SWIG-1.3 Documentation

SWIG-1.3 Documentation

Table of Contents

SWIG=1.3 DevelopmentDOCUMENEALION.iiii ettt e e e e e e e e ettt ettt e eeeeeaesaa s aateeteeeeeaaeaeaaaasnbbsbeeeeeaaeeeeassaansssbeeseeeeaaaeeesaaannnsssneees 1
ST <03 1) TR

A X O] (=YD e Te1 1 a1 a1 =1 110 o RO 1

I TaTo [WF=ToT= 1Yl o (] ST B ToTolU 0 0 =101 =i o) o RSP TRTPRRR 1
DSV Le [o] L=y (B Lo Yot U] Ty 0] 7= LA L0 o H U ETRT R PPR 1
Documentatiorthathasnot yet DeenUDAALEM.............uuiiiiiiiiiee e e e e r e e e e e e e e s e ennneeeeeees 2

o (Y = Vo] = TP RPORRY
I L0 (0T 18 T T o PR
1.2 SpeciallntroductioNfOr VEISIONL. 3. .o ittt e ettt e e e e e e e e e ettt e e eaaaeeaesansbbbe e et eeeaeaeeesaaannntbsseeeeeaaaaeeaann 3
L3 SWVIG VEISIONS. .. e eeeetti e e ettt e e e ettt e e e e et ettt e e e e e ettt eaeees e s baa e eeeeeasban s ee s e e s ban e sees e s s banaeesessaban e eessebannaeeessssannsaeeeesssnnnneens.
YN (R (=TS0 U | (o= TSP PORRPPUPRUPRTRRY

RN o (Y (=10 (WIS =P R PP
1.6 OrganizationDf thiS MANUAL..........c..eeieeeei et e et e e e e e e e e ettt ettt e e ee e e e e e aanaenbebeeeeeaaaeeeseaannbneeeeeees 4
1.7 How to avoid readingtie MANUAL...........uuueiiiiiieiee ettt e e ettt et e e e e e e et e s e ebebe et eeaeaeeeesaaannabbseeeeeeaaeeeeseaannneneeees 4
1.8 BaCKWArdSCOMIPALIDIIEY eee ittt e ettt et e e e e e s et be ettt e e e e e e e e e e e e nnbebb e et e et e e e e e e e e nnnnnrnbrreeeaaeens L
e T O 1Yo L1 £SO PUPRSRPN

0 TN o T =] oo TP UURPTRPPP

A AT YA 1T 1AV [R R TSR PRPPRPRRRY
AR AT\ A (e V0] o= T PEURPURRRRTPPRRPIS
I YLV [101 (=T 0 7= (o< 11 UORRRRPPRIN Y
2.3.2THE SWIO COMIMAI. ...ttt e e e e e ettt et e e e e e e e e e te bttt e e et e e e e e e s aaasneebebe et e e e aeeeeaesannsbsbeeeeeeeaeaeeesaasnnnbbnbneeeeaaaens &
ARSI] =T U T o T o Ir= W =Y d 5T 0 T o LU][O PERRRRT 8
2.3.4BUilding 8 PYthONMOAUIE.......ciiiiiiiiei ittt e e e ettt et e e e e e e e e e s abb e be et e e e eaeeeeesaannnnbbnaeneeaaaaaeaannn 8
RS TS] T0] (o] 1| =TT
A BTN o] o ol n(=Te O 0% P T a1 0Tz (o = (e LU (= PP PEPRRRR 9
2.5 NoN=iNtruSIVEINTEIfACEDUIITING. ... veeeeeiieeee ettt e e e e e e e e ettt e e e e e e e e s et st beaeeeeeaaeeeesaannsbsbneeeaaaaens 10
2.6 IncorporatingSWIG int0 @ DU SYSTEM.....ceiiiiii ittt e e e e e e e ettt e e e e e e e e e s aa e nnnbabeeeeeeaaeeeaeeannenneees 10

AN A = = VaTo o) i Moo o [=To =Y a1y ir- Ao) o IO U PRSPPI 1
R IV A LRz aTe L (=T=T0 (0] o' T 1

R Tt aTo ISy r= T C=To o) INYAY AT T 01RO T RSP PPPPRRR 1
I a1y =Y | oo T T] AT 0 [0y 1:

I I AT T T o A (=Y o U= o] T 12

3.2 SWIG WINAOWSEXAMPIES.eeeeeeeeeeee ettt e e e ettt et et e e e e e e e e et te ettt e e e e e e s aaannstbeteeeeeeaeeeesesannnbssseeeeeeaaeeeesannnnne 12
3.2.1Instructionsfor usingthe Examplegnith ViSUal STUAIO.uuueeeiiiieeaiiiiiiiiieeie et e e 12

VN 1 Vi {aTo o PO TP PP PP OPPPPP TN 1
G 2 O TP PP TP PP PP 1

I T =Y PO 1
I I N L= 7= F P OO US PSPPI 1
G IR LU o PP PUPPRRP 1
T I 1O - SO 1
3.2.2Instructionsfor usingthe Exampleswith otherCoOmMPIIErS.........uuuiiiiiiiii e 14
3.3 SWIG 0N CYGWIN ANAMINGWV.eeiieeiie ettt e ettt e e e e e e e e e s eba bttt et e eaeaeaeaaaneabbeeeeeeeaaeeeeaaasnsbnbaneeeaaaaeeaeaannnsnes 14
3.3.1BUIldiNG SWiQ.EXEON WWINAOWSeetteeeeeieaeeeeeeee ettt et eeee e e e e s s s asstbabaeeeeeeeeaeaasaansatbeseeeeaaaaeesseaannnssbanseeeaaaaeeesanannns 14
3.3.1.1Building swig.exeusingMINGW andMSY S......uuiiiiiiiiiieeei ittt e e e et e e e e e e e s e e aanbbebeeeeeeaaaaeeas 14
3.3.1.2Building SWiQ.XEUSINGCYOWINLeeeeeiieiiiiititieeeeeeeeaeeesaaatitaeteeeeaeaaeesassansasbeeeeeeeaaaaeasasaannsssbsneeeaaaaaaessaannnns 15
3.3.1.3BUIldiNG SWiQ.EXEAIEINALIVES. eeiieieeeeie ittt e e e e e e e ettt e et e e e e e e s e s s ebabb et eeeeeaeeeesaaasnbbnbeeeeaaaaeeeaans 15
3.3.2Runningthe exampleon WiNndOWSUSINGCYAWIN.eetiiiieeaieiiiiiiieeeeeeee e e e e e s e aeiteeeeeeeeeeaeeaesaasnsntesaeeeeeaaeaesaaannns 15
3.4 Microsoft extension®NdOtherWINAOWSQUITKSeoiiiiiiiieeie ettt e e e e e e e e ettt e e e e e e e e e e s e e enbbeteeeaaaaaaeeaeaanns 15

SWIG-1.3 Documentation

Table of Contents

A oY (0 VA o = 1SS < TP 1
4.3 Building ScriptinglanQUagEEXIENSIONSeetieeete i ittt ettt e e e e e et e e eete et eeeeeeeeaesaa s eabesseeeeeaaeaesaaaasnsbasaeeeaeaaeaesesannnsseneneees 19
4.3.1SharedibrariesanddyNamiClOAAING. eeiieeeeeiieiiiiti e e e ettt e e e e ee e e e e e s bbe e e reeeaeaeeesaaannnbesbeeeeaaaeaeaaaan 19
4.3.2LINKING With SNAr@IDIAIIESeeii e et e et e e e e e e s sttt e e e e e e e e e s e s e nbateeeeeaeaaeeaeas 20
TGS = L] 1101 <2 T PSSP T PRSPPI 2

oSN AV [T 2= 1o O

o A U 0170 AT [TP 2
Lo I T U o 00T PP PRSP 2
LN 2 Y [T 11 1 1 PRSP PPRRURT 2
oI G T 0o 101010 1=] 01 £ PP PRUPPTRPPRt 2
T N L O (=T o] (o 1ol 11T o AT PP TPUPTPPUPPPPTPPIN 2
oI RISV [€T BT =Y od 1LY T PRTORRRPP 2
oI I O] =YY =) | I 1172 110 1= OO 2

5.2 WrappingSimPIEC DECIAIATIONS.eeei ittt eeeee e e e ettt e et e e e e e e s e e e eebeeeeeeteeaeaaaaaaansbsbeeeeeeeaeeeassaaannnbeseeeeeaaaeaesanannns 25

oI N o= TS ol Y/ o 1= e =TT |1 o U UR TSP 2E
oI A €1 6] o F= A Z= 1 1 T=1 0] [T TRTTTR 2

Lo TZAR O o] 1) =1 11 = 2
oI Y N o 1A <Y VT[0T (0 =1 1o 11 (o0 1= AT 28

5.2.5A cautionarytale Of CRA™ et e e e e e e ettt e e e e e e e e e e et e e e e aaaeaeaaaann 29
ORCT adol 1 a1 (=T 6=V aTo [ofoTnaT o] [=3to] o] [=Tox £ RSO EPPRPRT 29
LRI T 101 o) (=Y o011 1 (= F PP T RO 2
5.3.2RUNtime POINEITYPE CRECKING. ... ututttieeiteeee e e ettt e e e e ettt et et e e e e e e s e ettt e et e eeaaaaeesasaannnbsbeneeeaaaaaeeeaaaannns 30
5.3.3Derivedtypes.StrUCES ANACIASSES.ccuuieeiieeiieee ettt e e e e e e e e ettt et e ee e e e s e e e nbabe e e e e e eeeaeeesaaannbaeaneeeeaaeens 30
RS 8 LT oY T T=To (o Fo 1Y 6T RSO PPPPURPRP 31
LR TSI N/ 1= [TP PPRRURT K
oI N @1 T=T o nd = (o1 [07= 11 [F PP 3
5.4.1PaSSINGBIIUCIUIERIY VAIUE ...t e ettt e e e oo e e oottt e et e e e e e e e e s e aabbeteeeeeeaaeeeaesannnnnbesaeeeeaaaeaesanannns 32
B.4.2REIUINDY VAIUE ...ttt e oo oottt et e e e e e e e s e et ta bt e ettt e e e e e e e s aa e s n b bebe et eeaaeeeeeeaannnsbesneeeaaaaeeas 3
5.4.3LINKINQG tO StIUCIUIEVAIADIES.ueeeiiieeie ettt e e e e e e s e ettt et e e e e e e e e e s e nnsbesaeeeaaaaeeasasannnnnnes 33
o 0T o (o o = PR EUT PSRRI 3!
L Y AN £ 1= 1Y F PP PPPPUPPUPTPTPRN K
5.4.6Creatingread—0NIWAIADIES.cooeie ettt et e e e e e e s e s et e e e e e e e e e e e e e b reaaaaaeaaa s 36
5.4.7RenaminandignNoringAECIAIAtIONSc.uuiiiiiiiiieee e ettt e e e e e e e e ettt e e e e e e e e e s sa e e ne b e et e e eeaaeeee e e e e nnnreeneees 36

5.4.8Default/OptioNaBIGUIMENES.uuiiiiii ettt et e e e e e e e e ekttt et e e e aeaesae s nnbabbeeeeeeaeeeeeeaaannnreeeeees 37
5.4.9P0intersto fuNCtiONSANUCAIDACKScueeiiiiie e ettt e et e e et e e e e e e et e e eaa e e s et e e e sba s eeseaaseseaneeeernsss 38

oS RS YA 0 (o1 Ty L0 [T TT0) 1S TR 3
oo A /1= o) 7= T o £S3 (0 od (1 o TR 40
5.5.2CharactestriNgSANASITUCIUIESutiieeeiieee e e ittt et e e e e e e e e ettt et e e e e e e e e s e nee bt e et e eeaaaaaesasannnnbsbeeseeeaaaaeeesaaannn 41

oI Y AN 1= VA 101 0] 0= PR U RO 4
5. 5.4 SITUCIUTEHATAMEIMIIELS. ceeee ettt ettt et ettt e et e e e e e e e et e e eaa e e s eaa e e e et e e s aaa e e s saaessaaeesebaseessaneneen 41

RS O o0 a1 10 [01(0] 5N 10 [0 [STo (10 [01 (0] ¢TI 42
5.5.6 Adding membefunCtioNSIO C SITUCTUIESiiiii ittt ettt e e e e e e e ettt e e e e e e e e e e s et e aeeeeeaaaeeaaean 43
ORI AN ST (=0 Y 1 (U (o1 (0 (=TT 4

5.5.80therthingsto NOteabOUtStIUCTUrEWIAPDING. ... uuvetreeeeeeieeeeeeie ettt et e e e e e et e e ettt et eeeeaaaeeeesaannnbsaneeeeeaaeeeaaaanns 47
oI X @0 Yo (5] [TT=Y o 1T o PP 4

LN A I Y 10 11 0 10 (o S 1A PP PPPPURPRP 47

SWIG-1.3 Documentation

Table of Contents

5 SWIG Basics
ol A @fa o [=1 A 1Y =T 0 10] 0] 0] [o]od -3 PPPRRR 4€
ol o] 1] ITaT=Yo Koo To [) o] [ood <4< SOOI 4¢
NS A a1 F= 1[4z L1 Te] 41 o] [0To) TSRS 4
5.7 AN INterfaCeBUIIAING STEALEOY. ...t eeeetteeeeeei i ittt e e e e e e ettt e e e e e e s e s e betbe e eeeeaaeeeesaaasnebeeaeeeeaaaeeesasaannnntbneeeeeaaaaeens 49

5.7.1Preparingd C Programifor SWWIG. e ittt ettt e e e e e e e s e ettt e e aeea e e e s e aesbeeeeeeaeaaeeesaaasnbbsbneeeeaaeeesaeannnnenes 49
D 7.2 THE SWIGINEEITACETIIE.ccee ettt et e et e e et e et e e e et e e e e et e e s aaa e e e et eeesaneesaaasesebaeeeenasans 49

5.7.4Gettingthe rght NEAAEHIIEScoe ittt e e e e e e s e sttt e e e e e e e e e e ae e s nnbaaeeeeeeaaaeeaas 50
5.7.5Whatto dOWIth MAIN(Y.....cuveiieeiiiiiiee ettt ettt e e e ettt et e e e e et e e e e e s eeab e e e e e eesaa s eeesesbaaaaesesssbannaeesessssannseeseees 50

B SWIG BN Crrhio ittt h e s s b e e s a e e £ oh b e e e o b e e oo R b e e oo b e e e e b e e e s R E e e e R e e e e R R e e aa b e e e R e e e e b e e e e b e e s e r e e e s nee e s nee s

6.1 CoMMENTIIN Ctt WIAPPING .. ceeeeeeeeeee ittt ee e e e e e e e e e ettt et e eeeeeaeasaaasanbaeeeeeeaeaeeeaesaannnsbeeseeeeaaeeessesannsenbseneeeaaaaeeesaaannns 52
ST Y o] 01 (0 Y- T o PR UUUP R TUPOUPPPPPPE
OGRS U] 0] o o]0 (=0 Ol (Y- LU (=Y TR SPPR 5!
6.4 Commandine optioNSANACOMPIIATIONLuvieiiieiiee e e e ettt e e e e e e e e ettt e et e e e e e e e s e s e anbebaeeeeeeaeaeaesaaannnsbnaeeeaeaeaaaaaeas 54
OISR Y1001 0] (=Y O a1 =T o] o 11 o (TR 5.
6.5.1COoNStIUCIOIEANAAESITUCIOIS.vvveieeeeiiti et e e ettt e e e e ettt e e e e et et e e e e e e e eat e eeeeeessbsaeeseetaaaaaeesessaaneeeesssssanseeeeesrann 54
6.5.2Defaultconstructorscopy constructorandimpliCit deStIUCIOIS........oooviviiiiiiiieie e 55
6.5.3WhenconstructomrapperSareN TICrEAtEM.eiii ittt e e e e et e e e e e e e e e s e r e e e e aeee e e s 56

ORI 1 @ 0] o)V eT] 0 -1 1 (U (01 10] £ TSP RUPRPPP PP 5
(SRS 1) 0] oYY 10T Yo 1] 0 =TT 5

SRS IS] F= N1 [0] 10 1=1 001 0= £ POt {
SIS\ [=T 001 0]=T (0 P 7= PPN 5
oI CX B=) r= VU |1 =T o 18T 0 0T= 0] TSR RPPPPPRI 6
ST =d (0 (=Y o1 110] o PRSPPI 1
(OISl = a 1000 =Y aTe [ole] 1S =1 0 £ TSP 6
(SRl 11110 [OOSR
6. 10 REfEIENCEBINUPOINIEIS tteeiieiieee e e e ittt e et e e e e e e e ettt et eteeaaee s e s s ateebe e eeeeeaaeeeeaaasnsbebaeeeeeaaeeeaesaannnsesseeeaaaaaaeessannns 6-
6.11PaSANAIEIUINDY VAIUG.ciiiii ittt e ettt ettt e e e e e e e e ettt ettt e eeaeeaesaa s e et be bt e eeeeaeeeeeesannsbsbeeeeeaeaeeeeesaannnneenneees 63
(ST [=T 1 7= L o] = PSP (
6.13A brief discussiorof multiple inheritancepointers.andtype CheCKiNg..........ccueeiiiiiiiiiiiiiiiiiiiee e 65
LN R =T 0= V0 11T TR TR (
6.15WrappingOverloaded=unctioNSANAMETNOASciieiiii ittt e e e e e e e e e e e e e e s e e be e e e eeaaeaeeaaan 67
6.15.1DiSpatChfUNCLION QENEIALIONiii i ettt e e e e e e e ettt e e e e e e e e s aaanbn b bt st e e e eeaaeeeaeaannnbnbaeeeeaeeens 67
6.15.2AMDbIgUIity IN OVEIOAING.eeeeeiiiiieeee ittt e ettt et e e e e e e s e e et ettt e eeeaaeeeaae s nnbasbaeeeeeeeaeeeesaannneneneees 69
6.15.3AMDbIiguity reSOIUtIONANAIENAMING. ... uteeeereeeeeeie ittt eeeeeee e e e e e aaaeebeteeeeeeeeeeesesaanesbeaeeeeaaaaeaessaannnnrssneeeaeaaaaesens 70
6.15.4C0MMENIDN OVEIOAING.veeeeeiieiee et ettt e e e e e ettt e e e e e e e e s e s s ae b ettt e eeeaaeeesasaanntbsbeeeeaeeeeeeeeaannsnnbneseees 73
oI L oATAY] =T ol o] 1 Te [o)VZ=Ta [oF=To [STa o) o T=T = 0] A= PRSP URRPPR 73
ST A O P T A (=T 0 1T (0] o PP 7
Lo RSN =100 o] P =S PR PR RRR |
oI RS L =T TS 0T (o= PP €
6.20 EXCEPIONSPECITICALIONS. ... tteeee ettt et e e e et ettt e e e e e e e e e et b e be ettt e eeaeeaesaa s sabae e e e eeeaaeeeesesannsbsbeeeeaaeaeeeeeaaannneeeeeees 8¢
6.21 ExceptionhandlinQWith J0CaICIESuiiiiiiiie ettt e e ettt e e e e e e e e e s e e n b et e e e e aaeeeeaeannnnanes 88
(SO o] 101 (=1 (0N Y (=) 1 0] =) RPN 8
6.23 SMAartpOiNtErSANAOPEIALONT()... . eeeeeitreeeeeiaitiet e e ettt e e ettt e e e et et e e e ek b et e e e e aa b b et e e e e bbbt e e e e an b b et e e e aae b et e e e e bbb e e e e e annbeeeeeannees 89

6.24UsingdeclaratioNBNAiNNEIITANCE.uuuiiiiiieie ettt e e e ettt e e e e e e e s e s s ebebe e et eeaaeeeaesaaannbeeteeeaaaaaeeeaeaannane 91
(WA =N (=1 [P TS e (=) (AL 1] T 9!

(I T (Y =101 =1 0 Y01 UL (010 41 it 10 6 (=103 1 1=K)= TSRS 93

T o (0 A VA ol = 1SS T TP RPPRRRRR ¢
6.27.1CONStIUCHIONDT PIOXY ClASSES ittt e e ettt e e e e e e e e ettt ettt e ee e e e e e saabebe e et e eeaaeeeesaaannnbesbeeeeeaaeeasaaannns 94
6.27.2ReS0UrcaNaNAQEMEITI PIOXIES ... it i uuereeteeeteaeeeesaaaieteteeeeeeeeeaeaasaaaaanebeeeeeaeeaaeessaaaansabesseeeeeeaeeesaaaannsassseeeaaaeens 95
6.27.3LanguagESPECITICABLAILS.ii ittt e e oo ettt et e e e e e e e e s s a b bttt et e e aaeeeaeeannnnnenrreaeaaaeeeaaaann 96

6.28Whereto 9o for MOreiNfOrMATIONoii ittt e e e e e e e e e e st e e e e e e e e e e s e eannnbebeeeeaaaaaaeaeas 96

SWIG-1.3 Documentation

Table of Contents

A (=] o] o oSS o P UUURR T OPOUPPPPRPRRPP
A 1L T Tl [V o T RUURRRRPIN ¢
A 11T 00T 0T TP PPPPRPRPR (
AT o] aTo [14[o] =1 (0] na] o)1 F= 11T o PRSP PPPPPERRPTR 9]

A Y = e (0] =T T [o PR TP 9
ARSI VAT LY, F= T T ¢

7.6 COOANUGINU EXEEINSIONS .. .ceeuieetieeiete e eete e e et eeeet e e s et e eee et eseeaa s e s s s eesaaeseeaa s e s s s ee s e b essaaa s e s s aasesabesesansessaansesatassanensanes of
7.7 PreprocesSiNANAY0] ... 01 DIOCKS.iiiiei ettt et e e et e e e e e e et e e e eaa e e e eaa e s e et e e e saa e e eaaeereaaaas 100

AR STl (=] o) o odoXSIST [0 T= Lo K T TP 10(
7.9 VIeWING PrePIrOCESSODULDULteettttteeeeeeiaaautteeteeeeeeaaaeaasaaaentbeeeeeeaeaaaaasaaanneateeseeeeaeaeeessaannsbeteeeeeaaaeeesssannnsnbssseeeaaaaeens 100
7.10The#errorand#WarNINQAITECIHIVES euiiii e e ettt e e e e e e et e et e e e e e e e e e s eeebebeeeeeeeaeeeaeaaannssbaeseeeeeaaeeesaaannnnsenees 100

T A O AN 1 - VA X= 10 | 01101 (=] £ UP TR 10:
T2 o o To 0] OO PPPRRPRT 1C

T o L - \A= T U EUP TR ORI 1C
oI To] 1 1= 11 [0 Yoy TR 1C

oI Yol o = v= N [T 1(

o 51 (0 1 110 1 RSP 11
R = (o IRV =Toi (o] 1 S PRROPR 11
ot R FS I < od =] 0 [0 L PP TSP PRPRR 114
o 8 111 YA T o] 7= U= OO PPPRRRPR 11

o I A [0 UL o F= U= 100 [(=] € PSPPI 11¢
I G @ U 11 01U 1 o=V = T A1) (] A< TR 12(
9.1.4INPUL/OULDUIDAIBIMETEIS. .. ettt ee et et ittt e e e e e e e e e ettt ettt e eeeaeeeeaaaasaebeteeeeeaeaeaeseaaanesbbeeeeeeeeaeeeesaasnnbsbnneeaaaaaaeaens 121
oI Y W ST T To Mo (T =T) T L1 1= SR P TR 121
9.2 Applying CONSEIAINE0 INPUEVAIUES.eeiiiiieeee ettt e e e e e e ettt et e e e e e e e s s s s be et eeeeaeeeeaeaannenbesteeeeeaeeeesaaannnnnenees 122
9.2.1 SIMPIECONSITAINEXAMPIE ...ttt e e ettt et e e e e e e e ettt ettt eeeaaee e s e e s nnbbateeeeeaaaeesaeaansnnbeneeeaaaaeeesaanannns 122
I A O10] 4 Y1 = 11011 T=11 010 PR 127

9.2.3Applying cONStraiNtd0 NEW ALY DES ... o ceeeieieieeeeee e ettt e e e e e e e e e ettt e e e eeeeaeeaansanbeeeeeeeaaaeeesaaannneeeeeees 122

SWIG-1.3 Documentation

Table of Contents

10 Typemaps
O Y] o<1 10 F= T 0 ol] o= USUUPPPPPPPUPTPTRRRRIN 13:
O ZRe 0o o)/l aTo F= HAYA 0 1=T 1.0 T- o SRS PPPRURPTR: 132
O B L= (=) [aTo = HAYA 0 1=T 1.0 T- o TSP PPPRURPTRR: 132
Q2T ol P Tol =TTy L) MY 01T 0 T oL RO PERRPRR 132
10.3PatterNMAtCRINGIUIES. ...ttt ettt e e e oottt et e e e e e e e sa s aa e be ettt eeaeeaeeae s e nbnbbe et e eeeaaeeeeaeannnnbnbtneeeaeeens 13!
10.3.1BASICMALCRINGAIUIES eeeeieee ettt e e e e e e e e e et e ettt e eaeeaee s e n bbb beeeeeeeaaeeesaaannnbbebeaeeaaaaeeeaeaanns 133
O RS A Y] o1 =To =) =T U)o o KT PPPRRRT TR 134
QR IRC B =) oYU |10V 01=T0 0T o 1 PR 13¢
ORI Y D C=To Mo [= 10 LAY 01=T0 0= 0 RPN 137
10.3. 5MUlti=argQUMENTEYDEIMADS. ... eeveeeeeetieaeeee s e i aiteteee et eteaeeaasaaatebbeeeeaeeaaaeeeaaaansanteeeeaeaaeaeaesaaasnsbenseeeaaaaaeaassannnnnnes 137
O oo T <o [T =T = Lo (1 = RSP TR 13
O N ST o o] oL ST PP 1z
10.4.2DeclaringnNeWI0Cal VAIADIESciii ittt e e e e e e e s e e et e e e e e e e e e s aannnnrbeeeees 138
10.4.3SPECIAINANIADIES. ... ettt ettt et e e e e e s oo ettt et et e e e e e e e e e e R a b ettt e teeaeeeeaeeaaannnbaetreeaaaaeeeeaaaann 14(
10.5CoMMONtYPEMAPMETNOUS. .. .ot eie ettt e oo e ettt et e e e e e e e e e st b ettt eeeeaaaeaeeaannbbenrreeeaeaeeeeaaannn 141
O R T00 T 1Y 0= 0 7= o U PSRUPT TP 14
ORI Y] o T=Tod a1 o (YA 0 =T 0 T o R PUPPPRPR 142
O TRC o U A1 01=T010 =1 TP STSPURPPP 14.
O T - o [T TS 01T A= PR 14
ORISR0 (=) =T L Y 0 T=T 010 o ST PPPRT 143
ORI SR o] 0 T=T ol LAY 0 1) 7= o U UTPOPPPRRURTR 14:
O A= To [0 101 Y 1< 0 1F=T o TSP PUPTUPPRUPPTPRIN 14:
ORI T Ye Lo BNV 1= 0 7Y o TR PPPRT 143
ORI I oA (=T YA 01=T0 0= o DS PPPRURPRRR: 144
ORI KO aT=T 0] o= T Y 0 1=T 010 =T o PP RRRRT 144
O T B V7 V[1Y 0= 0 7= o PR PRRRT R 14«
O Y7 T (o 10 | YA 01T 10 F= o PP PT PP 14¢
ORI e 1 (0 (01Tl Y/ 0 1=T 0 1= o DS PPPEURPTRR: 144
10.6 SOMELYPEMAPEXAMIPIES. ... tteteeeeeeeeeee e et ettt teeae e e e e e aaateetee et eeeaaaeeesaaasanbeseeeeeeaaeeeaesaansesbseeeeeeaaaeeesaaannsbsbbeeeeaeaaaaaeas 14¢F
O ST Y] o=t 0 =T o1 (o = U1 7= LY YU PRPRRR 145
10.6.2ImplementingconStraintSVIth tYPEIMADS.vvveeeeieie ettt e e e e e e e e e e e e s et eeeeeeaeeeeaaannneeneees 148
10.7Typemapgor MUItIPIE ANGUAGES.cceie ittt e ettt e e e e e e e e e et e bt e e e e e e e e e e aaanenbbeeseeeaaaeeeesesannsbsbneeeaaaaaaeaeas 148
10.8MUlti—argQUMENEYDEIMAS ..ot ueetttteeeeeeeee e e e e aataebeeeeeeeeaeaassaaaseebeeaeeeeaaaaaesaaanneesbeeeeeeaaeeeaesannsssbssaeeeeaaaeeesaaannnsssneeeeeens 14¢
10.9The ruN—tiMEtYPE CRECKEE. e ettt e ettt e e e e e e e e e s e aba b e et e e eaeaeeeeaaannbbebneeeaaaaens 151
ORI 0]] (=T 0 0 1= 01 7= o PR USRS 15:
O A0 7= (o [T TP 1F
OO R o 1T Fo Yo TaTo [0)V7=] o (o= Vo 1T PP URPRP PSP 154
10.11More aboUtdOaPPIY ANAYOCIEAL eeeeeeee e ettt e e e e e e ettt e e e ee e e e e e aaaae e e eeeeeaaaeeesaaannnbesaeeeeaaaaeeeesannnnsbnneees 158
10.12RedUCINONTIAPPEICOUESIZE. ... eetieeeeeiiiieiitttteeeeee e e e e e e e e e aaebtete e et e eaeeeaasaaaaesbee et eeeaaaeeeaas e nnbebbeeeeeeaeaaeessaasnsbsseneeaaaaaeeaens 159
10.13PassiNglatabEtWEEIEYDEIMEBS teeetttteeeteaiiitetteeeeeeteeaeeaaaa e aneeeeeeeaaaaaaasasaaansssbeeeeaaeaaaeassaaansnbsseeeeaaaaeeesesaannsnsrnneeees 160
10.14Whereto do for MOreinfOrMatIONT e ittt e e e e e et e e et e e e e e e s e e e anbebreeeeeaaeaeeeeaaannnn 160
11 CUSIOMIZALION FEALUIES.cciieitiieeeeeetie ettt e e e ettt e e e e et et eeee e e e et e eeeee s s ba s e e s eesaaa e eees e s s ban s aeeeessaban e eesessaanaeeessstbanseeeeesrannnss 1€
11.1ExceptionhandliNQWith Y0EXCEPLION.ceei ittt e ettt e e e e e e e e ettt e e e e e e e e e e saananbe e e e eeeaaaeeesesannenbeneeeeas 161
11.1.2HandliNgeXCePIONSN € COURceii ittt ittt e e e e e e ettt et e e e e e e s e et aebe ettt e e e aaeaesesaanssnbeseeeeeaaaeeesesannenseeeeeeas 161
11.1.2ExceptionhandlingWith IONGJMP(). ... «.xeveeereeeeeeeeiiaaiitite et e e e e e e e ettt e e e e e e e e e s s e anbbeseeeeaaaaeesasannnbsbaeeeeeaaaaeaans 162
11.1.3HANANNGC H+ EXCEPIIOMS. .. ettteteeeeteeeee et as ettt et eeeeaeeeesaaaaebeeaeeeeaeaeaesaaannnbasbeeeaaeaaeeeassansesbeseeeeeeaeseesanannsrsnseees 163
11.1.4Exceptionhandlerdor VAriabIeSuiiieiiiie e e e e e e ae s 163
11.1.5Defining differenteXCeptionNaNAIBIS.oiiiiiiiiiieie et e e e e e e e e e e e e e e e ereaaaaaaeas 164
11.1.6USINgThe SWIG @XCOPHIOMIDIAIYuteeeiieieeeeeee ettt e e e e e e e e ettt e e e e e e e e s s e s betb e et e e eaaaaeesssannnbsbneeeeeaaaaeaens 165
11.2 ObjectownershipBNAYONEWODJECE.co ittt e e e e e e e ettt e e e ee e e e e e s s nnbebbe et e eeaaaeeeaseannrbenneeeeaaeens 166
R e L sV o L T (o N1 L= 0 [(=Y oL (AL O PUTR 167
R T I oY (0 1= = o P ETUPT TP 16

SWIG-1.3 Documentation

Table of Contents

11 Customization Features

RS P O [T 14T 0| (= LU o PR PPRRURTR 16¢
11.3.3FeatureaNddefaultargUMENES..........uu e e e e e e e e e e ettt e e e e e e e e e e e e e nnb et e eeaaaaeaeaaan 170
R R oY (1= <5 =0 0] o) = U RP PSP PPRRRRTR 17:
O] 111 = (o1 1= T PO PRUPPURPRt i
A R I 1SN0] 011 = Yoa 0 [(=Y o1 1LY/~ RSOSSN 17:
A ToT0] 011 =103 "= 1010 (0] F- Fo1T =Y R UUPORRUR 17
12.3Constanfiggregatio@nd%agaregate ChECK. i it e e e e e e e e e e e ne e eee s 173
L2 AN O S .ottt e et eeeeeteeeeeaaeestaaeeeetaeeeetteesttneeettaaeeettaetttaeeettaaeeeetaeertaaeaetaaarataaes 1
RSV 1= o] [T T o 1 I AN o T8 10 0T=T 1P PPPPRPPTR 17
G0 I 0 (o Yo [0 o3 1o TSRO 17
T2 B 4 1SY o (0] o] 1T o o OO RPPPPR 17
SRR T Do) o T8 1AY== U0 1o U] 0160 ¢ PO TP PPPPRRPR 17
13.4 ArgumentreplacemMENUSINGYOVAIAITS.eeee et i auetteeteeetaaaeaesaaaaeteteeeeeeeaaaeaasaaasssteeeeeeaeaaaaesasansssbseseeaeaaaeeesseannnreneees 177
RS ROV A= 1= Vo 1S T a0 [NV 1<) 00T oL TSP TR PP 17
13.6 VarargswrappinQWIth ioooiiii e e e e e e e e e e e e e 179
S A YA =T o] o1 T T) Y= W 1) GO PP TR 18
R ST O ol 11 U =] TSP PRPRUPPPRRIN 1¢
G] B o U 1T (o) o TR 1¢
Y= T T o T[T oY= o =TT PUPEPRPRR 1
0 I (Yo [0 o3 1o RPN 18
14.2\WarninQgmMeSSAQBUDDIESSION. ... ciuuitettieieetteaee et e e aetteeeeetaeaaeaesaaaasaeteeeeeeaeaaeaeaaaaasssbsbeeeeeaaaeeesssansssbesseeeeaaaeaesasannsnnes 185
14.3ENablinQadditiONAIVEININGS ... eeeeeeeeeieeiitetee ettt e e e e e e ettt et e e eee e s e s s e eaabee et eeeaaaeeeaas e nnbebbeeeeeeaeaaeesaaasnsbssnneeaeaaaeaaens 186
14.41SSUINQA WA NINGIMIESSAGE - tttttteeeeeeaeeesaaaautueteeeeeaeaaaaaaaaaassseeseeeeeaaaaaaaasaaasssstsseeeeeaaaeassasaanssssesseeaeaeaessssnaasnsssssneeeeneens 18€
Y 0o] A1) 0172 PP TP TP PP PPPPPPTTPTT 1€
Y= T a0 = LT =Y 0] TP PPPRURPTR 18
14. 7 MeSSAQ@ULDULTOIMIAL. eeeieeiiiiie e ettt e ettt e et e e e e e e e e s e ea bttt et et e eaeeeaeaanebebb et eeeeaeaeaeaaaannnbbeneeeeaeaaeeeaaaanns 18
14.8WarningNUMBDEMEIEIENCE.ueiiiiiii ettt e oottt et e e e e e e e s e s e ababte et e e e e aaeeeeaaannbbnbneeaaaaaens 187
14.8.1Deprecatedeatured100=199). .. . i ittt iiieiie ettt ettt e e et e e e e b e 187
14.8.2PreproceSSA200=299)... . .ueeeiiiteiee e ittt e e e ekttt e ettt e e h e e a4 b e e et o R b e et e e e e b e et e e e o R b et e e e e e be e e e e e et eeeeeaane 188
14.8.3C/CH+PArSEIB00=390) ... i et tiiiiiittiiiieitete e e e e e ettt et eetaa e e e e e e e _— e ettt ateeaeeeeaeaa—heteeeeeaaeeeeaeaaaaanbetreeeaaaaeaeaaaannns 188
14.8.4TypesandtypemapE400=2499).......ccueiiureeeeeiiteeee ettt e e e sttt e e e et et e e e st e e e e e e et e e e e b e e e e et r e e e e a b e e e e e aanbn e e e e 189
14.8.5C0odedeneration{500=599)......cciitriiiei ittt ettt e e e et e r e e e e s 189
14.8.6Langquagenodulespecific(800—=899).........uuutiiiiiiiiieiiiiii et 190
14.8.7Userdefined(9007999).... .. eiiiiitiiee ettt e ettt R et e e e e e e e e b b e e e e e e b b e e e e e a b e e e e aane 191
] 1S3 (Y PP RTPPI 1
SV T To T Yo Yo LU [PO PPPRURPRP 1¢
15. 1 THESWIG FUNIIMECOEuvueeeeeeeite e ee ettt e e ettt e e e e e e et e e e e e e et eeee s e e st e e eeessa b e eesesbaan e seessasbanaeeeessbabnnseeesenrannnnns 197
15. 2 EXtErNalacCeSI0 tNE TUNTIMIE.vuu i eeeieite ettt e et e e e e e ettt e e e e et e e e e e e eab e e e e eesbaa e eeesessban e eeeeeaabansaeessessnnanaees 192
15.3A word of cautioNabOULSIALICIDIAIIESvuuiiiiieiitee et e et e e e e e ettt e e e e e e ea b e e e e e eebaeeeeeeesbanes 193
N =) (=] (=) 1o Y TTR 1¢
15.5ReduCINANEWIAPPEITIE SIZE......eieeeiiiiie ettt oottt e et e e e e e e e e e bttt e e e e e e e e e e e e r e eeeaeaeas 193
16 SWIG and Alledro COMMION LS. .. eeeitiiiiiititieeiteeee e e e e e e ettt et ittt e ae e e e s e s aetebeeeeeaeaaaeaeaaaaanneaeteeeeeaaeaeeeesaansssbssseeeeaaaeeeseaannnssstnneees 194
T I = T T o OO PUPPPRR 1
T I T 1T 0 ST TSP OTPPPRPRR 19!
16.1.2C0MMANAINE OPIOMNS. ... teeeteiiee et e iieteteee et e e e e e et e e et e et e e eeeaaeesaaa e abeeeeeeeeaaeeasesaanssbbseeeaeeaaeeeesaannnnbsbneeeaeaeens 197
16.1.3Insertingusercodeinto geNeratedileSuu o it e e e e e e 198
A YA =T o] o1 Lo @ LY 7=T Vi< PP PR 19
T2 ¥ Tt o] 0 VAT 7= 0] T PSP PPPRRRPTRR: 19¢

SWIG-1.3 Documentation

Table of Contents

16 SWIG and Allegro Common Lisp
I o] (=110 TNV A A= o] 01T £ T ST SO 19¢

T AT 7= 0 01T TSR RUUUPPPPPP 19
S N (o])Y =Y [0 F=T0 (ST DLy 1| T 200

SISO LY =Y d [0 F=To (Yo DI iU 1T 20(

G2 A ®] o T=Tol A TATA = o] o1 T PSRRI 20(
R AT =T o] o1 aTe| = r= V1 PP PEURPTR 20

RS TN N\ =T 11T 0 T2 Lo TP 20
IR TZA O 0] 1) £ 15T 20

SR RN 2= 1A F=1 o] [T P 20
SRR 0 T aaT=] = L (o) 0 20

GGy N1 = 1Y TP PP PP 2(
16.3.6Classeand StructsandUnNIioONS(ON MYuuieiiiiiiiiee e e e e e e e e e e e e e e e e s e e enneeeneees 206

16.3.6.1CLOSWIAPPINGOT. . ettt e e e e e e e ettt e e e e e e e e ettt e e e e e e e e e e e e nnnraeaeees 206
SR I O M@ 1SN 1] 41T 41 7= Lo = TR 206

TR A =Y 001 o] oY TP PEURPRRT 20
16.3.7.1Generatingvrappercodefor tEMPIALES.uuuieeiiiiie e a e 207
16.3.7.2Implicit TemplataiNStANTIAIONiii et ee et e e e e e e e e et e e e e e e e e e e s nbeebneeeeeeeaeeeeaaannes 207

16.3.8Typedef TemplateSand SYNONYMITYPDES.cccuiiiiiiiieieee e e e ettt e et e e e e e e e s e ettt e e eeeaeaeese s s nbebbeeeeeaaaaeaesaaannes 207
16.3.8.1Ch00SINGA PIIMAIYEYIDEttteeeteeiee e et e ettt e e e e e e e e e ettt et e e eeeeeaeaansbnbee et e eeaaaeaesaaannsbnneeeeeaaeeesaeaannnnne 208

16.3.9Functionoverloading/Paramet@efaulting.............oooiiiiiiiiii s 208

16.3.100peratomrappingandOpPeratOrOVEIIOAING. eeueieee et eieeeee e e e e e e ettt e eeaeaeeeesaaannreeeeeeeeeaaeeaeaannnnnes 210

R TN B AT = 10 SRR P PP PTPUPRPPPPPRPRN 21

TR T 2 Ol ot (ol=T 0 0] PR TRT R 21

16.3.13Pasdy Value,passiy FEfEIEINECEuu i ettt e e e e e e ettt e e e e e e e e e e s e er e eeeaaeeas 213

G Y T=T010 =T o S S PP PP UUU TP 2.

16.4.1CodeGenerationn the CH4 VWEBDDEE. .. . iiiee e e e e ie ettt et e e e e e e e e ettt e et e e e e e e e e s e aenbbeeeeeaeaaeeesaesannsnnbneeeeeeaaaeens 213
G 0 1\ I o= 00T o PP PRURPRR 21:
T 2 O 1 N N Y/ 0T 117 S RRPR PP 214
T G O N B LY 0 T=T 110 Y o PR PTPPI 214

16.4.2C0odegenerationn LiSP WIADDEES. ... uuuutaaaateiaeeutieeeeetaaaeaesaaaaateeteeeaeeaaaeaaeaaasssbeeseeeeeaaeeasaaaannssnbseeeeeaaaesessannnnns 214
MG e TV LY/ 0 T= 0.1 Y o PP PPPRURPR 214
I O 1 I LY/ =10 7= o P PP PERPPRP 215
R e I I = Y 01T 1 7= o SRR 215
I I 1] el I o i IR/ 0= 0.7 o PP ERUPP 216

16.4.2. 5L ISP CLAS STYPEIMIGI . tttttttttetaaaaaataaauutttteeeaaaaaaaaaaaaaasatteeeeeaaaaaaeasaaaasssbteseeeeaaaeaessaaansssbeneeeeeaaasassanannns 216
16.4.3Modifying SWIG behaViomUSINQLYDEIMIAScevuuneierinieeetneeeeeteesesaeesstaeeesaasessa e setasesettessa e retseerensesssaerees 216

16.51deNtifier CONVEIIEIUNCIIONS. eieeteieiee ettt e ettt e et e e et et e e e et s e s sa e e e et eeeaaa s e s eaa e e s aaeesaaa s e s eaaeessaesssba e ssanssessnnasennnsaes 216

16.5.1Creatingsymbolsin theliSp @NVIFONMENL.........coiii it e et r e e e e e e e e e s e nenbe e e eeeaaaeeas 216
16.5.2Existingidentifier—CoNVertefUNCHONSuu it e e e e e e e e e et eeeeas 217
16.5.2. 1identifier—CONVEI=NULL.........ccoi it e e e e e e e e e e e ettt e e e e e s esbaeeeeesesbannaeeeaees 217
16.5.2.2identifier—ConVEIT=lISPIEY........ccii ittt e e e et e e e e e e e e e nenneees 217
16.5.2.3Defaultidentifier t0 SYMBDOICONVEISIONS.oiiiiiiiiiiiiiie e e e ettt e e e e e e e e e e et e e e e e e e e e e e e annebeeeeeeeeas 217
16.5.3Defining your OWN identifiler—CONVEITEE.......coi ittt e e e e e e e e e s e e eeeeaaeeee e s 217
16.5.4InstructingSWIG to usea particularidentifier—CONVEITEN.............uuiiiiiiaiiiieee e 218

XYY A L= T O T 2
O T Yo 0 o oY T 2]
17.2Differencesto the JAVAMOUUIE.ouuiiii ettt e e e et e et e e e et e e ea e e s et e e e aa s e e eaaaeesebaesenaaeeseansesenas 219

R T O o Col=T o) o] 1 PO PPRPRTTR 22
17.3.1C# exceptionexampleusing"CheCK tYDEIMANDuueiiriee ettt e e e e e e e e e e s et eeeeaaeeeeeeannnnes 223

SWIG-1.3 Documentation

Table of Contents

17 SWIG and C#

17.3.2C# exceptioneXampleuSINGYOEXCEPLION.uuurteiieeee ettt et e e e e e e s e ettt e e e aeeeeesaaanaebeeeeeaeaaaeeesaaannnenneees 225
17.3.3C# exceptionexampleusingexceptionsPecCifiCationsS............ueeiiieieiiiiiiiiiiiiiiie e 226
17.3.4CustomC# ApplicatioNEXCEPHIOMBXAMPIEiii ittt e e e e e e e e s e e e e e e e e e e e e annnenbneeeeeas 226
N O Y] 0 1=T 0 F=T 0 o ee 1101 0] [TP PPPPRRPR 22!
17.4.1Memorymanagemenivhenreturningreference$o membewariables.............cccoveiiiiiiiiiiiiiiiies 228
17.4.2Memorymanagemertor objectspassed the CH+IaYEI........uuii it 229

MRSV A (= aTo O o113 =T T 2:
I = [T TR = T TP 23

18.1.1RUNNINGSWIG N C MO, ... ee e e ittt e e e e e e ettt e et e e e e e e e e ekt ettt et e e e aeeeae s s nbnbbeseeeeeaaeeeesaaannsbstaneeeaaaaaaaans 232
18.1.2RUNNINGSWIG N Ct MOAE ... ettetieeieete e e e e e ettt e e e e e e e e e e et e et e e e e aaeeeaaaaansbaebeeeeeaaeaeeaeaansssbasneeeaaaaeeesanannn 233
T @fo o (=] CT=T 01T = L1 o) o RPN 23
18.2. 1NAMINGCONVEINTIONS. .. ettteeeiieiiittteetee et e e e e e e e e e aeteebe e et eeeaaeaasaaaseebeeaeeeeeaaeeeaaaaasesebeseeeeeaaeaeeseaanssnbenseaeaaaaeeesaaannns 233
T2 1Y, (oo 11 | =T PUP RPN 23
18.2.3CoNStaNtRNAVANIADIES.........vuuieiieieiii ettt e e e ettt e e e e e e e ee b e e e e e e es bt e e e e e e ssba s eeseesban e aeeeesnranns 233
T | TN o od (0] 1P 23

ST (o= o) 1o 1 TR 23
TR I T YO 1 SRR PPPSPPRPR 2!
T Vo [P T RSP 2.
18.4.1Staticbinaryor sharedibrary linked at COMPIIELIME...........uuiiiiiiiiieii e 235
18.4.2Building chickeneXteNSIOHIDIATIES.cieiiiiieeie e ettt e e e e e s e ettt e e e e e e e e e s e e nanb e e e eeeaaeeeeeeannnneseeees 235
18.4.3Linking multiple SWIG moduleswith TINYCLOS ittt e e e e e e e e e ereeeaaaeeeas 236
S ANV 7=T010 =T o S S PP PUPTTPTPTPR 2.
ST o8] (=Y TP 2.
RSN K Y= T o= Vo T oo | =Tk o T o ST PPEPRPRRTR: 237
18.7UnsupportedeatureSaNdKNOWN PIrODIEIMISueiiiiiie ettt e e e e e e e e et et e e e e e e e e s e s et e e e eeaeaeaeeesanannnseeeeees 237

FO SWIG AN GUILE......ceeeeeeiete ettt e et ettt ettt e e e et e s et e e e et e e e e e e e s e e e e s et e e e e et e e s e s ee s et e e e aaee s aaa e s s e ba e e saaneessanassebassennnnsanes 2
9 1Mean|ngof 1YL 0o L1 | 23

19.3 T ST =PTSRS 2.
R T AT 0] o) =] I 0= Lo = TP 23
RS I e TSIV BT 1= Lo = U TP PPRRRTRR 24(
19.3.3Native GUIlE MOAUIE LINKAGE. ... eeeieeeeeeiiiiiitieie et e e e e e ettt ettt e e e e e e e s e et be e et e eeaaaaaesa s e nnbataeeeeeeaeaeeesaannsnseeneeees 240
19.3.40Id Auto—LoadingGuile MOAUIE LINKAGE.ueeeieiieieeeiie ittt e e e e e e e e e ettt e e e e e e e e e s s et eeeeeeaaaeeeaaaannnnnes 240
19.3.5HODDIAD LINKAOE. ... eeeeeeeeeeeee ettt e ettt ettt e e e e e e e ettt ettt e e e e e e e e aaannabbbe e e e eaaaaeeeseaannnbsbeeeeeaaaeeeeesannnnne 24(

S O T =Y ST olo =] [0 10T PP PRR PP 24

S IV 7=T00 =T o S S PP P PP UUTUTPTPR 2

19.6Representationf POINTErSASSIMODS.iiiiiii ettt e e e e e e e e e ettt e e e e e e e e e e e e s nnbnbeereeeeaaaeeas 242
R T KT ST 1210 LT 24

19.7 ExcegnonHandIlng ... 24
MR R T nd (Yo=Y o (U] o (o Yo U I aT=)] =N [0 A TR 24:

R Rl (o Tol=T o [T N A TEY = 1 (< TR 24:

19. 100G OOP SPIOXY ClASSES. . tttteaeettiiiiutittttteettaaea et e s aatteteeeteeeaaaasaaaaaseabeeseeeaaaaeeasaaanntesbeeeeaeaeeeeesaansasbeseeeaeaaeeessaaannnnennnees 24:
10,10, INAIMINGISSUEBS ... itteteeeee et e e e e et ettt et e e e e e e e s e s e e tbebe e et eeeaeeeaesanasenbeeeeeeeeaaeee s e nsebbeeeeeeaaeeeeeseaannnbsbbeneaaaaeeeaananns 24!
L0 B2 I] o USRI 24

AN AV [Tz T aTo I 2 A= TR 2
O R @ LYY= ST 2
A I o (= [T AT TR F= T TS T 2

20.2. 1RUNMINASWWIG ...ttt ettt ettt ettt ekttt e e oo ekttt e o4k ket e e 4ok b b et e e 442k b e et e 44k b e et e o4 4a kb et e e e e bbb e e e e e aabbe e e e e abbneeeenane 25(

SWIG-1.3 Documentation

Table of Contents

20 SWIG and Java
20.2.2Additional ComMMaNAINEDPIIONSuueieieiieeee ettt e e e e e e e e e e e ettt eeeeaeeeaaasaastbbaeeeeaeeaaeeesasannsnsbeneeeeaaaaeans 250
20.2.3Gettingthe rght NEAAEIIIESceiiieieeei ettt e e e e e e s e e ettt e e e e e e e e e e e e annneereees 251
20.2.4CompilingadyNamiCMOMUIE.ueiiiiii ettt e e e e e ettt e e e ee e e e e e saaaeebeeeeeeaeaaeaesaaaantssbneeeeaaaaeaesaaannnn 251
20.2.5USINGYOUIMOAUIE.ceeeeiee ettt e e e e e e ettt et e e ee e e e s e s s et bebe e et e eaaeeeaesaanesbeseeeeeaaaeeesaaansnnbsbeeeeaaaaeeasesannnnne 251
20.2.6DYNamMICHNKING PrODIEIMISeiiiiiieei ittt e et e et e e e e e e e e ettt et e e eeeaae s s nseebe s e e e eeaaaeeeseaannnsnneeneeeas 252
20.2.7CompilationproblemsandcompilingWiIth Cr....ciivviiiiiiciiiee e e st e e st e e e e s enbaaeee e 252
A IR] 1o [T aTo Mo AYAT e o T TP PRPPPRR 253
20.2.8.1RUNNINGSWIG from VISUAISTUIO.ceieiiiiiiieiie ettt e e e e e e e s e eeeeeaaee s 253
20.2.8. 2USINGINIMAKEeeteeiitiiete e ittt e e sttt e e e ettt e e e s atte et e e s sstaeeeeeaasseeeeeaastaseee e e ssseeeeeantaeaeeeassaeeeeeanntneeeeannneean 254
20.3A tour Of DASICC/CH+WIAPDPING: +.teeetivtrereeeittereeeaittereeesstteeeessastaeaeesastaeeaeaaasteeaeeaasssaeeesasseeeeesassseeesaasseeeesssssereessnssees 255

20.3.1Modules packagesfindgeneratedaVaClaSSESuu e iiiiiieee et e e e e e e e e e e e e e 255
ORI U o 110 1T 25

