The Python Library Reference
Release 3.2

Guido van Rossum
Fred L. Drake, Jr., editor

February 20, 2011

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 23
3.1 Constants added by the sitemodule e 23
Built-in Types 25
4.1 Truth Value Testing o it e e e e e e e e 25
4.2 Boolean Operations — and, O0r, NOT . .+ v v v v v v v v v e e e e e e e e e e e e e e 25
4.3 CompariSONS . . v v v v e 26
4.4 Numeric Types — int, float,complex« o o v v v ittt 26
4.5 Tterator Types oL e 31
4.6 Sequence Types — str, bytes, bytearray, list, tuple, range 32
477 SetTypes — set, frozenset v v i v v i i i e e e e e e e e e e e e 42
4.8 Mapping Types — dicCt o v v i i e e e e e e e e e e e e e e e 45
4.9 memOTyVIEW tYPE i i i e 48
4.10 Context Manager Types e 50
4.11 Other Built-in Types o e e e e 50
4.12 Special Attributes L L. e e e e e e 52
Built-in Exceptions 55
5.1 Exception hierarchy e 59
String Services 61
6.1 string-— Common string Operationso 61
6.2 re — Regular expression operations oo e e e e 70
6.3 struct — Interpret bytes as packed binary data 86
6.4 difflib— Helpers for computingdeltas 90
6.5 textwrap —Textwrappingandfilling 99
6.6 codecs—Codecregistry andbaseclasses Lo 102
6.7 wunicodedata— Unicode Database 114
6.8 stringprep — Internet String Preparation oL 116
Data Types 119
7.1 datetime —Basicdateandtimetypesl 119
7.2 calendar — General calendar-related functions, 142
7.3 collections —Container datatypes ¢ v v v v it e e e e e e e e e e e e 145
74 heapg—Heap queue algorithm L o 158
7.5 Dbisect — Array bisection algorithmo 0oL 162
7.6 array — Efficient arrays of numeric values Lo 164
7.7 sched—Eventscheduler 166
7.8 queue — A synchronized queueclass e 168
7.9 weakref —Weakreferences L e 170

10

11

12

13

14

15

7.10
7.11
7.12
7.13

types — Names for built-intypes e
copy — Shallow and deep COpy OPerations v v v v v v v vt e e e e e
pprint — Data pretty printero i e e e e e e e e e e e e e e e e e e
reprlib — Alternate repr () implementation Lo e

Numeric and Mathematical Modules

8.1
8.2
8.3
8.4
8.5
8.6

numbers — Numeric abstractbaseclasses o
math — Mathematical functions e
cmath — Mathematical functions for complex numbers,
decimal — Decimal fixed point and floating point arithmetic
fractions —Rationalnumbers L oL
random — Generate pseudo-random nUMbETSo L. e e e e e e e

Functional Programming Modules

9.1
9.2
9.3
9.4

itertools — Functions creating iterators for efficient looping
functools — Higher order functions and operations on callable objects
operator — Standard operators as functions oL
Inplace Operators o o e e e e e e e

File and Directory Access

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

os.path — Common pathname manipulations
fileinput — Iterate over lines from multiple input streams
stat — Interpreting stat () results
filecmp — File and Directory CompariSOns v v v v v v v v i e e e e
tempfile — Generate temporary files and directories
glob — Unix style pathname pattern expansion
fnmatch — Unix filename pattern matching
linecache —Randomaccesstotextlines
shutil — High-level file operations i i v it

10.10 macpath — Mac OS 9 path manipulation functions

Data Persistence

11.1
11.2
11.3
11.4
11.5
11.6

pickle — Python object serialization e
copyreg — Register pickle support functions Lo
shelve — Python object persistence

marshal — Internal Python object serialization

dbm — Interfaces to Unix “databases” 0 i i i i i e
sglite3 — DB-API 2.0 interface for SQLite databases

Data Compression and Archiving

12.1
12.2
12.3
12.4
12.5

z1ib — Compression compatible withgzip oo,
gzip — Support for gzipfiles e e

bz2 — Compression compatible withbzip2,

zipfile — Work with ZIP archives
tarfile — Read and write tar archive files

File Formats

13.1
13.2
13.3
13.4
13.5

csv — CSV File Reading and Writing
configparser — Configuration file parser L.
netrc—netrc file processing oL e e
xdrlib — Encode and decode XDRdata

plistlib — Generate and parse Mac OS X .plistfiles.

Cryptographic Services

14.1

hashlib — Secure hashes and message digests v i i

14.2 hmac — Keyed-Hashing for Message Authentication

Generic Operating System Services

15.1

os — Miscellaneous operating system interfaces o0

181
181
184
188
190
213
215

219
219
230
234
238

241
241
244
246
249
251
254
254
255
256
260

263
263
273
274
276
277
280

299
299
301
303
305
310

319
319
324
340
341
343

345
345
347

349

15.2 io— Core tools for working with streams 373

15.3 time — Time access and CONVEISIONS« « v v v v v v vt bt e e e e e e e e 383
15.4 argparse — Parser for command line options, arguments and sub-commands 388
15.5 optparse — Parser for command line options oo 413
15.6 getopt — C-style parser for command lineoptions 437
15.7 logging— Logging facility for Python 0oL 439
15.8 logging.config—Logging configuration 452
159 logging.handlers—Logginghandlers 460
15.10 getpass — Portable passwordinput e 469
15.11 curses — Terminal handling for character-cell displays 469
15.12 curses. textpad — Text input widget for curses programs 483
15.13 curses.wrapper — Terminal handler for curses programs 485
15.14 curses.ascii — Utilities for ASCII characters 485
15.15 curses.panel — A panel stack extension forcurses 487
15.16 plat form — Access to underlying platform’s identifyingdata 488
15.17 errno — Standard errno system symbols L Lo 491
15.18 ctypes — A foreign function library for Python 0oL, 497
16 Optional Operating System Services 527
16.1 select — Waiting for /O completion 527
16.2 threading— Thread-based parallelism 531
16.3 multiprocessing— Process-based parallelism 542
16.4 concurrent.futures — Launching paralleltasks 589
16.5 mmap — Memory-mapped file support oL e 593
16.6 readline — GNUreadlineinterface 596
16.7 rlcompleter — Completion function for GNU readline 598
16.8 dummy_threading — Drop-in replacement for the threadingmodule 599
169 _thread — Low-level threading API 600
16.10 _dummy_thread — Drop-in replacement for the _threadmodule 601
17 Interprocess Communication and Networking 603
17.1 subprocess — Subprocess managemento 603
17.2 socket — Low-level networking interface 611
17.3 ss1 — TLS/SSL wrapper for socket objects 622
17.4 signal — Set handlers for asynchronous events 634
17.5 asyncore — Asynchronous sockethandler 637
17.6 asynchat — Asynchronous socket command/response handler 641
18 Internet Data Handling 645
18.1 email — Anemail and MIME handling package 645
18.2 json—IJSONencoderanddecoder 675
18.3 mailcap—Mailcap filehandling 680
18.4 mailbox — Manipulate mailboxes in various formats 681
18.5 mimetypes — Map filenames to MIME types 696
18.6 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 699
18.7 binhex — Encode and decode binhex4 files L. 701
18.8 binascii — Convert between binaryand ASCIT 701
18.9 quopri — Encode and decode MIME quoted-printabledata 703
18.10 uu — Encode and decode uuencode files Lo o 704
19 Structured Markup Processing Tools 705
19.1 html — HyperText Markup Language support 705
19.2 html.parser — Simple HTML and XHTML parser 705
19.3 html.entities — Definitions of HTML general entities 707
19.4 xml.parsers.expat — Fast XML parsingusing Expat 708
19.5 =xml.dom — The Document Object Model API 716
19.6 xml.dom.minidom — Lightweight DOM implementation 726
19.7 xml.dom.pulldom — Support for building partial DOM trees 730

19.8 xml.sax — Support for SAX2 parsers oot e e e 730

20

21

22

23

24

19.9 xml.sax.handler — Base classes for SAX handlers
19.10 xml.sax.saxutils — SAX Utilities e
19.11 xml.sax.xmlreader — Interface for XML parsers
19.12 xml.etree.ElementTree — The ElementTree XML API

Internet Protocols and Support

20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support L
20.3 cgitb — Traceback manager for CGIscripts
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib.request — Extensible library for opening URLs
20.6 urllib.response — Response classesusedbyurllib
20.7 urllib.parse —Parse URLsintocomponents
20.8 urllib.error — Exception classes raised by urllib.request
209 urllib.robotparser — Parserforrobots.txt

20.10 http.client — HTTP protocolclient i
20.11 ftplib —FTPprotocolclient o o i e e e
20.12 poplib —POP3 protocol client e

20.13 imaplib —IMAP4 protocolclient Lo
20.14 nntplib — NNTP protocol client o
20.15 smtplib — SMTP protocol client
20.16 smtpd — SMTP Server e e e e e e
20.17 telnetlib —Telnetclient e
20.18 uuid — UUID objects according to RFC 4122
20.19 socketserver — A framework for network servers oL
20.20 http.server — HTTPservers it e e e
20.21 http.cookies — HTTP state management v v v v v v v v v v ..
20.22 http.cookiejar — Cookie handling for HTTPclients
20.23 xmlrpc.client — XML-RPCclientaccesso vt i i v
20.24 xmlrpc.server — Basic XML-RPCservers

Multimedia Services

21.1 audioop — Manipulateraw audiodatao oo
21.2 aifc—Read and write AIFF and AIFCfiles
21.3 sunau—Readand write Sun AU files o o o L
214 wave —Readand write WAV fileso
21.5 chunk —Read IFF chunkeddata
21.6 colorsys — Conversions between color systems
21.7 imghdr — Determine the type of animage
21.8 sndhdr — Determine type of sound file
21.9 ossaudiodev — Access to OSS-compatible audio devices

Internationalization
22.1 gettext — Multilingual internationalization services
22.2 locale — Internationalization SEIVICES v v v v v v v v i e e e e e e e e e e

Program Frameworks

23.1 turtle —Turtlegraphics e
23.2 cmd — Support for line-oriented command interpreters oo
23.3 shlex — Simplelexical analysis e

Graphical User Interfaces with Tk

24.1 tkinter —Pythoninterfaceto Tcl/Tk
242 tkinter.ttk —Tkthemedwidgets e
243 tkinter.tix —Extensionwidgetsfor Tk L.
244 tkinter.scrolledtext — Scrolled Text Widget
245 IDLE e
24.6 Other Graphical User Interface Packages

749
749
751
757
757
766
779
780
785
786
787
792
796
798
803
809
813
815
817
820
827
831
834
842
848

853
853
856
858
860
862
863
864
865
865

871
871
879

885
885
917
922

25

26

27

28

29

30

Development Tools 963

25.1 pydoc — Documentation generator and online helpsystem 963

25.2 doctest — Testinteractive Pythonexamples, 964

253 unittest — Unittesting framework oL o oo 985

254 2to3 - Automated Python 2 to 3 code translation o L., 1009
25.5 test — Regression tests package forPython. o oL 1013
25.6 test.support — Utility functions fortests e 1015
Debugging and Profiling 1019

26.1 bdb — Debugger framework L 1019
26.2 pdb —The Python Debugger e 1023
26.3 The Python Profilers e e 1028
26.4 timeit — Measure execution time of small code snippets 1035
26.5 trace — Trace or track Python statementexecution 1038
Python Runtime Services 1041

27.1 sys — System-specific parameters and functions 1041
27.2 sysconfig— Provide access to Python’s configuration information. 1051
273 builtins—Built-inobjects e 1055
274 __main__ — Top-level script environment i 1055
27.5 warnings — Warningcontrol oL e e e 1055
27.6 contextlib — Utilities for with-statement contexts 1060
277 abc—Abstract Base Classes i e e e e e 1062
27.8 atexit —Exithandlers e 1065
279 traceback — Print or retrieve a stack traceback o oL 1066
27.10 _ future_ — Future statement definitions 1070
27.11 gc — Garbage Collectorinterface L o 1071
27.12 inspect —Inspectlive objects L. oL 1073
27.13 site — Site-specific configurationhooko oo oo oL 1079
27.14 fpectl — Floating point exception control L. 1081
27.15 distutils — Building and installing Pythonmodules 1082
Custom Python Interpreters 1083

28.1 code —Interpreter baseclasses o 1083
28.2 codeop — Compile Pythoncode L 1085
Importing Modules 1087

29.1 imp — Accessthe importinternals e 1087
29.2 zipimport — Import modules from Zip archives 1090
29.3 pkgutil — Package extension utility oL Lo 1092
29.4 modulefinder —Find modulesused by ascript oL 1094
29.5 runpy — Locating and executing Pythonmodules 1095
29.6 importlib— Animplementation of import Lo 1097
Python Language Services 1103

30.1 parser — Access Pythonparsetrees e 1103
30.2 ast — Abstract Syntax Trees o o i e e e e e e e e 1107
30.3 symtable — Access to the compiler’s symboltables 1111
30.4 symbol — Constants used with Python parse trees 1113
30.5 token — Constants used with Python parsetrees 1114
30.6 keyword — Testing for Python keywordso 1115
30.7 tokenize — Tokenizer for Pythonsource 1115
30.8 tabnanny — Detection of ambiguous indentation 1117
309 pyclbr —Pythonclass browser support Lo e 1118
30.10 py_compile — Compile Python source files 1119
30.11 compileall — Byte-compile Python libraries 1120
30.12 dis — Disassembler for Python bytecode o 1121
30.13 pickletools — Tools for pickle developers 1129

31 Miscellaneous Services

31.1 formatter — Generic output formatting e e

32 MS Windows Specific Services

32.1 msilib — Read and write Microsoft Installer files
32.2 msvert — Useful routines from the MS VC++runtime
32.3 winreg— WIindows registry aCCeSS« v v v v vt v v v e e e e e e e e e
32.4 winsound — Sound-playing interface for Windows oL

33 Unix Specific Services

33.1 posix — The most common POSIX systemecalls
33.2 pwd—The password database Lo
33.3 spwd — The shadow password database
334 grp—Thegroupdatabase
33.5 crypt — Function to check Unix passwords
33.6 termios —POSIXstylettycontrol e
337 tty —Terminal control functions e
33.8 pty —Pseudo-terminal utilities e e e e e
339 fcntl —The fentl () and ioctl () systemcalls oL
33.10 pipes — Interface to shell pipelines e
33.11 resource — Resource usage information L. oL
33.12 nis — Interface to Sun’s NIS (Yellow Pages)
33.13 syslog — Unix syslog library routines

34 Undocumented Modules

34.1 Platform specific modules

A Glossary
Bibliography

B About these documents

B.1 Contributors to the Python Documentation

C History and License

C.1 Historyofthesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Python Module Index

Index

1131
1131

1135
1135
1140
1141
1148

1151
1151
1152
1153
1153
1154
1154
1156
1156
1157
1159
1160
1162
1163

1165
1165

1167

1175

1177
1177

1179
1179
1180
1182

1193

1195

1199

vi

The Python Library Reference, Release 3.2

Release 3.2
Date February 20, 2011

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 3.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter Built-in
Functions, as the remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.2

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions

abs () dict () help () min () setattr ()
all() dir () hex () next () slice()

any () divmod () id() object () sorted ()
ascii() enumerate () | input () oct () staticmethod ()
bin () eval () int () open () str()

bool () exec () isinstance () ord () sum ()
bytearray () filter () issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () | type ()

chr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed() | __import__ ()
complex () hasattr () max () round ()

delattr () hash () memoryview () set ()
abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable) :
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.2

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

bool ([x])

Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot
be subclassed further. Its only instances are False and True.

bytearray ([s0urce[, encoding[, errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <=x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well
as most methods that the by tes type has, see Bytes and Byte Array Methods.

The optional source parameter can be used to initialize the array in a few different ways:

eIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray ()
then converts the string to bytes using str.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to
initialize the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as
the initial contents of the array.

Without an argument, an array of size 0 is created.

bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray — it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); instances are callable if their class hasa _ call__ () method. New in
version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode codepoint is the integer i. For example, chr (97)
returns the string * a’. This is the inverse of ord (). The valid range for the argument is from O through
1,114,111 (Ox10FFFF in base 16). ValueError will be raised if i is outside that range.

Note that on narrow Unicode builds, the result is a string of length two for i greater than 65,535 (OxFFFF in
hexadecimal).

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function
for details.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see stat icmethod () in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in fypes.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval ().
source can either be a string or an AST object. Refer to the ast module documentation for information on
how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if
it wasn’t read from a file (<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be " exec’ if source consists of a
sequence of statements, ’ eval’ if it consists of a single expression, or / single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None
will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the
compilation of source. If neither is present (or both are zero) the code is compiled with those future state-
ments that are in effect in the code that is calling compile. If the flags argument is given and dont_inherit
is not (or is zero) then the future statements specified by the flags argument are used in addition to those
that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_flag attribute on the
_Featureinstance inthe _ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization;
__debug___istrue), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed t0o0).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source con-
tains null bytes.

Note: When compiling a string with multi-line code in ' single’ or eval’ mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also inputin ’ exec’ mode does not
have to end in a newline anymore. Added the optimize parameter.

complex ([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a
numeric conversion function like int () and £1loat (). If both arguments are omitted, returns 0 j.

The complex type is described in Numeric Types — int, float, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, ’foobar’) isequivalentto del x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in
Mapping Types — dict.

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.2

For other containers see the built in 1ist, set, and tuple classes, and the col lect ions module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__ () or __getattribute__ ()
function to customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir ()

["__builtins_ ', ’__doc_ ', ’'__name__ ', ’struct’]
>>> dir (struct)

["Struct’, '__builtins_ ', ' _doc__ ', ’'__file ', ' __name__ ',

' __package__'’, ’'_clearcache’, ’'calcsize’, 'error’, ’'pack’, ’pack_into’,
"unpack’, "unpack_from’]
>>> class Foo:

def @ dir (self):
return ["kan", "ga", "roo"]

>>> f = Fool()
>>> dir (f)
["ga’, "kan’, "roo’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(g, a % b), where g isusually math.floor (a / b) but may be 1 less than that. In any case g =
b + a % bisveryclosetoa,if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b)
< abs (b).

enumerate (iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the corresponding value obtained from iterating over iter-
able. enumerate () is useful for obtaining an indexed series: (0, seqg([0]), (1, seql[ll), (2,
seq([2]), ... For example:

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

>>> for i, season in enumerate ([’ Spring’, ’Summer’, ’'Fall’, ’'Winter’]):
. print (i, season)

Spring
Summer
Fall
Winter

w N = O

eval (expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals dictionaries as global and local namespace. If the globals dictionary is
present and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed.
This means that expression normally has full access to the standard builtins module and restricted
environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where eval () is called. The return
value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval (/
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with * exec’ as the
mode argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () orexec ().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing
only literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If
itis a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs). ! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals
and locals are given, they are used for the global and local variables, respectively. If provided, locals can be
any mapping object.

If the globals dictionary does not contain a value for the key ___builtins__, areference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins
are available to the executed code by inserting your own ___builtins__ dictionary into globals before
passing it to exec ().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec () .

Note: The default locals act as described for function 1ocals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the

I Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

The Python Library Reference, Release 3.2

code on locals after function exec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float ([x])

Convert a string or a number to floating point.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and option-
ally embedded in whitespace. The optional sign may be / +” or / = ;a ’ +’ sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or nega-
tive infinity. More precisely, the input must conform to the following grammar after leading and trailing
whitespace characters are removed:

sign = W wWew

infinity = “Infinity” | “inf”

nan = “nan”

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not sig-
nificant, so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive
infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same
value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, float (x) delegatesto x.___float__ ().
If no argument is given, 0. O is returned.

Examples:

>>> float ("+1.23")

1.23

>>> float (’ -12345\n")
-12345.0

>>> float ("1e-003")
0.001

>>> float (' +1E6")
1000000.0

>>> float (! —-Infinity’)
—-inf

The float type is described in Numeric Types — int, float, complex.

format (value[, format_spec])

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that
is used by most built-in types: Format Specification Mini-Language.

Note: format (value, format_spec) merely calls value.__ format__ (format_spec).

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in
Set Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collections module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of
the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’) is
equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the ob-
ject’s attributes, False if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an At t ributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

hex (x)
Convert an integer number to a hexadecimal string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index__ () method that returns an integer.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is read, EOFError is raised. Example:

>>> s = input ("-——> ')
—-—> Monty Python’s Flying Circus
>>> 3

"Monty Python’s Flying Circus"
If the readl ine module was loaded, then input () will use it to provide elaborate line editing and
history features.

int ([number I string[, base]])
Convert a number or string to an integer. If no arguments are given, return 0. If a number is given, return

11

The Python Library Reference, Release 3.2

number.__int__ (). Conversion of floating point numbers to integers truncates towards zero. A string
must be a base-radix integer literal optionally preceded by ‘+’ or ‘-* (with no space in between) and option-
ally surrounded by whitespace. A base-n literal consists of the digits O to n-1, with ‘a’ to ‘z’ (or ‘A’ to Z’)
having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 liter-
als can be optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means
to interpret exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int (' 010", 0)
is not legal, while int (" 010’) is,as wellas int (* 010’ , 8).

The integer type is described in Numeric Types — int, float, complex.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. If object is not an object of the given type, the function always returns false. If classinfo is not a
class (type object), it may be a tuple of type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter (object[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator
created in this case will call object with no arguments for each call to its __next__ () method; if the
value returned is equal to sentinel, St opIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter () is to read lines of a file until a certain line is reached.
The following example reads a file until "STOP" is reached:

with open ("mydata.txt") as fp:
for line in iter (fp.readline, "STOP"):
process_line(line)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made
and returned, similar to iterable[:]. Forinstance, 1ist (’abc’) returns ["a’, 'b’, ’'c’] and
list((1, 2, 3)) returns [1, 2, 3].Ifnoargumentis given, returns a new empty list, [].

1list is a mutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
and free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases
where the function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable[, args...], *[, key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the largest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

memoryview (obj)
Return a “memory view” object created from the given argument. See memoryview type for more informa-
tion.

min (iterable[, args...], *[, key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the smallest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are minimal, the function returns the first one encountered. This is consistent
with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and
heapg.nsmallest (1, iterable, key=keyfunc).

next (iterator[, default])
Retrieve the next item from the iterator by calling its __next__ () method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

object ()
Return a new featureless object. object is a base for all classes. It has the methods that are common to
all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index___ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
Open file and return a corresponding stream. If the file cannot be opened, an TOError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working direc-
tory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is
given, it is closed when the returned I/O object is closed, unless closefd is setto False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to / r’ which means
open for reading in text mode. Other common values are ' w’ for writing (truncating the file if it already
exists), and ’ a’ for appending (which on some Unix systems, means that all writes append to the end of the
file regardless of the current seek position). In text mode, if encoding is not specified the encoding used is
platform dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

13

The Python Library Reference, Release 3.2

Character | Meaning

ol open for reading (default)

"’ open for writing, truncating the file first

ra’ open for writing, appending to the end of the file if it exists

b’ binary mode

e’ text mode (default)

_ open a disk file for updating (reading and writing)

"y’ universal newline mode (for backwards compatibility; should not be used in new code)

The default mode is r’ (open for reading text, synonym of rt /). For binary read-write access, the mode
"w+b’ opens and truncates the file to 0 bytes. * r+b’ opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary
mode (including " b’ in the mode argument) return contents as bytes objects without any decoding. In
text mode (the default, or when ’ t’ is included in the mode argument), the contents of the file are returned
as str, the bytes having been first decoded using a platform-dependent encoding or using the specified
encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the the processing
is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

*Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

*“Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever locale.getpreferredencoding ()
returns), but any encoding supported by Python can be used. See the codecs module for the list of
supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. Pass / strict’ toraise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass * ignore’ to ignore errors. (Note that ignoring encoding
errors can lead to data loss.) ’replace’ causes a replacement marker (such as ’ ?’) to be inserted
where there is malformed data. When writing, ' xmlcharrefreplace’ (replace with the appropriate
XML character reference) or ' backslashreplace’ (replace with backslashed escape sequences) can
be used. Any other error handling name that has been registered with codecs.register_error () is
also valid.

newline controls how universal newlines works (it only applies to text mode). It can be None, ”, ' \n’,
"\r’,and ' \r\n’. It works as follows:

*On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in \n",
"\r’,or "\r\n’, and these are translated into * \n’ before being returned to the caller. If it is ",
universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has
any of the other legal values, input lines are only terminated by the given string, and the line ending is
returned to the caller untranslated.

*On output, if newline is None, any ’ \n’ characters written are translated to the system default line
separator, os . linesep. If newline is ", no translation takes place. If newline is any of the other
legal values, any ’ \n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd has no effect and must be True (the
default).

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode (w’, "r’, 'wt’, ' rt’, etc.), it returns a subclass of io.Text IOBase
(specifically io.TextIOWrapper). When used to open a file in a binary mode with buffering, the re-
turned class is a subclass of io. Buf feredIOBase. The exact class varies: in read binary mode, it returns
aio.BufferedReader;in write binary and append binary modes, itreturns a io . BufferediWriter,
and in read/write mode, it returns a io.Buf feredRandom. When buffering is disabled, the raw stream,
asubclass of io.RawIOBase, i0.FileIO, isreturned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

ord (c)
Given a string representing one Uncicode character, return an integer representing the Unicode code point
of that character. For example, ord (’ a’) returns the integer 97 and ord (/ \u2020’) returns 8224.
This is the inverse of chr ().

