (on unix platforms).

If you want to build your extension using the phpize utility, or if you want to build your module into PHP directly, you can
specify the −phpfull command line argument to swig.

The −phpfull will generate three additional files. The first extra file, config.m4 contains the shell code needed to enable the
extension as part of the PHP4 build process. The second extra file, Makefile.in contains the information needed to build the
final Makefile after substitutions. The third and final extra file, CREDITS should contain the credits for the extension.

To build with phpize, after you have run swig you will need to run the 'phpize' command (installed as part of php) in the same
directory. This re−creates the php build environment in that directory. It also creates a configure file which includes the shell code
from the config.m4 that was generated by SWIG, this configure script will accept a command line argument to enable the
extension to be run (by default the command line argument is −−enable−modulename, however you can edit the config.m4 file
before running phpize to accept −−with−modulename. You can also add extra tests in config.m4 to check that a correct library
version is installed or correct header files are included, etc, but you must edit this file before running phpize.) If you like SWIG
can generate simple extra tests for libraries and header files for you.

 swig −php4 −phpfull

If you depend on source files not generated by SWIG, before generating the configure file, you may need to edit the
Makefile.in file. This contains the names of the source files to compile (just the wrapper file by default) and any additional
libraries needed to be linked in. If there are extra C files to compile, you will need to add them to the Makefile.in, or add the
names of libraries if they are needed. In simple cases SWIG is pretty good at generating a complete Makefile.in and config.m4
which need no further editing.

You then run the configure script with the command line argument needed to enable the extension. Then run make, which builds
the extension. The extension object file will be left in the modules sub directory, you can move it to wherever it is convenient to
call from your php script.

Both the −make and −phpfull arguments accept additional optional arguments:

−withincs "<files>" Adds include files to the config.m4 file.•
−withlibs "<files>" Links the libraries into the shared object.•
−withc "<files>" Compiles and links the named C files into the shared object.•
−withcxx "<files>" Compiles and links the named C++ files into the shared object,•
−dlname "<name>" Changes the name of the generated shared object.•

27.1.2 Building extensions into PHP

This method, selected with the −phpfull command line switch, involves rebuilding the entire php source tree. Whilst more
complicated to build, it does mean that the extension is then available without having to load it in each script.

After running swig with the −phpfull switch, you will be left with a shockingly similar set of files to the previous build process.
However you will then need to move these files to a subdirectory within the php source tree, this subdirectory you will need to
create under the ext directory, with the name of the extension (e.g mkdir php−4.0.6/ext/modulename .)

After moving the files into this directory, you will need to run the 'buildall' script in the php source directory. This rebuilds the
configure script and includes the extra command line arguments from the module you have added.

Before running the generated configure file, you may need to edit the Makefile.in. This contains the names of the source files

SWIG−1.3 Documentation

27.1.1 Building a loadable extension 391

to compile (just the wrapper file by default) and any additional libraries needed to link in. If there are extra C files to compile you
will need to add them to the Makefile, or add the names of libraries if they are needed. In most cases Makefile.in will be
complete, especially if you make use of −withlibs and −withincs

 swig −php4 −phpfull −withlibs "xapian omquery" −−withincs "om.h"

Will include in the config.m4 and Makefile.in search for libxapian.a or libxapian.so and search for libomquery.a or libomquery.so
as well as a search for om.h

You then need to run the configure command and pass the necessary command line arguments to enable your module (by default
this is −−enable−modulename, but this can be changed by editing the config.m4 file in the modules directory before running the
buildall script. In addition, extra tests can be added to the config.m4 file to ensure the correct libraries and header files are
installed.)

Once configure has completed, you can run make to build php. If this all compiles correctly, you should end up with a php
executable/library which contains your new module. You can test it with a php script which does not have the 'dl' command as
used above.

27.1.3 Using PHP4 Extensions

To test the extension from a PHP script, you need to load it first. You do this by putting the line,

 dl("/path/to/modulename.so"); // Load the module

at the start of each PHP file. SWIG also generates a php module, which attempts to do the dl() call for you:

 include("example.php");

27.2 Basic PHP4 interface

It is important to understand that PHP uses a single global namespace into which all symbols from extension modules are loaded.
It is quite possible for names of symbols in one extension module to clash with other symbols unless care is taken to %rename
them.

27.2.1 Constants

These work in much the same way as in C/C++, constants can be defined by using either the normal C pre−processor declarations,
or the %constant SWIG directive. These will then be available from your PHP script as a PHP constant, (i.e. no dollar sign is
needed to access them.) For example, with a swig file like this,

%module example

#define PI 3.14159

%constant int E = 2.71828

you can access the constants in your php script like this,

include("example.php");

echo "PI = " . PI . "\n";

echo "E = " . E . "\n";

There are two peculiarities with using constants in PHP4. The first is that if you try to use an undeclared constant, it will evaluate
to a string set to the constant's name. For example,

SWIG−1.3 Documentation

27.1.2 Building extensions into PHP 392

%module example

#define EASY_TO_MISPELL 0

accessed incorrectly in PHP,

include("example.php");

if(EASY_TO_MISPEL) {

} else {

}

will issue a warning about the undeclared constant, but will then evaluate it and turn it into a string ('EASY_TO_MISPEL'), which
evaluates to true, rather than the value of the constant which would be false. This is a feature.

The second 'feature' is that although constants are case sensitive (by default), you cannot declare a constant twice with alternative
cases. E.g.,

%module example

#define TEST Hello
#define Test World

accessed from PHP,

include("example.php");

echo TEST, Test;

will output "Hello Test" rather than "Hello World". This is because internally, all constants are stored in a hash table by their
lower case name, so 'TEST' and 'Test' will map to the same hash element ('Test'). But, because we declared them case sensitive,
the Zend engine will test if the case matches with the case the constant was declared with first.

So, in the example above, the TEST constant was declared first, and will be stored under the hash element 'test'. The 'Test'
constant will also map to the same hash element 'test', but will not overwrite it. When called from the script, the TEST constant
will again be mapped to the hash element 'test' so the constant will be retrieved. The case will then be checked, and will match up,
so the value ('Hello') will be returned. When 'Test' is evaluated, it will also map to the same hash element 'test'. The same constant
will be retrieved, this time though the case check will fail as 'Test' != 'TEST'. So PHP will assume that Test is a undeclared
constant, and as explained above, will return it as a string set to the constant name ('Test'). Hence the script above will print 'Hello
Test'. If they were declared non−case sensitive, the output would be 'Hello Hello', as both point to the same value, without the
case test taking place. (Apologies, this paragraph needs rewriting to make some sense.)

27.2.2 Global Variables

Because PHP4 does not provide a mechanism to intercept access and assignment of global variables, global variables are
supported through the use of automatically generated accessor functions.

%module example;

%inline %{
 double seki = 2;
 void print_seki() {
 zend_printf("seki is now %f\n",seki);
 }
%}

is accessed as follows:

SWIG−1.3 Documentation

27.2.1 Constants 393

include("example.php");
print seki_get();
seki_set(seki_get() * 2); # The C variable is now 4.
print seki_get();

SWIG supports global variables of all C datatypes including pointers and complex objects. Additional types can be supported by
using the varinit typemap.

SWIG honors the %immutable modifier by not generating code for the _set method. This provides read−only access to the
variable from the php script. Attempting to access the _set method will result in a php fatal error because the function is
undefined.

At this time SWIG does not support custom accessor methods.

27.2.3 Functions

C functions are converted into PHP functions. Default/optional arguments are also allowed. An interface file like this :

%module example
int foo(int a);
double bar(double, double b = 3.0);
...

Will be accessed in PHP like this :

include("example.php");
$a = foo(2);
$b = bar(3.5, −1.5);
$c = bar(3.5); # Use default argument for 2nd parameter

Because PHP4 is a dynamically typed language, the default typemaps used for simple types will attempt to coerce the arguments
into the appropriate type. That is the following invocations are equivalent:

$a = foo(2);
$a = foo("2");
$a = foo(2.0);

Functions are invoked using pass by value semantics like all of PHP. This means the conversion which automatically takes place
when invoking a swig wrapped method does not change the native type of the argument variable.

$s = "2 A string representing two";
$a = foo($s); # invokes 'foo(2)';
print $s; # The value of $s was not changed.

27.2.4 Overloading

Although PHP4 does not support overloading functions natively, swig will generate dispatch functions which will use
%typecheck typemaps to allow overloading. This dispatch function's operation and precedence is described in Wrapping
Overloaded Functions and Methods.

Because PHP4 is a dynamically typed language, simple values can be silently converted from one type to another. For example,
integers, doubles and strings silently convert to each other depending on context. This situation make overloading slightly
problematic because given the following function:

void doit(int i);
void doit(double i);

SWIG−1.3 Documentation

27.2.2 Global Variables 394

it is questionable which to invoke when doit("2"); is used in PHP. The string "2" simultaneously represents the integer 2
and the double 2.0.

In order to provide the most natural experience to PHP programmers, the default %typecheck implemented in php4.swg
allows any simple type (integer, double, string) in PHP to be used for any simple C type (int, double, char *). The function
selected then depends only on the argument type precedence defined by SWIG.

It should be noted that SWIGTYPE references and pointers will not be silently converted. So these two functions:

void doit(const Vector &);
void doit(int i);

Cause less confusion and doit("2"); will invoke the function taking the integer argument.

27.2.5 Pointers and References

Pointers to C/C++ objects are no longer represented as character strings such as: _523d3f4_Circle_p, instead they are
represented as PHP resources, rather like MySQL connection handles.

There are multiple ways to wrap pointers to simple types. Given the following C method:

 void add(int *in1, int *in2, int *result);

One can include cpointer.i to generate PHP wrappers to int *.

%module example
%include cpointer.i
%pointer_functions(int,intp)

void add(int *in1, int *in2, int *result);

This will result in the following usage in PHP:

<?php

include("example.php");

$in1=copy_intp(3);
$in2=copy_intp(5);
$result=new_intp();

add($in1, $in2, $result);

echo "The sum " . intp_value($in1) . " + " . intp_value($in2) . " = " . intp_value($result) . "\n";
?>

An alternative would be to use the include typemaps.i which defines named typemaps for INPUT, OUTPUT and INOUT
variables. One needs to either %apply the appropriate typemap or adjust the parameter names as appropriate.

%module example
%include typemaps.i

void add(int *INPUT, int *INPUT, int *OUTPUT);

This will result in the following usage in PHP:

<?php

include("example.php");

SWIG−1.3 Documentation

27.2.4 Overloading 395

$in1 = 3;
$in2 = 5;
$result= add($in1,$in2); # Note using variables for the input is unnecessary.

echo "The sum $in1 + $in2 = $result\n";
?>

Because PHP has a native concept of reference, it may seem more natural to the PHP developer to use references to pass pointers.
To enable this, one needs to include phppointers.i which defines the named typemap REFERENCE.

%module example
%include phppointers.i

void add(int *REF, int *REF, int *REF);

This will result in the following usage in PHP:

<?php

include("example.php");

$in1 = 3;
$in2 = 5;
$result = 0;
add(&$in1,&$in2,&$result);

echo "The sum $in1 + $in2 = $result\n";
?>

It is important to note that a php variable which is NULL when passed by reference would end up passing a NULL pointer into
the function. In PHP, an unassigned variable (ie first reference is not assigned) is NULL. In the above example, if any of the three
variables had not been assigned, a NULL pointer would have been passed into add. Depending on the implementation of the
function, this may or may not be a good thing.

We chose to allow passing NULL pointers into functions because that is sometimes required in C libraries. A NULL pointer can
be created in PHP in a number of ways: by using unset on an existing variable, or assigning NULL to a variable.

27.2.6 Structures and C++ classes

By default, SWIG represents structs and C++ classes using a PHP4 class. The PHP4 class is implemented entirely using the Zend
C API so no additional php code is generated.

This interface file

%module vector

class Vector {
public:
 double x,y,z;
 Vector();
 ~Vector();
 double magnitude();
};

struct Complex {
 double re, im;
};

Would be used in the following way:

<?php

SWIG−1.3 Documentation

27.2.5 Pointers and References 396

 require "vector.php";

 $v = new Vector();
 $v−>x = 3;
 $v−>y = 4;
 $v−>z = 5;

 echo "Magnitude of ($v−>x,$v−>y,$v−>z) = " . $v−>magnitude() . "\n";

 $v = NULL; # destructor called.

 $c = new Complex();

 $c−>re = 0;
 $c−>im = 0;

 # $c destructor called when $c goes out of scope.
?>

Member variables and methods are accessed using the −> operator.

27.2.6.1 Using −noproxy

The −noproxy option flattens the object structure and generates collections of named functions. The above example results in
the following PHP functions:

new_Vector();
Vector_x_set($obj,$d);
Vector_x_get($obj);
Vector_y_set($obj,$d);
Vector_y_get($obj);
Vector_z_set($obj,$d);
Vector_z_get($obj);
Vector_magnitude($obj);
new_Complex();
Complex_re_set($obj,$d);
Complex_re_get($obj);
Complex_im_set($obj,$d);
Complex_im_get($obj);

27.2.6.2 Constructors and Destructors

The constructor is called when new Object() (or new_Object() if using −noproxy) is used to create an instance of the
object. If multiple constructors are defined for an object, function overloading will be used to determine which constructor to
execute.

Because PHP4 uses reference counting to manage resources, simple assignment of one variable to another such as:

$ref = $v;

causes the symbol $ref to refer to the same underlying object as $v. This does not result in a call to the C++ copy constructor or
copy assignment operator.

One can force execution of the copy constructor by using:

$o_copy = new Object($o);

Destructors are automatically called when all variables referencing the instance are reassigned or go out of scope. The destructor
is not available to be called manually. To force a destructor to be called the programmer can either reassign the variable or call
unset($v)

SWIG−1.3 Documentation

27.2.6 Structures and C++ classes 397

27.2.6.3 Static Member Variables

Class variables are not supported in PHP. Static member variables are therefore accessed using a class function with the same
name, which returns the current value of the class variable. For example

%module example

class Ko {
 static int threats;
};

would be accessed in PHP as,

include("example.php");

echo "There has now been " . Ko::threats() . " threats\n";

To set the static member variable, pass the value as the argument to the class function, e.g.

Ko::threats(10);

echo "There has now been " . Ko::threats() . " threats\n";

27.2.6.4 Static Member Functions

Class functions are supported in PHP using the class::function() syntax. For example

%module example
class Ko {
 static void threats();
};

would be executed in PHP as,

include("example.php");
Ko::threats();

27.2.7 PHP4 Pragmas, Startup and Shutdown code

To place PHP code in the generated "example.php" file one can use the code pragma. The code is inserted after loading the shared
object.

%module example
%pragma(php4) code="
This code is inserted into example.php
echo \"example.php execution\\n\";
"

Results in the following in "example.php"

This code is inserted into example.php
echo "example.php execution\n";

The include pragma is a short cut to add include statements to the example.php file.

%module example
%pragma(php4) code="

SWIG−1.3 Documentation

27.2.6.3 Static Member Variables 398

include \"include.php\";
"
%pragma(php) include="include.php" // equivalent.

The phpinfo pragma inserts code in the PHP_MINFO_FUNCTION which is called from PHP's phpinfo() function.

%module example;
%pragma(php4) phpinfo="
 zend_printf("An example of PHP support through SWIG\n");
 php_info_print_table_start();
 php_info_print_table_header(2, \"Directive\", \"Value\");
 php_info_print_table_row(2, \"Example support\", \"enabled\");
 php_info_print_table_end();
"

To insert code into the PHP_MINIT_FUNCTION, one can use either %init or %minit.

%module example;
%init {
 zend_printf("Inserted into PHP_MINIT_FUNCTION\n");
}
%minit {
 zend_printf("Inserted into PHP_MINIT_FUNCTION\n");
}

To insert code into the PHP_MSHUTDOWN_FUNCTION, one can use either %init or %minit.

%module example;
%mshutdown {
 zend_printf("Inserted into PHP_MSHUTDOWN_FUNCTION\n");
}

The %rinit and %rshutdown statements insert code into the request init and shutdown code respectively.

SWIG−1.3 Documentation

27.2.7 PHP4 Pragmas, Startup and Shutdown code 399

28 SWIG and Pike
Preliminaries

Running SWIG♦
Getting the right header files♦
Using your module♦

•

Basic C/C++ Mapping
Modules♦
Functions♦
Global variables♦
Constants and enumerated types♦
Constructors and Destructors♦
Static Members♦

•

This chapter describes SWIG support for Pike. As of this writing, the SWIG Pike module is still under development and is not
considered ready for prime time. The Pike module is being developed against the Pike 7.4.10 release and may not be compatible
with previous versions of Pike.

This chapter covers most SWIG features, but certain low−level details are covered in less depth than in earlier chapters. At the
very least, make sure you read the "SWIG Basics" chapter.

28.1 Preliminaries

28.1.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example

%{
#include "example.h"
%}

int fact(int n);

To build a C extension module for Pike, run SWIG using the −pike option :

$ swig −pike example.i

If you're building a C++ extension, be sure to add the −c++ option:

$ swig −c++ −pike example.i

This creates a single source file named example_wrap.c (or example_wrap.cxx, if you ran SWIG with the −c++ option).
The SWIG−generated source file contains the low−level wrappers that need to be compiled and linked with the rest of your
C/C++ application to create an extension module.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the −o option:

$ swig −pike −o pseudonym.c example.i

28.1.2 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs to know the path to the Pike header files. These files are usually
contained in a directory such as

28 SWIG and Pike 400

/usr/local/pike/7.4.10/include/pike

There doesn't seem to be any way to get Pike itself to reveal the location of these files, so you may need to hunt around for them.
You're looking for files with the names global.h, program.h and so on.

28.1.3 Using your module

To use your module, simply use Pike's import statement:

$ pike
Pike v7.4 release 10 running Hilfe v3.5 (Incremental Pike Frontend)
> import example;
> fact(4);
(1) Result: 24

28.2 Basic C/C++ Mapping

28.2.1 Modules

All of the code for a given SWIG module is wrapped into a single Pike module. Since the name of the shared library that
implements your module ultimately determines the module's name (as far as Pike is concerned), SWIG's %module directive
doesn't really have any significance.

28.2.2 Functions

Global functions are wrapped as new Pike built−in functions. For example,

%module example

int fact(int n);

creates a new built−in function example.fact(n) that works exactly as you'd expect it to:

> import example;
> fact(4);
(1) Result: 24

28.2.3 Global variables

Global variables are currently wrapped as a pair of of functions, one to get the current value of the variable and another to set it.
For example, the declaration

%module example

double Foo;

will result in two functions, Foo_get() and Foo_set():

> import example;
> Foo_get();
(1) Result: 3.000000
> Foo_set(3.14159);
(2) Result: 0
> Foo_get();
(3) Result: 3.141590

SWIG−1.3 Documentation

28.1.2 Getting the right header files 401

28.2.4 Constants and enumerated types

Enumerated types in C/C++ declarations are wrapped as Pike constants, not as Pike enums.

28.2.5 Constructors and Destructors

Constructors are wrapped as create() methods, and destructors are wrapped as destroy() methods, for Pike classes.

28.2.6 Static Members

Since Pike doesn't support static methods or data for Pike classes, static member functions in your C++ classes are wrapped as
regular functions and static member variables are wrapped as pairs of functions (one to get the value of the static member
variable, and another to set it). The names of these functions are prepended with the name of the class. For example, given this
C++ class declaration:

class Shape
{
public:
 static void print();
 static int nshapes;
};

SWIG will generate a Shape_print() method that invokes the static Shape::print() member function, as well as a pair
of methods, Shape_nshapes_get() and Shape_nshapes_set(), to get and set the value of Shape::nshapes.

SWIG−1.3 Documentation

28.2.4 Constants and enumerated types 402

29 SWIG and Python
Overview•
Preliminaries

Running SWIG♦
Getting the right header files♦
Compiling a dynamic module♦
Using distutils♦
Static linking♦
Using your module♦
Compilation of C++ extensions♦
Compiling for 64−bit platforms♦
Building Python Extensions under Windows♦

•

A tour of basic C/C++ wrapping
Modules♦
Functions♦
Global variables♦
Constants and enums♦
Pointers♦
Structures♦
C++ classes♦
C++ inheritance♦
Pointers, references, values, and arrays♦
C++ overloaded functions♦
C++ operators♦
C++ namespaces♦
C++ templates♦
C++ Smart Pointers♦
C++ Reference Counted Objects (ref/unref)♦

•

Further details on the Python class interface
Proxy classes♦
Memory management♦
Python 2.2 and classic classes♦

•

Cross language polymorphism
Enabling directors♦
Director classes♦
Ownership and object destruction♦
Exception unrolling♦
Overhead and code bloat♦
Typemaps♦
Miscellaneous♦

•

Common customization features
C/C++ helper functions♦
Adding additional Python code♦
Class extension with %extend♦
Exception handling with %exception♦

•

Tips and techniques
Input and output parameters♦
Simple pointers♦
Unbounded C Arrays♦
String handling♦
Arrays♦
String arrays♦
STL wrappers♦

•

Typemaps•

29 SWIG and Python 403

What is a typemap?♦
Python typemaps♦
Typemap variables♦
Useful Python Functions♦

Typemap Examples
Converting Python list to a char **♦
Expanding a Python object into multiple arguments♦
Using typemaps to return arguments♦
Mapping Python tuples into small arrays♦
Mapping sequences to C arrays♦
Pointer handling♦

•

Docstring Features
Module docstring♦
%feature("autodoc")

%feature("autodoc", "0")◊
%feature("autodoc", "1")◊
%feature("autodoc", "docstring")◊

♦

%feature("docstring")♦

•

Python Packages•

Caution: This chapter is under repair!

This chapter describes SWIG's support of Python. SWIG is compatible with most recent Python versions including Python 2.2 as
well as older versions dating back to Python 1.5.2. For the best results, consider using Python 2.0 or newer.

This chapter covers most SWIG features, but certain low−level details are covered in less depth than in earlier chapters. At the
very least, make sure you read the "SWIG Basics" chapter.

29.1 Overview

To build Python extension modules, SWIG uses a layered approach in which parts of the extension module are defined in C and
other parts are defined in Python. The C layer contains low−level wrappers whereas Python code is used to define high−level
features.

This layered approach recognizes the fact that certain aspects of extension building are better accomplished in each language
(instead of trying to do everything in C or C++). Furthermore, by generating code in both languages, you get a lot more flexibility
since you can enhance the extension module with support code in either language.

In describing the Python interface, this chapter starts by covering the basics of configuration, compiling, and installing Python
modules. Next, the Python interface to common C and C++ programming features is described. Advanced customization features
such as typemaps are then described followed by a discussion of low−level implementation details.

29.2 Preliminaries

29.2.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example
%{
#include "header.h"
%}
int fact(int n);

To build a Python module, run SWIG using the −python option :

SWIG−1.3 Documentation

29.1 Overview 404

$ swig −python example.i

If building a C++ extension, add the −c++ option:

$ swig −c++ −python example.i

This creates two different files; a C/C++ source file example_wrap.c or example_wrap.cxx and a Python source file
example.py. The generated C source file contains the low−level wrappers that need to be compiled and linked with the rest of
your C/C++ application to create an extension module. The Python source file contains high−level support code. This is the file
that you will import to use the module.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the −o option. The name of the Python file is derived from
the module name specified with %module. If the module name is example, then a file example.py is created.

29.2.2 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs the Python.h header file. This file is usually contained in a
directory such as

/usr/local/include/python2.0

The exact location may vary on your machine, but the above location is typical. If you are not entirely sure where Python is
installed, you can run Python to find out. For example:

$ python
Python 2.1.1 (#1, Jul 23 2001, 14:36:06)
[GCC egcs−2.91.66 19990314/Linux (egcs−1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import sys
>>> print sys.prefix
/usr/local
>>>

29.2.3 Compiling a dynamic module

The preferred approach to building an extension module is to compile it into a shared object file or DLL. To do this, you need to
compile your program using commands like this (shown for Linux):

$ swig −python example.i
$ gcc −c −fPIC example.c
$ gcc −c −fPIC example_wrap.c −I/usr/local/include/python2.0
$ gcc −shared example.o example_wrap.o −o _example.so

The exact commands for doing this vary from platform to platform. However, SWIG tries to guess the right options when it is
installed. Therefore, you may want to start with one of the examples in the SWIG/Examples/python directory. If that doesn't
work, you will need to read the man−pages for your compiler and linker to get the right set of options. You might also check the
SWIG Wiki for additional information.

When linking the module, the name of the output file has to match the name of the module prefixed by an underscore. If the
name of your module is "example", then the name of the corresponding object file should be "_example.so" or
"_examplemodule.so". The name of the module is specified using the %module directive or the −module command line
option.

Compatibility Note: In SWIG−1.3.13 and earlier releases, module names did not include the leading underscore. This is because
modules were normally created as C−only extensions without the extra Python support file (instead, creating Python code was
supported as an optional feature). This has been changed in SWIG−1.3.14 and is consistent with other Python extension modules.
For example, the socket module actually consists of two files; socket.py and _socket.so. Many other built−in Python

SWIG−1.3 Documentation

29.2.1 Running SWIG 405

http://www.dabeaz.com/cgi-bin/wiki.pl

modules follow a similar convention.

29.2.4 Using distutils

29.2.5 Static linking

An alternative approach to dynamic linking is to rebuild the Python interpreter with your extension module added to it. In the past,
this approach was sometimes necessary due to limitations in dynamic loading support on certain machines. However, the situation
has improved greatly over the last few years and you should not consider this approach unless there is really no other option.

The usual procedure for adding a new module to Python involves finding the Python source, adding an entry to the
Modules/Setup file, and rebuilding the interpreter using the Python Makefile. However, newer Python versions have changed
the build process. You may need to edit the 'setup.py' file in the Python distribution instead.

In earlier versions of SWIG, the embed.i library file could be used to rebuild the interpreter. For example:

%module example

%inline %{
extern int fact(int);
extern int mod(int, int);
extern double My_variable;
%}

%include embed.i // Include code for a static version of Python

The embed.i library file includes supporting code that contains everything needed to rebuild Python. To rebuild the interpreter,
you simply do something like this:

$ swig −python example.i
$ gcc example.c example_wrap.c \
 −Xlinker −export−dynamic \
 −DHAVE_CONFIG_H −I/usr/local/include/python2.1 \
 −I/usr/local/lib/python2.1/config \
 −L/usr/local/lib/python2.1/config −lpython2.1 −lm −ldl \
 −o mypython

You will need to supply the same libraries that were used to build Python the first time. This may include system libraries such as
−lsocket, −lnsl, and −lpthread. Assuming this actually works, the new version of Python should be identical to the
default version except that your extension module will be a built−in part of the interpreter.

Comment: In practice, you should probably try to avoid static linking if possible. Some programmers may be inclined to use
static linking in the interest of getting better performance. However, the performance gained by static linking tends to be rather
minimal in most situations (and quite frankly not worth the extra hassle in the opinion of this author).

Compatibility note: The embed.i library file is deprecated and has not been maintained for several years. Even though it
appears to "work" with Python 2.1, no future support is guaranteed. If using static linking, you might want to rely on a different
approach (perhaps using distutils).

29.2.6 Using your module

To use your module, simply use the Python import statement. If all goes well, you will be able to this:

$ python
>>> import example
>>> example.fact(4)
24
>>>

SWIG−1.3 Documentation

29.2.3 Compiling a dynamic module 406

A common error received by first−time users is the following:

>>> import example
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "example.py", line 2, in ?
 import _example
ImportError: No module named _example

If you get this message, it means that you either forgot to compile the wrapper code into an extension module or you didn't give
the extension module the right name. Make sure that you compiled the wrappers into a module called _example.so. And don't
forget the leading underscore (_).

Another possible error is the following:

>>> import example
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: dynamic module does not define init function (init_example)
>>>

This error is almost always caused when a bad name is given to the shared object file. For example, if you created a file
example.so instead of _example.so you would get this error. Alternatively, this error could arise if the name of the module
is inconsistent with the module name supplied with the %module directive. Double−check the interface to make sure the module
name and the shared object filename match. Another possible cause of this error is forgetting to link the SWIG−generated wrapper
code with the rest of your application when creating the extension module.

Another common error is something similar to the following:

Traceback (most recent call last):
 File "example.py", line 3, in ?
 import example
ImportError: ./_example.so: undefined symbol: fact

This error usually indicates that you forgot to include some object files or libraries in the linking of the shared library file. Make
sure you compile both the SWIG wrapper file and your original program into a shared library file. Make sure you pass all of the
required libraries to the linker.

Sometimes unresolved symbols occur because a wrapper has been created for a function that doesn't actually exist in a library.
This usually occurs when a header file includes a declaration for a function that was never actually implemented or it was
removed from a library without updating the header file. To fix this, you can either edit the SWIG input file to remove the
offending declaration or you can use the %ignore directive to ignore the declaration.

Finally, suppose that your extension module is linked with another library like this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
 −o _example.so

If the foo library is compiled as a shared library, you might encounter the following problem when you try to use your module:

>>> import example
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: libfoo.so: cannot open shared object file: No such file or directory
>>>

This error is generated because the dynamic linker can't locate the libfoo.so library. When shared libraries are loaded, the
system normally only checks a few standard locations such as /usr/lib and /usr/local/lib. To fix this problem, there
are several things you can do. First, you can recompile your extension module with extra path information. For example, on Linux
you can do this:

SWIG−1.3 Documentation

29.2.6 Using your module 407

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
−Xlinker −rpath /home/beazley/projects/lib \

 −o _example.so

Alternatively, you can set the LD_LIBRARY_PATH environment variable to include the directory with your shared libraries. If
setting LD_LIBRARY_PATH, be aware that setting this variable can introduce a noticeable performance impact on all other
applications that you run. To set it only for Python, you might want to do this instead:

$ env LD_LIBRARY_PATH=/home/beazley/projects/lib python

Finally, you can use a command such as ldconfig (Linux) or crle (Solaris) to add additional search paths to the default
system configuration (this requires root access and you will need to read the man pages).

29.2.7 Compilation of C++ extensions

Compilation of C++ extensions has traditionally been a tricky problem. Since the Python interpreter is written in C, you need to
take steps to make sure C++ is properly initialized and that modules are compiled correctly.

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

$ swig −c++ −python example.i
$ g++ −c example.cxx
$ g++ −c example_wrap.cxx −I/usr/local/include/python2.0
$ g++ −shared example.o example_wrap.o −o _example.so

On some platforms, you could also need to generate position−independent code (PIC), by using a compiler option such as −fPIC.
Notably, the x86_64 (Opteron and EM64T) platform requires it, and when using the GNU Compiler Suite, you will need to
modify the previous example as follows:

$ swig −c++ −python example.i
$ g++ −fPIC −c example.cxx
$ g++ −fPIC −c example_wrap.cxx −I/usr/local/include/python2.0
$ g++ −shared example.o example_wrap.o −o _example.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

$ swig −c++ −python example.i
$ CC −c example.cxx
$ CC −c example_wrap.cxx −I/usr/local/include/python2.0
$ CC −G example.o example_wrap.o −L/opt/SUNWspro/lib −o _example.so −lCrun

Of course, the extra libraries to use are completely non−portable−−−you will probably need to do some experimentation.

Sometimes people have suggested that it is necessary to relink the Python interpreter using the C++ compiler to make C++
extension modules work. In the experience of this author, this has never actually appeared to be necessary. Relinking the
interpreter with C++ really only includes the special run−time libraries described above−−−as long as you link your extension
modules with these libraries, it should not be necessary to rebuild Python.

If you aren't entirely sure about the linking of a C++ extension, you might look at an existing C++ program. On many Unix
machines, the ldd command will list library dependencies. This should give you some clues about what you might have to
include when you link your extension module. For example:

$ ldd swig
 libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)
 libm.so.6 => /lib/libm.so.6 (0x4005b000)
 libc.so.6 => /lib/libc.so.6 (0x40077000)
 /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)

SWIG−1.3 Documentation

29.2.7 Compilation of C++ extensions 408

As a final complication, a major weakness of C++ is that it does not define any sort of standard for binary linking of libraries. This
means that C++ code compiled by different compilers will not link together properly as libraries nor is the memory layout of
classes and data structures implemented in any kind of portable manner. In a monolithic C++ program, this problem may be
unnoticed. However, in Python, it is possible for different extension modules to be compiled with different C++ compilers. As
long as these modules are self−contained, this probably won't matter. However, if these modules start sharing data, you will need
to take steps to avoid segmentation faults and other erratic program behavior. If working with lots of software components, you
might want to investigate using a more formal standard such as COM.

29.2.8 Compiling for 64−bit platforms

On platforms that support 64−bit applications (Solaris, Irix, etc.), special care is required when building extension modules. On
these machines, 64−bit applications are compiled and linked using a different set of compiler/linker options. In addition, it is not
generally possible to mix 32−bit and 64−bit code together in the same application.

To utilize 64−bits, the Python executable will need to be recompiled as a 64−bit application. In addition, all libraries, wrapper
code, and every other part of your application will need to be compiled for 64−bits. If you plan to use other third−party extension
modules, they will also have to be recompiled as 64−bit extensions.

If you are wrapping commercial software for which you have no source code, you will be forced to use the same linking standard
as used by that software. This may prevent the use of 64−bit extensions. It may also introduce problems on platforms that support
more than one linking standard (e.g., −o32 and −n32 on Irix).

On the Linux x86_64 platform (Opteron or EM64T), besides of the required compiler option −fPIC discussed above, you will
need to be careful about the libraries you link with or the library path you use. In general, a Linux distribution will have two set of
libraries, one for native x86_64 programs (under /usr/lib64), and another for 32 bits compatibility (under /usr/lib). Also, the
compiler options −m32 and −m64 allow you to choose the desired binary format for your python extension.

29.2.9 Building Python Extensions under Windows

Building a SWIG extension to Python under Windows is roughly similar to the process used with Unix. You will need to create a
DLL that can be loaded into the interpreter. This section briefly describes the use of SWIG with Microsoft Visual C++. As a
starting point, many of SWIG's examples include project files. You might want to take a quick look at these in addition to reading
this section.

In Developer Studio, SWIG should be invoked as a custom build option. This is usually done as follows:

Open up a new workspace and use the AppWizard to select a DLL project.•
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer Studio keeps a reference to it.

•

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.•
Enter "SWIG" in the description field.•
Enter "swig −python −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build
command(s) field"

•

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".•
Next, select the settings for the entire project and go to "C++:Preprocessor". Add the include directories for your Python
installation under "Additional include directories".

•

Define the symbol __WIN32__ under preprocessor options.•
Finally, select the settings for the entire project and go to "Link Options". Add the Python library file to your link
libraries. For example "python21.lib". Also, set the name of the output file to match the name of your Python module (ie.
_example.dll).

•

Build your project.•

If all went well, SWIG will be automatically invoked whenever you build your project. Any changes made to the interface file
will result in SWIG being automatically executed to produce a new version of the wrapper file.

SWIG−1.3 Documentation

29.2.8 Compiling for 64−bit platforms 409

To run your new Python extension, simply run Python and use the import command as normal. For example :

$ python
>>> import example
>>> print example.fact(4)
24
>>>

If you get an ImportError exception when importing the module, you may have forgotten to include aditional library files
when you built your module. If you get an access violation or some kind of general protection fault immediately upon import, you
have a more serious problem. This is often caused by linking your extension module against the wrong set of Win32 debug or
thread libraries. You will have to fiddle around with the build options of project to try and track this down.

Some users have reported success in building extension modules using Cygwin and other compilers. However, the problem of
building usable DLLs with these compilers tends to be rather problematic. For the latest information, you may want to consult the
SWIG Wiki.

29.3 A tour of basic C/C++ wrapping

By default, SWIG tries to build a very natural Python interface to your C/C++ code. Functions are wrapped as functions, classes
are wrapped as classes, and so forth. This section briefly covers the essential aspects of this wrapping.

29.3.1 Modules

The SWIG %module directive specifies the name of the Python module. If you specify `%module example', then everything
is wrapped into a Python 'example' module. Underneath the covers, this module consists of a Python source file example.py
and a low−level extension module _example.so. When choosing a module name, make sure you don't use the same name as a
built−in Python command or standard module name.

29.3.2 Functions

Global functions are wrapped as new Python built−in functions. For example,

%module example
int fact(int n);

creates a built−in function example.fact(n) that works exactly like you think it does:

>>> import example
>>> print example.fact(4)
24
>>>

29.3.3 Global variables

C/C++ global variables are fully supported by SWIG. However, the underlying mechanism is somewhat different than you might
expect due to the way that Python assignment works. When you type the following in Python

a = 3.4

"a" becomes a name for an object containing the value 3.4. If you later type

b = a

then "a" and "b" are both names for the object containing the value 3.4. Thus, there is only one object containing 3.4 and "a" and
"b" are both names that refer to it. This is quite different than C where a variable name refers to a memory location in which a
value is stored (and assignment copies data into that location). Because of this, there is no direct way to map variable assignment

SWIG−1.3 Documentation

29.2.9 Building Python Extensions under Windows 410

http://www.dabeaz.com/cgi-bin/wiki.pl

in C to variable assignment in Python.

To provide access to C global variables, SWIG creates a special object called `cvar' that is added to each SWIG generated
module. Global variables are then accessed as attributes of this object. For example, consider this interface

// SWIG interface file with global variables
%module example
...
%inline %{
extern int My_variable;
extern double density;
%}
...

Now look at the Python interface:

>>> import example
>>> # Print out value of a C global variable
>>> print example.cvar.My_variable
4
>>> # Set the value of a C global variable
>>> example.cvar.density = 0.8442
>>> # Use in a math operation
>>> example.cvar.density = example.cvar.density*1.10

If you make an error in variable assignment, you will receive an error message. For example:

>>> example.cvar.density = "Hello"
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: C variable 'density (double)'
>>>

If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can use the %immutable directive. For example:

%{
extern char *path;
%}
%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled or cleared using %mutable. See the Creatng read−only
variables section for further details.

If you just want to make a specific variable immutable, supply a declaration name. For example:

%{
extern char *path;
%}
%immutable path;
...
extern char *path; // Read−only (due to %immutable)

If you would like to access variables using a name other than "cvar", it can be changed using the −globals option :

$ swig −python −globals myvar example.i

Some care is in order when importing multiple SWIG modules. If you use the "from <file> import *" style of importing,
you will get a name clash on the variable `cvar' and you will only be able to access global variables from the last module loaded.

SWIG−1.3 Documentation

29.3.3 Global variables 411

To prevent this, you might consider renaming cvar or making it private to the module by giving it a name that starts with a
leading underscore. SWIG does not create cvar if there are no global variables in a module.

29.3.4 Constants and enums

C/C++ constants are installed as Python objects containing the appropriate value. To create a constant, use #define, enum, or
the %constant directive. For example:

#define PI 3.14159
#define VERSION "1.0"

enum Beverage { ALE, LAGER, STOUT, PILSNER };

%constant int FOO = 42;
%constant const char *path = "/usr/local";

For enums, make sure that the definition of the enumeration actually appears in a header file or in the wrapper file somehow−−−if
you just stick an enum in a SWIG interface without also telling the C compiler about it, the wrapper code won't compile.

Note: declarations declared as const are wrapped as read−only variables and will be accessed using the cvar object described
in the previous section. They are not wrapped as constants. For further discussion about this, see the SWIG Basics chapter.

Constants are not guaranteed to remain constant in Python−−−the name of the constant could be accidentally reassigned to refer to
some other object. Unfortunately, there is no easy way for SWIG to generate code that prevents this. You will just have to be
careful.

29.3.5 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Here is a rather simple interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Python. For example:

>>> import example
>>> f = example.fopen("junk","w")
>>> example.fputs("Hello World\n", f)
>>> example.fclose(f)

If this makes you uneasy, rest assured that there is no deep magic involved. Underneath the covers, pointers to C/C++ objects are
simply represented as opaque values using an especial python container object:

>>> print f
<Swig Object at _08a71808_p_FILE>

This pointer value can be freely passed around to different C functions that expect to receive an object of type FILE *. The only
thing you can't do is dereference the pointer from Python. Of course, that isn't much of a concern in this example.

In older versions of Swig (1.3.22 or older), pointers were represented using a plain string object. If you have an old package that
still requires that representation, or you just feel nostalgic, you can always retreive it by casting the pointer object to a string:

>>> print str(f)
_c0671108_p_FILE

SWIG−1.3 Documentation

29.3.4 Constants and enums 412

Also, if you need to pass the raw pointer value to some external python library, you can do it by casting the pointer object to an
integer:

>>> print int(f)
135833352

However, the inverse operation is not possible, i.e., you can't build a Swig pointer object from a raw integer value.