AR €1 (o] o =Y AV Z= 1A E=1 o] [) T 25!
O TR T 1 @0 1] = 11 TN 25
RIS T80 1=] =1 1] 0 25

20.3.5. JANONYIMIOUSEIUIIS. ..ottt eeeeeeeeetatetteeeeeeeeaeeeebababaea o s oo o1 e e e e e e e aeaaaatetateteeeaeassstssbebebabas e aa e e e e e e aeeaaaaaaaaens 258
20.3.5. 2TYPESAIEENUIMS. ...ttt et e e e e e e e ookttt e e et e e e e e e ae e nn ettt et e e e e eeeeeee s e nnbnbbeeeeaaaeaeaans 259
20.3.5.3PIOPEIJAVAEIIUITIS.oeteteeeiietittittttatata o e o e o e e e e aaaaeaaaaatateteteeeseasbebebbbb s ae o e o e e e e e eeeeaaaeaaaeaeeeeesesssnnbnnes 260
20.3.5.4TYPEUNSAIEENUIMIS. ...ttt e e ettt et e e e e e e s s s bbb b ettt et e e aaeeeassannsnabeneeeeeaeeaeeaaannnns 260

A RS RIS T00] o) (=TT 418 0P R PSPPI 261
ORI 3] o 11 (=Y T 2¢€

B O TR A (T3 (U TN 26
ORI ST O o] F= 1YY L= YT 26
ORI L O 18] 1<) 1 7=1 107 =TT 26:

20.3.10Pointersreferencesarraysandpassy VAIUE.oooiii ittt e e e e e s e eeeeae e e e e e annneees 264
20.3. L0 INUI POINEEIS .. tttteeeeeeeee e e e e e ettt e et e e e e e e e e e e bttt et et aeaeee s e e s nnebebe e eeeeeeaaaaesaaannsbebaeeeeaeaeaeaesaaannnsbssnneeeeaaens 26E
20.3.11C++ 0VErIOAUEAUNCLIONS.vvueieeiieite et e ettt e e e ettt e e e e e et e e e e e et eeeeesee b e eeeeessbaa s eeseestanaaeesssstansaeeeeesnes 265
AR I 2 O o [7= LU]| = o 1800 T= 01 PP ESURT TR 266
A T RS Ol = V0 11T 01 (o0 1 TP PPPPPPPURPPROPON 26"
P N O (Y 1410 = (S YT PPRRPPTRRN 26’
A O T S O] 1 =11 01101 (=1 £ PSPPSR 268
20.4Furtherdetailson the geNerate@aVaCIBSSES. . .. uuuiea ettt e e ettt et e e e e e e e ettt e e e e e e e e e e e e s nban e e eeeeaeaeaeas 268
20.4.1TheinterMEIArYINT CIASS iitiii ettt e ettt et e e e e e e e e e ae e ettt e e e e eeeaae s s nsebbeseeeeeaaaeeeseaannnbnneeneeeas 269
20.4.1.1TheintermediaryJNI CIaSSPIAGMAS. ... uuuuureteeieaeeeaiaiitiieeeeeeeeeeeesaaaabetbeeeeeeeaaeeeeaaaannrbsereeeeaaaaaesesannnnnes 270
20.4.2The JaVaAmMOUUIECIASS.cvuteieeeeeetiee e ettt e e et e e e e e et ettt e e e e e e ea b e e e e s eesaa e e e e s sesban e eeeesssaban s eeeseessraneeeesesrannnnns 270
20.4.2.1The JavamOdUulECIaSSPIAGMEAS.eetieuutreeieeeaeeee e e e e e ettt eeeeaaaeaaaaaaesabeareeeaaaaaaesaaannbssaeeeeeeaeaeeesannnne 271
20.4.3JAVADI0XY ClASSES. .. e et ittt e e e e e et ettt ettt e e e e e e s aa e e atb ettt et e e eeeeeae e R R habe et e e et e eeee e e e e annbatbeeeeeeeeeeeeeaannnnreneeees 271
20.4.3. 1MEMONY MANGGEIMIEIALttt e e et e e e e e e ettt et e e ettt tete b e eb e e oo oo o oo e e e e e e e aaaaeeaeeeeeeeeeebebnbsbbbbbbsnnn e e e e e s 272
A R I 4] 4 = 11 7= 4T =R PUUPRRRIN 274
20.4.3.3ProxyclassefandgarbageeOlIECHON.iiei ittt e e e eas 275
A Y] o 1oAY 7= 0] 0= (0P TS PR PUPPRPRRR 276
A Y = 410 [o P LT TP 27
20.4.5. 1 TYPESAIEENUMICIASSES. ... eetteteeeeeeee e et ettt et e e e e e e e e ettt et e e ee e e s e s s sttt beeeeeeaeeeeeeaaanssnbssneeeaaaaeeesaaannns 277
20.4.5.2Pr0PEIJAVAENUMICIASSES. ... ettieiieieeeei et ittt et e e e ae e e e e e ettt e e eeeeeaaaeesaa s nnbaebeeeeeeaeaeaesaaannsbssneeeaaaaeaeseaanns 278
20.4.5.3TYPEUNSAfEENUMCIASSES. ...ci e e ettt ettt e e e e e e ettt et e e e e e e e e e s e nbebbe et e eeaaaeeeeaeannneneeees 279
20.5Crosslanguagepolymorphismusingdirectors(eXperimental)...........eeeiiirrrreiiiiiie e 279

A RSN S g T2 o] T T o [T (Yo (o) PSR 28(
ARSI B (=01 (] Ml = 1Y TR 28

A RS RCI O V/=T daT<F=Te -1 alo [o]0Ye 1) o (o= | ST 281

A RS ST 0 0] o) [=To [T =T o (0] £t e= 11 0]][TS PRPRRRT 281
20.6 COMMONCUSTOMIZAIIOITEALUIES.eete i eeeetee ettt e e et e e et e e et e e e et e e ee e e s et e e s et eeee s e e s e s eesea e eeseaa s e s saaees et s sesansesesansenennss 282

20.6.1C/CH+NEIPEIMUNCHIONS. ...ttt e e e ettt e e e e e e e e ettt ettt eeeaeeeseaannsbe e e et e eeaaeeeesaassnbssaeeeeaaaeeesasannnnnnes 282
20.6.2C1aSSeXtENSIONNIEN YOEXIEINA.ceeeeeeeee et e ettt e et e et e e e e e e e e e b e e e s et e e saaeseeba s e s eaaee s et e eanbasessannsesees 282

SWIG-1.3 Documentation

Table of Contents

20 SWIG and Java

20.6.3Exceptionhandlingwith %exceptiorNd%jaVaeXCePLION.uuuuiiiie ettt e e e e e e e e e e eeeeeeeeeeannnes 283
20.6.4Methodaccesavith %javamethodmMOIfIEES.i i e e e as 285

A A o 1SX= Lo L (=Tod 0 0 10 U 1= PP PR TR 28
20.7.1Inputandoutputparametersisingprimitive pointersandreferences...........occvvvviiieeiieeeiiiieieeeeee e 285
A S 1101 o] 1= o To 0 (=T TR PPRRPRTRRN 28
20.7.3WrappingC arraySWith JAVBITAYS. uuttiaeeeeeiaaiuitteeeeaeaaaeeesaaaateeteeeaaeeaeeaaesaaaesbeseeeaeaaaaeesaaannresaeeeeaaaaaesaann 287
20.7.4AUNDOUNAEAT ATTAYS. .. .etetttieeeeeiiaiitteteeeteeee e e e e e e s eaeteeaeeeaeaaaaaaaa e s s teaeeeeeeaaaeasaaaannsbsbeeeeeaeaaeeessaasssbssseaeaaaaeeesanannns 288

20.9 TYPEMAPEXAMIPIES ... tteeeeeeeee e e et ettt e e e e e e e e e ettt be ettt e eeaeeaesa s s s abeeteeeeeaaeeeseaannnea e beeeeaeeeeeeeeaannsnbbeseeeeeaaeeeeaaannnnbnnenees 30
20.9.1SimplerJavaenumsfor enUMSWItNOULINILIAIIZELS.vvevieiieiieeee e 300
20.9.2HandlingC++ exceptionspecificationsasJAVAEXCEPLIONS.cveeeiii it e e e et e e e e e e e 301
20.9.3NaN Exception— exceptiorhandlingfor a partiCulamype............ceuiiieeaiiiiiii e 302
20.9.4ConvertingJavaStringarraystO CRAI™ ™ ... r e e e e e e e e e s s b arreaaaaaeeeaaann 304
20.9.5Expandinga Javaobjectto MUItiple argUMENTSuii ittt e e e e e e e e st eeeeeaeeeeaeaannnnnes 305
20.9.6Usingtypemapgo retUrNaIrQUIMENESeeee it ieitetieeeeeeeeeesesaaseetbeeeeeeeaaaaeesaaansesteeaeeaaaaaeaesaaasnsbsnneeeeaaaeassesanns 306
20.9.7Adding Javadowncastdo polymorphiCretUrNTYPESuueieiiiiiieie e ettt e e e e e e st e e e e e e e e e e e e anneeneeees 308
20.9.8Adding anegqualsmethodto the JAVACIASSESuuuiiiiiiiiieee ittt e et e e e e e e e s s eeeeeaeeeaeaanns 310
20.9.9Void pointersanda comMMONJAVADASECIASS.uuvurreriiieeeeeiiaiiiie ettt eee e e e e e s et bebeeteeaeeaaeaesaaannbesreeeeaaaeeeeaaannns 311
20.9.10StrUCIPOINTEITO POINMEEN. .. .eeieiieeeie ettt et e e e e e e e ettt et e e e e e e s e e eebbe et e eeaeaeeeassaannnbsbeeeeeaeaaeeseaanannnbbsbeeeeaaaeans 312
20.9.11Memory managementvhenreturningreferenceso membevariables ... 314
20.9.12Memorymanagemerbr objectspassedo the C++IaVer........ccuuuiiiiiiiiiee e 315

20.10LiIVING WIth JAVADIIECIOIS. ... teeeeeiieeeeeeie ettt e e e e e e e e e e et e bbbt e et eeeeaeeesa s e ntate e e e e e eeeaeeeeaa e nnsbebeeeeeaaaeeeeesannsnbssseeeaaaaaens 316
O I K@ Lo o [y Y o =T 0T TR 31

P2 O I N = V7= Y o T oo]] 11T 1 TR 318

20.11.2FunctionalinterfacewithOUt ProXY CIASSES.cciii ittt e e e e e e e e e e s e e eeeeeeeas 319
20.11.3Usingyour OWN INTTUNCHIONS ..ottt ettt et e e e e e e s e s e bbbt e e e e e e e e e e e aeannnbneneeeeeas 319
20.11.4PerformanC@ONCEINSANANINTS.cicvee it eee ettt ettt e et et e e ettt e e e et e e s et e e e et e e eaaa e e s aaesss b eesean e seaneenansss 320

P 2 = 11101 11RO PPPEPPRPR 3:

A O 1] PP PP TP O PP PPTPPPPRPRPPPR 3

21.2.1Additional ComMMaNAINEDPIIONSuueeeieiieeeeeeie ittt e et e e e e e e e e e e bbbt ereeaaeeasasaanabbaseeeaeeaaeeesasaannnsbeneeeeaaeaaans 321

21.2.2DetailSON CLISP DINAINGS. . +.tttetietieeiieiiitttie et e e e e e e e e ettt ettt e e e e e e s e e aaa et te e et eaaeeeaesaansesbeseeeeaaaeeeeseaannrnneeeeees 321
IR T 3

X AT A (CI= T Lo I U - T 3
A N (= LRI F= LTS 32

22. 2 RUNNMINGSWVIG ..ottt ettt e e e e e oo e o te ettt et e eeeaeeeeaaaaa s e beteeeeeeeaeeeee e e nna b bets et e e e aeeeeeeeannnnbeeaeeeeaaaeeeaaaann 32
22.2.1CompilingandLinKing @ndINtEIPIEIEL.uiiiiiiiiieeee ettt e e e e e e e e e ettt e e e aeeeeesaaasnbbeaeeeeaaaeeeeaesannnnne 325
22.2.2CompilingadyNamiCMOAUIE.ueiiiiie ettt e e e e e ettt e e e ee e e e e s saaaeebeeeeeeaeaaeaesaaannbesbneeeeeaaaeaesaaannnn 325
22.2.3USINGYOULMOAUIE.eeeeeeeeeee ettt ettt e e e e e e e ettt ettt e e e e e e s e e s e tbe bt et eeeeaeeeaesannesbeseeeeeaaaeeeeaaansnsesbeeeeaaaaeeasesannnnne 32¢

22.3 A tour Of DASICC/CHHWIAPPDING. ..o eetteeeeeeeeeeeeee e e eeeteteeeeeeaeaaeeasaaaaenteeteeeaeaeaeeassaansssbeseeeeeaaaaeesaaannnbenbeneeaaaeaasesaannnnes 326
R T 1Y, o Yo V][RR 32

SWIG-1.3 Documentation

Table of Contents
22 SWIG and Lua

R B A V| o3 10] 41 PRSPPI 32
R] €] o] o= | AV T =1 o] [T PT PR 32
R I L0041 =1 151 L0 [=) 01010 0 F OO RPPPST 327
R BT o 1101 (=] =TT PPN 32
R I S 11 (01 11 | (=Y TSP 32
R T A 0% e ol I YT L VST 33
R R < O 111 41=) 117-1 o =TT PP 33:
22.3.9PointersreferenCesyalueS ANUAITAYS.cc.uuuueiiiiieiee e ettt e et e e e e e e s e e aate bt eeeeeaeaeaaaaaasnebetseeeaaaaaeesaaannnnnes 331
22.3.10C++ 0VErIOAEAUNCLIONS.vvueieeiiiii e et ettt e e ettt e e e e et e e e e e e et e e e e e s eebaa e eeseessbaseessestanaaeessestansaeeeeeseen 331
A T N O 0] =T = (0] £ PP PP 33.
22.3.12C1asSeEXtENSIONVIEN YOBXIENM.ieeviriei ettt e e e e ettt e e e e e e e et e e e e s eeata e eeeseesbanaaeeesssstansaeeeeerees 334
R TN S (O (Y141 0] = (S YR PPRRPRTRRN 33!
R T O) 1 1= 111 01101 (=1 £ PSSR 336
22.4DetailSONthe LUBDINAING.......iie e ettt e e e e e ettt ettt e e e e e e e e s s antbebe et eeeeaeaeaesaannnsbasaeeeeaaaeeeseaannnnene 33¢€
22.4.1Binding globaldatainto the MOAUIE..............uuiiiiiiiiee et e e e e e e r e e e e e e e e e e e annnbeeeeees 337
22.4.2Userdat@BNAMETatabIESttt e e e e et e e et e et a e e e et aerarr s 338
22.4.3MEMOIY MANAUEIMIENL. ... eeeeiieetittetttet oo e e e e e e e e e e e ee e et et eeeeeaeaebebebbes s e o s oo oo o e e e e e e eaeaaeeaeteeeseassnsbbbsbnbnnnn i ns 339
IV (= 1Yo 1Y oo [1 P2 G TSRO 34
A T @ Y=Y VA= PSPPI 3
A T I AT VA T ST] o) (1T PSP PPURPRPTRRRN: 34(
AT A AT 0 VY. T [o USRS RPPPRPRRRRT 341
AT A1V 0V O A O TR P PSPPSRI 34
23 L. AWVVNY SWVIG 2 -t tttteieite et et e e ettt ettt e e e e e e oottt ettt e e e e e e e e e o na et e bttt e e et e e e e e e e aa AR R b ettt e et e e eeeeeee e nnanbeeeeeeteeeeeeeaannnreeaeees 34
A T4 @10 1 o3 o[o USSP PPPRRRPTR 3¢
A I N 101 (=) 0 7= (o) (0 N O [1] =1 1Y F PPN 341
AV A 11 1=) 0 7= 0= (0N Ol 1] 0] 7= 1 [OOSR 342
A IR] o (= 110 0T 10 =V =T OSSP 34
A TS T K @0 111 o 11 Y PRI 34
23.3.2Additional ComMMAaNAINEDPIIONSuueiiieiieeee ettt et e e e e e e e e e et eeeeeeeeaaasaasabbaeeeeaeeaaeeesasannnnsbeneeeeaaaaeans 343
A 1Y [o o LU= S 1 AV 1=y 0 T 01 TP TR 34
23.4. 1INPULSANAOUEDULS. ... e ettt e e e e e ettt et e e e e e e s e e s e tb ettt et e e aaeeaaesannetbbee e e e e eaeaeeesaaannnbesbeeeeaeaeeeaeeaannnnnbenneees 34¢
23.4.25Ubrange S NUMEIAtIONSSELS. .. oiiiii ittt ettt e e e ettt et e e e e e e e ettt et e e e e e e aeaeeas e s nnbebaeeeeeeaeeesesannnenseeeeeeas 345
A e 1@] o] = ox £ U EUP PRSPPI 34
AT B 1] 0 To] S S PP TP P PP 34
A] (el =] 01 1[0 1L TSP PPEURPRR 34
A o] =V 1] o) = PRSP PPPRPPTRR 34
AR Y Y[T (=T a1 a1 ST (o aT=Yo =T 1= = Lo) P ERR PR 34¢€
A B T N oY= 110 (= TSP 34
A TSI A = Te | 1012 PP 34
A I O] =T 10714 < TSR 3.
AT (= 1aTo B Ao 0 T=T 0 41 TR 3¢
24.1CreatingnativVeMZ S ChEMESIIUCTUIES.ii ittt et e e ettt e e e e e e e e ettt e e e e e e e e e e s e nssteeeeeaeaaaeeeeasannnenbeeeeaeas 348
A IV [CI= 1 aTo O ToF= 1 o | OO PSTORREPPN 3.
AT e (= 1100110 =V =TSR PPPT 34
A U T T T 0o 1L R PPRUPRTRR 35(
AT B2 @fo] 0] o1 TaTe 1o =Yoo Yo [P PPPEPRPTRRN: 35(
25.1.3TheCAMIPAMOAUIE.cei ittt e ettt ettt e e e e e e e e ettt ettt e eeee e e e e e s eatbeeeeeeeeaeaeeaesannnssbesseeeeaaaeeeaaaannnnnnes 35C
25.1.4USINGYOUIMOAUIE.ceeiiieeeeie ittt ettt e e e e e e e ettt ettt e e eeeeasa s e tbebbe et e e eaeeeaesanneabbeeeeeeaaaeeeeaaasnsnsbeeeeaaaaeeasesannnnne 351
25.1.5CompilationproblemsandcompilingWiIth Cr....oiiviiiie i e s e e s s e e e e s enbaaeee e 351
25.2TheloW—1eVEl OCAMI/CINIEITACE. i e ettt et e e e e et e e e e e e st e e e e e e eab e e e eeessbaeeeeseesrannnns 351

SWIG-1.3 Documentation

Table of Contents

25 SWIG and Ocaml

25.2.1Thegenerate@NOAUIE.uu ettt e e e e e ettt et e e e e e e e e s e atbabe et e e eaeaeeeesaasnsbeeeeeeeaeaeeesesannnsnnenneees 352
AT A = 010 11 11 SRR PPROR 3E
25.2.2. 1ENUMEYPINGIN OCAML. ... ittt e e e e e e e ettt et e e e e e e s e s s s babbeeeeeeaeeeeeeaaanssnbenneeeeaaaeeesanannns 353
AT AR N -\ T PSSP 3E
25.2.3.1Simpletypesof DOUNAEMRITAYS.........ciiiiiiieiieie et e et e e e e e e e s e e s bt eeeeeeeeeeeeaannnnes 353
25.2.3.2ComplexandunbOUNAE@ITAYS oiieeeiiiiieieeeee e e e e ettt e e aeaeeaaaaaaebbeeeeeeeeaaeeesa s s nnessaeeeeeeaaaeaesaannnes 354
AT R TG 1S T =T Ko) [T o A PP RRT PSP 354
25.2.3.4Exampletypemapfor afunctiontakingfloat* andint..............oooouiiiiiiiiiiiii e 354
AT O e O F= 11T =Y R ROTSR 35
25.2.4.1STL vectorandStrNG EXAMIPIE. ... eeeieiee e ettt e ettt e e e e e e e e e e e bbb eeeeeaeeeeeesansbnbeneeeeeaaaeeas 355
AT O o O 1= 1SS = 1111][PSRRI 356
25.2.4.3C0MPIlINGTNE EXAMIPIE ... ettt ettt e e e e e e e e e sttt e e e e e e e e e e e e e e nbbete e e e aaaeeeeeeaaanne 356

AT STz 1101 0] (Y= (o PP RPN 357
SIS B 1= o1 (] O P 1T oYY YT 35°

SIS T 1B (=Yo3 (o) L1 1 (Yo 18 o110 N 357

25.2.5.20verridingMethodsin OCAIML........oiieiiiiiieiiie et e et e e e e e e e e et eeeaeaeeeeeesannnnereees 357
25.2.5.3DIreCtOrUSagEEXAIMPIE. ... it e ettt e e e e e ettt e e e e e e e e e e e e bt e e e e e e e e e e e e e nnnb e e eaeaaaaeaaa s 357
25.2.5.4CreatingdireCtOrODJECES. ... ittt et e e ettt e e e e e e ettt e e e e e e e e e e et e e e e e e e e e e e e e b rrraeaaaaeaaa s 358
25.2.5.5Typemapdor directorsdirectorin,directorout direCtorargouLeeeveieeerir i e e 359
AT R o o [(=To (o] 1T]AY] 1= AT o SRR 359
AT R (o [(=To (o] (0101 18YA 0 1=T0 T o PR TSP 359
AT SRS o [[(=Toio]r= 1o (0101 Y 1<) 1 AT- 8 NP PRRPRRT 359
AT o] (el =] 01 [0 1L U PPEURPRR 35

I AV A [Tz T aTo =T o 5 T 3
T R @ LYY= T 3
A I md (= [T AT F= T T3 TR 3¢

26.2.1Gettingthe rght NEAAEHKIIESceeiiieeee ettt e e e e e e e e s ettt e e e e e e e e e e eaannneereees 361
26.2.2CompilingadyNamiCMOAUIE.ueiiiiiie ettt e e e e e ettt eeeeeaee e e sa e aeebeeeeeeaeaaeeesaaannnsssbneeeeeaaaesesaannnnn 361
26.2.3Building adynamicmodulewith MaKeMAaKEE.............ccuuiiiiiiiieeie et e e e e e e e e e 362
26.2.4Building @ StatiCVerSIONOT PEIL......... et e e e e e e e st r e e e e e e e e e e aan 362
26.2.5USINGINEIMOTUIE. ...ttt e e e e e e e ettt ettt e e e e e e e e s aa e e tb e bt e eeaaaeeeeaeaannbnbeneeeaaaaaeeeaaaannn 367
26.2.6CompilationproblemsandcompilingWiIth Cr....ciiviiiee i e e et e e e e enbraeee e 364
26.2.7Compilingfor 64—Dit PIAtFOIMIS. ... e e e e e e e e e e e e e e eee s 365
26.3Building PerlEXtenSioNSINAENVINAOWS.ceiiiiiiiiiiiiieeee e e e e e e e e ettt e e e eeeeeaassaaaenebeeaeeeeeaaeeeaesaaannnbbsseeaeeaaaaaeaasannnsnes 366
26.3.1RUNNINGSWIG from DEVEIOPEISTUTIO. ... vvvverereieeeeieiiititiee ittt e e e e e e e ettt e e e e e e e e e s e ettt e e e e e e aeeesasannneanbeeeeeeas 366

A RS I 8 LS T Lo L) (1T o] 0] o] =T U PRPPRRR 366
AR N W A1) (o (VL= M A1 =) 7= Lo < T 367

A oY U o3 1o T PUPORR PRI 36
26.4.2GIl0DAIVATIADIES. ettt e e et — e e e e et a e e et et e e e e ea e aeerrr s 36°
A e 1 L0] 4151 v= |1 K- PSPPSRI 36
S B o101 (=] £ T PPPRRRI 3€
P o1 Y 1 (1 (01 11 | (=Y PSPPSRI 36
I] O a0l I oY == YRR 37
26.4.7C++ classeRNAtYPE=CRECKING. vtteeiitiiitee ittt e e ettt et e e sttt e e et e e e s st eeeesssaaeeeesssseeeeesssseeeaesssssneeeesnnsnees 371
AT R e O 01 V/=) 1 [0F=10 1Yo U] 103 10) 0 OO 371
AN e (O o 1] = L] T RO PTPUPPPRPRPRN 37
26.4.10MOdUIESANAPACKAGES. ... oottt et e e e ettt e e e e e e e e e sttt te ittt eeaaaeeaaaansbe e e aeeeeaeaeeeaaaannnbbeaeeeeeaaeeeeaeannnnnee 372
26.51NPUt ANAOULPULDATAIMEIEES ..o et e e ee ittt et e e e e e e e ettt ettt e ee e e e s s s e tee et eeeeteeeeaeaaasssbbeeeeeeaaeeeesaesannsasbseeeaaaaaeaeasaannnns 372
AN o] Sy ded=T o1 1 (o] /= o [T TP PPRRURR 37
26.7RemappinalatatyPeSVItN TYPEMADS.cvvuuieieeieetie e ettt e e e et e e e e e et ee e e e e eeaaa e e eesees b e eeeessata e aeeseesabaeaeesenraannns 376
26.7.1A SIMPIEtYDEMAPEXAMIDIE ... ettt e ettt e e e e e e e e e e e ee b be et et e e aeeeeae e e nbebeeeee et aeeeee e e annbrebaeeeaaaeeeaaaan 376
A Y Y € 1511 1= 1T o1 T PPRRPRPRRN 37

SWIG-1.3 Documentation

Table of Contents
26 SWIG and Perl5

26.7. 3TYPEMAVAIADIES. ... ettt ettt e oottt et e e e e e e s e s st ettt e e e e eeeeeeeaaana b be b et e e e e e e e e e e e e e nnnnreeteaeaaeaaeas 37¢
26. 7. AUSEIUITUNCIIONS.evti ettt ettt e e e e ettt e e e e e e e et e e e e e e e bt e e e e e s e s abn e e e e e e aaaseeesesbaaneeeeeessrannnenss 37"
26.8 TYPEMAPEXAMIPIES ... tteeeeeetee e e e et ettt e e e e e e e e e ettt et e eeeeeaeeaesaaaaabeeteeeeaeaeeeseaannnee e beeeeeeaeeeeeeaannsebbeeseeeeaaeeeeaaannnnrneenees 37
26.8.1Convertinga PerlSarrayto @ Char ™. e e e e e e e e e e e e e e e b 379
26.8.2REIUINVAIUESotiiiiiieeeee ettt ettt e e ettt et e e e e ettt e e e e e e aab e e e e e e estaa e e e e s e s s ban e e e e eesabanseeesestaanaeeesesssnnsaeeeens 38
26.8.3Returningvaluesfrom argUIMENTS. ittt e e e e ettt e e e e e e e e e e s e e n bbb e e e e eeeaaeeesasaanensbeeneeaaaaaeens 381
26.8.4ACCESSINAITAYSITUCIUNEIMEIMIDEES. ... ettt e e ettt e e e e e e e s e ettt e e eeaeeeesaa e nntbeteeeeeaaeeeeaeaannsnnreneeeeas 382
26.8.5TurningPerlreferenCcesnto C POINIEES.ccc.uuuiiiiiiieiee e e e ettt e e e e e e e s e et eeeeaeeeeesaaasnbbsaneeeaeaaeeeaesannnne 382
A R I o] o101 (=Y 1 =V aTo |1 To T TR TSRO 38:
A Sl (0 AV o = 1SS F TP EPRRRRT 3¢
A SIS I N ad (=) 110 01T P 1Y UUTOR 38
26.9.2StrUCtUrEBNACIASSWIAPPETS. ... e etteeeee et ettt ettt et e e e e e e e e ettt et e e ee e e e e s aanaabbeeeeeeeeaaeeeaeaannsbsbbeseeaeaeaeeeeaaannsennnees 384
A RS R 1@] o] =Tod (@ 1T 1T 6] 11 o PSRRI 38t
A RS I N =TS (To @ o] [T ol £ TP PRRRPR 38!
A IS] d 0)V U o1 1 T TR T RSO PPR 38
Ao o1 101 4 1=) 117- 1o (o =SOSR 38
26.9.7Modifying the PrOXY METNOUS. . ..vue ettt et e e e e e e e e e e e e ee b e e e e e e e saba e e e s eesbaaaeeeesessransaeeeees 388
A T 0) Ao [o T To = To [o [T TeT T | o=y o Koo Yo L= U PPPRRRPT 388
AN (= 1 aTo l nd w | OSSR 3
27. 1 GeNEratiNOPHP AEXIENSIONS ... tttttieieeeee e e e e e e ettt ettt e e e e e e e s e s e abatte e eeeeeaeaeasaane et beeeeeeeaaeeeesaaannsbesseeeeaeaeeeeesannsnnreneees 390
27.1.1BUildiNg @108daDIEEXIENSION uutieeiiiie e e ettt e e e e e e ettt e ee e e e e s s e e e bttt e e e e eaeee e e e e nbbrbeeteaaaaeeeeeaaanne 390
27.1.2Building eXtenSIONINEO PHP.... ..ottt e e e e et e e et e e e e e e e aa e n et bt be e e e e e eeeeaeeaannnbbenraaaaaaeens 391
27.1.3USINGPHPAEXIENSIONS ... ettt e e e e e e e e e ettt ettt et e e e e e e s aa s aetteteeeeeeaeeeeaaaannsbebeeaeeeeaeaeeesaassnbesaeeeeaaaeeesasannnnnnes 392
A T TS (od nd w | o T 1 (=) 1 7= (ol OO EPPRPTPN 39:
A YA L 000] 4151 7= 11 K= PSPPSRI 39
27.2.2GI0DAIVAIADIEScevii ettt e e e e e e e e e et et e e eeera e e eera e raaaran 39!
ARG V| o3 1o TP OSRPRRI 39
A L@ /=11 o - Vo |10 e SRR PP 39
Y R Rl o101 (=] 652 1010 | =) (=) (=) 4101 OO 395
27.2 6 IUCTUIE AN CH 1 ClaSSES . uuuu e ieieitiee e ettt et e ettt e e e e et ee e e e e e e et ee e e e e e sta e e e e e e s baa e eeeess b e eeseesabaneaeesessaannnns 396
27.2.6. LUSING mNIOPIOXY: - tttttteeeeaeaeaesaaauueteeeeeeaaaaaeasaaasnsteseeeeeaeaaeeaasaaassssbeseeeeeaaeseesaaasnsbssseeeeaeaeeesasannsssnbnseaaeaaaeaans 397
27.2.6.2C0NStrUCIOrSANADESIIUCTOIS. .. .uvuui e eeieeitee e ettt e e e e ettt e e e e e et ee e e e e s eeba e eeeesesbaseeeesssaanaaeesessbanaeeeeernes 397
27.2.6.3StatiCMEMDBEIVALADIES.coviiii ettt e e e e e e e e e e e e e e e e earaan 398
27.2.6.4StatiCMEMDEIEUNCHIONS ... e eeeeeite e et e ettt e e ettt et e e e e et e e e e e e e aab e e e e s eetbanaeeeesessbansaeeseesssnnseeeeenes 398
27.2.7PHP4PragmasStartupand ShUtdOWNCOAEcooi it e ettt e e e e e et e et e e e e e e e s e e e eeeeeeeas 398
A IV [CI= 1 aTo I nd 1 (SRR 4
oI (= 1100110 =V =T OO 4(
28. 1. TRUNNMINGSWVIG ...t tteeeettee e e e e ettt et e e e e e e oottt ettt e e e e e e e e s s ante e te e eeeeeaaeeeesa e s s ebetbeeeeeeaeeeeesaannnbesseeeaaaaeeassssnnnnnes 40(
28.1.2Gettingthe rght NEAAEHKIIESceiiiiiee ettt e e e e e e s e e e bttt e e e e e e e e e e aaannneereees 400
P T 1 LS T Lo Y010 2T Yo [= TSP PRURPRRR: 401
A I T o (o] O L @8 ol Vi F= o o1 T PR 40:
2 S T2 N o Lo [1 1= PURPR 40
ST V| o 10] 41 PPN 40
28.2.3GI0DAIVATIADIES. ettt et e e e et e e e e et a e e e et e e e rea e aerrrr s 40:
28.2.4C0oNStantBNdeNUMEIAEAYPES. .. .eiiiee e ittt e e e e e ettt e e e e e e e e e et be b e eeeeaaaeeaesaaannnbbe et e eeaeaeeeeaaannnaeereees 402
28.2.5C0ONSIUCIOIEINAD ESIIUCIONS. .1uu i eeeeietiie e e ettt e et e e ettt e e e et et eeeeeeeee bt e eeeeessba s eeseesbaaaseesessbanaeesessstansaeeseeranns 402
A I) v= L1 To 1V [T 10 1= T PPN 40:
AS IS A TAY A (= T o N YA (o o TR OSSP 4
A I @ Y=Y A2 PSPPI 4(
A A (= 1100110 =V OSSP 4(

SWIG-1.3 Documentation

Table of Contents

29 SWIG and Python

29.2. TRUNNMINGSWVIGt teeetettee e e e ettt e e e e e oo oottt ettt e e e e e e s e s s nte e be et e e eeaaeeeeaa e s s ebetbeeeeeeaeeeeesaannnbbeseeeaaaaeeesssaannnnne 40:
29.2.2Gettingthe rght NEAAEHKIIESceiiiiieee ittt et e e e e e e s e e ettt e e e e e e e e e e aaannneereees 405

29.2.3CompiliNgadyNamiCMOAUIE.ueiiiiiie ettt e e e e e e ettt e e eeaeeeesa e ae e beeeeeeaeaaeaesaaannnsssbneeeeeaaaeeesaannnnn 405

A I L ST T o [y (1 1] U P TR PRRRR 40
A IR 1S = L1 Tod 10142V TR PPPPRPURPR 40
29.2.6USINGYOUIMOAUIE.ceeeiieeeeie ittt ittt e e e e e oottt ettt e e e e e e e e s e tte et e eeeaaeeeaeaaanesbbseeeeeeaaeeesaaasnsbsbeeeeaaaaaeaaesannnnnes 40¢
29.2.7ComMPIlatioNOf CH4 EXEENSIONScii ittt et e e e e ettt e e e e e e e e s e et bttt e eeeaaeaeaa s e nbsbaeseeeeeaaeeeeaaannnnrnreeeeeeas 408

29.2.8Compilingfor 64—Dit PIAtFOIMIS. ..o e e e e s et e e e e e e e e e e eeeeas 409

29.2.9Building PythonEXtenSioNSINAENWVINAOWS.uuuiiiiiiiieeeee ittt eeeee e e e s e seieebee e e eaaaeeeesaaannnreseeeeeaaaeaeaaaannns 409

29.3A tour Of DASICC/CH+WIAPDPING: ..ttt etitteeteeeettereeeestteeeeesstteeeeasastaeeeesasteeeaesaasteeeeeaastsseeesasteeeesaassseeeesassseeeessssseeeeesnssees 410
A R I 1Y, o Yo V][RR 41

A R I U1 o3 1o 1 PRSP 41
A R R €] o] o T | AV T =1 o] [T PPTORR 41
29.3.4CONSIANTEINTENUITIS .. .uuu i eeiieiti e ee ettt et e eeeeeta e eeeesestt it eeeeeesaaaeeeeestaa e aeeessstanseesesssanaaeesssstanaeeesesstnnseeesenranns 412
A R I SY o 101 (=] =TT PPPRRR 41
A R SIS 11 (o1 11 | (=Y PSPPSRI 41
A R I A 0% s ol I oYL= YRR 41
A R <1 O 11101 117-1 o =TT PPT PR 41¢
29.3.9PointersreferenCesyalueS ANUAITAYS.cc..uuueiiiiieeee e et ettt et e e e e e e e s e e abebeeeeeeeaaaeaesaaasnsbeseeeeeaaaeeesesannnenes 416
29.3.10C++ 0VErOAUEAUNCLIONS.ovvteeeeeieite e e et ettt e e e ettt e e e e e et e e e e e eet e e e e e s eebaa e eeeeessbanseeseestanaseessestansaeeeeesees 417
A TS T N O 0] =T = (0] £ O PP PP 41
A S T Ol =V 11T 01 (o] 1 T PR PPPUPPPURPPTOPIN 41¢
AT N S (O (T 1410 = (S YRR PPRRPRTRRN 42(
A R T O T 1 =111 01101 (=1 £ PSSP 420
29.3.15C++ ReferenceCountedObjectS(ref/UNIer)....... .. e 421
29.4Furtherdetailson the PYythonClaSSINTEITACEuuueiiiiiiie e e 423
A N 0V o F= 1SS = PR RPN 42.
29.4.2MEMOIY MANAUEIMIENL. ... eeeeieeeeietetetat oo e e e e e e e e e e e aeeeeeteteeeaeasbebebbeb s e oo oo oo oo e e e e eeeeaeaeaeeeeeseasbnsbbbsbnbnnnn e ns 424
29.4.3PythoN2.2 ANACIASSICOIASSES. ... vtteeettetieee e e ittt et e e e e e e e e e ettt e e eeeeeessaaan b beeeeeeeeaaeeesaaannnbssbneeeeaaaaeaesaaannns 426
A RS @1 (o 1STS P TaTo 0 F= Lo = o Yo VA0 L0 1 0] 0TS o P PEURR TP 426
A RS S g T o] T T o [T (Yo () T PR ESRR RS 42¢
A RS B[(=o (0] ol = Fo 1Y =)= VPPN 42
PAS ISR @Y aT=T 6]l 0=V aTo [o o] [=Tod (o [S1S] 1 8 [od 1T o FEN RPN SO P PRPPR 428
29.5.4EXCEPUONUNIOIINGeie ettt ettt e e e e e e e e oottt et e e e e e e e e e e e aa s aatb e teeeeeeaeaeesesannnbsbbsseeeeaaaeeeeaaannnnnnes 42¢
A RN O)V/=1dal=Y: (e 1 a 0 (o100 (<) o] (o - | SO 429
A RN CX Y/ 01T 1A= oL T TSR SRURPPP 42
A R4\ 1Yot | F=T =TT OO 42
29.6 COMMONCUSTOMIZATIOEALUIES .. . eeeeeevie e e e ettt ee e e e ettt e e e et ettt e e e e e e et e e e e e e e stb s e e e s e e baa e eeaeessbanaeeseesabnaeessssstnnsaneeees 430

29.6.1C/CH+NEIPEIMUNCHIONS. ...ttt e ettt e e e e e e e e e ettt ettt e e eaeeeaaaannsbe e e et e eeaeaeeesaansnbesaeeeeeaaeeesassnnnnnnes 430
29.6.2Adding additioNalPYINONCOAE. ...ttt e e e e e e s ettt e e e e e e e e e e e n e eeeeas 431
29.6.3C1asseXteNSIONNVITN YOEXIENM.oii ittt et e e e ettt e e e e e e e ea e e e e e e e sab e e e e s eesbaa e eeesessbanaaeeeees 432
29.6.4ExceptionhandlingWith Y0@XCEPLION.utiiiiieiieie e e ettt e e e e e e e e ettt et e e ee e e e e e sansaebeeeeeeeaaaeeesaaannneeeeeees 433
A A o 1SX= a0 L (=Tod 0 0 0 U 1= PP PR 43
29.7.11INPUt ANAOULPULDAIAIMIETIELS teeeeeeeee e et e e ettt et e e e e e e s e ettt te ettt e aaeee s e s s saebeeaeeeeaeaeeesaaannbbasaeeeeeaeeeeeesannennenes 435
A ST 1111 o] 1=T 0 To 10 (=T TR PPRRPRTRRN 43
29.7.3UNDOUNAEAT ATTAYS. .. .eteettieeeeei ittt et e aeeeaaeaaa sttt teeaeeeeeaaaaesaa e s s teeeeeeaeeaaeeaaeaannsssbeeeeeaeaaeeeesaasssbesseaeaaaaeeesanannns 437
A A S ([To] =V T | T TR PPRRPRTRR 43
A AR SY N =\ T PP UU PP 45
A A1) (1010 =1 = Y SRR PP 43
A A AN I Y= o] 1= £ T TP TR URPPP 43
A IR I Y] 01T 110 F= oL ST TRRPPP 4

SWIG-1.3 Documentation

Table of Contents

29 SWIG and Python

29.8.3TYPEMAVAIADIES. ... ettt e ettt e e e ettt e e e e e e e s e s st bbbttt et eaeeeeeaa e an b be ettt e e e eee e e e e e e nnnnnretteaeaaeeaeas 44(
29.8.4USefUl PYtNONEUNCHONSciiiiieeei ittt e ettt et e e e e e e s ettt ettt e e eeeeaee s nnnbebeeeeeeeaeeeeeaaannnnnbsbeeeeaaaeans 441
29.0 TYPEMAPEXAMIPIES .. ttteeeeeeee e e e e e ettt e e e e e e e e e ettt ettt e eeaeeeeaaa s abbee et e eeeeeeeesesamnnee e be e e e eeaeeeeee e nnbbbeeeeeeeaaeeeeaaannnnrneneees 44
29.9.1ConvertingPYthONISt 10 @ CNAI™ ™ ... et e e e e e e e et e e e e e e e e e e eeeeas 442
29.9.2Expandinga Pythonobjectinto multiple argUMENTS.oc.uuiiiiiiiieee et e e e e e e e e e e e e e e ennneees 443
29.9.3Usingtypemapgo retUrNaIrQUMENESeeeetiiiiiitetieeeteeeeeesesaaseetbeeeeeeeeaaaeesaaaaneeteeaeeaeaaaaaesaaasnsbsaneeeeaaaaesassanns 444
29.9.4MappingPythontupleSinto SMAITAITAYSicc et iiee e e e e e ettt e e e e e e e e e ettt eeeeaaeeesesaanbsbaeseeeeaaaeaeaaaannns 445
29.9.5MappPiNgSEQUENCEED € BITAYS . .eeeiiiiuuutttteeetettaaaeaaaaaaenteeaeeeteaaaaaaasaaaneatbeeeeeaaaaaeaesaaannbsseeseeeeaaaesesaaannnessseeeees 445
PAS e 6] o101 (=Y 1 =TT |1 R TR PO R PPI 444
29. 10D OCSINOEEAIUIES ... eeeeeeeteee e e e sttt e e e e e e e e e ettt e eeeeeaeeaesa s s aebe e et e eeeaaeeesa s s s neaebeeeeeeaeeeeeeaannsnbbseseeeaaaeeeeaannnnnsnnneees 44
A I O 1Y/ oo [= [Yoy 1T T USROS 447
A RO) (== DL =T =101 (0o (oo TP PP PP PP OPPPRPRPPPPPR 448
29.10.2.1%feature("aUtOAOC™ 0™uu ettt e e e e e e et e e e e et e e e e e e et a e et aera e e e e arr s 448
A I Ay) (=F= 110 | (=) (=10 100 1o [0 o K PR 448
PAS I N O J0ZRS /1 (== LU T (=Y (=101 (o (o Toule [oToxS] o [N NP SUUPR SR 448
29.10.3%F0ALUIE ("AOCSIIING) - vttt tuetteeee ettt ettt ettt e e et e 4ttt e e 4kttt e 4o et e e et e e e e s e e e e e b et e e e e e e e e e 449
A I Y1 o]] o Tod 2= Lo =S TP EPRRTR 44
BTSN TAY A (= T o U o RPN 4
IO (= 110 0T 10 =V =TSR PPPO 45
OO I T T T 0o 1YL RO PPRRPRTRRN 45
30.1.2Gettingthe rght NEAAEHKIIESceeiieeeee ettt e e e e e e s e e e bttt e e e e e e e e e e e e annneeeeees 451
30.1.3CompiliNgadyNamiCMOMUIE.uueiiiiie ettt e e e e e ettt e e e e e e e e e e sa e e bt et e eeeeaaaeaesaaannnbssbneeeeaaaaeaesaannnnns 451
30.1.4USINGYOUIMOAUIE.ceeiiieeeeie ittt et e e e e e e e ettt ettt e ae e e e e s e e etebee et e eeaeeeaeaannesbeseeeeeeaaeeeeaaansnsbssneeeaaaaeeaaeaannnnne 452
BT 1S = L Tod 11T T TP PPPPRPURPR 45
30.1.6CoMPIlatioNOf CH+ EXEENSIONSei ittt e e e e e ettt e e e e e e e e e s ettt e eeeaeeeesa s s nnbebbeseeeeaeaeeesaaannnnbnseeeeeeas 453
30.2Building Ruby ExtensionsiNdeWINAOWS O5/NTceiiieeeeeieiitieteeee e e e e e e e e s ettt e e e e e e e e s e s s nabbb e e e e eeeeaeeeeaeaannneneeees 453
30.2.1RUNNINGSWIG from DEVEIOPEISTUTIO. ... vvvreeetieeeeeieiiititee ettt e e e ettt e e e e e e e e e s et e e e e eeeaeeesasannnebnbeeeeeeas 453
IO R I a1 R U])Y (0 e O[O 1Y =1 o] o 11T PSPPSR 454
TR T 1Y o o [1= PSP 45
1T O R A U [od 1o] T PPN 45
TR R AV T r= o] (=Y T 1< T SRR PRRURTR 45!
ORI L 0] 4151 v= 101 K- PSPPI 45
O R SY o 101 (=] £ T PUPPRRRN 4E
IO R SIS 11 (o1 10 (= TSP 45
O R I OF ol oYL YO PUTPRR 45
O R <1 0%l 2] =T 1 7= 1 o] =TT PT PR 45¢
30.3.9C++ OVEIOAUEATUNCLIONS.evvuieeeeieeete e e e e e ettt e e e et eet et e e e e e eetb et e e e e ee st e seeesesbaaaseeeesssannseesesssannaseessestansaeeeeesees 460
TS T K0 Ol @ 01T -0] T TSRS RU PP 46’
BT O 0T 1111 1S] 0= (o =1 TSR 461
BT T 2 O (T 141 0] = (S YRR PPRRPRTRRRN 46.
TR T O T 1 =111 0] 101 (=1 £ PSP 463
30.3.14Cross=LanguagBolyMOIPRISITI.uuiiiiiiiiee et e e e e e e e ettt et e e e e e e e e e e e nbnr et e e eaaaeeeas 464
TS 1 o =Y o T 8 0 (0 T O EURP TR 464
BCT 0 5 N = 0 11 o TR 4
30.4. LD fINING ALIBSES. ..ttt e et e e ettt e e e e e e oo ettt et e e e e e e e e e e aabbebe et et e eaeeeeeaaRbebetteeeteeeeeeeaaannbanbeeeeeaaaeeeaaaanns 46"
IO B nd (=0 [Tor= 1 (= Y 1= (V0T o O PRTRR 46F
T e] 27 Vo |11 o o TSP TR PO 46
O L T 1 =T £ T a0 Y=l 1= o TR 46¢
30.5INPUL ANAOULPULDATAIMEIEESee e e et ittt et e e e e e e e e ettt ettt e e e e e e s e s e tee et eeeeaeeeeeesaasssbeeaeeeeaaaeeeaeeaannsssbseeeeeaaaeeeesaannnns 467
T o] S ded=T 01T /= o |11 TP PPRRURTR 46
30.6.1UsIiNgthe Y0eXCOPLIOMIIECLIVE.eiii ittt e ettt e e e e e e e e e ettt e e e e e e e e e s e e e nnbebae et e e eeaaeaeeaeannnbnbeeeeeeas 468
30.6. 2R AISINGEXCEPLIONS. .. etttetteeetee e e e et e e ettt ettt et e e e e e e e e s e teeteeeeeeaaeeaa s s s e betbe e eeeeaeeeeaeaaannnbbebeeeeeeeaeeeee e e nnnnnteeteaeaeaeaeas 47(

SWIG-1.3 Documentation

Table of Contents

30 SWIG and Ruby

T TR | o (ed=T o1 [0 o P TS TSP PRPRPRRT 47
OO A LY 0= 110 F= oL S PRSPPI 4
T Y P LA EST= WY 01T 1= 1 1SS PPPERURPRRRN: 471
T2 U] 01V A 1Y 01T 1= T PPRUPRTRRN 47
TR Y 01T 00 F= Yo N7 V= o] (USRS PRPRTT 47:
0. 7. 4AUSEIUIFUNCLIONS.cvvtiiieeeeeitee e e e et e e e ettt e e et et e e e e e e e et b e e e e e e e s et eeeesee bbb aeeesssbaaneeeesssbbanseeesestasneeeessnranns 47¢
30.7.4.1C Datatyped0 RUDY OBJECES .. ueeiiiiiieee ittt e ettt e e e e e e e e e ettt e e e aeeeeeesannnnbeeseeeeaaaaaeaanan 474
30.7.4.2RUDY ODJECLSIO € DAIAIYPES. . veeeeetieeeeeeieeiiiteiee et e e e e e e e e e ettt et e e ae e e e s e aannebe e e eeeaeaeaeeesaaananbesseeeeaaaaaaaaean 474
30.7.4.3MACIOSION WALUE ... ittt et ettt e e e et e e e e e ettt e e e e e ee b e e e e eessbaseeseessaaaaseesesstansaneeees 474
LA ol =] 01 1[0 TP ERUP PSR 47"
A (=] =1 (0] £ PSP SRP 471
30.7. 5TYPEMAPEXAMPIES. ... e e ettt e e e e e ettt ettt e e e e e e s e s aat bt ettt teeeeeeeaeeaanan bt ettt eeeeaeeeeaeaannbnaeeeeeaeaeaeeeaaaannnene 47¢
30.7.6Convertinga RUDYAITaYto @ CNAI™t e e e e e e et e e e e e e e e e e e annb e e 476
30.7.7Collectingargumentsn @NASK.........oooi i e e e e e e 477
T AR] o 101 =Y 1 =T |1 SRRSO 48
30.7.8.1RUDY DAtAtYDEVWIAPDING - eeeeeeeeeeeeeseiaiettteeteeeeaeaeeeaasaanteebeeeaaaaeaaaaasaaansntaseeeeeeaaeaeaessaansnstssneeeeaaaeaesesanns 480
30.7.9Example:STL VeCtortO RUDY AITAY. ..ottt ettt e e e e e e e e e st eeeaaeeeeeaaannneeeeeees 480
TR ST V7=V aTot=To | o] o) o3P PEERPRR 48
TR @] oTY =1 o] (0 1Y7=T0 (o =T |10 o TR U PP PRPPPPPR 482
30.8.2CreatingMulti=MOdUIE PACKAGES. ueeeiiiiee ettt e ettt et e e e e e e s et eeeeaaeeeeaeannansbeeeeeeeaeaeens 482
30.8.3SpeCifyingMIXiN MOAUIBScciiiiieiie ittt e e e e e e e ettt e e e ee e e e e e e nnabbe e e e eeaeaaeeeseaannnbnneeeeeeas 484
IO =TT AYAY F= e Lo [y 1<) o TSRO R PUPPPPPRPPRPTROIN 48!
30.9.1Mark and SWeepGarDaAQE OIECTON eiiiie ettt e et e e e e e e st e e e e e e e e e e s e e nnb b e e eaaaaeaeaaaan 485
TR 2@] o] =To (@1 1T] 11 o PSRRI 48"
TSR 1@] o] =T ox I 7= 1o (o TR TP 48
30.9.4AMAIK FUNCHIONS. ...t i ieeeeetiie e e ettt et e e e e e ettt e e e e et et e e e e e s ee st e e e e e e e s sb s e e e s e e baa e eeessabannaeesesssaanaeessssbananeseernes 49(
O Y e (=) b 1411110 0 OO ETPPP 49:
N VA (2= Vo o) TR 4
I I (=Y 110 Y10 =V =T OO PPPO A€
31.1.1Gettingthe rght NEAAEHKIIESceiiiieee ettt e e e e e e s e e e bttt e e eeeaeeeeeaannneereees 496
31.1.2CompiliNgadyNamiCMOAUIE.ueiiiiie ettt e e e e e ettt e et e e e e e e s e e ae b beeeeeeaeaaeaesaaannnbssbneeeeaaaaeaesaaannnes 496
O3 I I 15 = LT 11T T PRSP PPPPRPURPR 49
O3 I I O ST T Yo T8 2T Yo [= O PEPRPTRRN: 497
31.1.5CoMPIlatioNOf CH4 EXEENSIONScei ittt e e e e e ettt e e e e e e e e s e et bttt e e eeaaeee s e s s nnbebaeeeeeeaaaeeesaaannnnbnreeeeeeas 498
31.1.6Compilingfor 64—Dit PIAtFOIMIS. e e e e e et r e e e e e e e e e e n e eee s 499
31.1.7Settinga PACKAGEIIETIX ... ettt e et e e e e e e e e e e e e b a e b e e e e e e aeee e e e e nnnenaaees 499
O R 1 ST Lo T T 41T 0T Lo < USRS PRPRTT 49¢
31.2Building Tcl/Tk ExtensiongiNdeWINAOWSOS/NTuuuiiiiiiieeeeie ittt ee e e e e e e s e s st e e e e e aeeeesesannbsbaeeeeeeeeaaaeaaaannns 499
31.2.1RUNNINGSWIG from DEVEIOPEISTUTIO. ... vvveeeeteieeeeieiiititee ettt e e e e e e e ettt e e e e e e e e e s e ettt e e e e e aaeeesaeannneenbneeeeeas 500
B I ST T Y AN R PPEUPPPRRN 50(
31.3A tour Of DASICC/CH+WIAPDPING: ..ttt etiutreteeeitteeeeeestteeeeesatteeeeaaastaeeeesastaeeaessssbaaaeeaastseeeesasteeaeesassseeeesasssaeeessssseeeeesnssees 501
G I T 1/ o To [1= 5C
G IR A U (o3 1o] T PRSP 50
NIRRT €] o] o T 1AV T =1 o] [T PPT SRR 50:
31.3.4CONSIANTEINTENUITIS .. .uuu i eeieeeti et e eeeett et e eeeeetat e eeees e sttt eeeeessaa s eeesestaaaaeesesstannseeseessaaaaeesssssanaeeeserstnnsaeesenranns 502
N IR ST o101 (=] £ T PPPRRR 5C
N R SIS 11 (o1 11 | (=TSP 50
I IR I 0% ol oYL YOOI 50
N IR IR <1 O 1] 01 117-1 o =TSRRI 50°
31.3.9PointersreferenCesyalueS ANUAITAYS.cc.uuuueiiiiieeae e ettt ee e e e e e e s e s abebbeeeeeeaeeeaeaaaasnsbeteeeeeaaaaeesesannnenes 508
31.3.10C++ 0VErOAEAUNCLIONS.evvueeeeiieiteeeee ettt e e ettt e e e e e et e e e e e eet e e e e e e s es bt e eeeeessbaaseeseestanaeeessestansaeeeeesnes 508
O I T O 0] 01T -1 (0] U PPRRPPPRRN 50