On wide Unicode builds, if the argument length is not one, a TypeError will be raised. On narrow
Unicode builds, strings of length two are accepted when they form a UTF-16 surrogate pair.

pow (x, y[. z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow (x, y) % z). The two-argument form pow (x, y) is equivalent to using the power operator:
X*x*Yy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10+ 2 returns 100, but 10 % -2 returns 0. 01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print ([object,], * sep="", end="\n’, file=sys.stdout)
Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use
the default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used.

property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):
return self._x
def setx(self, wvalue):
self._x = value
def delx(self):
del self._x
X = property(getx, setx, delx, "I'm the ’'x" property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del
c . x the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget ‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () asadecorator:

15

The Python Library Reference, Release 3.2

class Parrot:
def @ init__ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def @ init_ (self):
self._x = None

@property

def x(self):
"""Ilm the /XI property- mmn
return self._x

@x.setter
def x(self, wvalue):
self. _x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

range ([smrt], stop[, step])

This is a versatile function to create iterables yielding arithmetic progressions. It is most often used in
for loops. The arguments must be integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns an iterable of integers [start, start +
step, start + 2 x step, ...]. If stepis positive, the last element is the largest start + i
x step less than stop; if step is negative, the last element is the smallest start + i * step greater
than stop. step must not be zero (or else ValueError is raised). Example:

>>> list (range (10))

(0o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list(range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -o, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

Range objects implement the collections. Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices:

>>> r = range (0, 20, 2)
>>> 1

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ()) will raise OverflowError. Changed in version 3.2: Implement the Sequence ABC. Support
slicing and negative indices. Test integers for membership in constant time instead of iterating through all
items.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object
together with additional information often including the name and address of the object. A class can control
what this function returns for its instances by defininga___repr__ () method.

reversed (seq)
Return a reverse iferator. seq must be an object which has a __reversed__ () method or supports the
sequence protocol (the __len__ () method and the __getitem__ () method with integer arguments
starting at 0).

round (x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to
zero. Delegates to x.___round___ (n).

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus #; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if called
with one argument, otherwise of the same type as x.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2 .67 instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See tut-fp-issues for more information.

set ([iterable])
Return a new set, optionally with elements taken from iterable. The set type is described in Set Types — set,
frozenset.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar
= 123.

slice ([start], stop[, step])

17

The Python Library Reference, Release 3.2

Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop,
i].See itertools.islice () for an alternate version that returns an iterator.

sorted (iterable[, key][, reverse])

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

Use functools.cmp_to_key () toconvert an old-style cmp function to a key function.

For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod (function)

Return a static method for function.
A static method does not receive an implicit first argument. To declare a static method, use this idiom:
class C:

@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod () in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in fypes.

str([object[, encoding[, errors]]])

Return a string version of an object, using one of the following modes:

If encoding and/or errors are given, str () will decode the object which can either be a byte string or a
character buffer using the codec for encoding. The encoding parameter is a string giving the name of an en-
coding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errors is ' strict’
(the default), a ValueError is raised on errors, while a value of / ignore’ causes errors to be silently
ignored, and a value of ' replace’ causes the official Unicode replacement character, U+FFFD, to be
used to replace input characters which cannot be decoded. See also the codecs module.

When only object is given, this returns its nicely printable representation. For strings, this is the string itself.
The difference with repr (object) isthat str (object) does not always attempt to return a string that
is acceptable to eval () ; its goal is to return a printable string. With no arguments, this returns the empty
string.

Objects can specify what str (object) returns by defininga ___str__ () special method.

For more information on strings see Sequence Types — str, bytes, bytearray, list, tuple, range which de-
scribes sequence functionality (strings are sequences), and also the string-specific methods described in the

String Methods section. To output formatted strings, see the String Formatting section. In addition see the
String Services section.

18

Chapter 2. Built-in Functions

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.2

sum (iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The
iterable‘s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum () . The preferred, fast way to concatenate a sequence
of strings is by calling ” . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

super ([type[, object—or—type]])
Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for
accessing inherited methods that have been overridden in a class. The search order is same as that used by
getattr () except that the rype itself is skipped.

The __mro___ attribute of the zype lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to
refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base
classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of calls is determined at runtime, because that order adapts to changes in
the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super (C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that super () is not limited to use inside methods. The two argument form specifies the argu-
ments exactly and makes the appropriate references. The zero argument form automatically searches the
stack frame for the class (__class__) and the first argument.

tuple ([iterable])
Return a tuple whose items are the same and in the same order as iterable‘s items. iterable may be a se-
quence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned
unchanged. For instance, tuple (’ abc’) returns (“a’, ’‘b’, ’'c’) and tuple([1l, 2, 3]) re-
turns (1, 2, 3).If no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

type (object)
Return the type of an object. The return value is a type object and generally the same object as returned by
object._ class__ .

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, t ype () functions as a constructor as detailed below.

19

The Python Library Reference, Release 3.2

type (name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases__ attribute; and the dict dictionary is the namespace containing definitions for class body
and becomes the __dict___ attribute. For example, the following two statements create identical t ype
objects:

>>> class X:
a =1

>>> X = type('X’, (object,), dict(a=1))

vars ([object])
Without an argument, act like 1ocals ().

With a module, class or class instance object as argument (or anything else that hasa___dict___ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. *

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable
argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(xiterables):
zip(’ABCD’, ’‘xy’) —--> Ax By
sentinel = object ()
iterables = [iter(it) for it in iterables]
while iterables:
result = []
for it in iterables:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append (elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip (* [iter (s)] *n).

z1ip () should only be used with unequal length inputs when you don’t care about trailing, unmatched val-
ues from the longer iterables. If those values are important, use itertools.zip_longest () instead.

z1ip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> y = [4, 5, 6]

>>> zipped = zip(x, Vy)

>>> list (zipped)

(1, 4), (2, 5, (3, 6)]

>>> x2, y2 = zip(*zip(x, y))

>>> x == list(x2) and y == list (y2)
True

2 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

__import__ (name, globals={}, locals={}, fromlist= [], level=0)

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of ___import__ () is rare,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should
be imported from the module given by name. The standard implementation does not use its locals argument
at all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute
imports. Positive values for level indicate the number of parent directories to search relative to the directory
of the module calling ___import__ ().

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = __import__ (’spam’, globals(), locals(), [], 0)

The statement import spam.ham results in this call:

spam = __ import__ (’spam.ham’, globals (), locals(), []1, 0)

Note how __import__ () returns the toplevel module here because this is the object that is bound to a
name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (' spam.ham’, globals(), locals(), ['eggs’, ’'sausage’], 0)
eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call
__import__ () andthenlookitupin sys.modules:

>>> import sys

>>> name = ’'foo.bar.baz’

>>> _ import__ (name)

<module ’foo’ from ...>

>>> baz = sys.modules|[name]

>>> baz

<module ’foo.bar.baz’ from ...>

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

22 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of t ypes . NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq (), __1t__ (),
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined

container data types.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and __debug___ cannot be reassigned (assignments to them, even as
an attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code.

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

23

The Python Library Reference, Release 3.2

24 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the repr () function or the slightly different st r () function).
The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

* None

* False

* zero of any numeric type, for example, 0, 0.0, 0.
* any empty sequence, for example, ”, (), [].

¢ any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class definesa ___bool__ () or __len__ () method, when that
method returns the integer zero or bool value False.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of
their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes

X Or y if x is false, then y, else x €))]

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

25

The Python Library Reference, Release 3.2

2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),
and a == not Db is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x <
y and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is
found to be false).

This table summarizes the comparison operations:

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

I= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for
example, function objects) support only a degenerate notion of comparison where any two objects of that type are
unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a complex number
with another built-in numeric type, when the objects are of different types that cannot be compared, or in other
cases where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__ (),and__ge__ () (in general,
1t () and__eq__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition,
Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually imple-
mented using double in C; information about the precision and internal representation of floating point numbers
for the machine on which your program is running is available in sys.float_info. Complex numbers have
a real and imaginary part, which are each a floating point number. To extract these parts from a complex number
z,use z.real and z.imag. (The standard library includes additional numeric types, fractions that hold
rationals, and decimal that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or
an exponent sign yield floating point numbers. Appending ’ j’ or ’ J’ to a numeric literal yields an imaginary
number (a complex number with a zero real part) which you can add to an integer or float to get a complex number
with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating

26 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

point, which is narrower than complex. Comparisons between numbers of mixed type use the same rule. > The
constructors int (), float (), and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes | Full
documentation
X + vy sum of x and y
X -y difference of x and y
X *x v product of x and y
x /y quotient of x and y
x //y floored quotient of x and y Q)
X %y remainderof x / y 2)
-X x negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3) int ()
float (x) x converted to floating point @ float ()
complex (re, a complex number with real part re, imaginary part im. im complex ()
im) defaults to zero.
c.conjugate ()| conjugate of the complex number ¢
divmod (x, V) the pair (x // y, X $ V) 2) divmod ()
pow (x, V) X to the power y 5) pow ()
X k% Y X to the power y (®)]
Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//21is 0, (-1) //2is-1,1// (=2)
is—-1,and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs () if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions floor () and
ceil () inthe math module for well-defined conversions.

4. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

5. Python defines pow (0, 0) and 0 =% O tobe 1, as is common for programming languages.

All numbers.Real types (int and £ loat) also include the following operations:

Operation Result Notes
math.trunc (x) | xtruncated to Integral

round(x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bit-string Operations on Integer Types

Integers support additional operations that make sense only for bit-strings. Negative numbers are treated as their
2’s complement value (this assumes a sufficiently large number of bits that no overflow occurs during the opera-
tion).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 27

The Python Library Reference, Release 3.2

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same

priority):
Operation Result Notes
x |y bitwise or of x and y
x "Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H2)
X >> n x shifted right by n bits (H@A3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.
2. A left shift by n bits is equivalent to multiplication by pow (2, n) without overflow check.

3. A right shift by # bits is equivalent to division by pow (2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

int.bit_length/()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
’-0b100101”

>>> n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that
2x% (k=1) <= abs(x) < 2*xk. Equivalently, when abs (x) is small enough to have a correctly
rounded logarithm, then k = 1 + int (log(abs(x), 2)). If x is zero, then x.bit_length ()
returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> 7-0b100101’
s = s.lstrip('-0b’) # remove leading zeros and minus sign
return len(s) # len(’71001017) ——> 6

New in version 3.1.

int .to_bytes (length, byteorder, *, signed=False)

Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big’)

b’ \x04\x00"

>>> (1024) .to_bytes (10, byteorder="big’)

b’ \x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big’, signed=True)

P/ \xff\xfE\xEfE\xEf\XEf\xEE\xEff\xff\xfc\x00"

>>> x = 1000

>>> x.to_bytes ((x.bit_length() // 8) + 1, byteorder=’little’)
b’ \xe8\x03"

The integer is represented using length bytes. An OverflowError is raised if the integer is not repre-
sentable with the given number of bytes.

28

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is
False and a negative integer is given, an OverflowError is raised. The default value for signed is
False. New in version 3.2.

classmethod int . from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b’ \x00\x10’, byteorder="big’)

16

>>> int.from_bytes (b’ \x00\x10’, byteorder=’'1little’)

4096

>>> int.from_bytes (b’ \xfc\x00’, byteorder='"big’, signed=True)
-1024

>>> int.from_bytes (b’ \xfc\x00’, byteorder='"big’, signed=False)
64512

>>> int.from _bytes ([255, 0, 0], byteorder='big’)

16711680

The argument bytes must either support the buffer protocol or be an iterable producing bytes. bytes and
bytearray are examples of built-in objects that support the buffer protocol.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer. New in version
3.2.

4.4.3 Additional Methods on Float

The float type has some additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).1is_integer()
True
>>> (3.2).1is_integer ()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful
when debugging, and in numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.2

classmethod f1oat . fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while f1loat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] [’0x’] integer [’.’ fraction] [’p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits,
and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex () is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s $a format character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number
(3 + 10./16 + 7./16%x%x2) % 2.0%xx10,0r3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
"0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== y(seethe __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal .Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fraction.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of
P is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2x%31 — 1 on machines with 32-bit C
longsand P = 2x%61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) asm =
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e Ifx = m / nisanegative rational number define hash (x) as —hash (-x) . If the resulting hash is -1,
replace it with —2.

e The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans
have the same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined
by computing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo
2+%sys.hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1),
2x% (sys.hash_info.width - 1)). Again, if the result is —1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the builtin hash, for computing the
hash of a rational number, f1oat, or complex:

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mmn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary 1f m and n already coprime.)

whilem $ P == n % == 0:
m, n=m// P, n// P

ifn %P == 0:
hash_ = sys.hash_info.inf

else:
Fermat’s Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_ = (abs(m) $ P) * pow(n, P - 2, P) $ P
if m < O:

hash_ = -hash_
if hash_ == -1:

hash_ = -2

return hash_

def hash_ float (x):
"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2x+sys.hash_info.width
M = 2x«%(sys.hash_info.width - 1)
hash_ = (hash_ & (M - 1)) - (hash & M)
if hash_ == -1:
hash_ == -2
return hash_

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container._ iter ()
Return an iterator object. The object is required to support the iterator protocol described below. If a

4.5. Ilterator Types 31

The Python Library Reference, Release 3.2

container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C APIL.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to the tp_iter slot of the type structure for Python
objects in the Python/C API.

iterator._ _next_ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter_ () and __next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — str, bytes, bytearray, list, tuple,
range

There are six sequence types: strings, byte sequences (bytes objects), byte arrays (bytearray objects), lists,
tuples, and range objects. For other containers see the built in dict and set classes, and the collections
module.

Strings contain Unicode characters. Their literals are written in single or double quotes: ' xyzzy’, "frobozz".
See strings for more about string literals. In addition to the functionality described here, there are also string-
specific methods described in the String Methods section.

Bytes and bytearray objects contain single bytes — the former is immutable while the latter is a mutable sequence.
Bytes objects can be constructed the constructor, bytes (), and from literals; use a b prefix with normal string
syntax: b’ xyzzy’ . To construct byte arrays, use the bytearray () function.

While string objects are sequences of characters (represented by strings of length 1), bytes and bytearray objects
are sequences of integers (between 0 and 255), representing the ASCII value of single bytes. That means that for
a bytes or bytearray object b, b [0] will be an integer, while b [0 : 1] will be a bytes or bytearray object of length
1. The representation of bytes objects uses the literal format (b’ . . . ') since it is generally more useful than e.g.
bytes ([50, 19, 1001]). You can always convert a bytes object into a list of integers using 1ist (b).

Also, while in previous Python versions, byte strings and Unicode strings could be exchanged for each other rather
freely (barring encoding issues), strings and bytes are now completely separate concepts. There’s no implicit en-
/decoding if you pass an object of the wrong type. A string always compares unequal to a bytes or bytearray
object.

Lists are constructed with square brackets, separating items with commas: [a, b, c]. Tuples are constructed
by the comma operator (not within square brackets), with or without enclosing parentheses, but an empty tuple

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

must have the enclosing parentheses, such as a, b, cor (). A single item tuple must have a trailing comma,
suchas (d,).

Objects of type range are created using the range () function. They don’t support concatenation or repetition,
and using min () ormax () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities
as the comparison operations. The + and » operations have the same priority as the corresponding numeric
operations. * Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the table, s and ¢ are sequences of the same type; n, i, j and k are integers.

Operation Result Notes
x in s True if an item of s is equal to x, else False | (1)

X not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s * n, n » s | nshallow copies of s concatenated 2)
s[i] i‘th item of s, origin 0 3)
s[i:7] slice of s from i to j 34
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (1) index of the first occurence of i in s

s.count (i) total number of occurences of i in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by com-
paring corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:
1. When s is a string object, the in and not in operations act like a substring test.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists

(el, 1, [11

>>> 1ists[0] .append(3)
>>> lists

(esy, 31, (311

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[1] * 3 are (pointers to) this single empty list. Modifying any of the elements of 11 st s modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> 1ists[0] .append(3)

>>> lists[1l].append(5)

>>> lists[2] .append(7)

>>> lists

(31, 51, (711

3. If i orj is negative, the index is relative to the end of the string: len (s) + iorlen(s) + jis substi-
tuted. But note that -0 is still 0.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j.Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 33

The Python Library Reference, Release 3.2

5.

If i is greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items with index x = i + n«k such
that 0 <= n < (j-1)/k. In other words, the indices are i, i+k, i+2xk, i+3+k and so on, stopping
when j is reached (but never including j). If i or j is greater than 1len (s),use len (s). If i or j are omitted
or None, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is
None, it is treated like 1.

CPython implementation detail: If s and ¢ are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the forms = s + tors += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version
and implementation dependent. For performance sensitive code, it is preferable to use the str. join ()
method which assures consistent linear concatenation performance across versions and implementations.

4.6.1 String Methods

String objects support the methods listed below.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, bytes,
bytearray, list, tuple, range section. To output formatted strings, see the String Formatting section. Also, see the
re module for string functions based on regular expressions.

str.

str.

str.

str.

str

str.

str

str.

capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

center (width[,ﬁllchar])
Return centered in a string of length widrh. Padding is done using the specified fillchar (default is a space).

count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

encode (encoding="utf-8”, errors="strict”)

Return an encoded version of the string as a bytes object. Default encoding is 'utf-8’. er-
rors may be given to set a different error handling scheme. The default for errors is ' strict’,
meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
"replace’, 'xmlcharrefreplace’, "backslashreplace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For a list of possible encodings, see
section Standard Encodings. Changed in version 3.1: Support for keyword arguments added.

.endswith (suﬁ‘ix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position.

expandtabs ([tabsize])

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each newline occurring
in the string. If fabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other
non-printing characters or escape sequences.

.find (sub[, start[, end]])

Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub
is not found.

format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text
or replacement fields delimited by braces {}. Each replacement field contains either the numeric index
of a positional argument, or the name of a keyword argument. Returns a copy of the string where each
replacement field is replaced with the string value of the corresponding argument.

34

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

>>> "The sum of 1 + 2 1is {0}".format (1+2)
"The sum of 1 + 2 1is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

str.format_map (mapping)
Similar to str. format (**mapping), except that mapping is used directly and not copied to a dict
. This is useful if for example mapping is a dict subclass:
>>> class Default (dict) :
def _ missing__ (self, key):
return key
>>> / {name} was born in {country}’.format_map (Default (name=’'Guido’))
"Guido was born in country’
New in version 3.2.
str.index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.
str.isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha (), c.isdecimal (),
c.isdigit (),orc.isnumeric().
str.isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “LI1”, or “Lo”. Note that this is different
from the “Alphabetic” property defined in the Unicode Standard.
str.isdecimal ()
Return true if all characters in the string are decimal characters and there is at least one character, false
otherwise. Decimal characters are those from general category “Nd”. This category includes digit charac-
ters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC
DIGIT ZERO.
str.isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.
str.isidentifier ()
Return true if the string is a valid identifier according to the language definition, section identifiers.
str.islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “LI”, or “Lt” and
lowercase characters are those with general category property “L1”.
str.isnumeric ()
Return true if all characters in the string are numeric characters, and there is at least one character, false
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric
value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those
with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.
str.isprintable ()
Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, except-
ing the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are
4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 35

The

Python Library Reference, Release 3.2

str

str

str

str

str

str

str

those which should not be escaped when repr () is invoked on a string. It has no bearing on the handling
of strings written to sys . stdout or sys.stderr.)

.isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise. Whitespace characters are those characters defined in the Unicode character database as “Other”
or “Separator” and those with bidirectional property being one of “WS”, “B”, or “S”.

.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

.isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “LI1”, or “Lt” and
uppercase characters are those with general category property “Lu”.

. join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will be
raised if there are any non-string values in seq, including bytes objects. The separator between elements
is the string providing this method.

.1ljust (width[,ﬁllchar])
Return the string left justified in a string of length widrh. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than len (s).

.lower ()
Return a copy of the string converted to lowercase.

.1strip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " 1lstrip ()
" spacious
>>> 'www.example.com’ .1lstrip (' cmowz.’)
"example.com’

4

static st r .maketrans (x[, y[, Z]])

str

str

str

This static method returns a translation table usable for str.translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
(strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be
converted to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each char-
acter in X will be mapped to the character at the same position in y. If there is a third argument, it must be a
string, whose characters will be mapped to None in the result.

.partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings.

.replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

.rfind (sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on
failure.

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

str.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

str.rjust (width[,ﬁllchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than len (s).

str.rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself.

str.rsplit ([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator.
Except for splitting from the right, rsplit () behaves like split () which is described in detail below.

str.rstrip ([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious ".rstrip()
! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

str.split ([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, 1,2’ .split (’,’) returns ["1’, ", ’2'1). The sep argument may consist of multiple
characters (for example, ' 1<>2<>3’ .split (/<>") returns ['1’, ’2’, ’3’1]).Splitting an empty
string with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just
whitespace with a None separator returns [].

Forexample,” 1 2 3 ’.split() returns ["1’, ’'2’, '3’],and’ 1 2 3 ' .split (None,
1) returns [717, "2 3 "].

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

str.startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes
to look for. With optional start, test string beginning at that position. With optional end, stop comparing
string at that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious " .strip ()
"spacious’

>>> 'www.example.com’ .strip (/' cmowz.’)
"example’

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 37

The Python Library Reference, Release 3.2

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives form
word boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub (r" [A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group(0) [0] .upper () +
mo.group (0) [1:].lower (),

)",

s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

str.translate (map)
Return a copy of the s where all characters have been mapped through the map which must be a dictionary of
Unicode ordinals (integers) to Unicode ordinals, strings or None. Unmapped characters are left untouched.
Characters mapped to None are deleted.

You can use str.maketrans () to create a translation map from character-to-character mappings in
different formats.

Note: An even more flexible approach is to create a custom character mapping codec using the codecs
module (see encodings.cpl251 for an example).

str.upper ()
Return a copy of the string converted to uppercase.

str.z£fill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than len (s).

4.6.2 Old String Formatting Operations

Note: The formatting operations described here are obsolete and may go away in future versions of Python. Use
the new String Formatting in new code.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string format-
ting or interpolation operator. Given format % values (where format is a string), $ conversion specifications
in format are replaced with zero or more elements of values. The effect is similar to the using sprint £ () in the
C language.

If format requires a single argument, values may be a single non-tuple object. * Otherwise, values must be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

A conversion specifier contains two or more characters and has the following components, which must occur in

this order:
1. The " %’ character, which marks the start of the specifier.
. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somena

2
3. Conversion flags (optional), which affect the result of some conversion types.
4

me)).

. Minimum field width (optional). If specified as an ” =’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a ’ .’ (dot) followed by the precision. If specified as ’ =’ (an asterisk), the
actual width is read from the next element of the tuple in values, and the value to convert comes after the

precision.
6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the * %’ character. The mapping key

selects the value to be formatted from the mapping. For example:

>>> print (' $ (language)s has % (number)03d quote types.’ %
{’ language’ : "Python", "number": 2})

Python has 002 quote types.
In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

T#7 The value conversion will use the “alternate form” (where defined below).

"o’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

o (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

r4r A sign character (* +’ or ’ -’) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is

identical to %d.

The conversion types are:

Con- Meaning Notes

version

rd’ Signed integer decimal.

ri’ Signed integer decimal.

"o’ Signed octal value. D

ru’ Obsolete type — it is identical to " d” . @)

rx! Signed hexadecimal (lowercase). 2)

X’ Signed hexadecimal (uppercase). 2)

ref Floating point exponential format (lowercase). 3)

"E’ Floating point exponential format (uppercase). 3)

rf£r Floating point decimal format. 3)

"E’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

rG’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

rc’ Single character (accepts integer or single character string).

"¢’ String (converts any Python object using repr ()). o)

rs’ String (converts any Python object using st r ()).

"% No argument is converted, results in a * $’ character in the result.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 39

The Python Library Reference, Release 3.2

Notes:

1. The alternate form causes a leading zero (* 0’) to be inserted between left-hand padding and the formatting
of the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ’ 0x’ or ' 0X’ (depending on whether the ’ x’ or ' X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed
as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to
6.

5. The precision determines the maximal number of characters used.
7. See PEP 237.

Since Python strings have an explicit length, %$s conversions do not assume that * \0’ is the end of the string.
Changed in version 3.1: £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by
%$g conversions. Additional string operations are defined in standard modules st ring and re.

4.6.3 Range Type

The range type is an immutable sequence which is commonly used for looping. The advantage of the range
type is that an range object will always take the same amount of memory, no matter the size of the range it
represents.

Range objects have relatively little behavior: they support indexing, contains, iteration, the 1en () function, and
the following methods:

range.count (x)
Return the number of i‘s for which s[1i] == x.

New in version 3.2.

range.index (x)
Return the smallest i such that s [1] == x. Raises ValueError when x is not in the range.

New in version 3.2.

4.6.4 Mutable Sequence Types

List and bytearray objects support additional operations that allow in-place modification of the object. Other
mutable sequence types (when added to the language) should also support these operations. Strings and tuples are
immutable sequence types: such objects cannot be modified once created. The following operations are defined
on mutable sequence types (where x is an arbitrary object).

Note that while lists allow their items to be of any type, bytearray object “items” are all integers in the range 0 <=
X < 256.