Note also that the '0' or NULL pointer is always represented by None, no matter what type swig is addressing. In the previous
example, you can call:

>>> example.fclose(None)

and that will be equivalent to the following, but not really useful, C code:

FILE *f = NULL;
fclose(f);

As much as you might be inclined to modify a pointer value directly from Python, don't. The hexadecimal encoding is not
necessarily the same as the logical memory address of the underlying object. Instead it is the raw byte encoding of the pointer
value. The encoding will vary depending on the native byte−ordering of the platform (i.e., big−endian vs. little−endian). Similarly,
don't try to manually cast a pointer to a new type by simply replacing the type−string. This may not work like you expect, it is
particularly dangerous when casting C++ objects. If you need to cast a pointer or change its value, consider writing some helper
functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {
 return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
 return dynamic_cast<Foo*>(b);
}

Foo *IncrFoo(Foo *f, int i) {
 return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return None if the conversion can't be performed.

29.3.6 Structures

If you wrap a C structure, it is wrapped by a Python class. This provides a very natural interface. For example,

struct Vector {
 double x,y,z;
};

is used as follows:

>>> v = example.Vector()
>>> v.x = 3.5
>>> v.y = 7.2
>>> print v.x, v.y, v.z
7.8 −4.5 0.0
>>>

SWIG−1.3 Documentation

29.3.5 Pointers 413

Similar access is provided for unions and the data members of C++ classes.

If you print out the value of v in the above example, you will see something like this:

>>> print v
<C Vector instance at _18e31408_p_Vector>

This object is actually a Python instance that has been wrapped around a pointer to the low−level C structure. This instance
doesn't actually do anything−−it just serves as a proxy. The pointer to the C object can be found in the the .this attribute. For
example:

>>> print v.this
_18e31408_p_Vector
>>>

Further details about the Python proxy class are covered a little later.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
 ...
 %immutable;
 int x; /* Read−only members */
 char *name;
 %mutable;
 ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:

struct Bar {
 int x[16];
};

If accessed in Python, you will see behavior like this:

>>> b = example.Bar()
>>> print b.x
_801861a4_p_int
>>>

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an
array member using another pointer. For example:

>>> c = example.Bar()
>>> c.x = b.x # Copy contents of b.x to c.x

For array assignment, SWIG copies the entire contents of the array starting with the data pointed to by b.x. In this example, 16
integers would be copied. Like C, SWIG makes no assumptions about bounds checking−−−if you pass a bad pointer, you may get
a segmentation fault or access violation.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like
this:

struct Foo {

SWIG−1.3 Documentation

29.3.6 Structures 414

 int a;
};

struct Bar {
 Foo f;
};

Now, suppose that you access the f attribute of Bar like this:

>>> b = Bar()
>>> x = b.f

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b−>f; /* Points inside b */

Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. For
example:

>>> b = Bar()
>>> b.f.a = 3 # Modify attribute of structure member
>>> x = b.f
>>> x.a = 3 # Modifies the same structure

29.3.7 C++ classes

C++ classes are wrapped by Python classes as well. For example, if you have this class,

class List {
public:
 List();
 ~List();
 int search(char *item);
 void insert(char *item);
 void remove(char *item);
 char *get(int n);
 int length;
};

you can use it in Python like this:

>>> l = example.List()
>>> l.insert("Ale")
>>> l.insert("Stout")
>>> l.insert("Lager")
>>> l.get(1)
'Stout'
>>> print l.length
3
>>>

Class data members are accessed in the same manner as C structures.

Static class members present a special problem for Python. Prior to Python−2.2, Python classes had no support for static methods
and no version of Python supports static member variables in a manner that SWIG can utilize. Therefore, SWIG generates
wrappers that try to work around some of these issues. To illustrate, suppose you have a class like this:

class Spam {
public:
 static void foo();
 static int bar;

SWIG−1.3 Documentation

29.3.7 C++ classes 415

};

In Python, the static member can be access in three different ways:

>>> example.Spam_foo() # Spam::foo()
>>> s = example.Spam()
>>> s.foo() # Spam::foo() via an instance
>>> example.Spam.foo() # Spam::foo(). Python−2.2 only

The first two methods of access are supported in all versions of Python. The last technique is only available in Python−2.2 and
later versions.

Static member variables are currently accessed as global variables. This means, they are accessed through cvar like this:

>>> print example.cvar.Spam_bar
7

29.3.8 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

those classes are wrapped into a hierarchy of Python classes that reflect the same inheritance structure. All of the usual Python
utility functions work normally:

>>> b = Bar()
>>> instance(b,Foo)
1
>>> issubclass(Bar,Foo)
1
>>> issubclass(Foo,Bar)
0

Furthermore, if you have functions like this

void spam(Foo *f);

then the function spam() accepts Foo * or a pointer to any class derived from Foo.

It is safe to use multiple inheritance with SWIG.

29.3.9 Pointers, references, values, and arrays

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(const Foo &x);// Pass by const reference
void spam4(Foo x); // Pass by value
void spam5(Foo x[]); // Array of objects

In Python, there is no detailed distinction like this−−specifically, there are only "objects". There are no pointers, references,

SWIG−1.3 Documentation

29.3.8 C++ inheritance 416

arrays, and so forth. Because of this, SWIG unifies all of these types together in the wrapper code. For instance, if you actually
had the above functions, it is perfectly legal to do this:

>>> f = Foo() # Create a Foo
>>> spam1(f) # Ok. Pointer
>>> spam2(f) # Ok. Reference
>>> spam3(f) # Ok. Const reference
>>> spam4(f) # Ok. Value.
>>> spam5(f) # Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam6();
Foo &spam7();
Foo spam8();
const Foo &spam9();

then all three functions will return a pointer to some Foo object. Since the third function (spam8) returns a value, newly allocated
memory is used to hold the result and a pointer is returned (Python will release this memory when the return value is garbage
collected). The fourth case (spam9) which returns a const reference, in most of the cases will be treated as a returning value, and it
will follow the same allocation/deallocation process.

29.3.10 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

void foo(int);
void foo(char *c);

You can use them in Python in a straightforward manner:

>>> foo(3) # foo(int)
>>> foo("Hello") # foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
 Foo();
 Foo(const Foo &);
 ...
};

you can write Python code like this:

>>> f = Foo() # Create a Foo
>>> g = Foo(f) # Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For example:

void spam(int);
void spam(short);

or

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

SWIG−1.3 Documentation

29.3.9 Pointers, references, values, and arrays 417

example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);
void spam(short); // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);
void spam(short); // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according to a
set of type−precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises−−in this case, the first declaration takes precedence.

Please refer to the "SWIG and C++" chapter for more information about overloading.

29.3.11 C++ operators

Certain C++ overloaded operators can be handled automatically by SWIG. For example, consider a class like this:

class Complex {
private:
 double rpart, ipart;
public:
 Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
 Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
 Complex &operator=(const Complex &c);

 Complex operator+=(const Complex &c) const;
 Complex operator+(const Complex &c) const;
 Complex operator−(const Complex &c) const;
 Complex operator*(const Complex &c) const;
 Complex operator−() const;

 double re() const { return rpart; }
 double im() const { return ipart; }
};

When wrapped, it works like you expect:

>>> c = Complex(3,4)
>>> d = Complex(7,8)
>>> e = c + d
>>> e.re()
10.0
>>> e.im()
12.0
>>> c += d
>>> c.re()
10.0
>>> c.im()
12.0

One restriction with operator overloading support is that SWIG is not able to fully handle operators that aren't defined as part of
the class. For example, if you had code like this

SWIG−1.3 Documentation

29.3.10 C++ overloaded functions 418

class Complex {
...
friend Complex operator+(double, const Complex &c);
...
};

then SWIG ignores it and issues a warning. You can still wrap the operator, but you may have to encapsulate it in a special
function. For example:

%rename(Complex_add_dc) operator+(double, const Complex &);

There are ways to make this operator appear as part of the class using the %extend directive. Keep reading.

Also, be aware that certain operators don't map cleanly to Python. For instance, overloaded assignment operators don't map to
Python semantics and will be ignored.

29.3.12 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
 int fact(int n);
 struct Vector {
 double x,y,z;
 };
};

it works in Python as follows:

>>> import example
>>> example.fact(3)
6
>>> v = example.Vector()
>>> v.x = 3.4
>>> print v.y
0.0
>>>

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
 int spam();
}

namespace Bar {
 int spam();
}

If you have more than one namespace and your want to keep their symbols separate, consider wrapping them as separate SWIG
modules. For example, make the module name the same as the namespace and create extension modules for each namespace
separately. If your program utilizes thousands of small deeply nested namespaces each with identical symbol names, well, then
you get what you deserve.

SWIG−1.3 Documentation

29.3.11 C++ operators 419

29.3.13 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example
%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;
 pair();
 pair(const T1&, const T2&);
 ~pair();
};

%template(pairii) pair<int,int>;

In Python:

>>> import example
>>> p = example.pairii(3,4)
>>> p.first
3
>>> p.second
4

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter. Some more complicated examples will appear later.

29.3.14 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
 ...
 T *operator−>();
 ...
}

Then, if you have a class like this,

class Foo {
public:
 int x;
 int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)
...
p−>x = 3; // Foo::x
int y = p−>bar(); // Foo::bar

SWIG−1.3 Documentation

29.3.13 C++ templates 420

To wrap this in Python, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Python, everything should just "work":

>>> p = example.CreateFoo() # Create a smart−pointer somehow
>>> p.x = 3 # Foo::x
>>> p.bar() # Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

>>> f = p.__deref__() # Returns underlying Foo *

29.3.15 C++ Reference Counted Objects (ref/unref)

Another usual idiom in C++ is the use of reference counted objects. Consider for example:

class RCObj {
 // implement the ref counting mechanism
 int add_ref();
 int del_ref();
 int ref_count();

public:
 virtual ~RCObj() = 0;

 int ref() const {
 return add_ref();
 }

 int unref() const {
 if (ref_count() == 0 || del_ref() == 0) {
 delete this;
 return 0;
 }
 return ref_count();
 }
};

class A : RCObj {
public:
 A();
 int foo();
};

class B {
 A *_a;

public:
 B(A *a) : _a(a) {
 a−>ref();
 }

 ~B() {
 a−>unref();
 }

SWIG−1.3 Documentation

29.3.14 C++ Smart Pointers 421

};

int main() {
 A *a = new A();
 a−>ref(); // 'a' is ref here

 B *b1 = new B(a); // 'a' is ref here
 if (1 + 1 == 2) {
 B *b2 = new B(a); // 'a' is ref here
 delete b2; // 'a' is unref, but not deleted
 }

 delete b1; // 'a' is unref, but not deleted
 a−>unref(); // 'a' is unref and deleted
}

In the example above, the 'A' class instance 'a' is a reference counted object, which can't be deleted arbitrarily since it is shared
between the objects 'b1' and 'b2'. 'A' is derived from an Reference Counted Object 'RCObj', which implements the ref/unref idiom.

To tell SWIG that 'RCObj' and all its derived classes are reference counted objects, you use the "ref" and "unref" features, or
%ref and %unref directives (since 1.3.28). For example:

%module example
...

%feature("ref") RCObj "$this−>ref();"
%feature("unref") RCObj "$this−>unref();"

%include "rcobj.h"
%include "A.h"
...

or, using the directive form:

%module example
...

%ref RCObj "$this−>ref();"
%unref RCObj "$this−>unref();"

%include "rcobj.h"
%include "A.h"
...

where the code passed to the "ref" and "unref" features will be executed as needed whenever a new object is passed to python, or
when python tries to release the shadow object instance, respectively.

In the python side, the use of a reference counted object is not different than any other regular instance:

def create_A():
 a = A() # SWIG ref 'a' (new object is passed to python)
 b1 = B(a) # C++ ref 'a'
 if 1 + 1 == 2:
 b2 = B(a) # C++ ref 'a'
 return a # 'b1' and 'b2' are released, C++ unref 'a' twice

a = create_A()
exit # 'a' is released, SWIG unref 'a'

Note that the user doens't explicitly need to call 'a−>ref()' nor 'a−>unref()' (as neither 'delete a'). Instead, SWIG take cares of
executing the "ref" and "unref" codes as needed. If the user doesn't specify the "ref/unref" features, SWIG will produce a code
equivalent to define them as:

SWIG−1.3 Documentation

29.3.15 C++ Reference Counted Objects (ref/unref) 422

%feature("ref") ""
%feature("unref") "delete $this;"

In other words, SWIG will not do anything special when a new object is passed to python, and it will always 'delete' the object
when python releases the proxy instance.

29.4 Further details on the Python class interface

In the previous section, a high−level view of Python wrapping was presented. A key component of this wrapping is that structures
and classes are wrapped by Python proxy classes. This provides a very natural Python interface and allows SWIG to support a
number of advanced features such as operator overloading. However, a number of low−level details were omitted. This section
provides a brief overview of how the proxy classes work.

29.4.1 Proxy classes

In the "SWIG basics" and "SWIG and C++" chapters, details of low−level structure and class wrapping are described. To
summarize those chapters, if you have a class like this

class Foo {
public:
 int x;
 int spam(int);
 ...

then SWIG transforms it into a set of low−level procedural wrappers. For example:

Foo *new_Foo() {
 return new Foo();
}
void delete_Foo(Foo *f) {
 delete f;
}
int Foo_x_get(Foo *f) {
 return f−>x;
}
void Foo_x_set(Foo *f, int value) {
 f−>x = value;
}
int Foo_spam(Foo *f, int arg1) {
 return f−>spam(arg1);
}

These wrappers can be found in the low−level extension module (e.g., _example).

Using these wrappers, SWIG generates a high−level Python proxy class (also known as a shadow class) like this (shown for
Python 2.2):

import _example

class Foo(object):
 def __init__(self):
 self.this = _example.new_Foo()
 self.thisown = 1
 def __del__(self):
 if self.thisown:
 _example.delete_Foo(self.this)
 def spam(self,arg1):
 return _example.Foo_spam(self.this,arg1)
 x = property(_example.Foo_x_get, _example.Foo_x_set)

SWIG−1.3 Documentation

29.4 Further details on the Python class interface 423

This class merely holds a pointer to the underlying C++ object (.this) and dispatches methods and member variable access to
that object using the low−level accessor functions. From a user's point of view, it makes the class work normally:

>>> f = example.Foo()
>>> f.x = 3
>>> y = f.spam(5)

The fact that the class has been wrapped by a real Python class offers certain advantages. For instance, you can attach new Python
methods to the class and you can even inherit from it (something not supported by Python built−in types until Python 2.2).

29.4.2 Memory management

Associated with proxy object, is an ownership flag .thisown The value of this flag determines who is responsible for deleting
the underlying C++ object. If set to 1, the Python interpreter will destroy the C++ object when the proxy class is garbage
collected. If set to 0 (or if the attribute is missing), then the destruction of the proxy class has no effect on the C++ object.

When an object is created by a constructor or returned by value, Python automatically takes ownership of the result. For example:

class Foo {
public:
 Foo();
 Foo bar();
};

In Python:

>>> f = Foo()
>>> f.thisown
1
>>> g = f.bar()
>>> g.thisown
1

On the other hand, when pointers are returned to Python, there is often no way to know where they came from. Therefore, the
ownership is set to zero. For example:

class Foo {
public:
 ...
 Foo *spam();
 ...
};

>>> f = Foo()
>>> s = f.spam()
>>> print s.thisown
0
>>>

This behavior is especially important for classes that act as containers. For example, if a method returns a pointer to an object that
is contained inside another object, you definitely don't want Python to assume ownership and destroy it!

Related to containers, ownership issues can arise whenever an object is assigned to a member or global variable. For example,
consider this interface:

%module example

struct Foo {
 int value;

SWIG−1.3 Documentation

29.4.1 Proxy classes 424

 Foo *next;
};

Foo *head = 0;

When wrapped in Python, careful observation will reveal that ownership changes whenever an object is assigned to a global
variable. For example:

>>> f = example.Foo()
>>> f.thisown
1
>>> example.cvar.head = f
>>> f.thisown
0
>>>

In this case, C is now holding a reference to the object−−−you probably don't want Python to destroy it. Similarly, this occurs for
members. For example:

>>> f = example.Foo()
>>> g = example.Foo()
>>> f.thisown
1
>>> g.thisown
1
>>> f.next = g
>>> g.thisown
0
>>>

For the most part, memory management issues remain hidden. However, there are occasionally situations where you might have
to manually change the ownership of an object. For instance, consider code like this:

class Node {
 Object *value;
public:
 void set_value(Object *v) { value = v; }
 ...
};

Now, consider the following Python code:

>>> v = Object() # Create an object
>>> n = Node() # Create a node
>>> n.set_value(v) # Set value
>>> v.thisown
1
>>> del v

In this case, the object n is holding a reference to v internally. However, SWIG has no way to know that this has occurred.
Therefore, Python still thinks that it has ownership of the object. Should the proxy object be destroyed, then the C++ destructor
will be invoked and n will be holding a stale−pointer. If you're lucky, you will only get a segmentation fault.

To work around this, it is always possible to flip the ownership flag. For example,

>>> v.thisown = 0

It is also possible to deal with situations like this using typemaps−−an advanced topic discussed later.

SWIG−1.3 Documentation

29.4.2 Memory management 425

29.4.3 Python 2.2 and classic classes

SWIG makes every attempt to preserve backwards compatibility with older versions of Python to the extent that it is possible.
However, in Python−2.2, an entirely new type of class system was introduced. This new−style class system offers many
enhancements including static member functions, properties (managed attributes), and class methods. Details about all of these
changes can be found on www.python.org and is not repeated here.

To address differences between Python versions, SWIG currently emits dual−mode proxy class wrappers. In Python−2.2 and
newer releases, these wrappers encapsulate C++ objects in new−style classes that take advantage of new features (static methods
and properties). However, if these very same wrappers are imported into an older version of Python, old−style classes are used
instead.

This dual−nature of the wrapper code means that you can create extension modules with SWIG and those modules will work with
all versions of Python ranging from Python−1.4 to the very latest release. Moreover, the wrappers take advantage of Python−2.2
features when available.

For the most part, the interface presented to users is the same regardless of what version of Python is used. The only
incompatibility lies in the handling of static member functions. In Python−2.2, they can be accessed via the class itself. In
Python−2.1 and earlier, they have to be accessed as a global function or through an instance (see the earlier section).

29.5 Cross language polymorphism

Proxy classes provide a more natural, object−oriented way to access extension classes. As described above, each proxy instance
has an associated C++ instance, and method calls to the proxy are passed to the C++ instance transparently via C wrapper
functions.

This arrangement is asymmetric in the sense that no corresponding mechanism exists to pass method calls down the inheritance
chain from C++ to Python. In particular, if a C++ class has been extended in Python (by extending the proxy class), these
extensions will not be visible from C++ code. Virtual method calls from C++ are thus not able access the lowest implementation
in the inheritance chain.

Changes have been made to SWIG 1.3.18 to address this problem and make the relationship between C++ classes and proxy
classes more symmetric. To achieve this goal, new classes called directors are introduced at the bottom of the C++ inheritance
chain. The job of the directors is to route method calls correctly, either to C++ implementations higher in the inheritance chain or
to Python implementations lower in the inheritance chain. The upshot is that C++ classes can be extended in Python and from
C++ these extensions look exactly like native C++ classes. Neither C++ code nor Python code needs to know where a particular
method is implemented: the combination of proxy classes, director classes, and C wrapper functions takes care of all the
cross−language method routing transparently.

29.5.1 Enabling directors

The director feature is disabled by default. To use directors you must make two changes to the interface file. First, add the
"directors" option to the %module directive, like this:

%module(directors="1") modulename

Without this option no director code will be generated. Second, you must use the %feature("director") directive to tell SWIG
which classes and methods should get directors. The %feature directive can be applied globally, to specific classes, and to specific
methods, like this:

// generate directors for all classes that have virtual methods
%feature("director");

// genarate directors for all virtual methods in class Foo
%feature("director") Foo;

// generate a director for just Foo::bar()

SWIG−1.3 Documentation

29.4.3 Python 2.2 and classic classes 426

%feature("director") Foo::bar;

You can use the %feature("nodirector") directive to turn off directors for specific classes or methods. So for example,

%feature("director") Foo;
%feature("nodirector") Foo::bar;

will generate directors for all virtual methods of class Foo except bar().

Directors can also be generated implicitly through inheritance. In the following, class Bar will get a director class that handles the
methods one() and two() (but not three()):

%feature("director") Foo;
class Foo {
public:
 Foo(int foo);
 virtual void one();
 virtual void two();
};

class Bar: public Foo {
public:
 virtual void three();
};

then at the python side you can define

import mymodule

class MyFoo(mymodule.Foo):
 def __init__(self, foo):
 mymodule.Foo(self, foo)

 def one(self):
 print "one from python"

29.5.2 Director classes

For each class that has directors enabled, SWIG generates a new class that derives from both the class in question and a special
Swig::Director class. These new classes, referred to as director classes, can be loosely thought of as the C++ equivalent of
the Python proxy classes. The director classes store a pointer to their underlying Python object and handle various issues related to
object ownership. Indeed, this is quite similar to the "this" and "thisown" members of the Python proxy classes.

For simplicity let's ignore the Swig::Director class and refer to the original C++ class as the director's base class. By default,
a director class extends all virtual methods in the inheritance chain of its base class (see the preceding section for how to modify
this behavior). Thus all virtual method calls, whether they originate in C++ or in Python via proxy classes, eventually end up in at
the implementation in the director class. The job of the director methods is to route these method calls to the appropriate place in
the inheritance chain. By "appropriate place" we mean the method that would have been called if the C++ base class and its
extensions in Python were seamlessly integrated. That seamless integration is exactly what the director classes provide,
transparently skipping over all the messy extension API glue that binds the two languages together.

In reality, the "appropriate place" is one of only two possibilities: C++ or Python. Once this decision is made, the rest is fairly
easy. If the correct implementation is in C++, then the lowest implementation of the method in the C++ inheritance chain is called
explicitly. If the correct implementation is in Python, the Python API is used to call the method of the underlying Python object
(after which the usual virtual method resolution in Python automatically finds the right implementation).

Now how does the director decide which language should handle the method call? The basic rule is to handle the method in
Python, unless there's a good reason not to. The reason for this is simple: Python has the most "extended" implementation of the
method. This assertion is guaranteed, since at a minimum the Python proxy class implements the method. If the method in
question has been extended by a class derived from the proxy class, that extended implementation will execute exactly as it

SWIG−1.3 Documentation

29.5.1 Enabling directors 427

should. If not, the proxy class will route the method call into a C wrapper function, expecting that the method will be resolved in
C++. The wrapper will call the virtual method of the C++ instance, and since the director extends this the call will end up right
back in the director method. Now comes the "good reason not to" part. If the director method were to blindly call the Python
method again, it would get stuck in an infinite loop. We avoid this situation by adding special code to the C wrapper function that
tells the director method to not do this. The C wrapper function compares the pointer to the Python object that called the wrapper
function to the pointer stored by the director. If these are the same, then the C wrapper function tells the director to resolve the
method by calling up the C++ inheritance chain, preventing an infinite loop.

One more point needs to be made about the relationship between director classes and proxy classes. When a proxy class instance
is created in Python, SWIG creates an instance of the original C++ class and assigns it to .this. This is exactly what happens
without directors and is true even if directors are enabled for the particular class in question. When a class derived from a proxy
class is created, however, SWIG then creates an instance of the corresponding C++ director class. The reason for this difference is
that user−defined subclasses may override or extend methods of the original class, so the director class is needed to route calls to
these methods correctly. For unmodified proxy classes, all methods are ultimately implemented in C++ so there is no need for the
extra overhead involved with routing the calls through Python.

29.5.3 Ownership and object destruction

Memory management issues are slightly more complicated with directors than for proxy classes alone. Python instances hold a
pointer to the associated C++ director object, and the director in turn holds a pointer back to the Python object. By default, proxy
classes own their C++ director object and take care of deleting it when they are garbage collected.

This relationship can be reversed by calling the special __disown__() method of the proxy class. After calling this method, the
.thisown flag is set to zero, and the director class increments the reference count of the Python object. When the director class
is deleted it decrements the reference count. Assuming no outstanding references to the Python object remain, the Python object
will be destroyed at the same time. This is a good thing, since directors and proxies refer to each other and so must be created and
destroyed together. Destroying one without destroying the other will likely cause your program to segfault.

To help ensure that no references to the Python object remain after calling __disown__(), this method returns a weak
reference to the Python object. Weak references are only available in Python versions 2.1 and higher, so for older versions you
must exclicitly delete all references. Here is an example:

class Foo {
public:
 ...
};
class FooContainer {
public:
 void addFoo(Foo *);
 ...
};

>>> c = FooContainer()
>>> a = Foo().__disown()__
>>> c.addFoo(a)
>>> b = Foo()
>>> b = b.__disown()__
>>> c.addFoo(b)
>>> c.addFoo(Foo().__disown()__)

In this example, we are assuming that FooContainer will take care of deleting all the Foo pointers it contains at some point. Note
that no hard references to the Foo objects remain in Python.

29.5.4 Exception unrolling

With directors routing method calls to Python, and proxies routing them to C++, the handling of exceptions is an important

SWIG−1.3 Documentation

29.5.2 Director classes 428

concern. By default, the directors ignore exceptions that occur during method calls that are resolved in Python. To handle such
exceptions correctly, it is necessary to temporarily translate them into C++ exceptions. This can be done with the
%feature("director:except") directive. The following code should suffice in most cases:

%feature("director:except") {
 if ($error != NULL) {
 throw Swig::DirectorMethodException();
 }
}

This code will check the Python error state after each method call from a director into Python, and throw a C++ exception if an
error occured. This exception can be caught in C++ to implement an error handler. Currently no information about the Python
error is stored in the Swig::DirectorMethodException object, but this will likely change in the future.

It may be the case that a method call originates in Python, travels up to C++ through a proxy class, and then back into Python via
a director method. If an exception occurs in Python at this point, it would be nice for that exception to find its way back to the
original caller. This can be done by combining a normal %exception directive with the director:except handler shown
above. Here is an example of a suitable exception handler:

%exception {
 try { $action }
 catch (Swig::DirectorException &e) { SWIG_fail; }
}

The class Swig::DirectorException used in this example is actually a base class of Swig::DirectorMethodException, so it will trap
this exception. Because the Python error state is still set when Swig::DirectorMethodException is thrown, Python will register the
exception as soon as the C wrapper function returns.

29.5.5 Overhead and code bloat

Enabling directors for a class will generate a new director method for every virtual method in the class' inheritance chain. This
alone can generate a lot of code bloat for large hierarchies. Method arguments that require complex conversions to and from target
language types can result in large director methods. For this reason it is recommended that you selectively enable directors only
for specific classes that are likely to be extended in Python and used in C++.

Compared to classes that do not use directors, the call routing in the director methods does add some overhead. In particular, at
least one dynamic cast and one extra function call occurs per method call from Python. Relative to the speed of Python execution
this is probably completely negligible. For worst case routing, a method call that ultimately resolves in C++ may take one extra
detour through Python in order to ensure that the method does not have an extended Python implementation. This could result in a
noticible overhead in some cases.

Although directors make it natural to mix native C++ objects with Python objects (as director objects) via a common base class
pointer, one should be aware of the obvious fact that method calls to Python objects will be much slower than calls to C++
objects. This situation can be optimized by selectively enabling director methods (using the %feature directive) for only those
methods that are likely to be extended in Python.

29.5.6 Typemaps

Typemaps for input and output of most of the basic types from director classes have been written. These are roughly the reverse of
the usual input and output typemaps used by the wrapper code. The typemap operation names are 'directorin', 'directorout', and
'directorargout'. The director code does not currently use any of the other kinds of typemaps. It is not clear at this point which
kinds are appropriate and need to be supported.

29.5.7 Miscellaneous

Director typemaps for STL classes are in place, and hence you should be able to use std::vector, std::string, etc., as you would any
other type.

SWIG−1.3 Documentation

29.5.4 Exception unrolling 429

Note: The director typemaps for return types based in const references, such as

class Foo {
…
 virtual const int& bar();
…
};

will work only for simple call scenarios. Usually the resulting code is neither thread or reentrant safe. Hence, the user is advised to
avoid returning const references in director methods. For example, the user could modify the method interface to use lvalue return
types, wherever possible, for example

class Foo {
…
 virtual int bar();
…
};

If that is not possible, the user should avoid enabling the director feature for reentrant, recursive or threaded member methods that
return const references.

29.6 Common customization features

The last section presented the absolute basics of C/C++ wrapping. If you do nothing but feed SWIG a header file, you will get an
interface that mimics the behavior described. However, sometimes this isn't enough to produce a nice module. Certain types of
functionality might be missing or the interface to certain functions might be awkward. This section describes some common
SWIG features that are used to improve your the interface to an extension module.

29.6.1 C/C++ helper functions

Sometimes when you create a module, it is missing certain bits of functionality. For example, if you had a function like this

void set_transform(Image *im, double m[4][4]);

it would be accessible from Python, but there may be no easy way to call it. For example, you might get errors like this:

>>> a = [
... [1,0,0,0],
... [0,1,0,0],
... [0,0,1,0],
... [0,0,0,1]]
>>> set_transform(im,a)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_a_4__double

The problem here is that there is no easy way to construct and manipulate a suitable double [4][4] value to use. To fix this,
you can write some extra C helper functions. Just use the %inline directive. For example:

%inline %{
/* Note: double[4][4] is equivalent to a pointer to an array double (*)[4] */
double (*new_mat44())[4] {
 return (double (*)[4]) malloc(16*sizeof(double));
}
void free_mat44(double (*x)[4]) {
 free(x);
}
void mat44_set(double x[4][4], int i, int j, double v) {
 x[i][j] = v;
}
double mat44_get(double x[4][4], int i, int j) {

SWIG−1.3 Documentation

29.5.7 Miscellaneous 430

 return x[i][j];
}
%}

From Python, you could then write code like this:

>>> a = new_mat44()
>>> mat44_set(a,0,0,1.0)
>>> mat44_set(a,1,1,1.0)
>>> mat44_set(a,2,2,1.0)
...
>>> set_transform(im,a)
>>>

Admittedly, this is not the most elegant looking approach. However, it works and it wasn't too hard to implement. It is possible to
clean this up using Python code, typemaps, and other customization features as covered in later sections.

29.6.2 Adding additional Python code

If writing support code in C isn't enough, it is also possible to write code in Python. This code gets inserted in to the .py file
created by SWIG. One use of Python code might be to supply a high−level interface to certain functions. For example:

void set_transform(Image *im, double x[4][4]);

...
/* Rewrite the high level interface to set_transform */
%pythoncode %{
def set_transform(im,x):
 a = new_mat44()
 for i in range(4):
 for j in range(4):
 mat44_set(a,i,j,x[i][j])
 _example.set_transform(im,a)
 free_mat44(a)
%}

In this example, set_transform() provides a high−level Python interface built on top of low−level helper functions. For
example, this code now seems to work:

>>> a = [
... [1,0,0,0],
... [0,1,0,0],
... [0,0,1,0],
... [0,0,0,1]]
>>> set_transform(im,a)
>>>

Admittedly, this whole scheme for wrapping the two−dimension array argument is rather ad−hoc. Besides, shouldn't a Python list
or a Numeric Python array just work normally? We'll get to those examples soon enough. For now, think of this example as an
illustration of what can be done without having to rely on any of the more advanced customization features.

Sometimes you may want to replace or modify the wrapper function that SWIG creates in the proxy .py file. The Python module
in SWIG provides some features that enable you do do this. First, to entirely replace a proxy function you can use
%feature("shadow"). For example:

%module example

// Rewrite bar() python code

%feature("shadow") Foo::bar(int) %{
def bar(*args):
 #do something before

SWIG−1.3 Documentation

29.6.1 C/C++ helper functions 431

 $action
 #do something after
%}

class Foo {
public:
 int bar(int x);
}

where $action will be replaced by the call to the C/C++ proper method.

Often the proxy function created by SWIG is fine, but you simply want to add code to it without touching the rest of the generated
function body. For these cases SWIG provides the pythonprepend and pythonappend features which do exactly as their
names suggest. The pythonprepend feature will insert its value at the begining of the proxy function, and pythonappend
will insert code at the end of the proxy, just before the return statement.

%module example

// Add python code to bar()

%feature("pythonpreppend") Foo::bar(int) %{
 #do something before C++ call
%}

%feature("pythonappend") Foo::bar(int) %{
 #do something after C++ call
%}

class Foo {
public:
 int bar(int x);
}

Notes: Usually the pythonappend and pythonpreppend features are safer to use than the shadow feature. Also, from
SWIG version 1.3.28 you can use the directive forms %pythonappend and %pythonpreppend as follows:

%module example

// Add python code to bar()

%pythonpreppend Foo::bar(int) %{
 #do something before C++ call
%}

%pythonappend Foo::bar(int) %{
 #do something after C++ call
%}

class Foo {
public:
 int bar(int x);
}

29.6.3 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods−−at least in the Python
interface. Here is a simple example:

%module example
%{
#include "someheader.h"
%}

SWIG−1.3 Documentation

29.6.2 Adding additional Python code 432

struct Vector {
 double x,y,z;
};

%extend Vector {
 char *__str__() {
 static char tmp[1024];
 sprintf(tmp,"Vector(%g,%g,%g)", self−>x,self−>y,self−>z);
 return tmp;
 }
 Vector(double x, double y, double z) {
 Vector *v = (Vector *) malloc(sizeof(Vector));
 v−>x = x;
 v−>y = y;
 v−>z = z;
 return v;
 }
};

Now, in Python

>>> v = example.Vector(2,3,4)
>>> print v
Vector(2,3,4)
>>>

%extend can be used for many more tasks than this. For example, if you wanted to overload a Python operator, you might do
this:

%extend Vector {
 Vector __add__(Vector *other) {
 Vector v;
 v.x = self−>x + other−>x;
 v.y = self−>y + other−>y;
 v.z = self−>z + other−>z;
 return v;
 }
};

Use it like this:

>>> import example
>>> v = example.Vector(2,3,4)
>>> w = example.Vector(10,11,12)
>>> print v+w
Vector(12,14,16)
>>>

%extend works with both C and C++ code. It does not modify the underlying object in any way−−−the extensions only show up
in the Python interface.

29.6.4 Exception handling with %exception

If a C or C++ function throws an error, you may want to convert that error into a Python exception. To do this, you can use the
%exception directive. %exception simply lets you rewrite part of the generated wrapper code to include an error check.

In C, a function often indicates an error by returning a status code (a negative number or a NULL pointer perhaps). Here is a
simple example of how you might handle that:

%exception malloc {
 $action
 if (!result) {

SWIG−1.3 Documentation

29.6.3 Class extension with %extend 433

 PyErr_SetString(PyExc_MemoryError,"Not enough memory");
 return NULL;
 }
}
void *malloc(size_t nbytes);

In Python,

>>> a = example.malloc(2000000000)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
MemoryError: Not enough memory
>>>

If a library provides some kind of general error handling framework, you can also use that. For example:

%exception {
 $action
 if (err_occurred()) {
 PyErr_SetString(PyExc_RuntimeError, err_message());
 return NULL;
 }
}

No declaration name is given to %exception, it is applied to all wrapper functions.

C++ exceptions are also easy to handle. For example, you can write code like this:

%exception getitem {
 try {
 $action
 } catch (std::out_of_range &e) {
 PyErr_SetString(PyExc_IndexError, const_cast<char*>(e.what()));
 return NULL;
 }
}

class Base {
public:
 Foo *getitem(int index); // Exception handled added
 ...
};

When raising a Python exception from C, use the PyErr_SetString() function as shown above. The following exception
types can be used as the first argument.

PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_EnvironmentError
PyExc_EOFError
PyExc_Exception
PyExc_FloatingPointError
PyExc_ImportError
PyExc_IndexError
PyExc_IOError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_NameError
PyExc_NotImplementedError
PyExc_OSError
PyExc_OverflowError
PyExc_RuntimeError

SWIG−1.3 Documentation

29.6.4 Exception handling with %exception 434

PyExc_StandardError
PyExc_SyntaxError
PyExc_SystemError
PyExc_TypeError
PyExc_UnicodeError
PyExc_ValueError
PyExc_ZeroDivisionError

The language−independent exception.i library file can also be used to raise exceptions. See the SWIG Library chapter.

29.7 Tips and techniques

Although SWIG is largely automatic, there are certain types of wrapping problems that require additional user input. Examples
include dealing with output parameters, strings, binary data, and arrays. This chapter discusses the common techniques for solving
these problems.

29.7.1 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {
 *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
 return *x−*y;
}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);

In Python, this allows you to pass simple values. For example:

>>> a = add(3,4)
>>> print a
7
>>> b = sub(7,4)
>>> print b
3
>>>

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);

SWIG−1.3 Documentation

29.7 Tips and techniques 435

If a function mutates one of its parameters like this,

void negate(int *x) {
 *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Python, a mutated parameter shows up as a return value. For example:

>>> a = negate(3)
>>> print a
−3
>>>

Note: Since most primitive Python objects are immutable, it is not possible to perform in−place modification of a Python object
passed as a parameter.

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, along with success code */
int send_message(char *text, int len, int *success);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *success };
...
int send_message(char *text, int *success);

When used in Python, the function will return multiple values.

bytes, success = send_message("Hello World")
if not success:
 print "Whoa!"
else:
 print "Sent", bytes

Another common use of multiple return values are in query functions. For example:

void get_dimensions(Matrix *m, int *rows, int *columns);

To wrap this, you might use the following:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, *columns);

Now, in Python:

>>> r,c = get_dimensions(m)

Be aware that the primary purpose of the typemaps.i file is to support primitive datatypes. Writing a function like this

SWIG−1.3 Documentation

29.7.1 Input and output parameters 436

void foo(Bar *OUTPUT);

may not have the intended effect since typemaps.i does not define an OUTPUT rule for Bar.

29.7.2 Simple pointers

If you must work with simple pointers such as int * or double * and you don't want to use typemaps.i, consider using
the cpointer.i library file. For example:

%module example
%include "cpointer.i"

%inline %{
extern void add(int x, int y, int *result);
%}

%pointer_functions(int, intp);

The %pointer_functions(type,name) macro generates five helper functions that can be used to create, destroy, copy,
assign, and dereference a pointer. In this case, the functions are as follows:

int *new_intp();
int *copy_intp(int *x);
void delete_intp(int *x);
void intp_assign(int *x, int value);
int intp_value(int *x);

In Python, you would use the functions like this:

>>> result = new_intp()
>>> print result
_108fea8_p_int
>>> add(3,4,result)
>>> print intp_value(result)
7
>>>

If you replace %pointer_functions() by %pointer_class(type,name), the interface is more class−like.

>>> result = intp()
>>> add(3,4,result)
>>> print result.value()
7

See the SWIG Library chapter for further details.

29.7.3 Unbounded C Arrays

Sometimes a C function expects an array to be passed as a pointer. For example,

int sumitems(int *first, int nitems) {
 int i, sum = 0;
 for (i = 0; i < nitems; i++) {
 sum += first[i];
 }
 return sum;
}

To wrap this into Python, you need to pass an array pointer as the first argument. A simple way to do this is to use the
carrays.i library file. For example:

SWIG−1.3 Documentation

29.7.2 Simple pointers 437

%include "carrays.i"
%array_class(int, intArray);

The %array_class(type, name) macro creates wrappers for an unbounded array object that can be passed around as a
simple pointer like int * or double *. For instance, you will be able to do this in Python:

>>> a = intArray(10000000) # Array of 10−million integers
>>> for i in xrange(10000): # Set some values
... a[i] = i
>>> sumitems(a,10000)
49995000
>>>

The array "object" created by %array_class() does not encapsulate pointers inside a special array object. In fact, there is no
bounds checking or safety of any kind (just like in C). Because of this, the arrays created by this library are extremely low−level
indeed. You can't iterate over them nor can you even query their length. In fact, any valid memory address can be accessed if you
want (negative indices, indices beyond the end of the array, etc.). Needless to say, this approach is not going to suit all
applications. On the other hand, this low−level approach is extremely efficient and well suited for applications in which you need
to create buffers, package binary data, etc.

29.7.4 String handling

If a C function has an argument of char *, then a Python string can be passed as input. For example:

// C
void foo(char *s);

Python
>>> foo("Hello")

When a Python string is passed as a parameter, the C function receives a pointer to the raw data contained in the string. Since
Python strings are immutable, it is illegal for your program to change the value. In fact, doing so will probably crash the Python
interpreter.

If your program modifies the input parameter or uses it to return data, consider using the cstring.i library file described in the
SWIG Library chapter.

When functions return a char *, it is assumed to be a NULL−terminated string. Data is copied into a new Python string and
returned.