SWIG-1.3 Documentation

Table of Contents
31 SWIG and Tcl

O I N 2 O 1T 11 11T 0 Y- (o =1 TSP RR TR 51(
O I T S (O (T 14101 = (S R PPRRPRPRR 51
N IR T O T 1 =11 0] 101 (=1 £ PSP 511
31.4Furtherdetailson the TCl CIASSINIEITACE...........uuei ettt ettt e e e et e e e e e e et e e e e s eet e e e eeesaabnsaeeeees 512
O I 0)TV o F= 1SS = PR RR PP 51
31.4.2MEMOIY MANAUEIMIENL. ... ieeeeeeeeietetetae e e e e e e e e e e e e e e aaeet et eeeeeaeasbebebbeb s e oo oo oo o e e e e e e e aeaeaeaeaeeeseasbnsebbsbnbnnnn e as 513
31.51INPUt ANAOULPULDATAIMEIEES ...ee et ettt ittt et e e e e e e e ettt ettt e ee e e e s e e e bee bt e et e eeeaeeeeaaasssbeeeeeeeaaaeeesaeannnsssbsseeaaaaaeeeesannnnns 515
G I C] Ced=T o1 (o] /= T o [T TP PPERURT 51
O A Y 0= 110 F= oL S PR PSRRI 5.
B A Y T L EST= WY 01T 1= 1 1S PPPRPURTRRRN: 51¢€
B A2 ol Y/ 01T = TR RR PP 51!
B AR Y] 01T 00 Fo Yo N7 V= o] (USRS 52(
31.7.4Convertinga TCl ISt 10 @ CHAI ... et e e e e e e e e et e e e e e e e e e e s e nnnnbeebeeeeaaaeeas 521
31.7.5ReturNiNQVAlUESIN @FQUMIENES. .. .eieee ettt ittt eee e e e e e e e s e ettt eeeeeeeesesaansebbeeeeeeeeaeaesaaaasnsbssbeeeeaeaeaesesannnenrenneeeas 521
3. 7. BUSEIUITUNCLIONS.evvi ettt ettt ettt e e e ettt e e e e e e et b e e e e s e e ta e e e e e s e s aban e e e e e e aabseeesesbaanaeeeeessrannaess 52:
B A 451 = T To F= 10 1Y/ 0 1=T 010 = T o USRS PRPRTT 52:
I AR S o 101 =Y o =T |1 o TR TR PO P PPI 52:
31.8Turninga SWIG ModuleiNtO @ TCI PACKAGE. ... ttiieeei ittt ettt e e e e e ettt e e e e e e e s e e et beeeeaeeeaeeeas 524
31.9Building newkinds of TClINtEIfACEIIN TCI)....uvuuiiieiiiiiiiie ettt et e e e e e et e e e e e et e e e e e e eaba e e eeseesbanaaeeaees 525
O IS 0)TV o F= TS U PETRR PP 52
A =TT [T L0 TS 1L PR UPPPPPPPPRRRR 5
T [oY 18 o3 1o o FO ORI 57
A (=] (=Y 1 1T R RSP RTPPPPR Y
GRS I 1= = o T o (= RSP RPPRPRPR 52
] (Yo N 1110 11V, 0T =) APPSR 52
A T N =] 0] (0101114 T F OO U PP TP PRPPN 53
A = 1511 11 P U PP ORI 5G
Y e | o= 1<) I (=1=Y TSNP 53
32.4. AAHITDULE NAMESPACES. .. ettt eeeeei ettt et e e e e e e e e e et te e et eeeeeeeesaa s e ateeteeeeeaaeeesaeaannsbebeeeeeaeaaeesesaassnbesbeeeeaaaeeesaaannns 535
YA 1o VA0 1] o To] I 1= o] =PTSRS 53!
N N N T (= LU0 (= 0 [(=1 1AV DU 536
Y B A Ofe o (ST CT=Y =] =1 110 TP 53
32.4.8BSWIG ANAXIMLceeeieitei et e e e ettt e e et e et e e e e e e e e ab e e e e e e e st b s e e e s ee bbb e eaes s s baan e eeeesssannseeesesbannneeeesenranes 53¢
32, S P IMILIVE DALASIIUCIUIESvu e eeeeetiee e e e ettt e e e e e e e e e e e e e e ettt e e e e e e tab e e e e s e e baa e e eeesesbaa s ee s e e s aaa s eessaabanaeesesssbanaeesenrannnnns 53¢
ST 1S (1o [RSO PPPPRRRRRR 58
ST b= o) £ 1= VPSPPI 53
ST T 1 £ PPUPRR Y
YA @fe] 101001010 0] 1<) r- 1 U[0] 0 1S PSP PPPERURTRRR: 541
32.5.51teratingoVver ListS aNAHASNES. ..ottt ettt e e e e e e s et r et e e e e e e e e rn e eeaeas 541
ST 211 O EPRPPRS 5
32.6 NavigatingandmanipUIAtiNODAISEIIEES.uueeiieiieeee e e ettt e et e e e e e e e ettt e e eeeeeaesa s s nnbesbeeeeeeaeeeaesaannnnsbanneeeeaaaeens 542
32. 7WOrKING WIth @EEFDULESeeeeeeeiiee et ettt e e e ettt et e e e e e e s ettt et e e e e e e e s s s e nnbbsbe e e e eeaaeeesesansnnbseneeeaaaaeeesaaannns 54/
AR H Y] 01151 A1 (= 1 PO PP 5¢
YR < T S ([aTo =T a edo e [1aTe o) iV 01T PP ESURT TR 545
YR S T2 Y] o 1= oo 10 1S) (0 o311 o PSR 54¢
A TG 1] 611 (S £ F RO PUPPPPURPRPRN 54
YR S I Y] o 1=Te (=) =V aTo [T aT=Y 1T = PSRRI 547
R S Y= |11 1 T PUPPRRR 54
R S T ST W11 o0 0T 1o o PR RRURTR 54¢
IS] =T =11 1121 (=) £ OO 5
32.10Writing @ LanQUAGEVMIOTUIE.coiiiieei ettt e e ettt e e e e e e e e e s e ebe bttt e e eaaaeaesaaassnbbsbeeeeeeaaeeeseaannsbsbeneeeaaaaeaaens 550
32.10. 1EXECULIONMMIOUEL ittt ettt ettt e e e e et e e e e e e e ettt e e e e e st aa e e e e s e s baa e eeeeessban s eeseesaanaeeessssransaneeens 55(

SWIG-1.3 Documentation

Table of Contents

32 Extending SWIG

G X 0 225 = 11T o 11 PRSP PPPRPURPR 55
32.10.3COMMANAINE OPLIONS ... ettt e e e e e e e e e bt bttt e teeeeeesa s e aetbeeeeeteeaeaeesaaannsbsbeeaeeeeaaaeeesaaassnbbsaeeeeaaaeeesasannnnnnes 551
32.10.4CoNfigurationanNdPIEPIOCESSIMG. veetuerrereeruttretesatteeteeaassbeeeesasbb e e e e aassbe e e e e asbb et e e e ansbe e e e e anbb e e e e e annbreeeeaannees 552
32.10.5ENtry POINtt0 COABUENEIALION.uueeieiiieeeeeee ettt et e e e e e e e e ettt et e e e e e e s e e e neabbeeeeeeeaaeeesseannnbssneeeeaaaeeeaeaanns 552
32.10.6Module /O andWrapPREIrSKEIBTON.ueiiiiiiieieeeee ettt e e e e e e e e e et e e e e e e e e e s e e aatbeteeeeeaaeeeeaesannsnnbeeeeeeas 553
B X O I Mo (oY =T Koo Lo =T o [T 1= = L () O EUPPRR P 553
32.10.8CONTAGUIBLIONTIES ee ettt ettt e ettt et e e e e e e e e e e e bttt et e e e e aeeeeae e e nnbbba e et e aeaaaeeeeaaannnnene 55z
AN (O N LT 0TSt STU o] o o o APPSR 55k
32.10.10StandardiDrary filES.........oii ettt e e e e e e et et e e e e e e e e e e b rbarraaaaaeeeeaeaannaee 555
AN O = T 4] 0] S T L0 | (oS (o= Lo o U RSP OPR 555
I O I 2B o Yol U /11 0] 7= ([0 SRR 55k
A N B Y/ 01T 1T o TSR UR ORI 5t
O I I (0)Y o] = TS T PP PPPRRRPR 55!
YA W TN (o (] (ol oY= L ET= ((=T=T 0100 =P PPETURTR 55E

Xviii

SWIG-1.3 Development Documentation

Last update : SWIG-1.3.28 (February 12, 2006)

Sections

The SWIG documentation is being updated to reflect new SWIG features and enhancements. However, this update process is
quite finished—-there is a lot of old SWIG-1.1 documentation and it is taking some time to update all of it. Please pardon our dt
(or volunteer to help!).

SWIG Core Documentation

» Preface
« Introduction

« Getting started on Windows
» SWIG Basics (Read this!)

* SWIG and C++

e The SWIG preprocessor

e The SWIG Library

» Argument handling

» Typemaps
« Customization features

e Contracts

« Variable length arguments
» Warning messages

» Working with Modules

Language Module Documentation

« Allegro CL support
o C# support
 Chicken support
 Guile support

« Java support

e Lua support

« Common Lisp support
» Modula3 support

» MzScheme support
» Ocaml support

« Perl5 support

* PHP support

« Pike support
 Python support

« Ruby support

e Tcl support

Developer Documentation

» Extending SWIG

SWIG-1.3 Development Documentation 1

SWIG-1.3 Documentation

Documentation that has not yet been updated

This documentation has not been completely updated from SWIG-1.1, but most of the topics still apply to the current release.
Make sure you read the SWIG Basics chapter before reading any of these chapters. Also, SWIG-1.3.10 features extensive
changes to the implementation of typemaps. Make sure you read the Typemaps chapter above if you are using this feature.

» Advanced topics (see Modules for updated information).

Documentation that has not yet been updated

1 Preface

« Introduction

« Special Introduction for Version 1.3
* SWIG Versions

« SWIG resources

« Prerequisites

« Organization of this manual

« How to avoid reading the manual

» Backwards Compatibility

* Credits

o Bug regorts
1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces tc
C and C++ programs. Originally developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Lo
Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5
supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and &
constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for
solving these types of problems. SWIG simplifies development by largely automating the task of scripting language
integration——allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is usec
in a wide variety of applications——in fact almost anything where C/C++ programming is involved.

1.2 Special Introduction for Version 1.3

Since SWIG was released in 1996, its user base and applicability has continued to grow. Although its rate of development has
varied, an active development effort has continued to make improvements to the system. Today, nearly a dozen developers ar
working to create SWIG-2.0——-a system that aims to provide wrapping support for nearly all of the ANSI C++ standard and
approximately ten target languages including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP, Python, Ruby, and Tcl.

1.3 SWIG Versions

For several years, the most stable version of SWIG has been release 1.1p5. Starting with version 1.3, a new version numberin
scheme has been adopted. Odd version numbers (1.3, 1.5, etc.) represent development versions of SWIG. Even version numt
(1.4, 1.6, etc.) represent stable releases. Currently, developers are working to create a stable SWIG-2.0 release. Don't let the
development status of SWIG-1.3 scare you——-it is much more stable (and capable) than SWIG-1.1p5.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and
implementation tricks.

You can also subscribe to the swig—user mailing list by visiting the page

http://www.swig.org/mail.html

1 Preface 3

http://www.swig.org
http://www.swig.org/mail.html

SWIG-1.3 Documentation

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and
future work.

CVS access to the latest version of SWIG is also available. More information about this can be obtained at:

http://www.swig.org/cvs.html

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages suc
Tcl, Python, and Perl. A detailed knowledge of these scripting languages is not required although some familiarity won't hurt. N
prior experience with building C extensions to these languages is required——-after all, this is what SWIG does automatically.
However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language
extensions is somewhat more complicated than writing a normal C program.

Recent SWIG releases have become significantly more capable in their C++ handling——especially support for advanced featur
like namespaces, overloaded operators, and templates. Whenever possible, this manual tries to cover the technicalities of this
interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost certainly
want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining
chapters are devoted to specific SWIG language modules and are self contained. Thus, if you are using SWIG to build Python
interfaces, you can probably skip to that chapter and find almost everything you need to know. Caveat: we are currently workin
on a documentation rewrite and many of the older language module chapters are still somewhat out of date.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction” which contains a few simple examples. These examples contain abou
95% of everything you need to know to use SWIG. After that, simply use the language—specific chapters as a reference. The
SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards Compatibility

If you are a previous user of SWIG, don't expect recent versions of SWIG to provide backwards compatibility. In fact, backwarc
compatibility issues may arise even between successive 1.3.x releases. Although these incompatibilities are regrettable,
SWIG-1.3 is an active development project. The primary goal of this effort is to make SWIG better——-a process that would
simply be impossible if the developers are constantly bogged down with backwards compatibility issues.

On a positive note, a few incompatibilities are a small price to pay for the large number of new features that have been
added-—-—-namespaces, templates, smart pointers, overloaded methods, operators, and more.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION
preprocessor symbol which holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as
0x010311 (corresponding to SWIG-1.3.11). This can be used in an interface file to define different typemaps, take advantage ¢
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined
SWIG_VERSION since SWIG-1.3.11.

1.4 SWIG resources 4

http://www.swig.org/cvs.html

SWIG-1.3 Documentation
1.9 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people. Most recent SWIG
development has been supported by Matthias Képpe, William Fulton, Lyle Johnson, Richard Palmer, Thien—-Thi Nguyen, Jasor
Stewart, Loic Dachary, Masaki Fukushima, Luigi Ballabio, Sam Liddicott, Art Yerkes, Marcelo Matus, Harco de Hilster, John
Lenz, and Surendra Singhi.

Historically, the following people contributed to early versions of SWIG. Peter Lomdahl, Brad Holian, Shujia Zhou, Niels Jenser
and Tim Germann at Los Alamos National Laboratory were the first users. Patrick Tullmann at the University of Utah suggestet
the idea of automatic documentation generation. John Schmidt and Kurtis Bleeker at the University of Utah tested out the early
versions. Chris Johnson supported SWIG's developed at the University of Utah. John Buckman, Larry Virden, and Tom Schwa
provided valuable input on the first releases and improving the portability of SWIG. David Fletcher and Gary Holt have providec
a great deal of input on improving SWIG's Perl5 implementation. Kevin Butler contributed the first Windows NT port.

1.10 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may
introduce bugs. To report a bug, either send mail to the SWIG developer list at the swig—devel mailing list or report a bug at the
SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core dur
occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper ct
We can only fix bugs if we know about them.

1.9 Credits 5

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

2 Introduction

* What is SWIG?

» Why use SWIG?

« A SWIG example
+ SWIG interface file
¢ The swig command
¢ Building a Perl5 module
¢ Building a Python module
¢ Shortcuts

 Supported C/C++ language features
» Non-intrusive interface building
« Incorporating SWIG into a build system

« Hands off code generation
* SWIG and freedom

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a
nutshell, SWIG is a compiler that takes C declarations and creates the wrappers needed to access those declarations from oth
languages including including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing
code and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

« Building interpreted interfaces to existing C programs.

* Rapid prototyping and application development.

« Interactive debugging.

« Reengineering or refactoring of legacy software into a scripting language components.

» Making a graphical user interface (using Tk for example).

* Testing of C libraries and programs (using scripts).

« Building high performance C modules for scripting languages.

« Making C programming more enjoyable (or tolerable depending on your point of view).

* Impressing your friends.

 Obtaining vast sums of research funding (although obviously not applicable to the author).

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software
without having to get a degree in software engineering. Because of this, the use of SWIG tends to be somewhat informal and
ad-hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL
compiler). Although this style of development isn't appropriate for every project, it is particularly well suited to software
development in the small; especially the research and development work that is commonly found in scientific and engineering
projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other
programming languages. However, why would anyone want to do that? To answer that question, it is useful to list a few strengf
of C/C++ programming:

« Excellent support for writing programming libraries.

« High performance (number crunching, data processing, graphics, etc.).
« Systems programming and systems integration.

* Large user community and software base.

Next, let's list a few problems with C/C++ programming

2 Introduction 6

SWIG-1.3 Documentation

» Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other
libraries).

« Testing is time consuming (the compile/debug cycle).

» Not easy to reconfigure or customize without recompilation.

» Modularization can be tricky.

 Security concerns (buffer overflow for instance).

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programr
languages for different tasks. For instance, writing a graphical user interface may be significantly easier in a scripting language
like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you need more
proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might grea
simplify the task of writing distributed computing software. The key point is that different programming languages offer different
strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by
combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of softwe
development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C
programming model which usually results in programs that resemble this:

* A collection of functions and variables that do something useful.
« A main() program that starts everything.
« A horrible collection of hacks that form some kind of user interface (but which no—one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less
code, better flexibility, and increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C
program and using the high-level language interface, but not the tedious and complex chore of making the two languages talk
each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG h,
such a large user manual ;-).

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:
/* File : example.c */
double My_variable = 3.0;

/* Compute factorial of n */
int fact(int n) {
if (n<=1) return 1;
else return n*fact(n—1);

}

/* Compute n mod m */
int my_mod(int n, int m) {
return(n % m);

}

Suppose that you wanted to access these functions and the global variable My _variable from Tcl. You start by making a
SWIG interface file as shown below (by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

I* File : example.i */
%module example

2.2 Why use SWIG? 7

SWIG-1.3 Documentation

%{

/* Put headers and other declarations here */
extern double My_variable;

extern int fact(int);

extern int my_mod(int n, int m);

9%}

extern double My_variable;
externint fact(int);
extern int my_mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The %module directive defines the name of tt
module that will be created by SWIG. The %{,%]} block provides a location for inserting additional code such as C header files ¢
additional C declarations.

2.3.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig —tcl example.i

unix > gcc —c —fpic example.c example_wrap.c —l/usr/local/include
unix > gcc —shared example.o example_wrap.o —0 example.so
unix > tclsh

% load ./example.so

% fact 4

24

% my_mod 23 7

2

% expr $My_variable + 4.5

7.5

%

The swig command produced a new file called example_wrap.c that should be compiled along with the example.c file.

Most operating systems and scripting languages now support dynamic loading of modules. In our example, our Tcl module has
been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need
to worry about it.

2.3.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig —perl5 example.i

unix > gcc —c example.c example_wrap.c \
—l/usr/localllib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o —0 example.so # This is for Solaris

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

unix >

2.3.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig —python example.i

2.3.1 SWIG interface file 8

SWIG-1.3 Documentation

unix > gcc —c —fpic example.c example_wrap.c —l/usr/local/include/python2.0
unix > gcc —shared example.o example_wrap.o —o _example.so
unix > python

Python 2.0 (#6, Feb 21 2001, 13:29:45)

[GCC egcs—2.91.66 19990314/Linux (egcs—1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.

>>> import example

>>> example.fact(4)

24

>>> example.my_mod(23,7)

2

>>> example.cvar.My_variable + 4.5

7.5

2.3.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do
without it. For example, you could also build a Perl5 module by just running SWIG on the C header file and specifying a module
name as follows

unix > swig —perl5 -module example example.h

unix > gcc —c example.c example_wrap.c \
—l/usr/localllib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o —o0 example.so

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

2.4 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples
have been shown, SWIG is quite capable in supporting most of C++. Some of the major features include:

* Full C99 preprocessing.

< All ANSI C and C++ datatypes.
 Functions, variables, and constants.
* Classes.

* Single and multiple inheritance.
 Overloaded functions and methods.
» Overloaded operators.

« C++ templates (including member templates, specialization, and partial specialization).
* Namespaces.

* Variable length arguments.

* C++ smart pointers.

Currently, the only major C++ feature not supported is nested classes——a limitation that will be removed in a future release.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools.
SWIG not only parses C++, it implements the full C++ type system and it is able to understand C++ semantics. SWIG generate
its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able handle C++ code that stresses the very limits of many
C++ compilers.

2.3.4 Building a Python module 9

SWIG-1.3 Documentation
2.5 Non-intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely
easy to use with existing packages and promotes software reuse and modularity. By making the C/C++ code independent of th
high level interface, you can change the interface and reuse the code in other applications. It is also possible to support differel
types of interfaces depending on the application.

2.6 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external
tools/compilers. SWIG is most commonly invoked from within a Makefile, but is also known to be invoked from from popular
IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake/ Libtool) to configure SWIG use in your project, the SWIG Autoconf
macros can be used. The primary macro is ac_pkg_swig, see

http://www.gnu.org/software/ac—archive/htmldoc/ac_pkag_swig.html. The ac_python_devel macro is also helpful for
generating Python extensions. See_the Autoconf Macro Archive for further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross—platform, open—source build manager w
built in support for SWIG. CMake can detect the SWIG executable and many of the target language libraries for linking against.
CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows easy cross
platform SWIG development. It also can generate the custom commands necessary for driving SWIG from IDE's and makefiles
All of this can be done from a single cross platform input file. The following example is a CMake input file for creating a python
wrapper for the SWIG interface file, example.i:

This is a CMake example for Python

FIND_PACKAGE(SWIG REQUIRED)
INCLUDE(${SWIG_USE_FILE})

FIND_PACKAGE(PythonLibs)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_PATH})

INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
SET(CMAKE_SWIG_FLAGS ™)

SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES SWIG_FLAGS "-includeall’)

SWIG_ADD_MODULE(example python example.i example.cxx)
SWIG_LINK_LIBRARIES(example ${PYTHON_LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke
SWIG and compile the generated C++ files into _example.so (UNIX) or _example.dll (Windows).

2.7 Hands off code generation
SWIG is designed to produce working code that needs no hand—-maodification (in fact, if you look at the output, you probably
won't want to modify it). You should think of your target language interface being defined entirely by the input to SWIG, not the

resulting output file. While this approach may limit flexibility for hard—core hackers, it allows others to forget about the low-level
implementation details.

2.8 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written wit!

2.5 Non-intrusive interface building 10

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.gnu.org/software/ac-archive/htmldoc/ac_pkg_swig.html
http://www.gnu.org/software/ac-archive/htmldoc/index.html
http://www.cmake.org

SWIG-1.3 Documentation

a certain "philosophy" about programming——-namely that programmers are smart and that tools should just stay out of their we
Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use SWIG to
go well beyond "shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedoom
may be exactly what is needed to work with complicated and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At it's core
SWIG tries to distill even the most advanced C++ code down to a small well-defined set of interface building techniques based
on ANSI C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer’s
way——--the last thing any developer wants to do is to spend their time debugging the output of a tool that relies on nhon—portat
or unreliable programming features.

2.8 SWIG and freedom 11

3 Getting started on Windows

* Installation on Windows
+ Windows Executable

+ SWIG Windows Examples
¢ Instructions for using the Examples with Visual Studio
¢ Python
OICL
O Perl
¢ Java
¢ Ruby
OC#
¢ Instructions for using the Examples with other compilers
+ SWIG on Cygwin and MinGW
¢ Building swig.exe on Windows
¢ Building swig.exe using MinGW and MSYS
¢ Building swig.exe using Cygwin
¢ Building swig.exe alternatives
¢ Running the examples on Windows using Cygwin
 Microsoft extensions and other Windows quirks

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as
building the SWIG executable. Usage within the Unix like environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps
are:

» Download the swigwin zip package from the SWIG website and unzip into a directory. This is all that needs
downloading for the Windows platform.

 Set environment variables as described in the SWIG Windows Examples section in order to run examples using Visual
C++.

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows executable, swig.exe, which will run on 32 bit versions of Windows, ie
Windows 95/98/ME/NT/2000/XP. If you want to build your own swig.exe have a logk at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has
a few Visual C++ project files (.dsp files). These were produced by Visual C++ 6, although they should also work in Visual C++
5. Later versions of Visual Studio should also be able to open and convert these project files. The C# examples come with .NE
2003 solution (.sIn) and project files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG ir
custom build rule for the SWIG interface (.i) file. Alternatively run the examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).
3.2.1 Instructions for using the Examples with Visual Studio
Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages requi

some environment variables to be set before running Visual C++. Note that Visual C++ must be re—started to pick up any chan
in environment variables. Open up an example .dsp file, Visual C++ will create a workspace for you (.dsw file). Ensure the

3 Getting started on Windows 12

http://www.swig.org

SWIG-1.3 Documentation

Release build is selected then do a Rebuild All from the Build menu. The required environment variables are displayed with the
current values.

The list of required environment variables for each module language is also listed below. They are usually set from the Control
Panel and System properties, but this depends on which flavour of Windows you are running. If you don't want to use

environment variables then change all occurences of the environment variables in the .dsp files with hard coded values. If you .
interested in how the project files are set up there is explanatory information in some of the language module's documentation.

3.2.1.1 Python

PYTHON_INCLUDE : Set this to the directory that contains python.h
PYTHON_LIB : Set this to the python library including path for linking

Example using Python 2.1.1:
PYTHON_INCLUDE: d:\python21\include
PYTHON_LIB: d:\python21\libs\python21.lib
3.2.12TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: d:\tchinclude
TCL_LIB: d:\tchlib\tcl83.lib
3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\lib\CORE
PERL5_LIB: D:\nsPerl5.004_04\lib\CORE\perl.lib

3.2.1.4 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:
JAVA_INCLUDE: d:\jdk1.3\include
JAVA_BIN: d:\jdk1.3\bin

3.2.1.5 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:

RUBY_INCLUDE: D:\ruby\lib\ruby\1.6\i586—mswin32
RUBY_LIB: D:\ruby\lib\mswin32-ruby16.lib

3.2.1 Instructions for using the Examples with Visual Studio 13

SWIG-1.3 Documentation
3.2.1.6 C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solu

file in Visual Studio .NET 2003 and do a Rebuild All from the Build menu. The accompanying C# and C++ project file are
automatically used by the solution file.

3.2.2 Instructions for using the Examples with other compilers
If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a

section in each of the language modules detailing what needs setting up using Visual C++ which may be of some guidance.
Alternatively you may want to use Cygwin as described in the following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free
with gcc, an ANSI C/C++ compiler. However, this is not a recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows
If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not
necessary to use the supplied swig.exe. This information is provided for those that want to modify the SWIG source code in a
Windows environment. Normally this is not needed, so most people will want to ignore this section.
3.3.1.1 Building swig.exe using MinGW and MSYS
The short abbreviated instructions follow...

* Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.

* Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW
command prompt.

The step by step instructions to download and install MinGW and MSYS, then download and build the latest version of SWIG
from cvs follow...

Pitfall note: Execute the steps in the order shown and don't use spaces in path names. In fact it is best to use the default
installation directories.

1. Download the following packages from the MinGW download page or MinGW SourceForge download page. Note that
at the time of writing, the majority of these are in the Current release list and some are in the Snapshot or Previous
release list.

¢ MinGW-3.1.0-1.exe

¢ MSYS-1.0.11-2004.04.30-1.exe
¢ msysDTK-1.0.1.exe

¢ bison-2.0-MSYS.tar.gz

¢ msys—autoconf-2.59.tar.bz2

¢ msys—automake-1.8.2.tar.bz2

2. Install MinGW-3.1.0-1.exe (C:\MinGW is default location.)

3. Install MSYS-1.0.11-2004.04.30-1.exe. Make sure you install it on the same windows drive letter as MinGW
(C:\msys\1.0 is default). In the post install script,

¢ Answer y to the "do you wish to continue with the post install?"

¢ Answer y to the "do you have MinGW installed?"

¢ Type in the the folder in which you installed MinGW (C:/MinGW is default)
4. Install msysDTK-1.0.1.exe to the same folder that you installed MSYS (C:\msys\1.0 is default).
5. Copy the followig to the MSYS install folder (C:\msys\1.0 is default):

¢ msys—automake-1.8.2.tar.bz2

3.2.1.6 C# 14

http://www.cygwin.com
http://www.mingw.org
http://www.mingw.org
http://www.mingw.org/download.shtml
http://sourceforge.net/project/showfiles.php?group_id=2435

SWIG-1.3 Documentation

¢ msys—autoconf-2.59.tar.bz2
¢ bison-2.0-MSYS.tar.gz

6. Start the MSYS command prompt and execute:
cd/
tar —jxf msys—automake-1.8.2.tar.bz2
tar —jxf msys—autoconf-2.59.tar.bz2
tar —zxf bison-2.0-MSYS.tar.gz

7.To get the latest SWIG CVS, type in the following:
mkdir /usr/src
cd /usr/src
export CVSROOT=:pserver:anonymous@cvs.sourceforge.net:/cvsroot/swig
cvs login
(Logging in to anonymous@cvs.sourceforge.net)
CVS password: <Just Press Return Here>
cvs —z3 co SWIG

Pitfall note: If you want to check out SWIG to a different folder to the proposed /ust/src/SWIG, do not use MSYS
emulated windows drive letters, because the autotools will fail miserably on those.

8.You are now ready to build SWIG. Execute the following commands to build swig.exe:
cd /usr/src/SWIG
Jautogen.sh
Iconfigure
make

3.3.1.2 Building swig.exe using Cygwin

Note that SWIG can also be built using Cygwin. However, SWIG will then require the Cygwin DLL when executing. Follow the
Unix instructions in the README file in the SWIG root directory. Note that the Cygwin environment will also allow one to
regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen.sh script and will only need regenerating in circumstances such as changing the build system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can
be added to a Visual C++ project file in order to build swig.exe from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin

The examples and test-suite work as successfully on Cygwin as on any other Unix operating system. The modules which are
known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow the Unix instructions in the README file in the SWIG root
directory to build the examples.

3.4 Microsoft extensions and other Windows quirks

A common problem when using SWIG on Windows are the Microsoft function calling conventions which are not in the C++
standard. SWIG parses ISO C/C++ so cannot deal with proprietary conventions such as __declspec(dllimport),

__stdcall etc. There is a Windows interface file, windows.i, to deal with these calling conventions though. The file also

contains typemaps for handling commonly used Windows specific types such as __int64, BOOL, DWORD etc. Include it like yc
would any other interface file, for example:

%include <windows.i>

__declspec(dllexport) ULONG __stdcall foo(DWORD, __int32);

3.3.1.1 Building swig.exe using MinGW and MSYS 15

4 Scripting Languages

« The two language view of the world
« How does a scripting language talk to C?
+ Wrapper functions

¢ Variable linking
¢ Constants

+ Structures and classes

¢ Proxy classes
« Building scripting language extensions
¢ Shared libraries and dynamic loading
¢ Linking with shared libraries
+ Static linking

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting
language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

Scripting Language
RS

Collection of C/C++ functions

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality
of the C/C++ program is accessed through special scripting language "commands.” If you have ever tried to write your own
simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model-—the interpreter executes user
commands and scripts. However, most of the underlying functionality is written in a low—-level language like C or Fortran.

The two-language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be
used for maximal performance and complicated systems programming tasks. Scripting languages can be used for rapid
prototyping, interactive debugging, scripting, and access to high—level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a
mechanism for executing commands and accessing variables. Normally, this is used to implement the builtin features of the
language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these
new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special
"wrapper" function that serves as the glue between the interpreter and the underlying C function. Then you need to give the
interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The nex
few sections illustrate the process.

4 Scripting Languages 16

SWIG-1.3 Documentation

4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {
if (n<=1) return 1;
else return n*fact(n—1);

}

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the
glue between the scripting language and the underlying C function. A wrapper function must do three things :

« Gather function arguments and make sure they are valid.
* Call the C function.
 Convert the return value into a form recognized by the scripting language.

As an example, the Tcl wrapper function for the fact() function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
int result;
int argo;
if (argc 1= 2) {
interp—>result = "wrong # args";
return TCL_ERROR;

}

arg0 = atoi(argv[1]);

result = fact(arg0);
sprintf(interp—>result,"%d", result);
return TCL_OK;

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually
done in an initialization function called by the language when the module is loaded. For example, adding the above function to
Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
Tcl_CreateCommand(interp, "fact”, wrap_fact, (ClientData) NULL,
(Tcl_CmdDeleteProc *) NULL);
return TCL_OK;
}

When executed, Tcl will now have a new command called "fact" that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python
Both require special wrappers to be written and both need additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpeter. For
example, suppose you had the following variable:

double Foo = 3.5;
It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3; # Evaluation
$Foo = $a + 2.0; # Assignment

4.2.1 Wrapper functions 17

SWIG-1.3 Documentation

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the vall
of a variable is read, a "get" function is invoked. Similarly, whenever the value of a variable is changed, a "set" function is callec

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluatin
variable such as $Foo might implicitly call the get function. Similarly, typing $Foo = 4 would call the underlying set function
to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0xff0000
#define BLUE 0x0000ff
#define GREEN 0x00ff00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN.
Virtually all scripting languages provide C functions for creating variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and class
present a different problem. This is because the implementation of structures is largely related to the problem of data
representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what does
C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the
underlying representation of a structure. For example,

struct Vector {
Vector();
~Vector();
double x,y,z;

can be transformed into the following set of functions :

Vector *new_Vector();

void delete_Vector(Vector *v);

double Vector_x_get(Vector *v);
double Vector_y get(Vector *v);
double Vector_z_get(Vector *v);

void Vector_x_set(Vector *v, double x);
void Vector_y_set(Vector *v, double y);
void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

% set v [new_Vector]
% Vector_x_set $v 3.5
% Vector_y_get $v

% delete_Vector $v

% ...

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know
anything about the actual representation of a Vector.

4.2.2 Variable linking 18

SWIG-1.3 Documentation

4.2.5 Proxy classes

In certain cases, it is possible to use the low-level accessor functions to create a proxy class, also known as a shadow class. £
proxy class is a special kind of object that gets created in a scripting language to access a C/C++ class (or struct) in a way that
looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C definition :

class Vector {
public:
Vector();
~Vector();
double x,y,z;

¥

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For examp
in Python, you might want to do this:

>>> v = Vector()
>>>y.Xx=3
>>>vy =4
>>>v.z=-13
>>>

>>> del v

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v—>{x} = 3;
$v—>{y} = 4;
$v—>{z} = -13;

Finally, in Tcl :

Vector v
v configure -x 3 -y 4 -z 13

When proxy classes are used, two objects are at really work——one in the scripting language, and an underlying C/C++ object.
Operations affect both objects equally and for all practical purposes, it appears as if you are simply manipulating a C/C++ objec

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itse
There are two primary approaches for doing this. The preferred technique is to build a dynamically loadable extension in the fo
a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the
procedure for a few common machines is shown below:

Build a shared library for Solaris
gcc —c example.c example_wrap.c -l/usr/local/include
ld -G example.o example_wrap.o —o example.so

Build a shared library for Linux
gcc —fpic —c example.c example_wrap.c —l/usr/local/include
gcc —shared example.o example_wrap.o —o example.so

Build a shared library for Irix

4.2.5 Proxy classes 19

SWIG-1.3 Documentation

gcc —c example.c example_wrap.c -l/usr/local/include
Id —shared example.o example_wrap.o —o0 example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). Thi
will import your module and allow you to start using it. For example:

% load ./example.so
% fact 4

24

%

When working with C++ codes, the process of building shared libraries may be more complicated——primarily due to the fact the
C++ modules may need additional code in order to operate correctly. On many machines, you can build a shared C++ module
following the above procedures, but changing the link line to the following :

c++ —shared example.o example_wrap.o —o example.so
4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your
machine. In order for the extension to work, it needs to be able to find all of these libraries at run—time. Otherwise, you may get
an error such as the following :

>>> import graph
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/home/sci/datal/beazley/graph/graph.py”, line 2, in ?

import graphc

ImportError: 1101:/home/sci/datal/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "libgraph.so" that
the system was unable to locate. To fix this problem, there are a few approaches you can take.

« Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done
with a special linker flag such as —R, —rpath, etc. This is not implemented in a standard manner so read the man page:
for your linker to find out more about how to set the search path for shared libraries.

« Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operatiol
non-Unix platforms.

* Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before
running Python. Although this is an easy solution, it is not recommended. Consider setting the path using linker options
instead.

4.3.3 Static linking
With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a shol
main program that adds your customized commands to the language and starts the interpreter. You then link your program witt

library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extension
In fact, there are very few practical reasons for doing this——consider using shared libraries instead.

4.3.1 Shared libraries and dynamic loading 20

5 SWIG Basics

e Running SWIG
¢ Input format
¢ SWIG Output
+ Comments
¢ C Preprocessor
+ SWIG Directives
+ Parser Limitations
» Wrapping Simple C Declarations

¢ Basic Type Handling
¢ Global Variables

+ Constants
+ A brief word aboutonst
¢ A cautionary tale ofhar *
- Pointers and complex objects
¢ Simple pointers
¢ Run time pointer type checking
¢ Derived types, structs, and classes
¢ Undefined datatypes
¢ Typedef
» Other Practicalities
¢ Passing structures by value
¢ Return by value
¢ Linking to structure variables
¢ Linking tochar *
¢ Arrays
¢ Creating read-only variables
¢ Renaming and ignoring declarations
¢

Default/optional arguments
+ Pointers to functions and callbacks

« Structures and unions

¢ Typedef and structures
¢ Character strings and structures

¢ Array members
+ Structure data members

+ C constructors and destructors

¢ Adding member functions to C structures
+ Nested structures

¢ Other things to note about structure wrapping
 Code Insertion

¢ The output of SWIG
¢ Code insertion blocks
¢ Inlined code blocks
+ Initialization blocks
« An Interface Building Strategy
¢ Preparing a C program for SWIG
+ The SWIG interface file
+ Why use separate interface files?

¢ Getting the right header files
¢ What to do with main()

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ANSI C

declarations. C++ support is described in the next chapter. However, C++ programmers should still read this chapter to unders
the basics. Specific details about each target language are described in later chapters.

5 SWIG Basics 21

SWIG-1.3 Documentation

5.1 Running SWIG

To run SWIG, use the swig command with options options and a filename like this:

swig [options] filename

where filename is a SWIG interface file or a C/C++ header file. Below is a subset of options that can be used. Additional
options are also defined for each target language. A full list can be obtained by typing swig —help or swig —lang —help.

—allegrocl Generate ALLEGROCL wrappers
—chicken Generate CHICKEN wrappers

—clisp Generate CLISP wrappers

—cffi Generate CFFI wrappers

—-csharp Generate C# wrappers

—guile Generate Guile wrappers

—java Generate Java wrappers

-lua Generate Lua wrappers

—modula3 Generate Modula 3 wrappers
-mzscheme Generate Mzscheme wrappers
—ocaml Generate Ocaml wrappers

—perl Generate Perl wrappers

-php Generate PHP wrappers

—pike Generate Pike wrappers

—python Generate Python wrappers

—-ruby Generate Ruby wrappers

—-sexp Generate Lisp S—Expressions wrappers
—tcl Generate Tcl wrappers

—uffi Generate Common Lisp / UFFI wrappers
=xml Generate XML wrappers

—Cc++ Enable C++ parsing

—Dsymbol Define a preprocessor symbol
—Fstandard Display error/warning messages in commonly used format
—Fmicrosoft Display error/warning messages in Microsoft format
-help Display all options

—Idir Add a directory to the file include path
—lIfile Include a SWIG library file.

-module name Set the name of the SWIG module
-o outfile Name of output file

—outdir dir Set language specific files output directory
-swiglib Show location of SWIG library

-version Show SWIG version humber

5.1.1 Input format

As input, SWIG expects a file containing ANSI C/C++ declarations and special SWIG directives. More often than not, this is a
special SWIG interface file which is usually denoted with a special .i or .swg suffix. In certain cases, SWIG can be used
directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you m
not want to do this (described later).

The most common format of a SWIG interface is as follows:

%module mymodule

%{

#include "myheader.h"

9%}

/I Now list ANSI C/C++ declarations
int foo;

int bar(int x);

5.1 Running SWIG 22

SWIG-1.3 Documentation

The name of the module is supplied using the special %module directive (or the -module command line option). This directive
must appear at the beginning of the file and is used to name the resulting extension module (in addition, this name often define
namespace in the target language). If the module name is supplied on the command line, it overrides the name specified with t
%module directive.

Everything in the %({ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is
almost always used to include header files and other declarations that are required to make the generated wrapper code comp
is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not automatice
appear in the generated wrapper code——-therefore you need to make sure you include the proper header files in the %{ ... %}
section. It should be noted that the text enclosed in %{ ... %} is not parsed or interpreted by SWIG. The %({...%} syntax and
semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools such as yacc o
bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may
generate some additional files depending on the target language. By default, an input file with the name file.i is transformed
into a file file_wrap.c or file_wrap.cxx (depending on whether or not the —c++ option has been used). The name of the

output file can be changed using the —o option. In certain cases, file suffixes are used by the compiler to determine the source
language (C, C++, etc.). Therefore, you have to use the —o option to change the suffix of the SWIG—-generated wrapper file if yi
want something different than the default. For example:

$ swig —c++ —python —o example_wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct a extension module for the target
scripting language. SWIG is not a stub compiler nor is it usually necessary to edit the output file (and if you look at the output,
you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of
your C/C++ program to create a shared library.

Many target languages will also generate proxy class files in the target language. The default output directory for these languag
specific files is the same directory as the generated C/C++ file. This can can be modified using the —outdir option. For
example:

$ swig —c++ —python —outdir pyfiles —o cppfiles/example_wrap.cpp example.i
If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example_wrap.cpp
pyfiles/example.py

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to
generate documentation files. However, this feature is currently under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor featur
are supported including file inclusion, conditional compilation and macros. However, #include statements are ignored unless
the —includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes used to
process raw C header files. In this case, you usually only want the extension module to include functions in the supplied heade
file rather than everything that might be included by that header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a %f{...%]} block. In addition, the preprocessor

includes a number of macro handling enhancements that make it more powerful than the normal C preprocessor. These extens
are described in the "Preprocessor” chapter.

5.1.1 Input format 23

SWIG-1.3 Documentation

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal
declarations. These directives are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG
directives can be included in C header files using conditional compilation like this:

/* header.h ——- Some header file */

I* SWIG directives —— only seen if SWIG is running */
#ifdef SWIG

%module foo

#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.

5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of thes
limitations pertain to very complicated type declarations and certain advanced C++ features. Specifically, the following features
are not currently supported:

» Non-conventional type declarations. For example, SWIG does not support declarations such as the following (even
though this is legal C):
/* Non—conventional placement of storage specifier (extern) */
const int extern Number;

[* Extra declarator grouping */
Matrix (foo); /I A global variable

[* Extra declarator grouping in parameters */
void bar(Spam (Grok)(Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming
books. However, if you're feeling particularly obfuscated, you can certainly break SWIG (although why would you want
to?).

* Running SWIG on C++ source files (what would appear in a .C or .cxx file) is not recommended. Even though SWIG
can parse C++ class declarations, it ignores declarations that are decoupled from their original class definition (the

declarations are parsed, but a lot of warning messages may be generated). For example:
/* Not supported by SWIG */
int foo::bar(int) {
... whatever ...

}
« Certain advanced features of C++ such as nested classes are not yet supported. Please see the section on using SWI

with C++ for more information.

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
... some bad declarations ...
#endif

Alternatively, you can just delete the offending code from the interface file.
One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with

incomplete specifications and to be very permissive in its handling of C/C++ datatypes (e.g., SWIG can generate interfaces eve
when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to

5.1.5 SWIG Directives 24

SWIG-1.3 Documentation

implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex
declarations (for the truly curious, the primary complication in the implementation is that the SWIG parser does not utilize a
separate typedef-name terminal symbol as described on p. 234 of K&R).

5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be us
in a C program. For example, consider the following interface file:

%module example

%inline %({

extern double sin(double x);

extern int strcmp(const char *, const char *);
extern int Foo;

%0}

#define STATUS 50

#define VERSION "1.1"

In this file, there are two functions sin() and strcmp(), a global variable Foo, and two constants STATUS and VERSION.
When SWIG creates an extension module, these declarations are accessible as scripting language functions, variables, and
constants respectively. For example, in Tcl:

% sin 3

5.2335956

% strcmp Dave Mike
-1

% puts $Foo

42

% puts $STATUS
50

% puts $VERSION
11

Or in Python:

>>> example.sin(3)

5.2335956

>>> example.strcmp(‘Dave','Mike')
-1

>>> print example.cvar.Foo

42

>>> print example.STATUS

50

>>> print example.VERSION

11

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle
differences between languages, run—time environments, and semantics, it is not always possible to do so. The next few sectior
describes various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally,
scripting languages provide a more limited set of primitive types than C. Therefore, this conversion process involves a certain
amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following
list shows all of the C datatypes that SWIG will convert to and from integers in the target language:

int

5.1.6 Parser Limitations 25

SWIG-1.3 Documentation

short

long

unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16
short in C may be promoted to a 32 bit integer. When integers are converted in the other direction, the value is cast back into t
original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8-bit integers. Normally, the char datatype
is mapped as a one—character ASCII string.

The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32-bit integers so mapping a 64—
long integer may lead to truncation errors. Similar problems may arise with 32 bit unsigned integers (which may appear as larg
negative numbers). As a rule of thumb, the int datatype and all variations of char and short datatypes are safe to use. For
unsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been
wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long
usually exceeds the integer precision available in the target language. In certain modules such as Tcl and Perl5, long long
integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow long
long values to be used in arithmetic expressions. It should also be noted that although long long is part of the ISO C99
standard, it is not universally supported by all C compilers. Make sure you are using a compiler that supports long long before
trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost alway
C double. The rarely used datatype of long double is not supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language if
shows up as a tiny string containing the character value. When converting the value back into C, SWIG takes a character string
from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value °f'.

The char * datatype is handled as a NULL-terminated ASCII string. SWIG maps this into a 8—bit character string in the target
scripting language. SWIG converts character strings in the target language to NULL terminated strings before passing them int
C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG
typemap. See the chapter_ on Typemaps for details about this.

At this time, SWIG does not provide any special support for Unicode or wide—-character strings (the C wchar_t type). This is a
delicate topic that is poorly understood by many programmers and not implemented in a consistent manner across languages.
those scripting languages that provide Unicode support, Unicode strings are often available in an 8-bit representation such as
UTF-8 that can be mapped to the char * type (in which case the SWIG interface will probably work). If the program you are
wrapping uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal
representation (e.g., UCS-2 vs. UCS-4). You may need to write some special conversion functions.

5.2.1 Basic Type Handling 26

SWIG-1.3 Documentation
5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

%module example
double foo;

results in a scripting language variable like this:

Tcl

set foo [3.5] # Set foo to 3.5

puts $foo ;# Print the value of foo
Python

cvar.foo = 3.5 # Setfoo to 3.5
print cvar.foo # Print value of foo

Perl

$foo = 3.5; # Set foo to 3.5

print $foo,"\n"; # Print value of foo

Ruby

Module.foo = 3.5 # Set foo to 3.5
print Module.foo, "\n" # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every
attempt to make global variables work like scripting language variables, it is not always possible to do so. For instance, in Pyth
all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables are
accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the
module generates a pair of functions double get_foo() and set_foo(double val) that are used to manipulate the

value.

Finally, if a global variable has been declared as const, it only supports read—only access. Note: this behavior is new to
SWIG-1.3. Earlier versions of SWIG incorrectly handled const and created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special %constant directive. The following interface file shows a
few valid constant declarations :

#define |_CONST 5 /I An integer constant
#define PI 3.14159 /I A Floating point constant
#define S_CONST "hello world" // A string constant
#define NEWLINE \n' /I Character constant

enum boolean {NO=0, YES=1},
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};
%constant double BLAH = 42.37;
#define F_CONST (double) 5 /I A floating pointer constant with cast
#define PI_4 Pl/4
#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to
be floating point. In addition, SWIG must be able to fully resolve all of the symbols used in a #define in order for a constant to
actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are definitely
not meant to be part of the scripting language interface. For example:

#define EXTERN extern

5.2.2 Global Variables 27

SWIG-1.3 Documentation

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will no
create constants for macros unless the value can be completely determined by the preprocessor. For instance, in the above
example, the declaration

#define PI_4 Pl/4
defines a constant because Pl was already defined as a constant and the value is known.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output fil
lets the C compiler perform the final evaluation (SWIG does perform a limited form of type—checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header fil
or in the %{,%} block). SWIG only translates the enumeration into code needed to add the constants to a scripting language. It
needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The %constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not
usually not needed for simple values, it is more useful when working with pointers and other more complex datatypes. Typically
%constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations——especially when it is
mixed with pointers and other type modifiers. In fact, previous versions of SWIG handled const incorrectly——a situation that
SWIG-1.3.7 and newer releases have fixed.

Starting with SWIG-1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a
declaration happens to be declared as const, it is wrapped as a read—only variable. To tell if a variable is const or not, you
need to look at the right-most occurrence of the const qualifier (that appears before the variable name). If the right-most
const occurs after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char a; /I A constant character
char const b; /I A constant character (the same)
char *const c; /I A constant pointer to a character

const char *const d; // A constant pointer to a constant character

Here is an example of a declaration that is not const:

const char *e; /I A pointer to a constant character. The pointer
/I may be modified.

In this case, the pointer e can change——-it's only the value being pointed to that is read—only.

Compatibility Note: One reason for changing SWIG to handle const declarations as read-only variables is that there are many
situations where the value of a const variable might change. For example, a library might export a symbol as const in its

public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.
Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being
pointed to can be modified—-it's only the pointer itself that is constant. In an embedded system, a const declaration might refer
to a read—only memory address such as the location of a memory—mapped I/O device port (where the value changes, but writi
to the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the
new interpretation of const as "read—only" is simple and exactly matches the actual semantics of const in C/C++. If you really
want to create a constant as in older versions of SWIG, use the %constant directive instead. For example:

5.2.3 Constants 28

SWIG-1.3 Documentation

%constant double Pl = 3.14159;

or

#ifdef SWIG

#define const %constant
#endif

const double foo = 3.4;
const double bar = 23.4;
constint spam =42;
#ifdef SWIG

#undef const

#endif

5.2.5 A cautionary tale of char *

Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed
from a scripting language to a C char *, the pointer usually points to string data stored inside the interpreter. It is almost always
a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python, strings ar
supposed be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module on
the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like
this:

char *strcat(char *s, const char *t)
Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your
application to crash with a segmentation fault or other memory related problem. This is because s refers to some internal data |

the target language———data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read-only input values. However, it must be noted that you could
change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects
Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these dataty
5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int *
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simp
encodes the pointer itself into a representation that contains the actual value of the pointer and a type—tag. Thus, the SWIG
representation of the above pointers (in Tcl), might look like this:

~10081012_p_int
_1008e124_ppp_double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

5.2.4 A brief word about const 29

SWIG-1.3 Documentation

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to othet
functions as needed. For all practical purposes, the scripting language interface works in exactly the same way as you would u
the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown |
like hexadecimal addresses, the numbers used may differ from the actual machine address (e.g., on little—endian machines, th
digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high-level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does
not do this:

 There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, ¢
int * may indeed be an array of integers, but if it contains ten million elements, converting it into a list object is
probably a bad idea.

» The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an
array at all-—perhaps it is an output value!