40 Chapter 4. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.2

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7] sameass[i:j] = []

s[i:j:k] =t the elements of s [1i: j:k] are replaced by those of ¢ (€))

del s[i:3:k] removes the elements of s [1: j:k] from the list

s.append (x) sameas s[len(s) :len(s)] = [x]

s.extend (x) sameas s[len(s) :len(s)] = x 2)

s.count (x return number of i‘s for which s [1] == x

s.index (x[, 1[, 3J11) return smallest k such that s [k] == xandi <= k < j 3)

S.insert (i, x) sameas s[i:1] = [x] 4)

s.pop([il) sameasx = s[i]; del s[i]; return x 5)

S.remove (X) same as del s[s.index (x)] 3)

s.reverse () reverses the items of s in place (6)

s.sort ([key[, reverse]]) | sortthe items of sin place 6), (7), (8)
Notes:

1. ¢ must have the same length as the slice it is replacing.

2. x can be any iterable object.

3. Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index () method, the sequence length is added, as for slice indices. If it is still negative,
it is truncated to zero, as for slice indices.

4. When a negative index is passed as the first parameter to the insert () method, the sequence length is
added, as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.

5. The optional argument i defaults to —1, so that by default the last item is removed and returned.

6. The sort () and reverse () methods modify the sequence in place for economy of space when sorting
or reversing a large sequence. To remind you that they operate by side effect, they don’t return the sorted or
reversed sequence.

7. The sort () method takes optional arguments for controlling the comparisons. Each must be specified as
a keyword argument.
key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None. Use functools.cmp_to_key () to convert an old-
style cmp function to a key function.
reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

8. sort () is not supported by bytearray objects.

4.6.5 Bytes and Byte Array Methods

Bytes and bytearray objects, being “strings of bytes”, have all methods found on strings, with the exception of
encode (), format () and isidentifier (), which do not make sense with these types. For converting the
objects to strings, they have a decode () method.

Wherever one of these methods needs to interpret the bytes as characters (e.g. the is. .. () methods), the ASCII
character set is assumed.

4.6.

Sequence Types — str, bytes, bytearray, list, tuple, range 41

The Python Library Reference, Release 3.2

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write

a = "abc"

b = a.replace("a", "f")
and

a = b"abc"

b = a.replace (b"a", b"f")

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is ut £-8' . errors may be given to set a
different error handling scheme. The default for errors is * strict’, meaning that encoding errors raise a
UnicodeError. Other possible values are * ignore’, ' replace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For a list of possible encodings, see
section Standard Encodings. Changed in version 3.1: Added support for keyword arguments.

The bytes and bytearray types have an additional class method:

classmethod bytes . fromhex (string)

classmethod bytearray . fromhex (string)
This bytes class method returns a bytes or bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, spaces are ignored.

>>> bytes.fromhex (' £0 £1£f2)
b/ \xf0\xf1\xf2’

The maketrans and translate methods differ in semantics from the versions available on strings:

bytes.translate (table[, delete])

bytearray.translate (table[, delete])
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a
bytes object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b’read this short text’.translate (None, b’aeiou’)
b’rd ths shrt txt’

static bytes .maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes.translate () that will map each char-
acter in from into the character at the same position in fo; from and fo must be bytes objects and have the
same length. New in version 3.1.

4.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len(set),and for x in set. Being an unordered collec-
tion, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing,
or other sequence-like behavior.

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be
used as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable
— its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of
another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’ jack’, ’sjoerd’},in addition to the set constructor.

The constructors for both classes work the same:

class set ([itemble])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified,
a new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

X in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a true superset of other, thatis, set >= other and set != other.

union (other, ...)
set | other |
Return a new set with elements from the set and all others.

intersection (other,...)
set & other &
Return a new set with elements common to the set and all others.

difference (other,...)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()
Return a new set with a shallow copy of s.

4.7. Set Types — set, frozenset 43

The Python Library Reference, Release 3.2

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any it-
erable as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set (abc’) & ’cbs’ in favor of the more readable
set ("abc’) .intersection (' cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only
if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another
set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set (‘abc’) == frozenset ('abc’) returns True and so does set (‘abc’) in
set ([frozenset ("abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any
two disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b,
a==Db, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with f rozenset return the type of the first operand. For exam-
ple: frozenset (“ab’) | set (’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update (other, ...)
set |= other |
Update the set, adding elements from all others.

intersection_update (other, ...)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (other,...)
set —-= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept
any iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a
set. To support searching for an equivalent frozenset, the elem set is temporarily mutated during the search

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

and then restored. During the search, the elem set should not be read or mutated since it does not have a
meaningful value.

4.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the dictionary. (For other containers see the built in 1ist, set, and tuple
classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as
keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such as 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry. (Note however,
that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary
keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’ jack’: 4098, ’'sjoerd’: 4127}or {4098: 'Jjack’, 4127: ’sjoerd’},orby
the dict constructor.

class dict ([arg])

Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument arg is a
mapping object, return a dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports iteration, or an iterator
object. The elements of the argument must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a
given key is seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one": 1, "two": 2}:

edict (one=1, two=2)

edict ({’one’: 1, ’'two’: 2})

edict (zip(('one’, ’"two’), (1, 2)))

edict ([["two’, 2], ['one’, 111])
The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ (), if the key key is not present, the d [key]
operation calls that method with the key key as argument. The d [key] operation then returns or raises
whatever is returned or raised by the __missing__ (key) call if the key is not present. No other
operations or methods invoke __missing__ (). If __missing__ () is not defined, KeyError
israised. __missing__ () must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
Ce return 0
>>> ¢ = Counter ()
>>> c[’'red’]

4.8. Mapping Types — dict 45

The Python Library Reference, Release 3.2

See collections.Counter for a complete implementation including other methods helpful for
accumulating and managing tallies.

d[key] = value
Set d[key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to
None, so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation
of view objects.

keys ()
Return a new view of the dictionary’s keys. See below for documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem /()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See below for documentation of view objects.

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

4.8.1 Dictionary view objects

The objects returned by dict.keys (), dict.values () and dict.items () are view objects. They pro-
vide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects
these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictio-
nary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python im-
plementations, and depends on the dictionary’s history of insertions and deletions. If keys, values and
items views are iterated over with no intervening modifications to the dictionary, the order of items
will directly correspond. This allows the creation of (value, key) pairs using zip (): pairs =
zip (d.values (), d.keys()). Another way to create the same listis pairs = [(v, k) for
(k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to
iterate over all entries.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a
(key, wvalue) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as
set-like since the entries are generally not unique.) For set-like views, all of the operations defined for the abstract
base class collections. Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>> dishes = {’eggs’: 2, ’'sausage’: 1, ’"bacon’: 1, ’'spam’: 500}
>>> keys = dishes.keys ()
>>> values = dishes.values()

>>> # iteration

>>> n = 0

>>> for val in values:
n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order
>>> list (keys)

["eggs’, ’'bacon’, ’'sausage’, ’'spam’]

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|[’eggs’]

>>> del dishes[’sausage’]

>>> list (keys)

["spam’, ’'bacon’]

>>> # set operations
>>> keys & {’eggs’, ’'bacon’, ’salad’}
{"bacon’}

4.8. Mapping Types —dict 47

The Python Library Reference, Release 3.2

>>> keys ~ {’sausage’, ’Jjuice’}
{’"juice’, ’'eggs’, ’'bacon’, ’spam’}

4.9 memoryview type

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying. Memory is generally interpreted as simple bytes.

class memoryview (0bj)
Create a memoryview that references obj. obj must support the buffer protocol. Builtin objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other
types such as array.array may have bigger elements.

len (view) returns the total number of elements in the memoryview, view. The itemsize attribute will
give you the number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single index will return a single element as a
bytes object. Full slicing will result in a subview:

>>> v = memoryview (b’ abcefg’)
>>> v[1l]

b’"b’

>>> v[-1]

blgl

>>> v[1l:4]

<memory at 0x77ab28>

>>> bytes(v[1:4])

b’ bce’

If the object the memoryview is over supports changing its data, the memoryview supports slice assignment:
>>> data = bytearray(b’abcefg’)

>>> v = memoryview (data)
>>> v.readonly

False

>>> v[0] = b’'z’

>>> data
bytearray (b’ zbcefg’)
>>> v[l:4] = b’123’
>>> data

bytearray (b’al23fg’)
>>> v[2] = b’spam’

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.

memoryview has several methods:

tobytes ()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on
the memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

b’ abc’
>>> bytes (m)
b"abc’

tolist ()
Return the data in the buffer as a list of integers.

>>> memoryview (b’ abc’) .tolist ()
[97, 98, 99]

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions
when a view is held on them (for example, a bytearray would temporarily forbid resizing); there-
fore, calling release() is handy to remove these restrictions (and free any dangling resources) as soon
as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b’abc’)
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b’abc’) as m:
m[0]

b g

>>> m[0]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.
There are also several readonly attributes available:

format
A string containing the format (in st ruct module style) for each element in the view. This defaults
to / B/, a simple bytestring.

itemsize
The size in bytes of each element of the memoryview:

>>> m = memoryview(array.array ('H’, [1,2,3]1))
>>> m.itemsize

2

>>> m[0]

b’ \x01\x00"

>>> len(m[0]) == m.itemsize

True

shape
A tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

4.9. memoryview type 49

The Python Library Reference, Release 3.2

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimen-
sion of the array.

readonly
A bool indicating whether the memory is read only.

4.10 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before
the statement body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this
context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from
__enter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext (). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context
in the body of the with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and
continue execution with the statement immediately following the with statement. Otherwise the exception
continues propagating after this method has finished executing. Exceptions that occur during execution of
this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception.
This allows context management code (such as contextlib.nested) to easily detect whether or not an
__exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated
specially beyond their implementation of the context management protocol. See the context1ib module for
some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to imple-
ment these protocols. If a generator function is decorated with the context1ib.contextmanager decorator,
it will return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather
than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

4.11.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a
name defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not,
strictly speaking, an operation on a module object; import foo does not require a module object named foo to
exist, rather it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignmenttothe __ dict___
attribute is not possible (youcan writem.__dict__["a’] = 1, whichdefinesm.a tobe 1, butyou can’t write
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in) >. Ifloaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

4.11.2 Classes and Class Instances

See objects and class for these.

4.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object:
a bound method (also called instance method) object. When called, it will add the self argument to the ar-
gument list. Bound methods have two special read-only attributes: m.___self__ is the object on which the
method operates, and m.___func___is the function implementing the method. Calling m (arg-1, arg-2,

., arg-n) is completely equivalent to callingm.__func__(m.__self , arg-1, arg-2, ...,
arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes
are actually stored on the underlying function object (meth.__ func__), setting method attributes on bound
methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order to set
a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass
c = C{()
c.method.__ func__ .whoami = ’'my name is c’

See types for more information.

4.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution

4.11. Other Built-in Types 51

The Python Library Reference, Release 3.2

environment. Code objects are returned by the built-in compi le () function and can be extracted from function
objects through their ___code___ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.11.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type ().
There are no special operations on types. The standard module t ypes defines names for all standard built-in

types.

Types are written like this: <class ’int’>.

4.11.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

4.11.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one
ellipsis object, named E11ipsis (a built-in name).

Itiswrittenas El1lipsisor....

4.11.9 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be
used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

4.11.10 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by the dir () built-in function.

object._ _diect_
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class_
The class to which a class instance belongs.

class.__bases_
The tuple of base classes of a class object.

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

class._ _name

The name of the class or type.
The following attributes are only supported by new-style classes.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolu-
tion.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It
is called at class instantiation, and its result is stored in ___mro_ .

class._ _subclasses_ ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list
of all those references still alive. Example:

>>> int._ subclasses__ ()
[<type ’"bool’>]

4.12. Special Attributes 53

The Python Library Reference, Release 3.2

54 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement
with an except clause that mentions a particular class, that clause also handles any exception classes derived
from that class (but not exception classes from which it is derived). Two exception classes that are not related via
subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of
several items of information (e.g., an error code and a string explaining the code). The associated value is usually
passed as arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Exception class and not BaseException. More information on defining
exceptions is available in the Python Tutorial under tut-userexceptions.

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If bytes () or str () is called on an instance of this class, the representation of
the argument(s) to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like TOError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_ traceback (1b)
This method sets b as the new traceback for the exception and returns the exception object. It is
usually used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should
also be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

55

The Python Library Reference, Release 3.2

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: ITndexError, KeyError. This can be raised directly by codecs.lookup ().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s e r rno attribute
(it is assumed to be an error number), and the second item is available on the strerror attribute (it is
usually the associated error message). The tuple itself is also available on the args attribute.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on the fi1lename attribute. However, for backwards compatibility,
the args attribute contains only a 2-tuple of the first two constructor arguments.

The £ilename attribute is None when this exception is created with other than 3 arguments. The errno
and strerror attributes are also None when the instance was created with other than 2 or 3 arguments.
In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the file.read () and file.readline () methods return an
empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised
when Python is configured with the ——with-fpectl option, or the WANT_SIGFPE_HANDLER symbol
is defined in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close () method is called. It directly inherits from BaseExcept ion instead
of Exception since it is technically not an error.

exception IOError
Raised when an I/O operation (such as the built-in print () or open () functions or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally
caught by code that catches Exception and thus prevent the interpreter from exiting.

56 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.2

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecture (C’s malloc () function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method.

exception OSError
This exception is derived from EnvironmentError. It is raised when a function returns a system-
related error (not for illegal argument types or other incidental errors). The errno attribute is a numeric
error code from errno, and the strerror attribute is the corresponding string, as would be printed by
the C function perror (). See the module errno, which contains names for the error codes defined by
the underlying operating system.

For exceptions that involve a file system path (such as chdir () or unlink ()), the exception instance
will contain a third attribute, £i1lename, which is the file name passed to the function.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for
integers (which would rather raise MemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy () function, is
used to access an attribute of the referent after it has been garbage collected. For more information on weak
references, see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exception StopIteration
Raised by built-in function next () and an iterator‘s __next__ () method to signal that there are no
further values.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call
to the built-in functions exec () or eval (), or when reading the initial script or standard input (also
interactively).

Instances of this class have attributes £ilename, 1ineno, offset and text for easier access to the
details. str () of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version; it is also printed at the start of an interactive Python session),

57

The Python Library Reference, Release 3.2

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is an integer, it specifies the system exit status (passed
to C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a string), the
object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly from BaseException and not Except ion, since it is not
technically an error.

Acallto sys.exit () istranslated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to fork ()).

The exception inherits from BaseExcept ion instead of Exception so that it is not accidentally caught
by code that catches Exception. This allows the exception to properly propagate up and cause the
interpreter to exit.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an
errno value. The winerror and strerror values are created from the return values of the
GetLastError () and FormatMessage () functions from the Windows Platform API. The errno
value maps the winerror value to corresponding errno . h values. This is a subclass of OSError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

58 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.2

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning

Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and buffer.

exception ResourceWarning
Base class for warnings related to resource usage. New in version 3.2.

5.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-— SystemExit
+—— KeyboardInterrupt
+—— GeneratorExit
+—-— Exception
+-— StopIteration
+—— ArithmeticError

| +-— FloatingPointError
| +—— OverflowError

| +—-— ZeroDivisionError
+-— AssertionError

+—— AttributeError
+-— BufferError

+-— EnvironmentError

| +—— IOError

| +—— OSError

| +—— WindowsError (Windows)

| +—— VMSError (VMS)
+—— EOFError

+—— ImportError

+—— LookupError

| +—— IndexError

| +-— KeyError

+—— MemoryError

+—— NameError

| +-— UnboundLocalError
+-— ReferenceError

+-— RuntimeError

| +—— NotImplementedError
+—— SyntaxError

5.1. Exception hierarchy

59

The Python Library Reference, Release 3.2

+—-— IndentationError
+-— TabError
SystemError
TypeError
ValueError
+—-— UnicodeError
+-— UnicodeDecodeError
+-— UnicodeEncodeError
+—— UnicodeTranslateError
Warning
+—— DeprecationWarning
+-— PendingDeprecationWarning
+-— RuntimeWarning
+-— SyntaxWarning
+-—— UserWarning
+-— FutureWarning
+—— ImportWarning
+-— UnicodeWarning
+-— BytesWarning
+—-— ResourceWarning

60

Chapter 5. Built-in Exceptions

CHAPTER
SIX

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence Types
— str, bytes, bytearray, list, tuple, range section, and also the string-specific methods described in the String
Methods section. To output formatted strings, see the String Formatting section. Also, see the re module for
string functions based on regular expressions.

6.1 string — Common string operations

See Also:
Sequence Types — str, bytes, bytearray, list, tuple, range
String Methods

Source code: Lib/string.py

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters ’ abcdefghijklmnopgrstuvwxyz’. This value is not locale-dependent and
will not change.

string.ascii_uppercase
The uppercase letters * ABCDEFGHIJKLMNOPQRSTUVWXYZ' . This value is not locale-dependent and will
not change.

string.digits
The string ' 0123456789 .

string.hexdigits
The string 0123456789%abcde fABCDEF’ .

string.octdigits
The string ' 01234567

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

61

http://svn.python.org/view/python/branches/py3k/Lib/string.py?view=markup

The Python Library Reference, Release 3.2

string.printable

String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation,and whitespace.

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format () method described in

PEP 3101. The Formatter class in the st ring module allows you to create and customize your own string
formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter

The Formatter class has the following public methods:

format (format_string, *args, **kwargs)

format () is the primary API method. It takes a format template string, and an arbitrary set of
positional and keyword argument. format () is just a wrapper that calls vformat ().

vformat (format_string, args, kwargs)

This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the
dictionary as individual arguments using the xargs and *+kwds syntax. vformat () does the
work of breaking up the format template string into character data and replacement fields. It calls the
various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)

Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec,
conversion). This is used by vformat () to break the string into either literal text, or replacement
fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field_name,
format_spec and conversion will be None.

get_field (field_name, args, kwargs)

Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such
as “O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value
used_key has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)

Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘O.name’ would cause get_value () to be called with a key
argument of 0. The name attribute will be looked up after get_value () returns by calling the
built-in getattr () function.

62

Chapter 6. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.2

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args () is assumed
to raise an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that
subclasses can override it.

convert_field (value, conversion)
Converts the value (returned by get_field ()) given a conversion type (as in the tuple returned by
the parse () method). The default version understands ‘r’ (repr) and ‘s’ (str) conversion types.

6.1.3 Format String Syntax
The str.format () method and the Formatter class share the same syntax for format strings (although in
the case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in
braces is considered literal text, which is copied unchanged to the output. If you need to include a brace character
in the literal text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field = “{"” [field_name] [”!” conversion] [”:” format_spec] “}”
field_name = arg_name (”.” attribute_name | “[” element_index “]”)x
arg_name = [identifier | integer]

attribute_name = identifier

element_index = integer | index_string

index_string = <any source character except “]"> +

conversion = “r” | “s” | “a”

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to
be formatted and inserted into the output instead of the replacement field. The field_name is optionally followed
by a conversion field, which is preceded by an exclamation point * ! 7, and a format_spec, which is preceded by a
colon ’ : ’. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either either a number or a keyword. If it’s a number, it
refers to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical
arg_names in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers
0, 1, 2, ... will be automatically inserted in that order. The arg_name can be followed by any number of index or
attribute expressions. An expression of the form ’ . name’ selects the named attribute using getattr (), while
an expression of the form ’ [index]’ does an index lookup using __getitem__ (). Changed in version 3.1:
The positional argument specifiers can be omitted, so * {} {}’ is equivalentto ' {0} {1}’. Some simple
format string examples:

"First, thou shalt count to {0}"
"Bring me a {}"

"From {} to {}"

"My quest is {name}"

"Weight in tons {0.weight}"
"Units destroyed: {players[0]}"

References first positional argument

Same as "From {0} to {(1}"
References keyword argument ’name’
"weight’ attribute of first positional arg

S Hh HHR KR KR

6.1. string — Common string operations 63

First element of keyword argument ’players’

Implicitly references the first positional argument

The Python Library Reference, Release 3.2

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the ___format__ () method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
__ format__ (), the normal formatting logic is bypassed.

Three conversion flags are currently supported: ’ !s’ which calls str () on the value, ’ !r’ which calls
repr () and ' 'a’ whichcalls ascii ().

Some examples:

"Harold’s a clever {0O!s}" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first
"More {'a}" # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can
contain only a field name; conversion flags and format specifications are not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of
a value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax). They can also be passed directly to the built-in format ()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called st r () on
the value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec [[filllalign] [sign] [#]1[0] [width][,][.precision] [type]

fill = <a character other than ‘}’'>

align = \\<II | \\>ll ‘ \\:II I WA

Sign — “+" | A\ /4 ‘ ” w

width = integer

precision = integer

type ::= \\b" | “cll ‘ \\dll | “ell | \\EII I \\f" | \\FII I \\gﬂ | “GII ‘

The fill character can be any character other than ‘{ or ‘}’. The presence of a fill character is signaled by the
character following it, which must be one of the alignment options. If the second character of format_spec is not
a valid alignment option, then it is assumed that both the fill character and the alignment option are absent.

The meaning of the various alignment options is as follows:

64 Chapter 6. String Services

Wy
n

The Python Library Reference, Release 3.2

Op- | Meaning

tion

"<’ | Forces the field to be left-aligned within the available space (this is the default for most
objects).

">’ | Forces the field to be right-aligned within the available space (this is the default for
numbers).

"=’ | Forces the padding to be placed after the sign (if any) but before the digits. This is used
for printing fields in the form ‘+000000120’. This alignment option is only valid for
numeric types.

" ~7 | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill
it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning

tion

T4 indicates that a sign should be used for both positive as well as negative numbers.

r—r indicates that a sign should be used only for negative numbers (this is the default
behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The ’ #’ option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float, complex and Decimal types. For integers, when
binary, octal, or hexadecimal output is used, this option adds the prefix respective ’ Ob’, ' 0o’, or ' O0x’ to the
output value. For floats, complex and Decimal the alternate form causes the result of the conversion to always
contain a decimal-point character, even if no digits follow it. Normally, a decimal-point character appears in the
result of these conversions only if a digit follows it. In addition, for * g’ and ’ G’ conversions, trailing zeros are
not removed from the result.

The ’ , * option signals the use of a comma for a thousands separator. For a locale aware separator, use the ' n’
integer presentation type instead. Changed in version 3.1: Added the ’ , * option (see also PEP 378). width is a
decimal integer defining the minimum field width. If not specified, then the field width will be determined by the
content.

If the width field is preceded by a zero (’ 0) character, this enables zero-padding. This is equivalent to an
alignment type of / =’ and a fill character of ' 0’ .

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a
floating point value formatted with * £ and ’ F'’, or before and after the decimal point for a floating point value
formatted with / g’ or ’ G’ . For non-number types the field indicates the maximum field size - in other words,
how many characters will be used from the field content. The precision is not allowed for integer values.

Finally, the rype determines how the data should be presented.

The available string presentation types are:

Type Meaning
"'s’ String format. This is the default type for strings and may be omitted.
None | Thesameas’s’.

The available integer presentation types are:

6.1. string — Common string operations 65

http://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.2

Type| Meaning

"b’ | Binary format. Outputs the number in base 2.

"¢’ | Character. Converts the integer to the corresponding unicode character before printing.
"d’ | Decimal Integer. Outputs the number in base 10.

"o’ | Octal format. Outputs the number in base 8.

"x’ | Hex format. Outputs the number in base 16, using lower- case letters for the digits above
9.

"X’ | Hex format. Outputs the number in base 16, using upper- case letters for the digits above
9.

n’ | Number. This is the same as ’ d’, except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as ' d’ .

In addition to the above presentation types, integers can be formatted with the floating point presentation types
listed below (except ’ n’ and None). When doing so, f1oat () is used to convert the integer to a floating point
number before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning

" e’ | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate
the exponent.

"E’ | Exponent notation. Same as ' e’ except it uses an upper case ‘E’ as the separator
character.

" £/ | Fixed point. Displays the number as a fixed-point number.

"F’ | Fixed point. Same as ’ £’ , but converts nan to NAN and inf to INF.

" g’ | General format. For a given precision p >= 1, this rounds the number to p significant
digits and then formats the result in either fixed-point format or in scientific notation,
depending on its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type
"e’ and precision p—1 would have exponent exp. Then if -4 <= exp < p,the
number is formatted with presentation type ’ £/ and precision p—1-exp. Otherwise, the
number is formatted with presentation type ’ e’ and precision p—1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is also
removed if there are no remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
—-inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1.

"G’ | General format. Same as ’ g’ except switches to ' E’ if the number gets too large. The
representations of infinity and NaN are uppercased, too.

Number. This is the same as ' g’ , except that it uses the current locale setting to insert the
appropriate number separator characters.

"%’ | Percentage. Multiplies the number by 100 and displays in fixed (£’) format, followed by
a percent sign.

Nong Similar to * g’ , except with at least one digit past the decimal point and a default precision
of 12. This is intended to match st r (), except you can add the other format modifiers.

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with : used
instead of %. For example, * $03.2f’ can be translatedto ’ { : 03.2f}".