If your program needs to work with binary data, you can use a typemap to expand a Python string into a pointer/length argument
pair. As luck would have it, just such a typemap is already defined. Just do this:

%apply (char *STRING, int LENGTH) { (char *data, int size) };
...
int parity(char *data, int size, int initial);

Now in Python:

>>> parity("e\x09ffss\x00\x00\x01\nx", 0)

If you need to return binary data, you might use the cstring.i library file. The cdata.i library can also be used to extra
binary data from arbitrary pointers.

29.7.5 Arrays

SWIG−1.3 Documentation

29.7.3 Unbounded C Arrays 438

29.7.6 String arrays

29.7.7 STL wrappers

29.8 Typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Python C API as well as the material in the "Typemaps"
chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Python interface or if you
want to elevate your guru status.

29.8.1 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Python to C, you might define a typemap like this:

%module example

%typemap(in) int {
 $1 = (int) PyLong_AsLong($input);
 printf("Received an integer : %d\n",$1);
}
%inline %{
extern int fact(int n);
%}

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variable prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input object of type PyObject *.

When this example is compiled into a Python module, it operates as follows:

>>> from example import *
>>> fact(6)
Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int nonnegative {
 $1 = (int) PyLong_AsLong($input);
 if ($1 < 0) {
 PyErr_SetString(PyExc_ValueError,"Expected a nonnegative value.");
 return NULL;
 }
}
%inline %{
extern int fact(int nonnegative);
%}

In this case, the typemap code is only attached to arguments that exactly match int nonnegative.

SWIG−1.3 Documentation

29.7.6 String arrays 439

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG C++ type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int n {
 $1 = (int) PyLong_AsLong($input);
 printf("n = %d\n",$1);
}
%inline %{
typedef int Integer;
extern int fact(Integer n); // Above typemap is applied
%}

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
 $1 = PyString_AsString($input);
 $2 = PyString_Size($input);
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Python object. This allows the function
to be used like this (notice how the length parameter is omitted):

>>> example.count('e','Hello World')
1
>>>

29.8.2 Python typemaps

The previous section illustrated an "in" typemap for converting Python objects to C. A variety of different typemap methods are
defined by the Python module. For example, to convert a C integer back into a Python object, you might define an "out" typemap
like this:

%typemap(out) int {
 $result = PyInt_FromLong((long) $1);
}

A detailed list of available methods can be found in the "Typemaps" chapter.

However, the best source of typemap information (and examples) is probably the Python module itself. In fact, all of SWIG's
default type handling is defined by typemaps. You can view these typemaps by looking at the files in the SWIG library. Just take
into account that in the latest versions of swig (1.3.22+), the library files are not very pristine clear for the casual reader, as they
used to be. The extensive use of macros and other ugly techniques in the latest version produce a very powerful and consistent
python typemap library, but at the cost of simplicity and pedagogic value.

To learn how to write a simple or your first typemap, you better take a look at the SWIG library version 1.3.20 or so.

29.8.3 Typemap variables

Within typemap code, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this is a C local
variable that's supposed to hold an argument value. For output values, this is the raw result that's supposed to be returned to
Python.

SWIG−1.3 Documentation

29.8.1 What is a typemap? 440

$input

A PyObject * holding a raw Python object with an argument or variable value.
$result

A PyObject * that holds the result to be returned to Python.
$1_name

The parameter name that was matched.
$1_type

The actual C datatype matched by the typemap.
$1_ltype

An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of a C
assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All arguments and
local variables in wrapper functions are declared using this type so that their values can be properly assigned.

$symname

The Python name of the wrapper function being created.

29.8.4 Useful Python Functions

When you write a typemap, you usually have to work directly with Python objects. The following functions may prove to be
useful.

Python Integer Functions

PyObject *PyInt_FromLong(long l);
long PyInt_AsLong(PyObject *);
int PyInt_Check(PyObject *);

Python Floating Point Functions

PyObject *PyFloat_FromDouble(double);
double PyFloat_AsDouble(PyObject *);
int PyFloat_Check(PyObject *);

Python String Functions

PyObject *PyString_FromString(char *);
PyObject *PyString_FromStringAndSize(char *, lint len);
int PyString_Size(PyObject *);
char *PyString_AsString(PyObject *);
int PyString_Check(PyObject *);

Python List Functions

PyObject *PyList_New(int size);
int PyList_Size(PyObject *list);
PyObject *PyList_GetItem(PyObject *list, int i);
int PyList_SetItem(PyObject *list, int i, PyObject *item);
int PyList_Insert(PyObject *list, int i, PyObject *item);
int PyList_Append(PyObject *list, PyObject *item);
PyObject *PyList_GetSlice(PyObject *list, int i, int j);
int PyList_SetSlice(PyObject *list, int i, int , PyObject *list2);
int PyList_Sort(PyObject *list);
int PyList_Reverse(PyObject *list);
PyObject *PyList_AsTuple(PyObject *list);
int PyList_Check(PyObject *);

SWIG−1.3 Documentation

29.8.3 Typemap variables 441

Python Tuple Functions

PyObject *PyTuple_New(int size);
int PyTuple_Size(PyObject *);
PyObject *PyTuple_GetItem(PyObject *, int i);
int PyTuple_SetItem(PyObject *, int i, pyObject *item);
PyObject *PyTuple_GetSlice(PyObject *t, int i, int j);
int PyTuple_Check(PyObject *);

Python Dictionary Functions

write me

Python File Conversion Functions

PyObject *PyFile_FromFile(FILE *f);
FILE *PyFile_AsFile(PyObject *);
int PyFile_Check(PyObject *);

Abstract Object Interface

write me

29.9 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "python.swg" and
"typemaps.i" in the SWIG library.

29.9.1 Converting Python list to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Python list object to be used as a char ** object.

%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
 /* Check if is a list */
 if (PyList_Check($input)) {
 int size = PyList_Size($input);
 int i = 0;
 $1 = (char **) malloc((size+1)*sizeof(char *));
 for (i = 0; i < size; i++) {
 PyObject *o = PyList_GetItem($input,i);
 if (PyString_Check(o))
 $1[i] = PyString_AsString(PyList_GetItem($input,i));
 else {
 PyErr_SetString(PyExc_TypeError,"list must contain strings");
 free($1);
 return NULL;
 }
 }
 $1[i] = 0;
 } else {
 PyErr_SetString(PyExc_TypeError,"not a list");
 return NULL;
 }
}

// This cleans up the char ** array we malloc'd before the function call
%typemap(freearg) char ** {
 free((char *) $1);

SWIG−1.3 Documentation

29.8.4 Useful Python Functions 442

}

// Now a test function
%inline %{
int print_args(char **argv) {
 int i = 0;
 while (argv[i]) {
 printf("argv[%d] = %s\n", i,argv[i]);
 i++;
 }
 return i;
}
%}

When this module is compiled, the wrapped C function now operates as follows :

>>> from argv import *
>>> print_args(["Dave","Mike","Mary","Jane","John"])
argv[0] = Dave
argv[1] = Mike
argv[2] = Mary
argv[3] = Jane
argv[4] = John
5

In the example, two different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for the array, the "freearg" typemap is used to later release
this memory after the execution of the C function.

29.9.2 Expanding a Python object into multiple arguments

Suppose that you had a collection of C functions with arguments such as the following:

int foo(int argc, char **argv);

In the previous example, a typemap was written to pass a Python list as the char **argv. This allows the function to be used
from Python as follows:

>>> foo(4, ["foo","bar","spam","1"])

Although this works, it's a little awkward to specify the argument count. To fix this, a multi−argument typemap can be defined.
This is not very difficult−−you only have to make slight modifications to the previous example:

%typemap(in) (int argc, char **argv) {
 /* Check if is a list */
 if (PyList_Check($input)) {
 int i;
 $1 = PyList_Size($input);
 $2 = (char **) malloc(($1+1)*sizeof(char *));
 for (i = 0; i < $1; i++) {
 PyObject *o = PyList_GetItem($input,i);
 if (PyString_Check(o))
 $2[i] = PyString_AsString(PyList_GetItem($input,i));
 else {
 PyErr_SetString(PyExc_TypeError,"list must contain strings");
 free($2);
 return NULL;
 }
 }
 $2[i] = 0;
 } else {
 PyErr_SetString(PyExc_TypeError,"not a list");

SWIG−1.3 Documentation

29.9.1 Converting Python list to a char ** 443

 return NULL;
 }
}

%typemap(freearg) (int argc, char **argv) {
 free((char *) $2);
}

When writing a multiple−argument typemap, each of the types is referenced by a variable such as $1 or $2. The typemap code
simply fills in the appropriate values from the supplied Python object.

With the above typemap in place, you will find it no longer necessary to supply the argument count. This is automatically set by
the typemap code. For example:

>>> foo(["foo","bar","spam","1"])

29.9.3 Using typemaps to return arguments

A common problem in some C programs is that values may be returned in arguments rather than in the return value of a function.
For example:

/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2) {
 ... Do a bunch of stuff ...
 *out1 = result1;
 *out2 = result2;
 return status;
};

A typemap can be used to handle this case as follows :

%module outarg

// This tells SWIG to treat an double * argument with name 'OutValue' as
// an output value. We'll append the value to the current result which
// is guaranteed to be a List object by SWIG.

%typemap(argout) double *OutValue {
 PyObject *o, *o2, *o3;
 o = PyFloat_FromDouble(*$1);
 if ((!$result) || ($result == Py_None)) {
 $result = o;
 } else {
 if (!PyTuple_Check($result)) {
 PyObject *o2 = $result;
 $result = PyTuple_New(1);
 PyTuple_SetItem(target,0,o2);
 }
 o3 = PyTuple_New(1);
 PyTuple_SetItem(o3,0,o);
 o2 = $result;
 $result = PySequence_Concat(o2,o3);
 Py_DECREF(o2);
 Py_DECREF(o3);
 }
}

int spam(double a, double b, double *OutValue, double *OutValue);

The typemap works as follows. First, a check is made to see if any previous result exists. If so, it is turned into a tuple and the new
output value is concatenated to it. Otherwise, the result is returned normally. For the sample function spam(), there are three

SWIG−1.3 Documentation

29.9.2 Expanding a Python object into multiple arguments 444

output values−−meaning that the function will return a 3−tuple of the results.

As written, the function must accept 4 arguments as input values, last two being pointers to doubles. If these arguments are only
used to hold output values (and have no meaningful input value), an additional typemap can be written. For example:

%typemap(in,numinputs=0) double *OutValue(double temp) {
 $1 = &temp;
}

By specifying numinputs=0, the input value is ignored. However, since the argument still has to be set to some meaningful value
before calling C, it is set to point to a local variable temp. When the function stores its output value, it will simply be placed in
this local variable. As a result, the function can now be used as follows:

>>> a = spam(4,5)
>>> print a
(0, 2.45, 5.0)
>>> x,y,z = spam(4,5)
>>>

29.9.4 Mapping Python tuples into small arrays

In some applications, it is sometimes desirable to pass small arrays of numbers as arguments. For example :

extern void set_direction(double a[4]); // Set direction vector

This too, can be handled used typemaps as follows :

// Grab a 4 element array as a Python 4−tuple
%typemap(in) double[4](double temp[4]) { // temp[4] becomes a local variable
 int i;
 if (PyTuple_Check($input)) {
 if (!PyArg_ParseTuple($input,"dddd",temp,temp+1,temp+2,temp+3)) {
 PyErr_SetString(PyExc_TypeError,"tuple must have 4 elements");
 return NULL;
 }
 $1 = &temp[0];
 } else {
 PyErr_SetString(PyExc_TypeError,"expected a tuple.");
 return NULL;
 }
}

This allows our set_direction function to be called from Python as follows :

>>> set_direction((0.5,0.0,1.0,−0.25))

Since our mapping copies the contents of a Python tuple into a C array, such an approach would not be recommended for huge
arrays, but for small structures, this approach works fine.

29.9.5 Mapping sequences to C arrays

Suppose that you wanted to generalize the previous example to handle C arrays of different sizes. To do this, you might write a
typemap as follows:

// Map a Python sequence into any sized C double array
%typemap(in) double[ANY](double temp[$1_dim0]) {
 int i;
 if (!PySequence_Check($input)) {
 PyErr_SetString(PyExc_TypeError,"Expecting a sequence");

SWIG−1.3 Documentation

29.9.3 Using typemaps to return arguments 445

 return NULL;
 }
 if (PyObject_Length($input) != $1_dim0) {
 PyErr_SetString(PyExc_ValueError,"Expecting a sequence with $1_dim0 elements");
 return NULL;
 }
 for (i =0; i < $1_dim0; i++) {
 PyObject *o = PySequence_GetItem($input,i);
 if (!PyFloat_Check(o)) {
 PyErr_SetString(PyExc_ValueError,"Expecting a sequence of floats");
 return NULL;
 }
 temp[i] = PyFloat_AsDouble(o);
 }
 $1 = &temp[0];
}

In this case, the variable $1_dim0 is expanded to match the array dimensions actually used in the C code. This allows the
typemap to be applied to types such as:

void foo(double x[10]);
void bar(double a[4], double b[8]);

Since the above typemap code gets inserted into every wrapper function where used, it might make sense to use a helper function
instead. This will greatly reduce the amount of wrapper code. For example:

%{
static int convert_darray(PyObject *input, double *ptr, int size) {
 int i;
 if (!PySequence_Check(input)) {
 PyErr_SetString(PyExc_TypeError,"Expecting a sequence");
 return 0;
 }
 if (PyObject_Length(input) != size) {
 PyErr_SetString(PyExc_ValueError,"Sequence size mismatch");
 return 0;
 }
 for (i =0; i < size; i++) {
 PyObject *o = PySequence_GetItem(input,i);
 if (!PyFloat_Check(o)) {
 PyErr_SetString(PyExc_ValueError,"Expecting a sequence of floats");
 return 0;
 }
 ptr[i] = PyFloat_AsDouble(o);
 }
 return 1;
}
%}

%typemap(in) double [ANY](double temp[$1_dim0]) {
 if (!convert_darray($input,temp,$1_dim0))) {
 return NULL;
 }
 $1 = &temp[0];
}

29.9.6 Pointer handling

Occasionally, it might be necessary to convert pointer values that have been stored using the SWIG typed−pointer representation.
Since there are several ways in which pointers can be represented, the following two functions are used to safely perform this
conversion:

int SWIG_ConvertPtr(PyObject *obj, void **ptr, swig_type_info *ty, int flags)

SWIG−1.3 Documentation

29.9.5 Mapping sequences to C arrays 446

Converts a Python object obj to a C pointer. The result of the conversion is placed into the pointer located at ptr. ty is a
SWIG type descriptor structure. flags is used to handle error checking and other aspects of conversion. It is the bitwise−or
of several flag values including SWIG_POINTER_EXCEPTION and SWIG_POINTER_DISOWN. The first flag makes the
function raise an exception on type error. The second flag additionally steals ownership of an object. Returns 0 on success
and −1 on error.

PyObject *SWIG_NewPointerObj(void *ptr, swig_type_info *ty, int own)

Creates a new Python pointer object. ptr is the pointer to convert, ty is the SWIG type descriptor structure that describes
the type, and own is a flag that indicates whether or not Python should take ownership of the pointer.

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *f;
if (SWIG_ConvertPtr($input, (void **) &f, SWIGTYPE_p_Foo, SWIG_POINTER_EXCEPTION) == −1)
 return NULL;

PyObject *obj;
obj = SWIG_NewPointerObj(f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
if ((SWIG_ConvertPtr($input,(void **) &$1, $1_descriptor,SWIG_POINTER_EXCEPTION)) == −1)
 return NULL;
}

If necessary, the descriptor for any type can be obtained using the $descriptor() macro in a typemap. For example:

%typemap(in) Foo * {
if ((SWIG_ConvertPtr($input,(void **) &$1, $descriptor(Foo *),
 SWIG_POINTER_EXCEPTION)) == −1)
 return NULL;
}

Although the pointer handling functions are primarily intended for manipulating low−level pointers, both functions are fully
aware of Python proxy classes. Specifically, SWIG_ConvertPtr() will retrieve a pointer from any object that has a this
attribute. In addition, SWIG_NewPointerObj() can automatically generate a proxy class object (if applicable).

29.10 Docstring Features

Using docstrings in Python code is becoming more and more important and more tools are coming on the scene that take
advantage of them, everything from full−blown documentaiton generators to class browsers and popup call−tips in Python−aware
IDEs. Given the way that SWIG generates the proxy code by default, your users will normally get something like
"function_name(*args)" in the popup calltip of their IDE which is next to useless when the real function prototype might
be something like this:

bool function_name(int x, int y, Foo* foo=NULL, Bar* bar=NULL);

The features described in this section make it easy for you to add docstrings to your modules, functions and methods that can then
be used by the various tools out there to make the programming experience of your users much simpler.

29.10.1 Module docstring

Python allows a docstring at the begining of the .py file before any other statements, and it is typically used to give a general
description of the entire module. SWIG supports this by setting an option of the %module directive. For example:

%module(docstring="This is the example module's docstring") example

SWIG−1.3 Documentation

29.9.6 Pointer handling 447

When you have more than just a line or so then you can retain the easy readability of the %module directive by using a macro.
For example:

%define DOCSTRING
"The `XmlResource` class allows program resources defining menus,
layout of controls on a panel, etc. to be loaded from an XML file."
%enddef

%module(docstring=DOCSTRING) xrc

29.10.2 %feature("autodoc")

As alluded to above SWIG will generate all the function and method proxy wrappers with just "*args" (or "*args, **kwargs" if the
−keyword option is used) for a parameter list and will then sort out the individual parameters in the C wrapper code. This is nice
and simple for the wrapper code, but makes it difficult to be programmer and tool friendly as anyone looking at the .py file will
not be able to find out anything about the parameters that the fuctions accept.

But since SWIG does know everything about the fucntion it is possible to generate a docstring containing the parameter types,
names and default values. Since many of the doctring tools are adopting a standard of recognizing if the first thing in the docstring
is a function prototype then using that instead of what they found from introspeciton, then life is good once more.

SWIG's Python module provides support for the "autodoc" feature, which when attached to a node in the parse tree will cause a
docstring to be generated that includes the name of the funciton, parameter names, default values if any, and return type if any.
There are also three options for autodoc controlled by the value given to the feature, described below.

29.10.2.1 %feature("autodoc", "0")

When the "0" option is given then the types of the parameters will not be included in the autodoc string. For example, given this
function prototype:

%feature("autodoc", "0");
bool function_name(int x, int y, Foo* foo=NULL, Bar* bar=NULL);

Then Python code like this will be generated:

def function_name(*args, **kwargs):
 """function_name(x, y, foo=None, bar=None) −> bool"""
 ...

29.10.2.2 %feature("autodoc", "1")

When the "1" option is used then the parameter types will be used in the autodoc string. In addition, an atempt is made to simplify
the type name such that it makes more sense to the Python user. Pointer, reference and const info is removed, %rename's are
evaluated, etc. (This is not always successful, but works most of the time. See the next section for what to do when it doesn't.)
Given the example above, then turning on the parameter types with the "1" option will result in Python code like this:

def function_name(*args, **kwargs):
 """function_name(int x, int y, Foo foo=None, Bar bar=None) −> bool"""
 ...

29.10.2.3 %feature("autodoc", "docstring")

Finally, there are times when the automatically generated autodoc string will make no sense for a Python programmer, particularly
when a typemap is involved. So if you give an explicit value for the autodoc feature then that string will be used in place of the
automatically generated string. For example:

%feature("autodoc", "GetPosition() −> (x, y)") GetPosition;
void GetPosition(int* OUTPUT, int* OUTPUT);

SWIG−1.3 Documentation

29.10.1 Module docstring 448

29.10.3 %feature("docstring")

In addition to the autodoc strings described above, you can also attach any arbitrary descriptive text to a node in the parse tree
with the "docstring" feature. When the proxy module is generated then any docstring associated with classes, function or methods
are output. If an item already has an autodoc string then it is combined with the docstring and they are output together. If the
docstring is all on a single line then it is output like this::

"""This is the docstring"""

Otherwise, to aid readability it is output like this:

"""
This is a multi−line docstring
with more than one line.
"""

29.11 Python Packages

Using the package option of the %module directive allows you to specify what Python package that the module will be living
in when installed.

%module(package="wx") xrc

This is useful when the .i file is %imported by another .i file. By default SWIG will assume that the importer is able to find
the importee with just the module name, but if they live in separate Python packages then that won't work. However if the
importee specifies what its package is with the %module option then the Python code generated for the importer will use that
package name when importing the other module and also in base class declarations, etc. if the pacakge name is different than its
own.

SWIG−1.3 Documentation

29.10.3 %feature("docstring") 449

30 SWIG and Ruby
Preliminaries

Running SWIG♦
Getting the right header files♦
Compiling a dynamic module♦
Using your module♦
Static linking♦
Compilation of C++ extensions♦

•

Building Ruby Extensions under Windows 95/NT
Running SWIG from Developer Studio♦

•

The Ruby−to−C/C++ Mapping
Modules♦
Functions♦
Variable Linking♦
Constants♦
Pointers♦
Structures♦
C++ classes♦
C++ Inheritance♦
C++ Overloaded Functions♦
C++ Operators♦
C++ namespaces♦
C++ templates♦
C++ Smart Pointers♦
Cross−Language Polymorphism

Exception Unrolling◊
♦

•

Naming
Defining Aliases♦
Predicate Methods♦
Bang Methods♦
Getters and Setters♦

•

Input and output parameters•
Exception handling

Using the %exception directive♦
Raising exceptions♦
Exception classes♦

•

Typemaps
What is a typemap?♦
Ruby typemaps♦
Typemap variables♦
Useful Functions

C Datatypes to Ruby Objects◊
Ruby Objects to C Datatypes◊
Macros for VALUE◊
Exceptions◊
Iterators◊

♦

Typemap Examples♦
Converting a Ruby array to a char **♦
Collecting arguments in a hash♦
Pointer handling

Ruby Datatype Wrapping◊
♦

Example: STL Vector to Ruby Array♦

•

Advanced Topics
Operator overloading♦

•

30 SWIG and Ruby 450

Creating Multi−Module Packages♦
Specifying Mixin Modules♦

Memory Management
Mark and Sweep Garbage Collector♦
Object Ownership♦
Object Tracking♦
Mark Functions♦
Free Functions♦

•

This chapter describes SWIG's support of Ruby.

30.1 Preliminaries

SWIG 1.3 is known to work with Ruby versions 1.6 and later. Given the choice, you should use the latest stable version of Ruby.
You should also determine if your system supports shared libraries and dynamic loading. SWIG will work with or without
dynamic loading, but the compilation process will vary.

This chapter covers most SWIG features, but in less depth than is found in earlier chapters. At the very least, make sure you also
read the "SWIG Basics" chapter. It is also assumed that the reader has a basic understanding of Ruby.

30.1.1 Running SWIG

To build a Ruby module, run SWIG using the −ruby option:

$ swig −ruby example.i

If building a C++ extension, add the −c++ option:

$ swig −c++ −ruby example.i

This creates a file example_wrap.c (example_wrap.cxx if compiling a C++ extension) that contains all of the code
needed to build a Ruby extension module. To finish building the module, you need to compile this file and link it with the rest of
your program.

30.1.2 Getting the right header files

In order to compile the wrapper code, the compiler needs the ruby.h header file. This file is usually contained in a directory
such as

/usr/local/lib/ruby/1.6/i686−linux/ruby.h

The exact location may vary on your machine, but the above location is typical. If you are not entirely sure where Ruby is
installed, you can run Ruby to find out. For example:

$ ruby −e 'puts $:.join("\n")'
/usr/local/lib/ruby/site_ruby/1.6 /usr/local/lib/ruby/site_ruby/1.6/i686−linux
/usr/local/lib/ruby/site_ruby /usr/local/lib/ruby/1.6 /usr/local/lib/ruby/1.6/i686−linux .

30.1.3 Compiling a dynamic module

Ruby extension modules are typically compiled into shared libraries that the interpreter loads dynamically at runtime. Since the
exact commands for doing this vary from platform to platform, your best bet is to follow the steps described in the README.EXT
file from the Ruby distribution:

Create a file called extconf.rb that looks like the following:1.

SWIG−1.3 Documentation

30.1 Preliminaries 451

require 'mkmf'
create_makefile('example')

Type the following to build the extension:

$ ruby extconf.rb
$ make
$ make install

2.

Of course, there is the problem that mkmf does not work correctly on all platforms, e.g, HPUX. If you need to add your own make
rules to the file that extconf.rb produces, you can add this:

open("Makefile", "a") { |mf|
 puts <<EOM
 # Your make rules go here
 EOM
}

to the end of the extconf.rb file. If for some reason you don't want to use the standard approach, you'll need to determine the
correct compiler and linker flags for your build platform. For example, a typical sequence of commands for the Linux operating
system would look something like this:

$ swig −ruby example.i
$ gcc −c example.c
$ gcc −c example_wrap.c −I/usr/local/lib/ruby/1.6/i686−linux
$ gcc −shared example.o example_wrap.o −o example.so

For other platforms it may be necessary to compile with the −fPIC option to generate position−independent code. If in doubt,
consult the manual pages for your compiler and linker to determine the correct set of options. You might also check the SWIG
Wiki for additional information.

30.1.4 Using your module

Ruby module names must be capitalized, but the convention for Ruby feature names is to use lowercase names. So, for example,
the Etc extension module is imported by requiring the etc feature:

The feature name begins with a lowercase letter...
require 'etc'

... but the module name begins with an uppercase letter
puts "Your login name: #{Etc.getlogin}"

To stay consistent with this practice, you should always specify a lowercase module name with SWIG's %module directive.
SWIG will automatically correct the resulting Ruby module name for your extension. So for example, a SWIG interface file that
begins with:

%module example

will result in an extension module using the feature name "example" and Ruby module name "Example".

30.1.5 Static linking

An alternative approach to dynamic linking is to rebuild the Ruby interpreter with your extension module added to it. In the past,
this approach was sometimes necessary due to limitations in dynamic loading support on certain machines. However, the situation
has improved greatly over the last few years and you should not consider this approach unless there is really no other option.

The usual procedure for adding a new module to Ruby involves finding the Ruby source, adding an entry to the ext/Setup file,
adding your directory to the list of extensions in the file, and finally rebuilding Ruby.

SWIG−1.3 Documentation

30.1.3 Compiling a dynamic module 452

http://www.dabeaz.com/cgi-bin/wiki.pl
http://www.dabeaz.com/cgi-bin/wiki.pl

30.1.6 Compilation of C++ extensions

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

$ swig −c++ −ruby example.i
$ g++ −c example.cxx
$ g++ −c example_wrap.cxx −I/usr/local/lib/ruby/1.6/i686−linux
$ g++ −shared example.o example_wrap.o −o example.so

If you've written an extconf.rb script to automatically generate a Makefile for your C++ extension module, keep in mind
that (as of this writing) Ruby still uses gcc and not g++ as its linker. As a result, the required C++ runtime library support will
not be automatically linked into your extension module and it may fail to load on some platforms. A workaround for this problem
is use the mkmf module's append_library() method to add one of the C++ runtime libraries to the list of libraries linked
into your extension, e.g.

require 'mkmf'
$libs = append_library($libs, "supc++")
create_makefile('example')

30.2 Building Ruby Extensions under Windows 95/NT

Building a SWIG extension to Ruby under Windows 95/NT is roughly similar to the process used with Unix. Normally, you will
want to produce a DLL that can be loaded into the Ruby interpreter. For all recent versions of Ruby, the procedure described
above (i.e. using an extconf.rb script) will work with Windows as well; you should be able to build your code into a DLL by
typing:

C:\swigtest> ruby extconf.rb
C:\swigtest> nmake
C:\swigtest> nmake install

The remainder of this section covers the process of compiling SWIG−generated Ruby extensions with Microsoft Visual C++ 6
(i.e. within the Developer Studio IDE, instead of using the command line tools). In order to build extensions, you may need to
download the source distribution to the Ruby package, as you will need the Ruby header files.

30.2.1 Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked as a custom build option. The
process roughly follows these steps :

Open up a new workspace and use the AppWizard to select a DLL project.•
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (i.e. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer Studio will keep a reference to it
around.

•

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.•
Enter "SWIG" in the description field.•
Enter "swig −ruby −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s)
field". You may have to include the path to swig.exe.

•

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".•
Next, select the settings for the entire project and go to the C/C++ tab and select the Preprocessor category. Add NT=1 to
the Preprocessor definitions. This must be set else you will get compilation errors. Also add IMPORT to the preprocessor
definitions, else you may get runtime errors. Also add the include directories for your Ruby installation under
"Additional include directories".

•

Next, select the settings for the entire project and go to the Link tab and select the General category. Set the name of the
output file to match the name of your Ruby module (i.e.. example.dll). Next add the Ruby library file to your link
libraries under Object/Library modules. For example "mswin32−ruby16.lib. You also need to add the path to the library

•

SWIG−1.3 Documentation

30.1.6 Compilation of C++ extensions 453

under the Input tab − Additional library path.
Build your project.•

Now, assuming all went well, SWIG will be automatically invoked when you build your project. Any changes made to the
interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file. To run your new
Ruby extension, simply run Ruby and use the require command as normal. For example if you have this ruby file run.rb:

file: run.rb
require 'Example'

Call a c function
print "Foo = ", Example.Foo, "\n"

Ensure the dll just built is in your path or current directory, then run the Ruby script from the DOS/Command prompt:

C:\swigtest> ruby run.rb
Foo = 3.0

30.3 The Ruby−to−C/C++ Mapping

This section describes the basics of how SWIG maps C or C++ declarations in your SWIG interface files to Ruby constructs.

30.3.1 Modules

The SWIG %module directive specifies the name of the Ruby module. If you specify:

%module example

then everything is wrapped into a Ruby module named Example that is nested directly under the global module. You can specify
a more deeply nested module by specifying the fully−qualified module name in quotes, e.g.

%module "foo::bar::spam"

An alternate method of specifying a nested module name is to use the −prefix option on the SWIG command line. The prefix that
you specify with this option will be prepended to the module name specified with the %module directive in your SWIG interface
file. So for example, this declaration at the top of your SWIG interface file:

%module "foo::bar::spam"

will result in a nested module name of Foo::Bar::Spam, but you can achieve the same effect by specifying:

%module spam

and then running SWIG with the −prefix command line option:

$ swig −ruby −prefix "foo::bar::" example.i

Starting with SWIG 1.3.20, you can also choose to wrap everything into the global module by specifying the −globalmodule
option on the SWIG command line, i.e.

$ swig −ruby −globalmodule example.i

Note that this does not relieve you of the requirement of specifying the SWIG module name with the %module directive (or the
−module command−line option) as described earlier.

When choosing a module name, do not use the same name as a built−in Ruby command or standard module name, as the results
may be unpredictable. Similarly, if you're using the −globalmodule option to wrap everything into the global module, take
care that the names of your constants, classes and methods don't conflict with any of Ruby's built−in names.

SWIG−1.3 Documentation

30.2.1 Running SWIG from Developer Studio 454

30.3.2 Functions

Global functions are wrapped as Ruby module methods. For example, given the SWIG interface file example.i:

%module example

int fact(int n);

and C source file example.c:

int fact(int n) {
 if (n == 0)
 return 1;
 return (n * fact(n−1));
}

SWIG will generate a method fact in the Example module that can be used like so:

$ irb
irb(main):001:0> require 'example'
true
irb(main):002:0> Example.fact(4)
24

30.3.3 Variable Linking

C/C++ global variables are wrapped as a pair of singleton methods for the module: one to get the value of the global variable and
one to set it. For example, the following SWIG interface file declares two global variables:

// SWIG interface file with global variables
%module example
...
%inline %{
extern int variable1;
extern double Variable2;
%}
...

Now look at the Ruby interface:

$ irb
irb(main):001:0> require 'Example'
true
irb(main):002:0> Example.variable1 = 2
2
irb(main):003:0> Example.Variable2 = 4 * 10.3
41.2
irb(main):004:0> Example.Variable2
41.2

If you make an error in variable assignment, you will receive an error message. For example:

irb(main):005:0> Example.Variable2 = "hello"
TypeError: no implicit conversion to float from string
from (irb):5:in `Variable2='
from (irb):5

If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can also use the %immutable directive. For example:

%immutable;

SWIG−1.3 Documentation

30.3.2 Functions 455

%inline %{
extern char *path;
%}
%mutable;

The %immutable directive stays in effect until it is explicitly disabled using %mutable.

30.3.4 Constants

C/C++ constants are wrapped as module constants initialized to the appropriate value. To create a constant, use #define or the
%constant directive. For example:

#define PI 3.14159
#define VERSION "1.0"

%constant int FOO = 42;
%constant const char *path = "/usr/local";

const int BAR = 32;

Remember to use the :: operator in Ruby to get at these constant values, e.g.

$ irb
irb(main):001:0> require 'Example'
true
irb(main):002:0> Example::PI
3.14159

30.3.5 Pointers

"Opaque" pointers to arbitrary C/C++ types (i.e. types that aren't explicitly declared in your SWIG interface file) are wrapped as
data objects. So, for example, consider a SWIG interface file containing only the declarations:

Foo *get_foo();
void set_foo(Foo *foo);

For this case, the get_foo() method returns an instance of an internally generated Ruby class:

irb(main):001:0> foo = Example::get_foo()
#<SWIG::TYPE_p_Foo:0x402b1654>

A NULL pointer is always represented by the Ruby nil object.

30.3.6 Structures

C/C++ structs are wrapped as Ruby classes, with accessor methods (i.e. "getters" and "setters") for all of the struct members. For
example, this struct declaration:

struct Vector {
 double x, y;
};

gets wrapped as a Vector class, with Ruby instance methods x, x=, y and y=. These methods can be used to access structure
data from Ruby as follows:

$ irb
irb(main):001:0> require 'Example'
true
irb(main):002:0> f = Example::Vector.new
#<Example::Vector:0x4020b268>
irb(main):003:0> f.x = 10

SWIG−1.3 Documentation

30.3.3 Variable Linking 456

nil
irb(main):004:0> f.x
10.0

Similar access is provided for unions and the public data members of C++ classes.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive (in C++, private may also be used). For example:

struct Foo {
 ...
 %immutable;
 int x; /* Read−only members */
 char *name;
 %mutable;
 ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described shortly).

Array members are normally wrapped as read−only. For example, this code:

struct Foo {
 int x[50];
};

produces a single accessor function like this:

int *Foo_x_get(Foo *self) {
 return self−>x;
};

If you want to set an array member, you will need to supply a "memberin" typemap described in the section on typemaps. As a
special case, SWIG does generate code to set array members of type char (allowing you to store a Ruby string in the structure).

When structure members are wrapped, they are handled as pointers. For example,

struct Foo {
 ...
};

struct Bar {
 Foo f;
};

generates accessor functions such as this:

Foo *Bar_f_get(Bar *b) {
 return &b−>f;
}

void Bar_f_set(Bar *b, Foo *val) {
 b−>f = *val;
}

30.3.7 C++ classes

Like structs, C++ classes are wrapped by creating a new Ruby class of the same name with accessor methods for the public class
member data. Additionally, public member functions for the class are wrapped as Ruby instance methods, and public static

SWIG−1.3 Documentation

30.3.6 Structures 457

member functions are wrapped as Ruby singleton methods. So, given the C++ class declaration:

class List {
public:
 List();
 ~List();
 int search(char *item);
 void insert(char *item);
 void remove(char *item);
 char *get(int n);
 int length;
 static void print(List *l);
};

SWIG would create a List class with:

instance methods search, insert, remove, and get;•
instance methods length and length= (to get and set the value of the length data member); and,•
a print singleton method for the class.•

In Ruby, these functions are used as follows:

require 'Example'

l = Example::List.new

l.insert("Ale")
l.insert("Stout")
l.insert("Lager")
Example.print(l)
l.length()
−−−−− produces the following output
Lager
Stout
Ale
3

30.3.8 C++ Inheritance

The SWIG type−checker is fully aware of C++ inheritance. Therefore, if you have classes like this:

class Parent {
 ...
};

class Child : public Parent {
 ...
};

those classes are wrapped into a hierarchy of Ruby classes that reflect the same inheritance structure. All of the usual Ruby utility
methods work normally:

irb(main):001:0> c = Child.new
#<Bar:0x4016efd4>
irb(main):002:0> c.instance_of? Child
true
irb(main):003:0> b.instance_of? Parent
false
irb(main):004:0> b.is_a? Child
true
irb(main):005:0> b.is_a? Parent
true
irb(main):006:0> Child < Parent

SWIG−1.3 Documentation

30.3.7 C++ classes 458

true
irb(main):007:0> Child > Parent
false

Furthermore, if you have a function like this:

void spam(Parent *f);

then the function spam() accepts Parent* or a pointer to any class derived from Parent.

Until recently, the Ruby module for SWIG didn't support multiple inheritance, and this is still the default behavior. This doesn't
mean that you can't wrap C++ classes which inherit from multiple base classes; it simply means that only the first base class listed
in the class declaration is considered, and any additional base classes are ignored. As an example, consider a SWIG interface file
with a declaration like this:

class Derived : public Base1, public Base2
{
 ...
};

For this case, the resulting Ruby class (Derived) will only consider Base1 as its superclass. It won't inherit any of Base2's
member functions or data and it won't recognize Base2 as an "ancestor" of Derived (i.e. the is_a? relationship would fail).
When SWIG processes this interface file, you'll see a warning message like:

example.i:5: Warning(802): Warning for Derived: Base Base2 ignored.
Multiple inheritance is not supported in Ruby.

Starting with SWIG 1.3.20, the Ruby module for SWIG provides limited support for multiple inheritance. Because the approach
for dealing with multiple inheritance introduces some limitations, this is an optional feature that you can activate with the
−minherit command−line option:

$ swig −c++ −ruby −minherit example.i

Using our previous example, if your SWIG interface file contains a declaration like this:

class Derived : public Base1, public Base2
{
 ...
};

and you run SWIG with the −minherit command−line option, then you will end up with a Ruby class Derived that appears
to "inherit" the member data and functions from both Base1 and Base2. What actually happens is that three different top−level
classes are created, with Ruby's Object class as their superclass. Each of these classes defines a nested module named Impl,
and it's in these nested Impl modules that the actual instance methods for the classes are defined, i.e.

class Base1
 module Impl
 # Define Base1 methods here
 end
 include Impl
end

class Base2
 module Impl
 # Define Base2 methods here
 end
 include Impl
end

class Derived
 module Impl
 include Base1::Impl

SWIG−1.3 Documentation

30.3.8 C++ Inheritance 459

 include Base2::Impl
 # Define Derived methods here
 end
 include Impl
end

Observe that after the nested Impl module for a class is defined, it is mixed−in to the class itself. Also observe that the
Derived::Impl module first mixes−in its base classes' Impl modules, thus "inheriting" all of their behavior.

The primary drawback is that, unlike the default mode of operation, neither Base1 nor Base2 is a true superclass of Derived
anymore:

obj = Derived.new
obj.is_a? Base1 # this will return false...
obj.is_a? Base2 # ... and so will this

In most cases, this is not a serious problem since objects of type Derived will otherwise behave as though they inherit from both
Base1 and Base2 (i.e. they exhibit "Duck Typing").

30.3.9 C++ Overloaded Functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

void foo(int);
void foo(char *c);

You can use them in Ruby in a straightforward manner:

irb(main):001:0> foo(3) # foo(int)
irb(main):002:0> foo("Hello") # foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
 Foo();
 Foo(const Foo &);
 ...
};

you can write Ruby code like this:

irb(main):001:0> f = Foo.new # Create a Foo
irb(main):002:0> g = Foo.new(f) # Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For example:

void spam(int);
void spam(short);

or

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

SWIG−1.3 Documentation

30.3.9 C++ Overloaded Functions 460

http://c2.com/cgi/wiki?DuckTyping

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);
void spam(short); // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);
void spam(short); // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according to a
set of type−precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises−−in this case, the first declaration takes precedence.

Please refer to the "SWIG and C++" chapter for more information about overloading.

30.3.10 C++ Operators

For the most part, overloaded operators are handled automatically by SWIG and do not require any special treatment on your part.
So if your class declares an overloaded addition operator, e.g.

class Complex {
 ...
 Complex operator+(Complex &);
 ...
};

the resulting Ruby class will also support the addition (+) method correctly.

For cases where SWIG's built−in support is not sufficient, C++ operators can be wrapped using the %rename directive (available
on SWIG 1.3.10 and later releases). All you need to do is give the operator the name of a valid Ruby identifier. For example:

%rename(add_complex) operator+(Complex &, Complex &);
...
Complex operator+(Complex &, Complex &);

Now, in Ruby, you can do this:

a = Example::Complex.new(2, 3)
b = Example::Complex.new(4, −1)
c = Example.add_complex(a, b)

More details about wrapping C++ operators into Ruby operators is discussed in the section on operator overloading.