« By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to errc

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile—time type
checking in the C/C++ compiler. To prevent errors, a type signature is encoded into all pointer values and is used to perform
run—time type checking. This type—checking process is an integral part of SWIG and can not be disabled or modified without
using typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive &
pointer. Although this has the potential to cause a crash, NULL pointers are also sometimes used as sentinel values or to deno
missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :
Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs mak
heavy use of pointers and SWIG can use the type—checked pointer mechanism already present for handling pointers to basic
datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

%module fileio

FILE *fopen(char *, char *);

int fclose(FILE *);

unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc(int nbytes);

void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you
wrapped this module into Python, you can use the functions just like you expect :

Copy a file

def filecopy(source,target):
f1 = fopen(source,"r")
f2 = fopen(target,"w")
buffer = malloc(8192)

5.3.1 Simple pointers 30

SWIG-1.3 Documentation

nbytes = fread(buffer,8192,1,f1)
while (nbytes > 0):
fwrite(buffer,8192,1,f2)
nbytes = fread(buffer,8192,1,f1)
free(buffer)

In this case f1, f2, and buffer are all opaque objects containing C pointers. It doesn't matter what value they contain——our
program works just fine without this knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose
following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its
generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This
allows SWIG to generate interfaces from only partial or limited information. In some cases, you may not care what a Matrix
really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type
names. However, all unspecified types are internally handled as pointers to structures or classes! For example, consider the
following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described
shortly). As a result, the scripting interface might behave strangely. For example:

foo(40);
TypeError: expected a _p_size _t.

The only way to fix this problem is to make sure you properly declare type names using typedef.

5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:
typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either
need to be defined in an included header file or placed in the declarations section like this:

%
/* Include in the generated wrapper file */
typedef unsigned int size_t;

9%}

/* Tell SWIG about it */

typedef unsigned int size_t;

or
%inline %({

typedef unsigned int size_t;
9%}

5.3.3 Derived types, structs, and classes 31

SWIG-1.3 Documentation

In certain cases, you might be able to include other header files to collect type information. For example:

%module example
%import "sys/types.h"

In this case, you might run SWIG as follows:
$ swig —l/usr/include —includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a
variety of non—standard C coding extensions (e.g., such as special directives to GCC). Unless you exactly specify the right incl
directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run—time type checking. For instance, if you use the above
typedef and had the following function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int * or size_t *.

5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C
programs use idioms that are somewhat more difficult to map to a scripting language interface. This section describes some of
these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:
double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
return dot_product(x,y);

}

In the target language, the dot_product() function now accepts pointers to Vectors instead of Vectors. For the most part, this
transformation is transparent so you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:
Vector cross_product(Vector v1, Vector v2);

This function wants to return Vector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *v1, Vector *v2) {
Vector x = *v1;
Vector y = *v2,
Vector *result;
result = (Vector *) malloc(sizeof(Vector));
*(result) = cross(x,y);
return result;

}
5.3.5 Typedef 32

SWIG-1.3 Documentation

or if SWIG was run with the —c++ option:

Vector *wrap_cross(Vector *v1, Vector *v2) {
Vector x = *v1;
Vector y = *v2;
Vector *result = new Vector(cross(x,y)); // Uses default copy constructor
return result;

}

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when
no longer in use. Clearly, this will leak memory if you are unaware of the implicit memory allocation and don't take steps to free
the result. That said, it should be noted that some language modules can now automatically track newly created objects and
reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code
fragments don't work correctly if Vector doesn't define a default constructor. The section on SWIG and C++ has more
information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example,
global variable like this

Vector unit_i;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i_get() {
return &unit_i;

}
void unit_i_set(Vector *value) {
unit_i = *value;

}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting languac
It would be an extremely bad idea to free or destroy such a pointer. Also, C++ classes must supply a properly defined copy
constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG uses malloc() or new to allocate memory for the new value.
Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */

void foo_set(char *value) {
if (foo) free(foo);
foo = (char *) malloc(strlen(value)+1);
strcpy(foo,value);

}

[* C++ mode. When —c++ option is used */
void foo_set(char *value) {
if (foo) delete [] foo;
foo = new char[strlen(value)+1];
strepy(foo,value);

}

5.4.2 Return by value 33

SWIG-1.3 Documentation

If this is not the behavior that you want, consider making the variable read—only using the %immutable directive. Alternatively,
you might write a short assist—function to set the value exactly like you want. For example:

%inline %{
void set_foo(char *value) {
strncpy(foo,value, 50);

}
%}

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not
work like a variable). For example, in Python you will have to write:

>>> set_foo("Hello World")
A common mistake with char * variables is to link to a variable declared like this:

char *VERSION = "1.0";

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection f
This is due to the fact that SWIG is trying to release the old value using free or delete when the string literal value currently
assigned to the variable wasn't allocated using malloc() or new. To fix this behavior, you can either mark the variable as
read-only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to decle
the variable as an array:

char VERSION[64] = "1.0";

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However,
the default behavior does not release the previous contents (resulting in a possible memory leak). In fact, you may get a warnir
message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory
The reason for this behavior is that const char * variables are often used to point to string literals. For example:

const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call free() on such a pointer. On the other hand, it is legal to change the pointer to point to
some other value. When setting a variable of this type, SWIG allocates a new string (using malloc or new) and changes the poi
to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is not
released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object
list in the target language. Thus, the following declarations :

int foobar(int a[40]);

void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points a suitably allocated
region of memory.

5.4.4 Linking to char * 34

SWIG-1.3 Documentation

Multi-dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10]; /I Maps to int *
int [10][20]; // Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[][] is NOT equivalent to a single pointer *a or a
double pointer such as **a. Instead, a pointer to an array is used (as shown above) where the actual value of the pointer is the
starting memory location of the array. The reader is strongly advised to dust off their C book and re-read the section on arrays
before using them with SWIG.

Array variables are supported, but are read—-only by default. For example:
int a[100][200];

In this case, reading the variable 'a’ returns a pointer of type int (*)[200] that points to the first element of the array
&a[0][0]. Trying to modify 'a’ results in an error. This is because SWIG does not know how to copy data from the target
language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

%inline %{
void a_set(int i, int j, int val) {
a[i][j] = val;

int a_get(int i, int j) {
return a[i][j];

}
%)

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For
example:

/I Some array helpers
%inline %{
[* Create any sort of [size] array */
int *int_array(int size) {
return (int *) malloc(size*sizeof(int));

}

[* Create a two—dimension array [size][10] */
int (*int_array_10(int size))[10] {
return (int (*)[10]) malloc(size*10*sizeof(int));
}
%0}
Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. F
example, if you have a declaration like this,

char pathname[256];
SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname_get() {
return pathname;

}

void pathname_set(char *value) {
strncpy(pathname,value,256);

In the target language, the value can be set like a normal variable.

5.4.5 Arrays 35

SWIG-1.3 Documentation

5.4.6 Creating read—only variables

A read-only variable can be created by using the %immutable directive as shown :

/I File : interface.i

int a; /I Can read/write
%immutable;

int b,cd /I Read only variables
%mutable;

double x,y /I read/write

The %immutable directive enables read—only mode until it is explicitly disabled using the %mutable directive. As an
alternative to turning read—only mode off and on like this, individual declarations can also be tagged as immutable. For exampl

%immutable x; /I Make x read-only
double x; /I Read-only (from earlier %immutable directive)

double y; /l Read-write

The %mutable and %immutable directives are actually %feature directives defined like this:

#define %immutable %feature("immutable")
#define %omutable %feature("immutable”,")

If you wanted to make all wrapped variables read—only, barring one or two, it might be easier to take this approach:

%immutable; /I Make all variables read—only
%feature("immutable”,"0") x; // except, make x read/write

double x;

double y;
double z;

Read-only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */
char * const version="1.0"; /* Read only variable */

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may
generate a conflict with a keyword or already existing function in the scripting language. To resolve a name conflict, you can us
the %rename directive as shown :

Il interface.i

%rename(my_print) print;
extern void print(char *);

%rename(foo) a_really_long_and_annoying_name;
extern int a_really_long_and_annoying_name;

5.4.6 Creating read-only variables 36

SWIG-1.3 Documentation

SWIG still calls the correct C function, but in this case the function print() will really be called "my_print()" in the target
language.

The placement of the %rename directive is arbitrary as long as it appears before the declarations to be renamed. A common
technique is to write code for wrapping a header file like this:

/ interface.i

%rename(my_print) print;
%rename(foo) a_really _long_and_annoying_name;

%include "header.h"

%rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class
and structure names, member functions, and member data. For example, if you had two-dozen C++ classes, all with a membe
function named “print' (which is a keyword in Python), you could rename them all to “output' by specifying :

%rename(output) print; // Rename all “print' functions to “output'

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language
However, if you are careful about namespaces and your use of modules, you can usually avoid these problems.

Closely related to %rename is the %ignore directive. %ignore instructs SWIG to ignore declarations that match a given
identifier. For example:

%ignore print; I/l lgnore all declarations named print
%ignore _HAVE_FOO_H; // Ignore an include guard constant

%include "foo.h" /I Grab a header file

One use of %ignore is to selectively remove certain declarations from a header file without having to add conditional
compilation to the header. However, it should be stressed that this only works for simple declarations. If you need to remove a
whole section of problematic code, the SWIG preprocessor should be used instead.

More powerful variants of %rename and %ignore directives can be used to help wrap C++ overloaded functions and methods
or C++ methods which use default arguments. This is described_in the Ambiguity resolution and renaming section in the C++
chapter.

Compatibility note: Older versions of SWIG provided a special %name directive for renaming declarations. For example:

%name(output) extern void print(char *);

This directive is still supported, but it is deprecated and should probably be avoided. The %rename directive is more powerful
and better supports wrapping of raw header file information.

5.4.8 Default/optional arguments
SWIG supports default arguments in both C and C++ code. For example:
int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this
function could be used in Tcl as follows :

% plot -3.47.5 # Use default value
% plot -3.4 7.5 10 # set color to 10 instead

5.4.7 Renaming and ignoring declarations 37

SWIG-1.3 Documentation

Although the ANSI C standard does not allow default arguments, default arguments specified in a SWIG interface work with bo
C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When
default arguments are used in C code, the default values are emitted into the wrappers and the function is invoked with a full s
arguments. This is different to when wrapping C++ where an overloaded wrapper method is generated for each defaulted
argument. Please refer to the section on default arguments in the C++ chapter for further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions——possibly to serve as callbacks.
SWIG provides full support for function pointers provided that the callback functions are defined in C and not in the target
language. For example, consider a function like this:

int binary_op(int a, int b, int (*op)(int,int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For
instance, in Python:

>>> def add(x,y):
return x+y

>>> hinary_op(3,4,add)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Type error. Expected
>>>

f_int_int__int

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However,
existing C functions can be used as arguments provided you install them as constants. One way to do this is to use the
%constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%constant int add(int,int);
%constant int sub(int,int);
%constant int mul(int,int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them
as follows:

>>> binary_op(3,4,add)
Z

>>> binary_op(3,4,mul)
12

>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accesible as functions. For example:

>>> add(3,4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object is not callable: '_ff020efc_p _f int_int__int'
>>>

If you want to make a function available as both a callback function and a function, you can use the %callback and
%nocallback directives like this:

/* Function with a callback */

5.4.8 Default/optional arguments 38

SWIG-1.3 Documentation
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%callback("%s_cb")

int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback

The argument to %callback is a printf-style format string that specifies the naming convention for the callback constants (%s
gets replaced by the function name). The callback mode remains in effect until it is explicitly disabled using %nocallback.
When you do this, the interface now works as follows:

>>> binary_op(3,4,add_cb)
7

>>> hinary_op(3,4,mul_cb)
12

>>> add(3,4)

7

>>> mul(3,4)

12

Notice that when the function is used as a callback, special names such as add_cb is used instead. To call the function normal
just use the original function name such as add().

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the
following variation installs the callbacks as all upper-case constants such as ADD, SUB, and MUL.:

/* Some callback functions */
%callback("%(upper)s")

int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback

A format string of "%(lower)s" converts all characters to lower—case. A string of "%(title)s" capitalizes the first
character and converts the rest to lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in
the target language, this can be accomplished with the use of typemaps and other advanced SWIG features. This is described
later chapter.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ANSI C structures and union declarations. Extensions to handle
C++ are described in the next section.

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need
structure definitions to build an interface, providing definitions make it possible to access structure members. The accessor
functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
double x,y,z;

}

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
return obj—>x;

5.4.9 Pointers to functions and callbacks 39

SWIG-1.3 Documentation

}
double Vector_y_get(struct Vector *obj) {
return obj—>y;

}
double Vector_z_get(struct Vector *obj) {
return obj—>z;

}

void Vector_x_set(struct Vector *obj, double value) {
obj—>x = value;

}

void Vector_y_set(struct Vector *obj, double value) {
obj—>y = value;

}

void Vector_z_set(struct Vector *obj, double value) {
obj—>z = value;

}
In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
return (Vector *) calloc(1,sizeof(struct Vector));

}

void delete_Vector(struct Vector *obyj) {
free(obj);
}

Using these low-level accessor functions, an object can be minimally manipulated from the target language using code like thit
v = new_Vector()
Vector_x_set(v,2)
Vector_y_set(v,10)

Vector_z_set(v,-5)

delete_Vector(v)

However, most of SWIG's language modules also provide a high—level interface that is more convenient. Keep reading.

5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x,y,z;
} Vector;

When encountered, SWIG assumes that the name of the object is "Vector' and creates accessor functions like before. The only
difference is that the use of typedef allows SWIG to drop the struct keyword on its generated code. For example:

double Vector_x_get(Vector *obj) {
return obj—>x;

}
If two different names are used like this :

typedef struct vector_struct {
double x,y,z;
} Vector;

the name Vector is used instead of vector_struct since this is more typical C programming style. If declarations defined
later in the interface use the type struct vector_struct, SWIG knows that this is the same as Vector and it generates the

5.5 Structures and unions 40

SWIG-1.3 Documentation

appropriate type—checking code.

5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamicall
allocated using malloc() and that they are NULL-terminated ASCII strings. When such a member is modified, the previously
contents will be released, and the new contents allocated. For example :

%module mymodule

struct Foo {
char *name;

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
return Foo—>name,;

}

char *Foo_name_set(Foo *obj, char *c) {
if (obj—>name) free(obj—>name);
obj->name = (char *) malloc(strlen(c)+1);
strcpy(obj—>name,c);
return obj->name;

}

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See t
typemaps chapter for further details.

Note: If the —c++ option is used, new and delete are used to perform memory allocation.

5.5.3 Array members

Arrays may appear as the members of structures, but they will be read—only. SWIG will write an accessor function that returns
pointer to the first element of the array, but will not write a function to change the contents of the array itself. When this situatiol
is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read-only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning
message is harmless.

5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
int x;
} Foo;

typedef struct Bar {

inty;

Foo f; /* struct member */
} Bar;

When a structure member is wrapped, it is handled as a pointer, unless the %naturalvar directive is used where it is handled
more like a C++ reference (see C++ Member data). The accessors to the member variable as a pointer is effectively wrapped ¢

5.5.1 Typedef and structures 41

SWIG-1.3 Documentation

follows:

Foo *Bar_f_get(Bar *b) {
return &b—>f;

void Bar_f_set(Bar *b, Foo *value) {
b—>f = *value;

}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data
member. For example, suppose you wanted to modify the value of f.x of a Bar object like this:

Bar *b;
b—->f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following
code:

Bar *b;

Foo_x_set(Bar_f_get(b),37);
In this code, if the Bar_f_get() function were to return a Foo instead of a Foo *, then the resulting modification would be
applied to a copy of f and not the data member f itself. Clearly that's not what you want!

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. Fo
instance, if you had a structure like this,

struct Foo {
WORD w;

h
and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get(Foo *f) {
return f=>w;

}
void Foo_w_set(FOO *f, WORD value) {
f->w = value;

}

Compatibility Note: SWIG-1.3.11 and earlier releases transformed all non—primitive member datatypes to pointers. Starting in
SWIG-1.3.12, this transformation only occurs if a datatype is known to be a structure, class, or union. This is unlikely to break
existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors

When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do
anything, SWIG will automatically generate functions for creating and destroying objects using malloc() and free(). Note:
the use of malloc() only applies when SWIG is used on C code (i.e., when the —c++ option is not supplied on the command
line). C++ is handled differently.

If you don't want SWIG to generate default constructors for your interfaces, you can use the %nodefaultctor directive or the
—nodefaultctor command line option. For example:

swig —nodefaultctor example.i
or
%module foo

5.5.4 Structure data members 42

SWIG-1.3 Documentation

%nodefaultctor; /I Don't create default constructors
... declarations ...
%clearnodefaultctor; // Re—enable default constructors

If you need more precise control, %nodefaultctor can selectively target individual structure definitions. For example:

%nodefaultctor Foo; /I No default constructor for Foo

struct Foo { /I No default constructor generated.
h

struct Bar { /I Default constructor generated.

h

Since ignoring the implicit or default destructors most of the times produce memory leaks, SWIG will always try to generate
them. If needed, however, you can selectively disable the generation of the default/implicit destructor by using
%nodefaultdtor

%nodefaultdtor Foo; // No default/implicit destructor for Foo

struct Foo { /I No default destructor is generated.
h

struct Bar { /I Default destructor generated.

h

Compatibility note: Prior to SWIG-1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned
them on using -make_default. However, it appears that most users want to have constructor and destructor functions so it has
now been enabled as the default behavior.

Note: There are also the —nodefault option and %nodefault directive, which disable both the default or implicit destructor
generation. This could lead to memory leaks across the target languages, and is highly recommended you don't use them.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint,
object oriented programming really just boils down to the process of attaching functions to structures. These functions normally
operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no di
mechanism for utilizing it with C code. However, SWIG provides a special %extend directive that makes it possible to attach
methods to C structures for purposes of building an object oriented interface. Suppose you have a C header file with the follow
declaration :

[* file : vector.h */
typedef struct {

double x,y,z;
} Vector;

You can make a Vector look alot like a class by writing a SWIG interface like this:

/I file : vector.i
%module mymodule

%f

#include "vector.h"

9%}

%include vector.h I/l Just grab original C header file

%extend Vector { /I Attach these functions to struct Vector
Vector(double x, double y, double z) {

Vector *v;

5.5.5 C constructors and destructors 43

SWIG-1.3 Documentation

v = (Vector *) malloc(sizeof(Vector));
V=>X = X;

V—>y = y;

v—>z = z;

return v;

}

~Vector() {
free(self);

}

double magnitude() {
return sgrt(self->x*self->x+self->y*self->y+self->z*self->z);
}

void print() {
printf("Vector [%g, %g, %g]\n", self->x,self->y,self->z);
}

Now, when used with proxy classes in Python, you can do things like this :

>>> v = Vector(3,4,0) # Create a new vector
>>> print v.magnitude() # Print magnitude
5.0

>>> v.print() # Print it out

[3,4,0]

>>> del v # Destroy it

The %extend directive can also be used inside the definition of the Vector structure. For example:

/I file : vector.i
%module mymodule
%

#include "vector.h"
%0}

typedef struct {
double x,y,z;
%extend {
Vector(double x, double y, double z) { ... }
~Vector() { ... }

}

} Vector;

Finally, %extend can be used to access externally written functions provided they follow the naming convention used in this
example :

/* File : vector.c */
* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
V=>X = X;
V—>y = y;
v=>z = 7;
return v;

void delete_Vector(Vector *v) {

free(v);
}

double Vector_magnitude(Vector *v) {
return sqrt(Vv—>x*v—>x+v->y*v->y+v—>z*y—>z);

}

5.5.6 Adding member functions to C structures 44

SWIG-1.3 Documentation

/I File : vector.i

Il Interface file
%module mymodule
%f{

#include "vector.h"
9%}

typedef struct {
double x,y,z;
%extend {
Vector(int,int,int); // This calls new_Vector()
~Vector(); /I This calls delete_Vector()
double magnitude(); // This will call Vector_magnitude()

}

} Vector;

A little known feature of the %extend directive is that it can also be used to add synthesized attributes or to modify the behavio
of existing data attributes. For example, suppose you wanted to make magnitude a read-only attribute of Vector instead of a
method. To do this, you might write some code like this:

/I Add a new attribute to Vector
%extend Vector {
const double magnitude;

}
/I Now supply the implementation of the Vector_magnitude_get function
9%{
const double Vector_magnitude_get(Vector *v) {
return (const double) return sgrt(v—>x*v—>Xx+v—>y*v—>y+v->z*v—>7);
}
9%}

Now, for all practial purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with problematic data members. For example, consider this interface:

struct Person {
char name[50];

}

By default, the name attribute is read—only because SWIG does not normally know how to modify arrays. However, you can
rewrite the interface as follows to change this:

struct Person {
%extend {
char *name;

}

/I Specific implementation of set/get functions
9%{
char *Person_name_get(Person *p) {

return p—>name,

}

void Person_name_set(Person *p, char *val) {
strncpy(p—>name,val,50);

9%}

Finally, it should be stressed that even though %extend can be used to add new data members, these new members can not
require the allocation of additional storage in the object (e.qg., their values must be entirely synthesized from existing attributes ¢

5.5.6 Adding member functions to C structures 45

SWIG-1.3 Documentation

the structure).

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
int objtype;
union {
int ivalue;
double dvalue;
char “*strvalue;
void ‘*ptrvalue;
} intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the
following:

typedef union {

int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} Object_intRep;
typedef struct Object {
int objType;

Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both
structures. In this case, functions like this would be created :

Object_intRep *Object_intRep_get(Object *o) {
return (Object_intRep *) &o—>intRep;
}

int Object_intRep_ivalue_get(Object_intRep *0) {
return o—>ivalue;
}

int Object_intRep_ivalue_set(Object_intRep *o, int value) {
return (o—>ivalue = value);

double Object_intRep_dvalue_get(Object_intRep *0) {
return o—>dvalue;
}

... etc ...
Although this process is a little hairy, it works like you would expect in the target scripting language—-especially when proxy
classes are used. For instance, in Perl:

Perl5 script for accessing nested member
$0 = CreateObject(); # Create an object somehow
$o—>{intRep}—>{ivalue} =7 # Change value of o.intRep.ivalue

If you have a lot nested structure declarations, it is advisable to double—check them after running SWIG. Although, there is a g«

5.5.7 Nested structures 46

SWIG-1.3 Documentation

chance that they will work, you may have to modify the interface file in certain cases.
5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a .i file exactly matches that used in the underlying C code (except in the
case of nested structures). For this reason, there are no problems omitting problematic members or simply omitting the structut
definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure definitior

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though struc
access has been described in terms of high—level accessor functions such as this,

double Vector_x_get(Vector *v) {
return v—>x;

}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector_x_get()
actually exists in the generated wrapper file. For example, when creating a Tcl module, the following function is generated
instead:

static int
_wrap_Vector_x_get(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[]) {
struct Vector *argl ;
double result ;

if (SWIG_GetArgs(interp, objc, objv,"p:Vector_x_get self ",&arg0,
SWIGTYPE_p_Vector) == TCL_ERROR)
return TCL_ERROR;
result = (double) (argl—>x);
Tcl_SetObjResult(interp, Tcl_NewDoubleObj((double) result));
return TCL_OK;
}

The only exception to this rule are methods defined with %extend. In this case, the added code is contained in a separate
function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may
never use the low-level interface described here, most of SWIG's language modules use it in some way or another.

5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may wan
include additional C code to perform initialization or other operations. There are four common ways to insert code, but it's useft
to know how the output of SWIG is structured first.

5.6.1 The output of SWIG

When SWIG creates its output file, it is broken up into four sections corresponding to runtime code, headers, wrapper functions
and module initialization code (in that order).

* Runtime code.
This code is internal to SWIG and is used to include type—checking and other support functions that are used by the re
of the module.

» Header section.
This is user—defined support code that has been included by the %({ ... %} directive. Usually this consists of header
files and other helper functions.

» Wrapper code.
These are the wrappers generated automatically by SWIG.

5.5.8 Other things to note about structure wrapping a7

SWIG-1.3 Documentation

* Module initialization.
The function generated by SWIG to initialize the module upon loading.

5.6.2 Code insertion blocks

Code is inserted into the appropriate code section by using one of the following code insertion directives:

%runtime %{
... code in runtime section ...
9%}

%header %{
... code in header section ...
%0}

Ywrapper %f{
... code in wrapper section ...
9%}

%init %{

... code in init section ...
9%}

The bare %{ ... %} directive is a shortcut that is the same as %header %f{ ... %]}.

Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most SWIG input files
have at least one such block to include header files and support C code. Additional code blocks may be placed anywhere in a

SWIG file as needed.

%module mymodule

%{

#include "my_header.h"
0%}

... Declare functions here
%

void some_extra_function() {

=
%}

A common use for code blocks is to write "helper” functions. These are functions that are used specifically for the purpose of

building an interface, but which are generally not visible to the normal C program. For example :

%
/* Create a new vector */
static Vector *new_Vector() {

return (Vector *) malloc(sizeof(Vector));

}
9%}

/I Now wrap it
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as folloy

%inline %({
[* Create a new vector */
Vector *new_Vector() {

5.6.1 The output of SWIG

48

SWIG-1.3 Documentation

return (Vector *) malloc(sizeof(Vector));

}
9%}

The %inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then
parsed by both the SWIG preprocessor and parser. Thus, the above example creates a new command new_Vector using only
one declaration. Since the code inside an %inline %{ ... %} block is given to both the C compiler and SWIG, it is illegal to
include any SWIG directives inside a %f{ ... %} block.

5.6.4 Initialization blocks

When code is included in the %init section, it is copied directly into the module initialization function. For example, if you
needed to perform some extra initialization on module loading, you could write this:

9%init %{
init_variables();
%}

5.7 An Interface Building Strategy

This section describes the general approach for building interface with SWIG. The specifics related to a particular scripting
language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the resu
might not be what you expect——-in fact, they might be awful. Here's a series of steps you can follow to make an interface for a
program :

« Identify the functions that you want to wrap. It's probably not necessary to access every single function in a C
program—-thus, a little forethought can dramatically simplify the resulting scripting language interface. C header files
are particularly good source for finding things to wrap.

« Create a new interface file to describe the scripting language interface to your program.

« Copy the appropriate declarations into the interface file or use SWIG's %include directive to process an entire C
source/header file.

« Make sure everything in the interface file uses ANSI C/C++syntax.

« Make sure all necessary “typedef' declarations and type—-information is available in the interface file.

« If your program has a main() function, you may need to rename it (read on).

* Run SWIG and compile.

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is
simply copy the offending code into a separate interface file and edit it. However, the SWIG developers have worked very hard
improve the SWIG parser—-you should report parsing errors to the swig—devel mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);

5.6.3 Inlined code blocks 49

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

SWIG-1.3 Documentation

extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

* File : interface.i */
%module mymodule

9%{

#include "header.h"

%}

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could have made an interface file like this as well:

[* File : interface.i */
%module mymodule
%include header.h

Naturally, your mileage may vary.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special .i file defining the interface to a package.
There are several reasons why you might want to do this:

« It is rarely necessary to access every single function in a large package. Many C functions might have little or no use ir
scripted environment. Therfore, why wrap them?

 Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructe

* Interface files can provide more structure and organization.

* SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work
around these problems.

« Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go tot
interface file and immediately see what is available without having to dig it out of header files.

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure
include certain header files by using a %{,%} block like this:

%module graphics
9%{

#include <GL/gl.h>
#include <GL/glu.h>
%0}

/I Put rest of declarations here

5.7.5 What to do with main()

If your program defines a main() function, you may need to get rid of it or rename it in order to use a scripting language. Most
scripting languages define their own main() procedure that is called instead. main() also makes no sense when working with
dynamic loading. There are a few approaches to solving the main() conflict :

 Get rid of main() entirely.

5.7.2 The SWIG interface file 50

SWIG-1.3 Documentation

* Rename main() to something else. You can do this by compiling your C program with an option like
—Dmain=oldmain.
 Use conditional compilation to only include main() when not using a scripting language.

Getting rid of main() may cause potential initialization problems of a program. To handle this problem, you may consider
writing a special function called program_init() that initializes your program upon startup. This function could then be
called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main() function to parse command line options and to set parameters.
However, by using a scripting language, you are probably trying to create a program that is more interactive. In many cases, th
old main() program can be completely replaced by a Perl, Python, or Tcl script.

Note: If some cases, you might be inclined to create a scripting language wrapper for main(). If you do this, the compilation
will probably work and your module might even load correctly. The only trouble is that when you call your main() wrapper,
you will find that it actually invokes the main() of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

5.7.5 What to do with main() 51

6 SWIG and C++

» Comments on C++ Wrapping

» Approach

 Supported C++ features

« Command line options and compilation

 Simple C++ wrapping
¢ Constructors and destructors
+ Default constructors, copy constructors and implicit destructors
¢ When constructor wrappers aren't created

¢ Copy constructors
+ Member functions

+ Static members
¢+ Member data
« Default arguments
* Protection
» Enums and constants
* Friends
» References and pointers
« Pass and return by value
« Inheritance
« A brief discussion of multiple inheritance, pointers, and type checking
« Renaming
» Wrapping Overloaded Functions and Methods
¢ Dispatch function generation
+ Ambiguity in Overloading
¢ Ambiguity resolution and renaming
¢+ Comments on overloading
» Wrapping overloaded operators
» Class extension
» Templates
+ Namespaces
» Exception specifications
 Exception handling with %catches
 Pointers to Members
« Smatrt pointers and operator=>()

« Using declarations and inheritance
 Partial class definitions

« A brief rant about const—correctness
 Proxy classes
¢ Construction of proxy classes
+ Resource management in proxies
¢ Language specific details
» Where to go for more information

This chapter describes SWIG's support for wrapping C++. As a prerequisite, you should first read the chapter SWIG Basics to
how SWIG wraps ANSI C. Support for C++ builds upon ANSI C wrapping and that material will be useful in understanding this
chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only
provides support for a subset of C++ features. Fortunately, this is now a rather large subset.

6 SWIG and C++ 52

SWIG-1.3 Documentation

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic) way to map many of its advance
features into other languages. As a simple example, consider the problem of wrapping C++ multiple inheritance to a target
language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when 1
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the
world of SWIG, you are really trying to create binary—level software components for use in other languages. In order for this to
work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its
functionality. Although templates are a powerful feature, they are largely orthogonal to the whole notion of binary components
and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper.
To further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly
basic operations (e.g., pointer dereferencing, procedure call, etc.) can be changed in dramatic and sometimes non-obvious we
Although this "magic" may present few problems in a C++-only universe, it greatly complicates the problem of crossing langua
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedur
ANSI-C style wrappers. These wrappers take care of basic type conversion, type checking, error handling, and other low-leve
details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built—in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. Optionally, SWIG
can also generate proxy classes that provide a natural OO interface to the underlying code. These proxies are built on top of th
low-level procedural wrappers and are typically written in the target language itself. For instance, in Python, a real Python clas
used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non-intrusive approach to C++ wrapping. SWIG
does not encapsulate C++ classes inside special C++ adaptor or proxy classes, it does not rely upon templates, nor does it use
inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting
wrapper code. You might say that SWIG has been written to follow the principle of least surprise——it does not play sneaky trick
with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Most of this chapter focuses on the low-level procedural interface to C++ that is used as the foundation for all language modul;
Keep in mind that most target languages also provide a high—level OO interface via proxy classes. A few general details about
proxies can be found at the end of this chapter. However, more detailed coverage can be found in the documentation for each
target language.

6.3 Supported C++ features
SWIG's currently supports the following C++ features :

* Classes.

* Constructors and destructors

* Virtual functions

* Public inheritance (including multiple inheritance)
* Static functions

 Function and method overloading.

» Operator overloading for many standard operators
* References

» Templates (including specialization and member templates).
* Pointers to members

* Namespaces

6.1 Comments on C++ Wrapping 53

SWIG-1.3 Documentation

The following C++ features are not currently supported :

* Nested classes
» Overloaded versions of certain operators (new, delete, etc.)

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no
promises. Also, submitting a bug report is a very good way to get problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the "—c++' option. This changes the way a number of critical
features such as memory management are handled. It also enables the recognition of C++ keywords. Without the —c++ flag,
SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig —c++ —tcl example.i
$ c++ —c example_wrap.cxx
$ c++ example_wrap.o $(OBJS) —o example.so

Unfortunately, the process varies slightly on each machine. Make sure you refer to the documentation on each target language
further details. The SWIG Wiki also has further details.

6.5 Simple C++ wrapping
The following code shows a SWIG interface file for a simple C++ class.

%module list
%

#include "list.h"
%0}

/I Very simple C++ example for linked list

class List {
public:
List();
~List();
int search(char *value);
void insert(char *);
void remove(char *);
char *get(int n);
int length;
static void print(List *1);

¥

To generate wrappers for this class, SWIG first reduces the class to a collection of low—level C-style accessor functions. The r
few sections describe this process. Later parts of the chapter describe a higher level interface based on proxy classes.

6.5.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new_List(void) {
return new List;

void delete_List(List *I) {
delete I;

}

6.3 Supported C++ features 54

SWIG-1.3 Documentation

6.5.2 Default constructors, copy constructors and implicit destructors

Following the C++ rules for implicit constructor and destructors, SWIG will try to automatically generate them even when they
are not explicitly declared in the class interface.

In general then:

« If a C++ class does not declare any explicit constructor, SWIG will automatically generate one.
« If a C++ class does not declare a explicit copy constructor, SWIG will automatically generate one.
« If a C++ class does not declare an explicit destructor, SWIG will automatically create one.

And as in C++, a few rules that alters the previous behavior:

« A default constructor is not created if a class already defines a constructor with arguments.

 Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract
class, but don't provide definitions for all of the pure methods.

« A default constructor is not created unless all bases classes support a default constructor.

« Default constructors and implicit destructors are not created if a class defines them in a private or protected
section.

« Default constructors and implicit destructors are not created if any base class defines a non—public default constructor
destructor.

SWIG should never generate a default constructor, copy constructor or default destructor for a class in which it is illegal to do s
In some cases, however, it could be necessary (if the complete class declaration is not visible from SWIG, and one of the abov
rules is violated) or desired (to reduce the size of the final interface) to disable the implicit constructor/desctructor generation
manually.

To do so, the %nodefaultctor and %nodefaultdtor directives can be used. Note that these directives only affects the
implicit generation, and they have no effect if the default/copy constructors or destructor are explicitly declared in the class
interface.

For example:

%nodefaultctor Foo; // Disable the default constructor for class Foo.

class Foo { /I No default constructor is generated, unless is declared
¥

class Bar { /I A default constructor is generated, if possible

¥

The directive %nodefaultctor can also be applied "globally”, as in:

%nodefaultctor; // Disable creation of default constructors
class Foo { // No default constructor is generated, unless is declared

I3

class Bar {

public:

Bar(); /I The default constructor is generated, since is declared

I3

%clearnodefaultctor; // Enable the creation of default constructors again

The corresponding %nodefaultdtor directive can be used to disable the generation of the default or implicit destructor, if
needed. Be aware, however, that this could lead to memory leaks in the target language. Hence, it is recommended to use this
directive only in well known cases. For example:

%nodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { /I No destructor is generated, unless is declared

6.5.2 Default constructors, copy constructors and implicit destructors 55

SWIG-1.3 Documentation
¥

Compatibility Note: The generation of default constructors/implicit destructors was made the default behavior in SWIG 1.3.7.
This may break certain older modules, but the old behavior can be easily restored using %nodefault or the —nodefault
command line option. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be ab
to gather information from both the private and protected sections (specifically, it needs to know if a private or protected
constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or comment out the private
and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously genere
constructors for classes that define a constructor in those sections. Consider restoring those sections in the interface or using
%nodefault to fix the problem.

Note: The above described %nodefault directive/-nodefault option, which disable both the default constructor and the the
implicit destructors, could lead to memory leaks across the target languages, and is highly recommended you don't use them.

6.5.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a construct
wrapper if it thinks that it will result in illegal wrapper code. There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:

Foo(); /I Not wrapped.
public:

¥

Next, SWIG won't generate wrappers for a class if it appears to be abstract-—that is, it has undefined pure virtual methods. Hel
are some examples:

class Bar {
public:
Bar(); /I Not wrapped. Bar is abstract.
virtual void spam(void) = 0;
¥
class Grok : public Bar {
public:
Grok(); /I Not wrapped. No implementation of abstract spam().
h

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caus
when classes are determined to be abstract. To see if this is the case, run SWIG with all of its warnings turned on:

% swig —Wall —python module.i

In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non-abstract using this:

%feature("notabstract") Foo;
class Foo : public Bar {
public:
Foo(); // Generated no matter what——-not abstract.

¥

More information about %feature can be found in the Customization features chapter.

6.5.3 When constructor wrappers aren't created 56

SWIG-1.3 Documentation

6.5.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is
supported, the copy constructor is accessible using the normal constructor function. For example, if you have this:

class List {
public:
List();
List(const List &); // Copy constructor

h
then the copy constructor can be used as follows:

X = new_List() # Create a list
y = new_List(x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_List(List *f) {
return new List(*f);

}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If
more than one copy constructor is defined, only the first definition that appears is used as the copy constructor——other definitio
will result in a name—clash. Constructors such as X(const X &), X(X &), and X(X *) are handled as copy constructors in

SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the
treatment of default constructors and destructors.

Compatibility note: Special support for copy constructors was not added until SWIG-1.3.12. In previous versions, copy
constructors could be wrapped, but they had to be renamed. For example:

class Foo {
public:
Foo();
%name(CopyFoo) Foo(const Foo &);

o

For backwards compatibility, SWIG does not perform any special copy—constructor handling if the constructor has been manue
renamed. For instance, in the above example, the name of the constructor is set to new_CopyFoo(). This is the same as in old:
versions.

6.5.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
return obj—>search(value);

}

This translation is the same even if the member function has been declared as virtual.
It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access

as obj—>search(value) is directly inlined into the generated wrapper functions. However, the name and calling convention
of the wrappers match the accessor function prototype described above.

6.5.4 Copy constructors 57

SWIG-1.3 Documentation

6.5.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member functic
print(List *I) directly invokes List::print(List *l) in the generated wrapper code.

Usually, static members are accessed as functions with names in which the class name has been prepended with an undersco
For example, List_print.

6.5.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are effectively created. F
example :

int List_length_get(List *obj) {
return obj—>length;

int List_length_set(List *obj, int value) {

obj->length = value;
return value;

A read-only member can be created using the %immutable and %mutable directives. For example, we probably wouldn't
want the user to change the length of a list so we could do the following to make the value available, but read-only.

class List {
public:

%immutable;
int length;
%mutable;

3
Alternatively, you can specify an immutable member in advance like this:
%immutable List::length;
él.ass List {
mt length; /I Immutable by above directive
h

Similarly, all data attributes declared as const are wrapped as read—only members.

There are some subtle issues when wrapping data members that are themselves classes. For instance, if you had another clas
this,

class Foo {
public:
List items;

then access to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
return &self->items;

}

void Foo_items_set(Foo *self, List *value) {
self->items = *value;

6.5.6 Static members 58

SWIG-1.3 Documentation
}

More information about this can be found in the SWIG Basics chapter, Structure data members section.

The wrapper code to generate the accessors for classes comes from the pointer typemaps. This can be somewhat unnatural fc
some types. For example, a user would expect the STL std::string class member variables to be wrapped as a string in the tarc
language, rather than a pointer to this class. The const reference typemaps offer this type of marshalling, so there is a feature t
tell SWIG to use the const reference typemaps rather than the pointer typemaps. It is the %naturalvar feature and is used as
follows:

/I All List variables will use const List& typemaps
%naturalvar List;

/I Only Foo::myList will use const List& typemaps
%naturalvar Foo::myList;

struct Foo {

List myList;

h

/I All variables will use const reference typemaps
%naturalvar;

The observant reader will notice that %naturalvar works like any other feature, except it can also be attached to class types.
The first of the example usages above show %naturalvar attaching to the List class. Effectively this feature changes the way
accessors are generated to the following:

const List &Foo_items_get(Foo *self) {
return self->items;
}

void Foo_items_set(Foo *self, const List &value) {
self->items = value;
}

In fact it is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared t
the pointer typemaps. A pointer can be NULL, whereas a reference cannot, so the extra checking ensures that the target langu
user does not pass in a value that translates to a NULL pointer and thereby preventing any potential NULL pointer dereference
The %naturalvar feature will also apply to global variables in some language modules, eg C# and Java.

Other alternatives for turning this feature on globally are to use the swig —naturalvar commandline option or the module
mode option, %module(naturalvar=1)

Compatibility note: The %naturalvar feature was introduced in SWIG-1.3.28, prior to which it was necessary to manually
apply the const reference typemaps, eg %apply const std::string & { std::string * }, but this example would
also apply the typemaps to methods taking a std::string pointer.

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG-1.3.12, all members of unknown type were wrapped into accessor functions using pointers.
For example, if you had a structure like this

struct Foo {
size_t len;

g

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG-1.3.12, this
behavior has been modified. Specifically, pointers will only be used if SWIG knows that a datatype corresponds to a structure c
class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths over
few problems related to structure wrapping and some of SWIG's customization features.

6.5.7 Member data 59

SWIG-1.3 Documentation

6.6 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:

void bar(int x, inty = 3, int z = 4);
b

SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively
handling methods with default arguments as if it had wrapped the equivalent overloaded methods. Thus for the example above
is as if we had instead given the following to SWIG:

class Foo {

public:
void bar(int x, inty, int z);
void bar(int X, int y);
void bar(int x);

k

The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this is covered later ir
Wrapping Overloaded Functions and Methods section. This approach allows SWIG to wrap all possible default arguments, but
can be verbose. For example if a method has ten default arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using %feature with functions with default
arguments. The Ambiguity resolution and renaming section also deals with using %rename and %ignore on methods with
default arguments. If you are writing your own typemaps for types used in methods with default arguments, you may also need
write a typecheck typemap. See the_Typemaps and overloading section for details or otherwise use the

compactdefaultargs feature as mentioned below.

Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped default arguments slightly differently. Instead a single
wrapper method was generated and the default values were copied into the C++ wrappers so that the method being wrapped \
then called with all the arguments specified. If the size of the wrappers are a concern then this approach to wrapping methods:
default arguments can be re—activated by using the compactdefaultargsfeature.

%feature("compactdefaultargs") Foo::bar;
class Foo {
public:
void bar(int x, inty = 3, int z = 4);
h

This is great for reducing the size of the wrappers, but the caveat is it does not work for the strongly typed languages which dol
have optional arguments in the language, such as C# and Java. Another restriction of this feature is that it cannot handle defau
arguments that are not public. The following example illustrates this:

class Foo {
private:
static const int spam;
public:
void bar(int x, inty = spam); // Won't work with %feature("compactdefaultargs") —
/I private default value

k

This produces uncompileable wrapper code because default values in C++ are evaluated in the same scope as the member
function whereas SWIG evaluates them in the scope of a wrapper function (meaning that the values have to be public).

This feature is automatically turned on when wrapping C code with default arguments and whenever keyword arguments (kwatr

are specified for either C or C++ code. Keyword arguments are a language feature of some scripting languages, for example R
and Python. SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach cannot be used.

6.6 Default arguments 60

SWIG-1.3 Documentation

6.7 Protection

SWIG wraps class members that are public following the C++ conventions, i.e., by explicit public declaration or by the use of th
using directive. In general, anything specified in a private or protected section will be ignored, although the internal code
generator sometimes looks at the contents of the private and protected sections so that it can properly generate code for defau
constructors and destructors. Directors could also modify the way non—public virtual protected members are treated.

By default, members of a class definition are assumed to be private until you explicitly give a “public:' declaration (This is the
same convention used by C++).

6.8 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the
appropriate language chapter. However, many languages map enums and constants in a class definition into constants with th
classname as a prefix. For example :

class Swig {
public:

enum {ALE, LAGER, PORTER, STOUT};
b

Generates the following set of constants in the target scripting language :
Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER

Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read—only members and do not create constants.

6.9 Friends

Friend declarations are not longer ignored by SWIG. For example, if you have this code:

class Foo {
public:

%lr.iend void blah(Foo *f);
h
then the friend declaration does result in a wrapper code equivalent to one generated for the following declaration

class Foo {
public:

¥

void blah(Foo *f);

A friend declaration, as in C++, is understood to be in the same scope where the class is declared, hence, you can do

%ignore bar::blah(Foo *f);
namespace bar {

class Foo {

6.7 Protection 61

SWIG-1.3 Documentation
public:
friend void blah(Foo *):

N
}

and a wrapper for the method 'blah’ will not be generated.

6.10 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:

double bar(double &a);
}

is accessed using a function similar to this:
double Foo_bar(Foo *obj, double *a) {
obj—>bar(*a);

}

As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value
instead of pointers. For example, if you have a function like this,

void foo(const int &x);
it is called from a script as follows:
foo(3) # Notice pass by value
Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:

Foo &spam();
b

Generates code like this:
Foo *Bar_spam(Bar *obj) {
Foo &result = obj—>spam();

return &result;

}

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value
rather than a pointer. For example, a function like this,

const int &bar();
will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.

Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this wi
probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more
advanced C++ wrapping applications——-especially related to templates and the STL. This was first added in SWIG-1.3.12.

6.9 Friends 62

SWIG-1.3 Documentation

6.11 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross_product(Vector a, Vector b);

If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector x = *a,
Vector y = *b;
Vector r = cross_product(x,y);
return new Vector(r);

}

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If Vector is defined as class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by
encapsulating the arguments inside a special C++ template wrapper class. This produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
SwigValueWrapper<Vector> x = *a;
SwigValueWrapper<Vector> y = *b;
SwigValueWrapper<Vector> r = cross_product(x,y);
return new Vector(r);

}

This transformation is a little sneaky, but it provides support for pass—by-value even when a class does not provide a default
constructor and it makes it possible to properly support a number of SWIG's customization options. The definition of
SwigValueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper
around a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG—--it should be transparent except that you may
see this code when reading the SWIG output file.

Note: This template transformation is new in SWIG-1.3.11 and may be refined in future SWIG releases. In practice, it is only
necessary to do this for classes that don't define a default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or
references.

Note: The performance of pass—by-value is especially bad for large objects and should be avoided if possible (consider using
references instead).

6.12 Inheritance

SWIG supports C++ inheritance of classes and allows both single and multiple inheritance, as limited or allowed by the target
language. The SWIG type—checker knows about the relationship between base and derived classes and allows pointers to any
object of a derived class to be used in functions of a base class. The type—checker properly casts pointer values and is safe to
with multiple inheritance.

SWIG treats private or protected inheritance as close to the C++ spirit, and target language capabilities, as possible. In most of
cases, this means that swig will parse the non—public inheritance declarations, but that will have no effect in the generated cod
besides the implicit policies derived for constructor and destructors.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

/I shapes.i

6.11 Pass and return by value 63

SWIG-1.3 Documentation

%module shapes
9%{

#include "shapes.h"
%0}

class Shape {
public:
double x,y;
virtual double area() = 0;
virtual double perimeter() = O;
void set_location(double x, double y);

h
class Circle : public Shape {
public:
Circle(double radius);
~Circle();
double area();
double perimeter();
¥
class Square : public Shape {
public:
Square(double size);
~Square();
double area();
double perimeter();
}

When wrapped into Python, we can now perform the following operations :

$ python

>>> import shapes

>>> circle = shapes.new_Circle(7)

>>> square = shapes.new_Square(10)
>>> print shapes.Circle_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(square)
100.00000000000000000

>>> shapes.Shape_set_location(square,2,-3)
>>> print shapes.Shape_perimeter(square)
40.00000000000000000

>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making ca
Circle_area, Square_area, and so on. However, the same results can be accomplished by simply using the Shape_area
function on either object.

One important point concerning inheritance is that the low—level accessor functions are only generated for classes in which the
are actually declared. For instance, in the above example, the method set_location() is only accessible as
Shape_set_location() and not as Circle_set_location() or Square_set_location(). Of course, the

Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the
attributes x and y are generated as Shape_x_get(), Shape_x_set(), Shape_y get(), and Shape_y_set().

Functions such as Circle_x_get() are not available—-instead you should use Shape_x_get().

Although the low-level C-like interface is functional, most language modules also produce a higher level OO interface using
proxy classes. This approach is described later and can be used to provide a more natural C++ interface.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get an warning
message like this:

example:18. Nothing known about class 'Foo'. Ignored.

6.12 Inheritance 64

SWIG-1.3 Documentation

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will
accept any object derived from Foo regardless of whether or not SWIG actually wrapped the Foo class. If you really don't want
to generate wrappers for the base class, but you want to silence the warning, you might consider using the %import directive tc
include the file that defines Foo. %import simply gathers type information, but doesn't generate wrappers. Alternatively, you
could just define Foo as an empty class in the SWIG interface.

Note: typedef-names can be used as base classes. For example:

class Foo {
3
typedef Foo FooObyj;
class Bar : public FooObj { // Ok. Base class is Foo
3
Similarly, typedef allows unnamed structures to be used as base classes. For example:

typedef struct {

} I;.(.JO;

class Bar : public Foo { // Ok.
3

Compatibility Note: Starting in version 1.3.7, SWIG only generates low-level accessor wrappers for the declarations that are
actually defined in each class. This differs from SWIG1.1 which used to inherit all of the declarations defined in base classes at
regenerate specialized accessor functions such as Circle_x_get(), Square_x_get(), Circle_set_location(), and
Square_set_location(). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it
awkward to build applications spread across multiple modules (since accessor functions are duplicated in every single module)
is also unnecessary to have such wrappers when advanced features like proxy classes are used. Note: Further optimizations a
enabled when using the —fvirtual option, which avoids the regenerating of wrapper functions for virtual members that are
already defined in a base class.

6.13 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value o
pointer and a type string. For example, in Tcl, a C++ pointer might be encoded as a string like this:

_808fea88_p_Circle

A somewhat common question is whether or not the type—tag could be safely removed from the pointer. For instance, to get be
performance, could you strip all type tags and just use simple integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in t
target language. Typically this is the equivalent of casting a pointer to void *. This means that any C++ type information
associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features——especially
multiple inheritance. For example, suppose you had code like this:

class A{
public:
int X;

¥

class B {
public:

6.13 A brief discussion of multiple inheritance, pointers, and type checking 65

SWIG-1.3 Documentation

inty;
L

class C : public A, public B {
h

int A_function(A *a) {
return a—>x;

}

int B_function(B *b) {
return b—>y;

}
Now, consider the following code that uses void *.

C *c = new C();
void *p = (void *) c;

int x = A_function((A *) p);
inty = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type C * (via inheritance). However,

one of the functions will always return the wrong result when used as shown. The reason for this is that even though p points tc
object of type C, the casting operation doesn't work like you would expect. Internally, this has to do with the data representatior
C. With multiple inheritance, the data from each base class is stacked together. For example:

Because of this stacking, a pointer of type C * may change value when it is converted to a A * or B *. However, this adjustment
does not occur if you are converting from a void *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG
generated wrappers to correctly cast pointer values under inheritance (avoiding the above problem).

One might be inclined to fix this problem using some variation of dynamic_cast<>. The only problem is that it doesn't work
with void pointers, it requires RTTI support, and it only works with polymorphic classes (i.e., classes that define one or more
virtual functions).

The bottom line: learn to live with type—-tagged pointers.

6.14 Renaming

C++ member functions and data can be renamed with the %name directive. The %name directive only replaces the member
function name. For example :

class List {
public:
List();
%name(ListSize) List(int maxsize);
~List();
int search(char *value);
%name(find) void insert(char *);
%name(delete) void remove(char *);
char *get(int n);
int length;
static void print(List *1);

h
6.14 Renaming 66

SWIG-1.3 Documentation

This will create the functions List_find, List_delete, and a function named new_ListSize for the overloaded
constructor.

The %name directive can be applied to all members including constructors, destructors, static functions, data members, and
enumeration values.

The class name prefix can also be changed by specifying

%name(newname) class List {
}

Although the %name() directive can be used to help deal with overloaded methods, it really doesn't work very well because it
requires a lot of additional markup in your interface. Keep reading for a better solution.

6.15 Wrapping Overloaded Functions and Methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example,
you supply SWIG with overloaded functions like this:

void foo(int x) {
printf("x is %d\n", X);

void foo(char *x) {
printf("x is '%s'\n", x);

}
The function is used in a completely natural way. For example:

>>> foo(3)

xis 3

>>> foo("hello")
x is 'hello’

>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
Foo();
Foo(const Foo &); // Copy constructor
void bar(int x);
void bar(char *s, int y);

h
it might be used like this

>>> f = Foo() # Create a Foo
>>> f.bar(3)

>>> g = Foo(f) # Copy Foo
>>> f.bar("hello",2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting
languages. Unlike C++, which binds overloaded methods at compile time, SWIG must determine the proper function as a runtir
check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. Fo
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,

6.15 Wrapping Overloaded Functions and Methods 67

SWIG-1.3 Documentation

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the
scripting languages, SWIG generates a dispatch function that checks the number of passed arguments and their types. To cre:
this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

1. Number of required arguments. Methods are sorted by increasing number of required arguments.
2. Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by
the language module).

Type Precedence
TYPE * 0 (High)
void * 20

Integers 40

Floating point 60

char 80

Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in incre:
order of precedence values.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);

void foo(int);

void foo(Bar *);

void foo();

void foo(int X, int y, int z, int w);
void foo(int x, inty, int z = 3);
void foo(double x, double y);
void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

[0] foo()

[1] foo(double);

[2] foo(int);

[3] foo(Bar *);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, double y)
[6] foo(double x, Bar *z)

[7] foo(int X, inty, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

[0] foo()

[1] foo(Bar *);

[2] foo(int);

[3] foo(double);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, Bar *z)

[6] foo(double x, double y)
[7] foo(intx, inty, int z, int w);

6.15.1 Dispatch function generation 68

SWIG-1.3 Documentation

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same ord:
they appear in this ranking.