The new format syntax also supports new and different options, shown in the follow examples.
Accessing arguments by position:

>>> {0}, {1}, {2} .format('a’, ’"b", 'c’)
"a, b, c’
>>> ' {}, {}, {}/ .format('a’, 'b’, ’'c’) # 3.1+ only

66 Chapter 6. String Services

The Python Library Reference, Release 3.2

"a, b, c’

>>> {2}, {1}, {0} .format('a’, ’'b’, 'c’)

"c, b, a’

>>> {2}, {1}, {0}’ .format («"abc’) # unpacking argument sequence

"c, b, a’

>>> " {0}{1}{0}" .format ("abra’, ’'cad’) # arguments’ indices can be repeated

"abracadabra’
Accessing arguments by name:

>>> ’Coordinates: {latitude}, {longitude}’.format (latitude=’37.24N’, longitude='-115.81T
"Coordinates: 37.24N, -115.81W’

>>> coord = {’latitude’: "37.24N’, ’'longitude’: '-115.81W’"}

>>> ’Coordinates: {latitude}, {longitude}’.format (x+xcoord)

"Coordinates: 37.24N, -115.81W’

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> (’The complex number {0} is formed from the real part {O.real} '
"and the imaginary part {0.imag}.’).format (c)
"The complex number (3-57) is formed from the real part 3.0 and the imaginary part -5.0.
>>> class Point:
def _ init_ (self, x, y):
self.x, self.y = x, y
def = str_ (self):
return ’'Point ({self.x}, {self.y})’.format (self=self)

>>> str (Point (4, 2))
"Point (4, 2)’

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {O[1]}’.format (coord)
"X: 3; Y: 57

Replacing %s and %$r:

>>> "repr () shows quotes: {!r}; str() doesn’t: {!s}".format (’'testl’, ’'test2’)
"repr () shows quotes: ’'testl’; str() doesn’t: test2"

Aligning the text and specifying a width:

>>> / {:<30}" .format (' left aligned’)

"left aligned !

>>> /" {:>30}" .format (' right aligned’)

! right aligned’

>>> 7 {:730}’ .format (' centered’)

! centered !

>>> " { %730}’ .format (' centered’) # use ’#’ as a fill char
FdxxkkkhrrkkrCcenteredrrrxxckrkxxkkx’

Replacing $+£, $—f,and $ f and specifying a sign:

>>> " {:+f}; {:4+f}" .format (3.14, -3.14) # show it always
"+3.140000; -3.140000"

>>> " {: f}; {: £}’ .format (3.14, -3.14) # show a space for positive numbers
7 3.140000; —-3.140000"
>>> ' {:-f}; {:-f}" .format (3.14, -3.14) # show only the minus ——- same as ’{:f}; {:f}’

"3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

6.1. string — Common string operations 67

The Python Library Reference, Release 3.2

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; Dbin:
"int: 42; hex: 2a; oct: 52; bin: 101010

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0O:#0}; bin:

"int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010’
Using the comma as a thousands separator:

>>> 7 {:,}’ . format (1234567890)
r1,234,567,890"

Expressing a percentage:

>>> points = 19
>>> total = 22

{O:b}".format (42)

{O:4#b}".format (42)

>>> ’Correct answers: {:.2%}.’.format (points/total)

"Correct answers: 86.36%’
Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> 1 {:5Y-%m—-%d SH:%$M:%S}’ .format (d)

72010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<*>’, [’left’, 'center’,
"{0:{fill}{align}l6}’ .format (text, fill=align,

Fleft<iig<!
Iannarfcentert AN
">>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> 7 { 02X} {:02X}{:02X}{:02X}" .format (xoctets)
"COAB0001”
>>> int (_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):

for base in ’dXob’:

print (! {0:{width} {base}}’.format (num,

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

base=base,

"right’]):
align=align)

width=width),

end="

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based substitu-

tions, Templates support $-based substitutions, using the following rules:

* $$ is an escape; it is replaced with a single $.

68

Chapter 6. String Services

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.2

* Sidentifier names a substitution placeholder matching a mapping key of "identifier". By de-
fault, "identifier" mustspell a Python identifier. The first non-identifier character after the $ character
terminates this placeholder specification.

e ${identifier} isequivalent to $identifier. Itis required when valid identifier characters follow
the placeholder but are not part of the placeholder, such as "${noun}ification™".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)
The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with
keys that match the placeholders in the template. Alternatively, you can provide keyword arguments,
where the keywords are the placeholders. When both mapping and kwds are given and there are
duplicates, the placeholders from kwds take precedence.

safe_substitute (mapping, **kwds)
Like substitute (), except that if placeholders are missing from mapping and kwds, instead of
raising a KeyError exception, the original placeholder will appear in the resulting string intact.
Also, unlike with substitute (), any other appearances of the $ will simply return $ instead of
raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries
to return a usable string instead of raising an exception. In another sense, safe_substitute ()
may be anything other than safe, since it will silently ignore malformed templates containing dangling
delimiters, unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it,
but read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template (’$who likes S$what’)

>>> s.substitute (who='"tim’, what=’'kung pao’)

"tim likes kung pao’

>>> d = dict (who='tim’)

>>> Template (' Give $who $100’) .substitute (d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template (/' $who likes S$what’) .substitute (d)
Traceback (most recent call last):

[...]

KeyError: ’what’

>>> Template (' $who likes Swhat’) .safe_substitute (d)
"tim likes S$what’

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter char-
acter, or the entire regular expression used to parse template strings. To do this, you can override these class
attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value $.
Note that this should not be a regular expression, as the implementation will call re.escape () on this
string as needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will
be added automatically as appropriate). The default value is the regular expression [_a-z] [_a-z0-9] .

6.1. string — Common string operations 69

The Python Library Reference, Release 3.2

* flags — The regular expression flags that will be applied when compiling the regular expression used for
recognizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be
added to the flags, so custom idpatterns must follow conventions for verbose regular expressions. New in
version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

¢ invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear
last in the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (),
and join the capitalized words using str.join (). If the optional second argument sep is absent or
None, runs of whitespace characters are replaced by a single space and leading and trailing whitespace are
removed, otherwise sep is used to split and join the words.

6.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. However, Unicode strings
and 8-bit strings cannot be mixed: that is, you cannot match an Unicode string with a byte pattern or vice-versa;
similarly, when asking for a substitution, the replacement string must be of the same type as both the pattern and
the search string.

Regular expressions use the backslash character (* \ /) to indicate special forms or to allow special characters to
be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the
pattern string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a
regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled
in any special way in a string literal prefixed with r’. So r"\n" is a two-character string containing * \’ and
"n’, while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python
code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first,
but miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first edition covered writing good regular
expression patterns in great detail.

70 Chapter 6. String Services

The Python Library Reference, Release 3.2

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string g matches B, the string pg
will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B;
or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like "2, " a’,
or ' 0, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary char-
acters, so last matches the string ' 1ast’. (In the rest of this section, we’ll write RE’s in this special
style, usually without quotes, and strings to be matched * in single quotes’.)

Some characters, like ’ | 7 or / (', are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted. Regular expression pattern strings may not
contain null bytes, but can specify the null byte using the \number notation, e.g., ' \x00" .

The special characters are:

" .’ (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

’ A7 (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each
newline.

”$’ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE
mode also matches before a newline. foo matches both ‘foo” and ‘foobar’, while the regular expression
foo$ matches only ‘foo’. More interestingly, searching for foo.$in’ fool\nfoo2\n’ matches ‘foo2’
normally, but “fool’ in MULTILINE mode; searching for a single $ in ’ foo\n’ will find two (empty)
matches: one just before the newline, and one at the end of the string.

"%’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible. ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

"+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed
by any non-zero number of ‘b’s; it will not match just ‘a’.

72’ Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,?2? The " «’, "+’ ,and ’ 2’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <. x> is matched against <H1>title</H1>', it will match the
entire string, and not just ' <H1>’. Adding ’ ?’ after the qualifier makes it perform the match in non-
greedy or minimal fashion; as few characters as possible will be matched. Using .*? in the previous
expression will match only * <H1>"'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For example, a { 6} will match exactly six ’ a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example, a{3, 5} will match from 3 to 5 * a’ characters. Omitting m
specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b
will match aaaab or a thousand ’ a’ characters followed by a b, but not aaab. The comma may not be
omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string ' aaaaaa’, a{3,5} will match 5 ” a’ characters, while a{3, 5} ? will only match 3
characters.

6.2. re — Regular expression operations 71

The Python Library Reference, Release 3.2

"\’ Either escapes special characters (permitting you to match characters like * =’ , 2/, and so forth), or signals

a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand, so
it’s highly recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be

indicated by giving two characters and separating them by a ’ -’ . Special characters are not active inside
sets. For example, [akm$] will match any of the characters "a’, "k’, "m’,or /' $’; [a—z] will match
any lowercase letter, and [a-zA-Z0-9] matches any letter or digit. Character classes such as \w or \'S
(defined below) are also acceptable inside a range, although the characters they match depends on whether
ASCITI or LOCALE mode is in force. If you want to include a ’]’ or a ' -’ inside a set, precede it with a
backslash, or place it as the first character. The pattern []] will match ’ 17, for example.

You can match the characters not within a range by complementing the set. This is indicated by including
a ' ~' as the first character of the set; ’ ~’ elsewhere will simply match the * ~’ character. For example,
[~5] will match any character except / 5’ , and [~"] will match any character except * ' .

Note that inside [] the special forms and special characters lose their meanings and only the syntaxes de-
scribed here are valid. For example, +, x, (,), and so on are treated as literals inside [], and backreferences
cannot be used inside [].

"|” A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An

(?.

arbitrary number of REs can be separated by the ’ | in this way. This can be used inside groups (see
below) as well. As the target string is scanned, REs separated by ’ |’ are tried from left to right. When one
pattern completely matches, that branch is accepted. This means that once A matches, B will not be tested
further, even if it would produce a longer overall match. In other words, the ’ |’ operator is never greedy.
To match a literal ” | 7, use \ |, or enclose it inside a character class, asin [|].

.) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;

the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals * (* or) ', use \ (or
\\), or enclose them inside a character class: [(] [)].

. .) This is an extension notation (a ’ ?’ following a ’ (’ is not meaningful otherwise). The first character

after the 2’/ determines what the meaning and further syntax of the construct is. Extensions usually do
not create a new group; (?P<name>...) is the only exception to this rule. Following are the currently
supported extensions.

(?ailmsux) (One or more letters from the set "a’, *1i’, 'L’, 'm’, ’'s’, 'u’, ' x’.) The group matches

the empty string; the letters set the corresponding flags: re . A (ASCII-only matching), re . I (ignore case),
re.L (locale dependent), re .M (multi-line), re . S (dot matches all), and re . X (verbose), for the entire
regular expression. (The flags are described in Module Contents.) This is useful if you wish to include the
flags as part of the regular expression, instead of passing a flag argument to the re . compile () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the

parentheses, but the substring matched by the group cannot be retrieved after performing a match or refer-
enced later in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible within

the rest of the regular expression via the symbolic group name name. Group names must be valid Python
identifiers, and each group name must be defined only once within a regular expression. A symbolic group
is also a numbered group, just as if the group were not named. So the group named id in the example below
can also be referenced as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\wx), the group can be referenced by its name in
arguments to methods of match objects, such as m.group (' 1d’) orm.end (’ 1d’), and also by name

72

Chapter 6. String Services

The Python Library Reference, Release 3.2

in the regular expression itself (using (?P=1id)) and replacement text given to . sub () (using \g<id>).
(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For example, Isaac (?=Asimov) willmatch’ Isaac ' onlyifit’s followed by ' Asimov’.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!'Asimov) will match ' Isaac ’ only if it’s not followed by ’ Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in abcdef,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaning that abc or a |b are allowed, but ax and
a{3, 4} are not. Note that patterns which start with positive lookbehind assertions will never match at the
beginning of the string being searched; you will most likely want to use the search () function rather than
the match () function:

>>> import re

>>> m = re.search(’ (?<=abc)def’, ’"abcdef’)
>>> m.group (0)

"def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (?<=-)\w+’, ’spam-egg’)
>>> m.group (0)
4 eggl
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a

negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only
match strings of some fixed length. Patterns which start with negative lookbehind assertions may match at
the beginning of the string being searched.

(? (id/name) yes—pattern|no-pattern) Will try to match with yes-pattern if the group with
given id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can
be omitted. For example, (<) ? (\w+@\w+ (?:\.\w+)+) (?(1)>) is a poor email matching pat-
tern, which will match with ' <user@host.com>’ as well as 'user@host.com’, but not with
’<user@host.com’.

The special sequences consist of * \’ and a character from the list below. If the ordinary character is not on the
list, then the resulting RE will match the second character. For example, \ $ matches the character * $” .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the’ or 55 55’, but not ' the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of
number is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the ’ [’ and ’]’ of a character class, all numeric escapes are treated as
characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of Unicode alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a
non-alphanumeric, non-underscore Unicode character. Note that formally, \b is defined as the boundary
between a \w and a \W character (or vice versa). By default Unicode alphanumerics are the ones used,
but this can be changed by using the ASCIT flag. Inside a character range, \b represents the backspace
character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This is just the opposite
of \b, so word characters are Unicode alphanumerics or the underscore, although this can be changed by
using the ASCIT flag.

\d

6.2. re — Regular expression operations 73

The Python Library Reference, Release 3.2

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode charac-
ter category [Nd]). This includes [0—-9], and also many other digit characters. If the ASCIT flag is
used only [0—-9] is matched (but the flag affects the entire regular expression, so in such cases using
an explicit [0—9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a Unicode decimal digit. This is the opposite of \d. If the ASCTT flag is
used this becomes the equivalent of [~0-9] (but the flag affects the entire regular expression, so in such
cases using an explicit [~0-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v],
and also many other characters, for example the non-breaking spaces mandated by typography rules in
many languages). If the ASCIT flagis used, only [\t\n\r\£f\v] is matched (but the flag affects
the entire regular expression, so in such cases using an explicit [\t\n\r\£f\v] may be a better
choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is
equivalentto [\t\n\r\f\v].

\S Matches any character which is not a Unicode whitespace character. This is the opposite of \s. If the
ASCIT flag is used this becomes the equivalent of [~ \t\n\r\f\v] (but the flag affects the entire
regular expression, so in such cases using an explicit [~ \t\n\r\f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be
part of a word in any language, as well as numbers and the underscore. If the ASCI T flag is used, only
[a—zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such cases using
an explicit [a—zA-Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalentto [a—zA-Z0-9_].

\W Matches any character which is not a Unicode word character. This is the opposite of \w. If the ASCIT flag
is used this becomes the equivalent of [~a-zA-Z0-9_] (but the flag affects the entire regular expression,
so in such cases using an explicit [*a-zA-Z0-9_] may be a better choice).

\z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \ x
AN\

Octal escapes are included in a limited form: If the first digit is a O, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three
digits in length.

6.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match checks for a match only at
the beginning of the string, while search checks for a match anywhere in the string (this is what Perl does by
default).

Note that match may differ from search even when using a regular expression beginning with * ~”: ’ ~/ matches
only at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting
position given by the optional pos argument regardless of whether a newline precedes it.

74 Chapter 6. String Services

The Python Library Reference, Release 3.2

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

6.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled

form.

re.compile (pattern, flags=0)

Compile a regular expression pattern into a regular expression object, which can be used for matching using
itsmatch () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to
result = re.match(pattern, string)

but using re.compile () and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match (), re.search () or
re.compile () are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

re.A
re.ASCII

Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns.

Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and
its embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default
for strings (and Unicode matching isn’t allowed for bytes).

re.I

re.IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not
affected by the current locale and works for Unicode characters as expected.

re.L

re.LOCALE
Make \w, \W, \b, \B, \'s and \ S dependent on the current locale. The use of this flag is discouraged as
the locale mechanism is very unreliable, and it only handles one “culture” at a time anyway; you should use
Unicode matching instead, which is the default in Python 3 for Unicode (str) patterns.

re.M

re .MULTILINE
When specified, the pattern character * ~/ matches at the beginning of the string and at the beginning of
each line (immediately following each newline); and the pattern character $’ matches at the end of the
string and at the end of each line (immediately preceding each newline). By default, * ~’ matches only at
the beginning of the string, and ’ $’ only at the end of the string and immediately before the newline (if
any) at the end of the string.

6.2. re — Regular expression operations 75

The Python Library Reference, Release 3.2

re.

re

re
re

re.

re.

re.

S
.DOTALL
Make the ’ .’ special character match any character at all, including a newline; without this flag, * . " will
match anything except a newline.
X
.VERBOSE
This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ’ #’
neither in a character class or preceded by an unescaped backslash, all characters from the leftmost such
" #’ through the end of the line are ignored.
That means that the two following regular expression objects that match a decimal number are functionally
equal:
a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d » # some fractional digits""", re.X)
b re.compile (r"\d+\.\d+")
search (pattern, string, flags=0)

Scan through string looking for a location where the regular expression pattern produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corre-

sponding match object. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere in string, use search () instead.

split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit
splits occur, and the remainder of the string is returned as the final element of the list.

>>> re.split (/' \W+’, ’Words, words, words.’)
["Words’, ’'"words’, "words’, ']

>>> re.split (’ (\W+)’, ’'Words, words, words.’)
["Words", ', ', "words’, ', ', "words’, ".’, '’"]

>>> re.split (/' \W+’, ’'Words, words, words.’, 1)
["Words’”, ’"words, words.’]

>>> re.split (/' [a-f]+’, '0a3B9’, flags=re.IGNORECASE)
[ror, 37, 9]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split (/ (\W+)’, ’...words, words...')
e, ..., '"words’, ', ', 'words’, ...’ T

That way, separator components are always found at the same relative indices within the result list (e.g., if
there’s one capturing group in the separator, the Oth, the 2nd and so forth).
Note that split will never split a string on an empty pattern match. For example:

>>> re.split ('x*", ’foo’)
["foo']

76

Chapter 6. String Services

The Python Library Reference, Release 3.2

>>> re.split (" (?m)~$", "foo\n\nbar\n")
[" foo\n\nbar\n’]

Changed in version 3.1: Added the optional flags argument.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-
right, and matches are returned in the order found. If one or more groups are present in the pattern, return a
list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included
in the result unless they touch the beginning of another match.

re.finditer (pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in
the result unless they touch the beginning of another match.

re.sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by
the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a
function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a single
newline character, \ r is converted to a linefeed, and so forth. Unknown escapes such as \ j are left alone.
Backreferences, such as \ 6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub (r’def\s+ ([a-zA-Z_][a—-zA-7Z_0-9]x)\s*\ (\sx\):’,
r’static PyObjectx\npy_\1 (void)\n{’,

"def myfunc():")

"static PyObject*\npy_myfunc (void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == ’"-’: return ' '/
. else: return -’
>>> re.sub(’'-{1,2}’, dashrepl, 'pro-————-gram-files’)

"pro-—-gram files’
>>> re.sub(r’\sAND\s’, ' & ', ’'Baked Beans And Spam’, flags=re.IGNORECASE)
"Baked Beans & Spam’

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must
be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous match, so sub (" xx’, '-', ’"abc’) returns
"—a-b-c-'.

In addition to character escapes and backreferences as described above, \ g<name> will use the substring
matched by the group named name, as defined by the (?P<name>...) syntax. \g<number> uses the
corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t ambiguous in a replacement
such as \g<2>0. \ 20 would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal character / 0’ . The backreference \ g<0> substitutes in the entire substring matched by the
RE. Changed in version 3.1: Added the optional flags argument.

re.subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).
Changed in version 3.1: Added the optional flags argument.

re.escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

6.2. re — Regular expression operations 77

The Python Library Reference, Release 3.2

re.purge ()
Clear the regular expression cache.

exception re .error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

6.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes.

regex.search (string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the ’ ~’/ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match. If
endpos is less than pos, no match will be found, otherwise, if rx is a compiled regular expression object,
rx.search(string, 0, 50) isequivalentto rx.search(string[:50], O0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<_sre.SRE_Match object at ...>

>>> pattern.search("dog", 1) # No match; search doesn’t include the "d"

regex.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-
length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

Note: If you want to locate a match anywhere in string, use search () instead.

>>> pattern = re.compile("o")

>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

regex.split (string, maxsplit=0)
Identical to the split () function, using the compiled pattern.

regex.findall (string[,pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

78 Chapter 6. String Services

The Python Library Reference, Release 3.2

regex.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

regex.flags
The flags argument used when the RE object was compiled, or O if no flags were provided.

regex.groups
The number of capturing groups in the pattern.

regex.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

regex.pattern
The pattern string from which the RE object was compiled.

6.2.5 Match Objects

Match objects always have a boolean value of True, so that you can test whether e.g. match () resulted in a
match with a simple if statement. They support the following methods and attributes:

match.expand (femplate)
Return the string obtained by doing backslash substitution on the template string femplate, as done by the
sub () method. Escapes such as \ n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding
group.

match.group ([group],])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, an ITndexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding result is None. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist™)
>>> m.group (0) # The entire match

"Isaac Newton’

>>> m.group (1) # The first parenthesized subgroup.
"Isaac’

>>> m.group (2) # The second parenthesized subgroup.
"Newton’

>>> m.group (1, 2) # Multiple arguments give us a tuple.

(" Isaac’, ’'Newton’)

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group (' first_name’)

"Malcolm’

>>> m.group ('’ last_name’)

"Reynolds’

Named groups can also be referred to by their index:

6.2. re — Regular expression operations 79

The Python Library Reference, Release 3.2

>>> m.group (1)
"Malcolm’
>>> m.group (2)
"Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(x" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3I

match.groups (default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. The default argument is used for groups that did not participate in the match; it defaults to None.

For example:
>>> m = re.match(r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()

(24", "1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.?2 (\d+)2", "24")

>>> m.groups () # Second group defaults to None.

(24", None)

>>> m.groups ("0”) # Now, the second group defaults to 70’.
(I24I, IOI)

match.groupdict (default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The
default argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{’first_name’: "Malcolm’, ’last_name’: ’'Reynolds’}

match.start ([group])

match.end([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning
the whole matched substring). Return -1 if group exists but did not contribute to the match. For a match
object m, and a group g that did contribute to the match, the substring matched by group g (equivalent to
m.group (g))is

m.string[m.start (g) :m.end (g)]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example,
afterm = re.search('b(c?)’, ’"cba’),m.start (0) isl,m.end(0) is2,m.start (1) and
m.end (1) are both 2, andm.start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

"tony@tiger.net’

80 Chapter 6. String Services

The Python Library Reference, Release 3.2

match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search () or match () method of a match object. This is the
index into the string at which the RE engine started looking for a match.

match.endpos
The value of endpos which was passed to the search () or match () method of a match object. This is
the index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the string
"ab’, while the expression (a) (b) will have lastindex == 2, if applied to the same string.

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

match.re
The regular expression object whose match () or search () method produced this match instance.

match.string
The string passed to match () or search ().

6.2.6 Regular Expression Examples

Checking For a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return ’'<Match: %r, groups=%r>’ % (match.group (), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a S-character string with each
character representing a card, “a” for ace, “k” for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"[0-9akg]]{5}s$")

>>> displaymatch (valid.match ("ak05g")) # Valid.
"<Match: "ak05qg’, groups=()>"

>>> displaymatch (valid.match ("ak05e")) # Invalid.
>>> displaymatch(valid.match ("ak0")) # Invalid.
>>> displaymatch(valid.match("727ak")) # Valid.

"<Match: ’727ak’, groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular
expression, one could use backreferences as such:

>>> pair = re.compile(r".x(.).+\1")

>>> displaymatch (pair.match("717ak")) # Pair of 7s.
"<Match: "717", groups=("7",)>"

>>> displaymatch (pair.match ("718ak")) # No pairs.

>>> displaymatch (pair.match ("354aa")) # Pair of aces.

"<Match: ’354aa’, groups=('a’,)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

6.2. re — Regular expression operations 81

The Python Library Reference, Release 3.2

>>> pair.match("717ak") .group (1)
I7l

Error because re.match() returns None, which doesn’t have a group () method:
>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match (r" .+ (.).»\1", "718ak").group (1)
AttributeError: ’'NoneType’ object has no attribute ’'group’

>>> pair.match("354aa") .group (1)

14 4

a

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful,
though also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent
mappings between scanf () format tokens and regular expressions.

scanf () Token Regular Expression

%c .

%5¢ . {5}

$d [-+]12\d+

%e, $E, $£, %9 [—+]12(\d+ (\.\d*)?|\.\d+) ([eE] [-+]2\d+)?
$i [-+1?2(0[xX] [\dA-Fa-f]1+|0[0-=7]*|\d+)

30 0[0=7] =%

%s \S+

$u \d+

$x, $X 0[xX] [\dA-Fa-f]+

To extract the filename and numbers from a string like
/usr/sbin/sendmail - 0 errors, 4 warnings
you would use a scanf () format like

%$s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) — (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the message maximum recursion limit exceeded. For example,

>>> s = 'Begin ’ + 1000«’a very long string ’ + ’end’
>>> re.match (’Begin (\w|)=*? end’, s).end()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/local/lib/python3.2/re.py", line 132, in match
return _compile (pattern, flags) .match(string)
RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Simple uses of the x 2 pattern are special-cased to avoid recursion. Thus, the above regular expression can avoid
recursion by being recast as Begin [a-zA-Z0-9_]x?end. As a further benefit, such regular expressions
will run faster than their recursive equivalents.