30.3.11 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
 int fact(int n);
 struct Vector {
 double x,y,z;
 };

SWIG−1.3 Documentation

30.3.10 C++ Operators 461

};

it works in Ruby as follows:

irb(main):001:0> require 'example'
true
irb(main):002:0> Example.fact(3)
6
irb(main):003:0> v = Example::Vector.new
#<Example::Vector:0x4016f4d4>
irb(main):004:0> v.x = 3.4
3.4
irb(main):004:0> v.y
0.0

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
 int spam();
}

namespace Bar {
 int spam();
}

If you have more than one namespace and your want to keep their symbols separate, consider wrapping them as separate SWIG
modules. For example, make the module name the same as the namespace and create extension modules for each namespace
separately. If your program utilizes thousands of small deeply nested namespaces each with identical symbol names, well, then
you get what you deserve.

30.3.12 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example

%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;
 pair();
 pair(const T1&, const T2&);
 ~pair();
};

%template(Pairii) pair<int,int>;

In Ruby:

irb(main):001:0> require 'example'
true
irb(main):002:0> p = Example::Pairii.new(3, 4)
#<Example:Pairii:0x4016f4df>
irb(main):003:0> p.first

SWIG−1.3 Documentation

30.3.11 C++ namespaces 462

3
irb(main):004:0> p.second
4

On a related note, the standard SWIG library contains a number of modules that provide typemaps for standard C++ library
classes (such as std::pair, std::string and std::vector). These library modules don't provide wrappers around the
templates themselves, but they do make it convenient for users of your extension module to pass Ruby objects (such as arrays and
strings) to wrapped C++ code that expects instances of standard C++ templates. For example, suppose the C++ library you're
wrapping has a function that expects a vector of floats:

%module example

float sum(const std::vector<float>& values);

Rather than go through the hassle of writing an "in" typemap to convert an array of Ruby numbers into a std::vector<float>, you
can just use the std_vector.i module from the standard SWIG library:

%module example

%include std_vector.i
float sum(const std::vector<float>& values);

Obviously, there is a lot more to template wrapping than shown in these examples. More details can be found in the SWIG and
C++ chapter.

30.3.13 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
 ...
 T *operator−>();
 ...
}

Then, if you have a class like this,

class Foo {
public:
 int x;
 int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)
...
p−>x = 3; // Foo::x
int y = p−>bar(); // Foo::bar

To wrap this in Ruby, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Ruby, everything should just "work":

SWIG−1.3 Documentation

30.3.12 C++ templates 463

irb(main):001:0> p = Example::CreateFoo() # Create a smart−pointer somehow
#<Example::SmartPtrFoo:0x4016f4df>
irb(main):002:0> p.x = 3 # Foo::x
3
irb(main):003:0> p.bar() # Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

irb(main):004:0> f = p.__deref__() # Returns underlying Foo *

30.3.14 Cross−Language Polymorphism

SWIG's Ruby module supports cross−language polymorphism (a.k.a. the "directors" feature) similar to that for SWIG's Python
module. Rather than duplicate the information presented in the Python chapter, this section just notes the differences that you need
to be aware of when using this feature with Ruby.

30.3.14.1 Exception Unrolling

Whenever a C++ director class routes one of its virtual member function calls to a Ruby instance method, there's always the
possibility that an exception will be raised in the Ruby code. By default, those exceptions are ignored, which simply means that
the exception will be exposed to the Ruby interpreter. If you would like to change this behavior, you can use the
%feature("director:except") directive to indicate what action should be taken when a Ruby exception is raised. The
following code should suffice in most cases:

%feature("director:except") {
 throw Swig::DirectorMethodException($error);
}

When this feature is activated, the call to the Ruby instance method is "wrapped" using the rb_rescue2() function from
Ruby's C API. If any Ruby exception is raised, it will be caught here and a C++ exception is raised in its place.

30.4 Naming

Ruby has several common naming conventions. Constants are generally in upper case, module and class names are in camel case
and methods are in lower case with underscores. For example:

MATH::PI is a constant name•
MyClass is a class name•
my_method is a method name•

Prior to version 1.3.28, SWIG did not support these Ruby conventions. The only modifications it made to names was to capitalize
the first letter of constants (which includes module and class names).

SWIG 1.3.28 introduces the new −autorename command line parameter. When this parameter is specified, SWIG will
automatically change constant, class and method names to conform with the standard Ruby naming conventions. For example:

$ swig −ruby −autorename example.i

To disable renaming use the −noautorename command line option.

Since this change significantly changes the wrapper code generated by SWIG, it is turned off by default in SWIG 1.3.28.
However, it is planned to become the default option in future releases.

SWIG−1.3 Documentation

30.3.13 C++ Smart Pointers 464

30.4.1 Defining Aliases

It's a fairly common practice in the Ruby built−ins and standard library to provide aliases for method names. For example,
Array#size is an alias for Array#length. If you would like to provide an alias for one of your class' instance methods, one approach
is to use SWIG's %extend directive to add a new method of the aliased name that calls the original function. For example:

class MyArray {
public:
 // Construct an empty array
 MyArray();

 // Return the size of this array
 size_t length() const;
};

%extend MyArray {
 // MyArray#size is an alias for MyArray#length
 size_t size() const {
 return self−>length();
 }
}

A better solution is to use the %alias directive (unique to SWIG's Ruby module). The previous example could then be rewritten
as:

// MyArray#size is an alias for MyArray#length
%alias MyArray::length "size";

class MyArray {
public:
 // Construct an empty array
 MyArray();

 // Return the size of this array
 size_t length() const;
};

Multiple aliases can be associated with a method by providing a comma−separated list of aliases to the %alias directive, e.g.

%alias MyArray::length "amount,quantity,size";

From an end−user's standpoint, there's no functional difference between these two approaches; i.e. they should get the same result
from calling either MyArray#size or MyArray#length. However, when the %alias directive is used, SWIG doesn't need to
generate all of the wrapper code that's usually associated with added methods like our MyArray::size() example.

Note that the %alias directive is implemented using SWIG's "features" mechanism and so the same name matching rules used
for other kinds of features apply (see the chapter on "Customization Features") for more details).

30.4.2 Predicate Methods

Ruby methods that return a boolean value and end in a question mark are known as predicate methods. Examples of predicate
methods in standard Ruby classes include Array#empty? (which returns true for an array containing no elements) and
Object#instance_of? (which returns true if the object is an instance of the specified class). For consistency with Ruby
conventions, methods that return boolean values should be marked as predicate methods.

One cumbersome solution to this problem is to rename the method (using SWIG's %rename directive) and provide a custom
typemap that converts the function's actual return type to Ruby's true or false. For example:

SWIG−1.3 Documentation

30.4.1 Defining Aliases 465

%rename("is_it_safe?") is_it_safe();

%typemap(out) int is_it_safe
 "$result = ($1 != 0) ? Qtrue : Qfalse;";

int is_it_safe();

A better solution is to use the %predicate directive (unique to SWIG's Ruby module) to designate a method as a predicate
method. For the previous example, this would look like:

%predicate is_it_safe();

int is_it_safe();

This method would be invoked from Ruby code like this:

irb(main):001:0> Example::is_it_safe?
true

The %predicate directive is implemented using SWIG's "features" mechanism and so the same name matching rules used for
other kinds of features apply (see the chapter on "Customization Features") for more details).

30.4.3 Bang Methods

Ruby methods that modify an object in−place and end in an exclamation mark are known as bang methods. An example of a bang
method is Array#sort! which changes the ordering of items in an array. Contrast this with Array#sort, which returns a copy of the
array with the items sorted instead of modifying the original array. For consistency with Ruby conventions, methods that modify
objects in place should be marked as bang methods.

Bang methods can be marked using the %bang directive which is unique to the Ruby module and was introduced in SWIG
1.3.28. For example:

%bang sort!(arr);

int sort(int arr[]);

This method would be invoked from Ruby code like this:

irb(main):001:0> Example::sort!(arr)

The %bang directive is implemented using SWIG's "features" mechanism and so the same name matching rules used for other
kinds of features apply (see the chapter on "Customization Features") for more details).

30.4.4 Getters and Setters

Often times a C++ library will expose properties through getter and setter methods. For example:

class Foo {
 Foo() {}

 int getValue() { return value_; }

 void setValue(int value) { value_ = value; }

private:

SWIG−1.3 Documentation

30.4.2 Predicate Methods 466

 int value_;
};

By default, SWIG will expose these methods to Ruby as get_value and set_value. However, it more natural for these
methods to be exposed in Ruby as value and value=. That allows the methods to be used like this:

irb(main):001:0> foo = Foo.new()
irb(main):002:0> foo.value = 5
irb(main):003:0> puts foo.value

This can be done by using the %rename directive:

%rename("value") Foo::getValue();
%rename("value=") Foo::setValue(int value);

30.5 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {
 *result = x + y;
}
or
int sub(int *x, int *y) {
 return *x−*y;
}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module Example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);

In Ruby, this allows you to pass simple values. For example:

a = Example.add(3,4)
puts a
7
b = Example.sub(7,4)
puts b
3

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module Example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);

If a function mutates one of its parameters like this,

SWIG−1.3 Documentation

30.4.4 Getters and Setters 467

void negate(int *x) {
 *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Ruby, a mutated parameter shows up as a return value. For example:

a = Example.negate(3)
print a
−3

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, success code, and error_code */
int send_message(char *text, int *success, int *error_code);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
...
int send_message(char *, int *OUTPUT, int *OUTPUT);

When used in Ruby, the function will return an array of multiple values.

bytes, success, error_code = send_message("Hello World")
if not success
 print "error #{error_code} : in send_message"
else
 print "Sent", bytes
end

Another way to access multiple return values is to use the %apply rule. In the following example, the parameters rows and
columns are related to SWIG as OUTPUT values through the use of %apply

%module Example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, int*columns);

In Ruby:

r, c = Example.get_dimensions(m)

30.6 Exception handling

30.6.1 Using the %exception directive

The SWIG %exception directive can be used to define a user−definable exception handler that can convert C/C++ errors into
Ruby exceptions. The chapter on Customization Features contains more details, but suppose you have a C++ class like the
following :

SWIG−1.3 Documentation

30.5 Input and output parameters 468

class DoubleArray {
 private:
 int n;
 double *ptr;
 public:
 // Create a new array of fixed size
 DoubleArray(int size) {
 ptr = new double[size];
 n = size;
 }

 // Destroy an array
 ~DoubleArray() {
 delete ptr;
 }

 // Return the length of the array
 int length() {
 return n;
 }

 // Get an array item and perform bounds checking.
 double getitem(int i) {
 if ((i >= 0) && (i < n))
 return ptr[i];
 else
 throw RangeError();
 }

 // Set an array item and perform bounds checking.
 void setitem(int i, double val) {
 if ((i >= 0) && (i < n))
 ptr[i] = val;
 else {
 throw RangeError();
 }
 }
 };

Since several methods in this class can throw an exception for an out−of−bounds access, you might want to catch this in the Ruby
extension by writing the following in an interface file:

%exception {
 try {
 $action
 }
 catch (const RangeError&) {
 static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
 rb_raise(cpperror, "Range error.");
 }
}

class DoubleArray {
 ...
};

The exception handling code is inserted directly into generated wrapper functions. When an exception handler is defined, errors
can be caught and used to gracefully raise a Ruby exception instead of forcing the entire program to terminate with an uncaught
error.

As shown, the exception handling code will be added to every wrapper function. Because this is somewhat inefficient, you might
consider refining the exception handler to only apply to specific methods like this:

%exception getitem {
 try {

SWIG−1.3 Documentation

30.6.1 Using the %exception directive 469

 $action
 }
 catch (const RangeError&) {
 static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
 rb_raise(cpperror, "Range error in getitem.");
 }
}

%exception setitem {
 try {
 $action
 }
 catch (const RangeError&) {
 static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
 rb_raise(cpperror, "Range error in setitem.");
 }
}

In this case, the exception handler is only attached to methods and functions named getitem and setitem.

Since SWIG's exception handling is user−definable, you are not limited to C++ exception handling. See the chapter on
Customization Features for more examples.

30.6.2 Raising exceptions

There are three ways to raise exceptions from C++ code to Ruby.

The first way is to use SWIG_exception(int code, const char *msg). The following table shows the mappings
from SWIG error codes to Ruby exceptions:

SWIG_MemoryError rb_eNoMemError

SWIG_IOError rb_eIOError

SWIG_RuntimeError rb_eRuntimeError

SWIG_IndexError rb_eIndexError

SWIG_TypeError rb_eTypeError

SWIG_DivisionByZero rb_eZeroDivError

SWIG_OverflowError rb_eRangeError

SWIG_SyntaxError rb_eSyntaxError

SWIG_ValueError rb_eArgError

SWIG_SystemError rb_eFatal

SWIG_AttributeError rb_eRuntimeError

SWIG_NullReferenceError rb_eNullReferenceError*

SWIG_ObjectPreviouslyDeletedError rb_eObjectPreviouslyDeleted*

SWIG_UnknownError rb_eRuntimeError

* These error classes are created by SWIG and are not built−in Ruby exception classes
The second way to raise errors is to use SWIG_Raise(obj, type, desc). Obj is a C++ instance of an exception class, type
is a string specifying the type of exception (for example, "MyError") and desc is the SWIG description of the exception class. For
example:

%raise(SWIG_NewPointerObj(e, SWIGTYPE_p_AssertionFailedException, 0), ":AssertionFailedException",
SWIGTYPE_p_AssertionFailedException);

This is useful when you want to pass the current exception object directly to Ruby, particularly when the object is an instance of
class marked as an %exceptionclass (see the next section for more information).

SWIG−1.3 Documentation

30.6.2 Raising exceptions 470

Last, you can raise an exception by directly calling Ruby's C api. This is done by invoking the rb_raise() function. The first
argument passed to rb_raise() is the exception type. You can raise a custom exception type or one of the built−in Ruby
exception types.

30.6.3 Exception classes

Starting with SWIG 1.3.28, the Ruby module supports the %exceptionclass directive, which is used to identify C++ classes
that are used as exceptions. Classes that are marked with the %exceptionclass directive are exposed in Ruby as child classes
of rb_eRuntimeError. This alows C++ exceptions to be directly mapped to Ruby exceptions, providing for a more natural
integration between C++ code and Ruby code.

 %exceptionclass CustomError;

 %inline %{
 class CustomError { };

 class Foo {
 public:
 void test() { throw CustomError; }
 };
 }

From Ruby you can now call this method like this:

foo = Foo.new
begin
 foo.test()
rescue CustomError => e
 puts "Caught custom error"
end

For another example look at swig/Examples/ruby/exception_class.

30.7 Typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Ruby C API as well as the material in the "Typemaps"
chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Ruby interface.

30.7.1 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Ruby to C, you might define a typemap like this:

%module example

%typemap(in) int {
 $1 = (int) NUM2INT($input);
 printf("Received an integer : %d\n",$1);
}

%inline %{
extern int fact(int n);
%}

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C

SWIG−1.3 Documentation

30.6.3 Exception classes 471

code is used to convert values. In this code a number of special variables prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input Ruby object.

When this example is compiled into a Ruby module, the following sample code:

require 'example'

puts Example.fact(6)

prints the result:

Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int n {
 $1 = (int) NUM2INT($input);
 printf("n = %d\n",$1);
}

%inline %{
extern int fact(int n);
%}

In this case, the typemap code is only attached to arguments that exactly match "int n".

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int n {
 $1 = (int) NUM2INT($input);
 printf("n = %d\n",$1);
}

typedef int Integer;
extern int fact(Integer n); // Above typemap is applied

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to
arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
 $1 = STR2CSTR($input);
 $2 = (int) RSTRING($input)−>len;
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Ruby object. This allows the function
count to be used as follows (notice how the length parameter is omitted):

puts Example.count('o','Hello World')
2

SWIG−1.3 Documentation

30.7.1 What is a typemap? 472

30.7.2 Ruby typemaps

The previous section illustrated an "in" typemap for converting Ruby objects to C. A variety of different typemap methods are
defined by the Ruby module. For example, to convert a C integer back into a Ruby object, you might define an "out" typemap like
this:

%typemap(out) int {
 $result = INT2NUM($1);
}

The following list details all of the typemap methods that can be used by the Ruby module:

%typemap(in)

Converts Ruby objects to input function arguments
%typemap(out)

Converts return value of a C function to a Ruby object
%typemap(varin)

Assigns a C global variable from a Ruby object
%typemap(varout)

Returns a C global variable as a Ruby object
%typemap(freearg)

Cleans up a function argument (if necessary)
%typemap(argout)

Output argument processing
%typemap(ret)

Cleanup of function return values
%typemap(memberin)

Setting of structure/class member data
%typemap(globalin)

Setting of C global variables
%typemap(check)

Checks function input values.
%typemap(default)

Set a default value for an argument (making it optional).
%typemap(arginit)

Initialize an argument to a value before any conversions occur.
Examples of these typemaps appears in the section on typemap examples

30.7.3 Typemap variables

Within a typemap, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

SWIG−1.3 Documentation

30.7.2 Ruby typemaps 473

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this is a C local
variable that is supposed to hold an argument value. For output values, this is the raw result that is supposed to be returned to
Ruby.

$input

A VALUE holding a raw Ruby object with an argument or variable value.
$result

A VALUE that holds the result to be returned to Ruby.
$1_name

The parameter name that was matched.
$1_type

The actual C datatype matched by the typemap.
$1_ltype

An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of a C
assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All arguments and
local variables in wrapper functions are declared using this type so that their values can be properly assigned.

$symname

The Ruby name of the wrapper function being created.

30.7.4 Useful Functions

When you write a typemap, you usually have to work directly with Ruby objects. The following functions may prove to be useful.
(These functions plus many more can be found in Programming Ruby, by David Thomas and Andrew Hunt.)

30.7.4.1 C Datatypes to Ruby Objects

INT2NUM(long or int) − int to Fixnum or Bignum
INT2FIX(long or int) − int to Fixnum (faster than INT2NUM)
CHR2FIX(char) − char to Fixnum
rb_str_new2(char*) − char* to String
rb_float_new(double) − double to Float

30.7.4.2 Ruby Objects to C Datatypes

 int NUM2INT(Numeric)
 int FIX2INT(Numeric)
 unsigned int NUM2UINT(Numeric)
 unsigned int FIX2UINT(Numeric)
 long NUM2LONG(Numeric)
 long FIX2LONG(Numeric)
unsigned long FIX2ULONG(Numeric)
 char NUM2CHR(Numeric or String)
 char * STR2CSTR(String)
 char * rb_str2cstr(String, int*length)
 double NUM2DBL(Numeric)

30.7.4.3 Macros for VALUE

RSTRING(str)−>len

length of the Ruby string
RSTRING(str)−>ptr

SWIG−1.3 Documentation

30.7.3 Typemap variables 474

http://www.rubycentral.com/book

pointer to string storage
RARRAY(arr)−>len

length of the Ruby array
RARRAY(arr)−>capa

capacity of the Ruby array
RARRAY(arr)−>ptr

pointer to array storage
30.7.4.4 Exceptions

void rb_raise(VALUE exception, const char *fmt, ...)

Raises an exception. The given format string fmt and remaining arguments are interpreted as with printf().
void rb_fatal(const char *fmt, ...)

Raises a fatal exception, terminating the process. No rescue blocks are called, but ensure blocks will be called. The given
format string fmt and remaining arguments are interpreted as with printf().

void rb_bug(const char *fmt, ...)

Terminates the process immediately −− no handlers of any sort will be called. The given format string fmt and remaining
arguments are interpreted as with printf(). You should call this function only if a fatal bug has been exposed.

void rb_sys_fail(const char *msg)

Raises a platform−specific exception corresponding to the last known system error, with the given string msg.
VALUE rb_rescue(VALUE (*body)(VALUE), VALUE args, VALUE(*rescue)(VALUE, VALUE), VALUE
rargs)

Executes body with the given args. If a StandardError exception is raised, then execute rescue with the given rargs.
VALUE rb_ensure(VALUE(*body)(VALUE), VALUE args, VALUE(*ensure)(VALUE), VALUE eargs)

Executes body with the given args. Whether or not an exception is raised, execute ensure with the given rargs after body has
completed.

VALUE rb_protect(VALUE (*body)(VALUE), VALUE args, int *result)

Executes body with the given args and returns nonzero in result if any exception was raised.
void rb_notimplement()

Raises a NotImpError exception to indicate that the enclosed function is not implemented yet, or not available on this
platform.

void rb_exit(int status)

Exits Ruby with the given status. Raises a SystemExit exception and calls registered exit functions and finalizers.
void rb_warn(const char *fmt, ...)

Unconditionally issues a warning message to standard error. The given format string fmt and remaining arguments are
interpreted as with printf().

void rb_warning(const char *fmt, ...)

Conditionally issues a warning message to standard error if Ruby was invoked with the −w flag. The given format string fmt
and remaining arguments are interpreted as with printf().

SWIG−1.3 Documentation

30.7.4.3 Macros for VALUE 475

30.7.4.5 Iterators

void rb_iter_break()

Breaks out of the enclosing iterator block.
VALUE rb_each(VALUE obj)

Invokes the each method of the given obj.
VALUE rb_yield(VALUE arg)

Transfers execution to the iterator block in the current context, passing arg as an argument. Multiple values may be passed in
an array.

int rb_block_given_p()

Returns true if yield would execute a block in the current context; that is, if a code block was passed to the current
method and is available to be called.

VALUE rb_iterate(VALUE (*method)(VALUE), VALUE args, VALUE (*block)(VALUE, VALUE),
VALUE arg2)

Invokes method with argument args and block block. A yield from that method will invoke block with the argument given
to yield, and a second argument arg2.

VALUE rb_catch(const char *tag, VALUE (*proc)(VALUE, VALUE), VALUE value)

Equivalent to Ruby's catch.
void rb_throw(const char *tag, VALUE value)

Equivalent to Ruby's throw.

30.7.5 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the examples in the Example/ruby
directory.

30.7.6 Converting a Ruby array to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Ruby Array instance to be used as a char ** object.

%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
 /* Get the length of the array */
 int size = RARRAY($input)−>len;
 int i;
 $1 = (char **) malloc((size+1)*sizeof(char *));
 /* Get the first element in memory */
 VALUE *ptr = RARRAY($input)−>ptr;
 for (i=0; i < size; i++, ptr++)
 /* Convert Ruby Object String to char* */
 $1[i]= STR2CSTR(*ptr);
 $1[i]=NULL; /* End of list */
}

// This cleans up the char ** array created before
// the function call

%typemap(freearg) char ** {
 free((char *) $1);
}

SWIG−1.3 Documentation

30.7.4.5 Iterators 476

// Now a test function
%inline %{
int print_args(char **argv) {
 int i = 0;
 while (argv[i]) {
 printf("argv[%d] = %s\n", i,argv[i]);
 i++;
 }
 return i;
}
%}

When this module is compiled, the wrapped C function now operates as follows :

require 'Argv'
Argv.print_args(["Dave","Mike","Mary","Jane","John"])
argv[0] = Dave
argv[1] = Mike
argv[2] = Mary
argv[3] = Jane
argv[4] = John

In the example, two different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for the array, the "freearg" typemap is used to later release
this memory after the execution of the C function.

30.7.7 Collecting arguments in a hash

Ruby's solution to the "keyword arguments" capability of some other languages is to allow the programmer to pass in one or more
key−value pairs as arguments to a function. All of those key−value pairs are collected in a single Hash argument that's presented
to the function. If it makes sense, you might want to provide similar functionality for your Ruby interface. For example, suppose
you'd like to wrap this C function that collects information about people's vital statistics:

void setVitalStats(const char *person, int nattributes, const char **names, int *values);

and you'd like to be able to call it from Ruby by passing in an arbitrary number of key−value pairs as inputs, e.g.

setVitalStats("Fred",
 'weight' => 270,
 'age' => 42
)

To make this work, you need to write a typemap that expects a Ruby Hash as its input and somehow extracts the last three
arguments (nattributes, names and values) needed by your C function. Let's start with the basics:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {
}

This %typemap directive tells SWIG that we want to match any function declaration that has the specified types and names of
arguments somewhere in the argument list. The fact that we specified the argument names (nattributes, names and values) in our
typemap is significant; this ensures that SWIG won't try to apply this typemap to other functions it sees that happen to have a
similar declaration with different argument names. The arguments that appear in the second set of parentheses (keys_arr, i, key
and val) define local variables that our typemap will need.

Since we expect the input argument to be a Hash, let's next add a check for that:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {

SWIG−1.3 Documentation

30.7.6 Converting a Ruby array to a char ** 477

Check_Type($input, T_HASH);
}

Check_Type() is just a macro (defined in the Ruby header files) that confirms that the input argument is of the correct type; if
it isn't, an exception will be raised.

The next task is to determine how many key−value pairs are present in the hash; we'll assign this number to the first typemap
argument ($1). This is a little tricky since the Ruby/C API doesn't provide a public function for querying the size of a hash, but
we can get around that by calling the hash's size method directly and converting its result to a C int value:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {
 Check_Type($input, T_HASH);

$1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
}

So now we know the number of attributes. Next we need to initialize the second and third typemap arguments (i.e. the two C
arrays) to NULL and set the stage for extracting the keys and values from the hash:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {
 Check_Type($input, T_HASH);
 $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));

$2 = NULL;
 $3 = NULL;
 if ($1 > 0) {
 $2 = (char **) malloc($1*sizeof(char *));
 $3 = (int *) malloc($1*sizeof(int));
 }
}

There are a number of ways we could extract the keys and values from the input hash, but the simplest approach is to first call the
hash's keys method (which returns a Ruby array of the keys) and then start looping over the elements in that array:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {
 Check_Type($input, T_HASH);
 $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
 $2 = NULL;
 $3 = NULL;
 if ($1 > 0) {
 $2 = (char **) malloc($1*sizeof(char *));
 $3 = (int *) malloc($1*sizeof(int));

keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
 for (i = 0; i < $1; i++) {
 }
}
}

Recall that keys_arr and i are local variables for this typemap. For each element in the keys_arr array, we want to get the key
itself, as well as the value corresponding to that key in the hash:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {
 Check_Type($input, T_HASH);
 $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
 $2 = NULL;
 $3 = NULL;
 if ($1 > 0) {
 $2 = (char **) malloc($1*sizeof(char *));
 $3 = (int *) malloc($1*sizeof(int));
 keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
 for (i = 0; i < $1; i++) {

key = rb_ary_entry(keys_arr, i);

SWIG−1.3 Documentation

30.7.7 Collecting arguments in a hash 478

 val = rb_hash_aref($input, key);
}
}
}

To be safe, we should again use the Check_Type() macro to confirm that the key is a String and the value is a Fixnum:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {
 Check_Type($input, T_HASH);
 $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
 $2 = NULL;
 $3 = NULL;
 if ($1 > 0) {
 $2 = (char **) malloc($1*sizeof(char *));
 $3 = (int *) malloc($1*sizeof(int));
 keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
 for (i = 0; i < $1; i++) {
 key = rb_ary_entry(keys_arr, i);
 val = rb_hash_aref($input, key);

Check_Type(key, T_STRING);
 Check_Type(val, T_FIXNUM);
}
}
}

Finally, we can convert these Ruby objects into their C equivalents and store them in our local C arrays:

%typemap(in) (int nattributes, const char **names, const int *values)
 (VALUE keys_arr, int i, VALUE key, VALUE val) {
 Check_Type($input, T_HASH);
 $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
 $2 = NULL;
 $3 = NULL;
 if ($1 > 0) {
 $2 = (char **) malloc($1*sizeof(char *));
 $3 = (int *) malloc($1*sizeof(int));
 keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
 for (i = 0; i < $1; i++) {
 key = rb_ary_entry(keys_arr, i);
 val = rb_hash_aref($input, key);
 Check_Type(key, T_STRING);
 Check_Type(val, T_FIXNUM);

$2[i] = STR2CSTR(key);
 $3[i] = NUM2INT(val);
}
}
}

We're not done yet. Since we used malloc() to dynamically allocate the memory used for the names and values arguments, we
need to provide a corresponding "freearg" typemap to free that memory so that there is no memory leak. Fortunately, this typemap
is a lot easier to write:

%typemap(freearg) (int nattributes, const char **names, const int *values) {
 free((void *) $2);
 free((void *) $3);
}

All of the code for this example, as well as a sample Ruby program that uses the extension, can be found in the
Examples/ruby/hashargs directory of the SWIG distribution.

SWIG−1.3 Documentation

30.7.7 Collecting arguments in a hash 479

30.7.8 Pointer handling

Occasionally, it might be necessary to convert pointer values that have been stored using the SWIG typed−pointer representation.
Since there are several ways in which pointers can be represented, the following two functions are used to safely perform this
conversion:

int SWIG_ConvertPtr(VALUE obj, void **ptr, swig_type_info *ty, int flags)

Converts a Ruby object obj to a C pointer whose address is ptr (i.e. ptr is a pointer to a pointer). The third argument, ty, is a
pointer to a SWIG type descriptor structure. If ty is not NULL, that type information is used to validate type compatibility and
other aspects of the type conversion. If flags is non−zero, any type errors encountered during this validation result in a Ruby
TypeError exception being raised; if flags is zero, such type errors will cause SWIG_ConvertPtr() to return −1 but
not raise an exception. If ty is NULL, no type−checking is performed.

VALUE SWIG_NewPointerObj(void *ptr, swig_type_info *ty, int own)

Creates a new Ruby pointer object. Here, ptr is the pointer to convert, ty is the SWIG type descriptor structure that describes
the type, and own is a flag that indicates whether or not Ruby should take ownership of the pointer (i.e. whether Ruby should
free this data when the corresponding Ruby instance is garbage−collected).

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *foo;
SWIG_ConvertPtr($input, (void **) &foo, SWIGTYPE_p_Foo, 1);

VALUE obj;
obj = SWIG_NewPointerObj(f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
 SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 1);
}

30.7.8.1 Ruby Datatype Wrapping

VALUE Data_Wrap_Struct(VALUE class, void (*mark)(void *), void (*free)(void *), void
*ptr)

Given a pointer ptr to some C data, and the two garbage collection routines for this data (mark and free), return a VALUE for
the Ruby object.

VALUE Data_Make_Struct(VALUE class, c−type, void (*mark)(void *), void (*free)(void *),
c−type *ptr)

Allocates a new instance of a C data type c−type, assigns it to the pointer ptr, then wraps that pointer with
Data_Wrap_Struct() as above.

Data_Get_Struct(VALUE obj, c−type, c−type *ptr)

Retrieves the original C pointer of type c−type from the data object obj and assigns that pointer to ptr.

30.7.9 Example: STL Vector to Ruby Array

FIXME: This example is out of place here!

Another use for macros and type maps is to create a Ruby array from a STL vector of pointers. In essence, copy of all the pointers
in the vector into a Ruby array. The use of the macro is to make the typemap so generic that any vector with pointers can use the
type map. The following is an example of how to construct this type of macro/typemap and should give insight into constructing
similar typemaps for other STL structures:

SWIG−1.3 Documentation

30.7.8 Pointer handling 480

%define PTR_VECTOR_TO_RUBY_ARRAY(vectorclassname, classname)
%typemap(out) vectorclassname &, const vectorclassname & {
 VALUE arr = rb_ary_new2($1−>size());
 vectorclassname::iterator i = $1−>begin(), iend = $1−>end();
 for (; i!=iend; i++)
 rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, *i));
 $result = arr;
}
%typemap(out) vectorclassname, const vectorclassname {
 VALUE arr = rb_ary_new2($1.size());
 vectorclassname::iterator i = $1.begin(), iend = $1.end();
 for (; i!=iend; i++)
 rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, *i));
 $result = arr;
}
%enddef

Note, that the "c ## classname.klass" is used in the preprocessor step to determine the actual object from the class name.

To use the macro with a class Foo, the following is used:

PTR_VECTOR_TO_RUBY_ARRAY(vector<foo *="">, Foo)

It is also possible to create a STL vector of Ruby objects:

%define RUBY_ARRAY_TO_PTR_VECTOR(vectorclassname, classname)
%typemap(in) vectorclassname &, const vectorclassname & {
 Check_Type($input, T_ARRAY);
 vectorclassname *vec = new vectorclassname;
 int len = RARRAY($input)−>len;
 for (int i=0; i!=len; i++) {
 VALUE inst = rb_ary_entry($input, i);
 //The following _should_ work but doesn't on HPUX
 // Check_Type(inst, T_DATA);
 classname *element = NULL;
 Data_Get_Struct(inst, classname, element);
 vec−>push_back(element);
 }
 $1 = vec;
}

%typemap(freearg) vectorclassname &, const vectorclassname & {
 delete $1;
}
%enddef

It is also possible to create a Ruby array from a vector of static data types:

%define VECTOR_TO_RUBY_ARRAY(vectorclassname, classname)
%typemap(out) vectorclassname &, const vectorclassname & {
 VALUE arr = rb_ary_new2($1−>size());
 vectorclassname::iterator i = $1−>begin(), iend = $1−>end();
 for (; i!=iend; i++)
 rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, &(*i)));
 $result = arr;
}
%typemap(out) vectorclassname, const vectorclassname {
 VALUE arr = rb_ary_new2($1.size());
 vectorclassname::iterator i = $1.begin(), iend = $1.end();
 for (; i!=iend; i++)
 rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, &(*i)));
 $result = arr;
}
%enddef

SWIG−1.3 Documentation

30.7.9 Example: STL Vector to Ruby Array 481

30.8 Advanced Topics

30.8.1 Operator overloading

SWIG allows operator overloading with, by using the %extend or %rename commands in SWIG and the following operator
names (derived from Python):

 General
__repr__ − inspect
__str__ − to_s
__cmp__ − <=>
__hash__ − hash
__nonzero__ − nonzero?

 Callable
__call__ − call

 Collection
__len__ − length
__getitem__ − []
__setitem__ − []=

 Numeric
__add__ − +
__sub__ − −
__mul__ − *
__div__ − /
__mod__ − %
__divmod__ − divmod
__pow__ − **
__lshift__ − <<
__rshift__ − >>
__and__ − &
__xor__ − ^
__or__ − |
__neg__ − −@
__pos__ − +@
__abs__ − abs
__invert__ − ~
__int__ − to_i
__float__ − to_f
__coerce__ − coerce

Additions in 1.3.13
__lt__ − <
__le__ − <=
__eq__ − ==
__gt__ − >
__ge__ − >=

Note that although SWIG supports the __eq__ magic method name for defining an equivalence operator, there is no separate
method for handling inequality since Ruby parses the expression a != b as !(a == b).

30.8.2 Creating Multi−Module Packages

The chapter on Working with Modules discusses the basics of creating multi−module extensions with SWIG, and in particular the
considerations for sharing runtime type information among the different modules.

As an example, consider one module's interface file (shape.i) that defines our base class:

%module shape

SWIG−1.3 Documentation

30.8 Advanced Topics 482

%{
#include "Shape.h"
%}

class Shape {
protected:
 double xpos;
 double ypos;
protected:
 Shape(double x, double y);
public:
 double getX() const;
 double getY() const;
};

We also have a separate interface file (circle.i) that defines a derived class:

%module circle

%{
#include "Shape.h"
#include "Circle.h"
%}

// Import the base class definition from Shape module
%import shape.i

class Circle : public Shape {
protected:
 double radius;
public:
 Circle(double x, double y, double r);
 double getRadius() const;
};

We'll start by building the Shape extension module:

$ swig −c++ −ruby shape.i

SWIG generates a wrapper file named shape_wrap.cxx. To compile this into a dynamically loadable extension for Ruby,
prepare an extconf.rb script using this template:

require 'mkmf'

Since the SWIG runtime support library for Ruby
depends on the Ruby library, make sure it's in the list
of libraries.
$libs = append_library($libs, Config::CONFIG['RUBY_INSTALL_NAME'])

Create the makefile
create_makefile('shape')

Run this script to create a Makefile and then type make to build the shared library:

$ ruby extconf.rb
creating Makefile
$ make
g++ −fPIC −g −O2 −I. −I/usr/local/lib/ruby/1.7/i686−linux \
−I. −c shape_wrap.cxx
gcc −shared −L/usr/local/lib −o shape.so shape_wrap.o −L. \
−lruby −lruby −lc

Note that depending on your installation, the outputs may be slightly different; these outputs are those for a Linux−based
development environment. The end result should be a shared library (here, shape.so) containing the extension module code.

SWIG−1.3 Documentation

30.8.2 Creating Multi−Module Packages 483

Now repeat this process in a separate directory for the Circle module:

Run SWIG to generate the wrapper code (circle_wrap.cxx);1.
Write an extconf.rb script that your end−users can use to create a platform−specific Makefile for the extension;2.
Build the shared library for this extension by typing make.3.

Once you've built both of these extension modules, you can test them interactively in IRB to confirm that the Shape and
Circle modules are properly loaded and initialized:

$ irb
irb(main):001:0> require 'shape'
true
irb(main):002:0> require 'circle'
true
irb(main):003:0> c = Circle::Circle.new(5, 5, 20)
#<Circle::Circle:0xa097208>
irb(main):004:0> c.kind_of? Shape::Shape
true
irb(main):005:0> c.getX()
5.0

30.8.3 Specifying Mixin Modules

The Ruby language doesn't support multiple inheritance, but it does allow you to mix one or more modules into a class using
Ruby's include method. For example, if you have a Ruby class that defines an each instance method, e.g.

class Set
 def initialize
 @members = []
 end

 def each
 @members.each { |m| yield m }
 end
end

then you can mix−in Ruby's Enumerable module to easily add a lot of functionality to your class:

class Set
include Enumerable

def initialize
@members = []
end
def each
@members.each { |m| yield m }
end
end

To get the same benefit for your SWIG−wrapped classes, you can use the %mixin directive to specify the names of one or more
modules that should be mixed−in to a class. For the above example, the SWIG interface specification might look like this:

%mixin Set "Enumerable";

class Set {
public:
 // Constructor
 Set();

 // Iterates through set members
 void each();
};

SWIG−1.3 Documentation

30.8.3 Specifying Mixin Modules 484

Multiple modules can be mixed into a class by providing a comma−separated list of module names to the %mixin directive, e.g.

%mixin Set "Fee,Fi,Fo,Fum";

Note that the %mixin directive is implemented using SWIG's "features" mechanism and so the same name matching rules used
for other kinds of features apply (see the chapter on "Customization Features") for more details).

30.9 Memory Management

One of the most common issues in generating SWIG bindings for Ruby is proper memory management. The key to proper
memory management is clearly defining whether a wrapper Ruby object owns the underlying C struct or C++ class. There are two
possibilities:

The Ruby object is responsible for freeing the C struct or C++ object•
The Ruby object should not free the C struct or C++ object because it will be freed by the underlying C or C++ code•

To complicate matters, object ownership may transfer from Ruby to C++ (or vice versa) depending on what function or methods
are invoked. Clearly, developing a SWIG wrapper requires a thorough understanding of how the underlying library manages
memory.

30.9.1 Mark and Sweep Garbage Collector

Ruby uses a mark and sweep garbage collector. When the garbage collector runs, it finds all the "root" objects, including local
variables, global variables, global constants, hardware registers and the C stack. For each root object, the garbage collector sets its
mark flag to true and calls rb_gc_mark on the object. The job of rb_gc_mark is to recursively mark all the objects that a
Ruby object has a reference to (ignoring those objects that have already been marked). Those objects, in turn, may reference other
objects. This process will continue until all active objects have been "marked." After the mark phase comes the sweep phase. In
the sweep phase, all objects that have not been marked will be garbage collected. For more information about the Ruby garbage
collector please refer to http://rubygarden.org/ruby/ruby?GCAndExtensions.

The Ruby C/API provides extension developers two hooks into the garbage collector − a "mark" function and a "sweep" function.
By default these functions are set to NULL.

If a C struct or C++ class references any other Ruby objects, then it must provide a "mark" function. The "mark" function should
identify any referenced Ruby objects by calling the rb_gc_mark function for each one. Unsurprisingly, this function will be called
by the Ruby garbage during the "mark" phase.

During the sweep phase, Ruby destroys any unused objects. If any memory has been allocated in creating the underlying C struct
or C++ struct, then a "free" function must be defined that deallocates this memory.

30.9.2 Object Ownership

As described above, memory management depends on clearly defining who is responsible for freeing the underlying C struct or
C++ class. If the Ruby object is responsible for freeing the C++ object, then a "free" function must be registered for the object. If
the Ruby object is not responsible for freeing the underlying memory, then a "free" function must not be registered for the object.