If you're still confused, don't worry about it———SWIG is probably doing the right thing.

6.15.2 Ambiguity in Overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore,
which one of these functions do you pick? Clearly, there is no way to truly make a distinction just by looking at the value of the
integer itself (int and long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate
a warning message like this for scripting languages:

example.i:4: Warning(509): Overloaded foo(long) is shadowed by foo(int) at example.i:3.
or for statically typed languages like Java:

example.i:4: Warning(516): Overloaded method foo(long) ignored. Method foo(int)
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped
all. This is done as SWIG does not know how to disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:

« Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown
above.

« Floating point conversion. float and double can not be disambiguated in some languages.

« Pointers and references. For example, Foo * and Foo &.

« Pointers and arrays. For example, Foo * and Foo [4].

« Pointers and instances. For example, Foo and Foo *. Note: SWIG converts all instances to pointers.

« Qualifiers. For example, const Foo * and Foo *.

« Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier meth
will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get an error message like this:

example.i:3: Warning(467): Overloaded foo(int) not supported (no type checking
rule for 'int').

This error means that the target language module supports overloading, but for some reason there is no type—checking rule th:
can be used to generate a working dispatch function. The resulting behavior is then undefined. You should report this as a bug

the SWIG bug tracking database.
If you get an error message such as the following,

foo.i:6. Overloaded declaration ignored. Spam::foo(double)

foo.i:5. Previous declaration is Spam::foo(int)

foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *,Spam *,int)
foo.i:5. Previous declaration is Spam::foo(int)

6.15.2 Ambiguity in Overloading 69

http://www.swig.org/bugs.html

SWIG-1.3 Documentation

it means that the target language module has not yet implemented support for overloaded functions and methods. The only wa
fix the problem is to read the next section.

6.15.3 Ambiguity resolution and renaming

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing wit
the problem. First, you can tell SWIG to ignore one of the methods. This is easy——-simply use the %ignore directive. For
example:

%ignore foo(long);

void foo(int);
void foo(long); ~ // Ignored. Oh well.

The other alternative is to rename one of the methods. This can be done using %rename. For example:

%rename("foo_short") foo(short);
%rename(foo_long) foo(long);

void foo(int);
void foo(short); // Accessed as foo_short()
void foo(long); // Accessed as foo_long()

Note that the quotes around the new name are optional, however, should the new name be a C/C++ keyword they would be
essential in order to avoid a parsing error. The %ignore and %rename directives are both rather powerful in their ability to
match declarations. When used in their simple form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

void foo(int); // Becomes 'foo_i'
void foo(char *c); /I Stays 'foo' (not renamed)

class Spam {
public:

void foo(int); // Becomes 'foo_1i'
void foo(double); // Becomes 'foo_d'

h
If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

%rename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
/I (will not rename class members)

%rename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam::foo(int), it is applied to that class and all derived classes. This
can be used to apply a consistent renaming across an entire class hierarchy with only a few declarations. For example:

%rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);

class Spam {
public:

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

N

class Bar : public Spam {
public:

6.15.3 Ambiguity resolution and renaming 70

SWIG-1.3 Documentation

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
¥

class Grok : public Bar {

public:
virtual void foo(int); ~ // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

h
It is also possible to include %rename specifications in the class definition itself. For example:

class Spam {
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

N

class Bar : public Spam {

public:
virtual void foo(int); ~ // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

3

In this case, the %rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to
explicitly specify the class prefix Spam:..

A special form of %rename can be used to apply a renaming just to class members (of all classes):
%rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.

Note: the *:: syntax is non-standard C++, but the *' is meant to be a wildcard that matches any class name (we couldn't think ¢
a better alternative so if you have a better idea, send email to the swig—devel mailing list.

Although this discussion has primarily focused on %rename all of the same rules also apply to %ignore. For example:

%ignore foo(double); /Il lgnore all foo(double)

%ignore Spam::foo; /I Ilgnore foo in class Spam

%ignore Spam::foo(double); // Ignore foo(double) in class Spam
%ignore *::foo(double); /I lgnore foo(double) in all classes

When applied to a base class, %ignore forces all definitions in derived clases to disappear. For example, %ignore
Spam::foo(double) will eliminate foo(double) in Spam and all classes derived from Spam.

Notes on %rename and %ignore:

« Since, the %rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface
This makes it possible to apply a consistent name resolution without having to modify header files. For example:

%module foo

/* Rename these overloaded functions */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

%include "header.h"

6.15.3 Ambiguity resolution and renaming 71

http://www.swig.org/mail.html

SWIG-1.3 Documentation

» The scope qualifier (::) can also be used on simple names. For example:

%rename(bar) ::foo; /I Rename foo to bar in global scope only
%rename(bar) Spam::foo; // Rename foo to bar in class Spam only
%rename(bar) *::foo; // Rename foo in classes only
« Name matching tries to find the most specific match that is defined. A qualified name such as Spam::foo always has
higher precedence than an unqualified name foo. Spam::foo has higher precedence than *::foo and *::foo has
higher precedence than foo. A parameterized name has higher precedence than an unparameterized name within the
same scope level. However, an unparameterized name with a scope qualifier has higher precedence than a parametel
name in global scope (e.g., a renaming of Spam::foo takes precedence over a renaming of foo(int)).
» The order in which %rename directives are defined does not matter as long as they appear before the declarations to
renamed. Thus, there is no difference between saying:

%rename(bar) foo;
%rename(foo_i) Spam::foo(int);
%rename(Foo) Spam::foo;

and this

%rename(Foo) Spam::foo;
%rename(bar) foo;
%rename(foo_i) Spam::foo(int);

(the declarations are not stored in a linked list and order has no importance). Of course, a repeated %rename directive
will change the setting for a previous %rename directive if exactly the same name, scope, and parameters are suppliec
» For multiple inheritance where renaming rules are defined for multiple base classes, the first renaming rule found on a
depth—first traversal of the class hierarchy is used.
» The name matching rules strictly follow member qualification rules. For example, if you have a class like this:

class Spam {
public:

;/.é)id bar() const;
h
the declaration
%rename(name) Spam::bar();
will not apply as there is no unqualified member bar(). The following will apply as the qualifier matches correctly:
%rename(name) Spam::bar() const;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their
qualifiers, like this:

class Spam {
public:

void bar(); /I Unqualified member
void bar() const; // Qualified member

N

%rename can then be used to target each of the overloaded methods individually. For example we can give them sepe
names in the target language:

%rename(namel) Spam::bar();
%rename(name2) Spam::bar() const;

6.15.3 Ambiguity resolution and renaming 72

SWIG-1.3 Documentation

Similarly, if you merely wanted to ignore one of the declarations, use %ignore with the full qualification. For example,
the following directive would tell SWIG to ignore the const version of bar() above:

%ignore Spam::bar() const; // Ignore bar() const, but leave other bar() alone
« The name matching rules also use default arguments for finer control when wrapping methods that have default
arguments. Recall that methods with default arguments are wrapped as if the equivalent overloaded methods had beel
parsed (Default arguments section). Let's consider the following example class:

class Spam {
public:

void bar(int i=—1, double d=0.0);
¥

The following %rename will match exactly and apply to all the target language overloaded methods because the
declaration with the default arguments exactly matches the wrapped method:

%rename(newbar) Spam::bar(int i=—1, double d=0.0);

The C++ method can then be called from the target language with the new name no matter how many arguments are
specified, for example: newbar(2, 2.0), newbar(2) or newbar(). However, if the %rename does not contain

the default arguments, it will only apply to the single equivalent target language overloaded method. So if instead we
have:

%rename(newbar) Spam::bar(int i, double d);

The C++ method must then be called from the target language with the new name newbar(2, 2.0) when both
arguments are supplied or with the original name as bar(2) (one argument) or bar() (no arguments). In fact it is
possible to use %rename on the equivalent overloaded methods, to rename all the equivalent overloaded methods:

%rename(bar_2args) Spam::bar(int i, double d);
%rename(bar_larg) Spam::bar(inti);
%rename(bar_default) Spam::bar();

Similarly, the extra overloaded methods can be selectively ignored using %ignore.

Compatibility note: The %rename directive introduced the default argument matching rules in SWIG-1.3.23 at the
same time as the changes to wrapping methods with default arguments was introduced.

6.15.4 Comments on overloading

Support for overloaded methods was first added in SWIG-1.3.14. The implementation is somewhat unusual when compared tc
similar tools. For instance, the order in which declarations appear is largely irrelevant in SWIG. Furthermore, SWIG does not re
upon trial execution or exception handling to figure out which method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of

overloading support may vary from language to language. As a general rule, statically typed languages like Java are able to
provide more support than dynamically typed languages like Perl, Python, Ruby, and Tcl.

6.16 Wrapping overloaded operators

Starting in SWIG-1.3.10, C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

class Complex {
private:

double rpart, ipart;
public:

6.15.4 Comments on overloading 73

SWIG-1.3 Documentation

Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
Complex &operator=(const Complex &c) {

rpart = c.rpart;

ipart = c.ipart;

return *this;

}
Complex operator+(const Complex &c) const {
return Complex(rpart+c.rpart, ipart+c.ipart);

}

Complex operator—(const Complex &c) const {
return Complex(rpart—c.rpart, ipart—c.ipart);

}

Complex operator*(const Complex &c) const {
return Complex(rpart*c.rpart — ipart*c.ipart,

rpart*c.ipart + c.rpart*ipart);

}

Complex operator—() const {
return Complex(-rpart, —ipart);

}
double re() const { return rpart; }
double im() const { return ipart; }

¥

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of
methods are set to strings like "operator +" or "operator —". The problem with these names is that they are illegal

identifiers in most scripting languages. For instance, you can't just create a method called "operator +" in Python——there

won't be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the targs
language). However, the underlying implementation of this is really managed in a very general way using the %rename directiv
For example, in Python a declaration similar to this is used:

%rename(__add__) Complex::operator+;

This binds the + operator to a method called __add___ (which is conveniently the same name used to implement the Python +
operator). Internally, the generated wrapper code for a wrapped operator will look something like this pseudocode:

_wrap_Complex___add__(args) {
...getargs ...
obj—>operator+(args);

}
When used in the target language, it may now be possible to use the overloaded operator normally. For example:

>>> g = Complex(3,4)
>>> b = Complex(5,2)
>>>c=a+b # Invokes __add__ method

It is important to realize that there is nothing magical happening here. The %rename directive really only picks a valid method
name. If you wrote this:

%rename(add) operator+;
The resulting scripting interface might work like this:

a = Complex(3,4)
b = Complex(5,2)
c=a.add(b) # Call a.operator+(b)

All of the techniques described to deal with overloaded functions also apply to operators. For example:

6.16 Wrapping overloaded operators 74

SWIG-1.3 Documentation

%ignore Complex::operator=; /I lgnore = in class Complex
%ignore *::operator=; /l'lgnore = in all classes
%ignore operator=; /I lgnore = everywhere.

%rename(__sub__) Complex::operator—;
%rename(__neg__) Complex::operator—(); // Unary —

The last part of this example illustrates how multiple definitions of the operator- method might be handled.
Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

« In C++, it is fairly common to define different versions of the operators to account for different types. For example, a
class might also include a friend function like this:

class Complex {
public:
friend Complex operator+(Complex &, double);

%

Complex operator+(Complex &, double);

SWIG simply ignores all friend declarations. Furthermore, it doesn't know how to associate the associated
operator+ with the class (because it's not a member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

%rename(add_complex_double) operator+(Complex &, double);
« Certain operators are ignored by default. For instance, new and delete operators are ignored as well as conversion
operators.
» The semantics of certain C++ operators may not match those in the target language.

6.17 Class extension

New methods can be added to a class using the %extend directive. This directive is primarily used in conjunction with proxy
classes to add additional functionality to an existing class. For example :

%module vector
%

#include "vector.h"
%0}

class Vector {
public:
double x,y,z;
Vector();
~Vector();
... bunch of C++ methods ...
%extend {
char* _str () {
static char temp[256];
sprintf(temp,"[%g, %g, %g]", self->x,self->y,self->z);
return &templ0];

k

This code adds a __str__method to our class for producing a string representation of the object. In Python, such a method
would allow us to print the value of an object using the print command.

>>>

>>> v = Vector();
>>>vy.Xx=3
>>>vy =4

6.17 Class extension 75

SWIG-1.3 Documentation

>>>v.z=0
>>> print(v)
[3.0,4.0,0.0]
>>>

The %extend directive follows all of the same conventions as its use with C structures. Please refer to the SWIG Basics chapte
for further details.

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

6.18 Templates

In all versions of SWIG, template type hames may appear anywhere a type is expected in an interface file. For example:

void foo(vector<int> *a, int n);
void bar(list<int,100> *x);

There are some restrictions on the use of non-type arguments. Specifically, they have to be simple literals and not expression:
For example:

void bar(list<int,100> *x); // OK
void bar(list<int,2*50> *x); // lllegal

The type system is smart enough to figure out clever games you might try to play with typedef. For instance, consider this
code:

typedef int Integer;
void foo(vector<int> *x, vector<integer> *y);

In this case, vector<Integer> is exactly the same type as vector<int>. The wrapper for foo() will accept either
variant.

Starting with SWIG-1.3.7, simple C++ template declarations can also be wrapped. SWIG-1.3.12 greatly expands upon the eat
implementation. Before discussing this any further, there are a few things you need to know about template wrapping. First, a k
C++ template does not define any sort of runnable object—-code for which SWIG can normally create a wrapper. Therefore, in
order to wrap a template, you need to give SWIG information about a particular template instantiation (e.g., vector<int>,
array<double>, etc.). Second, an instantiation name such as vector<int> is generally not a valid identifier name in most

target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector when creating
a wrapper.

To illustrate, consider the following template definition:

template<class T> class List {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max) {
data = new T [max];
nitems = 0;
maxitems = max;
}
~List() {
delete [] data;
h
void append(T obj) {
if (nitems < maxitems) {
data[nitems++] = obj;

6.18 Templates 76

SWIG-1.3 Documentation
}

}
int length() {
return nitems;

}
T get(int n) {
return data[n];

}
¥

By itself, this template declaration is useless——SWIG simply ignores it because it doesn't know how to generate any code until
unless a definition of T is provided.

One way to create wrappers for a specific template instantiation is to simply provide an expanded version of the class directly i
this:

%rename(intList) List<int>; /I Rename to a suitable identifier
class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);
¥

The %rename directive is needed to give the template class an appropriate identifier name in the target language (most langus
would not recognize C++ template syntax as a valid class name). The rest of the code is the same as what would appear in a
normal class definition.

Since manual expansion of templates gets old in a hurry, the %template directive can be used to create instantiations of a
template class. Semantically, %template is simply a shortcut———it expands template code in exactly the same way as shown
above. Here are some examples:

/* Instantiate a few different versions of the template */
%template(intList) List<int>;
%template(doubleList) List<double>;

The argument to %template() is the name of the instantiation in the target language. The name you choose should not conflict
with any other declarations in the interface file with one exception——-it is okay for the template name to match that of a typede
declaration. For example:

%template(intList) List<int>;
typedef List<int> intList; // OK
SWIG can also generate wrappers for function templates using a similar technique. For example:

/I Function template
template<class T> T max(T a, Th) {returna>b?a:b;}

/I Make some different versions of this function
Y%template(maxint) max<int>;
%template(maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

6.18 Templates 77

SWIG-1.3 Documentation

The number of arguments supplied to %template should match that in the original template definition. Template default
arguments are supported. For example:

template vector<typename T, int max=100> class vector {
h

%template(intvec) vector<int>; /I OK
%template(vec1000) vector<int,1000>; // OK

The %template directive should not be used to wrap the same template instantiation more than once in the same scope. This
will generate an error. For example:

%template(intList) List<int>;
%template(Listint) List<int>; // Error. Template already wrapped.

This error is caused because the template expansion results in two identical classes with the same name. This generates a syr
table conflict. Besides, it probably more efficient to only wrap a specific instantiation only once in order to reduce the potential f
code bloat.

Since the type system knows how to handle typedef, it is generally not necessary to instantiate different versions of a template
for typenames that are equivalent. For instance, consider this code:

%template(intList) vector<int>;
typedef int Integer;

void foo(vector<integer> *x);

In this case, vector<Integer> is exactly the same type as vector<int>. Any use of Vector<Integer> is mapped
back to the instantiation of vector<int> created earlier. Therefore, it is not necessary to instantiate a new class for the type
Integer (doing so is redundant and will simply result in code bloat).

When a template is instantiated using %template, information about that class is saved by SWIG and used elsewhere in the
program. For example, if you wrote code like this,

%template(intList) List<int>;
class UltraList : public List<int> {

N

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance
correctly. If, on the other hand, nothing is known about List<int>, you will get a warning message similar to this:

example.h:42. Nothing known about class 'List<int >' (ignored).
example.h:42. Maybe you forgot to instantiate 'List<int >' using %template.

If a template class inherits from another template class, you need to make sure that base classes are instantiated before derive
classes. For example:

template<class T> class Foo {

i';'

template<class T> class Bar : public Foo<T> {
h

/I Instantiate base classes first
%template(intFoo) Foo<int>;

6.18 Templates 78

SWIG-1.3 Documentation

%template(doubleFoo) Foo<double>;

/I Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting
wrapper code (and base classes need to be wrapped before derived classes). Don't worry——if you get the order wrong, SWIG
should generate a warning message.

Occassionally, you may need to tell SWIG about base classes that are defined by templates, but which aren't supposed to be
wrapped. Since SWIG is not able to automatically instantiate templates for this purpose, you must do it manually. To do this,
simply use %template with no name. For example:

/I Instantiate traits<double,double>, but don't wrap it.
%template() traits<double,double>;

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For
example:

%define TEMPLATE_WRAP(T,prefix)
Y%template(prefix ## Foo) Foo<T>;
%template(prefix ## Bar) Bar<T>;

%enddef

TEMPLATE_WRAP(int, int)
TEMPLATE_WRAP(double, double)
TEMPLATE_WRAP(char *, String)

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);
h

then SWIG will use this code whenever the user expands List<int>. In practice, this may have very little effect on the
underlying wrapper code since specialization is often used to provide slightly modified method bodies (which are ignored by
SWIG). However, special SWIG directives such as %typemap, %extend, and so forth can be attached to a specialization to
provide customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when tl
template argument is a pointer.

template<class T> class List<T*> {
private:

T *data;

int nitems;

int maxitems;
public:

List(int max);

~List();

void append(int obj);

6.18 Templates 79

SWIG-1.3 Documentation

int length();
T get(int n);
h

SWIG should be able to handle most simple uses of partial specialization. However, it may fail to match templates properly in
more complicated cases. For example, if you have this code,

template<class T1, class T2> class Foo<T1, T2 *>{ };

SWIG isn't able to match it properly for instantiations like Foo<int *, int *>. This problem is not due to parsing, but due
to the fact that SWIG does not currently implement all of the C++ argument deduction rules.

Member function templates are supported. The underlying principle is the same as for normal templates——SWIG can't create a
wrapper unless you provide more information about types. For example, a class with a member template might look like this:

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

h
To expand the template, simply use %template inside the class.

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

%template(barint) bar<int>;
%template(bardouble) bar<double>;

h
Or, if you want to leave the original class definition alone, just do this:

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

o

%extend Foo {
%template(barint) bar<int>;
%template(bardouble) bar<double>;

h
or simply

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

%template(bari) Foo::bar<int>;
%template(bard) Foo::bar<double>;

In this case, the %extend directive is not needed, and %template does the exactly same job, i.e., it adds two new methods to
the Foo class.

Note: because of the way that templates are handled, the %template directive must always appear after the definition of the
template to be expanded.

6.18 Templates 80

SWIG-1.3 Documentation

Now, if your target language supports overloading, you can even try

%template(bar) Foo::bar<int>;
%template(bar) Foo::bar<double>;

and since the two new wrapped methods have the same name 'bar’, they will be overloaded, and when called, the correct mett
will be dispatched depending on the argument type.

When used with members, the %template directive may be placed in another template class. Here is a slightly perverse
example:

/I A template
template<class T> class Foo {
public:
/I A member template
template<class S> T bar(Sx, Sy){... };

¥

/I Expand a few member templates
%extend Foo {
%template(bari) bar<int>;
%template(bard) bar<double>;

}

/I Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari() and bard() added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1, class T2> struct pair {
T1 first;
T2 second;
pair() : first(T1()), second(T2()) {}
pair(const T1 &x, const T2 &y) : first(x), second(y) { }
template<class U1, class U2> pair(const pair<U1,U2> &x)
: first(x.first),second(x.second) { }

¥

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. Tc
do that, you could expand a few versions of the constructor in the template class itself. For example:

%extend pair {
%template(pair) pair<T1,T2>; /I Generate default copy constructor

h
When using %extend in this manner, notice how you can still use the template parameters in the original template definition.

Alternatively, you could expand the constructor template in selected instantiations. For example:

/I Instantiate a few versions
%template(pairii) pair<int,int>;
%template(pairdd) pair<double,double>;

/I Create a default constructor only
%extend pair<int,int> {
%template(paird) pair<int,int>; /I Default constructor

g

/I Create default and conversion constructors

6.18 Templates 81

SWIG-1.3 Documentation

%extend pair<double,double> {
%template(paird) pair<double,dobule>; // Default constructor
%template(pairc) pair<int,int>; /I Conversion constructor

h
And if your target language supports overloading, then you can try instead:

/I Create default and conversion constructors

%extend pair<double,double> {

%template(pair) pair<double,dobule>; // Default constructor
%template(pair) pair<int,int>; /I Conversion constructor

g

In this case, the default and conversion constructors have the same name. Hence, Swig will overload them and define an uniq
visible constructor, that will dispatch the proper call depending on the argument type.

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as %rename,
%extend, and %typemap can be included directly in template definitions. For example:

/I File : list.h
template<class T> class List {

public:
%rename(__getitem__) get(int);
List(int max);
~List();

T get(int index);
%extend {
char*__str () {
/* Make a string representation */

}
}
k

In this example, the extra SWIG directives are propagated to every template instantiation.

It is also possible to separate these declarations from the template class. For example:

%rename(__getitem__) List::get;
%extend List {
char* _str () {
/* Make a string representation */

}
/* Make a copy */

T*_copy_ (){
return new List<T>(*self);

}
h
template<class T> class List {

iauublic:
List({};

¥

When %extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class
definition. These are replaced when the template is expanded. In addition, the %extend directive can be used to add additional
methods to a specific instantiation. For example:

6.18 Templates 82

SWIG-1.3 Documentation
%template(intList) List<int>;

%extend List<int> {
void blah() {
printf("Hey, I'm an List<int>\n");
}

k

SWIG even supports overloaded templated functions. As usual the %template directive is used to wrap templated functions.
For example:

template<class T> void foo(T x) { };
template<class T> void foo(T x, Ty) { };

%template(foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take
two integer arguments.

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final
point is that SWIG does not perform extensive error checking of templates! Specifically, SWIG does not perform type

checking nor does it check to see if the actual contents of the template declaration make any sense. Since the C++ compiler w
hopefully check this when it compiles the resulting wrapper file, there is no practical reason for SWIG to duplicate this
functionality (besides, none of the SWIG developers are masochistic enough to want to implement this right now).

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor.
Templates have been more tightly integrated into the parser and type system in SWIG-1.3.12 and the preprocessor is no longe
used. Code that relied on preprocessing features in template expansion will no longer work. However, SWIG still allows the #
operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, the %template directive introduced a new class name. This hame could then
be used with other directives. For example:

%template(vectori) vector<int>;
%extend vectori {
void somemethod() { }

h
This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

%template(vectori) vector<int>;
%extend vector<int> {
void somemethod() { }

k

Similar changes apply to typemaps and other customization features.

6.19 Namespaces

Support for C++ namespaces is a relatively late addition to SWIG, first appearing in SWIG-1.3.12. Before describing the
implementation, it is worth nothing that the semantics of C++ namespaces is extremely non-trivial-—especially with regard to t
C++ type system and class machinery. At a most basic level, namespaces are sometimes used to encapsulate common
functionality. For example:

namespace math {
double sin(double);
double cos(double);

class Complex {
double im,re;

6.19 Namespaces 83

SWIG-1.3 Documentation

Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magnitude(math::Complex *c);
math::Complex c;

At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other wa
namespace can be used. For example, selective symbols can be exported from a namespace with using.

using math::Complex;
double magnitude(Complex *c); /I Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available like this:

using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);

Alternatively, a namespace can be aliased:

namespace M = math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);

Using combinations of these features, it is possible to write head—exploding code like this:

namespace A {
class Foo {
h

}

namespace B {
namespace C {
using namespace A,

}
typedef C::Foo FooClass;

}

namespace BIGB = B;

namespace D {
using BIGB::FooClass;
class Bar : public FooClass {

}
¥

class Spam : public D::Bar {

¥

void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into t
target language. Clearly this code defines three different classes. However, one of those classes is accessible under at least si
different class names!

6.19 Namespaces 84

SWIG-1.3 Documentation

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it
will be parsed correctly, it will generate compilable wrapper code, and it will produce a working scripting language module.
However, the default wrapping behavior is to flatten namespaces in the target language. This means that the contents of all
namespaces are merged together in the resulting scripting language module. For example, if you have code like this,

%module foo
namespace foo {
void bar(int);
void spam();

}

namespace bar {
void blah();

}

then SWIG simply creates three wrapper functions bar(), spam(), and blah() in the target language. SWIG does not
prepend the names with a namespace prefix nor are the functions packaged in any kind of nested scope.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a
natural correlation between the likely contents of a SWIG module and the contents of a namespace. For instance, it would not |
unreasonable to assume that a programmer might make a separate extension module for each C++ namespace. In this case, i
would be redundant to prepend everything with an additional namespace prefix when the module itself already serves as a
namespace in the target language. Or put another way, if you want SWIG to keep namespaces separate, simply wrap each
namespace with its own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in th
target language. For example:

namespace A {
void foo(int);

}
namespace B {
void foo(double);

}
When this conflict occurs, you will get an error message that resembles this:

example.i:26. Error. 'foo' is multiply defined in the generated module.
example.i:23. Previous declaration of 'foo'

To resolve this error, simply use %rename to disambiguate the declarations. For example:

%rename(B_foo) B::foo;

namespace A {
void foo(int);

}
namespace B {
void foo(double); // Gets renamed to B_foo

}

Similarly, %ignore can be used to ignore declarations.

using declarations do not have any effect on the generated wrapper code. They are ignored by SWIG language modules and t
do not result in any code. However, these declarations are used by the internal type system to track type—names. Therefore, if
have code like this:

namespace A {
typedef int Integer;
}

6.19 Namespaces 85

SWIG-1.3 Documentation

using namespace A,
void foo(Integer x);

SWIG knows that Integer is the same as A::Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the %template directive can be used to expand a template define
in a different namespace. For example:

namespace foo {
template<typename T> T max(T a, Tb) {returna>b ?a:b;}

}
using foo::max;

%template(maxint) max<int>; /I Okay.
%template(maxfloat) foo::max<float>; // Okay (qualified name).

namespace bar {
using namespace foo;
%template(maxdouble) max<double>; // Okay.

}

The combination of namespaces and other SWIG directives may introduce subtle scope-related problems. The key thing to ke
in mind is that all SWIG generated wrappers are produced in the global namespace. Symbols from other namespaces are alwe
accessed using fully qualified names———-names are never imported into the global space unless the interface happens to do sc
a using declaration. In almost all cases, SWIG adjusts typenames and symbols to be fully qualified. However, this is not done it
code fragments such as function bodies, typemaps, exception handlers, and so forth. For example, consider the following:

namespace foo {
typedef int Integer;
class bar {
public:

Y
}

%extend foo::bar {
Integer add(Integer x, Integer y) {
Integerr=x +vy; /I Error. Integer not defined in this scope
returnr;

}
¥

In this case, SWIG correctly resolves the added method parameters and return type to foo::Integer. However, since function
bodies aren't parsed and such code is emitted in the global namespace, this code produces a compiler error about Integer. To
fix the problem, make sure you use fully qualified names. For example:

%extend foo::bar {
Integer add(Integer x, Integer y) {
foo::Integerr=x +vy; Il Ok.
returnr;

}
¥

Note: SWIG does not propagate using declarations to the resulting wrapper code. If these declarations appear in an interface,
they should also appear in any header files that might have been included in a %{ ... %} section. In other words, don't insert
extra using declarations into a SWIG interface unless they also appear in the underlying C++ code.

Note: Code inclusion directives such as %f{ ... %} or %inline %{ ... %} should not be placed inside a namespace

declaration. The code emitted by these directives will not be enclosed in a namespace and you may get very strange results. If
need to use namespaces with these directives, consider the following:

6.19 Namespaces 86

SWIG-1.3 Documentation

// Good version

%inline %{

namespace foo {
void bar(int) { ... }

}
%}

/I Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{

void bar(int) { ... } /*I'm bad */

"
}

Note: When the %extend directive is used inside a namespace, the namespace name is included in the generated functions. F
example, if you have code like this,

namespace foo {
class bar {
public:
%extend {
int blah(int x);
h
¥
}

the added method blah() is mapped to a function int foo_bar_blah(foo::bar *self, int x). This function
resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same name
conventions as used in the input file. Thus, if there are no symbol conflicts in the input, there will be no conflicts in the generate
code.

Note: Namespaces have a subtle effect on the wrapping of conversion operators. For instance, suppose you had an interface |
this:

namespace foo {
class bar;
class spam {
public:

operator bar(); // Conversion of spam —> bar

B
)

To wrap the conversion function, you might be inclined to write this:

%rename(tofoo) foo::spam::operator bar();

The only problem is that it doesn't work. The reason it doesn't work is that bar is not defined in the global scope. Therefore, to
make it work, do this instead:

%rename(tofoo) foo::spam::operator foo::bar();
Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. Since namespaces are a

addition to SWIG, none of the target language modules are currently programmed with any namespace awareness. In the futur
language modules may or may not provide more advanced namespace support.

6.19 Namespaces 87

SWIG-1.3 Documentation
6.20 Exception specifications

When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaratiol
For example:

class Error { };

class Foo {
public:

;/.(.)id blah() throw(Error);
2

If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and, wh
possible, rethrowing it into the target language, or converting it into an error in the target language otherwise. For example, in
Python, you can write code like this:

f=Foo()
try:
f.blah()
except Error,e:
e is a wrapped instance of "Error"

Details of how to tailor code for handling the caught C++ exception and converts it into the target language's exception/error
handling mechanism is outlined in the "throws" typemap section.

Since exception specifications are sometimes only used sparingly, this alone may not be enough to properly handle C++
exceptions. To do that, a different set of special SWIG directives are used. Consult the "Exception handling with %exception”
section for details. The next section details a way of simulating an exception specification or replacing an existing one.

6.21 Exception handling with %catches

Exceptions are automatically handled for methods with an exception specification. Similar handling can be achieved for methoc
without exception specifications through the %catches feature. It is also possible to replace any declared exception specificatic
using the %catches feature. In fact, %catches uses the same "throws" typemaps that SWIG uses for exception specifications
in handling exceptions. The %catches feature must contain a list of possible types that can be thrown. For each type that is in
the list, SWIG will generate a catch handler, in the same way that it would for types declared in the exception specification. Not
that the list can also include the catch all specification "...". For example,

struct EBase { virtual ~EBase(); };
struct Errorl : EBase { };
struct Error2 : EBase {};
struct Error3 : EBase { };
struct Error4 : EBase { };

%catches(Errorl,Error2,...) Foo::bar();
%catches(EBase) Foo::blah();

class Foo {
public:

void bar();
void blah() throw(Errorl,Error2,Error3,Error4);

o

For the Foo::bar() method, which can throw anything, SWIG will generate catch handlers for Errorl, Error2 as well as a
catch all handler (...). Each catch handler will convert the caught exception and convert it into a target language error/exceptior
The catch all handler will convert the caught exception into an unknown error/exception.

6.20 Exception specifications 88

SWIG-1.3 Documentation

Without the %catches feature being attached to Foo::blah(), SWIG will generate catch handlers for all of the types in the
exception specification, that is, Errorl, Error2, Error3, Error4. However, with the %catches feature above, just a

single catch handler for the base class, EBase will be generated to convert the C++ exception into a target language
error/exception.

6.22 Pointers to Members

Starting with SWIG1.3.7, there is limited parsing support for pointers to C++ class members. For example:

double do_op(Object *o, double (Object::*callback)(double,double));
extern double (Object::*fooptr)(double,double);
%constant double (Object::*FOQO)(double,double) = &Object::foo;

Although these kinds of pointers can be parsed and represented by the SWIG type system, few language modules know how t
handle them due to implementation differences from standard C pointers. Readers are strongly advised to consult an advancec
such as the "The Annotated C++ Manual" for specific details.

When pointers to members are supported, the pointer value might appear as a special string like this:

>>> print example.FOO

_ff0d54a800000000_m_Object__f double_double__double
>>>

In this case, the hexadecimal digits represent the entire value of the pointer which is usually the contents of a small C++ struct
on most machines.

SWIG's type—checking mechanism is also more limited when working with member pointers. Normally SWIG tries to keep track
of inheritance when checking types. However, no such support is currently provided for member pointers.

6.23 Smart pointers and operator—>()

In some C++ programs, objects are often encapsulated by smart—pointers or proxy classes. This is sometimes done to implem
automatic memory management (reference counting) or persistence. Typically a smart—pointer is defined by a template class
where the —> operator has been overloaded. This class is then wrapped around some other class. For example:

/I Smart-pointer class

template<class T> class SmartPtr {
T *pointee;

public:

T *operator—>() {
return pointee;

}
N

// Ordinary class
class Foo_Impl {
public:

int x;

virtual void bar();

N

/I Smart—pointer wrapper
typedef SmartPtr<Foo_Impl> Foo;

/I Create smart pointer Foo
Foo make_Foo() {
return SmartPtr(new Foo_Impl());

}

6.21 Exception handling with %catches 89

SWIG-1.3 Documentation

/I Do something with smart pointer Foo
void do_something(Foo f) {

printf("x = %d\n", f->x);

f->bar();
}

A key feature of this approach is that by defining operator—> the methods and attributes of the object wrapped by a smart
pointer are transparently accessible. For example, expressions such as these (from the previous example),

f->x
f->bar()

are transparently mapped to the following

(f.operator—>())—>Xx;
(f.operator—>())—>bar();

When generating wrappers, SWIG tries to emulate this functionality to the extent that it is possible. To do this, whenever
operator—>() is encountered in a class, SWIG looks at its returned type and uses it to generate wrappers for accessing
attributes of the underlying object. For example, wrapping the above code produces wrappers like this:

int Foo_x_get(Foo *f) {
return (*f)—>x;

}
void Foo_x_set(Foo *f, int value) {
(*f)->x = value;

}

void Foo_bar(Foo *f) {
(*f)—>bar();

}

These wrappers take a smart—pointer instance as an argument, but dereference it in a way to gain access to the object returne
operator—>(). You should carefully compare these wrappers to those in the first part of this chapter (they are slightly
different).

The end result is that access looks very similar to C++. For example, you could do this in Python:

>>> f = make_Foo()
>>> print f.x

0

>>> f.bar()

>>>

When generating wrappers through a smart—pointer, SWIG tries to generate wrappers for all methods and attributes that might
accessible through operator—>(). This includes any methods that might be accessible through inheritance. However, there are
a number of restrictions:

* Member variables and methods are wrapped through a smart pointer. Enumerations, constructors, and destructors are
wrapped.

« If the smart—pointer class and the underlying object both define a method or variable of the same name, then the
smart—pointer version has precedence. For example, if you have this code

class Foo {
public:
int x;

k

class Bar {
public:
int x;
Foo *operator—>();

6.23 Smart pointers and operator—>() 20

SWIG-1.3 Documentation
¥

then the wrapper for Bar::x accesses the x defined in Bar, and not the x defined in Foo.

If your intent is to only expose the smart—pointer class in the interface, it is not necessary to wrap both the smart—pointer class
the class for the underlying object. However, you must still tell SWIG about both classes if you want the technique described in
this section to work. To only generate wrappers for the smart—pointer class, you can use the %ignore directive. For example:

%ignore Foo;
class Foo { // lgnored

k

class Bar {
public:
Foo *operator—>();

N

Alternatively, you can import the definition of Foo from a separate file using %import.

Note: When a class defines operator—>(), the operator itself is wrapped as a method __deref__ (). For example:

f=Foo() # Smart—pointer
p="f_ deref_() # Raw pointer from operator—>

Note: To disable the smart—pointer behavior, use %ignore to ignore operator—>(). For example:
%ignore Bar::operator—>;

Note: Smart pointer support was first added in SWIG-1.3.14.

6.24 Using declarations and inheritance

using declarations are sometimes used to adjust access to members of base classes. For example:

class Foo {
public:

int blah(int x);
h

class Bar {
public:

double blah(double x);
h

class FooBar : public Foo, public Bar {
public:

using Foo::blah;

using Bar::blah;

char *blah(const char *x);

¥

In this example, the using declarations make different versions of the overloaded blah() method accessible from the derived
class. For example:

FooBar *f;

f->blah(3); /I Ok. Invokes Foo::blah(int)

f->blah(3.5); /I Ok. Invokes Bar::blah(double)
f->blah("hello"); // Ok. Invokes FooBar::blah(const char *);

6.24 Using declarations and inheritance 91

SWIG-1.3 Documentation

SWIG emulates the same functionality when creating wrappers. For example, if you wrap this code in Python, the module work
just like you would expect:

>>> import example

>>> f = example.FooBar()
>>> f.blah(3)

>>> f.blah(3.5)

>>> f.blah("hello")

using declarations can also be used to change access when applicable. For example:

class Foo {
protected:

int x;

int blah(int x);
¥

class Bar : public Foo {
public:
using Foo::x; /I Make x public
using Foo::blah; // Make blah public
¥

This also works in SWIG—---the exposed declarations will be wrapped normally.

When using declarations are used as shown in these examples, declarations from the base classes are copied into the derivec
class and wrapped normally. When copied, the declarations retain any properties that might have been attached using %renan
%ignore, or %feature. Thus, if a method is ignored in a base class, it will also be ignored by a using declaration.

Because a using declaration does not provide fine—grained control over the declarations that get imported, it may be difficult to
manage such declarations in applications that make heavy use of SWIG customization features. If you can't get using to work
correctly, you can always change the interface to the following:

class FooBar : public Foo, public Bar {
public:
#ifndef SWIG
using Foo::blah;
using Bar::blah;
#else
int blah(int x); /I explicitly tell SWIG about other declarations
double blah(double x);
#endif

char *blah(const char *x);

¥
Notes:

« If a derived class redefines a method defined in a base class, then a using declaration won't cause a conflict. For
example:

class Foo {
public:

int blah(int);

double blah(double);
X

class Bar : public Foo {

public:
using Foo::blah; // Only imports blah(double);
int blah(int);

6.24 Using declarations and inheritance 92

SWIG-1.3 Documentation

» Resolving ambiguity in overloading may prevent declarations from being imported by using. For example:

%rename(blah_long) Foo::blah(long);
class Foo {
public:
int blah(int);
long blah(long); // Renamed to blah_long
h

class Bar : public Foo {

public:
using Foo::blah; // Only imports blah(int)
double blah(double x);

h

6.25 Partial class definitions

Since SWIG is still limited in its support of C++, it may be necessary to use partial class information in an interface file. Howeve
since SWIG does not need the entire class specification to work, conditional compilation can be used to comment out problems
parts. For example, if you had a nested class definition, you might do this:

class Foo {
public:
#ifndef SWIG
class Bar {
public:
¥
#endif

Foo();
~Foo();

N

Also, as a rule of thumb, SWIG should not be used on raw C++ source files.

6.26 A brief rant about const—correctness

A common issue when working with C++ programs is dealing with all possible ways in which the const qualifier (or lack
thereof) will break your program, all programs linked against your program, and all programs linked against those programs.

Although SWIG knows how to correctly deal with const in its internal type system and it knows how to generate wrappers that
are free of const-related warnings, SWIG does not make any attempt to preserve const—correctness in the target language. Tt
is possible to pass const qualified objects to non—const methods and functions. For example, consider the following code in
C++:

const Object * foo();
void bar(Object *);

/I C++ code
void blah() {
bar(foo()); Il Error: bar discards const

h
Now, consider the behavior when wrapped into a Python module:

>>> bhar(foo()) # Okay
>>>

6.25 Partial class definitions 93

SWIG-1.3 Documentation

Although this is clearly a violation of the C++ type—system, fixing the problem doesn't seem to be worth the added
implementation complexity that would be required to support it in the SWIG run-time type system. There are no plans to chang
this in future releases (although we'll never rule anything out entirely).

The bottom line is that this particular issue does not appear to be a problem for most SWIG projects. Of course, you might wan
consider using another tool if maintaining constness is the most important part of your project.

6.27 Proxy classes

In order to provide a more natural API, SWIG's target languages wrap C++ classes with special proxy classes. These proxy clg
are typically implemented in the target language itself. For example, if you're building a Python module, each C++ class is
wrapped by a Python class. Or if you're building a Java module, each C++ class is wrapped by a Java class.

6.27.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses the low-level accessor functions described in the
previous section. To illustrate, suppose you had a C++ class like this:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;

h
Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
Foo *self;
public:
FooProxy() {
self = new_Foo();

~FooProxy() {
delete_Foo(self);

}
int bar(int x) {

return Foo_bar(self,x);
}

int x_get() {
return Foo_x_get(self);

void x_set(int x) {
Foo_x_set(self,x);
}
h

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy mif
look roughly like this:

class Foo:
def __init__(self):
self.this = new_Foo()
def _ del__(self):
delete_Foo(self.this)
def bar(self,x):
return Foo_bar(self.this,x)
def __getattr__(self,name):
if name == 'x"
return Foo_x_get(self.this)

6.26 A brief rant about const—correctness 94

SWIG-1.3 Documentation

def __setattr__(self,name,value):
if name == 'x"
Foo_x_set(self.this,value)

Again, it's important to emphasize that the low-level accessor functions are always used to construct the proxy classes.

Whenever possible, proxies try to take advantage of language features that are similar to C++. This might include operator
overloading, exception handling, and other features.

6.27.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;
h
class Spam {

public:
Foo *value;

¥

Now, consider some script code that uses these classes:

f=Foo() # Creates a new Foo

s = Spam() # Creates a new Spam

s.value =f # Stores a reference to f inside s
g = s.value # Returns stored reference
g=4 # Reassign g to some other value
del f # Destroy f

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by ne'
created proxy classes. That is, there is both a new proxy class instance and a new instance of the underlying C++ class. In this
example, both f and s are created in this way. However, the statement s.value is rather curious——-when executed, a pointer to
f is stored inside another object. This means that the scripting proxy class AND another C++ class share a reference to the san
object. To make matters even more interesting, consider the statement g = s.value. When executed, this creates a new proxy
class g that provides a wrapper around the C++ object stored in s.value. In general, there is no way to know where this object
came from——-it could have been created by the script, but it could also have been generated internally. In this particular exam|
the assignment of g results in a second proxy class for f. In other words, a reference to f is nhow shared by two proxy classes ar
a C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many
languages, this makes the old value of g available for garbage collection. Therefore, this causes one of the proxy classes to be
destroyed. Later on, the statement del f destroys the other proxy class. Of course, there is still a reference to the original object
stored inside another C++ object. What happens to it? Is it the object still valid?

To deal with memory management problems, proxy classes always provide an API for controlling ownership. In C++ pseudoco
ownership control might look roughly like this:

class FooProxy {

public:
Foo *self;
int thisown;

6.27.1 Construction of proxy classes 95

SWIG-1.3 Documentation

FooProxy() {
self = new_Foo();
thisown = 1, /I Newly created object

~FooProxy() {
if (thisown) delete_Foo(self);

}

/I Ownership control API
void disown() {
thisown = 0;

void acquire() {
thisown = 1;
}
h

class FooPtrProxy: public FooProxy {
public:
FooPtrProxy(Foo *s) {
self = s;
thisown = 0;
}
h

class SpamProxy {

FooProxy *value_get() {
return FooPtrProxy(Spam_value_get(self));

void value_set(FooProxy *v) {
Spam_value_set(self,v—>self);
v—>disown();

}
Yo

Looking at this code, there are a few central features:

» Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set
* When new objects are created in the target language, the ownership flag is set.

* When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not ha
ownership.

« In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is
» Manual ownership control is provided by special disown() and acquire() methods.

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible
memory management problem. However, proxies do provide a mechanism for manual control that can be used (if necessary) t
address some of the more tricky memory management problems.

6.27.3 Language specific details

Language specific details on proxy classes are contained in the chapters describing each target language. This chapter has m«
introduced the topic in a very general way.

6.28 Where to go for more information

If you're wrapping serious C++ code, you might want to pick up a copy of "The Annotated C++ Reference Manual" by Ellis and
Stroustrup. This is the reference document we use to guide a lot of SWIG's C++ support.

6.27.2 Resource management in proxies 96

7 Preprocessing

« File inclusion
« File imports
 Conditional Compilation

« Macro Expansign
« SWIG Macros

¢ C99 and GNU Extensions

« Preprocessing and %f{ ... %} blocks
* Preprocessing and { ... }

« Viewing preprocessor output

 The #error and #warning directives

SWIG includes its own enhanced version of the C preprocessor. The preprocessor supports the standard preprocessor directiv

and macro expansion rules. However, a number of modifications and enhancements have been made. This chapter describes
of these modifications.

7.1 File inclusion

To include another file into a SWIG interface, use the %include directive like this:
%include "pointer.i"

Unlike, #include, %include includes each file once (and will not reload the file on subsequent %include declarations).
Therefore, it is not necessary to use include—guards in SWIG interfaces.

By default, the #include is ignored unless you run SWIG with the —includeall option. The reason for ignoring traditional

includes is that you often don't want SWIG to try and wrap everything included in standard header system headers and auxillial
files.

7.2 File imports

SWIG provides another file inclusion directive with the %import directive. For example:
%import "foo.i"

The purpose of %import is to collect certain information from another SWIG interface file or a header file without actually
generating any wrapper code. Such information generally includes type declarations (e.g., typedef) as well as C++ classes that
might be used as base-classes for class declarations in the interface. The use of %import is also important when SWIG is use
to generate extensions as a collection of related modules. This is an advanced topic and is described in a later chapter.

The —importall directive tells SWIG to follow all #include statements as imports. This might be useful if you want to
extract type definitions from system header files without generating any wrappers.

7.3 Conditional Compilation

SWIG fully supports the use of #if, #ifdef, #ifndef, #else, #endif to conditionally include parts of an interface. The
following symbols are predefined by SWIG when it is parsing the interface:

SWIG Always defined when SWIG is processing a file
SWIGIMPORTED Defined when SWIG is importing a file with %import
SWIGMAC Defined when running SWIG on the Macintosh
SWIGWIN Defined when running SWIG under Windows
SWIG_VERSION Hexadecimal number containing SWIG version,

such as 0x010311 (corresponding to SWIG-1.3.11).

7 Preprocessing 97

SWIG-1.3 Documentation

SWIGCHICKEN Defined when using CHICKEN
SWIGCSHARP Defined when using C#
SWIGGUILE Defined when using Guile
SWIGJAVA Defined when using Java
SWIGLUA Defined when using Lua
SWIGMODULA3 Defined when using Modula-3
SWIGMZSCHEME Defined when using Mzscheme
SWIGOCAML Defined when using Ocaml
SWIGPERL Defined when using Perl
SWIGPERL5 Defined when using Perl5
SWIGPHP Defined when using PHP
SWIGPHP4 Defined when using PHP4
SWIGPIKE Defined when using Pike
SWIGPYTHON Defined when using Python
SWIGRUBY Defined when using Ruby
SWIGSEXP Defined when using S—expressions
SWIGTCL Defined when using Tcl

SWIGTCLS8 Defined when using Tcl8.0
SWIGXML Defined when using XML

In addition, SWIG defines the following set of standard C/C++ macros:

__LINE__ Current line number

__FILE__ Current file name

__STDC__ Defined to indicate ANSI C
__cplusplus Defined when —c++ option used

Interface files can look at these symbols as necessary to change the way in which an interface is generated or to mix SWIG
directives with C code. These symbols are also defined within the C code generated by SWIG (except for the symbol "SWIG'
which is only defined within the SWIG compiler).

7.4 Macro Expansion

Traditional preprocessor macros can be used in SWIG interfaces. Be aware that the #define statement is also used to try and
detect constants. Therefore, if you have something like this in your file,

#ifndef _FOO_H 1
#define _FOO_H 1

#endif
you may get some extra constants such as _FOO_H showing up in the scripting interface.

More complex macros can be defined in the standard way. For example:

#define EXTERN extern
#ifdef _ STDC___

#define _ANSI(args) (args)
#else

#define _ANSI(args) ()
#endif

The following operators can appear in macro definitions:

o #X
Converts macro argument x to a string surrounded by double quotes ("x").
e X ##Y
Concatenates x and y together to form xy.
° \X\
If x is a string surrounded by double quotes, do nothing. Otherwise, turn into a string like #x. This is a non-standard
SWIG extension.

7.3 Conditional Compilation 98

SWIG-1.3 Documentation

7.5 SWIG Macros

SWIG provides an enhanced macro capability with the %define and %enddef directives. For example:

%define ARRAYHELPER(type,name)
%inline %{
type *new_ ## name (int nitems) {

return (type *) malloc(sizeof(type)*nitems);

void delete_ ## name(type *t) {
free(t);

}

type name ## _get(type *t, int index) {
return t[index];

}
void name ## _set(type *t, int index, type val) {

tlindex] = val,

}
%}
%enddef

ARRAYHELPER(int, IntArray)
ARRAYHELPER(double, DoubleArray)

The primary purpose of %define is to define large macros of code. Unlike normal C preprocessor macros, it is not necessary to
terminate each line with a continuation character (\)-—-the macro definition extends to the first occurrence of %enddef.
Furthermore, when such macros are expanded, they are reparsed through the C preprocessor. Thus, SWIG macros can contal
other preprocessor directives except for nested %define statements.

The SWIG macro capability is a very quick and easy way to generate large amounts of code. In fact, many of SWIG's advance
features and libraries are built using this mechanism (such as C++ template support).

7.6 C99 and GNU Extensions
SWIG-1.3.12 and newer releases support variadic preprocessor macros. For example:
#define DEBUGF(fmt,...) fprintf(stderr,fmt,_ VA_ARGS_)

When used, any extra arguments to ... are placed into the special variable __ VA_ARGS__. This also works with special SWIG
macros defined using %define.

SWIG allows a variable number of arguments to be empty. However, this often results in an extra comma (,) and syntax error il
the resulting expansion. For example:

DEBUGF("hello"); —-> fprintf(stderr,"hello",);
To get rid of the extra comma, use ## like this:
#define DEBUGF(fmt,...) fprintf(stderr,fmt, # VA _ARGS_)

SWIG also supports GNU-style variadic macros. For example:

#define DEBUGF(fmt, args...) fprintf(stdout,fmt,args)

Comment: It's not entirely clear how variadic macros might be useful to interface building. However, they are used internally to
implement a number of SWIG directives and are provided to make SWIG more compatible with C99 code.

7.5 SWIG Macros 99

SWIG-1.3 Documentation

7.7 Preprocessing and %({ ... %} blocks

The SWIG preprocessor does not process any text enclosed in a code block %{ ... %}. Therefore, if you write code like this,

%{
#ifdef NEED_BLAH
int blah() {

}
#endif

%}

the contents of the %{ ... %} block are copied without modification to the output (including all preprocessor directives).

7.8 Preprocessing and { ... }

SWIG always runs the preprocessor on text appearing inside { ... }. However, sometimes it is desirable to make a
preprocessor directive pass through to the output file. For example:

%extend Foo {
void bar() {
#ifdef DEBUG
printf("I'm in bar\n");
#endif
}
}

By default, SWIG will interpret the #ifdef DEBUG statement. However, if you really wanted that code to actually go into the
wrapper file, prefix the preprocessor directives with % like this:

%extend Foo {
void bar() {
%#ifdef DEBUG
printf("I'm in bar\n");
Y%ttendif

}
}

SWIG will strip the extra % and leave the preprocessor directive in the code.

7.9 Viewing preprocessor output

Like many compilers, SWIG supports a —E command line option to display the output from the preprocessor. When the —E swit
is used, SWIG will not generate any wrappers. Instead the results after the preprocessor has run are displayed. This might be
useful as an aid to debugging and viewing the results of macro expansions.