82 Chapter 6. String Services

The Python Library Reference, Release 3.2

search() vs. match()

In a nutshell, match () only attempts to match a pattern at the beginning of a string where search () will match
a pattern anywhere in a string. For example:

>>> re.match("o", "dog") # No match as "o" is not the first letter of "dog".
>>> re.search("o", "dog") # Match as search() looks everywhere in the string.
<_sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created with
re.compile ("pattern"), not the primitives re.match (pattern, string) or
re.search (pattern, string).

match () has an optional second parameter that gives an index in the string where the search is to start:
>>> pattern = re.compile("o")

>>> pattern.match ("dog") # No match as "o" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern.match ("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):

>>> pattern.match ("dog", 1)

<_sre.SRE_Match object at ...>

>>> pattern.match ("dog", 2) # No match as "o" is not the 3rd character of "dog."

Making a Phonebook

split () splits astring into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> input = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", input)

>>> entries

["Ross McFluff: 834.345.1254 155 Elm Street’,
"Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
"Frank Burger: 925.541.7625 662 South Dogwood Way’,
"Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[["Ross’, "McFluff’, ’834.345.1254", 7155 Elm Street’],
["Ronald’, ’'Heathmore’, 7892.345.3428’, ’'436 Finley Avenue’],
["Frank’, ’'Burger’, "7925.541.7625', ’'662 South Dogwood Way’],
["Heather’, ’'Albrecht’, 7548.326.4584’, "919 Park Place’]]

6.2. re — Regular expression operations 83

The Python Library Reference, Release 3.2

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. Withamaxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[["Ross’, '"McFluff’, 7834.345.1254", ’"155’, '"Elm Street’],
["Ronald’, ’"Heathmore’, ’7892.345.3428’, ’'436’, ’'Finley Avenue’],
["Frank’, ’"Burger’, ’925.541.7625", ’'662’, ’'South Dogwood Way’],
["Heather’, ’'Albrecht’, 7548.326.4584’, 919", ’'Park Place’]]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a
sentence except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
"Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
"Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.’

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if one
was a writer and wanted to find all of the adverbs in some text, he or she might use findall () in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
["carefully’, ’'quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if one was a writer who wanted
to find all of the adverbs and their positions in some text, he or she would use finditer () in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly", text):

c. print (/! $02d-%02d: %s’ % (m.start (), m.end(), m.group(0)))
07-16: carefully

40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (* \ ") in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code
are functionally identical:

>>> re.match (r"\W(.)\1\w", " ££ ")

<_sre.SRE_Match object at ...>
>>> re.match ("\\W (.)\\I\\w", ™ ££ ™)
<_sre.SRE_Match object at ...>

84 Chapter 6. String Services

The Python Library Reference, Release 3.2

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means r"\\". Without raw string notation, one must use "\ \\\ ", making the following lines of

code functionally identical:

>>> re.match (r"\\", r"\\")

<_sre.SRE_Match object at ...>
>>> re.match ("\\\\", r"\\")
<_sre.SRE_Match object at ...>

Writing a Tokenizer

A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a

compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master

regular expression and to loop over successive matches:

Token = collections.namedtuple ('’ Token’, ’"typ value line column’)

def tokenize(s):
keywords = {’/IF’, ’'THEN’, ’'FOR’, 'NEXT’, ’'GOSUB’, ’'RETURN’}

tok_spec = [

(" NUMBER’, r’\d+(\.\dx)?"), # Integer or decimal number
("ASSIGN’, r’':="), # Assignment operator
("END’, ';"), # Statement terminator
("ID", r'" [A-Za-z]+'), # Identifiers

("OP", r’ [+x\/\-1"), # Arithmetic operators

(' NEWLINE’, r’\n’), # Line endings

("SKIP’, r’' [\t]’), # Skip over spaces and tabs

]
tok_re "7 join (" (?P<%s>%s)’ % pair for pair in tok_spec)
gettok = re.compile (tok_re) .match
line =1
pos = line_start = 0
mo = gettok(s)
while mo is not None:
typ = mo.lastgroup

if typ == 'NEWLINE’ :
line_start = pos
line += 1
elif typ != ’'SKIP':
if typ == "ID’ and val in keywords:
typ = val
yield Token(typ, mo.group(typ), line, mo.start()-line_start)
pos = mo.end()
mo = gettok (s, pos)
if pos != len(s):

[

raise RuntimeError (' Unexpected character %r on line %d’ % (s[posl],

>>> statements = ’’’\
total := total + price * quantity;
tax := price x 0.05;

rrs

>>> for token in tokenize (statements):
print (token)

Token (typ="1ID’, value=’total’, line=1, column=8)
Token (typ="ASSIGN’, value=’':=", line=1, column=14)
Token (typ="1ID’, value=’total’, line=1, column=17)

line))

6.2. re — Regular expression operations

85

http://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.2

Token (typ="0P’, wvalue='"+’, line=1, column=23)
Token (typ="1ID’, value='price’, line=1, column=25)

Token (typ='0P’, value=’+’, line=1, column=31)
Token (typ='1ID’, value=’'quantity’, line=1, column=33)
Token (typ='END’, value=’;’, line=1, column=41)

Token (typ="ASSIGN’, value=’:=", line=2, column=13)

(

(

(

(

(
Token (typ=’'1ID’, value='"tax’, line=2, column=9)

(
Token (typ="1ID’, value='price’, line=2, column=16)
(
(
(

Token (typ="0P’, value=’+’, line=2, column=22)
Token (typ='NUMBER’, value='0.05", line=2, column=24)
Token (typ='END’, value=’;’, line=2, column=28)

6.3 struct — Interpret bytes as packed binary data

This module performs conversions between Python values and C structs represented as Python bytes objects.
This can be used in handling binary data stored in files or from network connections, among other sources. It uses
Format Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python
values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so
that the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To
handle platform-independent data formats or omit implicit pad bytes, use standard size and alignment instead
of native size and alignment: see Byte Order, Size, and Alignment for details.

6.3.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct .error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack (fmt, vi, v2,...)
Return a bytes object containing the values v/, v2, ... packed according to the format string fimz. The
arguments must match the values required by the format exactly.

struct .pack_into (fmnt, buffer, offset, vi, v2, ...)
Pack the values vI, v2, ... according to the format string fint and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

struct .unpack (fint, buffer)
Unpack from the buffer buffer (presumably packed by pack (fmt, ...)) according to the format string
fmt. The result is a tuple even if it contains exactly one item. The buffer must contain exactly the amount of
data required by the format (len (bytes) mustequal calcsize (fmt)).

struct .unpack_£from (fmt, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string fint. The result is a tuple
even if it contains exactly one item. buffer must contain at least the amount of data required by the format
(len (buffer[offset:]) mustbe atleast calcsize (fmt)).

struct.calcsize (fmt)
Return the size of the struct (and hence of the bytes object produced by pack (fmt, ...)) corresponding
to the format string fimt.

86 Chapter 6. String Services

The Python Library Reference, Release 3.2

6.3.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They
are built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are
special characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

Character Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, ’ @ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature
switchable endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between / @’ and ' =’ : both use native byte order, but the size and alignment of the latter is
standardized.

The form ’ ! 7 1is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ’ <’ or
14 >/ .
Notes:

1. Padding is only automatically added between successive structure members. No padding is added at the
beginning or the end of the encoded struct.

s

2. No padding is added when using non-native size and alignment, e.g. with ‘<’, *>’, ‘=", and ‘!’.

3. To align the end of a structure to the alignment requirement of a particular type, end the format with the
code for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard
size; that is, when the format string starts with one of ' </, >, 7 !’ or ’ =’ . When using native size, the size of
the packed value is platform-dependent.

6.3. struct — Interpret bytes as packed binary data 87

The Python Library Reference, Release 3.2

Format C Type Python type Standard size | Notes

X pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 (1),(3)

B unsigned char integer 1 3)

? _Bool bool 1 (1)

h short integer 2 3)

H unsigned short integer 2 3)

i int integer 4 3)

I unsigned int integer 4 3)

1 long integer 4 3)

L unsigned long integer 4 3)

q long long integer 8), (3)

0 unsigned long long | integer 8 2), (3)

f float float 4 4

d double float 8)

s char[] bytes

P char[] bytes

P void integer @)
Notes:

1. The ’ 2’ conversion code corresponds to the _Boo1l type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

2. The ' g’ and ' Q' conversion codes are available in native mode only if the platform C compiler supports
C long long,or, on Windows, ___int 64. They are always available in standard modes.

3. When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.
Changed in version 3.2: Use of the __index__ () method for non-integers is new in 3.2.

4. Forthe ' £’ and ’ d’ conversion codes, the packed representation uses the IEEE 754 binary32 (for * £/) or
binary64 (for * d’) format, regardless of the floating-point format used by the platform.

5. The " P’ format character is only available for the native byte ordering (selected as the default or with the
" @’ byte order character). The byte order character ” =’ chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the ’ P’ format is not
available.

A format character may be preceded by an integral repeat count. For example, the format string * 4h’ means
exactly the same as * hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ’ s’ format character, the count is interpreted as the length of the bytes, not a repeat count like for the
other format characters; for example, * 10s’ means a single 10-byte string, while * 10c’ means 10 characters.
For packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the
resulting bytes object always has exactly the specified number of bytes. As a special case, ' 0s’ means a single,
empty string (while Oc’ means O characters).

When packing a value x using one of the integer formats (‘b’, *B’, "h’, "H’, 71", /1", "1, 'L','q’,
"Q"), if x is outside the valid range for that format then struct.error is raised. Changed in version 3.1:
In 3.0, some of the integer formats wrapped out-of-range values and raised DeprecationWarning instead of
struct.error. The "p’ format character encodes a “Pascal string”, meaning a short variable-length string
stored in a fixed number of bytes, given by the count. The first byte stored is the length of the string, or 255,
whichever is smaller. The bytes of the string follow. If the string passed in to pack () is too long (longer than the
count minus 1), only the leading count -1 bytes of the string are stored. If the string is shorter than count -1,
it is padded with null bytes so that exactly count bytes in all are used. Note that for unpack (), the ’ p’ format
character consumes count bytes, but that the string returned can never contain more than 255 bytes.

For the ’ 2’ format character, the return value is either True or False. When packing, the truth value of
the argument object is used. Either O or 1 in the native or standard bool representation will be packed, and any
non-zero value will be True when unpacking.

88 Chapter 6. String Services

The Python Library Reference, Release 3.2

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import =«

>>> pack ("hhl”, 1, 2, 3)

b’ \x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('hhl’, b’\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize ("hhl’)

38

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b’ raymond \x32\x12\x08\x01\x08’
>>> name, serialnum, school, gradelevel = unpack (’<10sHHb’, record)

>>> from collections import namedtuple

>>> Student = namedtuple ('’ Student’, ’'name serialnum school gradelevel’)
>>> Student._make (unpack (' <10sHHb’, record))
Student (name=b’ raymond ", serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment
requirements is different:

>>> pack (‘ci’, b’*x", 0x12131415)
b’ *\x00\x00\x00\x12\x13\x14\x15"
>>> pack (ic’, 0x12131415, b’ ")
b’ \x12\x13\x14\x15«%"

>>> calcsize('ci’)

8

>>> calcsize(’ic’)

5

The following format 11h01’ specifies two pad bytes at the end, assuming longs are aligned on 4-byte bound-
aries:

>>> pack (’11h01’, 1, 2, 3)
b’ \x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See Also:
Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

6.3.3 Classes

The st ruct module also defines the following type:

class struct . Struct (format)
Return a new Struct object which writes and reads binary data according to the format string format. Cre-
ating a Struct object once and calling its methods is more efficient than calling the st ruct functions with
the same format since the format string only needs to be compiled once.

Compiled Struct objects support the following methods and attributes:

6.3. struct — Interpret bytes as packed binary data 89

The Python Library Reference, Release 3.2

pack (vi,v2,...)
Identical to the pack () function, using the compiled format. (len (result) will equal
self.size))

pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)
Identical to the unpack () function, using the compiled format. (len (buffer) must equal
self.size).

unpack_ from (buffer, offset=0)
Identical to the unpack_from () function, using the compiled format.
(len (buffer[offset:]) mustbe atleast self.size).

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method)
corresponding to format.

6.4 difflib — Helpers for computing deltas

This module provides classes and functions for comparing sequences. It can be used for example, for comparing
files, and can produce difference information in various formats, including HTML and context and unified diffs.
For comparing directories and files, see also, the £i 1ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain
sequence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the aut o junk argument to False when creating the
SequenceMatcher. New in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code Meaning

r— line unique to sequence 1
T4+ line unique to sequence 2
s line common to both sequences

72 7 | line not present in either input sequence

90

Chapter 6. String Services

The Python Library Reference, Release 3.2

Lines beginning with ‘?° attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can
be generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Htm1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Htm1Diff
to generate the side by side HTML differences). See ndiff () documentation for argument default
values and descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc="", todesc="", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before a
difference highlight when using the “next” hyperlinks (setting to zero would cause the “next” hyper-
links to place the next difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines, fromdesc="", todesc="", context=False, numlines=5)
Compares fromlines and rolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of
its use.

difflib.context_diff (a, b, fromfile="", tofile="", fromfiledate="‘, tofiledate="*, n=3,

lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff

format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with x*x or ——-) are created with a trailing newline. This is
helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineferm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

6.4. difflib — Helpers for computing deltas 91

The Python Library Reference, Release 3.2

>>> gl

["bacon\n’, "eggs\n’, ’"ham\n’, ’guido\n’]
>>> s2 = [’python\n’, "eggy\n’, ’"hamster\n’, ’‘guido\n’]

>>> for line in context_diff(sl, s2, fromfile=’'before.py’, tofile='after.py’):

sys.stdout.write (line)
x before.py
-—— after.py
*hkkkhkkkkkkkhkkkkk ok
kxk 1,4 *kxxk

! bacon
! eggs

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than
0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches (’appel’, ['ape’, ’'apple’, ’'peach’, ’'puppy’]l)
["apple’, "ape’]

>>> import keyword

>>> get_close_matches (’wheel’, keyword.kwlist)

["while’]

>>> get_close_matches ('apple’, keyword.kwlist)

[]

>>> get_close_matches (’accept’, keyword.kwlist)

["except’]

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Compare a and b (lists of strings); return a D1i f fe r-style delta (a generator generating the delta lines).
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false
if not. The default is None. There is also a module-level function IS LINE_JUNK (), which filters out
lines without visible characters, except for at most one pound character (’ #’) — however the underlying
SequenceMatcher class does a dynamic analysis of which lines are so frequent as to constitute noise,
and this usually works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function IS_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

92

Chapter 6. String Services

The Python Library Reference, Release 3.2

>>> diff = ndiff (' one\ntwo\nthree\n’ .splitlines (1),
c. "ore\ntree\nemu\n’ .splitlines (1))
>>> print ('’ .join(diff), end="")

- one

? AN

+ ore

? A

- two

- three

? —
+ tree
+ emu

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1
or 2 (parameter which), stripping off line prefixes.

Example:

>>> diff ndiff (' one\ntwo\nthree\n’ .splitlines (1),
L. "ore\ntree\nemu\n’ .splitlines (1))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print ('’ .join(restore(diff, 1)), end="")

one

two

three

>>> print ('’ .Jjoin(restore(diff, 2)), end="")

ore

tree

emu

difflib.unified diff (a, b, fromfile="", tofile="‘, fromfiledate="‘, tofiledate="*, n=3,

lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff

format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @@Q) are created with a trailing newline. This
is helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl ["bacon\n’, "eggs\n’, "ham\n’, "guido\n’]

>>> 52 = ['python\n’, ’‘eggy\n’, ’'hamster\n’, ’guido\n’]

>>> for line in unified_diff(sl, s2, fromfile=’'before.py’, tofile='after.py’):
... sys.stdout.write (line)

-—— before.py

+++ after.py

@@ -1,4 +1,4 Q@a

—-bacon

6.4. difflib — Helpers for computing deltas 93

The Python Library Reference, Release 3.2

-eggs
—ham
+python
teggy
thamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.IS_LINE_JUNK (l/ine)
Return true for ignorable lines. The line /ine is ignorable if line is blank or contains a single ’ #’, otherwise
it is not ignorable. Used as a default for parameter linejunk in ndiff () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.4.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a="‘, b="*, autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk
is equivalent to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic. New in version 3.2:
The autojunk parameter. SequenceMatcher objects get three data attributes: bjunk is the set of elements
of b for which isjunk is True; bpopular is the set of non-junk elements considered popular by the heuristic
(if it is not disabled); b2j is a dict mapping the remaining elements of b to a list of positions where they
occur. All three are reset whenever b is reset with set__seqgs () or set_seqg?2 (). New in version 3.2:
The bjunk and bpopular attributes. SequenceMat cher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seqg2 () to set the commonly used sequence
once and call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] andb[blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, 7j, k) such that
ali:i+k] is equal to b[J:J+k], where alo <= i <= i+k <= ahi and blo <= j <=
j+k <= bhi. Forall (i’, 3j’, k') meeting those conditions, the additional conditions k >=

94 Chapter 6. String Services

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 3.2

k’,1i <= i’,andif i == 1i’, j <= j’ are also met. In other words, of all maximal matching
blocks, return one that starts earliest in a, and of all those maximal matching blocks that start earliest
in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd™)
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents * abcd’ from
matching the / abcd’ at the tail end of the second sequence directly. Instead only the abcd’ can
match, and matches the leftmost abcd’ in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).

get_matching blocks ()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n),and
means thata[i:1i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with
n == 0.If (i, j, n)and (i, Jj’, n’) are adjacent triples in the list, and the second is not
the last triple in the list, then i+n != i’ or j+n != Jj’; in other words, adjacent triples always
describe non-adjacent equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,
31, Jj2). The first tuple has i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from
the preceding tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning
"replace’ a[i1i1:12] should be replaced by b[j1:7j2].
"delete’ a[11:12] should be deleted. Note that 31 == 72 in this case.
"insert’ b[j1l:32] shouldbeinsertedata[il:11]. Notethat il == 12 in this case.
"equal’ al[il:i2] == b[jl:32] (the sub-sequences are equal).
For example:
>>> g = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, Db)

>>> for tag, il, 12, jl, j2 in s.get_opcodes():
print (("$7s al[%d:%d] (%s) b[%d:%d] (%s)" %
R (tag, 11, 1i2, aflil:i2], J1, 3j2, b[jl:32]1)))
delete a[0:1] (g) b[0:0] ()
equal a[l:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (v)

6.4. difflib — Helpers for computing deltas 95

The Python Library Reference, Release 3.2

equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

get_grouped_opcodes (n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get _opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get_matching_blocks () or get_opcodes () hasn’t already
been called, in which case you may want to try quick_ratio () or real_quick_ratio () first
to get an upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio () and real_quick_ratio () are always at least as large
asratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio ()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

6.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk’:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio ()
value over 0.6 means the sequences are close matches:

>>> print (round(s.ratio (), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks():

ce print ("al[%d] and b[%d] match for %d elements" % block)
al0] and b[0] match for 8 elements

al8] and b[l7] match for 21 elements

al[29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

96 Chapter 6. String Services

The Python Library Reference, Release 3.2

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes|():
c. print ("$6s al[%d:%d] b[%d:%d]" % opcode)
equal af[0:8] b[0:8]
insert a[8:8] b[8:17]
equal a[8:29] b[17:38]

See Also:

e The get_close_matches () function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

 Simple version control recipe for a small application built with SequenceMatcher.

6.4.3 Differ Objects

Note that D1 f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

The Dif fer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like
object.

6.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = "7 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. 777 splitlines (1)

>>> len (textl)

4

>>> textl[0][-1]

14 \nl

>>> text2 =’’’ 1. Beautiful is better than ugly.

3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

77 .splitlines (1)

6.4. difflib — Helpers for computing deltas 97

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.2

Next we instantiate a Differ object:
>>> d = Differ ()

Note that when instantiating a Di f fer object we may pass functions to filter out line and character “junk.” See
the Differ () constructor for details.

Finally, we compare the two:
>>> result = list(d.compare (textl, text2))
result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n’,

- 2. Explicit is better than implicit.\n’,
- 3. Simple is better than complex.\n’,

"+ 3 Simple is better than complex.\n’,

"2 ++\n’,

" — 4. Complex is better than complicated.\n’,
r? ~ -—— ™\n’,
"+ 4. Complicated is better than complex.\n’,
re ++++ 0 “\n’,

"+ 5. Flat 1is better than nested.\n’]
As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
? A ____ A
+ 4. Complicated is better than complex.
? ++++ 7 A
+ 5. Flat is better than nested.

6.4.5 A command-line interface to difflib

This example shows how to use difflib to create a dif f-like utility. It is also contained in the Python source
distribution, as Tools/scripts/diff.py.

"mm Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mmrn

import sys, os, time, difflib, optparse

def main():
Configure the option parser
usage = "usage: S$prog [options] fromfile tofile"

parser = optparse.OptionParser (usage)
parser.add_option("-c", action="store_true", default=False,

98 Chapter 6. String Services

The Python Library Reference, Release 3.2

help=’'Produce a context format diff (default)’)
parser.add_option("-u", action="store_true", default=False,

help=’'Produce a unified format diff’)
hlp = ’'"Produce HTML side by side diff (can use -c and -1 in conjunction)’
parser.add_option("-m", action="store_true", default=False, help=hlp)
parser.add_option("-n", action="store_true", default=False,

help=’'Produce a ndiff format diff’)
parser.add_option("-1", "--lines", type="int", default=3,

help=’Set number of context lines (default 3)’)
(options, args) = parser.parse_args ()

if len(args) == 0:
parser.print_help ()
sys.exit (1)
if len(args) != 2:
parser.error ("need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile = args # as specified in the usage string

we’re passing these as arguments to the diff function

fromdate = time.ctime (os.stat (fromfile) .st_mtime)
todate = time.ctime (os.stat (tofile).st_mtime)
fromlines = open(fromfile, ’'U’).readlines|()
tolines = open(tofile, 'U’) .readlines()

if options.u:
diff = difflib.unified _diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines, tolines, fromfile,
tofile, context=options.c,
numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)

we’re using writelines because diff is a generator
sys.stdout.writelines (diff)

if name == '__main_ '":

main ()

6.5 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides two convenience functions, wrap () and £i11 (), as well as TextWrapper,
the class that does all the work, and a utility function dedent (). If you’re just wrapping or filling one or
two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

textwrap.wrap (fext, width=70, **kwargs)
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of

6.5. textwrap — Text wrapping and filling 99

http://svn.python.org/view/python/branches/py3k/Lib/textwrap.py?view=markup

The Python Library Reference, Release 3.2

output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

textwrap.£ill (fext, width=70, **kwargs)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 ()
is shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap () .

Both wrap () and £111 () work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long
words be broken if necessary, unless TextWrapper.break_long_words is set to false.

An additional utility function, dedent (), is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

textwrap.dedent (rext)
Remove any common leading whitespace from every line in fext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello™" are considered to have no common leading whitespace.

For example:

def test():
end first line with \ to avoid the empty line!
s =77\
hello
world
rrr
print (repr(s)) # prints ’ hello\n world\n ’
print (repr (dedent (s))) # prints “hello\n world\n’

class textwrap.TextWrapper (**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper TextWrapper (initial_indent="x ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "x "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in
the input text longer than width, TextWrapper guarantees that no output line will be longer than
width characters.

100 Chapter 6. String Services

The Python Library Reference, Release 3.2

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the
expandtabs () method of text.

replace_whitespace
(default: True) If true, each whitespace character (as defined by st ring.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace_whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (leading whitespace in the first line is always preserved, though).

initial indent
(default:) String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line.

subsequent_indent
(default:) String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

fix_ sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sen-
tences are always separated by exactly two spaces. This is generally desired for text in a monospaced
font. However, the sentence detection algorithm is imperfect: it assumes that a sentence ending con-
sists of a lowercase letter followed by one of ¥ ., " !’/ or ' ?’, possibly followed by one of ' "’
or "’ ", followed by a space. One problem with this is algorithm is that it is unable to detect the
difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]
and “Spot.” in
[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lower-
case letter,” and a convention of using two spaces after a period to separate sentences on the same line,
it is specific to English-language texts.

break_long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer
than width. (Long words will be put on a line by themselves, in order to minimize the amount by
which width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in
compound words, as it is customary in English. If false, only whitespaces will be considered as
potentially good places for line breaks, but you need to set break_long_words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words.

6.5. textwrap — Text wrapping and filling 101

The Python Library Reference, Release 3.2

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All
wrapping options are taken from instance attributes of the TextWrapper instance. Returns a list of
output lines, without final newlines.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.6 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

codecs.register (search_function)

Register a codec search function. Search functions are expected to take one argument, the encoding name
in all lower case letters, and return a CodecInfo object having the following attributes:

ename The name of the encoding;
eencode The stateless encoding function;
edecode The stateless decoding function;
eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;
estreamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same interface as the
encode () /decode () methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

incrementalencoder and incrementaldecoder: These have to be factory functions providing the following
interface:

factory (errors=’'strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder and IncrementalDecoder, respectively. Incremental codecs can maintain
state.

streamreader and streamwriter: These have to be factory functions providing the following interface:
factory(stream, errors=’'strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter and St reamReader, respectively. Stream codecs can maintain state.

Possible values for errors are
*’ strict’: raise an exception in case of an encoding error

e’ replace’: replace malformed data with a suitable replacement marker, such as ’?’ or
"\ufffd’

e’ ignore’ : ignore malformed data and continue without further notice

*’xmlcharrefreplace’: replace with the appropriate XML character reference (for encoding
only)

102

Chapter 6. String Services

The Python Library Reference, Release 3.2

*’backslashreplace’: replace with backslashed escape sequences (for encoding only)
*’ surrogateescape’ : replace with surrogate U+DCxx, see PEP 383

as well as any other error handling name defined via register_error ().