For the most part, SWIG takes care of memory management issues. The rules it uses are:

When calling a C++ object's constructor from Ruby, SWIG will assign a "free" function thereby making the Ruby object
responsible for freeing the C++ object

•

When calling a C++ member function that returns a pointer, SWIG will not assign a "free" function thereby making the
underlying library responsible for freeing the object.

•

To make this clearer, let's look at an example. Assume we have a Foo and a Bar class.

/* File "RubyOwernshipExample.h" */

SWIG−1.3 Documentation

30.9 Memory Management 485

http://rubygarden.org/ruby/ruby?GCAndExtensions

class Foo
{
public:
 Foo() {}
 ~Foo() {}
};

class Bar
{
 Foo *foo_;
public:
 Bar(): foo_(new Foo) {}
 ~Bar() { delete foo_; }
 Foo* get_foo() { return foo_; }
 Foo* get_new_foo() { return new Foo; }
 void set_foo(Foo *foo) { delete foo_; foo_ = foo; }
};

First, consider this Ruby code:

foo = Foo.new

In this case, the Ruby code calls the underlying Foo C++ constructor, thus creating a new foo object. By default, SWIG will
assign the new Ruby object a "free" function. When the Ruby object is garbage collected, the "free" function will be called. It in
turn will call Foo's destructor.

Next, consider this code:

bar = Bar.new
foo = bar.get_foo()

In this case, the Ruby code calls a C++ member function, get_foo. By default, SWIG will not assign the Ruby object a "free"
function. Thus, when the Ruby object is garbage collected the underlying C++ foo object is not affected.

Unfortunately, the real world is not as simple as the examples above. For example:

bar = Bar.new
foo = bar.get_new_foo()

In this case, the default SWIG behavior for calling member functions is incorrect. The Ruby object should assume ownership of
the returned object. This can be done by using the %newobject directive. See Object ownership and %newobject for more
information.

The SWIG default mappings are also incorrect in this case:

foo = Foo.new
bar = Bar.new
bar.set_foo(foo)

Without modification, this code will cause a segmentation fault. When the Ruby foo object goes out of scope, it will free the
underlying C++ foo object. However, when the Ruby bar object goes out of scope, it will call the C++ bar destructor which will
also free the C++ foo object. The problem is that object ownership is transferred from the Ruby object to the C++ object when
the set_foo method is called. This can be done by using the special DISOWN type map, which was added to the Ruby bindings
in SWIG−1.3.26.

Thus, a correct SWIG interface file correct mapping for these classes is:

/* File RubyOwnershipExample.i */

SWIG−1.3 Documentation

30.9.2 Object Ownership 486

%module RubyOwnershipExample

%{
#include "RubyOwnershipExample.h"
%}

class Foo
{
public:
 Foo();
 ~Foo();
};

class Bar
{
 Foo *foo_;
public:
 Bar();
 ~Bar();
 Foo* get_foo();

 %newobject get_new_foo;
 Foo* get_new_foo();

 %apply SWIGTYPE *DISOWN {Foo *foo};
 void set_foo(Foo *foo);
 %clear Foo *foo;
};

This code can be seen in swig/examples/ruby/tracking.

30.9.3 Object Tracking

The remaining parts of this section will use the class library shown below to illustrate different memory management techniques.
The class library models a zoo and the animals it contains.

%module zoo

%{
#include <string>
#include <vector>

#include "zoo.h"
%}

class Animal
{
private:
 typedef std::vector<Animal*> AnimalsType;
 typedef AnimalsType::iterator IterType;
protected:
 AnimalsType animals;
protected:
 std::string name_;
public:
 // Construct an animal with this name
 Animal(const char* name) : name_(name) {}

 // Return the animal's name
 const char* get_name() const { return name.c_str(); }

SWIG−1.3 Documentation

30.9.3 Object Tracking 487

};

class Zoo
{
protected:
 std::vector<animal *=""> animals;

public:
 // Construct an empty zoo
 Zoo() {}

 /* Create a new animal. */
 static Animal* Zoo::create_animal(const char* name)
 {
 return new Animal(name);
 }

 // Add a new animal to the zoo
 void add_animal(Animal* animal) {
 animals.push_back(animal);
 }

 Animal* remove_animal(size_t i) {
 Animal* result = this−>animals[i];
 IterType iter = this−>animals.begin();
 std::advance(iter, i);
 this−>animals.erase(iter);

 return result;
 }

 // Return the number of animals in the zoo
 size_t get_num_animals() const {
 return animals.size();
 }

 // Return a pointer to the ith animal
 Animal* get_animal(size_t i) const {
 return animals[i];
 }
};

Let's say you SWIG this code and then run IRB:

$ irb
irb(main):001:0> require 'example'
=> true

irb(main):002:0> tiger1 = Example::Animal.new("tiger1")
=> #<Example::Animal:0x2be3820>

irb(main):004:0> tiger1.get_name()
=> "tiger1"

irb(main):003:0> zoo = Example::Zoo.new()
=> #<Example::Zoo:0x2be0a60>

irb(main):006:0> zoo.add_animal(tiger)
=> nil

irb(main):007:0> zoo.get_num_animals()
=> 1

irb(main):007:0> tiger2 = zoo.remove_animal(0)
=> #<Example::Animal:0x2bd4a18>

SWIG−1.3 Documentation

30.9.3 Object Tracking 488

irb(main):008:0> tiger2.get_name()
=> "tiger1"

irb(main):009:0> tiger1.equal?(tiger2)
=> false

Pay particular attention to the code tiger1.equal?(tiger2). Note that the two Ruby objects are not the same − but they
reference the same underlying C++ object. This can cause problems. For example:

irb(main):010:0> tiger1 = nil
=> nil

irb(main):011:0> GC.start
=> nil

irb(main):012:0> tiger2.get_name()
(irb):12: [BUG] Segmentation fault

After the the garbage collector runs, as a result of our call to GC.start, callingtiger2.get_name() causes a segmentation
fault. The problem is that when tiger1 is garbage collected, it frees the underlying C++ object. Thus, when tiger2 calls the
get_name() method it invokes it on a destroyed object.

This problem can be avoided if SWIG enforces a one−to−one mapping between Ruby objects and C++ classes. This can be done
via the use of the %trackobjects functionality available in SWIG−1.3.26. and later.

When the %trackobjects is turned on, SWIG automatically keeps track of mappings between C++ objects and Ruby objects.
Note that enabling object tracking causes a slight performance degradation. Test results show this degradation to be about 3% to
5% when creating and destroying 100,000 animals in a row.

Since %trackobjects is implemented as a %feature, it uses the same name matching rules as other kinds of features (see
the chapter on "Customization Features") . Thus it can be applied on a class−by−class basis if needed. To fix the example above:

%module example

%{
#include "example.h"
%}

/* Tell SWIG that create_animal creates a new object */
%newobject Zoo::create_animal;

/* Tell SWIG to keep track of mappings between C/C++ structs/classes. */
%trackobjects;

%include "example.h"

When this code runs we see:

$ irb
irb(main):001:0> require 'example'
=> true

irb(main):002:0> tiger1 = Example::Animal.new("tiger1")
=> #<Example::Animal:0x2be37d8>

irb(main):003:0> zoo = Example::Zoo.new()
=> #<Example::Zoo:0x2be0a18>

SWIG−1.3 Documentation

30.9.3 Object Tracking 489

irb(main):004:0> zoo.add_animal(tiger1)
=> nil

irb(main):006:0> tiger2 = zoo.remove_animal(0)
=> #<Example::Animal:0x2be37d8>

irb(main):007:0> tiger1.equal?(tiger2)
=> true

irb(main):008:0> tiger1 = nil
=> nil

irb(main):009:0> GC.start
=> nil

irb(main):010:0> tiger.get_name()
=> "tiger1"
irb(main):011:0>

For those who are interested, object tracking is implemented by storing Ruby objects in a hash table and keying them on C++
pointers. The underlying API is:

static void SWIG_RubyAddTracking(void* ptr, VALUE object);
static VALUE SWIG_RubyInstanceFor(void* ptr) ;
static void SWIG_RubyRemoveTracking(void* ptr);
static void SWIG_RubyUnlinkObjects(void* ptr);

When an object is created, SWIG will automatically call the SWIG_RubyAddTracking method. Similarly, when an object is
deleted, SWIG will call the SWIG_RubyRemoveTracking. When an object is returned to Ruby from C++, SWIG will use the
SWIG_RubyInstanceFor method to ensure a one−to−one mapping from Ruby to C++ objects. Last, the
RubyUnlinkObjects method unlinks a Ruby object from its underlying C++ object.

In general, you will only need to use the SWIG_RubyInstanceFor, which is required for implementing mark functions as
shown below. However, if you implement your own free functions (see below) you may also have to call
theSWIG_RubyRemoveTracking and RubyUnlinkObjects methods.

30.9.4 Mark Functions

With a bit more testing, we see that our class library still has problems. For example:

$ irb
irb(main):001:0> require 'example'
=> true

irb(main):002:0> tiger1 = Example::Animal.new("tiger1")
=> #<Example::Animal:0x2bea6a8>

irb(main):003:0> zoo = Example::Zoo.new()
=> #<Example::Zoo:0x2be7960>

irb(main):004:0> zoo.add_animal(tiger1)
=> nil

irb(main):007:0> tiger1 = nil
=> nil

irb(main):007:0> GC.start
=> nil

irb(main):005:0> tiger2 = zoo.get_animal(0)
(irb):12: [BUG] Segmentation fault

SWIG−1.3 Documentation

30.9.4 Mark Functions 490

The problem is that Ruby does not know that the zoo object contains a reference to a Ruby object. Thus, when Ruby garbage
collects tiger1 it frees the underlying C++ object.

This can be fixed by implementing a mark function as described above in the Mark and Sweep Garbage Collector section. You
can specify a mark function by using the %markfunc directive. Since the %markfunc directive is implemented using SWIG's'
"features" mechanism it uses the same name matching rules as other kinds of features (see the chapter on "Customization
Features" for more details).

A mark function takes a single argument, which is a pointer to the C++ object being marked; it should, in turn, call
rb_gc_mark() for any instances that are reachable from the current object. The mark function for our Zoo class should
therefore loop over all of the C++ animal objects in the zoo object, look up their Ruby object equivalent, and then call
rb_gc_mark(). One possible implementation is:

%module example

%{
#include "example.h"
%}

/* Keep track of mappings between C/C++ structs/classes
 and Ruby objects so we can implement a mark function. */
%trackobjects;

/* Specify the mark function */
%markfunc Zoo "mark_Zoo";

%include "example.h"

%header %{

static void mark_Zoo(void* ptr) {
 Zoo* zoo = (Zoo*) ptr;

 /* Loop over each object and tell the garbage collector
 that we are holding a reference to them. */
 int count = zoo−>get_num_animals();

 for(int i = 0; i < count; ++i) {
 Animal* animal = zoo−>get_animal(i);
 VALUE object = SWIG_RubyInstanceFor(animal);

 if (object != Qnil) {
 rb_gc_mark(object);
 }
 }
}
%}

Note the mark function is dependent on the SWIG_RUBY_InstanceFor method, and thus requires that %trackobjects is
enabled. For more information, please refer to the track_object.i test case in the SWIG test suite.

When this code is compiled we now see:

$ irb
irb(main):002:0> tiger1=Example::Animal.new("tiger1")
=> #<Example::Animal:0x2be3bf8>

irb(main):003:0> Example::Zoo.new()
=> #<Example::Zoo:0x2be1780>

irb(main):004:0> zoo = Example::Zoo.new()
=> #<Example::Zoo:0x2bde9c0>

SWIG−1.3 Documentation

30.9.4 Mark Functions 491

irb(main):005:0> zoo.add_animal(tiger1)
=> nil

irb(main):009:0> tiger1 = nil
=> nil

irb(main):010:0> GC.start
=> nil
irb(main):014:0> tiger2 = zoo.get_animal(0)
=> #<Example::Animal:0x2be3bf8>

irb(main):015:0> tiger2.get_name()
=> "tiger1"
irb(main):016:0>

This code can be seen in swig/examples/ruby/mark_function.

30.9.5 Free Functions

By default, SWIG creates a "free" function that is called when a Ruby object is garbage collected. The free function simply calls
the C++ object's destructor.

However, sometimes an appropriate destructor does not exist or special processing needs to be performed before the destructor is
called. Therefore, SWIG allows you to manually specify a "free" function via the use of the %freefunc directive. The
%freefunc directive is implemented using SWIG's' "features" mechanism and so the same name matching rules used for other
kinds of features apply (see the chapter on "Customization Features") for more details).

IMPORTANT ! − If you define your own free function, then you must ensure that you call the underlying C++ object's destructor.
In addition, if object tracking is activated for the object's class, you must also call the SWIG_RubyRemoveTracking function
(of course call this before you destroy the C++ object). Note that it is harmless to call this method if object tracking if off so it is
advised to always call it.

Note there is a subtle interaction between object ownership and free functions. A custom defined free function will only be called
if the Ruby object owns the underlying C++ object. This also to Ruby objects which are created, but then transfer ownership to
C++ objects via the use of the disown typemap described above.

To show how to use the %freefunc directive, let's slightly change our example. Assume that the zoo object is responsible for
freeing animal that it contains. This means that the Zoo::add_animal function should be marked with a DISOWN typemap and the
destructor should be updated as below::

Zoo::~Zoo() {
 IterType iter = this−>animals.begin();
 IterType end = this−>animals.end();

 for(iter; iter != end; ++iter) {
 Animal* animal = *iter;
 delete animal;
 }
}

When we use these objects in IRB we see:

$irb
irb(main):002:0> require 'example'
=> true

irb(main):003:0> zoo = Example::Zoo.new()
=> #<Example::Zoo:0x2be0fe8>

SWIG−1.3 Documentation

30.9.5 Free Functions 492

irb(main):005:0> tiger1 = Example::Animal.new("tiger1")
=> #<Example::Animal:0x2bda760>

irb(main):006:0> zoo.add_animal(tiger1)
=> nil

irb(main):007:0> zoo = nil
=> nil

irb(main):008:0> GC.start
=> nil

irb(main):009:0> tiger1.get_name()
(irb):12: [BUG] Segmentation fault

The error happens because the C++ animal object is freed when the zoo object is freed. Although this error is unavoidable, we
can at least prevent the segmentation fault. To do this requires enabling object tracking and implementing a custom free function
that calls the SWIG_RubyUnlinkObjects function for each animal object that is destroyed. The
SWIG_RubyUnlinkObjects function notifies SWIG that a Ruby object's underlying C++ object is no longer valid. Once
notified, SWIG will intercept any calls from the existing Ruby object to the destroyed C++ object and raise an exception.

%module example

%{
#include "example.h"
%}

/* Specify that ownership is transferred to the zoo
 when calling add_animal */
%apply SWIGTYPE *DISOWN { Animal* animal };

/* Track objects */
%trackobjects;

/* Specify the mark function */
%freefunc Zoo "free_Zoo";

%include "example.h"

%header %{
 static void free_Zoo(void* ptr) {
 Zoo* zoo = (Zoo*) ptr;

 /* Loop over each animal */
 int count = zoo−>get_num_animals();

 for(int i = 0; i < count; ++i) {
 /* Get an animal */
 Animal* animal = zoo−>get_animal(i);

 /* Unlink the Ruby object from the C++ object */
 SWIG_RubyUnlinkObjects(animal);

 /* Now remove the tracking for this animal */
 SWIG_RubyRemoveTracking(animal);
 }

 /* Now call SWIG_RemoveMapping for the zoo */
 SWIG_RemoveMapping(ptr);

 /* Now free the zoo which will free the animals it contains */
 delete zoo;
 }

SWIG−1.3 Documentation

30.9.5 Free Functions 493

%}

Now when we use these objects in IRB we see:

$irb
irb(main):002:0> require 'example'
=> true

irb(main):003:0> zoo = Example::Zoo.new()
=> #<Example::Zoo:0x2be0fe8>

irb(main):005:0> tiger1 = Example::Animal.new("tiger1")
=> #<Example::Animal:0x2bda760>

irb(main):006:0> zoo.add_animal(tiger1)
=> nil

irb(main):007:0> zoo = nil
=> nil

irb(main):008:0> GC.start
=> nil

irb(main):009:0> tiger1.get_name()
RuntimeError: This Animal * already released
 from (irb):10:in `get_name'
 from (irb):10
irb(main):011:0>

Notice that SWIG can now detect the underlying C++ object has been freed, and thus raises a runtime exception.

This code can be seen in swig/examples/ruby/free_function.

SWIG−1.3 Documentation

30.9.5 Free Functions 494

31 SWIG and Tcl
Preliminaries

Getting the right header files♦
Compiling a dynamic module♦
Static linking♦
Using your module♦
Compilation of C++ extensions♦
Compiling for 64−bit platforms♦
Setting a package prefix♦
Using namespaces♦

•

Building Tcl/Tk Extensions under Windows 95/NT
Running SWIG from Developer Studio♦
Using NMAKE♦

•

A tour of basic C/C++ wrapping
Modules♦
Functions♦
Global variables♦
Constants and enums♦
Pointers♦
Structures♦
C++ classes♦
C++ inheritance♦
Pointers, references, values, and arrays♦
C++ overloaded functions♦
C++ operators♦
C++ namespaces♦
C++ templates♦
C++ Smart Pointers♦

•

Further details on the Tcl class interface
Proxy classes♦
Memory management♦

•

Input and output parameters•
Exception handling•
Typemaps

What is a typemap?♦
Tcl typemaps♦
Typemap variables♦
Converting a Tcl list to a char **♦
Returning values in arguments♦
Useful functions♦
Standard typemaps♦
Pointer handling♦

•

Turning a SWIG module into a Tcl Package.•
Building new kinds of Tcl interfaces (in Tcl)

Proxy classes♦
•

Caution: This chapter is under repair!

This chapter discusses SWIG's support of Tcl. SWIG currently requires Tcl 8.0 or a later release. Earlier releases of SWIG
supported Tcl 7.x, but this is no longer supported.

31 SWIG and Tcl 495

31.1 Preliminaries

To build a Tcl module, run SWIG using the −tcl option :

$ swig −tcl example.i

If building a C++ extension, add the −c++ option:

$ swig −c++ −tcl example.i

This creates a file example_wrap.c or example_wrap.cxx that contains all of the code needed to build a Tcl extension
module. To finish building the module, you need to compile this file and link it with the rest of your program.

31.1.1 Getting the right header files

In order to compile the wrapper code, the compiler needs the tcl.h header file. This file is usually contained in the directory

/usr/local/include

Be aware that some Tcl versions install this header file with a version number attached to it. If this is the case, you should
probably make a symbolic link so that tcl.h points to the correct header file.

31.1.2 Compiling a dynamic module

The preferred approach to building an extension module is to compile it into a shared object file or DLL. To do this, you will need
to compile your program using comands like this (shown for Linux):

$ swig −tcl example.i
$ gcc −c example.c
$ gcc −c example_wrap.c −I/usr/local/include
$ gcc −shared example.o example_wrap.o −o example.so

The exact commands for doing this vary from platform to platform. SWIG tries to guess the right options when it is installed.
Therefore, you may want to start with one of the examples in the SWIG/Examples/tcl directory. If that doesn't work, you will
need to read the man−pages for your compiler and linker to get the right set of options. You might also check the SWIG Wiki for
additional information.

When linking the module, the name of the output file has to match the name of the module. If the name of your SWIG module is
"example", the name of the corresponding object file should be "example.so". The name of the module is specified using the
%module directive or the −module command line option.

31.1.3 Static linking

An alternative approach to dynamic linking is to rebuild the Tcl interpreter with your extension module added to it. In the past,
this approach was sometimes necesssary due to limitations in dynamic loading support on certain machines. However, the
situation has improved greatly over the last few years and you should not consider this approach unless there is really no other
option.

The usual procedure for adding a new module to Tcl involves writing a special function Tcl_AppInit() and using it to
initialize the interpreter and your module. With SWIG, the tclsh.i and wish.i library files can be used to rebuild the tclsh
and wish interpreters respectively. For example:

%module example

%inline %{
extern int fact(int);
extern int mod(int, int);

SWIG−1.3 Documentation

31.1 Preliminaries 496

http://www.dabeaz.com/cgi-bin/wiki.pl

extern double My_variable;
%}

%include tclsh.i // Include code for rebuilding tclsh

The tclsh.i library file includes supporting code that contains everything needed to rebuild tclsh. To rebuild the interpreter,
you simply do something like this:

$ swig −tcl example.i
$ gcc example.c example_wrap.c \
 −Xlinker −export−dynamic \
 −DHAVE_CONFIG_H −I/usr/local/include/ \
 −L/usr/local/lib −ltcl −lm −ldl \
 −o mytclsh

You will need to supply the same libraries that were used to build Tcl the first time. This may include system libraries such as
−lsocket, −lnsl, and −lpthread. If this actually works, the new version of Tcl should be identical to the default version
except that your extension module will be a built−in part of the interpreter.

Comment: In practice, you should probably try to avoid static linking if possible. Some programmers may be inclined to use
static linking in the interest of getting better performance. However, the performance gained by static linking tends to be rather
minimal in most situations (and quite frankly not worth the extra hassle in the opinion of this author).

31.1.4 Using your module

To use your module, simply use the Tcl load command. If all goes well, you will be able to this:

$ tclsh
% load ./example.so
% fact 4
24
%

A common error received by first−time users is the following:

% load ./example.so
couldn't find procedure Example_Init
%

This error is almost always caused when the name of the shared object file doesn't match the name of the module supplied using
the SWIG %module directive. Double−check the interface to make sure the module name and the shared object file match.
Another possible cause of this error is forgetting to link the SWIG−generated wrapper code with the rest of your application when
creating the extension module.

Another common error is something similar to the following:

% load ./example.so
couldn't load file "./example.so": ./example.so: undefined symbol: fact
%

This error usually indicates that you forgot to include some object files or libraries in the linking of the shared library file. Make
sure you compile both the SWIG wrapper file and your original program into a shared library file. Make sure you pass all of the
required libraries to the linker.

Sometimes unresolved symbols occur because a wrapper has been created for a function that doesn't actually exist in a library.
This usually occurs when a header file includes a declaration for a function that was never actually implemented or it was
removed from a library without updating the header file. To fix this, you can either edit the SWIG input file to remove the
offending declaration or you can use the %ignore directive to ignore the declaration.

SWIG−1.3 Documentation

31.1.3 Static linking 497

Finally, suppose that your extension module is linked with another library like this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
 −o example.so

If the foo library is compiled as a shared library, you might get the following problem when you try to use your module:

% load ./example.so
couldn't load file "./example.so": libfoo.so: cannot open shared object file:
No such file or directory
%

This error is generated because the dynamic linker can't locate the libfoo.so library. When shared libraries are loaded, the
system normally only checks a few standard locations such as /usr/lib and /usr/local/lib. To fix this problem, there
are several things you can do. First, you can recompile your extension module with extra path information. For example, on Linux
you can do this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
 −Xlinker −rpath /home/beazley/projects/lib \
 −o example.so

Alternatively, you can set the LD_LIBRARY_PATH environment variable to include the directory with your shared libraries. If
setting LD_LIBRARY_PATH, be aware that setting this variable can introduce a noticeable performance impact on all other
applications that you run. To set it only for Tcl, you might want to do this instead:

$ env LD_LIBRARY_PATH=/home/beazley/projects/lib tclsh

Finally, you can use a command such as ldconfig to add additional search paths to the default system configuration (this
requires root access and you will need to read the man pages).

31.1.5 Compilation of C++ extensions

Compilation of C++ extensions has traditionally been a tricky problem. Since the Tcl interpreter is written in C, you need to take
steps to make sure C++ is properly initialized and that modules are compiled correctly.

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

% swig −c++ −tcl example.i
% g++ −c example.cxx
% g++ −c example_wrap.cxx −I/usr/local/include
% g++ −shared example.o example_wrap.o −o example.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

% swig −c++ −tcl example.i
% CC −c example.cxx
% CC −c example_wrap.cxx −I/usr/local/include
% CC −G example.o example_wrap.o −L/opt/SUNWspro/lib −o example.so −lCrun

Of course, the extra libraries to use are completely non−portable−−−you will probably need to do some experimentation.

Sometimes people have suggested that it is necessary to relink the Tcl interpreter using the C++ compiler to make C++ extension
modules work. In the experience of this author, this has never actually appeared to be necessary. Relinking the interpreter with
C++ really only includes the special run−time libraries described above−−−as long as you link your extension modules with these
libraries, it should not be necessary to rebuild Tcl.

If you aren't entirely sure about the linking of a C++ extension, you might look at an existing C++ program. On many Unix
machines, the ldd command will list library dependencies. This should give you some clues about what you might have to

SWIG−1.3 Documentation

31.1.4 Using your module 498

include when you link your extension module. For example:

$ ldd swig
 libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)
 libm.so.6 => /lib/libm.so.6 (0x4005b000)
 libc.so.6 => /lib/libc.so.6 (0x40077000)
 /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)
$

As a final complication, a major weakness of C++ is that it does not define any sort of standard for binary linking of libraries. This
means that C++ code compiled by different compilers will not link together properly as libraries nor is the memory layout of
classes and data structures implemented in any kind of portable manner. In a monolithic C++ program, this problem may be
unnoticed. However, in Tcl, it is possible for different extension modules to be compiled with different C++ compilers. As long as
these modules are self−contained, this probably won't matter. However, if these modules start sharing data, you will need to take
steps to avoid segmentation faults and other erratic program behavior. If working with lots of software components, you might
want to investigate using a more formal standard such as COM.

31.1.6 Compiling for 64−bit platforms

On platforms that support 64−bit applications (Solaris, Irix, etc.), special care is required when building extension modules. On
these machines, 64−bit applications are compiled and linked using a different set of compiler/linker options. In addition, it is not
generally possible to mix 32−bit and 64−bit code together in the same application.

To utilize 64−bits, the Tcl executable will need to be recompiled as a 64−bit application. In addition, all libraries, wrapper code,
and every other part of your application will need to be compiled for 64−bits. If you plan to use other third−party extension
modules, they will also have to be recompiled as 64−bit extensions.

If you are wrapping commercial software for which you have no source code, you will be forced to use the same linking standard
as used by that software. This may prevent the use of 64−bit extensions. It may also introduce problems on platforms that support
more than one linking standard (e.g., −o32 and −n32 on Irix).

31.1.7 Setting a package prefix

To avoid namespace problems, you can instruct SWIG to append a package prefix to all of your functions and variables. This is
done using the −prefix option as follows :

swig −tcl −prefix Foo example.i

If you have a function "bar" in the SWIG file, the prefix option will append the prefix to the name when creating a command and
call it "Foo_bar".

31.1.8 Using namespaces

Alternatively, you can have SWIG install your module into a Tcl namespace by specifying the −namespace option :

swig −tcl −namespace example.i

By default, the name of the namespace will be the same as the module name, but you can override it using the −prefix option.

When the −namespace option is used, objects in the module are always accessed with the namespace name such as Foo::bar.

31.2 Building Tcl/Tk Extensions under Windows 95/NT

Building a SWIG extension to Tcl/Tk under Windows 95/NT is roughly similar to the process used with Unix. Normally, you will
want to produce a DLL that can be loaded into tclsh or wish. This section covers the process of using SWIG with Microsoft
Visual C++. although the procedure may be similar with other compilers.

SWIG−1.3 Documentation

31.1.5 Compilation of C++ extensions 499

31.2.1 Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked as a custom build option. The
process roughly follows these steps :

Open up a new workspace and use the AppWizard to select a DLL project.•
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer studio will keep a reference to it
around.

•

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.•
Enter "SWIG" in the description field.•
Enter "swig −tcl −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s)
field"

•

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".•
Next, select the settings for the entire project and go to "C++:Preprocessor". Add the include directories for your Tcl
installation under "Additional include directories".

•

Finally, select the settings for the entire project and go to "Link Options". Add the Tcl library file to your link libraries.
For example "tcl80.lib". Also, set the name of the output file to match the name of your Tcl module (ie.
example.dll).

•

Build your project.•

Now, assuming all went well, SWIG will be automatically invoked when you build your project. Any changes made to the
interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file. To run your new Tcl
extension, simply run tclsh or wish and use the load command. For example :

MSDOS > tclsh80
% load example.dll
% fact 4
24
%

31.2.2 Using NMAKE

Alternatively, SWIG extensions can be built by writing a Makefile for NMAKE. To do this, make sure the environment variables
for MSVC++ are available and the MSVC++ tools are in your path. Now, just write a short Makefile like this :

Makefile for building various SWIG generated extensions

SRCS = example.c
IFILE = example
INTERFACE = $(IFILE).i
WRAPFILE = $(IFILE)_wrap.c

Location of the Visual C++ tools (32 bit assumed)

TOOLS = c:\msdev
TARGET = example.dll
CC = $(TOOLS)\bin\cl.exe
LINK = $(TOOLS)\bin\link.exe
INCLUDE32 = −I$(TOOLS)\include
MACHINE = IX86

C Library needed to build a DLL

DLLIBC = msvcrt.lib oldnames.lib

Windows libraries that are apparently needed
WINLIB = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib
winspool.lib

SWIG−1.3 Documentation

31.2.1 Running SWIG from Developer Studio 500

Libraries common to all DLLs
LIBS = $(DLLIBC) $(WINLIB)

Linker options
LOPT = −debug:full −debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO /
MACHINE:$(MACHINE) −entry:_DllMainCRTStartup@12 −dll

C compiler flags

CFLAGS = /Z7 /Od /c /nologo
TCL_INCLUDES = −Id:\tcl8.0a2\generic −Id:\tcl8.0a2\win
TCLLIB = d:\tcl8.0a2\win\tcl80.lib

tcl::
 ..\..\swig −tcl −o $(WRAPFILE) $(INTERFACE)
 $(CC) $(CFLAGS) $(TCL_INCLUDES) $(SRCS) $(WRAPFILE)
 set LIB=$(TOOLS)\lib
 $(LINK) $(LOPT) −out:example.dll $(LIBS) $(TCLLIB) example.obj example_wrap.obj

To build the extension, run NMAKE (you may need to run vcvars32 first). This is a pretty minimal Makefile, but hopefully its
enough to get you started. With a little practice, you'll be making lots of Tcl extensions.

31.3 A tour of basic C/C++ wrapping

By default, SWIG tries to build a very natural Tcl interface to your C/C++ code. Functions are wrapped as functions, classes are
wrapped in an interface that mimics the style of Tk widgets and [incr Tcl] classes. This section briefly covers the essential aspects
of this wrapping.

31.3.1 Modules

The SWIG %module directive specifies the name of the Tcl module. If you specify `%module example', then everything is
compiled into an extension module example.so. When choosing a module name, make sure you don't use the same name as a
built−in Tcl command.

One pitfall to watch out for is module names involving numbers. If you specify a module name like %module md5, you'll find
that the load command no longer seems to work:

% load ./md5.so
couldn't find procedure Md_Init

To fix this, supply an extra argument to load like this:

% load ./md5.so md5

31.3.2 Functions

Global functions are wrapped as new Tcl built−in commands. For example,

%module example
int fact(int n);

creates a built−in function fact that works exactly like you think it does:

% load ./example.so
% fact 4
24
% set x [fact 6]
%

SWIG−1.3 Documentation

31.2.2 Using NMAKE 501

31.3.3 Global variables

C/C++ global variables are wrapped by Tcl global variables. For example:

// SWIG interface file with global variables
%module example
...
%inline %{
extern double density;
%}
...

Now look at the Tcl interface:

% puts $density # Output value of C global variable
1.0
% set density 0.95 # Change value

If you make an error in variable assignment, you will get an error message. For example:

% set density "hello"
can't set "density": Type error. expected a double.
%

If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can use the %immutable directive. For example:

%{
extern char *path;
%}
%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled or cleared using %mutable. See the Creatng read−only
variables section for further details.

If you just want to make a specific variable immutable, supply a declaration name. For example:

%{
extern char *path;
%}
%immutable path;
...
extern char *path; // Read−only (due to %immutable)

31.3.4 Constants and enums

C/C++ constants are installed as global Tcl variables containing the appropriate value. To create a constant, use #define, enum,
or the %constant directive. For example:

#define PI 3.14159
#define VERSION "1.0"

enum Beverage { ALE, LAGER, STOUT, PILSNER };

%constant int FOO = 42;
%constant const char *path = "/usr/local";

SWIG−1.3 Documentation

31.3.3 Global variables 502

For enums, make sure that the definition of the enumeration actually appears in a header file or in the wrapper file somehow−−−if
you just stick an enum in a SWIG interface without also telling the C compiler about it, the wrapper code won't compile.

Note: declarations declared as const are wrapped as read−only variables and will be accessed using the cvar object described
in the previous section. They are not wrapped as constants. For further discussion about this, see the SWIG Basics chapter.

Constants are not guaranteed to remain constant in Tcl−−−the value of the constant could be accidentally reassigned.You will just
have to be careful.

A peculiarity of installing constants as variables is that it is necessary to use the Tcl global statement to access constants in
procedure bodies. For example:

proc blah {} {
 global FOO
 bar $FOO
}

If a program relies on a lot of constants, this can be extremely annoying. To fix the problem, consider using the following
typemap rule:

%apply int CONSTANT { int x };
#define FOO 42
...
void bar(int x);

When applied to an input argument, the CONSTANT rule allows a constant to be passed to a function using its actual value or a
symbolic identifier name. For example:

proc blah {} {
 bar FOO
}

When an identifier name is given, it is used to perform an implicit hash−table lookup of the value during argument conversion.
This allows the global statement to be ommitted.

31.3.5 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Here is a rather simple interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Tcl. For example:

% load ./example.so
% set f [fopen junk w]
% fputs "Hello World\n" $f
% fclose $f

If this makes you uneasy, rest assured that there is no deep magic involved. Underneath the covers, pointers to C/C++ objects are
simply represented as opaque values−−normally an encoded character string like this:

% puts $f
_c0671108_p_FILE
%

SWIG−1.3 Documentation

31.3.4 Constants and enums 503

This pointer value can be freely passed around to different C functions that expect to receive an object of type FILE *. The only
thing you can't do is dereference the pointer from Tcl.

The NULL pointer is represented by the string NULL.

As much as you might be inclined to modify a pointer value directly from Tcl, don't. The hexadecimal encoding is not necessarily
the same as the logical memory address of the underlying object. Instead it is the raw byte encoding of the pointer value. The
encoding will vary depending on the native byte−ordering of the platform (i.e., big−endian vs. little−endian). Similarly, don't try
to manually cast a pointer to a new type by simply replacing the type−string. This may not work like you expect and it is
particularly dangerous when casting C++ objects. If you need to cast a pointer or change its value, consider writing some helper
functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {
 return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
 return dynamic_cast<Foo*>(b);
}

Foo *IncrFoo(Foo *f, int i) {
 return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return None if the conversion can't be performed.

31.3.6 Structures

If you wrap a C structure, it is wrapped by a Tcl interface that somewhat resembles a Tk widget. This provides a very natural
interface. For example,

struct Vector {
 double x,y,z;
};

is used as follows:

% Vector v
% v configure −x 3.5 −y 7.2
% puts "[v cget −x] [v cget −y] [v cget −z]"
3.5 7.2 0.0
%

Similar access is provided for unions and the data members of C++ classes.

In the above example, v is a name that's used for the object. However, underneath the covers, there's a pointer to a raw C
structure. This can be obtained by looking at the −this attribute. For example:

% puts [v cget −this]
_88e31408_p_Vector

Further details about the relationship between the Tcl and the underlying C structure are covered a little later.

SWIG−1.3 Documentation

31.3.5 Pointers 504

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
 ...
 %immutable;
 int x; /* Read−only members */
 char *name;
 %mutable;
 ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:

struct Bar {
 int x[16];
};

If accessed in Tcl, you will see behavior like this:

% Bar b
% puts [b cget −x]
_801861a4_p_int
%

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an
array member using another pointer. For example:

% Bar c
% c configure −x [b cget −x] # Copy contents of b.x to c.x

For array assignment, SWIG copies the entire contents of the array starting with the data pointed to by b.x. In this example, 16
integers would be copied. Like C, SWIG makes no assumptions about bounds checking−−−if you pass a bad pointer, you may get
a segmentation fault or access violation.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like
this:

struct Foo {
 int a;
};

struct Bar {
 Foo f;
};

Now, suppose that you access the f attribute of Bar like this:

% Bar b
% set x [b cget −f]

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b−>f; /* Points inside b */

SWIG−1.3 Documentation

31.3.6 Structures 505

However, one peculiarity of accessing a substructure like this is that the returned value does work quite like you might expect. For
example:

% Bar b
% set x [b cget −f]
% x cget −a
invalid command name "x"

This is because the returned value was not created in a normal way from the interpreter (x is not a command object). To make it
function normally, just evaluate the variable like this:

% Bar b
% set x [b cget −f]
% $x cget −a
0
%

In this example, x points inside the original structure. This means that modifications work just like you would expect. For
example:

% Bar b
% set x [b cget −f]
% $x configure −a 3 # Modifies contents of f (inside b)
% [b cget −f] −configure −a 3 # Same thing

In many of these structure examples, a simple name like "v" or "b" has been given to wrapped structures. If necessary, this name
can be passed to functions that expect to receive an object. For example, if you have a function like this,

void blah(Foo *f);

you can call the function in Tcl as follows:

% Foo x # Create a Foo object
% blah x # Pass the object to a function

It is also possible to call the function using the raw pointer value. For instance:

% blah [x cget −this] # Pass object to a function

It is also possible to create and use objects using variables. For example:

% set b [Bar] # Create a Bar
% $b cget −f # Member access
% puts $b
_108fea88_p_Bar
%

Finally, to destroy objects created from Tcl, you can either let the object name go out of scope or you can explicitly delete the
object. For example:

% Foo f # Create object f
% rename f ""

or

% Foo f # Create object f
% f −delete

Note: Tcl only destroys the underlying object if it has ownership. See the memory management section that appears shortly.

SWIG−1.3 Documentation

31.3.6 Structures 506

31.3.7 C++ classes

C++ classes are wrapped as an extension of structure wrapping. For example, if you have this class,

class List {
public:
 List();
 ~List();
 int search(char *item);
 void insert(char *item);
 void remove(char *item);
 char *get(int n);
 int length;
};

you can use it in Tcl like this:

% List x
% x insert Ale
% x insert Stout
% x insert Lager
% x get 1
Stout
% puts [l cget −length]
3
%

Class data members are accessed in the same manner as C structures.

Static class members are accessed as global functions or variables. To illustrate, suppose you have a class like this:

class Spam {
public:
 static void foo();
 static int bar;

};

In Tcl, the static member is accessed as follows:

% Spam_foo # Spam::foo()
% puts $Spam_bar # Spam::bar

31.3.8 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

An object of type Bar can be used where a Foo is expected. For example, if you have this function:

void spam(Foo *f);

then the function spam() accepts a Foo * or a pointer to any class derived from Foo. For instance:

% Foo f # Create a Foo

SWIG−1.3 Documentation

31.3.7 C++ classes 507

% Bar b # Create a Bar
% spam f # OK
% spam b # OK

It is safe to use multiple inheritance with SWIG.

31.3.9 Pointers, references, values, and arrays

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(Foo x); // Pass by value
void spam4(Foo x[]); // Array of objects

In Tcl, there is no detailed distinction like this. Because of this, SWIG unifies all of these types together in the wrapper code. For
instance, if you actually had the above functions, it is perfectly legal to do this:

% Foo f # Create a Foo
% spam1 f # Ok. Pointer
% spam2 f # Ok. Reference
% spam3 f # Ok. Value.
% spam4 f # Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spam6();
Foo spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocated
memory is used to hold the result and a pointer is returned (Tcl will release this memory when the return value is garbage
collected).

31.3.10 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

void foo(int);
void foo(char *c);

You can use them in Tcl in a straightforward manner:

% foo 3 # foo(int)
% foo Hello # foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
 Foo();
 Foo(const Foo &);
 ...
};

you can write Tcl code like this:

% Foo f # Create a Foo
% Foo g f # Copy f

SWIG−1.3 Documentation

31.3.8 C++ inheritance 508

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For example:

void spam(int);
void spam(short);

or

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);
void spam(short); // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);
void spam(short); // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according to a
set of type−precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises−−in this case, the first declaration takes precedence.

Please refer to the "SWIG and C++" chapter for more information about overloading.