7.10 The #error and #warning directives

SWIG supports the commonly used #warning and #error preprocessor directives. The #warning directive will cause
SWIG to issue a warning then continue processing. The #error directive will cause SWIG to exit with a fatal error. Example
usage:

#error "This is a fatal error message"
#warning "This is a warning message"

The #error behaviour can be made to work like #warning if the —cpperraswarn commandline option is used.
Alternatively, the #pragma directive can be used to the same effect, for example:

/* Modified behaviour: #error does not cause SWIG to exit with error */

7.7 Preprocessing and %f{ ... %} blocks 100

SWIG-1.3 Documentation
#pragma SWIG cpperraswarn=1

/* Normal behaviour: #error does cause SWIG to exit with error */
#pragma SWIG cpperraswarn=0

7.10 The #error and #warning directives 101

8 SWIG library

» The %include directive and library search path
« C Arrays and Pointers
¢ cpointer.i

¢ carrays.i
¢ cmalloc.i

¢ cdata.i
« C String Handling
¢ Default string handling
¢ Passing binary data
¢ Using %newobject to release memory
¢ cstring.i
e STL/C++ Library
¢ std_string.i
¢ std_vector.i
¢ STL exceptions
« Utility Libraries
¢+ exception.i

To help build extension modules, SWIG is packaged with a library of support files that you can include in your own interfaces.
These files often define new SWIG directives or provide utility functions that can be used to access parts of the standard C anc
C++ libraries. This chapter provides a reference to the current set of supported library files.

Compatibility note: Older versions of SWIG included a number of library files for manipulating pointers, arrays, and other

structures. Most these files are now deprecated and have been removed from the distribution. Alternative libraries provide simi
functionality. Please read this chapter carefully if you used the old libraries.

8.1 The %include directive and library search path

Library files are included using the %include directive. When searching for files, directories are searched in the following
order:

 The current directory

« Directories specified with the =I command line option

* ./swig_lib

« Jusr/local/lib/swig_lib (or wherever you installed SWIG)

» On Windows, SWIG also looks for the library relative to the location of swig.exe.

Within each directory, SWIG first looks for a subdirectory corresponding to a target language (e.g., python, tcl, etc.). If found,
SWIG will search the language specific directory first. This allows for language—specific implementations of library files.

You can override the location of the SWIG library by setting the SWIG_LIB environment variable.

8.2 C Arrays and Pointers

This section describes library modules for manipulating low-level C arrays and pointers. The primary use of these modules is i
supporting C declarations that manipulate bare pointers such as int *, double *, or void *. The modules can be used to

allocate memory, manufacture pointers, dereference memory, and wrap pointers as class-like objects. Since these functions
provide direct access to memory, their use is potentially unsafe and you should exercise caution.

8.2.1 cpointer.i

The cpointer.i module defines macros that can be used to used to generate wrappers around simple C pointers. The primary

8 SWIG library 102

SWIG-1.3 Documentation

use of this module is in generating pointers to primitive datatypes such as int and double.
%pointer_functions(type,name)

Generates a collection of four functions for manipulating a pointer type *:

type *new_name()

Creates a new object of type type and returns a pointer to it. In C, the object is created using calloc(). In C++, new
is used.

type *copy_name(type value)

Creates a new object of type type and returns a pointer to it. An initial value is set by copying it from value. In C, the
object is created using calloc(). In C++, new is used.

type *delete_name(type *obj)
Deletes an object type type.

void name_assign(type *obj, type value)
Assigns *obj = value.

type name_value(type *obj)
Returns the value of *obj.

When using this macro, type may be any type and name must be a legal identifier in the target language. name should not
correspond to any other name used in the interface file.

Here is a simple example of using %pointer_functions():

%module example
%include "cpointer.i"

[* Create some functions for working with "int *" */
%pointer_functions(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python:

>>> jmport example
>>> ¢ = example.new_intp() # Create an "int" for storing result

>>> example.add(3,4,c) # Call function
>>> example.intp_value(c) # Dereference
7

>>> example.delete_intp(c) # Delete
%pointer_class(type,name)
Wraps a pointer of type * inside a class—based interface. This interface is as follows:

struct name {

name(); /I Create pointer object
~name(); /I Delete pointer object
void assign(type value); /I Assign value

8.2.1 cpointer.i 103

SWIG-1.3 Documentation

type value(); /I Get value

type *cast(); /I Cast the pointer to original type

static name *frompointer(type *); // Create class wrapper from existing
I pointer

k

When using this macro, type is restricted to a simple type name like int, float, or Foo. Pointers and other complicated
types are not allowed. name must be a valid identifier not already in use. When a pointer is wrapped as a class, the "class'
may be transparently passed to any function that expects the pointer.

If the target language does not support proxy classes, the use of this macro will produce the example same functions as
%pointer_functions() macro.

It should be noted that the class interface does introduce a new object or wrap a pointer inside a special structure. Instead
raw pointer is used directly.

Here is the same example using a class instead:

%module example
%include "cpointer.i"

/* Wrap a class interface around an "int *" */
%pointer_class(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python (using proxy classes)

>>> import example

>>> ¢ = example.intp() # Create an "int" for storing result
>>> example.add(3,4,c) # Call function

>>> c.value() # Dereference

7

Of the two macros, %pointer_class is probably the most convenient when working with simple pointers. This is
because the pointers are access like objects and they can be easily garbage collected (destruction of the pointer object
destroys the underlying object).
%pointer_cast(typel, type2, name)
Creates a casting function that converts typel to type2. The name of the function is name. For example:
%pointer_cast(int *, unsigned int *, int_to_uint);
In this example, the function int_to_uint() would be used to cast types in the target language.

Note: None of these macros can be used to safely work with strings (char * or char **).

Note: When working with simple pointers, typemaps can often be used to provide more seamless operation.
8.2.2 carrays.i

This module defines macros that assist in wrapping ordinary C pointers as arrays. The module does not provide any safety or ¢
extra layer of wrapping—-it merely provides functionality for creating, destroying, and modifying the contents of raw C array
data.

%array_functions(type,name)

8.2.2 carrays.i 104

SWIG-1.3 Documentation

Creates four functions.
type *new_name(int nelements)
Creates a new array of objects of type type. In C, the array is allocated using calloc(). In C++, new [] is used.
type *delete_name(type *ary)
Deletes an array. In C, free() is used. In C++, delete [] is used.
type name_getitem(type *ary, int index)
Returns the value ary[index].
void name_setitem(type *ary, int index, type value)
Assigns ary[index] = value.

When using this macro, type may be any type and name must be a legal identifier in the target language. name should not
correspond to any other name used in the interface file.

Here is an example of %array_functions(). Suppose you had a function like this:

void print_array(double x[10]) {
inti;
for (i=0;i<10;i++){
printf("[%d] = %g\n", i, X[i]);
}
}

To wrap it, you might write this:

%module example

%include "carrays.i"
%array_functions(double, doubleArray);

void print_array(double x[10]);
Now, in a scripting language, you might write this:
a = new_doubleArray(10) # Create an array
for i in range(0,10):
doubleArray_setitem(a,i,2*i) # Set a value

print_array(a) #Passto C
delete_doubleArray(a) # Destroy array

%array_class(type,name)

Wraps a pointer of type * inside a class—based interface. This interface is as follows:

struct name {

name(int nelements); /I Create an array
~name(); /I Delete array

type getitem(int index); /I Return item

void setitem(int index, type value); // Set item
type *cast(); /I Cast to original type

static name *frompointer(type *); // Create class wrapper from
/I existing pointer

8.2.2 carrays.i 105

SWIG-1.3 Documentation

When using this macro, type is restricted to a simple type name like int or float. Pointers and other complicated types
are not allowed. name must be a valid identifier not already in use. When a pointer is wrapped as a class, it can be
transparently passed to any function that expects the pointer.

When combined with proxy classes, the %array_class() macro can be especially useful. For example:

%module example
%include "carrays.i"
%array_class(double, doubleArray);

void print_array(double x[10]);
Allows you to do this:

import example
¢ = example.doubleArray(10) # Create double[10]
for i in range(0,10):

cfi] = 2% # Assign values
example.print_array(c) #PasstoC

Note: These macros do not encapsulate C arrays inside a special data structure or proxy. There is no bounds checking or safe
any kind. If you want this, you should consider using a special array object rather than a bare pointer.

Note: %array_functions() and %array_class() should not be used with types of char or char *.

8.2.3 cmalloc.i

This module defines macros for wrapping the low-level C memory allocation functions malloc(), calloc(), realloc(),
and free().

%malloc(type [,name=type])
Creates a wrapper around malloc() with the following prototype:
type *malloc_name(int nbytes = sizeof(type));

If type is void, then the size parameter nbytes is required. The hame parameter only needs to be specified when
wrapping a type that is not a valid identifier (e.g., "int *", "double **", etc.).

%ocalloc(type [,name=type])
Creates a wrapper around calloc() with the following prototype:
type *calloc_name(int nobj =1, int sz = sizeof(type));
If type is void, then the size parameter sz is required.
%realloc(type [,name=type])
Creates a wrapper around realloc() with the following prototype:
type *realloc_name(type *ptr, int nitems);

Note: unlike the C realloc(), the wrapper generated by this macro implicitly includes the size of the corresponding type.
For example, realloc_int(p, 100) reallocates p so that it holds 100 integers.

%free(type [,name=type])

8.2.3 cmalloc.i 106

SWIG-1.3 Documentation

Creates a wrapper around free() with the following prototype:
void free_name(type *ptr);
%sizeof(type [,name=type])
Creates the constant:
%constant int sizeof_name = sizeof(type);
%allocators(type [,name=type])
Generates wrappers for all five of the above operations.

Here is a simple example that illustrates the use of these macros:

/I SWIG interface
%module example
%include "cmalloc.i"

%malloc(int);
%free(int);

%malloc(int *, intp);
%free(int *, intp);

%allocators(double);
Now, in a script:

>>> from example import *
>>> a = malloc_int()

>>> a

'_000efa70_p_int'

>>> free_int(a)

>>> b = malloc_intp()

>>> b
'_000efb20_p_p_int'

>>> free_intp(b)

>>> ¢ = calloc_double(50)
>>> ¢

' 000fab98 p_double’
>>> ¢ = realloc_double(100000)
>>> free_double(c)

>>> print sizeof_double

8

>>>

8.2.4 cdata.i

The cdata.i module defines functions for converting raw C data to and from strings in the target language. The primary
applications of this module would be packing/unpacking of binary data structures———for instance, if you needed to extract data
from a buffer. The target language must support strings with embedded binary data in order for this to work.

char *cdata(void *ptr, int nbytes)

Converts nbytes of data at ptr into a string. ptr can be any pointer.

void memmove(void *ptr, char *s)

8.2.4 cdata.i 107

SWIG-1.3 Documentation

Copies all of the string data in s into the memory pointed to by ptr. The string may contain embedded NULL bytes. The
length of the string is implicitly determined in the underlying wrapper code.

One use of these functions is packing and unpacking data from memory. Here is a short example:

/I SWIG interface
%module example
%include "carrays.i"
%include "cdata.i"

%array_class(int, intArray);
Python example:
>>> a = intArray(10)
>>> for i in range(0,10):
afij=i
>>> b = cdata(a,40)
>>> b
"\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t'
>>> ¢ = intArray(10)
>>> memmove(c,b)
>>> print c[4]

4
>>>

Since the size of data is not always known, the following macro is also defined:
%cdata(type [,name=type])
Generates the following function for extracting C data for a given type.
char *cdata_name(type* ptr, int nitems)
nitems is the number of items of the given type to extract.

Note: These functions provide direct access to memory and can be used to overwrite data. Clearly they are unsafe.

8.3 C String Handling

A common problem when working with C programs is dealing with functions that manipulate raw character data using char *.
In part, problems arise because there are different interpretations of char *~——it could be a NULL-terminated string or it could
point to binary data. Moreover, functions that manipulate raw strings may mutate data, perform implicit memory allocations, or
utilize fixed-sized buffers.

The problems (and perils) of using char * are well-known. However, SWIG is not in the business of enforcing morality. The
modules in this section provide basic functionality for manipulating raw C strings.

8.3.1 Default string handling

Suppose you have a C function with this prototype:
char *foo(char *s);

The default wrapping behavior for this function is to set s to a raw char * that refers to the internal string data in the target
language. In other words, if you were using a language like Tcl, and you wrote this,

% foo Hello

8.3 C String Handling 108

SWIG-1.3 Documentation

then s would point to the representation of "Hello" inside the Tcl interpreter. When returning a char *, SWIG assumes that it is
a NULL-terminated string and makes a copy of it. This gives the target language its own copy of the result.

There are obvious problems with the default behavior. First, since a char * argument points to data inside the target language,
is NOT safe for a function to modify this data (doing so may corrupt the interpreter and lead to a crash). Furthermore, the defat
behavior does not work well with binary data. Instead, strings are assumed to be NULL-terminated.

8.3.2 Passing binary data

If you have a function that expects binary data,
int parity(char *str, int len, int initial);

you can wrap the parameters (char *str, int len) as a single argument using a typemap. Just do this:
%apply (char *STRING, int LENGTH) { (char *str, int len) };
|nt parity(char *str, int len, int initial);

Now, in the target language, you can use binary string data like this:

>>> s = "H\x00\x15eg\x09\x20"
>>> parity(s,0)

In the wrapper function, the passed string will be expanded to a pointer and length parameter.

8.3.3 Using %newobject to release memory

If you have a function that allocates memory like this,

char *foo() {
char *result = (char *) malloc(...);

return result;

}

then the SWIG generated wrappers will have a memory leak——the returned data will be copied into a string object and the old
contents ignored.

To fix the memory leak, use the %newobject directive.
%newobiject foo;
char *foo();

This will release the result.

8.3.4 cstring.i

The cstring.i library file provides a collection of macros for dealing with functions that either mutate string arguments or
which try to output string data through their arguments. An example of such a function might be this rather questionable
implementation:

void get_path(char *s) {
/I Potential buffer overflow——-uh, oh.
sprintf(s,"%s/%s", base_directory, sub_directory);

}

/I Somewhere else in the C program

8.3.1 Default string handling 109

SWIG-1.3 Documentation

{
char path[1024];

éét_path(path);
}

(Off topic rant: If your program really has functions like this, you would be well-advised to replace them with safer alternatives
involving bounds checking).

The macros defined in this module all expand to various combinations of typemaps. Therefore, the same pattern matching rule
and ideas apply.

%ocstring_bounded_output(parm, maxsize)

Turns parameter parm into an output value. The output string is assumed to be NULL-terminated and smaller than
maxsize characters. Here is an example:

%cstring_bounded_output(char *path, 1024);
void get_path(char *path);
In the target language:

>>> get_path()
/home/beazley/packages/Foo/Bar
>>>

Internally, the wrapper function allocates a small buffer (on the stack) of the requested size and passes it as the pointer va
Data stored in the buffer is then returned as a function return value. If the function already returns a value, then the return
value and the output string are returned together (multiple return values). If more than maxsize bytes are written, your
program will crash with a buffer overflow!

%ocstring_chunk_output(parm, chunksize)

Turns parameter parm into an output value. The output string is always chunksize and may contain binary data. Here is
an example:

%cstring_chunk_output(char *packet, PACKETSIZE);
void get_packet(char *packet);
In the target language:

>>> get_packet()
\xa9Y:\xf6\xd7\xe 1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>

This macro is essentially identical to %cstring_bounded_output. The only difference is that the result is always
chunksize characters. Furthermore, the result can contain binary data. If more than maxsize bytes are written, your
program will crash with a buffer overflow!

%ocstring_bounded_mutable(parm, maxsize)

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated and smaller th:
maxsize characters. The output string is also assumed to be NULL-terminated and less than maxsize characters.

%cstring_bounded_mutable(char *ustr, 1024);

void make_upper(char *ustr);

8.3.4 cstring.i 110

SWIG-1.3 Documentation

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'
>>>

Internally, this macro is almost exactly the same as %cstring_bounded_output. The only difference is that the

parameter accepts an input value that is used to initialize the internal buffer. It is important to emphasize that this function
does not mutate the string value passed——-instead it makes a copy of the input value, mutates it, and returns it as a resul
more than maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_mutable(parm [, expansion])

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated. An optional
parameter expansion specifies the number of extra characters by which the string might grow when it is modified. The
output string is assumed to be NULL-terminated and less than the size of the input string plus any expansion characters.

%cstring_mutable(char *ustr);
void make_upper(char *ustr);
%cstring_mutable(char *hstr, HEADER_SIZE);

void attach_header(char *hstr);

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'

>>> attach_header("Hello world")
‘header: Hello world'

>>>

This macro differs from %cstring_bounded_mutable() in that a buffer is dynamically allocated (on the heap using
malloc/new). This buffer is always large enough to store a copy of the input value plus any expansion bytes that might
have been requested. It is important to emphasize that this function does not directly mutate the string value
passed—-—-instead it makes a copy of the input value, mutates it, and returns it as a result. If the function expands the resu
by more than expansion extra bytes, then the program will crash with a buffer overflow!

%cstring_output_maxsize(parm, maxparm)
This macro is used to handle bounded character output functions where both a char * and a maximum length parameter al
provided. As input, a user simply supplies the maximum length. The return value is assumed to be a NULL-terminated
string.
%cstring_output_maxsize(char *path, int maxpath);
;/.(.)id get_path(char *path, int maxpath);
In the target language:

>>> get_path(1024)
‘'home/beazley/Packages/Foo/Bar'
>>>

This macro provides a safer alternative for functions that need to write string data into a buffer. User supplied buffer size is
used to dynamically allocate memory on heap. Results are placed into that buffer and returned as a string object.

%ocstring_output_withsize(parm, maxparm)

8.3.4 cstring.i 111

SWIG-1.3 Documentation

This macro is used to handle bounded character output functions where both a char * and a pointer int * are passed.
Initially, the int * parameter points to a value containing the maximum size. On return, this value is assumed to contain

the actual number of bytes. As input, a user simply supplies the maximum length. The output value is a string that may
contain binary data.

%cstring_output_withsize(char *data, int *maxdata);

void get_data(char *data, int *maxdata);
In the target language:

>>> get_data(1024)
'x627388912'

>>> get_data(1024)
'xyzzy'

>>>

This macro is a somewhat more powerful version of %cstring_output_chunk(). Memory is dynamically allocated

and can be arbitrary large. Furthermore, a function can control how much data is actually returned by changing the value ¢
the maxparm argument.

%ocstring_output_allocate(parm, release)

This macro is used to return strings that are allocated within the program and returned in a parameter of type char **. For
example:

void foo(char **s) {
*s = (char *) malloc(64);
sprintf(*s, "Hello world\n");

}

The returned string is assumed to be NULL-terminated. release specifies how the allocated memory is to be released (if
applicable). Here is an example:

%cstring_output_allocate(char **s, free(*$1));
void foo(char **s);
In the target language:

>>> foo()
'Hello world\n'
>>>

%cstring_output_allocate_size(parm, szparm, release)

This macro is used to return strings that are allocated within the program and returned in two parameters of type char **
and int *. For example:

void foo(char **s, int *sz) {
*s = (char *) malloc(64);

*sz = 64,
/I Write some binary data

-

The returned string may contain binary data. release specifies how the allocated memory is to be released (if applicable).
Here is an example:

%cstring_output_allocate_size(char **s, int *slen, free(*$1));

8.3.4 cstring.i 112

SWIG-1.3 Documentation

void foo(char **s, int *slen);

In the target language:

>>> foo()
\xa9Y:\xf6\xd7\xe 1\x87\xdbH;y\x97\x7f\xd3\x99\x 14V\xec\x06\xea\xa2\x88'
>>>

This is the safest and most reliable way to return binary string data in SWIG. If you have functions that conform to another
prototype, you might consider wrapping them with a helper function. For example, if you had this:

char *get_data(int *len);
You could wrap it with a function like this:

void my_get_data(char **result, int *len) {
*result = get_data(len);

}

Comments:

 Support for the cstring.i module depends on the target language. Not all SWIG modules currently support this
library.

* Reliable handling of raw C strings is a delicate topic. There are many ways to accomplish this in SWIG. This library
provides support for a few common techniques.

« If used in C++, this library uses new and delete [] for memory allocation. If using ANSI C, the library uses
malloc() and free().

 Rather than manipulating char * directly, you might consider using a special string structure or class instead.

8.4 STL/C++ Library

The library modules in this section provide access to parts of the standard C++ library including the STL. SWIG support for the
STL is an ongoing effort. Support is quite comprehensive for some language modules but some of the lesser used modules do
have quite as much library code written.

The following table shows which C++ classes are supported and the equivalent SWIG interface library file for the C++ library.

C++ class|C++ Library file [SWIG Interface library file
std::dequgdeque std_deque.i

std::list |list std_list.i

std::map |map std_map.i

std::pair |utility std_pair.i

std::set |set std_set.i

std::string|string std_string.i
std::vectofvector std_vector.i

The list is by no means complete; some language modules support a subset of the above and some support additional STL cla
Please look for the library files in the appropriate language library directory.

8.4.1 std_string.i

The std_string.i library provides typemaps for converting C++ std::string objects to and from strings in the target
scripting language. For example:

%module example
%include "std_string.i"

8.4 STL/C++ Library 113

SWIG-1.3 Documentation

std::string foo();
void bar(const std::string &x);

In the target language:

x = foo(); # Returns a string object
bar("Hello World"); # Pass string as std::string

A common problem that people encounter is that of classes/structures containing a std::string. This can be overcome by
defining a typemap. For example:

%module example
%include "std_string.i"

%apply const std::string& {std::string* foo};
struct my_struct

{
std::string foo;

%
In the target language:

X = my_struct();
x.foo="Hello World"; # assign with string
print x.foo; # print as string

This module only supports types std::string and const std::string &. Pointers and non—const references are left
unmodified and returned as SWIG pointers.

This library file is fully aware of C++ namespaces. If you export std::string or rename it with a typedef, make sure you
include those declarations in your interface. For example:

%module example
%include "std_string.i"

using namespace std;
typedef std::string String;

void foo(string s, const String &t); // std_string typemaps still applied

Note: The std_string library is incompatible with Perl on some platforms. We're looking into it.

8.4.2 std_vector.i

The std_vector.i library provides support for the C++ vector class in the STL. Using this library involves the use of the
%template directive. All you need to do is to instantiate different versions of vector for the types that you want to use. For
example:

%module example
%include "std_vector.i"

namespace std {
%template(vectori) vector<int>;
%template(vectord) vector<double>;

g

When a template vector<X> is instantiated a number of things happen:

8.4.1 std_string.i 114

SWIG-1.3 Documentation

« A class that exposes the C++ API is created in the target language . This can be used to create objects, invoke methoc
etc. This class is currently a subset of the real STL vector class.

« Input typemaps are defined for vector<X>, const vector<X> &, and const vector<X> *. For each of these,
a pointer vector<X> * may be passed or a native list object in the target language.

» An output typemap is defined for vector<X>. In this case, the values in the vector are expanded into a list object in the
target language.

« For all other variations of the type, the wrappers expect to receive a vector<X> * object in the usual manner.

» An exception handler for std::out_of range is defined.

 Optionally, special methods for indexing, item retrieval, slicing, and element assignment may be defined. This depends
on the target language.

To illustrate the use of this library, consider the following functions:

/* File : example.h */

#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>

double average(std::vector<int> v) {
return std::accumulate(v.begin(),v.end(),0.0)/v.size();

}

std::vector<double> half(const std::vector<double>& v) {
std::vector<double> w(V);
for (unsigned int i=0; i<w.size(); i++)
wli] /= 2.0;
return w;

}

void halve_in_place(std::vector<double>& v) {
std::transform(v.begin(),v.end(),v.begin(),
std::bind2nd(std::divides<double>(),2.0));
}

To wrap with SWIG, you might write the following:

%module example
%f

#include "example.h"
9%}

%include "std_vector.i"
/I Instantiate templates used by example
namespace std {
%template(IntVector) vector<int>;
%template(DoubleVector) vector<double>;

}

/I Include the header file with above prototypes
%include "example.h"

Now, to illustrate the behavior in the scripting interpreter, consider this Python example:

>>> from example import *
>>> jv = IntVector(4) # Create an vector<int>
>>> for i in range(0,4):

iv[i] =i

>>> average(iv) # Call method
15

>>> average([0,1,2,3]) # Call with list
15

>>> half([1,2,3]) # Half a list

8.4.2 std_vector.i 115

SWIG-1.3 Documentation

(0.5,1.0,1.5)
>>> halve_in_place([1,2,3]) # Oops
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_std__ vectorTdouble_t
>>> dv = DoubleVector(4)
>>> for i in range(0,4):

dvfi] =i
>>> halve_in_place(dv) # Ok
>>>foriin dv:
print i

0.0
0.5
1.0
15
>>> dv[20] = 4.5
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "example.py", line 81, in __setitem___

def __setitem__(*args): return apply(examplec.DoubleVector___setitem__,args)

IndexError: vector index out of range
>>>

This library module is fully aware of C++ namespaces. If you use vectors with other names, make sure you include the
appropriate using or typedef directives. For example:

%include "std_vector.i"

namespace std {
%template(IntVector) vector<int>;

}

using namespace std;
typedef std::vector Vector;

void foo(vector<int> *x, const Vector &x);

Note: This module makes use of several advanced SWIG features including templatized typemaps and template partial
specialization. If you are tring to wrap other C++ code with templates, you might look at the code contained in std_vector.i.
Alternatively, you can show them the code if you want to make their head explode.

Note: This module is defined for all SWIG target languages. However argument conversion details and the public APl exposed
the interpreter vary.

Note: std_vector.i was written by Luigi "The Amazing" Ballabio.

8.4.3 STL exceptions

Many of the STL wrapper functions add parameter checking and will throw a language dependent error/exception should the
values not be valid. The classic example is array bounds checking. The library wrappers are written to throw a C++ exception i
the case of error. The C++ exception in turn gets converted into an appropriate error/exception for the target language. By and
large this handling should not need customising, however, customisation can easily be achieved by supplying appropriate
"throws" typemaps. For example:

%module example

%include "std_vector.i"

%typemap(throws) std::out_of_range {
/I custom exception handler

}

%template(Vectint) std::vector<int>;

8.4.3 STL exceptions 116

SWIG-1.3 Documentation

The custom exception handler might, for example, log the exception then convert it into a specific error/exception for the target
language.

When using the STL it is advisable to add in an exception handler to catch all STL exceptions. The %exception directive can
be used by placing the following code before any other methods or libraries to be wrapped:

%include "exception.i"

%exception {
try {
$action
} catch (const std::exception& e) {
SWIG_exception(SWIG_RuntimeError, e.what());
}
}

Any thrown STL exceptions will then be gracefully handled instead of causing a crash.

8.5 Utility Libraries

8.5.1 exception.i

The exception.i library provides a language-independent function for raising a run—time exception in the target language.
This library is largely used by the SWIG library writers. If possible, use the error handling scheme available to your target
language as there is greater flexibility in what errors/exceptions can be thrown.

SWIG_exception(int code, const char *message)

Raises an exception in the target language. code is one of the following symbolic constants:

SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError

message is a string indicating more information about the problem.

The primary use of this module is in writing language—independent exception handlers. For example:

%include "exception.i"
%exception std::vector::getitem {
try {
$action
} catch (std::out_of_range& e) {
SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
}
}

8.5 Utility Libraries 117

9 Argument Handling

 The typemaps.i library
¢ Introduction
¢ Input parameters
¢ Output parameters
¢ Input/Output parameters
¢ Using different names
« Applying constraints to input values
¢ Simple constraint example
+ Constraint methods

¢ Applying constraints to new datatypes

Disclaimer: This chapter is under construction.

In Chapter 3, SWIG's treatment of basic datatypes and pointers was described. In particular, primitive types such as int and
double are mapped to corresponding types in the target language. For everything else, pointers are used to refer to structures,
classes, arrays, and other user—defined datatypes. However, in certain applications it is desirable to change SWIG's handling ¢
specific datatype. For example, you might want to return multiple values through the arguments of a function. This chapter
describes some of the techniques for doing this.

9.1 The typemaps.i library
This section describes the typemaps.i library file——commonly used to change certain properties of argument conversion.

9.1.1 Introduction

Suppose you had a C function like this:

void add(double a, double b, double *result) {
*result = a + b;

}

From reading the source code, it is clear that the function is storing a value in the double *result parameter. However, since
SWIG does not examine function bodies, it has no way to know that this is the underlying behavior.

One way to deal with this is to use the typemaps.i library file and write interface code like this:

/I Simple example using typemaps
%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inlne %({

extern void add(double a, double b, double *result);
%0}

The %apply directive tells SWIG that you are going to apply a special type handling rule to a type. The "double *OUTPUT"
specification is the name of a rule that defines how to return an output value from an argument of type double *. This rule gets
applied to all of the datatypes listed in curly braces—- in this case "double *result".

When the resulting module is created, you can now use the function like this (shown for Python):

>>> a = add(3,4)
>>> print a

7

>>>

9 Argument Handling 118

SWIG-1.3 Documentation

In this case, you can see how the output value normally returned in the third argument has magically been transformed into a
function return value. Clearly this makes the function much easier to use since it is no longer necessary to manufacture a spec
double * object and pass it to the function somehow.

Once a typemap has been applied to a type, it stays in effect for all future occurrences of the type and name. For example, you
could write the following:

%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inline %({

extern void add(double a, double b, double *result);
extern void sub(double a, double b, double *result);
extern void mul(double a, double b, double *result);
extern void div(double a, double b, double *result);
%0}

In this case, the double *OUTPUT rule is applied to all of the functions that follow.

Typemap transformations can even be extended to multiple return values. For example, consider this code:

%include "typemaps.i"
%apply int *OUTPUT { int *width, int *height };

/I Returns a pair (width,height)
void getwinsize(int winid, int *width, int *height);

In this case, the function returns multiple values, allowing it to be used like this:

>>> w,h = genwinsize(wid)
>>> print w

400

>>> print h

300

>>>

It should also be noted that although the %apply directive is used to associate typemap rules to datatypes, you can also use th
rule names directly in arguments. For example, you could write this:

/I Simple example using typemaps

%module example

%include "typemaps.i"

9%{

extern void add(double a, double b, double *OUTPUT);

9%}
extern void add(double a, double b, double *OUTPUT);

Typemaps stay in effect until they are explicitly deleted or redefined to something else. To clear a typemap, the %clear directiv
should be used. For example:

%clear double *result; // Remove all typemaps for double *result
9.1.2 Input parameters

The following typemaps instruct SWIG that a pointer really only holds a single input value:

int *INPUT
short *INPUT

9.1.1 Introduction 119

SWIG-1.3 Documentation

long *INPUT

unsigned int *INPUT
unsigned short *INPUT
unsigned long *INPUT
double *INPUT

float *INPUT

When used, it allows values to be passed instead of pointers. For example, consider this function:

double add(double *a, double *b) {
return *a+*b;

}
Now, consider this SWIG interface:

%module example
%include "typemaps.i"

9%{
extern double add(double *, double *);

9%}
extern double add(double *INPUT, double *INPUT);

When the function is used in the scripting language interpreter, it will work like this:

result = add(3,4)
9.1.3 Output parameters

The following typemap rules tell SWIG that pointer is the output value of a function. When used, you do not need to supply the
argument when calling the function. Instead, one or more output values are returned.

int *OUTPUT

short *OUTPUT

long *OUTPUT

unsigned int *OUTPUT
unsigned short *OUTPUT
unsigned long *OUTPUT
double *OUTPUT

float *OUTPUT

These methods can be used as shown in an earlier example. For example, if you have this C function :

void add(double a, double b, double *c) {
*c = atb;

}
A SWIG interface file might look like this :

%module example
%include "typemaps.i"

%inline %{
extern void add(double a, double b, double *OUTPUT);
9%}

In this case, only a single output value is returned, but this is not a restriction. An arbitrary number of output values can be
returned by applying the output rules to more than one argument (as shown previously).

9.1.2 Input parameters 120

SWIG-1.3 Documentation

If the function also returns a value, it is returned along with the argument. For example, if you had this:
extern int foo(double a, double b, double *OUTPUT);
The function will return two values like this:

iresult, dresult = foo(3.5, 2)

9.1.4 Input/Output parameters

When a pointer serves as both an input and output value you can use the following typemaps :

int *INOUT

short *INOUT

long *INOUT

unsigned int *INOUT
unsigned short *INOUT
unsigned long *INOUT
double *INOUT

float *INOUT

A C function that uses this might be something like this:

void negate(double *x) {
% ==(%);
}

To make x function as both and input and output value, declare the function like this in an interface file :

%module example
%include typemaps.i

9%{
extern void negate(double *);

9%}
extern void negate(double *INOUT);

Now within a script, you can simply call the function normally :

a = negate(3); # a = -3 after calling this

One subtle point of the INOUT rule is that many scripting languages enforce mutability constraints on primitive objects (meanin
that simple objects like integers and strings aren't supposed to change). Because of this, you can't just modify the object's valu
place as the underlying C function does in this example. Therefore, the INOUT rule returns the modified value as a new object
rather than directly overwriting the value of the original input object.

Compatibility note : The INOUT rule used to be known as BOTH in earlier versions of SWIG. Backwards compatibility is
preserved, but deprecated.

9.1.5 Using different names

As previously shown, the %apply directive can be used to apply the INPUT, OUTPUT, and INOUT typemaps to different
argument names. For example:

/I Make double *result an output value
%apply double *OUTPUT { double *result };

/I Make Int32 *in an input value

9.1.3 Output parameters 121

SWIG-1.3 Documentation
%apply int *INPUT { Int32 *in };
/I Make long *x inout
%apply long *INOUT {long *x};
To clear a rule, the %clear directive is used:

%clear double *result;
%clear Int32 *in, long *x;

Typemap declarations are lexically scoped so a typemap takes effect from the point of definition to the end of the file or a
matching %clear declaration.

9.2 Applying constraints to input values

In addition to changing the handling of various input values, it is also possible to use typemaps to apply constraints. For exampg
maybe you want to insure that a value is positive, or that a pointer is non—NULL. This can be accomplished including the
constraints.i library file.

9.2.1 Simple constraint example

The constraints library is best illustrated by the following interface file :

Il Interface file with constraints
%module example
%include "constraints.i"

double exp(double x);

double log(double POSITIVE); /I Allow only positive values
double sgrt(double NONNEGATIVE); // Non—-negative values only
double inv(double NONZERO); /I Non-zero values

void free(void *NONNULL); /I Non—NULL pointers only

The behavior of this file is exactly as you would expect. If any of the arguments violate the constraint condition, a scripting
language exception will be raised. As a result, it is possible to catch bad values, prevent mysterious program crashes and so o

9.2.2 Constraint methods

The following constraints are currently available

POSITIVE Any number > 0 (not zero)
NEGATIVE Any number < 0 (not zero)
NONNEGATIVE Any number >=0
NONPOSITIVE Any number <=0

NONZERO Nonzero number

NONNULL Non—-NULL pointer (pointers only).

9.2.3 Applying constraints to new datatypes

The constraints library only supports the primitive C datatypes, but it is easy to apply it to new datatypes using %apply. For
example :

/I Apply a constraint to a Real variable
%apply Number POSITIVE { Real in };

/I Apply a constraint to a pointer type
%apply Pointer NONNULL { Vector * },

9.1.5 Using different names 122

SWIG-1.3 Documentation

The special types of "Number" and "Pointer" can be applied to any numeric and pointer variable type respectively. To later
remove a constraint, the %clear directive can be used :

%clear Real in;
%clear Vector *;

9.2.3 Applying constraints to new datatypes 123

10 Typemaps

« Introduction

¢ Type conversion
¢ Typemaps
¢ Pattern matching
¢ Reusing typemaps
+ What can be done with typemaps?
+ What can't be done with typemaps?
¢ The rest of this chapter
« Typemap specifications
¢ Defining a typemap
¢ Typemap scope
¢ Copying a typemap
¢ Deleting a typemap
¢ Placement of typemaps
- Pattern matching rules
¢ Basic matching rules
¢ Typedef reductions
+ Default typemaps
+ Mixed default typemaps
¢ Multi—-arguments typemaps
» Code generation rules
¢ Scope
¢ Declaring new local variables
¢ Special variables
« Common typemap methods
"In" typema

"typecheck" typemap
"out" typema

"arginit" typemap
"default" typemap
"check" typemap
"argout" typemap
"freearq" typemap
"newfree" typemap
"memberin" typemap
"varin" typemap
"varout" typemap
+ "throws" typemap
+ Some typemap examples
¢ Typemaps for arrays
+ Implementing constraints with typemaps
» Typemaps for multiple languages
e Multi-argument typemaps
 The run—time type checker
¢ Implementation
¢+ Usage
« Typemaps and overloading
» More abou®oapply and %clear
« Reducing wrapper code size
 Passing data between typemaps
» Where to go for more information?

E

%

LR R IR JEE R N BE JNR 2R B R 2

Disclaimer: This chapter is under construction!

10 Typemaps 124

SWIG-1.3 Documentation
10.1 Introduction

Chances are, you are reading this chapter for one of two reasons; you either want to customize SWIG's behavior or you overhe
someone mumbling some incomprehensible drivel about "typemaps" and you asked yourself "typemaps, what are those?" Tha
said, let's start with a short disclaimer that "typemaps" are an advanced customization feature that provide direct access to SW
low-level code generator. Not only that, they are an integral part of the SWIG C++ type system (a non-trivial topic of its own).
Typemaps are generally not a required part of using SWIG. Therefore, you might want to re-read the earlier chapters if you ha
found your way to this chapter with only a vaque idea of what SWIG already does by default.

10.1.1 Type conversion

One of the most important problems in wrapper code generation is the conversion of datatypes between programming languag
Specifically, for every C/C++ declaration, SWIG must somehow generate wrapper code that allows values to be passed back a
forth between languages. Since every programming language represents data differently, this is not a simple of matter of simpl
linking code together with the C linker. Instead, SWIG has to know something about how data is represented in each language
how it can be manipulated.

To illustrate, suppose you had a simple C function like this:
int factorial(int n);
To access this function from Python, a pair of Python API functions are used to convert integer values. For example:

long PyInt_AsLong(PyObject *obj); /* Python ——> C */
PyObject *PyInt_FromLong(long x); /* C ——> Python */

The first function is used to convert the input argument from a Python integer object to C long. The second function is used to
convert a value from C back into a Python integer object.

Inside the wrapper function, you might see these functions used like this:

PyObject *wrap_factorial(PyObject *self, PyObject *args) {
int argl,;
int result;
PyObiject *obj1;
PyObiject *resultobj;

if (IPyArg_ParseTuple("O:factorial", &obj1)) return NULL;
argl = PyInt_AsLong(obj1);

result = factorial(argl);
resultobj = PyInt_FromLong(result);

return resultobj;

}

Every target language supported by SWIG has functions that work in a similar manner. For example, in Perl, the following
functions are used:

IV SVIV(SV *sv); /* Perl ——> C */
void sv_setiv(SV *sv, IV val); [* C ——> Perl */

In Tcl:

int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *obj, long *value);
Tcl_Obj *Tcl_NewIntObj(long value);

The precise details are not so important. What is important is that all of the underlying type conversion is handled by collection:

of utility functions and short bits of C code like this——-you simply have to read the extension documentation for your favorite
language to know how it works (an exercise left to the reader).

10.1 Introduction 125

SWIG-1.3 Documentation

10.1.2 Typemaps

Since type handling is so central to wrapper code generation, SWIG allows it to be completely defined (or redefined) by the use
To do this, a special %typemap directive is used. For example:

[* Convert from Python ——> C */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}

/* Convert from C ——> Python */
%typemap(out) int {

$result = PyInt_FromLong($1);
}

At first glance, this code will look a little confusing. However, there is really not much to it. The first typemap (the "in" typemap)
is used to convert a value from the target language to C. The second typemap (the "out" typemap) is used to convert in the oth
direction. The content of each typemap is a small fragment of C code that is inserted directly into the SWIG generated wrapper
functions. Within this code, a number of special variables prefixed with a $ are expanded. These are really just placeholders fol
variables that are generated in the course of creating the wrapper function. In this case, $input refers to an input object that
needs to be converted to C and $result refers to an object that is going to be returned by a wrapper function. $1 referstoa C
variable that has the same type as specified in the typemap declaration (an int in this example).

A short example might make this a little more clear. If you were wrapping a function like this:
int gcd(int x, int y);
A wrapper function would look approximately like this:

PyObject *wrap_gcd(PyObject *self, PyObject *args) {
int argl;
int arg2;
int result;
PyObiject *obj1;
PyObject *obj2;
PyObject *resultobj;

if (\PyArg_ParseTuple("O0:gcd", &obj1, &obj2)) return NULL;
/*"in" typemap, argument 1 */

{
argl = PyInt_AsLong(obj1);

}
/*"in" typemap, argument 2 */

arg2 = PyInt_AsLong(obj2);
}

result = gcd(argl,arg?);

/* "out" typemap, return value */

{
resultobj = PyInt_FromLong(result);
}
return resultobj;
}

In this code, you can see how the typemap code has been inserted into the function. You can also see how the special $ varial
have been expanded to match certain variable names inside the wrapper function. This is really the whole idea behind
typemaps——they simply let you insert arbitrary code into different parts of the generated wrapper functions. Because arbitrary

10.1.2 Typemaps 126

SWIG-1.3 Documentation

code can be inserted, it possible to completely change the way in which values are converted.

10.1.3 Pattern matching

As the name implies, the purpose of a typemap is to "map" C datatypes to types in the target language. Once a typemap is def
for a C datatype, it is applied to all future occurrences of that type in the input file. For example:

/* Convert from Perl ——> C */
%typemap(in) int {

$1 = SvIV($input);
}

int factorial(int n);
int gcd(int x, int y);
int count(char *s, char *t, int max);

The matching of typemaps to C datatypes is more than a simple textual match. In fact, typemaps are fully built into the underlyi
type system. Therefore, typemaps are unaffected by typedef, namespaces, and other declarations that might hide the underlyir
type. For example, you could have code like this:

/* Convert from Ruby——> C */
%typemap(in) int {

$1 = NUM2INT($input);
}

typedef int Integer;
namespace foo {
typedef Integer Number;

g

int foo(int x);
int bar(Integer y);
int spam(foo::Number a, foo::Number b);

In this case, the typemap is still applied to the proper arguments even though typenames don't always match the text “int". This
ability to track types is a critical part of SWIG——in fact, all of the target language modules work merely define a set of typemaps
for the basic types. Yet, it is never necessary to write new typemaps for typenames introduced by typedef.

In addition to tracking typenames, typemaps may also be specialized to match against a specific argument name. For example
you could write a typemap like this:

%typemap(in) double nonnegative {
$1 = PyFloat_AsDouble($input);
if ($1 < 0) {
PyErr_SetString(PyExc_ValueError,"argument must be nonnegative.");
return NULL;
}
}

double sin(double x);
double cos(double x);
double sqgrt(double nonnegative);

typedef double Real;
double log(Real nonnegative);

For certain tasks such as input argument conversion, typemaps can be defined for sequences of consecutive arguments. For
example:

%typemap(in) (char *str, int len) {

10.1.3 Pattern matching 127

SWIG-1.3 Documentation

$1 = PyString_AsString($input); /* char *str */
$2 = PyString_Size($input); /*intlen */
}

int count(char *str, int len, char c);

In this case, a single input object is expanded into a pair of C arguments. This example also provides a hint to the unusual vari
naming scheme involving $1, $2, and so forth.

10.1.4 Reusing typemaps

Typemaps are normally defined for specific type and argument name patterns. However, typemaps can also be copied and reu
One way to do this is to use assignment like this:

%typemap(in) Integer = int;
%typemap(in) (char *buffer, int size) = (char *str, int len);

A more general form of copying is found in the %apply directive like this:

%typemap(in) int {
/* Convert an integer argument */

}
%typemap(out) int {
/* Return an integer value */

-

/* Apply all of the integer typemaps to size_t */
%apply int { size_t };

%apply merely takes all of the typemaps that are defined for one type and applies them to other types. Note: you can include a
comma separated set of types in the { ... } part of %apply.

It should be noted that it is not necessary to copy typemaps for types that are related by typedef. For example, if you have this,
typedef int size_t;

then SWIG already knows that the int typemaps apply. You don't have to do anything.

10.1.5 What can be done with typemaps?

The primary use of typemaps is for defining wrapper generation behavior at the level of individual C/C++ datatypes. There are
currently six general categories of problems that typemaps address:

Argument handling
int foo(int x, double y, char *s);

* Input argument conversion ("in" typemap).

« Input argument type checking ("typecheck" typemap).
 Output argument handling ("argout" typemap).

« Input argument value checking ("check" typemap).

* Input argument initialization ("arginit" typemap).

Default arguments ("default” typemap).

« Input argument resource management (“freearg" typemap).

Return value handling

10.1.4 Reusing typemaps 128

SWIG-1.3 Documentation

int foo(int x, double y, char *s);
« Function return value conversion ("out" typemap).
 Return value resource management ("ret" typemap).
» Resource management for newly allocated objects ("newfree" typemap).
Exception handling
int foo(int x, double y, char *s) throw(MemoryError, IndexError);
« Handling of C++ exception specifications. ("throw" typemap).
Global variables

int foo;

» Assignment of a global variable. ("varin" typemap).
» Reading a global variable. ("varout" typemap).

Member variables
struct Foo {
int x[20];
h
» Assignment of data to a class/structure member. ("memberin” typemap).

Constant creation

#define FOO 3
%constant int BAR = 42;
enum { ALE, LAGER, STOUT };

« Creation of constant values. ("consttab" or "constcode” typemap).
Details of each of these typemaps will be covered shortly. Also, certain language modules may define additional typemaps that

expand upon this list. For example, the Java module defines a variety of typemaps for controlling additional aspects of the Jave
bindings. Consult language specific documentation for further details.

10.1.6 What can't be done with typemaps?

Typemaps can't be used to define properties that apply to C/C++ declarations as a whole. For example, suppose you had a
declaration like this,

Foo *make_Foo();
and you wanted to tell SWIG that make_Foo() returned a newly allocated object (for the purposes of providing better memory
management). Clearly, this property of make_Foo() is not a property that would be associated with the datatype Foo * by
itself. Therefore, a completely different SWIG customization mechanism (%feature) is used for this purpose. Consult the
Customization Features chapter for more information about that.
Typemaps also can't be used to rearrange or transform the order of arguments. For example, if you had a function like this:
void foo(int, char *);

you can't use typemaps to interchange the arguments, allowing you to call the function like this:

foo("hello",3) # Reversed arguments

10.1.5 What can be done with typemaps? 129

SWIG-1.3 Documentation

If you want to change the calling conventions of a function, write a helper function instead. For example:

%rename(foo) wrap_foo;

%inline %{

void wrap_foo(char *s, int x) {
foo(x,s);

}
%)

10.1.7 The rest of this chapter

The rest of this chapter provides detailed information for people who want to write new typemaps. This information is of
particular importance to anyone who intends to write a new SWIG target language module. Power users can also use this
information to write application specific type conversion rules.

Since typemaps are strongly tied to the underlying C++ type system, subsequent sections assume that you are reasonably fan
with the basic details of values, pointers, references, arrays, type qualifiers (e.g., const), structures, namespaces, templates, al
memory management in C/C++. If not, you would be well-advised to consult a copy of "The C Programming Language" by
Kernighan and Ritchie or "The C++ Programming Language" by Stroustrup before going any further.

10.2 Typemap specifications
This section describes the behavior of the %typemap directive itself.

10.2.1 Defining a typemap

New typemaps are defined using the %typemap declaration. The general form of this declaration is as follows (parts enclosed i
[...] are optional):

%typemap(method [, modifiers]) typelist code ;

method is a simply a name that specifies what kind of typemap is being defined. It is usually a name like "in",
"argout". The purpose of these methods is described later.

out”, or

modifiers is an optional comma separated list of name="value" values. These are sometimes to attach extra information to a
typemap and is often target-language dependent.

typelist is a list of the C++ type patterns that the typemap will match. The general form of this list is as follows:

typelist : typepattern [, typepattern, typepattern, ...] ;
typepattern : type [(parms) |

| type name [(parms)]
| (typelist) [(parms)]

Each type pattern is either a simple type, a simple type and argument name, or a list of types in the case of multi-argument
typemaps. In addition, each type pattern can be parameterized with a list of temporary variables (parms). The purpose of these
variables will be explained shortly.

code specifies the C code used in the typemap. It can take any one of the following forms:
code {0}
| %f ... %}

Here are some examples of valid typemap specifications:

10.1.6 What can't be done with typemaps? 130

SWIG-1.3 Documentation

/* Simple typemap declarations */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}
%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %{

$1 = PyInt_AsLong($input);
%0}

/* Typemap with extra argument name */
%typemap(in) int nonnegative {

}

/* Multiple types in one typemap */
%typemap(in) int, short, long {

$1 = SvIV($input);
}

/* Typemap with modifiers */
%typemap(in,doc="integer") int "$1 = gh_scm2int($input);";

/* Typemap applied to patterns of multiple arguments */
%typemap(in) (char *str, int len),
(char *buffer, int size)

$1 = PyString_AsString($input);
$2 = PyString_Size($input);
}

[* Typemap with extra pattern parameters */
%typemap(in, numinputs=0) int *output (int temp),
long *output (long temp)
{
$1 = &temp;
}

Admittedly, it's not the most readable syntax at first glance. However, the purpose of the individual pieces will become clear.

10.2.2 Typemap scope

Once defined, a typemap remains in effect for all of the declarations that follow. A typemap may be redefined for different
sections of an input file. For example:

/I typemapl
%typemap(in) int {

}

int fact(int); Il typemapl
int gcd(int x, int y); /I typemapl

Il typemap2
%typemap(in) int {

)

int isprime(int); Il typemap2

One exception to the typemap scoping rules pertains to the %extend declaration. %extend is used to attach new declarations t
a class or structure definition. Because of this, all of the declarations in an %extend block are subject to the typemap rules that
are in effect at the point where the class itself is defined. For example:

class Foo {

10.2.1 Defining a typemap 131

SWIG-1.3 Documentation
h
%typemap(in) int {
}...

%extend Foo {
int blah(int x); // typemap has no effect. Declaration is attached to Foo which
/I appears before the %typemap declaration.

X
10.2.3 Copying a typemap
A typemap is copied by using assignment. For example:
%typemap(in) Integer = int;
or this:
%typemap(in) Integer, Number, int32_t = int;
Types are often managed by a collection of different typemaps. For example:

%typemap(in) int{...}
%typemap(out) int{...}
%typemap(varin) int{...}
%typemap(varout) int { ... }

To copy all of these typemaps to a new type, use %apply. For example:

%apply int { Integer }; /I Copy all int typemaps to Integer
%apply int { Integer, Number }; // Copy all int typemaps to both Integer and Number

The patterns for %apply follow the same rules as for %typemap. For example:

%apply int *output { Integer *output }; /I Typemap with name
%apply (char *buf, int len) { (char *buffer, int size) }; // Multiple arguments

10.2.4 Deleting a typemap

A typemap can be deleted by simply defining no code. For example:

%typemap(in) int; /I Clears typemap for int
%typemap(in) int, long, short; // Clears typemap for int, long, short
%typemap(in) int *output;

The %clear directive clears all typemaps for a given type. For example:

%clear int; /I Removes all types for int
%clear int *output, long *output;

Note: Since SWIG's default behavior is defined by typemaps, clearing a fundamental type like int will make that type unusable
unless you also define a new set of typemaps immediately after the clear operation.

10.2.5 Placement of typemaps

Typemap declarations can be declared in the global scope, within a C++ namespace, and within a C++ class. For example:

%typemap(in) int {

10.2.2 Typemap scope 132

SWIG-1.3 Documentation
}

namespace std {
class string;
%typemap(in) string {

}
}

class Bar {
public:

typedef const int & const_reference;
%typemap(out) const_reference {

}
k

When a typemap appears inside a namespace or class, it stays in effect until the end of the SWIG input (just like before).
However, the typemap takes the local scope into account. Therefore, this code

namespace std {
class string;
%typemap(in) string {

}
}

is really defining a typemap for the type std::string. You could have code like this:

namespace std {
class string;
%typemap(in) string { [* std::string */

}
}

namespace Foo {
class string;
%typemap(in) string { [* Foo::string */

}
}

In this case, there are two completely distinct typemaps that apply to two completely different types (std::string and
Foo::string).

It should be noted that for scoping to work, SWIG has to know that string is a typename defined within a particular namespace.
In this example, this is done using the class declaration class string.

10.3 Pattern matching rules
The section describes the pattern matching rules by which C datatypes are associated with typemaps.

10.3.1 Basic matching rules

Typemaps are matched using both a type and a name (typically the name of a argument). For a given TYPE NAME pair, the
following rules are applied, in order, to find a match. The first typemap found is used.

» Typemaps that exactly match TYPE and NAME.
« Typemaps that exactly match TYPE only.

10.2.5 Placement of typemaps 133

SWIG-1.3 Documentation

If TYPE includes qualifiers (const, volatile, etc.), they are stripped and the following checks are made:

» Typemaps that match the stripped TYPE and NAME.
» Typemaps that match the stripped TYPE only.

If TYPE is an array. The following transformation is made:
* Replace all dimensions to [ANY] and look for a generic array typemap.