In case a search function cannot find a given encoding, it should return None.

codecs.lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo
object is stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use 1ookup ()
for the codec lookup:

codecs.getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs .getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. error_handler will be called
during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

6.6. codecs — Codec registry and base classes 103

http://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.2

codecs.strict_errors (exception)
Implements the st rict error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors (exception)
Implements the replace error handling: malformed data is replaced with a suitable replacement character
such as ’ 2’ in bytestrings and \uff££d’ in Unicode strings.

codecs.ignore_errors (exception)
Implements the ignore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

codecs.xmlcharrefreplace_errors (exception)
Implements the xmlcharrefreplace error handling (for encoding only): the unencodable character is
replaced by an appropriate XML character reference.

codecs .backslashreplace_errors (exception)
Implements the backslashreplace error handling (for encoding only): the unencodable character is
replaced by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

codecs . open (filename, mode[, encoding[, errors[, buﬁ‘ering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode is ’ r’ meaning to open the file in read mode.

Note: The wrapped version’s methods will accept and return strings only. Bytes arguments will be rejected.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid
data loss due to encodings using 8-bit values. This means that no automatic conversion of b’ \n’ is done
on reading and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to ’ strict’ which causes a ValueError
to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors=’strict’)
Return a wrapped version of file which provides transparent encoding translation.

Bytes written to the wrapped file are interpreted according to the given data_encoding and then written to
the original file as bytes using the file_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to ’ strict’, which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a genera-
tor. errors (as well as any other keyword argument) is passed through to the incremental encoder.

codecs.iterdecode (iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a genera-
tor. errors (as well as any other keyword argument) is passed through to the incremental decoder.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs .BOM
codecs .BOM_BE
codecs.BOM_LE
codecs .BOM_UTFS8

104 Chapter 6. String Services

The Python Library Reference, Release 3.2

codecs .BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTF16_LE

codecs.BOM_UTF32

codecs .BOM_UTF32_ BE

codecs.BOM_UTF32 LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF 16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte or-
der, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM _UTF16_BE.
The others represent the BOM in UTF-8 and UTF-32 encodings.

6.6.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write
your own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode () and decode () methods may implement different
error handling schemes by providing the errors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

"strict’ Raise UnicodeError (or a subclass); this is the default.

"ignore’ Ignore the character and continue with the next.

"replace’ Replace with a suitable replacement character; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?’ on
encoding.

" xmlcharrefr&eplace With the appropriate XML character reference (only for encoding).

"backslashre®eplaeé with backslashed escape sequences (only for encoding).

" surrogatee s ®ephate byte with surrogate U+DCxx, as defined in PEP 383.

In addition, the following error handlers are specific to a single codec:

Value Codec | Meaning
"surrogatepass’ | utf-8 Allow encoding and decoding of surrogate codes in UTF-8.

New in version 3.1: The ' surrogateescape’ and ' surrogatepass’ error handlers. The set of allowed
values can be extended via register_error ().

Codec Objects
The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

Codec.encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). Encoding converts a string
object to a bytes object using a particular character set encoding (e.g., cp1252 or iso-8859-1).

errors defines the error handling to apply. It defaults to * st rict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

6.6. codecs — Codec registry and base classes 105

http://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.2

Codec.decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). Decoding converts a bytes
object encoded using a particular character set encoding to a string object.

input must be a bytes object or one which provides the read-only character buffer interface — for example,
buffer objects and memory mapped files.

errors defines the error handling to apply. It defaults to ’ strict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode () /decode () method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode () /decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects
The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following
methods which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder ([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

¢’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

*’ replace’ Replace with a suitable replacement character

e’ xmlcharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

The set of allowed values for the errors argument can be extended with register_error ().

encode (object[,ﬁnal])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalEncoder.getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into an
integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer).

IncrementalEncoder.setstate (state)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

106 Chapter 6. String Services

The Python Library Reference, Release 3.2

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder ([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

¢’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.
*’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalDecoder object.

The set of allowed values for the errors argument can be extended with register_error ().

decode (object[,ﬁnal])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true
the decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g.
because of incomplete byte sequences at the end of the input) it must initiate error handling just like
in the stateless case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

getstate()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that O is the most common additional state info.) If this
additional state info is 0 it must be possible to set the decoder to the state which has no input buffered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns
it to the previous state without producing any output. (Additional state info that is more complicated
than integers can be converted into an integer by marshaling/pickling the info and encoding the bytes
of the resulting string into an integer.)

setstate (state)
Set the state of the encoder to state. state must be a decoder state returned by getstate ().

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encoding submodules very easily. See encodings.ut f_8 for an example of how this is done.

StreamWriter Objects
The St reamWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream[, errors])
Constructor for a St reamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

6.6. codecs — Codec registry and base classes 107

The Python Library Reference, Release 3.2

The St reamWriter may implement different error handling schemes by providing the errors keyword
argument. These parameters are predefined:

e’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

*’ replace’ Replace with a suitable replacement character

' xmlcharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamWriter
object.

The set of allowed values for the errors argument can be extended with register_error ().

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamWr it er must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects
The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream[, errors])
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The St reamReader may implement different error handling schemes by providing the errors keyword
argument. These parameters are defined:

e’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.
*’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader
object.

The set of allowed values for the errors argument can be extended with register_error ().

read ([size[, chars[,ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read () will never return more than
chars characters, but it might return less, if there are not enough characters available.

108 Chapter 6. String Services

The Python Library Reference, Release 3.2

size indicates the approximate maximum number of bytes to read from the stream for decoding pur-
poses. The decoder can modify this setting as appropriate. The default value -1 indicates to read and
decode as much as possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on
later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state
markers are available on the stream, these should be read too.

readline ([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The St reamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors)
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of St reamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend (the input to read () and output of write ()) while Reader and Writer work on the
backend (reading and writing to the stream).

6.6. codecs — Codec registry and base classes 109

The Python Library Reference, Release 3.2

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the St reamReader and St reamiWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation.
Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and StreamWriter classes.
They inherit all other methods and attributes from the underlying stream.

6.6.2 Encodings and Unicode

Strings are stored internally as sequences of codepoints (to be precise as Py_UNICODE arrays). Depending on
the way Python is compiled (either via ——without-wide-unicode or ——with-wide-unicode, with
the former being the default) Py UNICODE is either a 16-bit or 32-bit data type. Once a string object is
used outside of CPU and memory, CPU endianness and how these arrays are stored as bytes become an is-
sue. Transforming a string object into a sequence of bytes is called encoding and recreating the string object
from the sequence of bytes is known as decoding. There are many different methods for how this transfor-
mation can be done (these methods are also called encodings). The simplest method is to map the codepoints
0-255 to the bytes 0x0-0xff. This means that a string object that contains codepoints above U+00FF can’t
be encoded with this method (which is called " 1atin—-1’ or iso—-8859-1’). str.encode () will raise
a UnicodeEncodeError that looks like this: UnicodeEncodeError: ‘latin-1’ codec can’t
encode character "\ul234’ in position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these codepoints are mapped to the bytes 0x0-0xff. To see how this is done simply open
e.g. encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string
constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in Unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive
bytes. There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings
are called UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a
little endian machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem:
Bytes will always be in natural endianness. When these bytes are read by a CPU with a different endianness, then
bytes have to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so
called BOM (the “Byte Order Mark™). This is the Unicode character U+FEFF. This character will be prepended
to every UTF-16 byte sequence. The byte swapped version of this character (OXxFFFE) is an illegal character
that may not appear in a Unicode text. So when the first character in an UTF-16 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately upto Unicode 4.0 the character U+FEFF had
a second purpose as a ZERO WIDTH NO-BREAK SPACE: A character that has no width and doesn’t allow a
word to be split. It can e.g. be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a
ZERO WIDTH NO-BREAK SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role).
Nevertheless Unicode software still must be able to handle U+FEFF in both roles: As a BOM it’s a device to
determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been decoded into a
string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
six 1 bits followed by a O bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

110 Chapter 6. String Services

The Python Library Reference, Release 3.2

Range Encoding

U-00000000 ... U-0000007F | OXXXXXXX

U-00000080...U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX

U-00010000 ... U=001FFFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

U-00200000 ... U-03FFFFFF | 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10XxXXXXX
U-04000000 ... U-7FFFFFFF | 1111110x 10xxxxxx 10xxxxxx 10xxxxxX 10xXXXXX 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s
the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-
8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which
a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls "ut £-8-sig")
for its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM
(which looks like this as a byte sequence: Oxef, Oxbb, 0xbf) is written. As it’s rather improbable that any
charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write
Oxef, Oxbb, Oxbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they
appear as the first three bytes in the file.

6.6.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.
Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases; therefore, e.g. " ut £-8’ is a valid alias for the " ut £_8’ codec.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

* an IBM EBCDIC code page
* an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional
big5Shkscs big5-hkscs, hkscs Traditional
cp037 IBMO037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Eu
cp720 Arabic

6.6. codecs — Codec registry and base classes 111

The Python Library Reference, Release 3.2

Table 6.1 — continued from previous page

cp737 Greek
cp775 IBM775 Baltic langt
cp850 850, IBM850 Western Eu
cp852 852, IBMS852 Central and
cp855 855, IBMS855 Bulgarian, |
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Eu
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM&61 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, No:
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional
cpl1006 Urdu
cpl1026 ibm1026 Turkish
cpl140 ibm1140 Western Eu
cpl250 windows-1250 Central and
cpl251 windows-1251 Bulgarian, |
cpl252 windows-1252 Western Eu
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic langt
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001 Korean
gb2312 chinese, csiso58gb231280, euc- cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso- ir-58 | Simplified (
gbk 936, cp936, ms936 Unified Chi
gb18030 gb18030-2000 Unified Chi
hz hzgb, hz-gb, hz-gb-2312 Simplified (
1802022_jp ¢sis02022jp, 1s02022jp, is0-2022-jp Japanese
1502022 _jp_1 1802022jp-1, is0-2022-jp-1 Japanese
1502022_jp_2 1502022jp-2, is0-2022-jp-2 Japanese, K
1502022_jp_2004 | is02022jp-2004, is0-2022-jp-2004 Japanese
1502022_jp_3 1502022jp-3, is0-2022-jp-3 Japanese
1802022_jp_ext 1802022jp-ext, is0-2022-jp-ext Japanese
1502022 _kr ¢s1802022kr, 1802022k, is0-2022-kr Korean
latin_1 150-8859-1, i1s08859-1, 8859, cp819, latin, latinl, L1 West Europ
1508859 2 180-8859-2, latin2, L2 Central and
1s08859_3 180-8859-3, latin3, L3 Esperanto, !
1s08859_4 1s0-8859-4, latin4, L4 Baltic langt
is08859_5 180-8859-5, cyrillic Bulgarian, |
1s08859_6 180-8859-6, arabic Arabic
1508859 7 1s0-8859-7, greek, greek8 Greek
1s08859_8 180-8859-8, hebrew Hebrew
112 Chapter 6. String Services

The Python Library Reference, Release 3.2

Table 6.1 — continued from previous page

1s08859_9 150-8859-9, latin5, LS Turkish
is08859_10 150-8859-10, latin6, L6 Nordic lang
1s08859_13 180-8859-13, latin7, L7 Baltic langt
1s08859_14 1s0-8859-14, 1atin8, L8 Celtic langt
1508859 15 180-8859-15, latin9, L9 Western Eu
1s08859_16 150-8859-16, latin10, L10 South-Easte
johab cpl361, ms1361 Korean
koi8_r Russian
koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, |
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and
mac_roman macroman, macintosh Western Eu
mac_turkish macturkish Turkish
ptcpl54 csptep154, pt154, cpl54, cyrillic-asian Kazakh
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift jisx0213 shiftjisx0213, sjisx0213, s_jisx0213 Japanese
utf 32 U32, utf32 all language
utf 32 be UTF-32BE all language
utf_32_le UTF-32LE all language
utf_16 U16, utf16 all language
utf_16_be UTF-16BE all language
utf_16_le UTF-16LE all language
utf 7 U7, unicode-1-1-utf-7 all language
utf 8 U8, UTFE, utf8 all language
utf_8_sig all language
Codec Aliases Purpose

idna Implements RFC 3490, see also encodings. idna

mbcs Windows only: Encode operand according to the ANSI codepage (CP_ACP)

palmos Encoding of PalmOS 3.5

punycode Implements RFC 3492

raw_unicode_lescape | Produce a string that is suitable as raw Unicode literal in Python source code

undefined Raise an exception for all conversions. Can be used as the system encoding if no

automatic coercion between byte and Unicode strings is desired.
uni- Produce a string that is suitable as Unicode literal in Python source code

code_escape
uni-
code_internal

Return the internal representation of the operand

The following codecs provide bytes-to-bytes mappings.

Codec

Aliases

Purpose

base64_codec base64, base-64

bz2_codec
hex_codec

quo-
pri_codec
uu_codec
zlib_codec

bz2
hex

quopri, quoted-printable,

quotedprintable
uu
zip, zlib

Convert operand to MIME base64

Compress the operand using bz2

Convert operand to hexadecimal representation, with two
digits per byte

Convert operand to MIME quoted printable

Convert the operand using uuencode
Compress the operand using gzip

The following codecs provide string-to-string mappings.

Codec

Aliases

Purpose

rot_13 rotl3

Returns the Caesar-cypher encryption of the operand

6.6. codecs — Codec registry and base classes 113

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 3.2

New in version 3.2: bytes-to-bytes and string-to-string codecs.

6.6.4 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492
(Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode
encoding and st ringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name
containing non-ASCII characters (such as www.Alliancefrangaise.nu) is converted into an ASCII-
compatible encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the do-
main name is then used in all places where arbitrary characters are not allowed by the protocol, such as DNS
queries, HTTP Host fields, and so on. This conversion is carried out in the application; if possible invisible to
the user: The application should transparently convert Unicode domain labels to IDNA on the wire, and convert
back ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: The idna codec allows to convert between Unicode and the
ACE. Furthermore, the socket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On
top of that, modules that have host names as function parameters, such as http.client and ftplib, accept
Unicode host names (http.client then also transparently sends an IDNA hostname in the Host field if it
sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, So
AllowUnassignedis true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

6.6.5 encodings.mbcs — Windows ANSI codepage

Encode operand according to the ANSI codepage (CP_ACP). This codec only supports ’strict’ and
"replace’ error handlers to encode, and ’ strict’ and ' ignore’ error handlers to decode.

Auvailability: Windows only. Changed in version 3.2: Before 3.2, the errors argument was ignored; ' replace’
was always used to encode, and ’ ignore’ to decode.

6.6.6 encodings.utf 8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be prepended
to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream).
For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

6.7 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 6.0.0.

114 Chapter 6. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
http://www.unicode.org/Public/6.0.0/ucd

The Python Library Reference, Release 3.2

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if
not given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional category assigned to the character chr as string. If no such value is defined, an
empty string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining
class is defined.

unicodedata.east_asian_width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL
LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence.
In Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility

6.7. unicodedata — Unicode Database 115

http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/reports/tr44/tr44-6.html

The Python Library Reference, Release 3.2

characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ued_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata
>>> unicodedata.lookup (' LEFT CURLY BRACKET')
oy
>>> unicodedata.name (' /")
" SOLIDUS’
>>> unicodedata.decimal (" 9")
9
>>> unicodedata.decimal ("a’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category ("A’") # 'L’etter, ’‘u’ppercase
ILuI
>>> unicodedata.bidirectional (' \u0660’) # ’‘A’rabic, ’'N’umber
IANI

6.8 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of the st ringprep procedure are part of the profile. One example of a stringprep
profile is nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

116 Chapter 6. String Services

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.2

stringprep.map_table_ b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_ b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1l (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.8. stringprep — Internet String Preparation 117

The Python Library Reference, Release 3.2

118 Chapter 6. String Services

CHAPTER
SEVEN

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-
type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset, and tuple.
The st r class is used to hold Unicode strings, and the bytes class is used to hold binary data.

The following modules are documented in this chapter:

7.1 datetime — Basic date and time types

The datet ime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for
output formatting and manipulation. For related functionality, see also the t ime and calendar modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object
has any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment.
Whether a naive datet ime object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it’s up to the program whether a particular number represents
metres, miles, or mass. Naive datet ime objects are easy to understand and to work with, at the cost of ignoring
some aspects of reality.

For applications requiring more, datet ime and t ime objects have an optional time zone information member,
tzinfo, that can contain an instance of a subclass of the abstract t zinfo class. These t zinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect.
Note that only one concrete tzinfo class, the t imezone class, is supplied by the datet ime module. The
timezone class can reprsent simple timezones with fixed offset from UTC such as UTC itself or North American
EST and EDT timezones. Supporting timezones at whatever level of detail is required is up to the application.
The rules for time adjustment across the world are more political than rational, change frequently, and there is no
standard suitable for every application aside from UTC.

The datet ime module exports the following constants:

datetime .MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR is 1.

datetime.MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEAR is 9999.

See Also:
Module calendar General calendar related functions.

Module time Time access and conversions.

119

The Python Library Reference, Release 3.2

7.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
Anidealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

class datetime.timezone
A class that implements the t z info abstract base class as a fixed offset from the UTC. New in version 3.2.

Objects of these types are immutable.
Objects of the date type are always naive.

An object d of type time or datetime may be naive or aware. d is aware if d.tzinfo is not None and
d.tzinfo.utcoffset (d) does notreturn None. If d.tzinfo is None, orif d.tzinfo is not None but
d.tzinfo.utcoffset (d) returns None, d is naive.

The distinction between naive and aware doesn’t apply to t imede1ta objects.
Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

7.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0,

hours=0, weeks=0)
All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or

negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
*A millisecond is converted to 1000 microseconds.
*A minute is converted to 60 seconds.
*An hour is converted to 3600 seconds.

*A week is converted to 7 days.

120 Chapter 7. Data Types

The Python Library Reference, Release 3.2

and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000
°0 <= seconds < 3600x24 (the number of seconds in one day)
*-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float,
the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, Over flowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta
>>> d = timedelta (microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)
Class attributes are:

timedelta.min
The most negative t imede lta object, timedelta (-999999999).

timedelta.max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > —timedelta.min. —-timedelta.max is not
representable as a t imedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

7.1. datetime — Basic date and time types 121

The Python Library Reference, Release 3.2

Operation Result

tl = t2 + t3 Sum of ¢2 and 3. Afterwards ¢/-t2 ==t3 and t1-t3 == t2 are true. (1)

tl = t2 - t3 Difference of 2 and ¢3. Afterwards t1 == 2 - ¢t3 and 2 ==t + {3 are true. (1)

tl = t2 » 1 or Delta multiplied by an integer. Afterwards ¢/ // i ==12 is true, provided 1 != 0.

tl = 1 % t2
In general, t1 *i==1tI * (i-1) + tI is true. (1)

tl = t2 « £ or Delta multiplied by a float. The result is rounded to the nearest multiple of

tl = £ * t2 timedelta.resolution using round-half-to-even.

f=t2 / t3 Division (3) of 2 by #3. Returns a £ 1oat object.

tl = t2 / £ or Delta divided by a float or an int. The result is rounded to the nearest multiple of

tl = t2 / 1 timedelta.resolution using round-half-to-even.

tl = t2 // iortl | The flooris computed and the remainder (if any) is thrown away. In the second

=t2 // t3 case, an integer is returned. (3)

tl = t2 % t3 The remainder is computed as a t imedelta object. (3)

q, r = Computes the quotient and the remainder: g = t1 // t2@3)andr = tl1 %

divmod (tl, t2) t2.qisaninteger andris a t imedelta object.

+t1 Returns a t imedelta object with the same value. (2)

-tl equivalent to t imedelta(-tl.days, -tl.seconds, -tl.microseconds), and to t1*
-1 (1)(4)

abs (t) equivalent to +7 when t .days >= 0,andto-f when t.days < 0.(2)

str(t) Returns a string in the form [D day([s],][H]H:MM:SS[.UUUUUU],
where D is negative for negative t. (5)

repr (t) Returns a string in the form datetime.timedelta (D[, SI[, Ull),
where D is negative for negative t. (5)

Notes:
1. This is exact, but may overflow.
This is exact, and cannot overflow.
Division by 0 raises ZeroDivisionError.

-timedelta.max is not representable as a t imede 1t a object.

A

String representations of t imede 1t a objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)
datetime.timedelta (-1, 68400)
>>> print (_)

-1 day, 19:00:00

In addition to the operations listed above t imedelta objects support certain additions and subtractions with
date and datetime objects (see below). Changed in version 3.2: Floor division and true division of a
timedelta object by another timedelta object are now supported, as are remainder operations and the
divmod () function. True division and multiplication of a t imede1ta object by a f 1oat object are now sup-
ported. Comparisons of t imede 1ta objects are supported with the t imede 1t a object representing the smaller
duration considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a t imedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or ! =. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
a timedelta object is considered to be true if and only if it isn’t equal to t imedelta (0).

Instance methods:

timedelta.total_seconds ()
Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose
microsecond accuracy. New in version 3.2.

Example usage:

122 Chapter 7. Data Types

The Python Library Reference, Release 3.2

>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,

.. minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds ()

31536000.0

>>> year == another_year
True

>>> ten_years = 10 % year

>>> ten_years, ten_years.days // 365
(datetime.timedelta (3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365
(datetime.timedelta (3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years.days // 365
(datetime.timedelta (1095), 3)

>>> abs (three_years - ten_years) == 2 x three_years + year
True

7.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

class datet ime.date (year, month, day)
All arguments are required. Arguments may be integers, in the following ranges:

*MINYEAR <= year <= MAXYEAR
¢l <= month <= 12
*] <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date. This is equivalent to date . fromtimestamp (time.time ()).

classmethod date . fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time ().
This may raise ValueError, if the timestamp is out of the range of values supported by the platform
C localtime () function. It’s common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored by fromtimestamp ().

classmethod date. fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal()) == d

Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

date.max
The latest representable date, date (MAXYEAR, 12, 31).

7.1. datetime — Basic date and time types 123

The Python Library Reference, Release 3.2

date.resolution
The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + timedelta | date?is timedelta.days days removed from datel. (1)

date2 = datel - timedelta | Computes date2 such that date2 + timedelta == datel. (2)

timedelta = datel - date2 | (3)

datel < date2 datel is considered less than date2 when datel precedes date?2 in time. (4)
Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days
< 0. Afterward date2 - datel == timedelta.days. timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases
where datel - timedelta does not. timedelta.seconds and timedelta.microseconds are ig-
nored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == datel after.

4. In other words, datel < date2 if and only if datel.toordinal () < date2.toordinal ().
In order to stop comparison from falling back to the default scheme of comparing object addresses, date
comparison normally raises TypeError if the other comparand isn’t also a date object. However,
NotImplemented is returned instead if the other comparand has a t imetuple () attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date
object is compared to an object of a different type, TypeError is raised unless the comparison is == or
!'=. The latter cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.
Instance methods:

date.replace (year, month, day)
Return a date with the same value, except for those members given new values by whichever keyword
arguments are specified. For example, if d == date (2002, 12, 31),thend.replace (day=26)
== date (2002, 12, 26).

date.timetuple ()

Return a time.struct_time such as returned by time.localtime(). The hours,
minutes and seconds are 0, and the DST flag is -1. d.timetuple () 1is equivalent
to time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday,
-1)), where yday = d.toordinal () - date(d.year, 1, 1).toordinal() + 1 is the

day number within the current year starting with 1 for January 1st.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
objectd, date.fromordinal (d.toordinal()) ==

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday () == 2,a Wednesday. See also i soweekday ().

124 Chapter 7. Data Types

The Python Library Reference, Release 3.2

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3, a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely wused variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29).isocalendar () == (2004, 1,
1) and date (2004, 1, 4).isocalendar() == (2004, 1, 7).

date.isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date (2002,
12, 4).isoformat () == 2002-12-04".

date.__str ()
For a date d, str (d) is equivalentto d.isoformat ().

date.ctime ()
Return a string representing the date, for example date (2002, 12,
4) .ctime () == ’"Wed Dec 4 00:00:00 2002". d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime ()
function (which t ime.ctime () invokes, but which date.ctime () does not invoke) conforms to the
C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. See section strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

c my_birthday = my_birthday.replace (year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs(my_birthday - today)
>>> time_to_birthday.days

202

Example of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> t = d.timetuple ()

>>> for i in t:

. print (i)

2002 # year

7.1. datetime — Basic date and time types 125

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

The Python Library Reference, Release 3.2

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d.isocalendar ()

>>> for i in ic:

e print (i)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)

>>> d.isoformat ()

72002-03-11"

>>> d.strftime ("%d/%m/%y")
r11/03/02"

>>> d.strftime ("%A %d. %B %Y")
"Monday 11. March 2002

7.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a t ime object.
Like a date object, datet ime assumes the current Gregorian calendar extended in both directions; like a time
object, datet ime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datet ime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None)
The year, month and day arguments are required. #zinfo may be None, or an instance of a t zinfo subclass.
The remaining arguments may be integers, in the following ranges:

*MINYEAR <= year <= MAXYEAR
¢l <= month <= 12
*l <= day <= number of days in the given month and year
*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60
*0 <= microsecond < 1000000
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp (time.time ()). See also now (), fromtimestamp ().

classmethod datetime . now (1z=None)
Return the current local date and time. If optional argument #z is None or not specified, this is
like today (), but, if possible, supplies more precision than can be gotten from going through
a time.time () timestamp (for example, this may be possible on platforms supplying the C
gettimeofday () function).