31.3.11 C++ operators

Certain C++ overloaded operators can be handled automatically by SWIG. For example, consider a class like this:

class Complex {
private:
 double rpart, ipart;
public:
 Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
 Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
 Complex &operator=(const Complex &c);
 Complex operator+(const Complex &c) const;
 Complex operator−(const Complex &c) const;
 Complex operator*(const Complex &c) const;
 Complex operator−() const;

 double re() const { return rpart; }
 double im() const { return ipart; }
};

When wrapped, it works like this:

% Complex c 3 4
% Complex d 7 8
% set e [c + d]
% $e re
10.0

SWIG−1.3 Documentation

31.3.10 C++ overloaded functions 509

% $e im
12.0

It should be stressed that operators in SWIG have no relationship to operators in Tcl. In fact, the only thing that's happening here
is that an operator like operator + has been renamed to a method +. Therefore, the statement [c + d] is really just invoking
the + method on c. When more than operator is defined (with different arguments), the standard method overloading facilities are
used. Here is a rather odd looking example:

% Complex c 3 4
% Complex d 7 8
% set e [c − d] # operator−(const Complex &)
% puts "[$e re] [$e im]"
10.0 12.0
% set f [c −] # operator−()
% puts "[$f re] [$f im]"
−3.0 −4.0
%

One restriction with operator overloading support is that SWIG is not able to fully handle operators that aren't defined as part of
the class. For example, if you had code like this

class Complex {
...
friend Complex operator+(double, const Complex &c);
...
};

then SWIG doesn't know what to do with the friend function−−in fact, it simply ignores it and issues a warning. You can still
wrap the operator, but you may have to encapsulate it in a special function. For example:

%rename(Complex_add_dc) operator+(double, const Complex &);
...
Complex operator+(double, const Complex &c);

There are ways to make this operator appear as part of the class using the %extend directive. Keep reading.

31.3.12 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
 int fact(int n);
 struct Vector {
 double x,y,z;
 };
};

it works in Tcl as follows:

% load ./example.so
% fact 3
6
% Vector v
% v configure −x 3.4

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

SWIG−1.3 Documentation

31.3.11 C++ operators 510

namespace Foo {
 int spam();
}

namespace Bar {
 int spam();
}

If you have more than one namespace and your want to keep their symbols separate, consider wrapping them as separate SWIG
modules. For example, make the module name the same as the namespace and create extension modules for each namespace
separately. If your program utilizes thousands of small deeply nested namespaces each with identical symbol names, well, then
you get what you deserve.

31.3.13 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example
%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;
 pair();
 pair(const T1&, const T2&);
 ~pair();
};

%template(pairii) pair<int,int>;

In Tcl:

% pairii p 3 4
% p cget −first
3
% p cget −second
4

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter. Some more complicated examples will appear later.

31.3.14 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
 ...
 T *operator−>();
 ...
}

Then, if you have a class like this,

class Foo {
public:

SWIG−1.3 Documentation

31.3.12 C++ namespaces 511

 int x;
 int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)
...
p−>x = 3; // Foo::x
int y = p−>bar(); // Foo::bar

To wrap this in Tcl, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Tcl, everything should just "work":

% set p [CreateFoo] # Create a smart−pointer somehow
% $p configure −x 3 # Foo::x
% $p bar # Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

% set f [$p __deref__] # Returns underlying Foo *

31.4 Further details on the Tcl class interface

In the previous section, a high−level view of Tcl wrapping was presented. A key component of this wrapping is that structures and
classes are wrapped by Tcl class−like objects. This provides a very natural Tcl interface and allows SWIG to support a number of
advanced features such as operator overloading. However, a number of low−level details were omitted. This section provides a
brief overview of how the proxy classes work.

31.4.1 Proxy classes

In the "SWIG basics" and "SWIG and C++" chapters, details of low−level structure and class wrapping are described. To
summarize those chapters, if you have a class like this

class Foo {
public:
 int x;
 int spam(int);
 ...

then SWIG transforms it into a set of low−level procedural wrappers. For example:

Foo *new_Foo() {
 return new Foo();
}
void delete_Foo(Foo *f) {
 delete f;
}
int Foo_x_get(Foo *f) {
 return f−>x;
}
void Foo_x_set(Foo *f, int value) {
 f−>x = value;

SWIG−1.3 Documentation

31.3.14 C++ Smart Pointers 512

}
int Foo_spam(Foo *f, int arg1) {
 return f−>spam(arg1);
}

These wrappers are actually found in the Tcl extension module. For example, you can certainly do this:

% load ./example.so
% set f [new_Foo]
% Foo_x_get $f
0
% Foo_spam $f 3
1
%

However, in addition to this, the classname Foo is used as an object constructor function. This allows objects to be encapsulated
objects that look a lot like Tk widgets as shown in the last section.

31.4.2 Memory management

Associated with each wrapped object, is an ownership flag thisown The value of this flag determines who is responsible for
deleting the underlying C++ object. If set to 1, the Tcl interpreter destroys the C++ object when the proxy class is garbage
collected. If set to 0 (or if the attribute is missing), then the destruction of the proxy class has no effect on the C++ object.

When an object is created by a constructor or returned by value, Tcl automatically takes ownership of the result. For example:

class Foo {
public:
 Foo();
 Foo bar();
};

In Tcl:

% Foo f
% f cget −thisown
1
% set g [f bar]
% $g cget −thisown
1

On the other hand, when pointers are returned to Tcl, there is often no way to know where they came from. Therefore, the
ownership is set to zero. For example:

class Foo {
public:
 ...
 Foo *spam();
 ...
};

% Foo f
% set s [f spam]
% $s cget −thisown
0
%

This behavior is especially important for classes that act as containers. For example, if a method returns a pointer to an object that
is contained inside another object, you definitely don't want Tcl to assume ownership and destroy it!

SWIG−1.3 Documentation

31.4.1 Proxy classes 513

Related to containers, ownership issues can arise whenever an object is assigned to a member or global variable. For example,
consider this interface:

%module example

struct Foo {
 int value;
 Foo *next;
};

Foo *head = 0;

When wrapped in Tcl, careful observation will reveal that ownership changes whenever an object is assigned to a global variable.
For example:

% Foo f
% f cget −thisown
1
% set head f
% f cget −thisown
0

In this case, C is now holding a reference to the object−−−you probably don't want Tcl to destroy it. Similarly, this occurs for
members. For example:

% Foo f
% Foo g
% f cget −thisown
1
% g cget −thisown
1
% f configure −next g
% g cget −thisown
0
%

For the most part, memory management issues remain hidden. However, there are occasionally situations where you might have
to manually change the ownership of an object. For instance, consider code like this:

class Node {
 Object *value;
public:
 void set_value(Object *v) { value = v; }
 ...
};

Now, consider the following Tcl code:

% Object v # Create an object
% Node n # Create a node
% n setvalue v # Set value
% v cget −thisown
1
%

In this case, the object n is holding a reference to v internally. However, SWIG has no way to know that this has occurred.
Therefore, Tcl still thinks that it has ownership of the object. Should the proxy object be destroyed, then the C++ destructor will
be invoked and n will be holding a stale−pointer. If you're lucky, you will only get a segmentation fault.

To work around this, it is always possible to flip the ownership flag. For example,

% v −disown # Give ownership to C/C++
% v −acquire # Acquire ownership

SWIG−1.3 Documentation

31.4.2 Memory management 514

It is also possible to deal with situations like this using typemaps−−an advanced topic discussed later.

31.5 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {
 *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
 return *x+*y;
}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);

In Tcl, this allows you to pass simple values instead of pointer. For example:

set a [add 3 4]
puts $a
7

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
 *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Tcl, a mutated parameter shows up as a return value. For example:

set a [negate 3]
puts $a
−3

SWIG−1.3 Documentation

31.5 Input and output parameters 515

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, along with success code */
int send_message(char *text, int len, int *success);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *success };
...
int send_message(char *text, int *success);

When used in Tcl, the function will return multiple values as a list.

set r [send_message "Hello World"]
set bytes [lindex $r 0]
set success [lindex $r 1]

Another common use of multiple return values are in query functions. For example:

void get_dimensions(Matrix *m, int *rows, int *columns);

To wrap this, you might use the following:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, *columns);

Now, in Perl:

set dim [get_dimensions $m]
set r [lindex $dim 0]
set c [lindex $dim 1]

31.6 Exception handling

The %exception directive can be used to create a user−definable exception handler in charge of converting exceptions in your
C/C++ program into Tcl exceptions. The chapter on customization features contains more details, but suppose you extended the
array example into a C++ class like the following :

class RangeError {}; // Used for an exception

class DoubleArray {
 private:
 int n;
 double *ptr;
 public:
 // Create a new array of fixed size
 DoubleArray(int size) {
 ptr = new double[size];
 n = size;
 }
 // Destroy an array
 ~DoubleArray() {
 delete ptr;
 }
 // Return the length of the array
 int length() {

SWIG−1.3 Documentation

31.6 Exception handling 516

 return n;
 }

 // Get an item from the array and perform bounds checking.
 double getitem(int i) {
 if ((i >= 0) && (i < n))
 return ptr[i];
 else
 throw RangeError();
 }

 // Set an item in the array and perform bounds checking.
 void setitem(int i, double val) {
 if ((i >= 0) && (i < n))
 ptr[i] = val;
 else {
 throw RangeError();
 }
 }
 };

The functions associated with this class can throw a C++ range exception for an out−of−bounds array access. We can catch this in
our Tcl extension by specifying the following in an interface file :

%exception {
 try {
 $action // Gets substituted by actual function call
 }
 catch (RangeError) {
 Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
 return TCL_ERROR;
 }
}

As shown, the exception handling code will be added to every wrapper function. Since this is somewhat inefficient. You might
consider refining the exception handler to only apply to specific methods like this:

%exception getitem {
 try {
 $action
 }
 catch (RangeError) {
 Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
 return TCL_ERROR;
 }
}

%exception setitem {
 try {
 $action
 }
 catch (RangeError) {
 Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
 return TCL_ERROR;
 }
}

In this case, the exception handler is only attached to methods and functions named getitem and setitem.

If you had a lot of different methods, you can avoid extra typing by using a macro. For example:

%define RANGE_ERROR
{
 try {
 $action

SWIG−1.3 Documentation

31.6 Exception handling 517

 }
 catch (RangeError) {
 Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
 return TCL_ERROR;
 }
}
%enddef

%exception getitem RANGE_ERROR;
%exception setitem RANGE_ERROR;

Since SWIG's exception handling is user−definable, you are not limited to C++ exception handling. See the chapter on
"Customization Features" for more examples.

31.7 Typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Tcl C API as well as the material in the "Typemaps" chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Tcl interface.

31.7.1 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Tcl to C, you might define a typemap like this:

%module example

%typemap(in) int {
 if (Tcl_GetIntFromObj(interp,$input,&$1) == TCL_ERROR) return TCL_ERROR;
 printf("Received an integer : %d\n",$1);
}
%inline %{
extern int fact(int n);
%}

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variable prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input object of type Tcl_Obj *.

When this example is compiled into a Tcl module, it operates as follows:

% load ./example.so
% fact 6
Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int n {
 if (Tcl_GetIntFromObj(interp,$input,&$1) == TCL_ERROR) return TCL_ERROR;
 printf("n = %d\n",$1);
}
%inline %{
extern int fact(int n);
%}

SWIG−1.3 Documentation

31.7 Typemaps 518

In this case, the typemap code is only attached to arguments that exactly match int n.

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int n {
 if (Tcl_GetIntFromObj(interp,$input,&$1) == TCL_ERROR) return TCL_ERROR;
 printf("n = %d\n",$1);
}
%inline %{
typedef int Integer;
extern int fact(Integer n); // Above typemap is applied
%}

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to
arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
 $1 = Tcl_GetStringFromObj($input,&$2);
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Tcl object. This allows the function to
be used like this (notice how the length parameter is ommitted):

% count e "Hello World"
1

31.7.2 Tcl typemaps

The previous section illustrated an "in" typemap for converting Tcl objects to C. A variety of different typemap methods are
defined by the Tcl module. For example, to convert a C integer back into a Tcl object, you might define an "out" typemap like
this:

%typemap(out) int {
 Tcl_SetObjResult(interp,Tcl_NewIntObj($1));
}

The following list details all of the typemap methods that can be used by the Tcl module:

%typemap(in)

Converts Tcl objects to input function arguments
%typemap(out)

Converts return value of a C function to a Tcl object
%typemap(varin)

Assigns a C global variable from a Tcl object
%typemap(varout)

Returns a C global variable as a Tcl object
%typemap(freearg)

Cleans up a function argument (if necessary)

SWIG−1.3 Documentation

31.7.1 What is a typemap? 519

%typemap(argout)

Output argument processing
%typemap(ret)

Cleanup of function return values
%typemap(consttab)

Creation of Tcl constants (constant table)
%typemap(constcode)

Creation of Tcl constants (init function)
%typemap(memberin)

Setting of structure/class member data
%typemap(globalin)

Setting of C global variables
%typemap(check)

Checks function input values.
%typemap(default)

Set a default value for an argument (making it optional).
%typemap(arginit)

Initialize an argument to a value before any conversions occur.
Examples of these methods will appear shortly.

31.7.3 Typemap variables

Within typemap code, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this is a C local
variable that's supposed to hold an argument value. For output values, this is the raw result that's supposed to be returned to
Tcl.

$input

A Tcl_Obj * holding a raw Tcl object with an argument or variable value.
$result

A Tcl_Obj * that holds the result to be returned to Tcl.
$1_name

The parameter name that was matched.
$1_type

The actual C datatype matched by the typemap.
$1_ltype

An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of a C
assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All arguments and
local variables in wrapper functions are declared using this type so that their values can be properly assigned.

SWIG−1.3 Documentation

31.7.2 Tcl typemaps 520

$symname

The Tcl name of the wrapper function being created.

31.7.4 Converting a Tcl list to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Tcl list to be used as a char ** object.

%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
 Tcl_Obj **listobjv;
 int nitems;
 int i;
 if (Tcl_ListObjGetElements(interp, $input, &nitems, &listobjv) == TCL_ERROR) {
 return TCL_ERROR;
 }
 $1 = (char **) malloc((nitems+1)*sizeof(char *));
 for (i = 0; i < nitems; i++) {
 $1[i] = Tcl_GetStringFromObj(listobjv[i],0);
 }
 $1[i] = 0;
}

// This gives SWIG some cleanup code that will get called after the function call
%typemap(freearg) char ** {
 if ($1) {
 free($1);
 }
}

// Now a test functions
%inline %{
int print_args(char **argv) {
 int i = 0;
 while (argv[i]) {
 printf("argv[%d] = %s\n", i,argv[i]);
 i++;
 }
 return i;
}
%}
%include tclsh.i

In Tcl:

% print_args {John Guido Larry}
argv[0] = John
argv[1] = Guido
argv[2] = Larry
3

31.7.5 Returning values in arguments

The "argout" typemap can be used to return a value originating from a function argument. For example :

// A typemap defining how to return an argument by appending it to the result
%typemap(argout) double *outvalue {
 Tcl_Obj *o = Tcl_NewDoubleObj($1);
 Tcl_ListObjAppendElement(interp,$result,o);
}

SWIG−1.3 Documentation

31.7.3 Typemap variables 521

// A typemap telling SWIG to ignore an argument for input
// However, we still need to pass a pointer to the C function
%typemap(in,numinputs=0) double *outvalue (double temp) {
 $1 = &temp;
}

// Now a function returning two values
int mypow(double a, double b, double *outvalue) {
 if ((a < 0) || (b < 0)) return −1;
 *outvalue = pow(a,b);
 return 0;
};

When wrapped, SWIG matches the argout typemap to the "double *outvalue" argument. The numinputs=0 specification
tells SWIG to simply ignore this argument when generating wrapper code. As a result, a Tcl function using these typemaps will
work like this :

% mypow 2 3 # Returns two values, a status value and the result
0 8
%

31.7.6 Useful functions

The following tables provide some functions that may be useful in writing Tcl typemaps.

Integers

Tcl_Obj *Tcl_NewIntObj(int Value);
void Tcl_SetIntObj(Tcl_Obj *obj, int Value);
int Tcl_GetIntFromObj(Tcl_Interp *, Tcl_Obj *obj, int *ip);

Floating Point

Tcl_Obj *Tcl_NewDoubleObj(double Value);
void Tcl_SetDoubleObj(Tcl_Obj *obj, double value);
int Tcl_GetDoubleFromObj(Tcl_Interp *, Tcl_Obj *o, double *dp);

Strings

Tcl_Obj *Tcl_NewStringObj(char *str, int len);
void Tcl_SetStringObj(Tcl_Obj *obj, char *str, int len);
char *Tcl_GetStringFromObj(Tcl_Obj *obj, int *len);
void Tcl_AppendToObj(Tcl_Obj *obj, char *str, int len);

Lists

Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *objv);
int Tcl_ListObjAppendList(Tcl_Interp *, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr);
int Tcl_ListObjAppendElement(Tcl_Interp *, Tcl_Obj *listPtr, Tcl_Obj *element);
int Tcl_ListObjGetElements(Tcl_Interp *, Tcl_Obj *listPtr, int *objcPtr,
 Tcl_Obj ***objvPtr);
int Tcl_ListObjLength(Tcl_Interp *, Tcl_Obj *listPtr, int *intPtr);
int Tcl_ListObjIndex(Tcl_Interp *, Tcl_Obj *listPtr, int index,
 Tcl_Obj_Obj **objptr);
int Tcl_ListObjReplace(Tcl_Interp *, Tcl_Obj *listPtr, int first, int count,
 int objc, Tcl_Obj *objv);

Objects

Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *obj);
void Tcl_IncrRefCount(Tcl_Obj *obj);
void Tcl_DecrRefCount(Tcl_Obj *obj);
int Tcl_IsShared(Tcl_Obj *obj);

SWIG−1.3 Documentation

31.7.5 Returning values in arguments 522

31.7.7 Standard typemaps

The following typemaps show how to convert a few common kinds of objects between Tcl and C (and to give a better idea of how
typemaps work)

Integer conversion

%typemap(in) int, short, long {
 int temp;
 if (Tcl_GetIntFromObj(interp, $input, &temp) == TCL_ERROR)
 return TCL_ERROR;
 $1 = ($1_ltype) temp;
}

%typemap(out) int, short, long {
 Tcl_SetIntObj($result,(int) $1);
}

Floating point conversion

%typemap(in) float, double {
 double temp;
 if (Tcl_GetDoubleFromObj(interp, $input, &temp) == TCL_ERROR)
 return TCL_ERROR;
 $1 = ($1_ltype) temp;
}

%typemap(out) float, double {
 Tcl_SetDoubleObj($result, $1);
}

String Conversion

%typemap(in) char * {
 int len;
 $1 = Tcl_GetStringFromObj(interp, &len);
 }
}

%typemap(out) char * {
 Tcl_SetStringObj($result,$1);
}

31.7.8 Pointer handling

SWIG pointers are mapped into Tcl strings containing the hexadecimal value and type. The following functions can be used to
create and read pointer values.

int SWIG_ConvertPtr(Tcl_Obj *obj, void **ptr, swig_type_info *ty, int flags)

Converts a Tcl object obj to a C pointer. The result of the conversion is placed into the pointer located at ptr. ty is a
SWIG type descriptor structure. flags is used to handle error checking and other aspects of conversion. It is currently
reserved for future expansion. Returns 0 on success and −1 on error.

Tcl_Obj *SWIG_NewPointerObj(void *ptr, swig_type_info *ty, int flags)

SWIG−1.3 Documentation

31.7.7 Standard typemaps 523

Creates a new Tcl pointer object. ptr is the pointer to convert, ty is the SWIG type descriptor structure that describes the
type, and own is a flag reserved for future expansion.

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *f;
if (SWIG_ConvertPtr($input, (void **) &f, SWIGTYPE_p_Foo, 0) == −1) return NULL;

Tcl_Obj *;
obj = SWIG_NewPointerObj(f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
 if ((SWIG_ConvertPtr($input,(void **) &$1, $1_descriptor,0)) == −1) return NULL;
}

If necessary, the descriptor for any type can be obtained using the $descriptor() macro in a typemap. For example:

%typemap(in) Foo * {
 if ((SWIG_ConvertPtr($input,(void **) &$1, $descriptor(Foo *), 0)) == −1) return NULL;
}

31.8 Turning a SWIG module into a Tcl Package.

Tcl 7.4 introduced the idea of an extension package. By default, SWIG generates all of the code necessary to create a package. To
set the package version, simply use the −pkgversion option. For example:

% swig −tcl −pkgversion 2.3 example.i

After building the SWIG generated module, you need to execute the "pkg_mkIndex" command inside tclsh. For example :

unix > tclsh
% pkg_mkIndex . example.so
% exit

This creates a file "pkgIndex.tcl" with information about the package. To use your package, you now need to move it to its
own subdirectory which has the same name as the package. For example :

./example/
 pkgIndex.tcl # The file created by pkg_mkIndex
 example.so # The SWIG generated module

Finally, assuming that you're not entirely confused at this point, make sure that the example subdirectory is visible from the
directories contained in either the tcl_library or auto_path variables. At this point you're ready to use the package as
follows :

unix > tclsh
% package require example
% fact 4
24
%

If you're working with an example in the current directory and this doesn't work, do this instead :

unix > tclsh
% lappend auto_path .
% package require example
% fact 4
24

SWIG−1.3 Documentation

31.7.8 Pointer handling 524

As a final note, most SWIG examples do not yet use the package commands. For simple extensions it may be easier just to use
the load command instead.

31.9 Building new kinds of Tcl interfaces (in Tcl)

One of the most interesting aspects of Tcl and SWIG is that you can create entirely new kinds of Tcl interfaces in Tcl using the
low−level SWIG accessor functions. For example, suppose you had a library of helper functions to access arrays :

/* File : array.i */
%module array

%inline %{
double *new_double(int size) {
 return (double *) malloc(size*sizeof(double));
}
void delete_double(double *a) {
 free(a);
}
double get_double(double *a, int index) {
 return a[index];
}
void set_double(double *a, int index, double val) {
 a[index] = val;
}
int *new_int(int size) {
 return (int *) malloc(size*sizeof(int));
}
void delete_int(int *a) {
 free(a);
}
int get_int(int *a, int index) {
 return a[index];
}
int set_int(int *a, int index, int val) {
 a[index] = val;
}
%}

While these could be called directly, we could also write a Tcl script like this :

proc Array {type size} {
 set ptr [new_$type $size]
 set code {
 set method [lindex $args 0]
 set parms [concat $ptr [lrange $args 1 end]]
 switch $method {
 get {return [eval "get_$type $parms"]}
 set {return [eval "set_$type $parms"]}
 delete {eval "delete_$type $ptr; rename $ptr {}"}
 }
 }
 # Create a procedure
 uplevel "proc $ptr args {set ptr $ptr; set type $type;$code}"
 return $ptr
}

Our script allows easy array access as follows :

set a [Array double 100] ;# Create a double [100]
for {set i 0} {$i < 100} {incr i 1} { ;# Clear the array
 $a set $i 0.0
}
$a set 3 3.1455 ;# Set an individual element

SWIG−1.3 Documentation

31.8 Turning a SWIG module into a Tcl Package. 525

set b [$a get 10] ;# Retrieve an element

set ia [Array int 50] ;# Create an int[50]
for {set i 0} {$i < 50} {incr i 1} { ;# Clear it
 $ia set $i 0
}
$ia set 3 7 ;# Set an individual element
set ib [$ia get 10] ;# Get an individual element

$a delete ;# Destroy a
$ia delete ;# Destroy ia

The cool thing about this approach is that it makes a common interface for two different types of arrays. In fact, if we were to add
more C datatypes to our wrapper file, the Tcl code would work with those as well−−without modification. If an unsupported
datatype was requested, the Tcl code would simply return with an error so there is very little danger of blowing something up
(although it is easily accomplished with an out of bounds array access).

31.9.1 Proxy classes

A similar approach can be applied to proxy classes (also known as shadow classes). The following example is provided by Erik
Bierwagen and Paul Saxe. To use it, run SWIG with the −noobject option (which disables the builtin object oriented interface).
When running Tcl, simply source this file. Now, objects can be used in a more or less natural fashion.

swig_c++.tcl
Provides a simple object oriented interface using
SWIG's low level interface.
#

proc new {objectType handle_r args} {
 # Creates a new SWIG object of the given type,
 # returning a handle in the variable "handle_r".
 #
 # Also creates a procedure for the object and a trace on
 # the handle variable that deletes the object when the
 # handle varibale is overwritten or unset
 upvar $handle_r handle
 #
 # Create the new object
 #
 eval set handle \[new_$objectType $args\]
 #
 # Set up the object procedure
 #
 proc $handle {cmd args} "eval ${objectType}_\$cmd $handle \$args"
 #
 # And the trace ...
 #
 uplevel trace variable $handle_r uw "{deleteObject $objectType $handle}"
 #
 # Return the handle so that 'new' can be used as an argument to a procedure
 #
 return $handle
}

proc deleteObject {objectType handle name element op} {
 #
 # Check that the object handle has a reasonable form
 #
 if {![regexp {_[0−9a−f]*_(.+)_p} $handle]} {
 error "deleteObject: not a valid object handle: $handle"
 }
 #
 # Remove the object procedure
 #
 catch {rename $handle {}}

SWIG−1.3 Documentation

31.9 Building new kinds of Tcl interfaces (in Tcl) 526

 #
 # Delete the object
 #
 delete_$objectType $handle
}

proc delete {handle_r} {
 #
 # A synonym for unset that is more familiar to C++ programmers
 #
 uplevel unset $handle_r
}

To use this file, we simply source it and execute commands such as "new" and "delete" to manipulate objects. For example :

// list.i
%module List
%{
#include "list.h"
%}

// Very simple C++ example

class List {
public:
 List(); // Create a new list
 ~List(); // Destroy a list
 int search(char *value);
 void insert(char *); // Insert a new item into the list
 void remove(char *); // Remove item from list
 char *get(int n); // Get the nth item in the list
 int length; // The current length of the list
static void print(List *l); // Print out the contents of the list
};

Now a Tcl script using the interface...

load ./list.so list ; # Load the module
source swig_c++.tcl ; # Source the object file

new List l
$l insert Dave
$l insert John
$l insert Guido
$l remove Dave
puts $l length_get

delete l

The cool thing about this example is that it works with any C++ object wrapped by SWIG and requires no special compilation.
Proof that a short, but clever Tcl script can be combined with SWIG to do many interesting things.

SWIG−1.3 Documentation

31.9.1 Proxy classes 527

32 Extending SWIG
Introduction•
Prerequisites•
The Big Picture•
Execution Model

Preprocessing♦
Parsing♦
Parse Trees♦
Attribute namespaces♦
Symbol Tables♦
The %feature directive♦
Code Generation♦
SWIG and XML♦

•

Primitive Data Structures
Strings♦
Hashes♦
Lists♦
Common operations♦
Iterating over Lists and Hashes♦
I/O♦

•

Navigating and manipulating parse trees•
Working with attributes•
Type system

String encoding of types♦
Type construction♦
Type tests♦
Typedef and inheritance♦
Lvalues♦
Output functions♦

•

Parameters•
Writing a Language Module

Execution model♦
Starting out♦
Command line options♦
Configuration and preprocessing♦
Entry point to code generation♦
Module I/O and wrapper skeleton♦
Low−level code generators♦
Configuration files♦
Runtime support♦
Standard library files♦
Examples and test cases♦
Documentation♦

•

Typemaps
Proxy classes♦

•

Guide to parse tree nodes•

Caution: This chapter is being rewritten! (11/25/01)

32.1 Introduction

This chapter describes SWIG's internal organization and the process by which new target languages can be developed. First, a
brief word of warning−−−SWIG has been undergoing a massive redevelopment effort that has focused extensively on its internal
organization. The information in this chapter is mostly up to date, but changes are ongoing. Expect a few inconsistencies.

32 Extending SWIG 528

Also, this chapter is not meant to be a hand−holding tutorial. As a starting point, you should probably look at one of SWIG's
existing modules.

32.2 Prerequisites

In order to extend SWIG, it is useful to have the following background:

An understanding of the C API for the target language.•
A good grasp of the C++ type system.•
An understanding of typemaps and some of SWIG's advanced features.•
Some familiarity with writing C++ (language modules are currently written in C++).•

Since SWIG is essentially a specialized C++ compiler, it may be useful to have some prior experience with compiler design
(perhaps even a compilers course) to better understand certain parts of the system. A number of books will also be useful. For
example, "The C Programming Language" by Kernighan and Ritchie (a.k.a, "K&R") and the "C++ Annotated Reference Manual"
by Stroustrup (a.k.a, the "ARM") will be of great use.

Also, it is useful to keep in mind that SWIG primarily operates as an extension of the C++ type system. At first glance, this might
not be obvious, but almost all SWIG directives as well as the low−level generation of wrapper code are driven by C++ datatypes.

32.3 The Big Picture

SWIG is a special purpose compiler that parses C++ declarations to generate wrapper code. To make this conversion possible,
SWIG makes three fundamental extensions to the C++ language:

Typemaps. Typemaps are used to define the conversion/marshalling behavior of specific C++ datatypes. All type
conversion in SWIG is based on typemaps. Furthermore, the association of typemaps to datatypes utilizes an advanced
pattern matching mechanism that is fully integrated with the C++ type system.

•

Declaration Annotation. To customize wrapper code generation, most declarations can be annotated with special
features. For example, you can make a variable read−only, you can ignore a declaration, you can rename a member
function, you can add exception handling, and so forth. Virtually all of these customizations are built on top of a
low−level declaration annotator that can attach arbitrary attributes to any declaration. Code generation modules can look
for these attributes to guide the wrapping process.

•

Class extension. SWIG allows classes and structures to be extended with new methods and attributes (the %extend
directive). This has the effect of altering the API in the target language and can be used to generate OO interfaces to C
libraries.

•

It is important to emphasize that virtually all SWIG features reduce to one of these three fundamental concepts. The type system
and pattern matching rules also play a critical role in making the system work. For example, both typemaps and declaration
annotation are based on pattern matching and interact heavily with the underlying type system.

32.4 Execution Model

When you run SWIG on an interface, processing is handled in stages by a series of system components:

An integrated C preprocessor reads a collection of configuration files and the specified interface file into memory. The
preprocessor performs the usual functions including macro expansion and file inclusion. However, the preprocessor also
performs some transformations of the interface. For instance, #define statements are sometimes transformed into
%constant declarations. In addition, information related to file/line number tracking is inserted.

•

A C/C++ parser reads the preprocessed input and generates a full parse tree of all of the SWIG directives and C
declarations found. The parser is responsible for many aspects of the system including renaming, declaration annotation,
and template expansion. However, the parser does not produce any output nor does it interact with the target language
module as it runs. SWIG is not a one−pass compiler.

•

A type−checking pass is made. This adjusts all of the C++ typenames to properly handle namespaces, typedefs, nested
classes, and other issues related to type scoping.

•

SWIG−1.3 Documentation

32.1 Introduction 529

A semantic pass is made on the parse tree to collect information related to properties of the C++ interface. For example,
this pass would determine whether or not a class allows a default constructor.

•

A code generation pass is made using a specific target language module. This phase is responsible for generating the
actual wrapper code. All of SWIG's user−defined modules are invoked during this stage of compilation.

•

The next few sections briefly describe some of these stages.

32.4.1 Preprocessing

The preprocessor plays a critical role in the SWIG implementation. This is because a lot of SWIG's processing and internal
configuration is managed not by code written in C, but by configuration files in the SWIG library. In fact, when you run SWIG,
parsing starts with a small interface file like this (note: this explains the cryptic error messages that new users sometimes get when
SWIG is misconfigured or installed incorrectly):

%include "swig.swg" // Global SWIG configuration
%include "langconfig.swg" // Language specific configuration
%include "yourinterface.i" // Your interface file

The swig.swg file contains global configuration information. In addition, this file defines many of SWIG's standard directives
as macros. For instance, part of of swig.swg looks like this:

...
/* Code insertion directives such as %wrapper %{ ... %} */

#define %init %insert("init")
#define %wrapper %insert("wrapper")
#define %header %insert("header")
#define %runtime %insert("runtime")

/* Access control directives */

#define %immutable %feature("immutable","1")
#define %mutable %feature("immutable")

/* Directives for callback functions */

#define %callback(x) %feature("callback") `x`;
#define %nocallback %feature("callback");

/* %ignore directive */

#define %ignore %rename($ignore)
#define %ignorewarn(x) %rename("$ignore:" x)
...

The fact that most of the standard SWIG directives are macros is intended to simplify the implementation of the internals. For
instance, rather than having to support dozens of special directives, it is easier to have a few basic primitives such as %feature
or %insert.

The langconfig.swg file is supplied by the target language. This file contains language−specific configuration information.
More often than not, this file provides run−time wrapper support code (e.g., the type−checker) as well as a collection of typemaps
that define the default wrapping behavior. Note: the name of this file depends on the target language and is usually something like
python.swg or perl5.swg.

As a debugging aide, the text that SWIG feeds to its C++ parser can be obtained by running swig −E interface.i. This
output probably isn't too useful in general, but it will show how macros have been expanded as well as everything else that goes
into the low−level construction of the wrapper code.

SWIG−1.3 Documentation

32.4 Execution Model 530

32.4.2 Parsing

The current C++ parser handles a subset of C++. Most incompatibilities with C are due to subtle aspects of how SWIG parses
declarations. Specifically, SWIG expects all C/C++ declarations to follow this general form:

storage type declarator initializer;

storage is a keyword such as extern, static, typedef, or virtual. type is a primitive datatype such as int or
void. type may be optionally qualified with a qualifier such as const or volatile. declarator is a name with additional
type−construction modifiers attached to it (pointers, arrays, references, functions, etc.). Examples of declarators include *x, **x,
x[20], and (*x)(int,double). The initializer may be a value assigned using = or body of code enclosed in braces {
... }.

This declaration format covers most common C++ declarations. However, the C++ standard is somewhat more flexible in the
placement of the parts. For example, it is technically legal, although uncommon to write something like int typedef const
a in your program. SWIG simply doesn't bother to deal with this case.

The other significant difference between C++ and SWIG is in the treatment of typenames. In C++, if you have a declaration like
this,

int blah(Foo *x, Bar *y);

it won't parse correctly unless Foo and Bar have been previously defined as types either using a class definition or a
typedef. The reasons for this are subtle, but this treatment of typenames is normally integrated at the level of the C
tokenizer−−−when a typename appears, a different token is returned to the parser instead of an identifier.

SWIG does not operate in this manner−−any legal identifier can be used as a type name. The reason for this is primarily motivated
by the use of SWIG with partially defined data. Specifically, SWIG is supposed to be easy to use on interfaces with missing type
information.

Because of the different treatment of typenames, the most serious limitation of the SWIG parser is that it can't process type
declarations where an extra (and unnecessary) grouping operator is used. For example:

int (x); /* A variable x */
int (y)(int); /* A function y */

The placing of extra parentheses in type declarations like this is already recognized by the C++ community as a potential source
of strange programming errors. For example, Scott Meyers "Effective STL" discusses this problem in a section on avoiding C++'s
"most vexing parse."

The parser is also unable to handle declarations with no return type or bare argument names. For example, in an old C program,
you might see things like this:

foo(a,b) {
...
}

In this case, the return type as well as the types of the arguments are taken by the C compiler to be an int. However, SWIG
interprets the above code as an abstract declarator for a function returning a foo and taking types a and b as arguments).

32.4.3 Parse Trees

The SWIG parser produces a complete parse tree of the input file before any wrapper code is actually generated. Each item in the
tree is known as a "Node". Each node is identified by a symbolic tag. Furthermore, a node may have an arbitrary number of
children. The parse tree structure and tag names of an interface can be displayed using swig −dump_tags. For example:

$ swig −c++ −python −dump_tags example.i

SWIG−1.3 Documentation

32.4.2 Parsing 531

 . top (example.i:1)
 . top . include (example.i:1)
 . top . include . typemap (/r0/beazley/Projects/lib/swig1.3/swig.swg:71)
 . top . include . typemap . typemapitem (/r0/beazley/Projects/lib/swig1.3/swig.swg:71)
 . top . include . typemap (/r0/beazley/Projects/lib/swig1.3/swig.swg:83)
 . top . include . typemap . typemapitem (/r0/beazley/Projects/lib/swig1.3/swig.swg:83)
 . top . include (example.i:4)
 . top . include . insert (/r0/beazley/Projects/lib/swig1.3/python/python.swg:7)
 . top . include . insert (/r0/beazley/Projects/lib/swig1.3/python/python.swg:8)
 . top . include . typemap (/r0/beazley/Projects/lib/swig1.3/python/python.swg:19)
...
 . top . include (example.i:6)
 . top . include . module (example.i:2)
 . top . include . insert (example.i:6)
 . top . include . include (example.i:9)
 . top . include . include . class (example.h:3)
 . top . include . include . class . access (example.h:4)
 . top . include . include . class . constructor (example.h:7)
 . top . include . include . class . destructor (example.h:10)
 . top . include . include . class . cdecl (example.h:11)
 . top . include . include . class . cdecl (example.h:11)
 . top . include . include . class . cdecl (example.h:12)
 . top . include . include . class . cdecl (example.h:13)
 . top . include . include . class . cdecl (example.h:14)
 . top . include . include . class . cdecl (example.h:15)
 . top . include . include . class (example.h:18)
 . top . include . include . class . access (example.h:19)
 . top . include . include . class . cdecl (example.h:20)
 . top . include . include . class . access (example.h:21)
 . top . include . include . class . constructor (example.h:22)
 . top . include . include . class . cdecl (example.h:23)
 . top . include . include . class . cdecl (example.h:24)
 . top . include . include . class (example.h:27)
 . top . include . include . class . access (example.h:28)
 . top . include . include . class . cdecl (example.h:29)
 . top . include . include . class . access (example.h:30)
 . top . include . include . class . constructor (example.h:31)
 . top . include . include . class . cdecl (example.h:32)
 . top . include . include . class . cdecl (example.h:33)

Even for the most simple interface, the parse tree structure is larger than you might expect. For example, in the above output, a
substantial number of nodes are actually generated by the python.swg configuration file which defines typemaps and other
directives. The contents of the user−supplied input file don't appear until the end of the output.

The contents of each parse tree node consist of a collection of attribute/value pairs. Internally, the nodes are simply represented by
hash tables. A display of the parse−tree structure can be obtained using swig −dump_tree. For example:

$ swig −c++ −python −dump_tree example.i
...
 +++ include −−
 | name − "example.i"

 +++ module −−
 | name − "example"
 |
 +++ insert −−
 | code − "\n#include \"example.h\"\n"
 |
 +++ include −−
 | name − "example.h"

 +++ class −−
 | abstract − "1"
 | sym:name − "Shape"
 | name − "Shape"
 | kind − "class"

SWIG−1.3 Documentation

32.4.3 Parse Trees 532

 | symtab − 0x40194140
 | sym:symtab − 0x40191078

 +++ access −−
 | kind − "public"
 |
 +++ constructor −−
 | sym:name − "Shape"
 | name − "Shape"
 | decl − "f()."
 | code − "{\n nshapes++;\n }"
 | sym:symtab − 0x40194140
 |
 +++ destructor −−
 | sym:name − "~Shape"
 | name − "~Shape"
 | storage − "virtual"
 | code − "{\n nshapes−−;\n }"
 | sym:symtab − 0x40194140
 |
 +++ cdecl −−
 | sym:name − "x"
 | name − "x"
 | decl − ""
 | type − "double"
 | sym:symtab − 0x40194140
 |
 +++ cdecl −−
 | sym:name − "y"
 | name − "y"
 | decl − ""
 | type − "double"
 | sym:symtab − 0x40194140
 |
 +++ cdecl −−
 | sym:name − "move"
 | name − "move"
 | decl − "f(double,double)."
 | parms − double ,double
 | type − "void"
 | sym:symtab − 0x40194140
 |
 +++ cdecl −−
 | sym:name − "area"
 | name − "area"
 | decl − "f(void)."
 | parms − void
 | storage − "virtual"
 | value − "0"
 | type − "double"
 | sym:symtab − 0x40194140
 |
 +++ cdecl −−
 | sym:name − "perimeter"
 | name − "perimeter"
 | decl − "f(void)."
 | parms − void
 | storage − "virtual"
 | value − "0"
 | type − "double"
 | sym:symtab − 0x40194140
 |
 +++ cdecl −−
 | sym:name − "nshapes"
 | name − "nshapes"
 | decl − ""
 | storage − "static"
 | type − "int"

SWIG−1.3 Documentation

32.4.3 Parse Trees 533

 | sym:symtab − 0x40194140
 |
 +++ class −−
 | sym:name − "Circle"
 | name − "Circle"
 | kind − "class"
 | bases − 0x40194510
 | symtab − 0x40194538
 | sym:symtab − 0x40191078

 +++ access −−
 | kind − "private"
 |
 +++ cdecl −−
 | name − "radius"
 | decl − ""
 | type − "double"
 |
 +++ access −−
 | kind − "public"
 |
 +++ constructor −−
 | sym:name − "Circle"
 | name − "Circle"
 | parms − double
 | decl − "f(double)."
 | code − "{ }"
 | sym:symtab − 0x40194538
 |
 +++ cdecl −−
 | sym:name − "area"
 | name − "area"
 | decl − "f(void)."
 | parms − void
 | storage − "virtual"
 | type − "double"
 | sym:symtab − 0x40194538
 |
 +++ cdecl −−
 | sym:name − "perimeter"
 | name − "perimeter"
 | decl − "f(void)."
 | parms − void
 | storage − "virtual"
 | type − "double"
 | sym:symtab − 0x40194538
 |
 +++ class −−
 | sym:name − "Square"
 | name − "Square"
 | kind − "class"
 | bases − 0x40194760
 | symtab − 0x40194788
 | sym:symtab − 0x40191078

 +++ access −−
 | kind − "private"
 |
 +++ cdecl −−
 | name − "width"
 | decl − ""
 | type − "double"
 |
 +++ access −−
 | kind − "public"
 |
 +++ constructor −−
 | sym:name − "Square"

SWIG−1.3 Documentation

32.4.3 Parse Trees 534

 | name − "Square"
 | parms − double
 | decl − "f(double)."
 | code − "{ }"
 | sym:symtab − 0x40194788
 |
 +++ cdecl −−
 | sym:name − "area"
 | name − "area"
 | decl − "f(void)."
 | parms − void
 | storage − "virtual"
 | type − "double"
 | sym:symtab − 0x40194788
 |
 +++ cdecl −−
 | sym:name − "perimeter"
 | name − "perimeter"
 | decl − "f(void)."
 | parms − void
 | storage − "virtual"
 | type − "double"
 | sym:symtab − 0x40194788

32.4.4 Attribute namespaces

Attributes of parse tree nodes are often prepended with a namespace qualifier. For example, the attributes sym:name and
sym:symtab are attributes related to symbol table management and are prefixed with sym:. As a general rule, only those
attributes which are directly related to the raw declaration appear without a prefix (type, name, declarator, etc.).