To illustrate, suppose that you had a function like this:
int foo(const char *s);

To find a typemap for the argument const char *s, SWIG will search for the following typemaps:

const char *s Exact type and name match

const char * Exact type match

char *s Type and name match (stripped qualifiers)
char * Type match (stripped qualifiers)

When more than one typemap rule might be defined, only the first match found is actually used. Here is an example that shows
how some of the basic rules are applied:

%typemap(in) int *x {

... typemap 1

}

%typemap(in) int * {
... typemap 2

}

%typemap(in) const int *z {
... typemap 3

}

%typemap(in) int [4] {
... typemap 4

}

%typemap(in) int [ANY] {
... typemap 5

}

void A(int *x); /l'int *x rule (typemap 1)
void B(int *y); /lint*rule (typemap 2)
void C(const int *x); // int *x rule (typemap 1)
void D(const int *z); //int*rule (typemap 3)
void E(int x[4]); //int[4] rule (typemap 4)
void F(int x[1000]); // int [ANY] rule (typemap 5)

10.3.2 Typedef reductions

If no match is found using the rules in the previous section, SWIG applies a typedef reduction to the type and repeats the typer
search for the reduced type. To illustrate, suppose you had code like this:

%typemap(in) int {
... typemap 1
}

typedef int Integer;
void blah(Integer x);

10.3.1 Basic matching rules 134

SWIG-1.3 Documentation

To find the typemap for Integer x, SWIG will first search for the following typemaps:

Integer x
Integer

Finding no match, it then applies a reduction Integer —> int to the type and repeats the search.

int x
int ——>match: typemap 1

Even though two types might be the same via typedef, SWIG allows typemaps to be defined for each typename independently.
This allows for interesting customization possibilities based solely on the typename itself. For example, you could write code lik
this:

typedef double pdouble; // Positive double

/l typemap 1
%typemap(in) double {
... get a double ...
}
/I typemap 2
%typemap(in) pdouble {
... get a positive double ...

double sin(double x); /I typemap 1
pdouble sgrt(pdouble x); /I typemap 2

When reducing the type, only one typedef reduction is applied at a time. The search process continues to apply reductions unti
match is found or until no more reductions can be made.

For complicated types, the reduction process can generate a long list of patterns. Consider the following:

typedef int Integer;
typedef Integer Row4[4];
void foo(Row4 rows[10]);

To find a match for the Row4 rows[10] argument, SWIG would check the following patterns, stopping only when it found a
match:

Row4 rows[10]
Row4 [10]

Row4 rows[ANY]
Row4 [ANY]

Reduce Row4 ——> Integer[4]
Integer rows[10][4]

Integer [10][4]

Integer rows[ANY][ANY]
Integer [ANY][ANY]

Reduce Integer ——> int
int rows[10][4]

int [10][4]

int rows[ANY][ANY]

int [ANY][ANY]

For parametized types like templates, the situation is even more complicated. Suppose you had some declarations like this:

typedef int Integer;
typedef foo<Integer,Integer> fooii;
void blah(fooii *x);

10.3.2 Typedef reductions 135

SWIG-1.3 Documentation

In this case, the following typemap patterns are searched for the argument fooii *x:

fooii *x
fooii *

Reduce fooii ——> foo<Integer,Integer>
foo<Integer,Integer> *x
foo<Integer,Integer> *

Reduce Integer —> int
foo<int, Integer> *x
foo<int, Integer> *

Reduce Integer —> int
foo<int, int> *x
foo<int, int> *

Typemap reductions are always applied to the left-most type that appears. Only when no reductions can be made to the left-n
type are reductions made to other parts of the type. This behavior means that you could define a typemap for

foo<int,Integer>, but a typemap for foo<Integer,int> would never be matched. Admittedly, this is rather

esoteric——there's little practical reason to write a typemap quite like that. Of course, you could rely on this to confuse your
coworkers even more.

10.3.3 Default typemaps

Most SWIG language modules use typemaps to define the default behavior of the C primitive types. This is entirely
straightforward. For example, a set of typemaps are written like this:

%typemap(in) int “"convert an int";
%typemap(in) short "convert a short";
%typemap(in) float "convert a float";

Since typemap matching follows all typedef declarations, any sort of type that is mapped to a primitive type through typedef
will be picked up by one of these primitive typemaps.

The default behavior for pointers, arrays, references, and other kinds of types are handled by specifying rules for variations of t
reserved SWIGTYPE type. For example:

%typemap(in) SWIGTYPE * { ... default pointer handling ... }
%typemap(in) SWIGTYPE & { ... default reference handling ... }
%typemap(in) SWIGTYPE [] { ... default array handling ... }

%typemap(in) enum SWIGTYPE { ... default handling for enum values ... }
%typemap(in) SWIGTYPE (CLASS::*) {... default pointer member handling ... }

These rules match any kind of pointer, reference, or array——even when multiple levels of indirection or multiple array dimensiol
are used. Therefore, if you wanted to change SWIG's default handling for all types of pointers, you would simply redefine the rt
for SWIGTYPE *.

Finally, the following typemap rule is used to match against simple types that don't match any other rules:

%typemap(in) SWIGTYPE { ... handle an unknown type ... }

This typemap is important because it is the rule that gets triggered when call or return by value is used. For instance, if you ha\
declaration like this:

double dot_product(Vector a, Vector b);

The Vector type will usually just get matched against SWIGTYPE. The default implementation of SWIGTYPE is to convert the
value into pointers (as described in chapter 3).

10.3.3 Default typemaps 136

SWIG-1.3 Documentation

By redefining SWIGTYPE it may be possible to implement other behavior. For example, if you cleared all typemaps for
SWIGTYPE, SWIG simply won't wrap any unknown datatype (which might be useful for debugging). Alternatively, you might
modify SWIGTYPE to marshal objects into strings instead of converting them to pointers.

The best way to explore the default typemaps is to look at the ones already defined for a particular language module. Typemar
definitions are usually found in the SWIG library in a file such as python.swg, tcl8.swg, etc.

10.3.4 Mixed default typemaps

The default typemaps described above can be mixed with const and with each other. For example the SWIGTYPE * typemap i
for default pointer handling, but if a const SWIGTYPE * typemap is defined it will be used instead for constant pointers. Some
further examples follow:

%typemap(in) enum SWIGTYPE & { ... enum references ... }
%typemap(in) const enum SWIGTYPE & { ... const enum references ... }
%typemap(in) SWIGTYPE *& { ... pointers passed by reference ... }
%typemap(in) SWIGTYPE * const & { ... constant pointers passed by reference ... }
%typemap(in) SWIGTYPE[ANY][ANY] {... 2D arrays ... }

Note that the the typedef reduction described earlier is also used with these mixed default typemaps. For example, say the
following typemaps are defined and SWIG is looking for the best match for the enum shown below:

%typemap(in) const Hello & {...}
%typemap(in) const enum SWIGTYPE & { ...}
%typemap(in) enum SWIGTYPE & {...}
%typemap(in) SWIGTYPE & {..}
%typemap(in) SWIGTYPE {..}

enum Hello {};
const Hello &hi;

The typemap at the top of the list will be chosen, not because it is defined first, but because it is the closest match for the type
being wrapped. If any of the typemaps in the above list were not defined, then the next one on the list would have precedence.
other words the typemap chosen is the closest explicit match.

Compatibility note: The mixed default typemaps were introduced in SWIG-1.3.23, but were not used much in this version.
Expect to see them being used more and more within the various libraries in later versions of SWIG.

10.3.5 Multi-arguments typemaps

When multi—-argument typemaps are specified, they take precedence over any typemaps specified for a single type. For examy

%typemap(in) (char *buffer, int len) {
/I typemap 1
}

%typemap(in) char *buffer {
/I typemap 2
}

void foo(char *buffer, int len, int count); // (char *buffer, int len)
void bar(char *buffer, int blah); /I char *buffer

Multi—-argument typemaps are also more restrictive in the way that they are matched. Currently, the first argument follows the
matching rules described in the previous section, but all subsequent arguments must match exactly.

10.4 Code generation rules

This section describes rules by which typemap code is inserted into the generated wrapper code.

10.3.4 Mixed default typemaps 137

SWIG-1.3 Documentation

10.4.1 Scope

When a typemap is defined like this:

%typemap(in) int {
$1 = PyiInt_AsLong($input);
}

the typemap code is inserted into the wrapper function using a new block scope. In other words, the wrapper code will look like
this:

wrap_whatever() {
/I Typemap code

argl = PyInt_AsLong(obj1);
}

}

Because the typemap code is enclosed in its own block, it is legal to declare temporary variables for use during typemap
execution. For example:

%typemap(in) short {
long temp; /* Temporary value */
if (Tcl_GetLongFromObj(interp, $input, &temp) != TCL_OK) {
return TCL_ERROR;

}
$1 = (short) temp;
}

Of course, any variables that you declare inside a typemap are destroyed as soon as the typemap code has executed (they are
visible to other parts of the wrapper function or other typemaps that might use the same variable names).

Occasionally, typemap code will be specified using a few alternative forms. For example:
%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %f{
$1 = PyInt_AsLong($input);
%}

These two forms are mainly used for cosmetics——the specified code is not enclosed inside a block scope when it is emitted. Tt
sometimes results in a less complicated looking wrapper function.

10.4.2 Declaring new local variables

Sometimes it is useful to declare a new local variable that exists within the scope of the entire wrapper function. A good examp
of this might be an application in which you wanted to marshal strings. Suppose you had a C++ function like this

int foo(std::string *s);

and you wanted to pass a native string in the target language as an argument. For instance, in Perl, you wanted the function to
work like this:

$x = foo("Hello World");

To do this, you can't just pass a raw Perl string as the std::string * argument. Instead, you have to create a temporary
std::string object, copy the Perl string data into it, and then pass a pointer to the object. To do this, simply specify the
typemap with an extra parameter like this:

10.4.1 Scope 138

SWIG-1.3 Documentation

%typemap(in) std::string * (std::string temp) {
unsigned int len;

char *s;

s = SvPV($input,len); /* Extract string data */
temp.assign(s,len); /* Assign to temp */

$1 = &temp; /* Set argument to point to temp */

}
In this case, temp becomes a local variable in the scope of the entire wrapper function. For example:

wrap_foo() {
std::string temp; <——- Declaration of temp goes here

/* Typemap code */

temp.assign(s,len);

}

When you set temp to a value, it persists for the duration of the wrapper function and gets cleaned up automatically on exit.

It is perfectly safe to use more than one typemap involving local variables in the same declaration. For example, you could dec
a function as :

void foo(std::string *x, std::string *y, std::string *z);

This is safely handled because SWIG actually renames all local variable references by appending an argument number suffix.
Therefore, the generated code would actually look like this:

wrap_foo() {
int *argl; /* Actual arguments */
int *arg2;
int *arg3;
std::string templ; /* Locals declared in the typemap */
std::string temp2;
std::string temp3;

{
char *s;
unsigned int len;
templ.assign(s,len);
argl = *templ;
char *s;
unsigned int len;
temp2.assign(s,len);
arg2 = &temp2;
char *s;

unsigned int len;

temp3.assign(s,len);
arg3 = &temp3;

10.4.2 Declaring new local variables 139

SWIG-1.3 Documentation

Some typemaps do not recognize local variables (or they may simply not apply). At this time, only typemaps that apply to
argument conversion support this.

10.4.3 Special variables

Within all typemaps, the following special variables are expanded.

Variable Meaning
$n A C local variable corresponding to type n in the typemap pattern.
$argnum Argument number. Only available in typemaps related to argument conversion

$n_name Argument name

$n_type Real C datatype of type n.

$n_ltype Itype of type n

$n_mangle [Mangled form of type n. For example _p_Foo

Type descriptor structure for type n. For example SWIGTYPE_p_Foo. This is primarily used when interafting
with the run—time type checker (described later).

$*n_type Real C datatype of type n with one pointer removed.
$*n_Itype Itype of type n with one pointer removed.

$*n_mangle |Mangled form of type n with one pointer removed.
$*n_descriptdiype descriptor structure for type n with one pointer removed.
$&n_type Real C datatype of type n with one pointer added.

$&n_ltype [ltype of type n with one pointer added.

$&n_mangle [Mangled form of type n with one pointer added.
$&n_descriptpFype descriptor structure for type n with one pointer added.
$n_basetype |Base typename with all pointers and qualifiers stripped.

$n_descriptor

Within the table, $n refers to a specific type within the typemap specification. For example, if you write this
%typemap(in) int *INPUT {
}
then $1 refers to int *INPUT. If you have a typemap like this,
%typemap(in) (int argc, char *argv[]) {
}...

then $1 refers to int argc and $2 refers to char *argv([].

Substitutions related to types and names always fill in values from the actual code that was matched. This is useful when a
typemap might match multiple C datatype. For example:

%typemap(in) int, short, long {
$1 = ($1_ltype) PyInt_AsLong(Sinput);
}

In this case, $1_ltype is replaced with the datatype that is actually matched.

When typemap code is emitted, the C/C++ datatype of the special variables $1 and $2 is always an "ltype." An "ltype" is simply
a type that can legally appear on the left—hand side of a C assignment operation. Here are a few examples of types and Itypes:

type Itype

10.4.3 Special variables 140

SWIG-1.3 Documentation

int int

const int int
conts int * int *
int [4] int *

int [4][5] int (*)[5]

In most cases a ltype is simply the C datatype with qualifiers stripped off. In addition, arrays are converted into pointers.

Variables such as $&1 type and $*1_type are used to safely modify the type by removing or adding pointers. Although not
needed in most typemaps, these substitutions are sometimes needed to properly work with typemaps that convert values betw
pointers and values.

If necessary, type related substitutions can also be used when declaring locals. For example:
%typemap(in) int * ($*1_type temp) {
temp = PyInt_AsLong($input);
$1 = &temp;
}

There is one word of caution about declaring local variables in this manner. If you declare a local variable using a type
substitution such as $1_Itype temp, it won't work like you expect for arrays and certain kinds of pointers. For example, if you
wrote this,

%typemap(in) int [10][20] {
$1_Itype temp;
}
then the declaration of temp will be expanded as

int (*)[20] temp;

This is illegal C syntax and won't compile. There is currently no straightforward way to work around this problem in SWIG due t
the way that typemap code is expanded and processed. However, one possible workaround is to simply pick an alternative typ
such as void * and use casts to get the correct type when needed. For example:

%typemap(in) int [10][20] {
void *temp;

.(.(.$1_Itype) temp)[i][j] = x; /* set a value */
}
Another approach, which only works for arrays is to use the $1_basetype substitution. For example:

%typemap(in) int [10][20] {
$1_basetype temp[10][20];

iémp[i][j] =x; [*setavalue*/
-
10.5 Common typemap methods
The set of typemaps recognized by a language module may vary. However, the following typemap methods are nearly univers:
10.5.1 "in" typemap
The "in" typemap is used to convert function arguments from the target language to C. For example:
%typemap(in) int {

10.5 Common typemap methods 141

SWIG-1.3 Documentation

$1 = PyInt_AsLong($input);
}

The following special variables are available:

$input - Input object holding value to be converted.
$symname - Name of function/method being wrapped

This is probably the most commonly redefined typemap because it can be used to implement customized conversions.
In addition, the "in" typemap allows the number of converted arguments to be specified. For example:

/I lgnored argument.

%typemap(in, numinputs=0) int *out (int temp) {

$1 = &temp;
}

At this time, only zero or one arguments may be converted.
Compatibility note: Specifying numinputs=0 is the same as the old "ignore" typemap.
10.5.2 "typecheck" typemap

The "typecheck" typemap is used to support overloaded functions and methods. It merely checks an argument to see whether
not it matches a specific type. For example:

%typemap(typecheck,precedence=SWIG_TYPECHECK_INTEGER) int {
$1 = PyInt_Check($input) ? 1 : 0;
}

For typechecking, the $1 variable is always a simple integer that is set to 1 or 0 depending on whether or not the input argumel
the correct type.

If you define new "in" typemaps and your program uses overloaded methods, you should also define a collection of "typecheck
typemaps. More details about this follow in a later section on "Typemaps and Overloading."

10.5.3 "out" typemap

The "out" typemap is used to convert function/method return values from C into the target language. For example:
%typemap(out) int {
$result = PyInt_FromLong($1);
}
The following special variables are available.

$result - Result object returned to target language.
$symname - Name of function/method being wrapped

10.5.4 "arginit" typemap

The "arginit" typemap is used to set the initial value of a function argument—-before any conversion has occurred. This is not
normally necessary, but might be useful in highly specialized applications. For example:

/I Set argument to NULL before any conversion occurs
%typemap(arginit) int *data {

$1 = NULL;
}

10.5.1 "in" typemap 142

SWIG-1.3 Documentation

10.5.5 "default” typemap

The "default” typemap is used to turn an argument into a default argument. For example:

%typemap(default) int flags {
$1 = DEFAULT_FLAGS;

}

int foo(int x, int y, int flags);

The primary use of this typemap is to either change the wrapping of default arguments or specify a default argument in a langu
where they aren't supported (like C). Target languages that do not support optional arguments, such as Java and C#, effecivel
ignore the value specified by this typemap as all arguments must be given.

Once a default typemap has been applied to an argument, all arguments that follow must have default values. See the
Default/optional arguments section for further information on default argument wrapping.

10.5.6 "check" typemap

The "check" typemap is used to supply value checking code during argument conversion. The typemap is applied after argume
have been converted. For example:

%typemap(check) int positive {
if ($1 <=0) {
SWIG_exception(SWIG_ValueError,"Expected positive value.");

}
}

10.5.7 "argout" typemap

The "argout" typemap is used to return values from arguments. This is most commonly used to write wrappers for C/C++
functions that need to return multiple values. The "argout" typemap is almost always combined with an "in" typemap——-—possibl
to ignore the input value. For example:

/* Set the input argument to point to a temporary variable */
%typemap(in, numinputs=0) int *out (int temp) {

$1 = &temp;
}

%typemap(argout) int *out {
/I Append output value $1 to $result

}

The following special variables are available.

$result — Result object returned to target language.
$input - The original input object passed.
$symname - Name of function/method being wrapped

The code supplied to the "argout" typemap is always placed after the "out" typemap. If multiple return values are used, the extr
return values are often appended to return value of the function.

See the typemaps.i library for examples.
10.5.8 "freearg" typemap

The "freearg" typemap is used to cleanup argument data. It is only used when an argument might have allocated resources the
need to be cleaned up when the wrapper function exits. The "freearg" typemap usually cleans up argument resources allocatec

10.5.5 "default" typemap 143

SWIG-1.3 Documentation

the "in" typemap. For example:

/I Get a list of integers
%typemap(in) int *items {
int nitems = Length($input);
$1 = (int *) malloc(sizeof(int)*nitems);

}
/I Free the list

%typemap(freearg) int *items {
free($1);
}

The "freearg" typemap inserted at the end of the wrapper function, just before control is returned back to the target language. T
code is also placed into a special variable $cleanup that may be used in other typemaps whenever a wrapper function needs tc
abort prematurely.

10.5.9 "newfree" typemap

The "newfree" typemap is used in conjunction with the %newobject directive and is used to deallocate memory used by the
return result of a function. For example:

%typemap(newfree) string * {
delete $1;

}
%typemap(out) string * {

$result = PyString_FromString($1->c_str());
}

%newobiject foo;
gt.ring *foo();
10.5.10 "memberin" typemap

The "memberin" typemap is used to copy data from an already converted input value into a structure member. It is typically use
to handle array members and other special cases. For example:

%typemap(memberin) int [4] {
memmove($1, $input, 4*sizeof(int));

}

It is rarely necessary to write "'memberin” typemaps———SWIG already provides a default implementation for arrays, strings, anc
other objects.

10.5.11 "varin" typemap

The "varin" typemap is used to convert objects in the target language to C for the purposes of assigning to a C/C++ global
variable. This is implementation specific.

10.5.12 "varout" typemap

The "varout" typemap is used to convert a C/C++ object to an object in the target language when reading a C/C++ global varial
This is implementation specific.

10.5.13 "throws" typemap

The "throws" typemap is only used when SWIG parses a C++ method with an exception specification or has the %catches
feature attached to the method. It provides a default mechanism for handling C++ methods that have declared the exceptions i

10.5.8 "freearg" typemap 144

SWIG-1.3 Documentation

will throw. The purpose of this typemap is to convert a C++ exception into an error or exception in the target language. It is
slightly different to the other typemaps as it is based around the exception type rather than the type of a parameter or variable.
example:

%typemap(throws) const char * %{
PyErr_SetString(PyExc_RuntimeError, $1);
SWIG_fail;

%0}

void bar() throw (const char *);

As can be seen from the generated code below, SWIG generates an exception handler with the catch block comprising the
"throws" typemap content.

try {
bar();

}

catch(char const *_e) {
PyErr_SetString(PyExc_RuntimeError, _e);
SWIG _fail;

Note that if your methods do not have an exception specification yet they do throw exceptions, SWIG cannot know how to deal
with them. For a neat way to handle these, see the Exception handling with %exception section.

10.6 Some typemap examples

This section contains a few examples. Consult language module documentation for more examples.

10.6.1 Typemaps for arrays

A common use of typemaps is to provide support for C arrays appearing both as arguments to functions and as structure mem

For example, suppose you had a function like this:

void set_vector(int type, float value[4]);

If you wanted to handle float value[4] as a list of floats, you might write a typemap similar to this:

%typemap(in) float value[4] (float temp[4]) {
inti;
if ('PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;
}
if (PySequence_Length($input) = 4) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected 4 elements");
return NULL;
}
for (i=0;i<4;i++){
PyObiject *o = PySequence_Getltem($input,i);
if (PyNumber_Check(0)) {
templi] = (float) PyFloat_AsDouble(0);
}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
return NULL;
}

}
$1 = temp;

10.5.13 "throws" typemap 145

SWIG-1.3 Documentation
}

In this example, the variable temp allocates a small array on the C stack. The typemap then populates this array and passes it
the underlying C function.

When used from Python, the typemap allows the following type of function call:
>>> set_vector(type, [1, 2.5, 5,20])
If you wanted to generalize the typemap to apply to arrays of all dimensions you might write this:

%typemap(in) float value[ANY] (float temp[$1_dimOQ]) {
inti;
if ('PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;
}
if (PySequence_Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
return NULL;
}
for (i=0;i<$1_dimO; i++) {
PyObiject *o = PySequence_Getltem($input,i);
if (PyNumber_Check(0)) {
templi] = (float) PyFloat_AsDouble(0);
}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
return NULL;
}
}
$1 = temp;
}

In this example, the special variable $1_dim0 is expanded with the actual array dimensions. Multidimensional arrays can be
matched in a similar manner. For example:

%typemap(in) float matrix]ANY][ANY] (float temp[$1_dimO][$1_dim1]) {
... convert a 2d array ...

}

For large arrays, it may be impractical to allocate storage on the stack using a temporary variable as shown. To work with heay
allocated data, the following technique can be used.

%typemap(in) float value[ANY] {

inti;

if ("PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;

}

if (PySequence_Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
return NULL;

$1 = (float *) malloc($1_dimO*sizeof(float));
for (i=0;i<$1_dimoO; i++) {

PyObiject *o = PySequence_Getltem($input,i);

if (PyNumber_Check(0)) {
$1[i] = (float) PyFloat_AsDouble(o);

}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
free($1);
return NULL;

}

}

10.6.1 Typemaps for arrays 146

SWIG-1.3 Documentation

}
%typemap(freearg) float value[ANY] {

if ($1) free($1);
}

In this case, an array is allocated using malloc. The freearg typemap is then used to release the argument after the function
has been called.

Another common use of array typemaps is to provide support for array structure members. Due to subtle differences between
pointers and arrays in C, you can't just "assign" to a array structure member. Instead, you have to explicitly copy elements into
array. For example, suppose you had a structure like this:

struct SomeObject {
float value[4];

h
When SWIG runs, it won't produce any code to set the vec member. You may even get a warning message like this:

swig —python example.i
Generating wrappers for Python
example.i:10. Warning. Array member value will be read-only.

These warning messages indicate that SWIG does not know how you want to set the vec field.

To fix this, you can supply a special "memberin" typemap like this:

%typemap(memberin) float [ANY] {
inti;
for (i=0;i<$1_dimo; i++) {
$1[i] = $input[i];

}

The memberin typemap is used to set a structure member from data that has already been converted from the target language
In this case, $input is the local variable in which converted input data is stored. This typemap then copies this data into the
structure.

When combined with the earlier typemaps for arrays, the combination of the "in" and "memberin" typemap allows the following
usage:

>>> s = SomeObject()
>>>s.x=[1, 2.5, 5, 10]

Related to structure member input, it may be desirable to return structure members as a new kind of object. For example, in thi
example, you will get very odd program behavior where the structure member can be set nicely, but reading the member simpl
returns a pointer:

>>> s = SomeObiject()
>>>s.x=[1, 25,5, 10]
>>> print s.xX
_1008fea8_p_float
>>>

To fix this, you can write an "out" typemap. For example:

%typemap(out) float [ANY] {
inti;
$result = PyList_New($1_dim0);
for (i=0;i<$1_dimo; i++) {
PyObiject *o = PyFloat_FromDouble((double) $1[i]);

10.6.1 Typemaps for arrays 147

SWIG-1.3 Documentation

PyList_Setltem($result,i,0);
}
}

Now, you will find that member access is quite nice:

>>> s = SomeObject()
>>>s.x =1, 2.5, 5, 10]
>>> print .X
[1,25,5,10]

Compatibility Note: SWIGL1.1 used to provide a special "memberout” typemap. However, it was mostly useless and has since
been eliminated. To return structure members, simply use the "out" typemap.

10.6.2 Implementing constraints with typemaps

One particularly interesting application of typemaps is the implementation of argument constraints. This can be done with the
"check" typemap. When used, this allows you to provide code for checking the values of function arguments. For example :

%module math

%typemap(check) double posdouble {
if ($1<0){
croak("Expecting a positive number");
}

double sqgrt(double posdouble);

This provides a sanity check to your wrapper function. If a negative number is passed to this function, a Perl exception will be
raised and your program terminated with an error message.

This kind of checking can be particularly useful when working with pointers. For example :

%typemap(check) Vector * {
if ($1==0) {
PyErr_SetString(PyExc_TypeError,"NULL Pointer not allowed");
return NULL;

}
}

will prevent any function involving a Vector * from accepting a NULL pointer. As a result, SWIG can often prevent a
potential segmentation faults or other run—time problems by raising an exception rather than blindly passing values to the
underlying C/C++ program.

Note: A more advanced constraint checking system is in development. Stay tuned.

10.7 Typemaps for multiple languages

The code within typemaps is usually language dependent, however, many languages support the same typemaps. In order to
distinguish typemaps across different languages, the preprocessor should be used. For example, the "in" typemap for Perl and
Ruby could be written as:

#if defined(SWIGPERL)

%typemap(in) int "$1 = NUM2INT($input);"
#elif defined(SWIGRUBY)

%typemap(in) int "$1 = ($1_Itype) SvIV($input);"
#else

10.6.2 Implementing constraints with typemaps 148

SWIG-1.3 Documentation

#warning no "in" typemap defined
#endif

The full set of language specific macros is defined in_ the Conditional Compilation section. The example above also shows a
common approach of issuing a warning for an as yet unsupported language.

Compatibility note: In SWIG-1.1 different languages could be distinguished with the language name being put within the
%typemap directive, for example,
%typemap(ruby,in) int "$1 = NUM2INT($input);".

10.8 Multi-argument typemaps

So far, the typemaps presented have focused on the problem of dealing with single values. For example, converting a single in
object to a single argument in a function call. However, certain conversion problems are difficult to handle in this manner. As ar
example, consider the example at the very beginning of this chapter:

int foo(int argc, char *argv[]);
Suppose that you wanted to wrap this function so that it accepted a single list of strings like this:

>>> foo(["ale","lager","stout"])

To do this, you not only need to map a list of strings to char *argv([], but the value of int argc is implicitly determined by
the length of the list. Using only simple typemaps, this type of conversion is possible, but extremely painful. Therefore, SWIGL1.
introduces the notion of multi—-argument typemaps.

A multi-argument typemap is a conversion rule that specifies how to convert a single object in the target language to set of
consecutive function arguments in C/C++. For example, the following multi-argument maps perform the conversion described
the above example:

%typemap(in) (int argc, char *argv[]) {
inti;
if (\PyList_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting a list");
return NULL;
}
$1 = PyList_Size($input);
$2 = (char **) malloc(($1+1)*sizeof(char *));
for (i=0;i<$1;i++){
PyObject *s = PyList_Getltem($input,i);
if (PyString_Check(s)) {
free($2);
PyErr_SetString(PyExc_ValueError, "List items must be strings");
return NULL;
}
$2[i] = PyString_AsString(s);

}
$2[i] = 0;
}

%typemap(freearg) (int argc, char *argv[]) {
if ($2) free($2);
}

A multi—argument map is always specified by surrounding the arguments with parentheses as shown. For example:
%typemap(in) (int argc, char *argv[]) { ... }

Within the typemap code, the variables $1, $2, and so forth refer to each type in the map. All of the usual substitutions
apply——just use the appropriate $1 or $2 prefix on the variable name (e.g., $2_type, $1_ltype, etc.)

10.7 Typemaps for multiple languages 149

SWIG-1.3 Documentation

Multi-argument typemaps always have precedence over simple typemaps and SWIG always performs longest—-match searchir
Therefore, you will get the following behavior:

%typemap(in) int argc {..typemap1...}
%typemap(in) (int argc, char *argv[]) {..typemap 2 ... }
%typemap(in) (int argc, char *argv[], char *env[]) { ... typemap 3 ... }
int foo(int argc, char *argv[]); /I Uses typemap 2

int bar(int argc, int x); /I Uses typemap 1

int spam(int argc, char *argv[], char *env[]); // Uses typemap 3

It should be stressed that multi-argument typemaps can appear anywhere in a function declaration and can appear more than
For example, you could write this:

%typemap(in) (int scount, char *swords[]) { ... }
%typemap(in) (int wcount, char *words[]) { ... }

void search_words(int scount, char *swords[], int wcount, char *words[], int maxcount);

Other directives such as %apply and %clear also work with multi—argument maps. For example:

%apply (int argc, char *argv[]) {
(int scount, char *swords[]),
(int weount, char *words[])

g

%clear (int scount, char *swordsl[]), (int wcount, char *words[]);

Although multi-argument typemaps may seem like an exotic, little used feature, there are several situations where they make
sense. First, suppose you wanted to wrap functions similar to the low-level read() and write() system calls. For example:

typedef unsigned int size_t;

int read(int fd, void *rbuffer, size_t len);
int write(int fd, void *wbuffer, size_t len);

As is, the only way to use the functions would be to allocate memory and pass some kind of pointer as the second argument—-
process that might require the use of a helper function. However, using multi-argument maps, the functions can be transforme
into something more natural. For example, you might write typemaps like this:

/I typemap for an outgoing buffer
%typemap(in) (void *wbuffer, size_t len) {
if (\PyString_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting a string");
return NULL;
}
$1 = (void *) PyString_AsString($input);
$2 = PyString_Size($input);
}

/l typemap for an incoming buffer
%typemap(in) (void *rbuffer, size_t len) {
if ('PyInt_Check(S$input)) {
PyErr_SetString(PyExc_ValueError, "Expecting an integer");
return NULL;

}
$2 = PyInt_AsLong($input);
if ($2 < 0) {

PyErr_SetString(PyExc_ValueError, "Positive integer expected");
return NULL;

}
$1 = (void *) malloc($2);
}

10.8 Multi-argument typemaps 150

SWIG-1.3 Documentation

/I Return the buffer. Discarding any previous return result
%typemap(argout) (void *rbuffer, size_t len) {
Py _XDECREF($result); /* Blow away any previous result */
if (result<0){ /* Check for I/O error */
free($1);
PyErr_SetFromErrno(PyExc_IOError);
return NULL;

$result = PyString_FromStringAndSize($1,result);

free($1);
}

(note: In the above example, $result and result are two different variables. result is the real C datatype that was returned
by the function. $result is the scripting language object being returned to the interpreter.).

Now, in a script, you can write code that simply passes buffers as strings like this:

>>> f = example.open("Makefile")
>>> example.read(f,40)

"TOP =../.\nSWIG = $(TOP)/.!
>>> example.read(f,40)

"Iswig\nSRCS = example.c\nTARGET
>>> example.close(f)

0

>>> g = example.open(“foo”, example.O_WRONLY | example.O_CREAT, 0644)
>>> example.write(g,"Hello world\n")

12

>>> example.write(g,"This is a test\n")

15

>>> example.close(g)

0

>>>

A number of multi-argument typemap problems also arise in libraries that perform matrix—calculations——especially if they are
mapped onto low-level Fortran or C code. For example, you might have a function like this:

int is_symmetric(double *mat, int rows, int columns);

In this case, you might want to pass some kind of higher—level object as an matrix. To do this, you could write a multi-argumer
typemap like this:

%typemap(in) (double *mat, int rows, int columns) {
MatrixObject *a;
a = GetMatrixFromObject($input); /* Get matrix somehow */

/* Get matrix properties */
$1 = GetPointer(a);
$2 = GetRows(a);
$3 = GetColumns(a);
}

This kind of technique can be used to hook into scripting—language matrix packages such as Numeric Python. However, it shol
also be stressed that some care is in order. For example, when crossing languages you may need to worry about issues such
row—-major vs. column—major ordering (and perform conversions if needed).

10.9 The run—time type checker

Most scripting languages need type information at run—time. This type information can include how to construct types, how to
garbage collect types, and the inheritance relationships between types. If the language interface does not provide its own type
information storage, the generated SWIG code needs to provide it.

10.9 The run—-time type checker 151

SWIG-1.3 Documentation

Requirements for the type system:

« Store inheritance and type equivalence information and be able to correctly re—create the type pointer.
 Share type information between modules.

* Modules can be loaded in any order, irregardless of actual type dependency.

« Avoid the use of dynamically allocated memory, and library/system calls in general.

* Provide a reasonably fast implementation, minimizing the lookup time for all language modules.

» Custom, language specific information can be attached to types.

* Modules can be unloaded from the type system.

10.9.1 Implementation

The run—-time type checker is used by many, but not all, of SWIG's supported target languages. The run-time type checker
features are not required and are thus not used for strongly typed languages such as Java and C#. The scripting and scheme |
languages rely on it and it forms a critical part of SWIG's operation for these languages.

When pointers, arrays, and objects are wrapped by SWIG, they are normally converted into typed pointer objects. For example
instance of Foo * might be a string encoded like this:

_108e688 p_Foo

At a basic level, the type checker simply restores some type—safety to extension modules. However, the type checker is also
responsible for making sure that wrapped C++ classes are handled correctly-——especially when inheritance is used. This is
especially important when an extension module makes use of multiple inheritance. For example:

class Foo {
int x;

k

class Bar {
inty;
h

class FooBar : public Foo, public Bar {
int z;

g

When the class FooBar is organized in memory, it contains the contents of the classes Foo and Bar as well as its own data
members. For example:

FooBar ——> | ~——————————— | <--Foo
| intx |
|- | <--Bar
| inty |
Eaa— !
| intz |

Because of the way that base class data is stacked together, the casting of a Foobar * to either of the base classes may chang
the actual value of the pointer. This means that it is generally not safe to represent pointers using a simple integer or a bare vo
*———type tags are needed to implement correct handling of pointer values (and to make adjustments when needed).

In the wrapper code generated for each language, pointers are handled through the use of special type descriptors and conver
functions. For example, if you look at the wrapper code for Python, you will see code like this:

if ((SWIG_ConvertPtr(objo,(void **) &argl, SWIGTYPE_p_Fo0,1)) == —1) return NULL,;

In this code, SWIGTYPE_p_Foo is the type descriptor that describes Foo *. The type descriptor is actually a pointer to a
structure that contains information about the type name to use in the target language, a list of equivalent typenames (via typed

10.9.1 Implementation 152

SWIG-1.3 Documentation

inheritance), and pointer value handling information (if applicable). The SWIG_ConvertPtr() function is simply a utility

function that takes a pointer object in the target language and a type—descriptor objects and uses this information to generate &
C++ pointer. However, the exact name and calling conventions of the conversion function depends on the target language (see€
language specific chapters for details).

The actual type code is in swigrun.swg, and gets inserted near the top of the generated swig wrapper file. The phrase "a type >
that can cast into a type Y" means that given a type X, it can be converted into a type Y. In other words, X is a derived class of
or X is a typedef of Y. The structure to store type information looks like this:

[* Structure to store information on one type */

typedef struct swig_type_info {
const char *name; /* mangled name of this type */
const char *str; /* human readable name for this type */
swig_dycast_func dcast; /* dynamic cast function down a hierarchy */
struct swig_cast_info *cast; /* Linked list of types that can cast into this type */
void *clientdata; [* Language specific type data */

} swig_type_info;

[* Structure to store a type and conversion function used for casting */
typedef struct swig_cast_info {
swig_type_info *type; * pointer to type that is equivalent to this type */
swig_converter_func converter; /* function to cast the void pointers */
struct swig_cast_info *next; /* pointer to next cast in linked list */
struct swig_cast_info *prev; /* pointer to the previous cast */
} swig_cast_info;

Each swig_type_info stores a linked list of types that it is equivalent to. Each entry in this doubly linked list stores a pointer
back to another swig_type_info structure, along with a pointer to a conversion function. This conversion function is used to solv
the above problem of the FooBar class, correctly returning a pointer to the type we want.

The basic problem we need to solve is verifying and building arguments passed to functions. So going back to the
SWIG_ConvertPtr() function example from above, we are expecting a Foo * and need to check if obj0 is in fact a Foo

*, From before, SWIGTYPE_p_Foo is just a pointer to the swig_type_info structure describing Foo *. So we loop though

the linked list of swig_cast_info structures attached to SWIGTYPE_p_Foo. If we see that the type of obj0 is in the linked

list, we pass the object through the associated conversion function and then return a positive. If we reach the end of the linked
without a match, then objO can not be converted to a Foo * and an error is generated.

Another issue needing to be addressed is sharing type information between multiple modules. More explicitly, we need to have
ONE swig_type_info for each type. If two modules both use the type, the second module loaded must lookup and use the
swig_type_info structure from the module already loaded. Because no dynamic memory is used and the circular dependencies
the casting information, loading the type information is somewhat tricky, and not explained here. A complete description is in th
Lib/swiginit.swg file (and near the top of any generated file).

Each module has one swig_module_info structure which looks like this:

/* Structure used to store module information

* Each module generates one structure like this, and the runtime collects

* all of these structures and stores them in a circularly linked list.*/

typedef struct swig_module_info {
swig_type_info **types; * Array of pointers to swig_type_info structs in this module */
int size; /* Number of types in this module */
struct swig_module_info *next; /* Pointer to next element in circularly linked list */
swig_type_info **type_initial; /* Array of initially generated type structures */
swig_cast_info **cast_initial; /* Array of initially generated casting structures */
void *clientdata; /* Language specific module data */

} swig_module_info;

Each module stores an array of pointers to swig_type_info structures and the number of types in this module. So when a
second module is loaded, it finds the swig_module_info structure for the first module and searches the array of types. If any
of its own types are in the first module and have already been loaded, it uses those swig_type_info structures rather than
creating new ones. These swig_module_info structures are chained together in a circularly linked list.

10.9.1 Implementation 153

SWIG-1.3 Documentation
10.9.2 Usage

This section covers how to use these functions from typemaps. To learn how to call these functions from external files (not the
generated _wrap.c file), see the External access to the run—time system section.

When pointers are converted in a typemap, the typemap code often looks similar to this:

%typemap(in) Foo * {
if (SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == —1) return NULL;
}

The most critical part is the typemap is the use of the $1_descriptor special variable. When placed in a typemap, this is
expanded into the SWIGTYPE_* type descriptor object above. As a general rule, you should always use $1_descriptor
instead of trying to hard—code the type descriptor name directly.

There is another reason why you should always use the $1_descriptor variable. When this special variable is expanded,

SWIG marks the corresponding type as "in use." When type-tables and type information is emitted in the wrapper file, descript
information is only generated for those datatypes that were actually used in the interface. This greatly reduces the size of the ty
tables and improves efficiency.

Occassionally, you might need to write a typemap that needs to convert pointers of other types. To handle this, a special macrc
substition $descriptor(type) can be used to generate the SWIG type descriptor name for any C datatype. For example:

%typemap(in) Foo * {
if (SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == -1) {
Bar *temp;
if (SWIG_ConvertPtr($input, (void **) &temp, $descriptor(Bar *)) == -1) {
return NULL;
}

$1 = (Foo *) temp;
}
}

The primary use of $descriptor(type) is when writing typemaps for container objects and other complex data structures.
There are some restrictions on the argument———namely it must be a fully defined C datatype. It can not be any of the special
typemap variables.

In certain cases, SWIG may not generate type—descriptors like you expect. For example, if you are converting pointers in some
non-standard way or working with an unusual combination of interface files and modules, you may find that SWIG omits
information for a specific type descriptor. To fix this, you may need to use the %types directive. For example:

%types(int *, short *, long *, float *, double *);

When %types is used, SWIG generates type—descriptor information even if those datatypes never appear elsewhere in the
interface file.

Further details about the run—time type checking can be found in the documentation for individual language modules. Reading
source code may also help. The file Lib/swigrun.swg in the SWIG library contains all of the source code for type—checking.
This code is also included in every generated wrapped file so you probably just look at the output of SWIG to get a better sens
for how types are managed.

10.10 Typemaps and overloading

In many target languages, SWIG fully supports C++ overloaded methods and functions. For example, if you have a collection c
functions like this:

int foo(int x);
int foo(double x);

10.9.2 Usage 154

SWIG-1.3 Documentation

int foo(char *s, int y);
You can access the functions in a normal way from the scripting interpreter:

Python

foo(3) # foo(int)

foo(3.5) # foo(double)
foo("hello",5) # foo(char *, int)

Tcl
foo 3 # foo(int)
foo 3.5 # foo(double)

foo hello5 # foo(char *, int)

To implement overloading, SWIG generates a separate wrapper function for each overloaded method. For example, the above
functions would produce something roughly like this:

/I wrapper pseudocode
_wrap_foo_O(argc, args[]) { I/ foo(int)
int argl;
int result;

argl = Frominteger(args[0]);
result = foo(argl);
return Tolnteger(result);

}

_wrap_foo_1(argc, args[]) { // foo(double)
double arg1;
int result;

argl = FromDouble(args[0]);
result = foo(argl);
return Tolnteger(result);

}

_wrap_foo_2(argc, args[]) { [l foo(char *, int)
char *arg1,;
int arg2;
int result;

argl = FromString(args|0]);
arg2 = FromlInteger(args[1]);
result = foo(argl,arg2);
return Tolnteger(result);

Next, a dynamic dispatch function is generated:

_wrap_foo(argc, args[]) {
if (argc == 1) {
if (IsInteger(args[0])) {
return _wrap_foo_0(argc,args);

}
if (IsDouble(args[0])) {
return _wrap_foo_1(argc,args);

}

}
if (argc == 2) {
if (IsString(args[0]) && IsInteger(args[1])) {
return _wrap_foo_2(argc,args);
}
}

error("No matching function\n");

}
10.10 Typemaps and overloading 155

SWIG-1.3 Documentation

The purpose of the dynamic dispatch function is to select the appropriate C++ function based on argument types——-a task tha
must be performed at runtime in most of SWIG's target languages.

The generation of the dynamic dispatch function is a relatively tricky affair. Not only must input typemaps be taken into account
(these typemaps can radically change the types of arguments accepted), but overloaded methods must also be sorted and che
in a very specific order to resolve potential ambiguity. A high—level overview of this ranking process is found in the "SWIG and

C++" chapter. What isn't mentioned in that chapter is the mechanism by which it is implemented——-as a collection of typemap:

To support dynamic dispatch, SWIG first defines a general purpose type hierarchy as follows:

Symbolic Name Precedence Value
SWIG_TYPECHECK_POINTER 0
SWIG_TYPECHECK_VOIDPTR 10
SWIG_TYPECHECK_BOOL 15
SWIG_TYPECHECK_UINTS8 20
SWIG_TYPECHECK_INT8 25
SWIG_TYPECHECK_UINT16 30
SWIG_TYPECHECK_INT16 35
SWIG_TYPECHECK_UINT32 40
SWIG_TYPECHECK_INT32 45
SWIG_TYPECHECK_UINT64 50
SWIG_TYPECHECK_INT64 55
SWIG_TYPECHECK_UINT128 60
SWIG_TYPECHECK_INT128 65
SWIG_TYPECHECK_INTEGER 70
SWIG_TYPECHECK_FLOAT 80
SWIG_TYPECHECK_DOUBLE 90
SWIG_TYPECHECK_COMPLEX 100
SWIG_TYPECHECK_UNICHAR 110
SWIG_TYPECHECK_UNISTRING 120
SWIG_TYPECHECK_CHAR 130
SWIG_TYPECHECK_STRING 140

SWIG_TYPECHECK_BOOL_ARRAY 1015
SWIG_TYPECHECK_INT8_ARRAY 1025
SWIG_TYPECHECK_INT16_ARRAY 1035
SWIG_TYPECHECK_INT32_ARRAY 1045
SWIG_TYPECHECK_INT64_ARRAY 1055
SWIG_TYPECHECK_INT128_ARRAY 1065
SWIG_TYPECHECK_FLOAT_ARRAY 1080
SWIG_TYPECHECK_DOUBLE_ARRAY 1090
SWIG_TYPECHECK_CHAR_ARRAY 1130
SWIG_TYPECHECK_STRING_ARRAY 1140

(These precedence levels are defined in swig.swg, a library file that's included by all target language modules.)

In this table, the precedence-level determines the order in which types are going to be checked. Low values are always check
before higher values. For example, integers are checked before floats, single values are checked before arrays, and so forth.

Using the above table as a guide, each target language defines a collection of "typecheck” typemaps. The follow excerpt from f
Python module illustrates this:

/* Python type checking rules */
/* Note: %typecheck(X) is a macro for %typemap(typecheck,precedence=X) */

%typecheck(SWIG_TYPECHECK_INTEGER)
int, short, long,
unsigned int, unsigned short, unsigned long,
signed char, unsigned char,
long long, unsigned long long,
const int &, const short &, const long &,
const unsigned int &, const unsigned short &, const unsigned long &,
const long long &, const unsigned long long &,
enum SWIGTYPE,

10.10 Typemaps and overloading 156

SWIG-1.3 Documentation

bool, const bool &
{
$1 = (PyInt_Check($input) || PyLong_Check($input)) ? 1 : O;
}

%typecheck(SWIG_TYPECHECK_DOUBLE)
float, double,
const float &, const double &

$1 = (PyFloat_Check($input) || PyInt_Check($input) || PyLong_Check($input)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_CHAR) char {
$1 = (PyString_Check($input) && (PyString_Size($input) == 1)) ? 1: 0;
}

%typecheck(SWIG_TYPECHECK_STRING) char * {
$1 = PyString_Check($input) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [| {
void *ptr;
if (SWIG_ConvertPtr($input, (void **) &ptr, $1_descriptor, 0) == -1) {
$1=0;
PyErr_Clear();
}else {
$1=1;
}
}

%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE {
void *ptr;
if (SWIG_ConvertPtr($input, (void **) &ptr, $&1_descriptor, 0) == -1) {
$1=0;
PyErr_Clear();
}else {
$1=1,
}
}

%typecheck(SWIG_TYPECHECK_VOIDPTR) void * {
void *ptr;
if (SWIG_ConvertPtr($input, (void **) &ptr, 0, 0) == -1) {
$1=0;
PyErr_Clear();
}else {
$1=1,
}
}

%typecheck(SWIG_TYPECHECK_POINTER) PyObject *

$1 = ($input = 0);
}

It might take a bit of contemplation, but this code has merely organized all of the basic C++ types, provided some simple
type—checking code, and assigned each type a precedence value.

Finally, to generate the dynamic dispatch function, SWIG uses the following algorithm:
» Overloaded methods are first sorted by the number of required arguments.

» Methods with the same number of arguments are then sorted by precedence values of argument types.
» Typecheck typemaps are then emitted to produce a dispatch function that checks arguments in the correct order.

10.10 Typemaps and overloading 157

SWIG-1.3 Documentation

If you haven't written any typemaps of your own, it is unnecessary to worry about the typechecking rules. However, if you have
written new input typemaps, you might have to supply a typechecking rule as well. An easy way to do this is to simply copy one
of the existing typechecking rules. Here is an example,

/I Typemap for a C++ string
%typemap(in) std::string {
if (PyString_Check($input)) {
$1 = std::string(PyString_AsString($input));
}else {
SWIG_exception(SWIG_TypeError, "string expected");

}

}
/I Copy the typecheck code for "char *".

%typemap(typecheck) std::string = char *;

The bottom line: If you are writing new typemaps and you are using overloaded methods, you will probably have to write
typecheck code or copy existing code. Since this is a relatively new SWIG feature, there are few examples to work with.
However, you might look at some of the existing library files likes 'typemaps.i' for a guide.

Notes:

» Typecheck typemaps are not used for non—overloaded methods. Because of this, it is still always necessary to check
types in any "in" typemaps.

» The dynamic dispatch process is only meant to be a heuristic. There are many corner cases where SWIG simply can't
disambiguate types to the same degree as C++. The only way to resolve this ambiguity is to use the %rename directive
rename one of the overloaded methods (effectively eliminating overloading).

» Typechecking may be partial. For example, if working with arrays, the typecheck code might simply check the type of
the first array element and use that to dispatch to the correct function. Subsequent "in" typemaps would then perform
more extensive type—checking.

» Make sure you read the section on overloading in_the "SWIG and C++" chapter.

10.11 More about %apply and %clear

In order to implement certain kinds of program behavior, it is sometimes necessary to write sets of typemaps. For example, to
support output arguments, one often writes a set of typemaps like this:

%typemap(in,numinputs=0) int *OUTPUT (int temp) {
$1 = &temp;

}
%typemap(argout) int *OUTPUT {
/I return value somehow

}

To make it easier to apply the typemap to different argument types and names, the %apply directive performs a copy of all
typemaps from one type to another. For example, if you specify this,

%apply int *OUTPUT { int *retvalue, int32 *output };
then all of the int *XOUTPUT typemaps are copied to int *retvalue and int32 *output.

However, there is a subtle aspect of %apply that needs more description. Namely, %apply does not overwrite a typemap rule if
it is already defined for the target datatype. This behavior allows you to do two things:

« You can specialize parts of a complex typemap rule by first defining a few typemaps and then using %apply to
incorporate the remaining pieces.
« Sets of different typemaps can be applied to the same datatype using repeated %apply directives.

For example:

10.11 More about %apply and %clear 158

SWIG-1.3 Documentation

%typemap(in) int *INPUT (int temp) {
temp = ... get value from $input ...;
$1 = &temp;

}

%typemap(check) int *POSITIVE {
if (*$1 <=0){
SWIG_exception(SWIG_ValueError,"Expected a positive numberi\n™);
return NULL;
}
}

%apply int *INPUT {int *invalue };
%apply int *POSITIVE {int *invalue };

Since %apply does not overwrite or replace any existing rules, the only way to reset behavior is to use the %clear directive.
%oclear removes all typemap rules defined for a specific datatype. For example:

%oclear int *invalue;

10.12 Reducing wrapper code size

Since the code supplied to a typemap is inlined directly into wrapper functions, typemaps can result in a tremendous amount of
code bloat. For example, consider this typemap for an array:

%typemap(in) float [ANY] {

inti;

if (\PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;

}

if (PySequence_Length($input) = $1_dimO0) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
return NULL;

$1 = (float) malloc($1_dimO*sizeof(float));
for (i=0;i<$1_dimo; i++) {

PyObiject *o = PySequence_Getltem($input,i);

if (PyNumber_Check(0)) {
$1[i] = (float) PyFloat_AsDouble(o);

}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
free(result);
return NULL;

}

}
}

If you had a large interface with hundreds of functions all accepting array parameters, this typemap would be replicated
repeatedly——generating a huge amount of code. A better approach might be to consolidate some of the typemap into a functior
For example:

9%
/* Define a helper function */
static float *
convert_float_array(PyObject *input, int size) {
inti;
float *result;
if ('"PySequence_Check(input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;

}
if (PySequence_Length(input) != size) {

10.12 Reducing wrapper code size 159

SWIG-1.3 Documentation

PyErr_SetString(PyExc_ValueError,"Size mismatch. ");
return NULL;

result = (float) malloc(size*sizeof(float));
for (i = 0; i < size; i++) {
PyObiject *o = PySequence_Getltem(input,i);
if (PyNumber_Check(0)) {
result[i] = (float) PyFloat_AsDouble(0);
}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
free(result);
return NULL;

}
}

return result;

}
%}

%typemap(in) float [ANY] {
$1 = convert_float_array($input, $1_dimO0);
if (1$1) return NULL;

}
%}

10.13 Passing data between typemaps

It is also important to note that the primary use of local variables is to create stack—allocated objects for temporary use inside a
wrapper function (this is faster and less—prone to error than allocating data on the heap). In general, the variables are not inten
to pass information between different types of typemaps. However, this can be done if you realize that local names have the
argument number appended to them. For example, you could do this:

%typemap(in) int *(int temp) {
temp = (int) PyInt_AsLong($input);
$1 = &temp;

}

%typemap(argout) int * {
PyObject *o = PyInt_FromLong(temp$argnum);

}..