126 Chapter 7. Data Types

The Python Library Reference, Release 3.2

Else 1z must be an instance of a «class tzinfo subclass, and the current date
and time are converted to fz‘s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcnow () .replace (tzinfo=tz)). See also today (), utcnow ().

classmethod datetime.utcnow ()

Return the current UTC date and time, with t zinfo None. This is like now (), but returns the current
UTC date and time, as a naive datetime object. An aware current UTC datetime can be obtained by
calling datetime.now (timezone.utc). See also now ().

classmethod datetime . fromtimestamp (timestamp, tz=None)

Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time (). If optional argument #z is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returned datet ime object is naive.

Else 1 must be an instance of a «class tzinfo subclass, and the times-
tamp is converted to fz‘'s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcfromtimestamp (timestamp) .replace (tzinfo=tz)).

fromtimestamp () may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime () or gmtime () functions. It’s common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a times-
tamp, leap seconds are ignored by fromtimestamp (), and then it’s possible to have two timestamps
differing by a second that yield identical datet ime objects. See also utcfromtimestamp ().

classmethod datetime.utcfromtimestamp (timestamp)

Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. This may raise
ValueError, if the timestamp is out of the range of values supported by the platform C gmt ime () func-
tion. It’s common for this to be restricted to years in 1970 through 2038. See also fromtimestamp ().

classmethod datetime. fromordinal (ordinal)

Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError israised unless 1 <= ordinal <= datetime.max.toordinal (). The
hour, minute, second and microsecond of the result are all 0, and t zinfo is None.

classmethod datetime.combine (date, time)

Return a new datetime object whose date members are equal to the given date object’s, and whose
time and tzinfo members are equal to the given time object’s. For any datetime object d, d
== datetime.combine (d.date (), d.timetz ()). If dateis a datetime object, its time and
tzinfo members are ignored.

classmethod datetime . strptime (date_string, format)

Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (x (time.strptime (date_string, format) [0:6])). ValueError is raised if
the date_string and format can’t be parsed by time.strptime () or if it returns a value which isn’t a
time tuple. See section strftime() and strptime() Behavior.

Class attributes:

datetime.min

The earliest representable datetime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max

The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

7.1. datetime — Basic date and time types 127

The Python Library Reference, Release 3.2

datetime.day

Between 1 and the number of days in the given month of the given year.

datetime.hour

In range (24).

datetime.minute

In range (60).

datetime.second

In range (60).

datetime.microsecond

In range (1000000).

datetime.tzinfo

The object passed as the #zinfo argument to the datet ime constructor, or None if none was passed.

Supported operations:

Operation Result

datetime2?2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datetime to datetime. (4)

1. datetime2 is a duration of timedelta removed from datetimel, moving forward in time if

timedelta.days >0, or backward if timedelta.days <0. The result has the same t zinfo mem-
ber as the input datetime, and datetime2 - datetimel == timedelta after. OverflowError is raised if
datetime2.year would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone adjust-
ments are done even if the input is an aware object.

. Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the

same tzinfo member as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow
in cases where datetimel - timedelta does not.

. Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are

aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t zinfo member, the t z1info members are ignored,
and the result is a t imedelta object f such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

If both are aware and have different t zinfo members, a—b acts as if a and b were first converted

to naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset())
- (b.replace(tzinfo=None) - b.utcoffset ()) except that the implementation never over-
flows.

datetimel is considered less than datetime2 when datetimel precedes datetime?2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware,
and have the same t z1info member, the common t zinfo member is ignored and the base datetimes are
compared. If both comparands are aware and have different t zinfo members, the comparands are first
adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datet ime object.
However, Not Implemented is returned instead if the other comparand has a timetuple () attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a
datetime object is compared to an object of a different type, TypeError is raised unless the comparison
is == or ! =. The latter cases return False or True, respectively.

128

Chapter 7. Data Types

The Python Library Reference, Release 3.2

datetime objects can be used as dictionary keys. In Boolean contexts, all datet ime objects are considered to
be true.

Instance methods:

datetime.date ()
Return date object with same year, month and day.

datetime.time ()
Return t ime object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz ().

datetime.timetz ()
Return t ime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time ().

datetime.replace (][year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]
)

Return a datetime with the same members, except for those members given new values by whichever key-
word arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.

datetime.astimezone (17)
Return a datetime object with new t zinfo member fz, adjusting the date and time members so the
result is the same UTC time as self, but in #z‘s local time.

tz must be an instance of a t zinfo subclass, and its utcof fset () and dst () methods must not return
None. self mustbe aware (self.tzinfo mustnotbe None,and self.utcoffset () mustnotreturn
None).

If self.tzinfoistz, self.astimezone (tz) is equal to self: no adjustment of date or time mem-
bers is performed. Else the result is local time in time zone #z, representing the same UTC time as self: after
astz = dt.astimezone (tz),astz - astz.utcoffset () will usually have the same date and
time members as dt — dt.utcoffset (). The discussion of class t zinfo explains the cases at Day-
light Saving Time transition boundaries where this cannot be achieved (an issue only if 7z models both
standard and daylight time).

If you merely want to attach a time zone object #z to a datetime d¢ without adjustment of date and time
members, use dt . replace (tzinfo=tz). If you merely want to remove the time zone object from an
aware datetime dt without conversion of date and time members, use dt . replace (tzinfo=None).

Note that the default t zinfo. fromutc () method can be overridden in a t zin fo subclass to affect the
result returned by astimezone (). Ignoring error cases, ast imezone () acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz’s local time.
return tz.fromutc (utc)

datetime.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (self), and raises an
exception if the latter doesn’t return None, or a t imede 1t a object representing a whole number of minutes
with magnitude less than one day.

datetime.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception
if the latter doesn’t return None, or a t imedelta object representing a whole number of minutes with
magnitude less than one day.

7.1. datetime — Basic date and time types 129

The Python Library Reference, Release 3.2

datetime.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if
the latter doesn’t return None or a string object,

datetime.timetuple ()

Return a time.struct_time such as returned by time.localtime (). d.timetuple () is
equivalent to time.struct_time((d.year, d.month, d.day, d.hour, d.minute,
d.second, d.weekday (), yday, dst)), where yday = d.toordinal () -

date(d.year, 1, 1).toordinal() + 1 is the day number within the current year starting
with 1 for January 1st. The tm_1isdst flag of the result is set according to the dst () method: tzinfo
is None or dst () returns None, tm_isdst is set to —1; else if dst () returns a non-zero value,
tm_isdstissetto 1;else tm_isdst issetto 0.

datetime.utctimetuple ()
If datetime instance d is naive, this is the same as d.timetuple () except that tm_isdst is forced
to O regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (), and a
time.struct_time for the normalized time is returned. tm_isdst is forced to 0. Note that an
OverflowError may be raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a
year boundary.

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date () .weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date () .isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date () .isocalendar ().

datetime.isoformat (sep="T")
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecondis 0, YYYY-MM-DDTHH:MM:SS

Ifutcoffset () does notreturn None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecondisOYYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default T’) is a one-character separator, placed between the date and time
portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo):
def utcoffset (self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (’ ')
72002-12-25 00:00:00-06:39"

datetime.__str_ ()
For a datetime instance d, str (d) is equivalentto d.isoformat (* ’).

datetime.ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4,

20, 30, 40).ctime() == ’'Wed Dec 4 20:30:40 2002’'. d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime () func-
tion (which t ime . ct ime () invokes, but which datetime.ctime () does not invoke) conforms to the
C standard.

130 Chapter 7. Data Types

The Python Library Reference, Release 3.2

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. See section strftime()
and strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine(d, t)

datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow ()

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y S$H:%M")

>>> dt

datetime.datetime (2006, 11, 21, 16, 30)
>>> # Using datetime.timetuple() to get tuple of all attributes

>>> tt = dt.timetuple ()
>>> for it in tt:
print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January
-1 # dst — method tzinfo.dst () returned None

>>> # Date in ISO format

>>> ic = dt.

isocalendar ()

>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting datetime
>>> dt.strftime ("%A, %d. %$B $Y $I:%MSp")
"Tuesday, 21. November 2006 04:30PM’

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1 (tzinfo) :

def

def

def

__init_ (self): # DST starts last Sunday in March

d = datetime (dt.year, 4, 1) # ends last Sunday in October
self.dston = d - timedelta (days=d.weekday () + 1)

d = datetime(dt.year, 11, 1)

self.dstoff = d - timedelta(days=d.weekday () + 1)

utcoffset (self, dt):

return timedelta (hours=1) + self.dst (dt)

dst (self, dt):

if self.dston <= dt.replace(tzinfo=None) < self.dstoff:

7.1. datetime — Basic date and time types 131

The Python Library Reference, Release 3.2

return timedelta (hours=1)
else:
return timedelta (0)
def tzname (self,dt):
return "GMT +1"

>>> class GMT2 (tzinfo) :
def _ init__ (self):
d = datetime (dt.year, 4, 1)
self.dston = d - timedelta (days=d.weekday () + 1)
d = datetime (dt.year, 11, 1)
self.dstoff = d - timedelta (days=d.weekday () + 1)
def utcoffset (self, dt):
return timedelta (hours=1) + self.dst (dt)
def dst (self, dt):
if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta (hours=2)
else:
return timedelta (0)
def tzname (self,dt):
return "GMT +2"

>>> gmtl = GMT1 ()

>>> # Daylight Saving Time

>>> dtl = datetime (2006, 11, 21, 16, 30, tzinfo=gmtl)

>>> dtl.dst ()

datetime.timedelta (0)

>>> dtl.utcoffset ()

datetime.timedelta (0, 3600)

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=gmtl)

>>> dt2.dst ()

datetime.timedelta (0, 3600)

>>> dt2.utcoffset ()

datetime.timedelta (0, 7200)

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (GMT2())

>>> dt3

datetime.datetime (2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=<GMT1l object at 0x...>)
>>> dt2.utctimetuple () == dt3.utctimetuple ()

True

7.1.5 time Objects
A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
All arguments are optional. #zinfo may be None, or an instance of a t zinfo subclass. The remaining
arguments may be integers, in the following ranges:

*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60

*0 <= microsecond < 1000000.

132 Chapter 7. Data Types

The Python Library Reference, Release 3.2

If an argument outside those ranges is given, ValueError is raised. All default to 0 except #zinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable t ime, time (0, 0, 0, 0).

time.max
The latest representable t ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal t ime objects, t imedelta (microseconds=1),
although note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

time.second
In range (60).

time.microsecond
In range (1000000).

time.tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

Supported operations:

e comparison of time to t ime, where a is considered less than b when a precedes b in time. If one com-
parand is naive and the other is aware, TypeError is raised. If both comparands are aware, and have the
same t zinfo member, the common t z1info member is ignored and the base times are compared. If both
comparands are aware and have different t z info members, the comparands are first adjusted by subtract-
ing their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, when a t ime object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return False
or True, respectively.

* hash, use as dict key
* efficient pickling

* in Boolean contexts, a t ime object is considered to be true if and only if, after converting it to minutes and
subtracting ut coffset () (or 0 if that’s None), the result is non-zero.

Instance methods:

time.replace ([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Return a t ime with the same value, except for those members given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware
t ime, without conversion of the time members.

time.isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset () does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

time.__str ()
Foratimet str (t) isequivalenttot.isoformat ().

7.1. datetime — Basic date and time types 133

The Python Library Reference, Release 3.2

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. See section strftime() and
strptime() Behavior.

time.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (None), and raises an
exception if the latter doesn’t return None or a t imede 1t a object representing a whole number of minutes
with magnitude less than one day.

time.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception
if the latter doesn’t return None, or a t imedelta object representing a whole number of minutes with
magnitude less than one day.

time.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (None), or raises an exception
if the latter doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT1 (tzinfo) :
def utcoffset (self, dt):
return timedelta (hours=1)
def dst (self, dt):
return timedelta (0)
def tzname (self,dt):
return "Europe/Prague"

>>> t = time (12, 10, 30, tzinfo=GMT1())
>>> t

datetime.time (12, 10, 30, tzinfo=<GMT1l object at 0Ox...>)
>>> gmt = GMT1 ()

>>> t.isoformat ()

712:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

"Europe/Prague’

>>> t.strftime ("$SH:S$M:%S %2")

712:10:30 Europe/Prague’

7.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the standard t zinfo methods needed by
the datetime methods you use. The datetime module supplies a simple concrete subclass of tzinfo
t imezone which can reprsent timezones with fixed offset from UTC such as UTC itself or North American EST
and EDT.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their members as being in local time, and the t zinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init__ () method that can be called
with no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

134 Chapter 7. Data Types

The Python Library Reference, Release 3.2

tzinfo.utcoffset (dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for example, if a t zinfo object
represents both time zone and DST adjustments, ut cof fset () should return their sum. If the UTC offset
isn’t known, return None. Else the value returned must be a t imede 1t a object specifying a whole number
of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementations of utcof fset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does notreturn None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset () for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned by utcoffset (), so there’s no need to consult dst () unless you're
interested in obtaining DST info separately. For example, datetime.timetuple () callsits tzinfo
member’s dst () method to determine how the tm_isdst flag should be set,and t zinfo. fromutc ()
calls dst () to account for DST changes when crossing time zones.

An instance 7z of a t zinfo subclass that models both standard and daylight times must be consistent in

this sense:
tz.utcoffset (dt) - tz.dst (dt)
must return the same result for every datetime df with dt.tzinfo == tz For sane tzinfo sub-

classes, this expression yields the time zone’s “standard offset”, which should not depend on the date or
the time, but only on geographic location. The implementation of datetime.astimezone () relies on
this, but cannot detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass
cannot guarantee this, it may be able to override the default implementation of tzinfo.fromutc () to
work correctly with ast imezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self):
a fixed-offset class: doesn’t account for DST
return timedelta (0)

or

def dst (self):
Code to set dston and dstoff to the time zone’s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.

tzinfo.tzname (df)
Return the time zone name corresponding to the datet ime object df, as a string. Nothing about string
names is defined by the datet ime module, and there’s no requirement that it mean anything in particular.
For example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid
replies. Return None if a string name isn’t known. Note that this is a method rather than a fixed string

7.1. datetime — Basic date and time types 135

The Python Library Reference, Release 3.2

primarily because some t zinfo subclasses will wish to return different names depending on the specific
value of dt passed, especially if the t zinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or t ime object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more
useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datet ime object is passed in response to a datetime method, dt.tzinfo is the same object as
self. tzinfo methods can rely on this, unless user code calls t zinfo methods directly. The intent is that the
tzinfo methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more t z info method that a subclass may wish to override:

tzinfo.fromutc (df)
This is called from the default datetime.astimezone () implementation. When called from that,
dt.tzinfo is self, and dt‘s date and time members are to be viewed as expressing a UTC time. The
purpose of fromutc () is to adjust the date and time members, returning an equivalent datetime in self ‘s
local time.

Most t zinfo subclasses should be able to inherit the default fromutc () implementation without prob-
lems. It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the default fromutc () implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political
reasons. The default implementations of astimezone () and fromutc () may not produce the result
you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error 1if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError 1if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

Example t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR = timedelta (hours=1)

A UTC class.

class UTC(tzinfo) :
mimn "UTC mmn

136 Chapter 7. Data Types

The Python Library Reference, Release 3.2

def utcoffset (self, dt):
return ZERO

def tzname (self, dt):
return "UTC"

def dst (self, dt):
return ZERO

utc = UTC()
A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset (0, "UTC") is a different way to build a

UTC tzinfo object.

class FixedOffset (tzinfo) :
""rpixed offset in minutes east from UTC."""

def _ init__ (self, offset, name):
self._ offset = timedelta (minutes = offset)
self._ _name = name

def utcoffset (self, dt):
return self._ offset

def tzname (self, dt):
return self._ name

def dst (self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone (tzinfo) :

def utcoffset(self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._isdst (dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):

7.1. datetime — Basic date and time types 137

The Python Library Reference, Release 3.2

return _time.tzname[self._ isdst (dt)]

def _isdst (self, dt):
tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt .weekday (), 0, 0)
stamp = _time.mktime (tt)
tt = _time.localtime (stamp)
return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz—1ink.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)

S Hh FHR R R R R R

In the US, since 2007, DST starts at Z2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(1, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at 2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime (1, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART_1967_1986 = datetime (1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

e

class USTimeZone (tzinfo) :

def _ _init__ (self, hours, reprname, stdname, dstname) :
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def _ _repr__ (self):
return self.reprname

138 Chapter 7. Data Types

The Python Library Reference, Release 3.2

def tzname (self, dt):
if self.dst (dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst (self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone /()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:
dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:
dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:
dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:
return ZERO

start = first_sunday_on_or_after (dststart.replace (year=dt.year))
end = first_sunday_on_or_after (dstend.replace (year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:
return HOUR
else:
return ZERO

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "csT", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the
first Sunday in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM MM 1:MM MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

(@)
N

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so astimezone (Eastern) won’t deliver a result with hour == 2 on
the day DST begins. In order for astimezone () to make this guarantee, the rzinfo.dst () method must

7.1. datetime — Basic date and time types 139

The Python Library Reference, Release 3.2

consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. astimezone () mimics the local clock’s behavior by mapping
two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In order for ast imezone () to make this guarantee,
the tzinfo.dst () method must consider times in the “repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid t zinfo subclasses; there are no ambi-
guities when using t imezone, or any other fixed-offset t z info subclass (such as a class representing only EST
(fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

7.1.7 timezone Objects

A timezone object represents a timezone that is defined by a fixed offset from UTC. Note that objects of this
class cannot be used to represent timezone information in the locations where different offsets are used in different
days of the year or where historical changes have been made to civil time.

class datetime.timezone (ojj‘set[, name])
The offset argument must be specified as a t imede 1t a object representing the difference between the local
time and UTC. It must be strictly between —t imedelta (hours=24) and timedelta (hours=24)
and represent a whole number of minutes, otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that is used as the value returned by the
tzname (dt) method. Otherwise, t zname (dt) returns a string ‘UTCsHH:MM’, where s is the sign of
offset, HH and MM are two digits of offset .hours and offset .minutes respectively.

timezone.utcoffset (dr)
Return the fixed value specified when the t imezone instance is constructed. The df argument is ignored.
The return value is a t imede 1t a instance equal to the difference between the local time and UTC.

timezone.tzname (dt)
Return the fixed value specified when the t imezone instance is constructed or a string ‘UTCsHH:MM’,
where s is the sign of offser, HH and MM are two digits of of fset.hours and offset.minutes
respectively.

timezone.dst (df)
Always returns None.

timezone.fromute (dt)
Return dt + offset. The df argument must be an aware datet ime instance, with tzinfo set to
self.

Class attributes:

timezone.utec
The UTC timezone, t imezone (timedelta (0)).

7.1.8 strftime () and strptime () Behavior

date,datetime, and t ime objects all supporta strftime (format) method, to create a string representing
the time under the control of an explicit format string. Broadly speaking, d.strftime (fmt) acts like the t ime
module’s time.strftime (fmt, d.timetuple ()) although not all objects support a timetuple ()

method.

Conversely, the datetime.strptime () class method creates a datet ime object from a string representing
a date and time and a corresponding format string. datetime.strptime (date_string, format) is
equivalent to datetime (* (time.strptime (date_string, format) [0:6])).

140 Chapter 7. Data Types

The Python Library Reference, Release 3.2

For t ime objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, O is substituted for them.

For a naive object, the $z and $Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset () is transformed into a S-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30),
%z is replaced with the string * ~0330".

%Z If tzname () returns None, %7 is replaced by an empty string. Otherwise $7Z is replaced by the returned
value, which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

Di- Meaning Note

rec-

tive

%$a Locale’s abbreviated weekday name.

$A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%$B Locale’s full month name.

Ele Locale’s appropriate date and time representation.

sd Day of the month as a decimal number [01,31].

$f Microsecond as a decimal number [0,999999], zero-padded on the left (D)

$H Hour (24-hour clock) as a decimal number [00,23].

$I Hour (12-hour clock) as a decimal number [01,12].

%7 Day of the year as a decimal number [001,366].

$m Month as a decimal number [01,12].

M Minute as a decimal number [00,59].

%p Locale’s equivalent of either AM or PM. 2)

%S Second as a decimal number [00,59]. 3)

%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. (€))
All days in a new year preceding the first Sunday are considered to be in week 0.

SwW Weekday as a decimal number [0(Sunday),6].

SW Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. @
All days in a new year preceding the first Monday are considered to be in week 0.

$x Locale’s appropriate date representation.

$X Locale’s appropriate time representation.

Sy Year without century as a decimal number [00,99].

%Y Year with century as a decimal number [0001,9999] (strptime), [1000,9999] (strftime). (®)]

%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). (6)

%7 Time zone name (empty string if the object is naive).

%% A literal * $’ character.

Notes:

1. When used with the st rpt ime () method, the % £ directive accepts from one to six digits and zero pads on
the right. $£ is an extension to the set of format characters in the C standard (but implemented separately
in datetime objects, and therefore always available).

2. When used with the strptime () method, the $p directive only affects the output hour field if the $I
directive is used to parse the hour.

7.1. datetime — Basic date and time types 141

The Python Library Reference, Release 3.2

3. Unlike t ime module, datet ime module does not support leap seconds.

4. When used with the st rptime () method, $U and $W are only used in calculations when the day of the
week and the year are specified.

5. For technical reasons, strftime () method does not support dates before year 1000:
t.strftime (format) will raise a ValueError when t.year < 1000 even if format
does not contain %Y directive. The strptime () method can parse years in the full [1, 9999] range,
but years < 1000 must be zero-filled to 4-digit width. Changed in version 3.2: In previous versions,
strftime () method was restricted to years >= 1900.

6. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is replaced
with the string /' —0330".

Changed in version 3.2: When the $z directive is provided to the st rptime () method, an aware datetime
object will be produced. The t zinfo of the result will be set to a t imezone instance.

7.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Use setfirstweekday () to set the first day of the week to Sunday (6) or
to any other weekday. Parameters that specify dates are given as integers. For related functionality, see also the
datetime and t ime modules.

Most of these functions and classes rely on the datet ime module which uses an idealized calendar, the current
Gregorian calendar extended in both directions. This matches the definition of the “proleptic Gregorian” calendar
in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations.

class calendar .Calendar (firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. O is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for format-
ting. This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the firstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end
of the month that are required to get a complete week.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will simply be day numbers.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

142 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/calendar.py?view=markup

The Python Library Reference, Release 3.2

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month rows.
Each month row contains up to width months (defaulting to 3). Each month contains between 4 and 6
weeks and each week contains 1-7 days. Days are datet ime.date objects.

yeardays2calendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, [=0)
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date
columns, which are centered. If / is given, it specifies the number of lines that each week will use.
Depends on the first weekday as specified in the constructor or set by the set firstweekday ()
method.

prmonth (theyear, themonth, w=0, [=0)
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, I=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the set firstweekday ()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2, =1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear ().

class calendar.HTMLCalendar (firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear=True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the
header, otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months
per row.

formatyearpage (theyear, width=3, css="calendar.css’, encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no
style sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the
system default encoding).

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and

7.2. calendar — General calendar-related functions 143

The Python Library Reference, Release 3.2

weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

Note: The formatweekday () and formatmonthname () methods of these two classes temporarily change
the current locale to the given locale. Because the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar. firstweekday ()
Returns the current setting for the weekday to start each week.

calendar.isleap (year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays (y/, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.

This function works for ranges spanning a century change.

calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

calendar .weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

calendar.prmonth (theyear, themonth, w=0, [=0)
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth, w=0, [=0)
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar
class.

calendar.precal (year, w=0, [=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year, w=2, l=1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class.

calendar.timegm (fuple)
An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
t ime module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, t ime . gmtime () and timegm () are each others’ inverse.

The calendar module exports the following data attributes:

144 Chapter 7. Data Types

The Python Library Reference, Release 3.2

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar.month name
An array that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13 and month_name [0] is the empty string.

calendar.month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty
string.

See Also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

7.3 collections — Container datatypes

Source code: Lib/collections.py and Lib/_abcoll.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-
in containers, dict, 1ist, set, and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values

UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

In addition to the concrete container classes, the collections module provides ABCs - abstract base classes that can
be used to test whether a class provides a particular interface, for example, whether it is hashable or a mapping.