Target language modules may add additional attributes to nodes to assist the generation of wrapper code. The convention for
doing this is to place these attributes in a namespace that matches the name of the target language. For example, python:foo or
perl:foo.

32.4.5 Symbol Tables

During parsing, all symbols are managed in the space of the target language. The sym:name attribute of each node contains the
symbol name selected by the parser. Normally, sym:name and name are the same. However, the %rename directive can be
used to change the value of sym:name. You can see the effect of %rename by trying it on a simple interface and dumping the
parse tree. For example:

%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

void foo(int);
void foo(double);
void foo(Bar *b);

Now, running SWIG:

$ swig −dump_tree example.i
...
 +++ cdecl −−
 | sym:name − "foo_i"
 | name − "foo"
 | decl − "f(int)."
 | parms − int
 | type − "void"
 | sym:symtab − 0x40165078
 |
 +++ cdecl −−
 | sym:name − "foo_d"
 | name − "foo"

SWIG−1.3 Documentation

32.4.4 Attribute namespaces 535

 | decl − "f(double)."
 | parms − double
 | type − "void"
 | sym:symtab − 0x40165078
 |
 +++ cdecl −−
 | sym:name − "foo"
 | name − "foo"
 | decl − "f(p.Bar)."
 | parms − Bar *
 | type − "void"
 | sym:symtab − 0x40165078

All symbol−related conflicts and complaints about overloading are based on sym:name values. For instance, the following
example uses %rename in reverse to generate a name clash.

%rename(foo) foo_i(int);
%rename(foo) foo_d(double;

void foo_i(int);
void foo_d(double);
void foo(Bar *b);

When you run SWIG on this you now get:

$./swig example.i
example.i:6. Overloaded declaration ignored. foo_d(double)
example.i:5. Previous declaration is foo_i(int)
example.i:7. Overloaded declaration ignored. foo(Bar *)
example.i:5. Previous declaration is foo_i(int)

32.4.6 The %feature directive

A number of SWIG directives such as %exception are implemented using the low−level %feature directive. For example:

%feature("except") getitem(int) {
 try {
 $action
 } catch (badindex) {
 ...
 }
}

...
class Foo {
public:
 Object *getitem(int index) throws(badindex);
 ...
};

The behavior of %feature is very easy to describe−−it simply attaches a new attribute to any parse tree node that matches the
given prototype. When a feature is added, it shows up as an attribute in the feature: namespace. You can see this when
running with the −dump_tree option. For example:

 +++ cdecl −−
 | sym:name − "getitem"
 | name − "getitem"
 | decl − "f(int).p."
 | parms − int
 | type − "Object"
 | feature:except − "{\n try {\n $action\n } catc..."
 | sym:symtab − 0x40168ac8
 |

SWIG−1.3 Documentation

32.4.5 Symbol Tables 536

Feature names are completely arbitrary and a target language module can be programmed to respond to any feature name that it
wants to recognized. The data stored in a feature attribute is usually just a raw unparsed string. For example, the exception code
above is simply stored without any modifications.

32.4.7 Code Generation

Language modules work by defining handler functions that know how to respond to different types of parse−tree nodes. These
handlers simply look at the attributes of each node in order to produce low−level code.

In reality, the generation of code is somewhat more subtle than simply invoking handler functions. This is because parse−tree
nodes might be transformed. For example, suppose you are wrapping a class like this:

class Foo {
public:
 virtual int *bar(int x);
};

When the parser constructs a node for the member bar, it creates a raw "cdecl" node with the following attributes:

nodeType : cdecl
name : bar
type : int
decl : f(int).p
parms : int x
storage : virtual
sym:name : bar

To produce wrapper code, this "cdecl" node undergoes a number of transformations. First, the node is recognized as a function
declaration. This adjusts some of the type information−−specifically, the declarator is joined with the base datatype to produce
this:

nodeType : cdecl
name : bar
type : p.int <−− Notice change in return type
decl : f(int).p
parms : int x
storage : virtual
sym:name : bar

Next, the context of the node indicates that the node is really a member function. This produces a transformation to a low−level
accessor function like this:

nodeType : cdecl
name : bar
type : int.p
decl : f(int).p
parms : Foo *self, int x <−− Added parameter
storage : virtual
wrap:action : result = (arg1)−>bar(arg2) <−− Action code added
sym:name : Foo_bar <−− Symbol name changed

In this transformation, notice how an additional parameter was added to the parameter list and how the symbol name of the node
has suddenly changed into an accessor using the naming scheme described in the "SWIG Basics" chapter. A small fragment of
"action" code has also been generated−−notice how the wrap:action attribute defines the access to the underlying method.
The data in this transformed node is then used to generate a wrapper.

Language modules work by registering handler functions for dealing with various types of nodes at different stages of
transformation. This is done by inheriting from a special Language class and defining a collection of virtual methods. For
example, the Python module defines a class as follows:

class PYTHON : public Language {

SWIG−1.3 Documentation

32.4.6 The %feature directive 537

protected:
public :
 virtual void main(int, char *argv[]);
 virtual int top(Node *);
 virtual int functionWrapper(Node *);
 virtual int constantWrapper(Node *);
 virtual int variableWrapper(Node *);
 virtual int nativeWrapper(Node *);
 virtual int membervariableHandler(Node *);
 virtual int memberconstantHandler(Node *);
 virtual int memberfunctionHandler(Node *);
 virtual int constructorHandler(Node *);
 virtual int destructorHandler(Node *);
 virtual int classHandler(Node *);
 virtual int classforwardDeclaration(Node *);
 virtual int insertDirective(Node *);
 virtual int importDirective(Node *);
};

The role of these functions is described shortly.

32.4.8 SWIG and XML

Much of SWIG's current parser design was originally motivated by interest in using XML to represent SWIG parse trees.
Although XML is not currently used in any direct manner, the parse tree structure, use of node tags, attributes, and attribute
namespaces are all influenced by aspects of XML parsing. Therefore, in trying to understand SWIG's internal data structures, it
may be useful keep XML in the back of your mind as a model.

32.5 Primitive Data Structures

Most of SWIG is constructed using three basic data structures: strings, hashes, and lists. These data structures are dynamic in
same way as similar structures found in many scripting languages. For instance, you can have containers (lists and hash tables) of
mixed types and certain operations are polymorphic.

This section briefly describes the basic structures so that later sections of this chapter make more sense.

When describing the low−level API, the following type name conventions are used:

String. A string object.•
Hash. A hash object.•
List. A list object.•
String_or_char. A string object or a char *.•
Object_or_char. An object or a char *.•
Object. Any object (string, hash, list, etc.)•

In most cases, other typenames in the source are aliases for one of these primitive types. Specifically:

typedef String SwigType;
typedef Hash Parm;
typedef Hash ParmList;
typedef Hash Node;
typedef Hash Symtab;
typedef Hash Typetab;

32.5.1 Strings

String *NewString(const String_or_char *val)

SWIG−1.3 Documentation

32.4.7 Code Generation 538

Creates a new string with initial value val. val may be a char * or another String object. If you want to create an
empty string, use "" for val.

String *NewStringf(const char *fmt, ...)

Creates a new string whose initial value is set according to a C printf style format string in fmt. Additional arguments
follow depending on fmt.

String *Copy(String *s)

Make a copy of the string s.
void Delete(String *s)

Deletes s.
int Len(String_or_char *s)

Returns the length of the string.
char *Char(String_or_char *s)

Returns a pointer to the first character in a string.
void Append(String *s, String_or_char *t)

Appends t to the end of string s.
void Insert(String *s, int pos, String_or_char *t)

Inserts t into s at position pos. The contents of s are shifted accordingly. The special value DOH_END can be used for pos
to indicate insertion at the end of the string (appending).

int Strcmp(const String_or_char *s, const String_or_char *t)

Compare strings s and t. Same as the C strcmp() function.
int Strncmp(const String_or_char *s, const String_or_char *t, int len)

Compare the first len characters of strings s and t. Same as the C strncmp() function.
char *Strstr(const String_or_char *s, const String_or_char *pat)

Returns a pointer to the first occurrence of pat in s. Same as the C strstr() function.
char *Strchr(const String_or_char *s, char ch)

Returns a pointer to the first occurrence of character ch in s. Same as the C strchr() function.
void Chop(String *s)

Chops trailing whitespace off the end of s.
int Replace(String *s, const String_or_char *pat, const String_or_char *rep, int flags)

Replaces the pattern pat with rep in string s. flags is a combination of the following flags:

DOH_REPLACE_ANY − Replace all occurrences
DOH_REPLACE_ID − Valid C identifiers only
DOH_REPLACE_NOQUOTE − Don't replace in quoted strings
DOH_REPLACE_FIRST − Replace first occurrence only.

Returns the number of replacements made (if any).

32.5.2 Hashes

Hash *NewHash()

Creates a new empty hash table.
Hash *Copy(Hash *h)

SWIG−1.3 Documentation

32.5.1 Strings 539

Make a shallow copy of the hash h.
void Delete(Hash *h)

Deletes h.
int Len(Hash *h)

Returns the number of items in h.
Object *Getattr(Hash *h, String_or_char *key)

Gets an object from h. key may be a string or a simple char * string. Returns NULL if not found.
int Setattr(Hash *h, String_or_char *key, Object_or_char *val)

Stores val in h. key may be a string or a simple char *. If val is not a standard object (String, Hash, or List) it is
assumed to be a char * in which case it is used to construct a String that is stored in the hash. If val is NULL, the
object is deleted. Increases the reference count of val. Returns 1 if this operation replaced an existing hash entry, 0
otherwise.

int Delattr(Hash *h, String_or_char *key)

Deletes the hash item referenced by key. Decreases the reference count on the corresponding object (if any). Returns 1 if an
object was removed, 0 otherwise.

List *Keys(Hash *h)

Returns the list of hash table keys.

32.5.3 Lists

List *NewList()

Creates a new empty list.
List *Copy(List *x)

Make a shallow copy of the List x.
void Delete(List *x)

Deletes x.
int Len(List *x)

Returns the number of items in x.
Object *Getitem(List *x, int n)

Returns an object from x with index n. If n is beyond the end of the list, the last item is returned. If n is negative, the first
item is returned.

int *Setitem(List *x, int n, Object_or_char *val)

Stores val in x. If val is not a standard object (String, Hash, or List) it is assumed to be a char * in which case it is used
to construct a String that is stored in the list. n must be in range. Otherwise, an assertion will be raised.

int *Delitem(List *x, int n)

Deletes item n from the list, shifting items down if necessary. To delete the last item in the list, use the special value
DOH_END for n.

void Append(List *x, Object_or_char *t)

Appends t to the end of x. If t is not a standard object, it is assumed to be a char * and is used to create a String object.
void Insert(String *s, int pos, Object_or_char *t)

Inserts t into s at position pos. The contents of s are shifted accordingly. The special value DOH_END can be used for pos
to indicate insertion at the end of the list (appending). If t is not a standard object, it is assumed to be a char * and is used

SWIG−1.3 Documentation

32.5.2 Hashes 540

to create a String object.

32.5.4 Common operations

The following operations are applicable to all datatypes.

Object *Copy(Object *x)

Make a copy of the object x.
void Delete(Object *x)

Deletes x.
void Setfile(Object *x, String_or_char *f)

Sets the filename associated with x. Used to track objects and report errors.
String *Getfile(Object *x)

Gets the filename associated with x.
void Setline(Object *x, int n)

Sets the line number associated with x. Used to track objects and report errors.
int Getline(Object *x)

Gets the line number associated with x.

32.5.5 Iterating over Lists and Hashes

To iterate over the elements of a list or a hash table, the following functions are used:

Iterator First(Object *x)

Returns an iterator object that points to the first item in a list or hash table. The item attribute of the Iterator object is a
pointer to the item. For hash tables, the key attribute of the Iterator object additionally points to the corresponding Hash
table key. The item and key attributes are NULL if the object contains no items or if there are no more items.

Iterator Next(Iterator i)

Returns an iterator that points to the next item in a list or hash table. Here are two examples of iteration:

List *l = (some list);
Iterator i;

for (i = First(l); i.item; i = Next(i)) {
 Printf(stdout,"%s\n", i.item);
}

Hash *h = (some hash);
Iterator j;

for (j = First(j); j.item; j= Next(j)) {
 Printf(stdout,"%s : %s\n", j.key, j.item);
}

32.5.6 I/O

Special I/O functions are used for all internal I/O. These operations work on C FILE * objects, String objects, and special File
objects (which are merely a wrapper around FILE *).

int Printf(String_or_FILE *f, const char *fmt, ...)

SWIG−1.3 Documentation

32.5.3 Lists 541

Formatted I/O. Same as the C fprintf() function except that output can also be directed to a string object. Note: the %s
format specifier works with both strings and char *. All other format operators have the same meaning.

int Printv(String_or_FILE *f, String_or_char *arg1,..., NULL)

Prints a variable number of strings arguments to the output. The last argument to this function must be NULL. The other
arguments can either be char * or string objects.

int Putc(int ch, String_or_FILE *f)

Same as the C fputc() function.
int Write(String_or_FILE *f, void *buf, int len)

Same as the C write() function.
int Read(String_or_FILE *f, void *buf, int maxlen)

Same as the C read() function.
int Getc(String_or_FILE *f)

Same as the C fgetc() function.
int Ungetc(int ch, String_or_FILE *f)

Same as the C ungetc() function.
int Seek(String_or_FILE *f, int offset, int whence)

Same as the C seek() function. offset is the number of bytes. whence is one of SEEK_SET,SEEK_CUR, or
SEEK_END..

long Tell(String_or_FILE *f)

Same as the C tell() function.
File *NewFile(const char *filename, const char *mode)

Create a File object using the fopen() library call. This file differs from FILE * in that it can be placed in the standard
SWIG containers (lists, hashes, etc.).

File *NewFileFromFile(FILE *f)

Create a File object wrapper around an existing FILE * object.
int Close(String_or_FILE *f)

Closes a file. Has no effect on strings.

The use of the above I/O functions and strings play a critical role in SWIG. It is common to see small code fragments of code
generated using code like this:

/* Print into a string */
String *s = NewString("");
Printf(s,"Hello\n");
for (i = 0; i < 10; i++) {
 Printf(s,"%d\n", i);
}
...
/* Print string into a file */
Printf(f, "%s\n", s);

Similarly, the preprocessor and parser all operate on string−files.

32.6 Navigating and manipulating parse trees

SWIG−1.3 Documentation

32.5.6 I/O 542

Parse trees are built as collections of hash tables. Each node is a hash table in which arbitrary attributes can be stored. Certain
attributes in the hash table provide links to other parse tree nodes. The following macros can be used to move around the parse
tree.

String *nodeType(Node *n)

Returns the node type tag as a string. The returned string indicates the type of parse tree node.
Node *nextSibling(Node *n)

Returns the next node in the parse tree. For example, the next C declaration.
Node *previousSibling(Node *n)

Returns the previous node in the parse tree. For example, the previous C declaration.
Node *firstChild(Node *n)

Returns the first child node. For example, if n was a C++ class node, this would return the node for the first class member.
Node *lastChild(Node *n)

Returns the last child node. You might use this if you wanted to append a new node to the of a class.
Node *parentNode(Node *n)

Returns the parent of node n. Use this to move up the pass tree.
The following macros can be used to change all of the above attributes. Normally, these functions are only used by the parser.
Changing them without knowing what you are doing is likely to be dangerous.

void set_nodeType(Node *n, const String_or_char)

Change the node type. tree node.
void set_nextSibling(Node *n, Node *s)

Set the next sibling.
void set_previousSibling(Node *n, Node *s)

Set the previous sibling.
void set_firstChild(Node *n, Node *c)

Set the first child node.
void set_lastChild(Node *n, Node *c)

Set the last child node.
void set_parentNode(Node *n, Node *p)

Set the parent node.
The following utility functions are used to alter the parse tree (at your own risk)

void appendChild(Node *parent, Node *child)

Append a child to parent. The appended node becomes the last child.
void deleteNode(Node *node)

Deletes a node from the parse tree. Deletion reconnects siblings and properly updates the parent so that sibling nodes are
unaffected.

SWIG−1.3 Documentation

32.6 Navigating and manipulating parse trees 543

32.7 Working with attributes

Since parse tree nodes are just hash tables, attributes are accessed using the Getattr(), Setattr(), and Delattr()
operations. For example:

int functionHandler(Node *n) {
 String *name = Getattr(n,"name");
 String *symname = Getattr(n,"sym:name");
 SwigType *type = Getattr(n,"type");
 ...
}

New attributes can be freely attached to a node as needed. However, when new attributes are attached during code generation,
they should be prepended with a namespace prefix. For example:

...
Setattr(n,"python:docstring", doc); /* Store docstring */
...

A quick way to check the value of an attribute is to use the checkAttribute() function like this:

if (checkAttribute(n,"storage","virtual")) {
 /* n is virtual */
 ...
}

Changing the values of existing attributes is allowed and is sometimes done to implement node transformations. However, if a
function/method modifies a node, it is required to restore modified attributes to their original values. To simplify the task of
saving/restoring attributes, the following functions are used:

int Swig_save(const char *ns, Node *n, const char *name1, const char *name2, ..., NIL)

Saves a copy of attributes name1, name2, etc. from node n. Copies of the attributes are actually resaved in the node in a
different namespace which is set by the ns argument. For example, if you call Swig_save("foo",n,"type",NIL),
then the "type" attribute will be copied and saved as "foo:type". The namespace name itself is stored in the "view" attribute
of the node. If necessary, this can be examined to find out where previous values of attributes might have been saved.

int Swig_restore(Node *n)

Restores the attributes saved by the previous call to Swig_save(). Those attributes that were supplied to Swig_save()
will be restored to their original values.

The Swig_save() and Swig_restore() functions must always be used as a pair. That is, every call to
Swig_save() must have a matching call to Swig_restore(). Calls can be nested if necessary. Here is an example that
shows how the functions might be used:

int variableHandler(Node *n) {
 Swig_save("variableHandler",n,"type","sym:name",NIL);
 String *symname = Getattr(n,"sym:name");
 SwigType *type = Getattr(n,"type");
 ...
 Append(symname,"_global"); // Change symbol name
 SwigType_add_pointer(type); // Add pointer
 ...
 generate wrappers
 ...
 Swig_restore(n); // Restore original values
 return SWIG_OK;
}

SWIG−1.3 Documentation

32.7 Working with attributes 544

int Swig_require(const char *ns, Node *n, const char *name1, const char *name2, ...,
NIL)

This is an enhanced version of Swig_save() that adds error checking. If an attribute name is not present in n, a failed
assertion results and SWIG terminates with a fatal error. Optionally, if an attribute name is specified as "*name", a copy of
the attribute is saved as with Swig_save(). If an attribute is specified as "?name", the attribute is optional.
Swig_restore() must always be called after using this function.

32.8 Type system

SWIG implements the complete C++ type system including typedef, inheritance, pointers, references, and pointers to members. A
detailed discussion of type theory is impossible here. However, let's cover the highlights.

32.8.1 String encoding of types

All types in SWIG consist of a base datatype and a collection of type operators that are applied to the base. A base datatype is
almost always some kind of primitive type such as int or double. The operators consist of things like pointers, references,
arrays, and so forth. Internally, types are represented as strings that are constructed in a very precise manner. Here are some
examples:

C datatype SWIG encoding (strings)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−
int "int"
int * "p.int"
const int * "p.q(const).int"
int (*x)(int,double) "p.f(int,double).int"
int [20][30] "a(20).a(30).int"
int (F::*)(int) "m(F).f(int).int"
vector<int> * "p.vector<(int)>"

Reading the SWIG encoding is often easier than figuring out the C code−−−just read it from left to right. For a type of
"p.f(int,double).int" is a "pointer to a function(int,double) that returns int".

The following operator encodings are used in type strings:

Operator Meaning
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p. Pointer to
a(n). Array of dimension n
r. C++ reference
m(class). Member pointer to class
f(args). Function.
q(qlist). Qualifiers

In addition, type names may be parameterized by templates. This is represented by enclosing the template parameters in <(...
)>. Variable length arguments are represented by the special base type of v(...).

If you want to experiment with type encodings, the raw type strings can be inserted into an interface file using backticks ``
wherever a type is expected. For instance, here is an extremely perverted example:

`p.a(10).p.f(int,p.f(int).int)` foo(int, int (*x)(int));

This corresponds to the immediately obvious C declaration:

(*(*foo(int,int (*)(int)))[10])(int,int (*)(int));

Aside from the potential use of this declaration on a C programming quiz, it motivates the use of the special SWIG encoding of
types. The SWIG encoding is much easier to work with because types can be easily examined, modified, and constructed using
simple string operations (comparison, substrings, concatenation, etc.). For example, in the parser, a declaration like this

SWIG−1.3 Documentation

32.8 Type system 545

int *a[30];

is processed in a few pieces. In this case, you have the base type "int" and the declarator of type "a(30).p.". To make the
final type, the two parts are just joined together using string concatenation.

32.8.2 Type construction

The following functions are used to construct types. You should use these functions instead of trying to build the type strings
yourself.

void SwigType_add_pointer(SwigType *ty)

Adds a pointer to ty.
void SwigType_del_pointer(SwigType *ty)

Removes a single pointer from ty.
void SwigType_add_reference(SwigType *ty)

Adds a reference to ty.
void SwigType_add_array(SwigType *ty, String_or_char *dim)

Adds an array with dimension dim to ty.
void SwigType_del_array(SwigType *ty)

Removes a single array dimension from ty.
int SwigType_array_ndim(SwigType *ty)

Returns number of array dimensions of ty.
String* SwigType_array_getdim(SwigType *ty,int n)

Returns nth array dimension of ty.
void SwigType_array_setdim(SwigType *ty, int n, const String_or_char *rep)

Sets nth array dimensions of ty to rep.
void SwigType_add_qualifier(SwigType *ty, String_or_char *q)

Adds a type qualifier q to ty. q is typically "const" or "volatile".
void SwigType_add_memberpointer(SwigType *ty, String_or_char *cls)

Adds a pointer to a member of class cls to ty.
void SwigType_add_function(SwigType *ty, ParmList *p)

Adds a function to ty. p is a linked−list of parameter nodes as generated by the parser. See the section on parameter lists for
details about the representation.

void SwigType_add_template(SwigType *ty, ParmList *p)

Adds a template to ty. p is a linked−list of parameter nodes as generated by the parser. See the section on parameter lists for
details about the representation.

SwigType *SwigType_pop(SwigType *ty)

Removes the last type constructor from ty and returns it. ty is modified.
void SwigType_push(SwigType *ty, SwigType *op)

Pushes the type operators in op onto type ty. The opposite of SwigType_pop().
SwigType *SwigType_pop_arrays(SwigType *ty)

SWIG−1.3 Documentation

32.8.1 String encoding of types 546

Removes all leading array operators from ty and returns them. ty is modified. For example, if ty is
"a(20).a(10).p.int", then this function would return "a(20).a(10)." and modify ty so that it has the value
"p.int".

SwigType *SwigType_pop_function(SwigType *ty)

Removes a function operator from ty including any qualification. ty is modified. For example, if ty is "f(int).int",
then this function would return "f(int)." and modify ty so that it has the value "int".

SwigType *SwigType_base(SwigType *ty)

Returns the base type of a type. For example, if ty is "p.a(20).int", this function would return "int". ty is
unmodified.

SwigType *SwigType_prefix(SwigType *ty)

Returns the prefix of a type. For example, if ty is "p.a(20).int", this function would return "p.a(20).". ty is
unmodified.

32.8.3 Type tests

The following functions can be used to test properties of a datatype.

int SwigType_ispointer(SwigType *ty)

Checks if ty is a standard pointer.
int SwigType_ismemberpointer(SwigType *ty)

Checks if ty is a member pointer.
int SwigType_isreference(SwigType *ty)

Checks if ty is a C++ reference.
int SwigType_isarray(SwigType *ty)

Checks if ty is an array.
int SwigType_isfunction(SwigType *ty)

Checks if ty is a function.
int SwigType_isqualifier(SwigType *ty)

Checks if ty is a qualifier.
int SwigType_issimple(SwigType *ty)

Checks if ty is a simple type. No operators applied.
int SwigType_isconst(SwigType *ty)

Checks if ty is a const type.
int SwigType_isvarargs(SwigType *ty)

Checks if ty is a varargs type.
int SwigType_istemplate(SwigType *ty)

Checks if ty is a templatized type.

32.8.4 Typedef and inheritance

The behavior of typedef declaration is to introduce a type alias. For instance, typedef int Integer makes the identifier
Integer an alias for int. The treatment of typedef in SWIG is somewhat complicated due to the pattern matching rules that get
applied in typemaps and the fact that SWIG prefers to generate wrapper code that closely matches the input to simplify debugging
(a user will see the typedef names used in their program instead of the low−level primitive C datatypes).

SWIG−1.3 Documentation

32.8.2 Type construction 547

To handle typedef, SWIG builds a collection of trees containing typedef relations. For example,

typedef int Integer;
typedef Integer *IntegerPtr;
typedef int Number;
typedef int Size;

produces two trees like this:

 int p.Integer
 ^ ^ ^ ^
 / | \ |
 / | \ |
 Integer Size Number IntegerPtr

To resolve a single typedef relationship, the following function is used:

SwigType *SwigType_typedef_resolve(SwigType *ty)

Checks if ty can be reduced to a new type via typedef. If so, returns the new type. If not, returns NULL.
Typedefs are only resolved in simple typenames that appear in a type. For example, the type base name and in function
parameters. When resolving types, the process starts in the leaf nodes and moves up the tree towards the root. Here are a few
examples that show how it works:

Original type After typedef_resolve()
−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−
Integer int
a(30).Integer int
p.IntegerPtr p.p.Integer
p.p.Integer p.p.int

For complicated types, the process can be quite involved. Here is the reduction of a function pointer:

p.f(Integer, p.IntegerPtr, Size).Integer : Start
p.f(Integer, p.IntegerPtr, Size).int
p.f(int, p.IntegerPtr, Size).int
p.f(int, p.p.Integer, Size).int
p.f(int, p.p.int, Size).int
p.f(int, p.p.int, int).int : End

Two types are equivalent if their full type reductions are the same. The following function will fully reduce a datatype:

SwigType *SwigType_typedef_resolve_all(SwigType *ty)

Fully reduces ty according to typedef rules. Resulting datatype will consist only of primitive typenames.

32.8.5 Lvalues

When generating wrapper code, it is necessary to emit datatypes that can be used on the left−hand side of an assignment operator
(an lvalue). However, not all C datatypes can be used in this way−−−especially arrays and const−qualified types. To generate a
type that can be used as an lvalue, use the following function:

SwigType *SwigType_ltype(SwigType *ty)

Converts type ty to a type that can be used as an lvalue in assignment. The resulting type is stripped of qualifiers and arrays
are converted to a pointers.

The creation of lvalues is fully aware of typedef and other aspects of the type system. Therefore, the creation of an lvalue may
result in unexpected results. Here are a few examples:

typedef double Matrix4[4][4];
Matrix4 x; // type = 'Matrix4', ltype='p.a(4).double'

SWIG−1.3 Documentation

32.8.4 Typedef and inheritance 548

typedef const char * Literal;
Literal y; // type = 'Literal', ltype='p.char'

32.8.6 Output functions

The following functions produce strings that are suitable for output.

String *SwigType_str(SwigType *ty, String_or_char *id = 0)

Generates a C string for a datatype. id is an optional declarator. For example, if ty is "p.f(int).int" and id is "foo", then this
function produces "int (*foo)(int)". This function is used to convert string−encoded types back into a form that is
valid C syntax.

String *SwigType_lstr(SwigType *ty, String_or_char *id = 0)

This is the same as SwigType_str() except that the result is generated from the type's lvalue (as generated from
SwigType_ltype).

String *SwigType_lcaststr(SwigType *ty, String_or_char *id = 0)

Generates a casting operation that converts from type ty to its lvalue. id is an optional name to include in the cast. For
example, if ty is "q(const).p.char" and id is "foo", this function produces the string "(char *) foo".

String *SwigType_rcaststr(SwigType *ty, String_or_char *id = 0)

Generates a casting operation that converts from a type's lvalue to a type equivalent to ty. id is an optional name to include
in the cast. For example, if ty is "q(const).p.char" and id is "foo", this function produces the string "(const
char *) foo".

String *SwigType_manglestr(SwigType *ty)

Generates a mangled string encoding of type ty. The mangled string only contains characters that are part of a valid C
identifier. The resulting string is used in various parts of SWIG, but is most commonly associated with type−descriptor
objects that appear in wrappers (e.g., SWIGTYPE_p_double).

32.9 Parameters

Several type−related functions involve parameter lists. These include functions and templates. Parameter list are represented as a
list of nodes with the following attributes:

"type" − Parameter type (required)
"name" − Parameter name (optional)
"value" − Initializer (optional)

Typically parameters are denoted in the source by using a typename of Parm * or ParmList *. To walk a parameter list,
simply use code like this:

Parm *parms;
Parm *p;
for (p = parms; p; p = nextSibling(p)) {
 SwigType *type = Getattr(p,"type");
 String *name = Getattr(p,"name");
 String *value = Getattr(p,"value");
 ...
}

Note: this code is exactly the same as what you would use to walk parse tree nodes.

An empty list of parameters is denoted by a NULL pointer.

Since parameter lists are fairly common, the following utility functions are provided to manipulate them:

SWIG−1.3 Documentation

32.8.5 Lvalues 549

Parm *CopyParm(Parm *p);

Copies a single parameter.
ParmList *CopyParmList(ParmList *p);

Copies an entire list of parameters.
int ParmList_len(ParmList *p);

Returns the number of parameters in a parameter list.
String *ParmList_str(ParmList *p);

Converts a parameter list into a C string. For example, produces a string like "(int *p, int n, double x);".
String *ParmList_protostr(ParmList *p);

The same as ParmList_str() except that parameter names are not included. Used to emit prototypes.
int ParmList_numrequired(ParmList *p);

Returns the number of required (non−optional) arguments in p.

32.10 Writing a Language Module

This section briefly outlines the steps needed to create a bare−bones language module. For more advanced techniques, you should
look at the implementation of existing modules. Since the code is relatively easy to read, this section describes the creation of a
minimal Python module. You should be able to extrapolate this to other languages.

32.10.1 Execution model

Code generation modules are defined by inheriting from the Language class, currently defined in the Source/Modules1.1
directory of SWIG. Starting from the parsing of command line options, all aspects of code generation are controlled by different
methods of the Language that must be defined by your module.

32.10.2 Starting out

To define a new language module, first create a minimal implementation using this example as a guide:

#include "swigmod.h"

#ifndef MACSWIG
#include "swigconfig.h"
#endif

class PYTHON : public Language {
public:

 virtual void main(int argc, char *argv[]) {
 printf("I'm the Python module.\n");
 }

 virtual int top(Node *n) {
 printf("Generating code.\n");
 return SWIG_OK;
 }

};

extern "C" Language *
swig_python(void) {
 return new PYTHON();
}

SWIG−1.3 Documentation

32.9 Parameters 550

The "swigmod.h" header file contains, among other things, the declaration of the Language base class and so you should include
it at the top of your language module's source file. Similarly, the "swigconfig.h" header file contains some other useful definitions
that you may need. Note that you should not include any header files that are installed with the target language. That is to say, the
implementation of the SWIG Python module shouldn't have any dependencies on the Python header files. The wrapper code
generated by SWIG will almost always depend on some language−specific C/C++ header files, but SWIG itself does not.

Give your language class a reasonable name, usually the same as the target language. By convention, these class names are all
uppercase (e.g. "PYTHON" for the Python language module) but this is not a requirement. This class will ultimately consist of a
number of overrides of the virtual functions declared in the Language base class, in addition to any language−specific member
functions and data you need. For now, just use the dummy implementations shown above.

The language module ends with a factory function, swig_python(), that simply returns a new instance of the language class.
As shown, it should be declared with the extern "C" storage qualifier so that it can be called from C code. It should also return
a pointer to the base class (Language) so that only the interface (and not the implementation) of your language module is
exposed to the rest of SWIG.

Save the code for your language module in a file named "python.cxx" and. place this file in the Source/Modules1.1
directory of the SWIG distribution. To ensure that your module is compiled into SWIG along with the other language modules,
modify the file Source/Modules1.1/Makefile.in to include the additional source files. Look for the lines that define the
SRCS and OBJS variables and add entries for your language. In addition, modify the file
Source/Modules1.1/swigmain.cxx with an additional command line option that activates the module. Read the
source−−−it's straightforward.

Next, at the top level of the SWIG distribution, re−run the autogen.sh script to regenerate the various build files:

$ sh autogen.sh

Next re−run configure to regenerate all of the Makefiles:

$./configure

Finally, rebuild SWIG with your module added:

$ make

Once it finishes compiling, try running SWIG with the command−line option that activates your module. For example, swig
−python foo.i. The messages from your new module should appear.

32.10.3 Command line options

When SWIG starts, the command line options are passed to your language module. This occurs before any other processing
occurs (preprocessing, parsing, etc.). To capture the command line options, simply use code similar to this:

void Language::main(int argc, char *argv[]) {
 for (int i = 1; i < argc; i++) {
 if (argv[i]) {
 if(strcmp(argv[i],"−interface") == 0) {
 if (argv[i+1]) {
 interface = NewString(argv[i+1]);
 Swig_mark_arg(i);
 Swig_mark_arg(i+1);
 i++;
 } else {
 Swig_arg_error();
 }
 } else if (strcmp(argv[i],"−globals") == 0) {
 if (argv[i+1]) {
 global_name = NewString(argv[i+1]);
 Swig_mark_arg(i);

SWIG−1.3 Documentation

32.10.2 Starting out 551

 Swig_mark_arg(i+1);
 i++;
 } else {
 Swig_arg_error();
 }
 } else if ((strcmp(argv[i],"−proxy") == 0)) {
 proxy_flag = 1;
 Swig_mark_arg(i);
 } else if (strcmp(argv[i],"−keyword") == 0) {
 use_kw = 1;
 Swig_mark_arg(i);
 } else if (strcmp(argv[i],"−help") == 0) {
 fputs(usage,stderr);
 }
 ...
 }
 }
}

The exact set of options depends on what you want to do in your module. Generally, you would use the options to change code
generation modes or to print diagnostic information.

If a module recognizes an option, it should always call Swig_mark_arg() to mark the option as valid. If you forget to do this,
SWIG will terminate with an unrecognized command line option error.

32.10.4 Configuration and preprocessing

In addition to looking at command line options, the main() method is responsible for some initial configuration of the SWIG
library and preprocessor. To do this, insert some code like this:

void main(int argc, char *argv[]) {
 ... command line options ...

 /* Set language−specific subdirectory in SWIG library */
 SWIG_library_directory("python");

 /* Set language−specific preprocessing symbol */
 Preprocessor_define("SWIGPYTHON 1", 0);

 /* Set language−specific configuration file */
 SWIG_config_file("python.swg");

 /* Set typemap language (historical) */
 SWIG_typemap_lang("python");
}

The above code does several things−−it registers the name of the language module with the core, it supplies some preprocessor
macro definitions for use in input files (so that they can determine the target language), and it registers a start−up file. In this case,
the file python.swg will be parsed before any part of the user−supplied input file.

Before proceeding any further, create a directory for your module in the SWIG library (The Lib directory). Now, create a
configuration file in the directory. For example, python.swg.

Just to review, your language module should now consist of two files−− an implementation file python.cxx and a
configuration file python.swg.

32.10.5 Entry point to code generation

SWIG is a multi−pass compiler. Once the main() method has been invoked, the language module does not execute again until
preprocessing, parsing, and a variety of semantic analysis passes have been performed. When the core is ready to start generating
wrappers, it invokes the top() method of your language class. The argument to top is a single parse tree node that corresponds

SWIG−1.3 Documentation

32.10.3 Command line options 552

to the top of the entire parse tree.

To get the code generation process started, the top() procedure needs to do several things:

Initialize the wrapper code output.•
Set the module name.•
Emit common initialization code.•
Emit code for all of the child nodes.•
Finalize the wrapper module and cleanup.•

An outline of top() might be as follows:

int Python::top(Node *n) {

 /* Get the module name */
 String *module = Getattr(n,"name");

 /* Get the output file name */
 String *outfile = Getattr(n,"outfile");

 /* Initialize I/O (see next section) */
 ...

 /* Output module initialization code */
 ...

 /* Emit code for children */
 Language::top(n);

 ...
 /* Cleanup files */
 ...

 return SWIG_OK;
}

32.10.6 Module I/O and wrapper skeleton

32.10.7 Low−level code generators

32.10.8 Configuration files

At the time of this writing, SWIG supports nearly a dozen languages, which means that for continued sanity in maintaining the
configuration files, the language modules need to follow some conventions. These are outlined here along with the admission that,
yes it is ok to violate these conventions in minor ways, as long as you know where to apply the proper kludge to keep the overall
system regular and running. Engineering is the art of compromise, see...

Much of the maintenance regularity depends on choosing a suitable nickname for your language module (and then using it in a
controlled way). Nicknames should be all lower case letters with an optional numeric suffix (no underscores, no dashes, no
spaces). Some examples are: foo, bar, qux99.

The numeric suffix variant, as in the last example, is somewhat tricky to work with because sometimes people expect to refer to
the language without this number but sometimes that number is extremely relevant (especially when it corresponds to language
implementation versions with incompatible interfaces). New language modules that unavoidably require a numeric suffix in their
nickname should include that number in all uses, or be prepared to kludge.

The nickname is used in four places:

usage transform

SWIG−1.3 Documentation

32.10.5 Entry point to code generation 553

"skip" tag (none)

Examples/ subdir name (none)

Examples/GIFPlot/ subdir name
capitalize (upcase first
letter)

Examples/test−suite/ subdir name (none)
As you can see, most usages are direct.

configure.in
This file is processed by

autoconf to generate the configure script. This is where you need to add shell script fragments and autoconf macros
to detect the presence of whatever development support your language module requires, typically directories where
headers and libraries can be found, and/or utility programs useful for integrating the generated wrapper code.

Use the AC_ARG_WITH, AC_MSG_CHECKING, AC_SUBST macros and so forth (see other languages for examples).
Avoid using the [and] character in shell script fragments. The variable names passed to AC_SUBST should begin with
the nickname, entirely upcased.