In this case, the $argnum variable is expanded into the argument number. Therefore, the code will reference the appropriate lo
such as templ and temp2. It should be noted that there are plenty of opportunities to break the universe here and that accessi
locals in this manner should probably be avoided. At the very least, you should make sure that the typemaps sharing informatic
have exactly the same types and names.

10.14 Where to go for more information?

The best place to find out more information about writing typemaps is to look in the SWIG library. Most language modules defir
all of their default behavior using typemaps. These are found in files such as python.swg, perl5.swg, tcl8.swg and so

forth. The typemaps.i file in the library also contains numerous examples. You should look at these files to get a feel for how

to define typemaps of your own. Some of the language modules support additional typemaps and further information is availab
in the individual chapters for each target language.

10.13 Passing data between typemaps 160

11 Customization Features

« Exception handling with %exception
+ Handling exceptions in C code
¢ Exception handling with longjmp()
¢ Handling C++ exceptions
¢ Exception handlers for variables
+ Defining different exception handlers
¢ Using The SWIG exception library
» Object ownership and %newobject
» Eeatures and the %feature directive
¢ Feature flags
¢ Clearing features
¢ Features and default arguments
¢ Feature example

In many cases, it is desirable to change the default wrapping of particular declarations in an interface. For example, you might
want to provide hooks for catching C++ exceptions, add assertions, or provide hints to the underlying code generator. This cha
describes some of these customization technigues. First, a discussion of exception handling is presented. Then, a more
general—-purpose customization mechanism known as "features" is described.

11.1 Exception handling with %exception

The %exception directive allows you to define a general purpose exception handler. For example, you can specify the
following:

%exception {

try {
$action

}

catch (RangeError) {
PyErr_SetString(PyExc_IndexError,"index out-of-bounds");
return NULL;

}
}

When defined, the code enclosed in braces is inserted directly into the low-level wrapper functions. The special symbol
$action gets replaced with the actual operation to be performed (a function call, method invocation, attribute access, etc.). An
exception handler remains in effect until it is explicitly deleted. This is done by using either %exception or %noexception

with no code. For example:

%exception; // Deletes any previously defined handler

Compatibility note: Previous versions of SWIG used a special directive %except for exception handling. That directive is
deprecated——%exception provides the same functionality, but is substantially more flexible.

11.1.1 Handling exceptions in C code

C has no formal exception handling mechanism so there are several approaches that might be used. A somewhat common
technique is to simply set a special error code. For example:

/* File : except.c */

static char error_message[256];
static int error_status = 0;

void throw_exception(char *msg) {
strncpy(error_message,msg,256);

11 Customization Features 161

SWIG-1.3 Documentation

error_status = 1,

}

void clear_exception() {
error_status = 0;

char *check_exception() {

if (error_status) return error_message;
else return NULL;

To use these functions, functions simply call throw_exception() to indicate an error occurred. For example :

double inv(double x) {
if (x = 0) return 1.0/x;

else {
throw_exception("Division by zero");
return O;

}

To catch the exception, you can write a simple exception handler such as the following (shown for Perl5) :

%exception {
char *err;
clear_exception();
$action
if ((err = check_exception())) {
croak(err);
}
}

In this case, when an error occurs, it is translated into a Perl error. Each target language has its own approach to creating a rut
error/exception in and for Perl it is the croak method shown above.

11.1.2 Exception handling with longjmp()

Exception handling can also be added to C code using the <setjmp.h> library. Here is a minimalistic implementation that relies
on the C preprocessor :

* File : except.c
Just the declaration of a few global variables we're going to use */

#include <setjmp.h>
jmp_buf exception_buffer;
int exception_status;

/* File : except.h */

#include <setjmp.h>

extern jmp_buf exception_buffer;
extern int exception_status;

#define try if ((exception_status = setjmp(exception_buffer)) == 0)
#define catch(val) else if (exception_status == val)

#define throw(val) longjmp(exception_buffer,val)

#define finally else

I* Exception codes */
#define RangeError 1

#define DivisionByZero 2
#define OutOfMemory 3

11.1.1 Handling exceptions in C code 162

SWIG-1.3 Documentation

Now, within a C program, you can do the following :

double inv(double x) {
if (x) return 1.0/x;
else throw(DivisionByZero);

Finally, to create a SWIG exception handler, write the following :

9%{
#include "except.h"
9%}

%exception {
try {
$action
} catch(RangeError) {
croak("Range Error");
} catch(DivisionByZero) {
croak("Division by zero");
} catch(OutOfMemory) {
croak("Out of memory");
} finally {
croak("Unknown exception");
}
}

Note: This implementation is only intended to illustrate the general idea. To make it work better, you'll need to modify it to hand
nested try declarations.

11.1.3 Handling C++ exceptions

Handling C++ exceptions is also straightforward. For example:

%exception {

try {
$action

} catch(RangeError) {
croak("Range Error");

} catch(DivisionByZero) {
croak("Division by zero");

} catch(OutOfMemory) {
croak("Out of memory");

} catch(...) {
croak("Unknown exception");

}

The exception types need to be declared as classes elsewhere, possibly in a header file :

class RangeError {};
class DivisionByZero {};
class OutOfMemory {};

11.1.4 Exception handlers for variables

By default all variables will ignore %exception, so it is effectively turned off for all variables wrappers. This applies to global
variables, member variables and static member variables. The approach is certainly a logical one when wrapping variables in (

11.1.2 Exception handling with longjmp() 163

SWIG-1.3 Documentation

However, in C++, it is quite possible for an exception to be thrown while the variable is being assigned. To ensure %exception
is used when wrapping variables, it needs to be 'turned on' using the %allowexception feature. Note that

%allowexception is just a macro for %feature("allowexcept"), that is, it is a feature called "allowexcept". Any

variable which has this feature attached to it, will then use the %exception feature, but of course, only if there is a

%exception attached to the variable in the first place. The %allowexception feature works like any other feature and so

can be used globally or for selective variables.

%allowexception; /l turn on globally
%allowexception Klass::MyVar; // turn on for a specific variable

%noallowexception Klass::MyVar; // turn off for a specific variable
%noallowexception; /I turn off globally

11.1.5 Defining different exception handlers

By default, the %exception directive creates an exception handler that is used for all wrapper functions that follow it. Unless
there is a well-defined (and simple) error handling mechanism in place, defining one universal exception handler may be
unwieldy and result in excessive code bloat since the handler is inlined into each wrapper function.

To fix this, you can be more selective about how you use the %exception directive. One approach is to only place it around
critical pieces of code. For example:

%exception {
... your exception handler ...

}

/* Define critical operations that can throw exceptions here */
%exception;

/* Define non—critical operations that don't throw exceptions */

More precise control over exception handling can be obtained by attaching an exception handler to specific declaration name. |
example:

%exception allocate {

try {
$action

}
catch (MemoryError) {
croak("Out of memory");

}
}

In this case, the exception handler is only attached to declarations named "allocate". This would include both global and memb
functions. The names supplied to %exception follow the same rules as for %rename described in the section on Ambiguity
resolution and renaming. For example, if you wanted to define an exception handler for a specific class, you might write this:

%exception Object::allocate {

try {
$action

}
catch (MemoryError) {
croak("Out of memory");

}
}

When a class prefix is supplied, the exception handler is applied to the corresponding declaration in the specified class as well
for identically named functions appearing in derived classes.

%exception can even be used to pinpoint a precise declaration when overloading is used. For example:

11.1.4 Exception handlers for variables 164

SWIG-1.3 Documentation

%exception Object::allocate(int) {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

Attaching exceptions to specific declarations is a good way to reduce code bloat. It can also be a useful way to attach exceptio
to specific parts of a header file. For example:

%module example

%{

#include "someheader.h"
9%}

/I Define a few exception handlers for specific declarations
%exception Object::allocate(int) {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

%exception Object::getitem {
try {
$action

}

catch (RangeError) {
croak("Index out of range");

}
}

/I Read a raw header file
%include "someheader.h"

Compatibility note: The %exception directive replaces the functionality provided by the deprecated "except" typemap. The
typemap would allow exceptions to be thrown in the target language based on the return type of a function and was intended ftc
a mechanism for pinpointing specific declarations. However, it never really worked that well and the new %exception directive i
much better.

11.1.6 Using The SWIG exception library

The exception.i library file provides support for creating language independent exceptions in your interfaces. To use it,
simply put an "%include exception.i" in your interface file. This creates a function SWIG_exception() that can be
used to raise common scripting language exceptions in a portable manner. For example :

/I Language independent exception handler
%include exception.i

%exception {

try {
$action

} catch(RangeError) {
SWIG_exception(SWIG_ValueError, "Range Error");

} catch(DivisionByZero) {
SWIG_exception(SWIG_DivisionByZero, "Division by zero");

} catch(OutOfMemory) {
SWIG_exception(SWIG_MemoryError, "Out of memory");

} catch(...) {
SWIG_exception(SWIG_RuntimeError,"Unknown exception”);

11.1.5 Defining different exception handlers 165

SWIG-1.3 Documentation

As arguments, SWIG_exception() takes an error type code (an integer) and an error message string. The currently supported
error types are :

SWIG_UnknownError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
SWIG_AttributeError
SWIG_MemoryError
SWIG_NullReferenceError

Since the SWIG_exception() function is defined at the C-level it can be used elsewhere in SWIG. This includes typemaps
and helper functions.

11.2 Object ownership and %newobject

A common problem in some applications is managing proper ownership of objects. For example, consider a function like this:

Foo *blah() {
Foo *f = new Foo();
return f;

}

If you wrap the function blah(), SWIG has no idea that the return value is a newly allocated object. As a result, the resulting
extension module may produce a memory leak (SWIG is conservative and will never delete objects unless it knows for certain
that the returned object was newly created).

To fix this, you can provide an extra hint to the code generator using the %newobject directive. For example:

%newobiject blah;
Foo *blah();

%newobject works exactly like %rename and %exception. In other words, you can attach it to class members and
parameterized declarations as before. For example:

%newobject ::blah(); /I Only applies to global blah
%newobject Object::blah(int,double); // Only blah(int,double) in Object
%newobject *::copy; /I Copy method in all classes

When %newobject is supplied, many language modules will arrange to take ownership of the return value. This allows the
value to be automatically garbage—collected when it is no longer in use. However, this depends entirely on the target language
language module may also choose to ignore the %newobject directive).

Closely related to %newobject is a special typemap. The "newfree" typemap can be used to deallocate a newly allocated returr
value. It is only available on methods for which %newobject has been applied and is commonly used to clean—up string results
For example:

%typemap(newfree) char * "free($1);";

%newobject strdup;

11.1.6 Using The SWIG exception library 166

SWIG-1.3 Documentation

char *strdup(const char *s);

In this case, the result of the function is a string in the target language. Since this string is a copy of the original result, the data
returned by strdup() is no longer needed. The "newfree" typemap in the example simply releases this memory.

As a complement to the %newobject, from SWIG 1.3.28, you can use the %delobject directive. For example, if you have
two methods, one to create objects and one to destroy them, you can use:

%newobiject create_foo;
%delobject destroy_foo;

Foo *create_foo();
void destroy_foo(Foo *foo);

or in a member method as:

%delobject Foo::destroy;

class Foo {
public:
void destroy() { delete this;}

private:
~Foo();
h

%delobject instructs SWIG that the first argument passed to the method will be destroyed, and therefore, the target language
should not attempt to deallocate it twice. This is similar to use the DISOWN typemap in the first method argument, and in fact, |
also depends on the target language on implementing the 'disown' mechanism properly.

Compatibility note: Previous versions of SWIG had a special %new directive. However, unlike %newobiject, it only applied to
the next declaration. For example:

%new char *strdup(const char *s);
For now this is still supported but is deprecated.

How to shoot yourself in the foot: The %newobject directive is not a declaration modifier like the old %new directive. Don't
write code like this:

%newobject
char *strdup(const char *s);

The results might not be what you expect.

11.3 Features and the %feature directive

Both %exception and %newobject are examples of a more general purpose customization mechanism known as "features."
A feature is simply a user—definable property that is attached to specific declarations. Features are attached using the %featur
directive. For example:

%feature("except") Object::allocate {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

11.2 Object ownership and %newobject 167

SWIG-1.3 Documentation

%feature("new","1") *::copy;
In fact, the %exception and %newobject directives are really nothing more than macros involving %feature:

#define Y%exception %feature("except”)
#define %newobject %feature("new","1")

The name matching rules outlined in the Ambiguity resolution and renaming section applies to all %feature directives. In fact
the the %rename directive is just a special form of %feature. The matching rules mean that features are very flexible and can
be applied with pinpoint accuracy to specific declarations if needed. Additionally, if no declaration name is given, a global featu
is said to be defined. This feature is then attached to every declaration that follows. This is how global exception handlers are
defined. For example:

/* Define a global exception handler */
%feature("except") {

try {
$action

}
-

... bunch of declarations ...
The %feature directive can be used with different syntax. The following are all equivalent:

%feature("except"”) Object::method { $action };
%feature("except"”) Object::method %{ $action %};
Y%feature("except”) Object::method " $action *;
%feature("except”,"$action") Object::method;

The syntax in the first variation will generate the { } delimiters used whereas the other variations will not. The %feature
directive also accepts XML style attributes in the same way that typemaps will. Any number of attributes can be specified. The
following is the generic syntax for features:

%feature("name","value", attribute1="AttributeValuel") symbol;
%feature("name”, attribute1="AttributeVValuel") symbol {value};
%feature("name", attribute1="AttributeValuel") symbol %{value%};
%feature("name"”, attribute1="AttributeValuel") symbol "value";

More than one attribute can be specified using a comma separated list. The Java module is an example that uses attributes in
%feature("except"). The throws attribute specifies the name of a Java class to add to a proxy method's throws clause. In
the following example, MyExceptionClass is the name of the Java class for adding to the throws clause.

%feature("except”, throws="MyExceptionClass") Object::method {

try {
$action

}catch (...) {
... code to throw a MyExceptionClass Java exception ...

}
¥

Further details can be obtained from the Java exception handling section.
11.3.1 Feature flags

Feature flags are used to enable or disable a particular feature. Feature flags are a common but simple usage of %feature and
the feature value should be either 1 to enable or 0 to disable the feature.

%feature("name") /I enables feature
%feature("name”, "1") // enables feature
%feature("name”, "x") // enables feature

11.3 Features and the %feature directive 168

SWIG-1.3 Documentation

%feature("name”, "0") // disables feature
%feature("name”, ") // clears feature

Actually any value other than zero will enable the feature. Note that if the value is omitted completely, the default value become
1, thereby enabling the feature. A feature is cleared by specifying no value, see Clearing features. The %immutable directive
described in the Creating read—only variables section, is just a macro for %feature("immutable"), and can be used to
demonstrates feature flags:

/I features are disabled by default

int red; /I mutable
%feature("immutable"); // global enable
int orange; /l immutable

%feature("immutable","0"); // global disable
int yellow; /I mutable

%feature("immutable”,"1"); // another form of global enable
int green; /I immutable

%feature("immutable”,""); /I clears the global feature
int blue; /I mutable

Note that features are disabled by default and must be explicitly enabled either globally or by specifying a targeted declaration.
The above intersperses SWIG directives with C code. Of course you can target features explicitly, so the above could also be
rewritten as:

%feature("immutable”,"1") orange;
%feature("immutable”,"1") green;

int red; /I mutable

int orange; /I immutable
int yellow; /I mutable

int green; /I immutable
int blue; /l mutable

The above approach allows for the C declarations to be separated from the SWIG directives for when the C declarations are
parsed from a C header file. The logic above can of course be inverted and rewritten as:

%feature("immutable”,"1");
%feature("immutable”,"0") red;
%feature("immutable”,"0") yellow;
%feature("immutable”,"0") blue;

int red; /I mutable

int orange; /I immutable
int yellow; /I mutable

int green; /I immutable
int blue; /l mutable

11.3.2 Clearing features

A feature stays in effect until it is explicitly cleared. A feature is cleared by supplying a %feature directive with no value. For
example %feature("name",""). A cleared feature means that any feature exactly matching any previously defined feature is
no longer used in the name matching rules. So if a feature is cleared, it might mean that another name matching rule will apply

clarify, let's consider the except feature again (Y%oexception):

/I Define global exception handler
%feature("except") {
try {
$action
}catch (...) {
croak("Unknown C++ exception™);
}
}

11.3.1 Feature flags 169

SWIG-1.3 Documentation

/I Define exception handler for all clone methods to log the method calls
Y%feature("except") *::clone() {

try {
logger.info("$action”);
$action
}catch (...) {
croak("Unknown C++ exception");

}
}

... initial set of class declarations with clone methods ...

/I clear the previously defined feature

... final set of class declarations with clone methods ...

In the above scenario, the initial set of clone methods will log all method invocations from the target language. This specific
feature is cleared for the final set of clone methods. However, these clone methods will still have an exception handler (without
logging) as the next best feature match for them is the global exception handler.

Note that clearing a feature is not always the same as disabling it. Clearing the feature above with %feature("except”,"")
*::clone() is not the same as specifying %feature("except”,"0") *::clone(). The former will disable the feature

for clone methods - the feature is still a better match than the global feature. If on the other hand, no global exception handler |
been defined at all, then clearing the feature would be the same as disabling it as no other feature would have matched.

Note that the feature must match exactly for it to be cleared by any previously defined feature. For example the following attem
to clear the initial feature will not work:

%feature("except”) clone() { logger.info("$action"); $action }

but this will:

%feature("except”) clone() { logger.info("$action"); $action }

11.3.3 Features and default arguments

SWIG treats methods with default arguments as separate overloaded methods as detailed in the default arguments section. Ar
%feature targeting a method with default arguments will apply to all the extra overloaded methods that SWIG generates if the
default arguments are specified in the feature. If the default arguments are not specified in the feature, then the feature will mat
that exact wrapper method only and not the extra overloaded methods that SWIG generates. For example:

%feature("except") void hello(int i=0, double d=0.0) { ... }
void hello(int i=0, double d=0.0);

will apply the feature to all three wrapper methods, that is:

void hello(int i, double d);
void hello(int i);
void hello();

If the default arguments are not specified in the feature:

%feature("except") void hello(int i, double d) { ... }
void hello(int i=0, double d=0.0);

then the feature will only apply to this wrapper method:

11.3.2 Clearing features 170

SWIG-1.3 Documentation

void hello(int i, double d);

and not these wrapper methods:

void hello(int i);
void hello();

If compactdefaultargs are being used, then the difference between specifying or not specifying default arguments in a feature i

not applicable as just one wrapper is generated.

Compatibility note: The different behaviour of features specified with or without default arguments was introduced in

SWIG-1.3.23 when the approach to wrapping methods with default arguments was changed.

11.3.4 Feature example

As has been shown earlier, the intended use for the %feature directive is as a highly flexible customization mechanism that cat
be used to annotate declarations with additional information for use by specific target language modules. Another example is ir

the Python module. You might use %feature to rewrite proxy/shadow class code as follows:

%module example
%rename(bar_id) bar(int,double);

/I Rewrite bar() to allow some nice overloading

%feature("shadow") Foo::bar(int) %{
def bar(*args):
if len(args) == 3:
return apply(examplec.Foo_bar_id,args)
return apply(examplec.Foo_bar,args)
9%}

class Foo {
public:

int bar(int x);

int bar(int x, double y);
}

Further details of %feature usage is described in the documentation for specific language modules.

11.3.3 Features and default arguments

171

12 Contracts

* The %contract directive
* %contract and classes

» Constant aggregation and %aggregate_check
» Notes

A common problem that arises when wrapping C libraries is that of maintaining reliability and checking for errors. The fact of th
matter is that many C programs are notorious for not providing error checks. Not only that, when you expose the internals of ar
application as a library, it often becomes possible to crash it simply by providing bad inputs or using it in a way that wasn't
intended.

This chapter describes SWIG's support for software contracts. In the context of SWIG, a contract can be viewed as a runtime
constraint that is attached to a declaration. For example, you can easily attach argument checking rules, check the output value
a function and more. When one of the rules is violated by a script, a runtime exception is generated rather than having the prog
continue to execute.

12.1 The %contract directive

Contracts are added to a declaration using the %contract directive. Here is a simple example:

%contract sqrt(double x) {
require:
X >=0;
ensure:
sqrt >=0;
}

double sqgrt(double);

In this case, a contract is being added to the sqrt() function. The %contract directive must always appear before the
declaration in question. Within the contract there are two sections, both of which are optional. The require: section specifies
conditions that must hold before the function is called. Typically, this is used to check argument values. The ensure: section
specifies conditions that must hold after the function is called. This is often used to check return values or the state of the progr
In both cases, the conditions that must hold must be specified as boolean expressions.

In the above example, we're simply making sure that sqrt() returns a non—negative number (if it didn't, then it would be broken
some way).

Once a contract has been specified, it modifies the behavior of the resulting module. For example:

>>> example.sqrt(2)
1.4142135623730951
>>> example.sqrt(—2)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
RuntimeError: Contract violation: require: (arg1>=0)
>>>

12.2 %contract and classes

The %contract directive can also be applied to class methods and constructors. For example:

%contract Foo::bar(int x, int y) {
require:

x>0;
ensure:

12 Contracts 172

SWIG-1.3 Documentation

bar > 0;

}

%contract Foo::Foo(int a) {
require:
a>o;

}

class Foo {
public:

Foo(int);

int bar(int, int);
h

The way in which %contract is applied is exactly the same as the %feature directive. Thus, any contract that you specified
for a base class will also be attached to inherited methods. For example:

class Spam : public Foo {
public:
int bar(int,int); // Gets contract defined for Foo::bar(int,int)

h
In addition to this, separate contracts can be applied to both the base class and a derived class. For example:

%contract Foo::bar(int x, int) {
require:

x> 0;
}

%contract Spam::bar(int, int y) {
require:

y>0;
}

class Foo {
public:
int bar(int,int); // Gets Foo::bar contract.
¥
class Spam : public Foo {

public:
int bar(int,int); // Gets Foo::bar and Spam::bar contract
h

When more than one contract is applied, the conditions specified in a "require:" section are combined together using a
logical-AND operation. In other words conditions specified for the base class and conditions specified for the derived class all
must hold. In the above example, this means that both the arguments to Spam::bar must be positive.

12.3 Constant aggregation and %aggregate_check

Consider an interface file that contains the following code:

#define UP 1

#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObiject *, int direction, int distance);

One thing you might want to do is impose a constraint on the direction parameter to make sure it's one of a few accepted value
To do that, SWIG provides an easy to use macro %aggregate_check() that works like this:

%aggregate_check(int, check_direction, UP, DOWN, LEFT, RIGHT);

12.2 %contract and classes 173

SWIG-1.3 Documentation

This merely defines a utility function of the form
int check_direction(int x);
That checks the argument x to see if it is one of the values listed. This utility function can be used in contracts. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);
%contract move(SomeObiject *, int direction, in) {
require:
check_direction(direction);
}
#define UP 1
#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObiject *, int direction, int distance);
Alternatively, it can be used in typemaps and other directives. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);
%typemap(check) int direction {

if (Icheck_direction($1)) SWIG_exception(SWIG_ValueError, "Bad direction");
}

#define UP 1

#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObiject *, int direction, int distance);

Regrettably, there is no automatic way to perform similar checks with enums values. Maybe in a future release.

12.4 Notes

Contract support was implemented by Songyan (Tiger) Feng and first appeared in SWIG-1.3.20.

12.3 Constant aggregation and %aggregate_check 174

13 Variable Length Arguments

« Introduction
* The Problem

« Default varargs support

« Argument replacement using %varargs
« Varargs and typemaps

« Varargs wrapping with libffi

» Wrapping of va_list

* C++ Issues
« Discussion
(a.k.a, "The horror. The horror.")

This chapter describes the problem of wrapping functions that take a variable number of arguments. For instance, generating
wrappers for the C printf() family of functions.

This topic is sufficiently advanced to merit its own chapter. In fact, support for varargs is an often requested feature that was fir.
added in SWIG-1.3.12. Most other wrapper generation tools have wisely chosen to avoid this issue.

13.1 Introduction

Some C and C++ programs may include functions that accept a variable number of arguments. For example, most programme
are familiar with functions from the C library such as the following:

int printf(const char *fmt, ...)
int fprintf(FILE *, const char *fmt, ...);
int sprintf(char *s, const char *fmt, ...);

Although there is probably little practical purpose in wrapping these specific C library functions in a scripting language (what
would be the point?), a library may include its own set of special functions based on a similar API. For example:

int traceprintf(const char *fmt, ...);
In this case, you may want to have some kind of access from the target language.
Before describing the SWIG implementation, it is important to discuss the common uses of varargs that you are likely to
encounter in real programs. Obviously, there are the printf() style output functions as shown. Closely related to this would be
scanf() style input functions that accept a format string and a list of pointers into which return values are placed. However,
variable length arguments are also sometimes used to write functions that accept a NULL-terminated list of pointers. A good
example of this would be a function like this:

int execlp(const char *path, const char *arg1, ...);

/* Example */
execlp("ls","Is","=I",NULL);

In addition, varargs is sometimes used to fake default arguments in older C libraries. For instance, the low level open() system
call is often declared as a varargs function so that it will accept two or three arguments:

int open(const char *path, int oflag, ...);

/* Examples */
f = open("foo”, O_RDONLY);
g = open("bar", O_WRONLY | O_CREAT, 0644);

13 Variable Length Arguments 175

SWIG-1.3 Documentation

Finally, to implement a varargs function, recall that you have to use the C library functions defined in <stdarg.h>. For
example:

List make_list(const char *s, ...) {
va_list ap;
List x;

va_start(ap, s);
while (s) {
x.append(s);
s = va_arg(ap, const char *);

va_end(ap);
return x;

}
13.2 The Problem

Generating wrappers for a variable length argument function presents a number of special challenges. Although C provides
support for implementing functions that receive variable length arguments, there are no functions that can go in the other
direction. Specifically, you can't write a function that dynamically creates a list of arguments and which invokes a varargs
function on your behalf.

Although it is possible to write functions that accept the special type va_list, this is something entirely different. You can't
take a va_list structure and pass it in place of the variable length arguments to another varargs function. It just doesn't work.

The reason this doesn't work has to do with the way that function calls get compiled. For example, suppose that your program |
a function call like this:

printf("Hello %s. Your number is %d\n", name, num);

When the compiler looks at this, it knows that you are calling printf() with exactly three arguments. Furthermore, it knows
that the number of arguments as well are their types and sizes is never going to change during program execution. Therefore,
gets turned to machine code that sets up a three—argument stack frame followed by a call to printf().

In contrast, suppose you attempted to make some kind of wrapper around printf() using code like this:

int wrap_printf(const char *fmt, ...) {
va_list ap;
va_start(ap,fmt);

printf(fmt,ap);

va_end(ap);

g

Athough this code might compile, it won't do what you expect. This is because the call to printf() is compiled as a procedure
call involving only two arguments. However, clearly a two—argument configuration of the call stack is completely wrong if your
intent is to pass an arbitrary number of arguments to the real printf(). Needless to say, it won't work.

Unfortunately, the situation just described is exactly the problem faced by wrapper generation tools. In general, the number of
passed arguments will not be known until run—time. To make matters even worse, you won't know the types and sizes of
arguments until run—time as well. Needless to say, there is no obvious way to make the C compiler generate code for a functio
call involving an unknown number of arguments of unknown types.

In theory, it is possible to write a wrapper that does the right thing. However, this involves knowing the underlying ABI for the
target platform and language as well as writing special purpose code that manually constructed the call stack before making a
procedure call. Unfortunately, both of these tasks require the use of inline assembly code. Clearly, that's the kind of solution yo
would much rather avoid.

13.1 Introduction 176

SWIG-1.3 Documentation

With this nastiness in mind, SWIG provides a number of solutions to the varargs wrapping problem. Most of these solutions are
compromises that provide limited varargs support without having to resort to assembly language. However, SWIG can also
support real varargs wrapping (with stack—frame manipulation) if you are willing to get hands dirty. Keep reading.

13.3 Default varargs support

When variable length arguments appear in an interface, the default behavior is to drop the variable argument list entirely,
replacing them with a single NULL pointer. For example, if you had this function,

void traceprintf(const char *fmt, ...);
it would be wrapped as if it had been declared as follows:

void traceprintf(const char *fmt);
When the function is called inside the wrappers, it is called as follows:

traceprintf(argl, NULL);
Arguably, this approach seems to defeat the whole point of variable length arguments. However, this actually provides enough
support for many simple kinds of varargs functions to still be useful. For instance, you could make function calls like this (in
Python):

>>> traceprintf("Hello World")
>>> traceprintf("Hello %s. Your number is %d\n" % (name, num))

Notice how string formatting is being done in Python instead of C.

13.4 Argument replacement using %varargs

Instead of dropping the variable length arguments, an alternative approach is to replace (...) with a set of suitable arguments.
SWIG provides a special %varargs directive that can be used to do this. For example,

%varargs(int mode = 0) open;

int open(const char *path, int oflags, ...);
is equivalent to this:

int open(const char *path, int oflags, int mode = 0);
In this case, %varargs is simply providing more specific information about the extra arguments that might be passed to a
function. If the parameters to a varargs function are of uniform type, %varargs can also accept a numerical argument count as
follows:

%varargs(10,char *arg = NULL) execlp;

int execlp(const char *path, const char *argl, ...);

This would wrap execlp() as a function that accepted up to 10 optional arguments. Depending on the application, this may be
more than enough for practical purposes.

Argument replacement is most appropriate in cases where the types of the extra arguments is uniform and the maximum numt
of arguments is known. When replicated argument replacement is used, at least one extra argument is added to the end of the
arguments when making the function call. This argument serves as a sentinel to make sure the list is properly terminated. It ha
the same value as that supplied to the %varargs directive.

13.2 The Problem 177

SWIG-1.3 Documentation

Argument replacement is not as useful when working with functions that accept mixed argument types such as printf().
Providing general purpose wrappers to such functions presents special problems (covered shortly).

13.5 Varargs and typemaps
Variable length arguments may be used in typemap specifications. For example:

%typemap(in) (...) {
/I Get variable length arguments (somehow)

}

%typemap(in) (const char *fmt, ...) {
/I Multi-argument typemap

}

However, this immediately raises the question of what "type" is actually used to represent (...). For lack of a better alternative,
the type of (...) is set to void *. Since there is no way to dynamically pass arguments to a varargs function (as previously
described), the void * argument value is intended to serve as a place holder for storing some kind of information about the extr:
arguments (if any). In addition, the default behavior of SWIG is to pass the void * value as an argument to the function.
Therefore, you could use the pointer to hold a valid argument value if you wanted.

To illustrate, here is a safer version of wrapping printf() in Python:

%typemap(in) (const char *fmt, ...) {

$1 ="%s"; * Fix format string to %s */

$2 = (void *) PyString_AsString($input); /* Get string argument */
h

int printf(const char *fmt, ...);

In this example, the format string is implicitly set to "%s". This prevents a program from passing a bogus format string to the
extension. Then, the passed input object is decoded and placed in the void * argument defined for the (...) argument. When
the actual function call is made, the underlying wrapper code will look roughly like this:

wrap_printf() {
char *arg1,;
void *arg2;
int result;

argl = "%s";
arg2 = (void *) PyString_AsString(arg2obj);

result = printf(argl,arg2);
}

Notice how both arguments are passed to the function and it does what you would expect.

The next example illustrates a more advanced kind of varargs typemap. Disclaimer: this requires special support in the target
language module and is not guaranteed to work with all SWIG modules at this time. It also starts to illustrate some of the more
fundamental problems with supporting varargs in more generality.

If a typemap is defined for any form of (...), many SWIG modules will generate wrappers that accept a variable number of
arguments as input and will make these arguments available in some form. The precise details of this depends on the languag:
module being used (consult the appropriate chapter for more details). However, suppose that you wanted to create a Python
wrapper for the execlp() function shown earlier. To do this using a typemap instead of using %varargs, you might first write

a typemap like this:

%typemap(in) (...)(char *args[10]) {

13.4 Argument replacement using %varargs 178

SWIG-1.3 Documentation

inti;
int argc;
for (i=0; i< 10; i++) args[i] = 0;
argc = PyTuple_Size(varargs);
if (argc > 10) {

PyErr_SetString(PyExc_ValueError,"Too many arguments");

return NULL;
}

for (i=0;i<argc; i++) {
PyObject *o = PyTuple_Getltem(varargs,i);
if (IPyString_Check(0)) {
PyErr_SetString(PyExc_ValueError,"Expected a string");
return NULL;

argsli] = PyString_AsString(o);

}
$1 = (void *) args;
}

In this typemap, the special variable varargs is a tuple holding all of the extra arguments passed (this is specific to the Python
module). The typemap then pulls this apart and sticks the values into the array of strings args. Then, the array is assigned to $
(recall that this is the void * variable corresponding to (...)). However, this assignment is only half of the

picture————clearly this alone is not enough to make the function work. To patch everything up, you have to rewrite the
underlying action code using the %feature directive like this:

%feature("action") execlp {
char *args = (char **) arg3;
result = execlp(argl, arg2, args[0], args[1], args[2], args[3], args[4],
args[5],args[6],args[7],args[8],args[9], NULL);
}

int execlp(const char *path, const char *arg, ...);

This patches everything up and creates a function that more or less works. However, don't try explaining this to your coworkers
unless you know for certain that they've had several cups of coffee. If you really want to elevate your guru status and increase
your job security, continue to the next section.

13.6 Varargs wrapping with libffi

All of the previous examples have relied on features of SWIG that are portable and which don't rely upon any low-level
machine—-level details. In many ways, they have all dodged the real issue of variable length arguments by recasting a varargs
function into some weaker variation with a fixed number of arguments of known types. In many cases, this works perfectly fine.
However, if you want more generality than this, you need to bring out some bigger guns.

One way to do this is to use a special purpose library such as_libffi (http:/sources.redhat.com/libffi). libffi is a library that allows
you to dynamically construct call-stacks and invoke procedures in a relatively platform independent manner. Details about the
library can be found in the libffi distribution and are not repeated here.

To illustrate the use of libffi, suppose that you really wanted to create a wrapper for execlp() that accepted any number of
arguments. To do this, you might make a few adjustments to the previous example. For example:

/* Take an arbitrary number of extra arguments and place into an array
of strings */

%typemap(in) (...) {
char **argv;
int argc;
int i
argc = PyTuple_Size(varargs);

argv = (char **) malloc(sizeof(char *)*(argc+1));
for (i=0; i <argc; i++) {

13.5 Varargs and typemaps 179

http://sources.redhat.com/libffi/

SWIG-1.3 Documentation

PyObject *o = PyTuple_Getltem(varargs,i);

if (IPyString_Check(0)) {
PyErr_SetString(PyExc_ValueError,"Expected a string");
free(argv);
return NULL,;

argv[i] = PyString_AsString(0);

}

argv[i] = NULL;

$1 = (void *) argv;
}

/* Rewrite the function call, using libffi */

%feature("action") execlp {
int i, Ve,

ffi_cif cif;

ffi_type **types;

void **values;

char **args;

vc = PyTuple_Size(varargs);

types = (ffi_type **) malloc((vc+3)*sizeof(ffi_type *));
values = (void **) malloc((vc+3)*sizeof(void *));

args = (char **) arg3;

[* Set up path parameter */
types[0] = &ffi_type_pointer;
values[0] = &argl;

/* Set up first argument */
types[1] = &ffi_type_pointer;
values[1] = &arg2;

[* Set up rest of parameters */

for (i = 0; i <=vc; i++) {
types[2+i] = &ffi_type_pointer;
values[2+i] = &args]i];

}
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+3,
&ffi_type_uint, types) == FFI_OK) {
ffi_call(&cif, (void (*)()) execlp, &result, values);
}else {

free(types);
free(values);
free(arg3);
return NULL;

}
free(types);
free(values);
free(arg3);

}

* Declare the function. Whew! */
int execlp(const char *path, const char *arg1, ...);

Looking at this example, you may start to wonder if SWIG is making life any easier. Given the amount of code involved, you
might also wonder why you didn't just write a hand—crafted wrapper! Either that or you're wondering "why in the hell am | trying
to wrap this varargs function in the first place?!?" Obviously, those are questions you'll have to answer for yourself.

As a more extreme example of libffi, here is some code that attempts to wrap printf(),
* A wrapper for printf() using libffi */

9%{

13.6 Varargs wrapping with libffi 180

SWIG-1.3 Documentation

[* Structure for holding passed arguments after conversion */
typedef struct {
int type;
union {
int ivalue;
double dvalue;
void *pvalue;
}val;
} vtype;
enum { VT_INT, VT_DOUBLE, VT_POINTER };
%0}

%typemap(in) (const char *fmt, ...) {
vtype *argv;

int argc;

int i

/* Format string */
$1 = PyString_AsString($input);

* Variable length arguments */
argc = PyTuple_Size(varargs);
argv = (vtype *) malloc(argc*sizeof(vtype));
for (i = 0; i < argc; i++) {
PyObject *o = PyTuple_Getltem(varargs,i);
if (PyInt_Check(0)) {
argv[i].type = VT_INT,;
argv[i].val.ivalue = PyInt_AsLong(0);
} else if (PyFloat_Check(0)) {
argv[i].type = VT_DOUBLE;
argv[i].val.dvalue = PyFloat_AsDouble(0);
} else if (PyString_Check(0)) {
argv[i].type = VT_POINTER,;
argv[i].val.pvalue = (void *) PyString_AsString(0);
}else {
PyErr_SetString(PyExc_ValueError,"Unsupported argument type");
free(argv);
return NULL;
}
}
$2 = (void *) argv;
}

/* Rewrite the function call using libffi */
%feature("action") printf {

int i, vc;

ffi_cif cif;

ffi_type **types;

void **values;

vtype *args;

vc = PyTuple_Size(varargs);

types = (ffi_type **) malloc((vc+1)*sizeof(ffi_type *));
values = (void **) malloc((vc+1)*sizeof(void *));

args = (vtype *) arg2;

[* Set up fmt parameter */
types[0] = &ffi_type_pointer;
values[0] = &arg1;

[* Set up rest of parameters */
for (i=0;i<vc; i++) {
switch(argsl[i].type) {
case VT_INT:
types[1+i] = &ffi_type_uint;
values[1+i] = &args]i].val.ivalue;
break;
case VT_DOUBLE:

13.6 Varargs wrapping with libffi

181

SWIG-1.3 Documentation

types[1+i] = &ffi_type_double;
values[1+i] = &args][i].val.dvalue;
break;
case VT_POINTER:
types[1+i] = &ffi_type_pointer;
values[1+i] = &args]i].val.pvalue;
break;
default:
abort(); /*Whoa! We're seriously hosed */
break;

}

}
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+1,
&ffi_type_uint, types) == FFI_OK) {
ffi_call(&cif, (void (*)()) printf, &result, values);
}else {

free(types);
free(values);
free(args);
return NULL;

}
free(types);
free(values);
free(args);

}

* The function */
int printf(const char *fmt, ...);

Much to your amazement, it even seems to work if you try it:

>>> jmport example

>>> example.printf("Grade: %s %d/60 = %0.2f%%\n", "Dave", 47, 47.0*100/60)
Grade: Dave 47/60 = 78.33%

>>>

Of course, there are still some limitations to consider:

>>> example.printf("la de da de da %s", 42)
Segmentation fault (core dumped)

And, on this note, we leave further exploration of libffi to the reader as an exercise. Although Python has been used as an
example, most of the techniques in this section can be extrapolated to other language modules with a bit of work. The only det:
you need to know is how the extra arguments are accessed in each target language. For example, in the Python module, we u
the special varargs variable to get these arguments. Modules such as Tcl8 and Perl5 simply provide an argument number for
the first extra argument. This can be used to index into an array of passed arguments to get values. Please consult the chapter
each language module for more details.

13.7 Wrapping of va_list

Closely related to variable length argument wrapping, you may encounter functions that accept a parameter of type va_list.
For example:

int viprintf(FILE *f, const char *fmt, va_list ap);

As far as we know, there is no obvious way to wrap these functions with SWIG. This is because there is no documented way tc
assemble the proper va_list structure (there are no C library functions to do it and the contents of va_list are opaque). Not only
that, the contents of a va_list structure are closely tied to the underlying call-stack. It's not clear that exporting a va_list

would have any use or that it would work at all.

13.7 Wrapping of va_list 182

SWIG-1.3 Documentation
13.8 C++ Issues

Wrapping of C++ member functions that accept a variable number of arguments presents a number of challenges. By far, the
easiest way to handle this is to use the %varargs directive. This is portable and it fully supports classes much like the %rename
directive. For example:

%varargs (10, char * = NULL) Foo::bar;

class Foo {
public:

virtual void bar(char *arg, ...); /I gets varargs above
h

class Spam: public Foo {
public:
virtual void bar(char *arg, ...); // gets varargs above

h
%varargs also works with constructors, operators, and any other C++ programming construct that accepts variable arguments.

Doing anything more advanced than this is likely to involve a serious world of pain. In order to use a library like libffi, you will
need to know the underlying calling conventions and details of the C++ ABI. For instance, the details of how this is passed to
member functions as well as any hidden arguments that might be used to pass additional information. These details are
implementation specific and may differ between compilers and even different versions of the same compiler. Also, be aware th:
invoking a member function is further complicated if it is a virtual method. In this case, invocation might require a table lookup t
obtain the proper function address (although you might be able to obtain an address by casting a bound pointer to a pointer to
function as described in the C++ ARM section 18.3.4).

If you do decide to change the underlying action code, be aware that SWIG always places the this pointer in argl. Other
arguments are placed in arg2, arg3, and so forth. For example:

%feature("action") Foo::bar {
result = argl->bar(arg2, arg3, etc.);
}

Given the potential to shoot yourself in the foot, it is probably easier to reconsider your design or to provide an alternative
interface using a helper function than it is to create a fully general wrapper to a varargs C++ member function.

13.9 Discussion

This chapter has provided a number of techniques that can be used to address the problem of variable length argument wrapp
If you care about portability and ease of use, the %varargs directive is probably the easiest way to tackle the problem. Howeve
using typemaps, it is possible to do some very advanced kinds of wrapping.

One point of discussion concerns the structure of the libffi examples in the previous section. Looking at that code, it is not at all
clear that this is the easiest way to solve the problem. However, there are a number of subtle aspects of the solution to
consider——mostly concerning the way in which the problem has been decomposed. First, the example is structured in a way th
tries to maintain separation between wrapper—specific information and the declaration of the function itself. The idea here is the
you might structure your interface like this:

%typemap(const char *fmt, ...) {

}

%feature("action") traceprintf {

}

13.8 C++ Issues 183

SWIG-1.3 Documentation

/* Include some header file with traceprintf in it */
%include "someheader.h"

Second, careful scrutiny will reveal that the typemaps involving (...) have nothing whatsoever to do with the libffi library. In

fact, they are generic with respect to the way in which the function is actually called. This decoupling means that it will be muck
easier to consider other library alternatives for making the function call. For instance, if libffi wasn't supported on a certain
platform, you might be able to use something else instead. You could use conditional compilation to control this:

#ifdef USE_LIBFFI
%feature("action") printf {

}
#endif

#ifdef USE_OTHERFFI
%feature("action") printf {

}
#endif

Finally, even though you might be inclined to just write a hand-written wrapper for varargs functions, the techniques used in the
previous section have the advantage of being compatible with all other features of SWIG such as exception handling.

As a final word, some C programmers seem to have the assumption that the wrapping of variable length argument functions is
easily solved problem. However, this section has hopefully dispelled some of these myths. All things being equal, you are bette
off avoiding variable length arguments if you can. If you can't avoid them, please consider some of the simple solutions first. If
you can't live with a simple solution, proceed with caution. At the very least, make sure you carefully read the section "A7.3.2
Function Calls" in Kernighan and Ritchie and make sure you fully understand the parameter passing conventions used for vara
Also, be aware of the platform dependencies and reliability issues that this will introduce. Good luck.

13.9 Discussion 184

14 Warning Messages

« Introduction

« Warning message suppression

« Enabling additional warnings

« Issuing a warning message

« Commentary

« Warnings as errors

» Message output format

« Warning number reference
¢ Deprecated features (100-199)
¢ Preprocessor (200-299)
¢ C/C++ Parser (300-399)
¢ Types and typemaps (400-499)
¢ Code generation (500-599)
¢ Language module specific (800—899)
¢ User defined (900-999)

« History

14.1 Introduction

During compilation, SWIG may generate a variety of warning messages. For example:

example.i:16: Warning(501): Overloaded declaration ignored. bar(double)
example.i:15: Warning(501): Previous declaration is bar(int)

Typically, warning messages indicate non—fatal problems with the input where the generated wrapper code will probably compi
but it may not work like you expect.

14.2 Warning message suppression

All warning messages have a numeric code that is shown in the warning message itself. To suppress the printing of a warning
message, a number of techniques can be used. First, you can run SWIG with the -w command line option. For example:

% swig —python —w501 example.i
% swig —python -w501,505,401 example.i

Alternatively, warnings can be suppressed by inserting a special preprocessor pragma into the input file:

%module example
#pragma SWIG nowarn=501
#pragma SWIG nowarn=501,505,401

Finally, code—generation warnings can be disabled on a declaration by declaration basis using the %warnfilter directive. For
example:

%module example
%warnfilter(501) foo;

int foo(int);
int foo(double); /I Silently ignored.

The %warnfilter directive has the same semantics as other declaration modifiers like %rename, %ignore, and %feature.
For example, if you wanted to suppress a warning for a method in a class hierarchy, you could do this:

%warnfilter(501) Object::foo;
class Object {

14 Warning Messages 185

SWIG-1.3 Documentation

public:
int foo(int);
int foo(double); // Silently ignored

B

class Derived : public Object {
public:
int foo(int);
int foo(double); // Silently ignored

h
Warnings can be suppressed for an entire class by supplying a class name. For example:

%warnfilter(501) Object;

class Object {
public:

N

/I All 501 warnings ignored in class

There is no option to suppress all SWIG warning messages. The warning messages are there for a reason——-to tell you that
something may be broken in your interface. Ignore the warning messages at your own peril.

14.3 Enabling additional warnings

Some warning messages are disabled by default and are generated only to provide additional diagnostics. All warning messag
can be enabled using the —Wall option. For example:

% swig —Wall —python example.i
When -Wall is used, all other warning filters are disabled.

To selectively turn on extra warning messages, you can use the directives and options in the previous section——simply add a "
to all warning numbers. For example:

% swig ~w+309,+452 example.i
or

#pragma SWIG nowarn=+309,+452
or

%warnfilter(+309,+452) foo;

Note: selective enabling of warnings with %warnfilter overrides any global settings you might have made using —w or
#pragma.

14.4 I1ssuing a warning message
Warning messages can be issued from an interface file using a number of directives. The %warn directive is the most simple:
%warn "750:This is your last warning!"

All warning messages are optionally prefixed by the warning number to use. If you are generating your own warnings, make su
you don't use numbers defined in the table at the end of this section.

14.2 Warning message suppression 186

SWIG-1.3 Documentation

The %ignorewarn directive is the same as %ignore except that it issues a warning message whenever a matching declaration
is found. For example:

%ignorewarn("362:operator= ignored") operator=;

Warning messages can be associated with typemaps using the warning attribute of a typemap declaration. For example:

%typemap(in, warning="751:You are really going to regret this") blah * {
}

In this case, the warning message will be printed whenever the typemap is actually used.

14.5 Commentary

The ability to suppress warning messages is really only provided for advanced users and is not recommended in normal use. T
are no plans to provide symbolic names or options that identify specific types or groups of warning messages——-the numbers
must be used explicitly.

Certain types of SWIG problems are errors. These usually arise due to parsing errors (bad syntax) or semantic problems for wi
there is no obvious recovery. There is no mechanism for suppressing error messages.

14.6 Warnings as errors

Warnings can be handled as errors by using the —Werror command line option. This will cause SWIG to exit with a non
successful exit code if a warning is encountered.

14.7 Message output format

The output format for both warnings and errors can be selected for integration with your favourite IDE/editor. Editors and IDEs
can usually parse error messages and if in the appropriate format will easily take you directly to the source of the error. The
standard format is used by default except on Windows where the Microsoft format is used by default. These can be overridden
using command line options, for example:

$ swig —python —Fstandard example.i
example.i:4: Syntax error in input.
$ swig —python —Fmicrosoft example.i
example.i(4): Syntax error in input.

14.8 Warning number reference

14.8.1 Deprecated features (100-199)

» 101. Deprecated %extern directive.

» 102. Deprecated %val directive.

« 103. Deprecated %out directive.

* 104. Deprecated %disabledoc directive.

* 105. Deprecated %enabledoc directive.

« 106. Deprecated %doconly directive.

« 107. Deprecated %style directive.

* 108. Deprecated %localstyle directive.

* 109. Deprecated %title directive.

 110. Deprecated %section directive.

» 111. Deprecated %subsection directive.

» 112. Deprecated %subsubsection directive.
 113. Deprecated %addmethods directive.

14.4 Issuing a warning message 187

« 114.
e 115.
« 116.
« 117.
« 118.
« 1109.
« 120.
« 121.

SWIG-1.3 Documentation

Deprecated %readonly directive.
Deprecated %readwrite directive.
Deprecated %except directive.
Deprecated %new directive.
Deprecated %typemap(except).
Deprecated %typemap(ignore).
Deprecated command line option (—c).
Deprecated %name directive.

14.8.2 Preprocessor (200-299)

« 201.
» 202.

Unable to find ‘filename"'.
Could not evaluate 'expr'.

14.8.3 C/C++ Parser (300—-399)

« 301.
» 302.
» 303.
» 304.
» 305.
* 306.
» 307.
» 308.
» 3009.
« 310.
« 311.
« 312.
« 313.
» 314.
« 315.
» 316.
« 317.
» 318.
« 319.
» 320.
« 321.
» 322.
» 350.
« 351.
» 352.
» 353.
» 354.
» 355.
» 356.
» 357.
» 358.
» 359.
* 360.
* 361.
* 362.
* 363.
* 364.
* 365.
* 366.
* 367.

class keyword used, but not in C++ mode.

Identifier 'name’ redefined (ignored).

%extend defined for an undeclared class 'name".
Unsupported constant value (ignored).

Bad constant value (ignored).

'identifier' is private in this context.

Can't set default argument value (ignored)

Namespace alias 'name' not allowed here. Assuming 'name’
[private | protected] inheritance ignored.

Template 'name' was already wrapped as 'name’ (ignored)
Template partial specialization not supported.

Nested classes not currently supported (ignored).
Unrecognized extern type "name" (ignored).

'identifier' is a lang keyword.

Nothing known about ‘identifier'.

Repeated %module directive.

Specialization of non-template 'name’.

Instantiation of template hame is ambiguous. Using templ at file:line

No access specifier given for base class name (ignored).
Explicit template instantiation ignored.
identifier conflicts with a built—-in name.
Redundant redeclaration of 'name’.
operator new ignored.

operator delete ignored.

operator+ ignored.

operator- ignored.

operator* ignored.

operator/ ignored.

operator% ignored.

operator” ignored.

operator& ignored.

operator| ignored.

operator~ ignored.

operator! ignored.

operator= ignored.

operator< ignored.

operator> ignored.

operator+= ignored.
operator—=ignored.

operator*= ignored.

14.8.1 Deprecated features (100-199)

188

» 368.
* 369.
« 370.
« 371.
» 372.
» 373.
» 374.
» 375.
» 376.
« 377.
» 378.
« 379.
 380.
» 381.
» 382.
» 383.
» 384.
» 385.
» 386.
» 387.
» 388.
» 389.
» 390.
« 3901.
* 392.
» 393.
* 394.
» 305.

SWIG-1.3 Documentation

operator/= ignored.
operator%= ignored.
operator"= ignored.
operator&= ignored.
operator|= ignored.
operator<< ignored.
operator>>ignored.
operator<<= ignored.
operator>>= ignored.
operator==ignored.
operator!= ignored.
operator<= ignored.
operator>= ignored.
operator&& ignored.
operator|| ignored.
operator++ ignored.
operator—- ignored.
operator, ignored.
operator—<* ignored.
operator-< ignored.
operator() ignored.
operator[] ignored.
operator+ ignored (unary).
operator- ignored (unary).
operator* ignored (unary).
operator& ignored (unary).
operator new[] ignored.
operator delete[] ignored.

14.8.4 Types and typemaps (400-499)

* 401.
* 402.
* 403.
* 450.
* 451.
* 452.
* 453.
* 460.
* 461.
* 462.
* 463.
* 464.
* 465.
* 466.
* 467.
* 468.
* 469.
* 470.
* 471.

Nothing known about class 'name’. Ignored.

Base class 'name’ is incomplete.

Class 'name' might be abstract.

Deprecated typemap feature ($source/$target).

Setting const char * variable may leak memory.

Reserved

Can't apply (pattern). No typemaps are defined.

Unable to use type type as a function argument.

Unable to use return type type in function name.

Unable to set variable of type type.

Unable to read variable of type type.

Unsupported constant value.

Unable to handle type type.

Unsupported variable type type.

Overloaded declaration not supported (no type checking rule for 'type")
No 'throw' typemap defined for exception type t