At the end of the new section is the place to put the aforementioned nickname kludges (should they be needed). See Perl5
and Php4 for examples of what to do. [If this is still unclear after you've read the code, ping me and I'll expand on this
further. −−ttn]

Makefile.in
Some of the variables AC_SUBSTitutued are essential to the support of your language module. Fashion these into a shell
script "test" clause and assign that to a skip tag using "−z" and "−o":

skip−qux99 = [−z "@QUX99INCLUDE@" −o −z "@QUX99LIBS"]
This means if those vars should ever be empty, qux99 support should be considered absent and so it would be a good
idea to skip actions that might rely on it.

Here is where you may also define an alias (but then you'll need to kludge −−− don't do this):

skip−qux = $(skip−qux99)
Lastly, you need to modify each of check−aliveness, check−examples, check−test−suite,
check−gifplot (all targets) and lib−languages (var). Use the nickname for these, not the alias. Note that you
can do this even before you have any tests or examples set up; the Makefile rules do some sanity checking and skip
around these kinds of problems.

Examples/Makefile.in
Nothing special here; see comments at top the of this file and look to the existing languages for examples.

Examples/qux99/check.list
Do cp ../python/check.list . and modify to taste. One subdir per line.

Examples/GIFPlot/Qux99/check.list
Do cp ../Python/check.list . and modify to taste. One subdir per line.

Lib/qux99/extra−install.list
If you add your language to the top−level Makefile.in var lib−languages, then make install will install all *.i
and *.swg files from the language−specific subdirectory of Lib. Use (optional) file extra−install.list in that
directory to name additional files to install (see ruby for example).

Runtime/Makefile.in
Add another make invocation to all, and a section for your language module.

Source/Modules1.1/Makefile.in
Add appropriate entries for vars OBJS and SRCS. That's it!

At some point it would be a good idea to use automake to handle some of these configuration tasks, but that point is now long
past. If you are interested in working on that, feel free to raise the issue in the context of a next−generation clean−slate SWIG.

SWIG−1.3 Documentation

32.10.8 Configuration files 554

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/

32.10.9 Runtime support

Discuss the kinds of functions typically needed for SWIG runtime support (e.g. SWIG_ConvertPtr() and
SWIG_NewPointerObj()) and the names of the SWIG files that implement those functions.

32.10.10 Standard library files

Discuss the standard library files that most language modules provide, e.g.

typemaps.i•
std_string.i•
std_vector.i•
stl.i•

32.10.11 Examples and test cases

Each of the language modules provides one or more examples. These examples are used to demonstrate different features of the
language module to SWIG end−users, but you'll find that they're useful during development and testing of your language module
as well. You can use examples from the existing SWIG language modules for inspiration.

Each example is self−contained and consists of (at least) a Makefile, a SWIG interface file for the example module, and a
script that demonstrates the functionality for that module. All of these files are stored in the same subdirectory, and that directory
should be nested under Examples/python. For example, the files for the Python "simple" example are found in
Examples/python/simple.

By default, all of the examples are built and run when the user types make check. To ensure that your examples are
automatically run during this process, see the section on configuration files.

32.10.12 Documentation

Don't forget to write end−user documentation for your language module. Currently, each language module has a dedicated chapter
(although this structure may change in the future). You shouldn't rehash things that are already covered in sufficient detail in the
SWIG Basics and SWIG and C++ chapters. There is no fixed format for what, exactly, you should document about your language
module, but you'll obviously want to cover issues that are unique to your language.

Some topics that you'll want to be sure to address include:

Command line options unique to your language module.•
Non−obvious mappings between C/C++ and scripting language concepts. For example, if your scripting language
provides a single floating point type, it should be no big surprise to find that C/C++ float and double types are
mapped to it. On the other hand, if your scripting language doesn't provide support for "classes" or something similar,
you'd want to discuss how C++ classes are handled.

•

How to compile the SWIG−generated wrapper code into shared libraries that can actually be used. For some languages,
there are well−defined procedures for doing this, but for others it's an ad hoc process. Provide as much detail as
appropriate, and links to other resources if available.

•

32.11 Typemaps

32.11.1 Proxy classes

32.12 Guide to parse tree nodes

This section describes the different parse tree nodes and their attributes.

SWIG−1.3 Documentation

32.10.9 Runtime support 555

cdecl

Describes general C declarations including variables, functions, and typedefs. A declaration is parsed as "storage T D" where
storage is a storage class, T is a base type, and D is a declarator.

"name" − Declarator name
"type" − Base type T
"decl" − Declarator type (abstract)
"storage" − Storage class (static, extern, typedef, etc.)
"parms" − Function parameters (if a function)
"code" − Function body code (if supplied)
"value" − Default value (if supplied)

constructor

C++ constructor declaration.

"name" − Name of constructor
"parms" − Parameters
"decl" − Declarator (function with parameters)
"code" − Function body code (if any)
"feature:new" − Set to indicate return of new object.

destructor

C++ destructor declaration.

"name" − Name of destructor
"code" − Function body code (if any)
"storage" − Storage class (set if virtual)
"value" − Default value (set if pure virtual).

access

C++ access change.

"kind" − public, protected, private

constant

Constant created by %constant or #define.

"name" − Name of constant.
"type" − Base type.
"value" − Value.
"storage" − Set to %constant
"feature:immutable" − Set to indicate read−only

class

C++ class definition or C structure definition.

"name" − Name of the class.
"kind" − Class kind ("struct", "union", "class")
"symtab" − Enclosing symbol table.
"tdname" − Typedef name. Use for typedef struct { ... } A.
"abstract" − Set if class has pure virtual methods.
"baselist" − List of base class names.
"storage" − Storage class (if any)
"unnamed" − Set if class is unnamed.

SWIG−1.3 Documentation

32.12 Guide to parse tree nodes 556

enum

Enumeration.

"name" − Name of the enum (if supplied).
"storage" − Storage class (if any)
"tdname" − Typedef name (typedef enum { ... } name).
"unnamed" − Set if enum is unnamed.

enumitem

Enumeration value.

"name" − Name of the enum value.
"type" − Type (integer or char)
"value" − Enum value (if given)
"feature:immutable" − Set to indicate read−only

namespace

C++ namespace.

"name" − Name of the namespace.
"symtab" − Symbol table for enclosed scope.
"unnamed" − Set if unnamed namespace
"alias" − Alias name. Set for namespace A = B;

using

C++ using directive.

"name" − Name of the object being referred to.
"uname" − Qualified name actually given to using.
"node" − Node being referenced.
"namespace" − Namespace name being reference (using namespace name)

classforward

A forward C++ class declaration.

"name" − Name of the class.
"kind" − Class kind ("union", "struct", "class")

insert

Code insertion directive. For example, %{ ... %} or %insert(section).

"code" − Inserted code
"section" − Section name ("header", "wrapper", etc.)

top

Top of the parse tree.

"module" − Module name

extend

%extend directive.

SWIG−1.3 Documentation

32.12 Guide to parse tree nodes 557

"name" − Module name
"symtab" − Symbol table of enclosed scope.

apply

%apply pattern { patternlist }.

"pattern" − Source pattern.
"symtab" − Symbol table of enclosed scope.

clear

%clear patternlist;

"firstChild" − Patterns to clear

include

%include directive.

"name" − Filename
"firstChild" − Children

import

%import directive.

"name" − Filename
"firstChild" − Children

module

%module directive.

"name" − Name of the module

typemap

%typemap directive.

"method" − Typemap method name.
"code" − Typemap code.
"kwargs" − Keyword arguments (if any)
"firstChild" − Typemap patterns

typemapcopy

%typemap directive with copy.

"method" − Typemap method name.
"pattern" − Typemap source pattern.
"firstChild" − Typemap patterns

typemapitem

%typemap pattern. Used with %apply, %clear, %typemap.

"pattern" − Typemap pattern (a parameter list)
"parms" − Typemap parameters.

SWIG−1.3 Documentation

32.12 Guide to parse tree nodes 558

types

%types directive.

"parms" − List of parameter types.

extern

extern "X" { ... } declaration.

"name" − Name "C", "Fortran", etc.

SWIG−1.3 Documentation

32.12 Guide to parse tree nodes 559

	Table of Contents
	SWIG-1.3 Development Documentation
	Sections
	SWIG Core Documentation
	Language Module Documentation
	Developer Documentation
	Documentation that has not yet been updated

	1 Preface
	1.1 Introduction
	1.2 Special Introduction for Version 1.3
	1.3 SWIG Versions
	1.4 SWIG resources
	1.5 Prerequisites
	1.6 Organization of this manual
	1.7 How to avoid reading the manual
	1.8 Backwards Compatibility
	1.9 Credits
	1.10 Bug reports

	2 Introduction
	2.1 What is SWIG?
	2.2 Why use SWIG?
	2.3 A SWIG example
	2.3.1 SWIG interface file
	2.3.2 The swig command
	2.3.3 Building a Perl5 module
	2.3.4 Building a Python module
	2.3.5 Shortcuts

	2.4 Supported C/C++ language features
	2.5 Non-intrusive interface building
	2.6 Incorporating SWIG into a build system
	2.7 Hands off code generation
	2.8 SWIG and freedom

	3 Getting started on Windows
	3.1 Installation on Windows
	3.1.1 Windows Executable

	3.2 SWIG Windows Examples
	3.2.1 Instructions for using the Examples with Visual Studio
	3.2.1.1 Python
	3.2.1.2 TCL
	3.2.1.3 Perl
	3.2.1.4 Java
	3.2.1.5 Ruby
	3.2.1.6 C#

	3.2.2 Instructions for using the Examples with other compilers

	3.3 SWIG on Cygwin and MinGW
	3.3.1 Building swig.exe on Windows
	3.3.1.1 Building swig.exe using MinGW and MSYS
	3.3.1.2 Building swig.exe using Cygwin
	3.3.1.3 Building swig.exe alternatives

	3.3.2 Running the examples on Windows using Cygwin

	3.4 Microsoft extensions and other Windows quirks

	4 Scripting Languages
	4.1 The two language view of the world
	4.2 How does a scripting language talk to C?
	4.2.1 Wrapper functions
	4.2.2 Variable linking
	4.2.3 Constants
	4.2.4 Structures and classes
	4.2.5 Proxy classes

	4.3 Building scripting language extensions
	4.3.1 Shared libraries and dynamic loading
	4.3.2 Linking with shared libraries
	4.3.3 Static linking

	5 SWIG Basics
	5.1 Running SWIG
	5.1.1 Input format
	5.1.2 SWIG Output
	5.1.3 Comments
	5.1.4 C Preprocessor
	5.1.5 SWIG Directives
	5.1.6 Parser Limitations

	5.2 Wrapping Simple C Declarations
	5.2.1 Basic Type Handling
	5.2.2 Global Variables
	5.2.3 Constants
	5.2.4 A brief word about const
	5.2.5 A cautionary tale of char *

	5.3 Pointers and complex objects
	5.3.1 Simple pointers
	5.3.2 Run time pointer type checking
	5.3.3 Derived types, structs, and classes
	5.3.4 Undefined datatypes
	5.3.5 Typedef

	5.4 Other Practicalities
	5.4.1 Passing structures by value
	5.4.2 Return by value
	5.4.3 Linking to structure variables
	5.4.4 Linking to char *
	5.4.5 Arrays
	5.4.6 Creating read-only variables
	5.4.7 Renaming and ignoring declarations
	5.4.8 Default/optional arguments
	5.4.9 Pointers to functions and callbacks

	5.5 Structures and unions
	5.5.1 Typedef and structures
	5.5.2 Character strings and structures
	5.5.3 Array members
	5.5.4 Structure data members
	5.5.5 C constructors and destructors
	5.5.6 Adding member functions to C structures
	5.5.7 Nested structures
	5.5.8 Other things to note about structure wrapping

	5.6 Code Insertion
	5.6.1 The output of SWIG
	5.6.2 Code insertion blocks
	5.6.3 Inlined code blocks
	5.6.4 Initialization blocks

	5.7 An Interface Building Strategy
	5.7.1 Preparing a C program for SWIG
	5.7.2 The SWIG interface file
	5.7.3 Why use separate interface files?
	5.7.4 Getting the right header files
	5.7.5 What to do with main()

	6 SWIG and C++
	6.1 Comments on C++ Wrapping
	6.2 Approach
	6.3 Supported C++ features
	6.4 Command line options and compilation
	6.5 Simple C++ wrapping
	6.5.1 Constructors and destructors
	6.5.2 Default constructors, copy constructors and implicit destructors
	6.5.3 When constructor wrappers aren't created
	6.5.4 Copy constructors
	6.5.5 Member functions
	6.5.6 Static members
	6.5.7 Member data

	6.6 Default arguments
	6.7 Protection
	6.8 Enums and constants
	6.9 Friends
	6.10 References and pointers
	6.11 Pass and return by value
	6.12 Inheritance
	6.13 A brief discussion of multiple inheritance, pointers, and type checking
	6.14 Renaming
	6.15 Wrapping Overloaded Functions and Methods
	6.15.1 Dispatch function generation
	6.15.2 Ambiguity in Overloading
	6.15.3 Ambiguity resolution and renaming
	6.15.4 Comments on overloading

	6.16 Wrapping overloaded operators
	6.17 Class extension
	6.18 Templates
	6.19 Namespaces
	6.20 Exception specifications
	6.21 Exception handling with %catches
	6.22 Pointers to Members
	6.23 Smart pointers and operator->()
	6.24 Using declarations and inheritance
	6.25 Partial class definitions
	6.26 A brief rant about const-correctness
	6.27 Proxy classes
	6.27.1 Construction of proxy classes
	6.27.2 Resource management in proxies
	6.27.3 Language specific details

	6.28 Where to go for more information

	7 Preprocessing
	7.1 File inclusion
	7.2 File imports
	7.3 Conditional Compilation
	7.4 Macro Expansion
	7.5 SWIG Macros
	7.6 C99 and GNU Extensions
	7.7 Preprocessing and %{ ... %} blocks
	7.8 Preprocessing and { ... }
	7.9 Viewing preprocessor output
	7.10 The #error and #warning directives

	8 SWIG library
	8.1 The %include directive and library search path
	8.2 C Arrays and Pointers
	8.2.1 cpointer.i
	8.2.2 carrays.i
	8.2.3 cmalloc.i
	8.2.4 cdata.i

	8.3 C String Handling
	8.3.1 Default string handling
	8.3.2 Passing binary data
	8.3.3 Using %newobject to release memory
	8.3.4 cstring.i

	8.4 STL/C++ Library
	8.4.1 std_string.i
	8.4.2 std_vector.i
	8.4.3 STL exceptions

	8.5 Utility Libraries
	8.5.1 exception.i

	9 Argument Handling
	9.1 The typemaps.i library
	9.1.1 Introduction
	9.1.2 Input parameters
	9.1.3 Output parameters
	9.1.4 Input/Output parameters
	9.1.5 Using different names

	9.2 Applying constraints to input values
	9.2.1 Simple constraint example
	9.2.2 Constraint methods
	9.2.3 Applying constraints to new datatypes

	10 Typemaps
	10.1 Introduction
	10.1.1 Type conversion
	10.1.2 Typemaps
	10.1.3 Pattern matching
	10.1.4 Reusing typemaps
	10.1.5 What can be done with typemaps?
	10.1.6 What can't be done with typemaps?
	10.1.7 The rest of this chapter

	10.2 Typemap specifications
	10.2.1 Defining a typemap
	10.2.2 Typemap scope
	10.2.3 Copying a typemap
	10.2.4 Deleting a typemap
	10.2.5 Placement of typemaps

	10.3 Pattern matching rules
	10.3.1 Basic matching rules
	10.3.2 Typedef reductions
	10.3.3 Default typemaps
	10.3.4 Mixed default typemaps
	10.3.5 Multi-arguments typemaps

	10.4 Code generation rules
	10.4.1 Scope
	10.4.2 Declaring new local variables
	10.4.3 Special variables

	10.5 Common typemap methods
	10.5.1 "in" typemap
	10.5.2 "typecheck" typemap
	10.5.3 "out" typemap
	10.5.4 "arginit" typemap
	10.5.5 "default" typemap
	10.5.6 "check" typemap
	10.5.7 "argout" typemap
	10.5.8 "freearg" typemap
	10.5.9 "newfree" typemap
	10.5.10 "memberin" typemap
	10.5.11 "varin" typemap
	10.5.12 "varout" typemap
	10.5.13 "throws" typemap

	10.6 Some typemap examples
	10.6.1 Typemaps for arrays
	10.6.2 Implementing constraints with typemaps

	10.7 Typemaps for multiple languages
	10.8 Multi-argument typemaps
	10.9 The run-time type checker
	10.9.1 Implementation
	10.9.2 Usage

	10.10 Typemaps and overloading
	10.11 More about %apply and %clear
	10.12 Reducing wrapper code size
	10.13 Passing data between typemaps
	10.14 Where to go for more information?

	11 Customization Features
	11.1 Exception handling with %exception
	11.1.1 Handling exceptions in C code
	11.1.2 Exception handling with longjmp()
	11.1.3 Handling C++ exceptions
	11.1.4 Exception handlers for variables
	11.1.5 Defining different exception handlers
	11.1.6 Using The SWIG exception library

	11.2 Object ownership and %newobject
	11.3 Features and the %feature directive
	11.3.1 Feature flags
	11.3.2 Clearing features
	11.3.3 Features and default arguments
	11.3.4 Feature example

	12 Contracts
	12.1 The %contract directive
	12.2 %contract and classes
	12.3 Constant aggregation and %aggregate_check
	12.4 Notes

	13 Variable Length Arguments
	13.1 Introduction
	13.2 The Problem
	13.3 Default varargs support
	13.4 Argument replacement using %varargs
	13.5 Varargs and typemaps
	13.6 Varargs wrapping with libffi
	13.7 Wrapping of va_list
	13.8 C++ Issues
	13.9 Discussion

	14 Warning Messages
	14.1 Introduction
	14.2 Warning message suppression
	14.3 Enabling additional warnings
	14.4 Issuing a warning message
	14.5 Commentary
	14.6 Warnings as errors
	14.7 Message output format
	14.8 Warning number reference
	14.8.1 Deprecated features (100-199)
	14.8.2 Preprocessor (200-299)
	14.8.3 C/C++ Parser (300-399)
	14.8.4 Types and typemaps (400-499)
	14.8.5 Code generation (500-599)
	14.8.6 Language module specific (800-899)
	14.8.7 User defined (900-999)

	14.9 History

	15 Working with Modules
	15.1 The SWIG runtime code
	15.2 External access to the runtime
	15.3 A word of caution about static libraries
	15.4 References
	15.5 Reducing the wrapper file size

	16 SWIG and Allegro Common Lisp
	16.1 Basics
	16.1.1 Running Swig
	16.1.2 Command Line Options
	16.1.3 Inserting user code into generated files

	16.2 Wrapping Overview
	16.2.1 Function Wrapping
	16.2.2 Foreign Wrappers
	16.2.3 FFI Wrappers
	16.2.4 Non-overloaded Defuns
	16.2.5 Overloaded Defuns
	16.2.6 What about constant and variable access?
	16.2.7 Object Wrapping

	16.3 Wrapping Details
	16.3.1 Namespaces
	16.3.2 Constants
	16.3.3 Variables
	16.3.4 Enumerations
	16.3.5 Arrays
	16.3.6 Classes and Structs and Unions (oh my!)
	16.3.6.1 CLOS wrapping of
	16.3.6.2 CLOS Inheritance
	16.3.6.3 Member fields and functions
	16.3.6.4 Why not directly access C++ classes using foreign types?

	16.3.7 Templates
	16.3.7.1 Generating wrapper code for templates
	16.3.7.2 Implicit Template instantiation

	16.3.8 Typedef, Templates, and Synonym Types
	16.3.8.1 Choosing a primary type

	16.3.9 Function overloading/Parameter defaulting
	16.3.10 Operator wrapping and Operator overloading
	16.3.11 Varargs
	16.3.12 C++ Exceptions
	16.3.13 Pass by value, pass by reference

	16.4 Typemaps
	16.4.1 Code Generation in the C++ Wrapper
	16.4.1.1 IN Typemap
	16.4.1.2 OUT Typemap
	16.4.1.3 CTYPE Typemap

	16.4.2 Code generation in Lisp wrappers
	16.4.2.1 LIN Typemap
	16.4.2.2 LOUT Typemap
	16.4.2.3 FFITYPE Typemap
	16.4.2.4 LISPTYPE Typemap
	16.4.2.5 LISPCLASS Typemap

	16.4.3 Modifying SWIG behavior using typemaps

	16.5 Identifier Converter functions
	16.5.1 Creating symbols in the lisp environment
	16.5.2 Existing identifier-converter functions
	16.5.2.1 identifier-convert-null
	16.5.2.2 identifier-convert-lispify
	16.5.2.3 Default identifier to symbol conversions

	16.5.3 Defining your own identifier-converter
	16.5.4 Instructing SWIG to use a particular identifier-converter

	17 SWIG and C#
	17.1 Introduction
	17.2 Differences to the Java module
	17.3 C# Exceptions
	17.3.1 C# exception example using "check" typemap
	17.3.2 C# exception example using %exception
	17.3.3 C# exception example using exception specifications
	17.3.4 Custom C# ApplicationException example

	17.4 C# Typemap examples
	17.4.1 Memory management when returning references to member variables
	17.4.2 Memory management for objects passed to the C++ layer

	18 SWIG and Chicken
	18.1 Preliminaries
	18.1.1 Running SWIG in C mode
	18.1.2 Running SWIG in C++ mode

	18.2 Code Generation
	18.2.1 Naming Conventions
	18.2.2 Modules
	18.2.3 Constants and Variables
	18.2.4 Functions
	18.2.5 Exceptions

	18.3 TinyCLOS
	18.4 Linkage
	18.4.1 Static binary or shared library linked at compile time
	18.4.2 Building chicken extension libraries
	18.4.3 Linking multiple SWIG modules with TinyCLOS

	18.5 Typemaps
	18.6 Pointers
	18.6.1 Garbage collection

	18.7 Unsupported features and known problems

	19 SWIG and Guile
	19.1 Meaning of "Module"
	19.2 Using the SCM or GH Guile API
	19.3 Linkage
	19.3.1 Simple Linkage
	19.3.2 Passive Linkage
	19.3.3 Native Guile Module Linkage
	19.3.4 Old Auto-Loading Guile Module Linkage
	19.3.5 Hobbit4D Linkage

	19.4 Underscore Folding
	19.5 Typemaps
	19.6 Representation of pointers as smobs
	19.6.1 GH Smobs
	19.6.2 SCM Smobs
	19.6.3 Garbage Collection

	19.7 Exception Handling
	19.8 Procedure documentation
	19.9 Procedures with setters
	19.10 GOOPS Proxy Classes
	19.10.1 Naming Issues
	19.10.2 Linking

	20 SWIG and Java
	20.1 Overview
	20.2 Preliminaries
	20.2.1 Running SWIG
	20.2.2 Additional Commandline Options
	20.2.3 Getting the right header files
	20.2.4 Compiling a dynamic module
	20.2.5 Using your module
	20.2.6 Dynamic linking problems
	20.2.7 Compilation problems and compiling with C++
	20.2.8 Building on Windows
	20.2.8.1 Running SWIG from Visual Studio
	20.2.8.2 Using NMAKE

	20.3 A tour of basic C/C++ wrapping
	20.3.1 Modules, packages and generated Java classes
	20.3.2 Functions
	20.3.3 Global variables
	20.3.4 Constants
	20.3.5 Enumerations
	20.3.5.1 Anonymous enums
	20.3.5.2 Typesafe enums
	20.3.5.3 Proper Java enums
	20.3.5.4 Type unsafe enums
	20.3.5.5 Simple enums

	20.3.6 Pointers
	20.3.7 Structures
	20.3.8 C++ classes
	20.3.9 C++ inheritance
	20.3.10 Pointers, references, arrays and pass by value
	20.3.10.1 Null pointers

	20.3.11 C++ overloaded functions
	20.3.12 C++ default arguments
	20.3.13 C++ namespaces
	20.3.14 C++ templates
	20.3.15 C++ Smart Pointers

	20.4 Further details on the generated Java classes
	20.4.1 The intermediary JNI class
	20.4.1.1 The intermediary JNI class pragmas

	20.4.2 The Java module class
	20.4.2.1 The Java module class pragmas

	20.4.3 Java proxy classes
	20.4.3.1 Memory management
	20.4.3.2 Inheritance
	20.4.3.3 Proxy classes and garbage collection

	20.4.4 Type wrapper classes
	20.4.5 Enum classes
	20.4.5.1 Typesafe enum classes
	20.4.5.2 Proper Java enum classes
	20.4.5.3 Type unsafe enum classes

	20.5 Cross language polymorphism using directors (experimental)
	20.5.1 Enabling directors
	20.5.2 Director classes
	20.5.3 Overhead and code bloat
	20.5.4 Simple directors example

	20.6 Common customization features
	20.6.1 C/C++ helper functions
	20.6.2 Class extension with %extend
	20.6.3 Exception handling with %exception and %javaexception
	20.6.4 Method access with %javamethodmodifiers

	20.7 Tips and techniques
	20.7.1 Input and output parameters using primitive pointers and references
	20.7.2 Simple pointers
	20.7.3 Wrapping C arrays with Java arrays
	20.7.4 Unbounded C Arrays

	20.8 Java typemaps
	20.8.1 Default primitive type mappings
	20.8.2 Sixty four bit JVMs
	20.8.3 What is a typemap?
	20.8.4 Typemaps for mapping C/C++ types to Java types
	20.8.5 Java typemap attributes
	20.8.6 Java special variables
	20.8.7 Typemaps for both C and C++ compilation
	20.8.8 Java code typemaps
	20.8.9 Director specific typemaps

	20.9 Typemap Examples
	20.9.1 Simpler Java enums for enums without initializers
	20.9.2 Handling C++ exception specifications as Java exceptions
	20.9.3 NaN Exception - exception handling for a particular type
	20.9.4 Converting Java String arrays to char **
	20.9.5 Expanding a Java object to multiple arguments
	20.9.6 Using typemaps to return arguments
	20.9.7 Adding Java downcasts to polymorphic return types
	20.9.8 Adding an equals method to the Java classes
	20.9.9 Void pointers and a common Java base class
	20.9.10 Struct pointer to pointer
	20.9.11 Memory management when returning references to member variables
	20.9.12 Memory management for objects passed to the C++ layer

	20.10 Living with Java Directors
	20.11 Odds and ends
	20.11.1 JavaDoc comments
	20.11.2 Functional interface without proxy classes
	20.11.3 Using your own JNI functions
	20.11.4 Performance concerns and hints

	20.12 Examples

	21 SWIG and Common Lisp
	21.1 Allegro Common Lisp
	21.2 CLISP
	21.2.1 Additional Commandline Options
	21.2.2 Details on CLISP bindings

	21.3 UFFI

	22 SWIG and Lua
	22.1 Preliminaries
	22.2 Running SWIG
	22.2.1 Compiling and Linking and Interpreter
	22.2.2 Compiling a dynamic module
	22.2.3 Using your module

	22.3 A tour of basic C/C++ wrapping
	22.3.1 Modules
	22.3.2 Functions
	22.3.3 Global variables
	22.3.4 Constants and enums
	22.3.5 Pointers
	22.3.6 Structures
	22.3.7 C++ classes
	22.3.8 C++ inheritance
	22.3.9 Pointers, references, values, and arrays
	22.3.10 C++ overloaded functions
	22.3.11 C++ operators
	22.3.12 Class extension with %extend
	22.3.13 C++ templates
	22.3.14 C++ Smart Pointers

	22.4 Details on the Lua binding
	22.4.1 Binding global data into the module.
	22.4.2 Userdata and Metatables
	22.4.3 Memory management

	23 SWIG and Modula-3
	23.1 Overview
	23.1.1 Why not scripting ?
	23.1.2 Why Modula-3 ?
	23.1.3 Why C / C++ ?
	23.1.4 Why SWIG ?

	23.2 Conception
	23.2.1 Interfaces to C libraries
	23.2.2 Interfaces to C++ libraries

	23.3 Preliminaries
	23.3.1 Compilers
	23.3.2 Additional Commandline Options

	23.4 Modula-3 typemaps
	23.4.1 Inputs and outputs
	23.4.2 Subranges, Enumerations, Sets
	23.4.3 Objects
	23.4.4 Imports
	23.4.5 Exceptions
	23.4.6 Example

	23.5 More hints to the generator
	23.5.1 Features
	23.5.2 Pragmas

	23.6 Remarks

	24 SWIG and MzScheme
	24.1 Creating native MzScheme structures

	25 SWIG and Ocaml
	25.1 Preliminaries
	25.1.1 Running SWIG
	25.1.2 Compiling the code
	25.1.3 The camlp4 module
	25.1.4 Using your module
	25.1.5 Compilation problems and compiling with C++

	25.2 The low-level Ocaml/C interface
	25.2.1 The generated module
	25.2.2 Enums
	25.2.2.1 Enum typing in Ocaml

	25.2.3 Arrays
	25.2.3.1 Simple types of bounded arrays
	25.2.3.2 Complex and unbounded arrays
	25.2.3.3 Using an object
	25.2.3.4 Example typemap for a function taking float * and int

	25.2.4 C++ Classes
	25.2.4.1 STL vector and string Example
	25.2.4.2 C++ Class Example
	25.2.4.3 Compiling the example
	25.2.4.4 Sample Session

	25.2.5 Director Classes
	25.2.5.1 Director Introduction
	25.2.5.2 Overriding Methods in Ocaml
	25.2.5.3 Director Usage Example
	25.2.5.4 Creating director objects
	25.2.5.5 Typemaps for directors, directorin, directorout, directorargout
	25.2.5.6 directorin typemap
	25.2.5.7 directorout typemap
	25.2.5.8 directorargout typemap

	25.2.6 Exceptions

	26 SWIG and Perl5
	26.1 Overview
	26.2 Preliminaries
	26.2.1 Getting the right header files
	26.2.2 Compiling a dynamic module
	26.2.3 Building a dynamic module with MakeMaker
	26.2.4 Building a static version of Perl
	26.2.5 Using the module
	26.2.6 Compilation problems and compiling with C++
	26.2.7 Compiling for 64-bit platforms

	26.3 Building Perl Extensions under Windows
	26.3.1 Running SWIG from Developer Studio
	26.3.2 Using other compilers

	26.4 The low-level interface
	26.4.1 Functions
	26.4.2 Global variables
	26.4.3 Constants
	26.4.4 Pointers
	26.4.5 Structures
	26.4.6 C++ classes
	26.4.7 C++ classes and type-checking
	26.4.8 C++ overloaded functions
	26.4.9 Operators
	26.4.10 Modules and packages

	26.5 Input and output parameters
	26.6 Exception handling
	26.7 Remapping datatypes with typemaps
	26.7.1 A simple typemap example
	26.7.2 Perl5 typemaps
	26.7.3 Typemap variables
	26.7.4 Useful functions

	26.8 Typemap Examples
	26.8.1 Converting a Perl5 array to a char **
	26.8.2 Return values
	26.8.3 Returning values from arguments
	26.8.4 Accessing array structure members
	26.8.5 Turning Perl references into C pointers
	26.8.6 Pointer handling

	26.9 Proxy classes
	26.9.1 Preliminaries
	26.9.2 Structure and class wrappers
	26.9.3 Object Ownership
	26.9.4 Nested Objects
	26.9.5 Proxy Functions
	26.9.6 Inheritance
	26.9.7 Modifying the proxy methods

	26.10 Adding additional Perl code

	27 SWIG and PHP4
	27.1 Generating PHP4 Extensions
	27.1.1 Building a loadable extension
	27.1.2 Building extensions into PHP
	27.1.3 Using PHP4 Extensions

	27.2 Basic PHP4 interface
	27.2.1 Constants
	27.2.2 Global Variables
	27.2.3 Functions
	27.2.4 Overloading
	27.2.5 Pointers and References
	27.2.6 Structures and C++ classes
	27.2.6.1 Using -noproxy
	27.2.6.2 Constructors and Destructors
	27.2.6.3 Static Member Variables
	27.2.6.4 Static Member Functions

	27.2.7 PHP4 Pragmas, Startup and Shutdown code

	28 SWIG and Pike
	28.1 Preliminaries
	28.1.1 Running SWIG
	28.1.2 Getting the right header files
	28.1.3 Using your module

	28.2 Basic C/C++ Mapping
	28.2.1 Modules
	28.2.2 Functions
	28.2.3 Global variables
	28.2.4 Constants and enumerated types
	28.2.5 Constructors and Destructors
	28.2.6 Static Members

	29 SWIG and Python
	29.1 Overview
	29.2 Preliminaries
	29.2.1 Running SWIG
	29.2.2 Getting the right header files
	29.2.3 Compiling a dynamic module
	29.2.4 Using distutils
	29.2.5 Static linking
	29.2.6 Using your module
	29.2.7 Compilation of C++ extensions
	29.2.8 Compiling for 64-bit platforms
	29.2.9 Building Python Extensions under Windows

	29.3 A tour of basic C/C++ wrapping
	29.3.1 Modules
	29.3.2 Functions
	29.3.3 Global variables
	29.3.4 Constants and enums
	29.3.5 Pointers
	29.3.6 Structures
	29.3.7 C++ classes
	29.3.8 C++ inheritance
	29.3.9 Pointers, references, values, and arrays
	29.3.10 C++ overloaded functions
	29.3.11 C++ operators
	29.3.12 C++ namespaces
	29.3.13 C++ templates
	29.3.14 C++ Smart Pointers
	29.3.15 C++ Reference Counted Objects (ref/unref)

	29.4 Further details on the Python class interface
	29.4.1 Proxy classes
	29.4.2 Memory management
	29.4.3 Python 2.2 and classic classes

	29.5 Cross language polymorphism
	29.5.1 Enabling directors
	29.5.2 Director classes
	29.5.3 Ownership and object destruction
	29.5.4 Exception unrolling
	29.5.5 Overhead and code bloat
	29.5.6 Typemaps
	29.5.7 Miscellaneous

	29.6 Common customization features
	29.6.1 C/C++ helper functions
	29.6.2 Adding additional Python code
	29.6.3 Class extension with %extend
	29.6.4 Exception handling with %exception

	29.7 Tips and techniques
	29.7.1 Input and output parameters
	29.7.2 Simple pointers
	29.7.3 Unbounded C Arrays
	29.7.4 String handling
	29.7.5 Arrays
	29.7.6 String arrays
	29.7.7 STL wrappers

	29.8 Typemaps
	29.8.1 What is a typemap?
	29.8.2 Python typemaps
	29.8.3 Typemap variables
	29.8.4 Useful Python Functions

	29.9 Typemap Examples
	29.9.1 Converting Python list to a char **
	29.9.2 Expanding a Python object into multiple arguments
	29.9.3 Using typemaps to return arguments
	29.9.4 Mapping Python tuples into small arrays
	29.9.5 Mapping sequences to C arrays
	29.9.6 Pointer handling

	29.10 Docstring Features
	29.10.1 Module docstring
	29.10.2 %feature("autodoc")
	29.10.2.1 %feature("autodoc", "0")
	29.10.2.2 %feature("autodoc", "1")
	29.10.2.3 %feature("autodoc", "docstring")

	29.10.3 %feature("docstring")

	29.11 Python Packages

	30 SWIG and Ruby
	30.1 Preliminaries
	30.1.1 Running SWIG
	30.1.2 Getting the right header files
	30.1.3 Compiling a dynamic module
	30.1.4 Using your module
	30.1.5 Static linking
	30.1.6 Compilation of C++ extensions

	30.2 Building Ruby Extensions under Windows 95/NT
	30.2.1 Running SWIG from Developer Studio

	30.3 The Ruby-to-C/C++ Mapping
	30.3.1 Modules
	30.3.2 Functions
	30.3.3 Variable Linking
	30.3.4 Constants
	30.3.5 Pointers
	30.3.6 Structures
	30.3.7 C++ classes
	30.3.8 C++ Inheritance
	30.3.9 C++ Overloaded Functions
	30.3.10 C++ Operators
	30.3.11 C++ namespaces
	30.3.12 C++ templates
	30.3.13 C++ Smart Pointers
	30.3.14 Cross-Language Polymorphism
	30.3.14.1 Exception Unrolling

	30.4 Naming
	30.4.1 Defining Aliases
	30.4.2 Predicate Methods
	30.4.3 Bang Methods
	30.4.4 Getters and Setters

	30.5 Input and output parameters
	30.6 Exception handling
	30.6.1 Using the %exception directive
	30.6.2 Raising exceptions
	30.6.3 Exception classes

	30.7 Typemaps
	30.7.1 What is a typemap?
	30.7.2 Ruby typemaps
	30.7.3 Typemap variables
	30.7.4 Useful Functions
	30.7.4.1 C Datatypes to Ruby Objects
	30.7.4.2 Ruby Objects to C Datatypes
	30.7.4.3 Macros for VALUE
	30.7.4.4 Exceptions
	30.7.4.5 Iterators

	30.7.5 Typemap Examples
	30.7.6 Converting a Ruby array to a char **
	30.7.7 Collecting arguments in a hash
	30.7.8 Pointer handling
	30.7.8.1 Ruby Datatype Wrapping

	30.7.9 Example: STL Vector to Ruby Array

	30.8 Advanced Topics
	30.8.1 Operator overloading
	30.8.2 Creating Multi-Module Packages
	30.8.3 Specifying Mixin Modules

	30.9 Memory Management
	30.9.1 Mark and Sweep Garbage Collector
	30.9.2 Object Ownership
	30.9.3 Object Tracking
	30.9.4 Mark Functions
	30.9.5 Free Functions

	31 SWIG and Tcl
	31.1 Preliminaries
	31.1.1 Getting the right header files
	31.1.2 Compiling a dynamic module
	31.1.3 Static linking
	31.1.4 Using your module
	31.1.5 Compilation of C++ extensions
	31.1.6 Compiling for 64-bit platforms
	31.1.7 Setting a package prefix
	31.1.8 Using namespaces

	31.2 Building Tcl/Tk Extensions under Windows 95/NT
	31.2.1 Running SWIG from Developer Studio
	31.2.2 Using NMAKE

	31.3 A tour of basic C/C++ wrapping
	31.3.1 Modules
	31.3.2 Functions
	31.3.3 Global variables
	31.3.4 Constants and enums
	31.3.5 Pointers
	31.3.6 Structures
	31.3.7 C++ classes
	31.3.8 C++ inheritance
	31.3.9 Pointers, references, values, and arrays
	31.3.10 C++ overloaded functions
	31.3.11 C++ operators
	31.3.12 C++ namespaces
	31.3.13 C++ templates
	31.3.14 C++ Smart Pointers

	31.4 Further details on the Tcl class interface
	31.4.1 Proxy classes
	31.4.2 Memory management

	31.5 Input and output parameters
	31.6 Exception handling
	31.7 Typemaps
	31.7.1 What is a typemap?
	31.7.2 Tcl typemaps
	31.7.3 Typemap variables
	31.7.4 Converting a Tcl list to a char **
	31.7.5 Returning values in arguments
	31.7.6 Useful functions
	31.7.7 Standard typemaps
	31.7.8 Pointer handling

	31.8 Turning a SWIG module into a Tcl Package.
	31.9 Building new kinds of Tcl interfaces (in Tcl)
	31.9.1 Proxy classes

	32 Extending SWIG
	32.1 Introduction
	32.2 Prerequisites
	32.3 The Big Picture
	32.4 Execution Model
	32.4.1 Preprocessing
	32.4.2 Parsing
	32.4.3 Parse Trees
	32.4.4 Attribute namespaces
	32.4.5 Symbol Tables
	32.4.6 The %feature directive
	32.4.7 Code Generation
	32.4.8 SWIG and XML

	32.5 Primitive Data Structures
	32.5.1 Strings
	32.5.2 Hashes
	32.5.3 Lists
	32.5.4 Common operations
	32.5.5 Iterating over Lists and Hashes
	32.5.6 I/O

	32.6 Navigating and manipulating parse trees
	32.7 Working with attributes
	32.8 Type system
	32.8.1 String encoding of types
	32.8.2 Type construction
	32.8.3 Type tests
	32.8.4 Typedef and inheritance
	32.8.5 Lvalues
	32.8.6 Output functions

	32.9 Parameters
	32.10 Writing a Language Module
	32.10.1 Execution model
	32.10.2 Starting out
	32.10.3 Command line options
	32.10.4 Configuration and preprocessing
	32.10.5 Entry point to code generation
	32.10.6 Module I/O and wrapper skeleton
	32.10.7 Low-level code generators
	32.10.8 Configuration files
	32.10.9 Runtime support
	32.10.10 Standard library files
	32.10.11 Examples and test cases
	32.10.12 Documentation

	32.11 Typemaps
	32.11.1 Proxy classes

	32.12 Guide to parse tree nodes