7.3.1 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a 1list

>>> cnt = Counter ()

>>> for word in [’'red’, ’'blue’, ’'red’, ’"green’, ’'blue’, ’"blue’]:

.. cnt [word] += 1

>>> cnt

Counter ({’blue’: 3, ’'red’: 2, ’'green’: 1})

>>> # Find the ten most common words in Hamlet

>>> import re

>>> words = re.findall (' \w+’, open(’hamlet.txt’).read().lower())

>>> Counter (words) .most_common (10)

[("the’, 1143), ("and’, 966), ("to’, 762), ('of’, 669), ('i’", 631),
("you’, 554), ("a’”, 546), ('my’, 514), ("hamlet’, 471), ("in’, 451)]

7.3. collections — Container datatypes 145

http://svn.python.org/view/python/branches/py3k/Lib/collections.py?view=markup
http://svn.python.org/view/python/branches/py3k/Lib/_abcoll.py?view=markup

The Python Library Reference, Release 3.2

class collections.Counter ([iterable-or—mapping])
A Counter isadict subclass for counting hashable objects. It is an unordered collection where elements
are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any
integer value including zero or negative counts. The Counter class is similar to bags or multisets in other
languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter() # a new, empty counter

>>> ¢ = Counter ('gallahad’) # a new counter from an iterable
>>> ¢ = Counter ({’'red’: 4, ’"blue’: 2}) # a new counter from a mapping
>>> c = Counter (cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> c = Counter([’eggs’, ’"ham’])
>>> c[’bacon’] # count of a missing element is zero
0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c[’sausage’] = 0 # counter entry with a zero count
>>> del c[’sausage’] # del actually removes the entry

New in version 3.1. Counter objects support three methods beyond those available for all dictionaries:

elements ()
Return an iterator over elements repeating each as many times as its count. Elements are returned in
arbitrary order. If an element’s count is less than one, e lements () will ignore it.

>>> ¢ = Counter (a=4, b=2, c=0, d=-2)
>>> list (c.elements())
[,a,, laI, ’aI’ laI, ’bl, lbl]

most_common ([n])
Return a list of the » most common elements and their counts from the most common to the least. If
n is not specified, most__common () returns all elements in the counter. Elements with equal counts
are ordered arbitrarily:

>>> Counter (' abracadabra’) .most_common (3)
[("a”, 5), ("', 2), ("b", 2)]

subtract ([iterable-or—mapping])
Elements are subtracted from an iferable or from another mapping (or counter). Like
dict.update () but subtracts counts instead of replacing them. Both inputs and outputs may be
Zero or negative.

>>> ¢ = Counter(a=4, b
>>> d = Counter (a=1, b=
>>> c.subtract (d)

Counter({’a’": 3, 'b’: 0, 'c’: =3, 'd’": -6})

New in version 3.2.

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys (iterable)
This class method is not implemented for Counter objects.

146 Chapter 7. Data Types

The Python Library Reference, Release 3.2

update ([iterable-or-mapping])
Elements are counted from an iferable or added-in from another mapping (or counter). Like
dict.update () but adds counts instead of replacing them. Also, the iterable is expected to be
a sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values ()) # total of all counts

c.clear () # reset all counts

list (c) # list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:—n:—1] # n least common elements

c += Counter () # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts.
Each operation can accept inputs with signed counts, but the output will exclude results with counts of zero or

less.

>>>
>>>
>>>

c = Counter (a=3, b=1)
d = Counter (a=1, b=2)
c + d # add two counters together: c[x] + d[x]

Counter ({"a’: 4, '"b’: 3})

>>>

c — d # subtract (keeping only positive counts)

Counter ({"a’": 2})

>>>

c & d # Iintersection: min(c[x], d[x])

Counter({"a’: 1, "b’: 1})

>>>

c | d # union: max(c[x], d[x])

Counter ({’a’": 3, 'b’: 2})

Note:

Counters were primarily designed to work with positive integers to represent running counts; however,

care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those
use cases, this section documents the minimum range and type restrictions.

The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

The most_common () method requires only that the values be orderable.

For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

The multiset methods are designed only for use cases with positive values. The inputs may be negative or
zero, but only outputs with positive values are created. There are no type restrictions, but the value type
needs to support support addition, subtraction, and comparison.

The elements () method requires integer counts. It ignores zero and negative counts.

See Also:

Counter class adapted for Python 2.5 and an early Bag recipe for Python 2.4.
Bag class in Smalltalk.
Wikipedia entry for Multisets.

C++ multisets tutorial with examples.

7.3. collections — Container datatypes 147

http://code.activestate.com/recipes/576611/
http://code.activestate.com/recipes/259174/
http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
http://en.wikipedia.org/wiki/Multiset
http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.2

» For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer

Programming Volume II, Section 4.6.3, Exercise 19.

e To enumerate all distinct multisets of a given size over a given set of elements, see

itertools.combinations_with_replacement ().

map(Counter, combinations_with_replacement(‘ABC’, 2)) -—> AA AB AC BB BC CC

7.3.2 deque objects

class collections.deque ([iterable[, maxlen]])

Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the
deque with approximately the same O(1) performance in either direction.

Though 1ist objects support similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the
size and position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is
bounded to the specified maximum length. Once a bounded length deque is full, when new items are added,
a corresponding number of items are discarded from the opposite end. Bounded length deques provide
functionality similar to the tail filter in Unix. They are also useful for tracking transactions and other
pools of data where only the most recent activity is of interest.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

count (x)
Count the number of deque elements equal to x. New in version 3.2.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)
Removed the first occurrence of value. If not found, raises a ValueError.

reverse ()
Reverse the elements of the deque in-place and then return None. New in version 3.2.

rotate (n)
Rotate the deque 7 steps to the right. If n is negative, rotate to the left. Rotating one step to the right is
equivalent to: d.appendleft (d.pop()).

148

Chapter 7. Data Types

The Python Library Reference, Release 3.2

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded. New in version 3.1.

In addition to the above, deques support iteration, pickling, len (d), reversed(d), copy.copy (d),
copy .deepcopy (d), membership testing with the in operator, and subscript references such as d[-1]. In-
dexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

>>> from collections import deque

>>> d = deque (’ghi’) make a new deque with three items
>>> for elem in d: # iterate over the deque’s elements
print (elem.upper ())

e

G

H
I
>>> d.append(’j’) # add a new entry to the right side
>>> d.appendleft (' £") # add a new entry to the left side

>>> d # show the representation of the deque
deque (["£", "g’, 'h’, "1i", "3'1])

>>> d.pop () # return and remove the rightmost item
ljl

>>> d.popleft () # return and remove the leftmost item
lf/

>>> list (d) # list the contents of the deque
["g’, "h', "i7]

>>> d[0] # peek at leftmost item

lgl

>>> d[-1] # peek at rightmost item

Vi’

>>> list (reversed(d)) # 1ist the contents of a deque in reverse
["i’, 'h', 'g’]

>>> 'h’ in d # search the deque

True

>>> d.extend (' jk1”) # add multiple elements at once

>>> d

deque([’'g’, "h’, "i’, "3", 'k’, "1'1])

>>> d.rotate (1) # right rotation

>>> d

deque ([”1", 'g’, 'h", "i", 3", "k'1)

>>> d.rotate(-1) # left rotation

>>> d

deque([’g’, "h', 7i’, '37, 'k’, '1'])

>>> deque (reversed(d)) # make a new deque in reverse order
deque (['1’, 'k’, "3', "i’, 'n’, 'g'])

>>> d.clear () # empty the deque

>>> d.pop () # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft (' abc’) # extendleft () reverses the input order
>>> d

7.3. collections — Container datatypes 149

The Python Library Reference, Release 3.2

deque ([’'c’, 'b’, "a’'l)

deque Recipes

This section shows various approaches to working with deques.
Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
"Return the last n lines of a file’
return deque (open (filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:

def moving_average (iterable, n=3):
moving average ([40, 30, 50, 46, 39, 44]) —--> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving _average
it = iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft (0)
s = sum(d)
for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left
side of the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the
rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as
dup, drop, swap, over, pick, rot,and roll.

7.3.3 defaultdict objects

class collections.defaultdict ([default_factory[,]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for the
dict class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None.
All remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)
If the default_factory attribute is None, this raises a KeyError exception with the key as
argument.

If default_factory isnot None, itis called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

150 Chapter 7. Data Types

The Python Library Reference, Release 3.2

This method is called by the __getitem__ () method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__ ().

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using 1ist as the default_factory, itis easy to group a sequence of key-value pairs into a dictionary of
lists:

>>> s = [('yellow’, 1), ("blue’, 2), ('yellow’, 3), ('blue’, 4), ('red’, 1)]
>>> d = defaultdict(list)
>>> for k, v in s:

d[k] .append (V)

>>> list (d.items())
[("blue’, [2, 4]), (‘red’, [1]), (‘yellow’, [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The 1ist .append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the 1ist . append () operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict.setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []) .append(v)

>>> list(d.items())
[("blue’, [2, 4]), (‘red’, [11), (’yellow’, [1, 31)]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset
in other languages):

>>> s = 'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

d[k] += 1

>>> list(d.items())
(¢rir, 4y, ('p’, 2), ('s’, 4), ('m", 1)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls
int () to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is to use a lambda function which can supply any constant value (not just
Z€ero):

>>> def constant_factory(value) :

.. return lambda: value

>>> d = defaultdict (constant_factory (' <missing>"))
>>> d.update (name=’John’, action=’'ran’)

>>> /% (name)s % (action)s to %$(object)s’ % d

"John ran to <missing>’

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

7.3. collections — Container datatypes 151

The Python Library Reference, Release 3.2

>>> 5
>>> d = defaultdict (set)
>>> for k, v in s:

d[k] .add (v)

>>> list(d.items())
[(‘blue’, set([2, 41)), (‘red’, set([1l, 31))]

7.3.4 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead of
position index.

collections.namedtuple (typename, field_names, verbose=False, rename="False)
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that
have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass
also have a helpful docstring (with typename and field_names) and a helpful __repr__ () method which
lists the tuple contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for exam-
ple "x vy’ or’x, vy’. Alternatively, field_names can be a sequence of strings suchas [’ x’, ’'vy’].

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be
a keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example,
["abc’, 'def’, "ghi’, ’"abc’]isconvertedto ["abc’, ’_1’, 'ghi’, ’_3'],eliminat-
ing the keyword def and the duplicate fieldname abc.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples. Changed in version 3.1: Added support for rename.

>>> # Basic example
>>> Point = namedtuple (’'Point’, ’'x y’)
>>> p = Point (x=10, y=11)

>>> # Example using the verbose option to print the class definition

>>> Point = namedtuple (’Point’, ’'x y’, verbose=True)

class Point (tuple) :
"Point (x, V)

14

__slots___ = ()

_fields = ('x', 'y")

def _ _new__(_cls, x, y):
"Create a new instance of Point(x, y)’
return _tuple._ new_ (_cls, (x, y))

@classmethod

def _make(cls, iterable, new=tuple.__new__, len=len):
"Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) != 2:

raise TypeError ('Expected 2 arguments, got %d’ % len(result))
return result

152 Chapter 7. Data Types

[("red", 1), ('blue’, 2), ("red’, 3), ('"blue’, 4), ('red’, 1), ('blue’,

4)]

The Python Library Reference, Release 3.2

def _ _repr__ (self):
"Return a nicely formatted representation string’

[

return self. class .__name + 7 (x=%r, y=%r)’ % self

def _asdict (self):
"Return a new OrderedDict which maps field names to their values’
return OrderedDict (zip(self._fields, self))

def _replace(_self, xxkwds):
"Return a new Point object replacing specified fields with new values’
result = _self._make (map (kwds.pop, ('x’', 'vy’"), _self))
if kwds:
raise ValueError (' Got unexpected field names: %r’ % list (kwds.keys()))
return result

def _ getnewargs_ (self):
"Return self as a plain tuple. Used by copy and pickle.’
return tuple (self)

x = _property(_itemgetter(0), doc='Alias for field number 0')

y = _property(_itemgetter(l), doc="Alias for field number 1')
>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + p[l] # indexable like the plain tuple (11, 22)
33
>>> x, y =p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __ _repr. with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3
modules:

EmployeeRecord = namedtuple ('EmployeeRecord’, ’‘name, age, title, department, paygrade’)

import csv
for emp in map (EmployeeRecord._make, csv.reader (open("employees.csv", "rb"))):
print (emp.name, emp.title)

import sqglite3
conn = sglite3.connect (' /companydata’)
cursor = conn.cursor ()
cursor.execute (' SELECT name, age, title, department, paygrade FROM employees’)
for emp in map (EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute.
To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

somenamedtuple._asdict ()
Return a new OrderedDict which maps field names to their corresponding values:

7.3. collections — Container datatypes 153

The Python Library Reference, Release 3.2

>>> p._asdict ()
OrderedDict ([("x’', 11), ('y', 22)1)

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

somenamedtuple._replace (kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items{() :
inventory[partnum] = record._replace (price=newprices[partnum], timestamp=time.nc

somenamedtuple._£fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types
from existing named tuples.

>>> p._fields # view the field names
("x', 'y7)

>>> Color = namedtuple (’'Color’, "red green blue’)

>>> Pixel = namedtuple (’'Pixel’, Point._fields + Color._fields)
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, "x’)
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):
>> d = {'x": 11, 'y’': 22}

>>> Point (xxd)

Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is
how to add a calculated field and a fixed-width print format:

>>> class Point (namedtuple ('Point’, 'x y’)):
__slots___ = ()
@property
def hypot (self):
return (self.x »x 2 + self.y #*% 2) %% 0.5
def _ str_ (self):
return 'Point: x=%6.3f vy=%6.3f hypot=%6.3f" % (self.x, self.y, self.hypot)

>>> for p in Point (3, 4), Point (14, 5/7):
c print (p)

Point: x= 3.000 vy= 4.000 hypot= 5.000
Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets ___slots___ to an empty tuple. This helps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple(’Point3D’, Point._fields + ("z’,))

Default values can be implemented by using _replace () to customize a prototype instance:

154 Chapter 7. Data Types

The Python Library Reference, Release 3.2

>>> Account = namedtuple (’Account’, ’'owner balance transaction_count’)
>>> default_account = Account (' <owner name>’, 0.0, 0)
>>> johns_account = default_account._replace (owner='John’)

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple
class declaration:

>>> Status = namedtuple ('’ Status’, ’'open pending closed’) ._make (range (3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)
>>> class Status:
open, pending, closed = range (3)

See Also:
Named tuple recipe adapted for Python 2.4.

7.3.5 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted. When
iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict ([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict that
remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original
insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end. New in
version 3.1.

popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs
are returned in LIFO order if last is true or FIFO order if false.

move_to_end (key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last
is true (the default) or to the beginning if last is false. Raises KeyError if the key does not exist:

>>> d = OrderedDict.fromkeys (’abcde’)
>>> d.move_to_end('b’")

>>> '’ join(d.keys)

"acdeb’

>>> d.move_to_end(’'b’, last=False)
>>> '’ join (d.keys)

"bacde’

New in version 3.2.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are implemented as
list (odl.items())==1list (od2.items ()). Equality tests between OrderedDict objects and
other Mapping objects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be
substituted anywhere a regular dictionary is used.

The OrderedDict constructor and update () method both accept keyword arguments, but their order is lost
because Python’s function call semantics pass-in keyword arguments using a regular unordered dictionary.

See Also:
Equivalent OrderedDict recipe that runs on Python 2.4 or later.

Since an ordered dictionary remembers its insertion order, it can be used in conjuction with sorting to make a
sorted dictionary:

7.3. collections — Container datatypes 155

http://code.activestate.com/recipes/500261/
http://code.activestate.com/recipes/576693/

The Python Library Reference, Release 3.2

>>> # regular unsorted dictionary
>>> d = {’banana’: 3, ’"apple’:4, ’'pear’: 1, ’'orange’: 2}

>>> # dictionary sorted by key
>>> OrderedDict (sorted(d.items (), key=lambda t: t[0]))
OrderedDict ([("apple’, 4), ('’banana’, 3), ('orange’, 2), ('pear’, 1)1])

>>> # dictionary sorted by value
>>> OrderedDict (sorted(d.items (), key=lambda t: t[1l]))
OrderedDict ([("pear’, 1), ('orange’, 2), (’banana’, 3), (’'apple’, 4)1])

>>> # dictionary sorted by length of the key string
>>> OrderedDict (sorted(d.items (), key=lambda t: len(t[0])))
OrderedDict ([('pear’, 1), ('apple’, 4), ('orange’, 2), ('banana’, 3)1)

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are added, the
keys are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that the remembers the order the keys were last
inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to the
end:

class LastUpdatedOrderedDict (OrderedDict) :
"Store items in the order the keys were last added’
def _ setitem__ (self, key, value):
if key in self:
del selflkey]
OrderedDict._ _setitem_ (self, key, value)

7.3.6 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially
supplanted by the ability to subclass directly from dict; however, this class can be easier to work with because
the underlying dictionary is accessible as an attribute.

class collections.UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its
contents; note that a reference to initialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the fol-
lowing attribute:

data
A real dictionary used to store the contents of the UserDict class.

7.3.7 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can
inherit from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 11 st; however, this
class can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, for example a real Python list or a UserList object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide
the following attribute:

156 Chapter 7. Data Types

The Python Library Reference, Release 3.2

data
A real 11ist object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

7.3.8 Userstring objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially
supplanted by the ability to subclass directly from st r; however, this class can be easier to work with because the
underlying string is accessible as an attribute.

class collections.UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string
object, which is accessible via the dat a attribute of UserSt ring instances. The instance’s contents are
initially set to a copy of sequence. The sequence can be an instance of bytes, str, UserString (ora
subclass) or an arbitrary sequence which can be converted into a string using the built-in st r () function.

7.3.9 ABCs - abstract base classes

The collections module offers the following ABCs:

ABC Inherits Abstract Methods Mixin Methods
Container __contains_
Hashable __hash___
Iterable __iter
Iterator Iterable __next_ __iter_
Sized _len_
Callable _call__
Sequence Sized, __getitem __contains_ , iter_ , reversed_ ,
Iterable, index, and count
Container
Mutable$etprmprerece __setitem_ Inherited Sequence methods and append, reverse,
__delitem_ , extend, pop, remove, and __iadd_
and insert
Set Sized, _le_ ,_1t_, egq_,_ne_ ,__gt_,
Iterable, _ge_ ,_and__,__or__,__sub__,
Container __xor__,and isdisjoint
Mutable$eiet add and discard | Inherited Set methods and clear, pop, remove,
__dior , dand_, ixor_ ,and___isub___
Mapping| Sized, __getitem_ __contains__, keys, items, values, get,
Iterable, _eq_,and__ne_
Container
Mut ableNMadfadmiong __setitem__ and | Inherited Mapping methods and pop, popitem,
__delitem_ clear, update, and setdefault
MappingVi®wzed _len_
KeysViey MappingView _ _contains__,_ _iter
Set
ItemsViewappingView __contains__,__iter_
Set
ValuesViadappingView __contains_ , iter

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

7.3. collections — Container datatypes

157

The Python Library Reference, Release 3.2

size = None
if isinstance (myvar, collections.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs.
For example, to write a class supporting the full Set API, it only necessary to supply the three underlying abstract
methods: __contains__ (), __iter_ (), and __len__ (). The ABC supplies the remaining methods
suchas __and__ () and isdisjoint ()

class ListBasedSet (collections.Set):
777 Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable. 777
def @ init_ (self, iterable):
self.elements = 1lst = []
for value in iterable:
if value not in 1lst:
lst.append (value)
def _ iter_ (self):
return iter (self.elements)
def _ contains__ (self, wvalue):
return value in self.elements
def @ len_ (self):
return len(self.elements)

sl ListBasedSet (' abcdef’)
s2 = ListBasedSet ('defghi’)
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new
instances from an iterable. The class constructor is assumed to have a signature in the form
ClassName (iterable). That assumption is factored-out to an internal classmethod called
_from_iterable () which calls cls (iterable) to produce a new set. If the Set mixin is be-
ing used in a class with a different constructor signature, you will need to override from_iterable ()
with a classmethod that can construct new instances from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__ () and
then the other operations will automatically follow suit.

3. The Set mixin provides a _hash () method to compute a hash value for the set; however, __hash__ ()
is not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit
from both Set () and Hashable (), thendefine_ _hash__ = Set._hash.

See Also:

* Latest version of the Python source code for the collections abstract base classes
* OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the abc module and PEP 3119.

7.4 heapq — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This
implementation uses arrays for which heap [k] <= heap[2+k+1] and heap[k] <= heap[2*k+2] for

158 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/_abcoll.py?view=markup
http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119
http://svn.python.org/view/python/branches/py3k/Lib/heapq.py?view=markup

The Python Library Reference, Release 3.2

all k, counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite.
The interesting property of a heap is that its smallest element is always the root, heap [0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a “min heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest
item, and heap . sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify ().

The following functions are provided:

heapqg.heappush (heap, item)
Push the value ifem onto the heap, maintaining the heap invariant.

heapqg.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heapqg.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().

heapg.heapify (x)
Transform list x into a heap, in-place, in linear time.

heapqg.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change.
If the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the
heap and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using
heappushpop () instead. Its push/pop combination returns the smaller of the two values, leaving the
larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapqg.merge (*iterables)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns an iterator over the sorted values.

Similarto sorted (itertools.chain (xiterables)) butreturns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

heapqg.nlargest (n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iferable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key, reverse=True) [:n]

heapg.nsmallest (n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted (iterable, key=key) [:n]

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions.

7.4. heapqg — Heap queue algorithm 159

The Python Library Reference, Release 3.2

7.4.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at
a time:

>>> def heapsort (iterable) :
"Equivalent to sorted(iterable)’
h = []
for value in iterable:
heappush (h, wvalue)
return [heappop (h) for i in range(len(h))]

>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 01)
[O, 1, 2’ 3, 4, 5’ 6’ 7, 8, 9]

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []

>>> heappush (h, (
>>> heappush (h, (
>>> heappush (h, (
>>> heappush (h, (
>>> heappop (h)

(1, '"write spec’)

5, 'write code’))

7, '"release product’))
1, "write spec’))

3, ’'create tests’))

7.4.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

* Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

» Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a
default comparison order.

« If the priority of a task changes, how do you move it to a new position in the heap?
 Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants.
So, a possible solution is to mark an entry as invalid and optionally add a new entry with the revised priority:

ra = [] # the priority queue 1list
counter = itertools.count (1) # unique sequence count
task_finder = {} # mapping of tasks to entries
INVALID = 0 # mark an entry as deleted

def add_task(priority, task, count=None) :
if count is None:
count = next (counter)
entry = [priority, count, task]
task_finder[task] = entry
heappush (pg, entry)

160 Chapter 7. Data Types

http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.2

def get_top_priority():
while True:
priority, count, task = heappop (pg)
del task_finder[task]
if count is not INVALID:
return task

def delete_task (task):
entry = task_finder[task]
entry[1l] = INVALID

def reprioritize(priority, task):
entry = task_finder[task]
add_task (priority, task, entry[1l])
entry[1l] = INVALID

7.4.3 Theory

Heaps are arrays for whicha [k] <= a[2xk+1] andalk] <= a[2+k+2] forall k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below are k, not a [k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell & is topping 2 «k+1 and 2xk+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the
two topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way
to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0
position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not “better’ than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the “win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer

-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a

7.4. heapqg — Heap queue algorithm 161

The Python Library Reference, Release 3.2

merging passes for these runs, which merging is often very cleverly organised '. It is very important that the initial
sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

7.5 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is called bisect because it uses a basic bisection algorithm to do its work.
The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect.bisect_left (a, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters lo and hi may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in q,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as
the first parameter to 1ist.insert () assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all (val < x for val in
allo:1]) fortheleftside and all (val >= x for val in a[i:hi]) for the right side.

bisect.bisect_right (a, x, lo=0, hi=len(a))

bisect .bisect (q, x, lo=0, hi=len(a))
Similarto bisect_left (), butreturns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all (val <= x for val
in a[lo:i]) fortheleftside and all (val > x for val in a[i:hi]) for the right side.

bisect.insort_left (a, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalent to a.insert (bisect.bisect_left (a, x, lo,
hi), =x) assuming that a is already sorted. Keep in mind that the O(log n) search is dominated by the
slow O(n) insertion step.

bisect.insort_right (a, x, lo=0, hi=len(a))
bisect.insort (a, x, lo=0, hi=len(a))

Similar to insort_left (), butinserting x in a after any existing entries of x.
See Also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search meth-
ods and support for a key-function. The keys are precomputed to save unnecessary calls to the key function during
searches.

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

162 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/bisect.py?view=markup
http://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.2

7.5.1 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups for
sorted lists:

def index(a, x):
"Locate the leftmost value exactly equal to x’
i = bisect_left (a, x)
if i != len(a) and al[i] == x:
return i
raise ValueError

def find_ 1t (a, x):
"Find rightmost value less than x’
i = bisect_left (a, x)
if i:
return af[i-1]
raise ValueError

def find_le(a, x):
"Find rightmost value less than or equal to x’
i = bisect_right(a, x)
if i:
return a[i-1]
raise ValueError

def find gt (a, x):
"Find leftmost value greater than x’
i = bisect_right(a, x)
if 1 != len(a):
return ali]
raise ValueError

def find _ge(a, x):
"Find leftmost item greater than or equal to x’
i = bisect_left (a, x)
if i != len(a):
return ali]
raise ValueError

7.5.2 Other Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a
letter grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is
a ‘B’, and so on:

>>> def grade (score, breakpoints=[60, 70, 80, 90], grades=’'FDCBA’):
i = bisect (breakpoints, score)
return grades[i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
[IFI’ IAI, ICI, ICI, IBI, IAI, IAI]

Unlike the sorted () function, it does not make sense for the bisect () functions to have key or reversed argu-
ments because that would lead to an inefficient design (successive calls to bisect functions would not “remember”
all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

7.5. bisect — Array bisection algorithm 163

The Python Library Reference, Release 3.2

>>> data = [('red’, 5), ("blue’, 1), ('yellow’, 8), ("black’, 0)]
>>> data.sort (key=lambda r: r[1])
>>> keys = [r[1l] for r in datal] # precomputed list of keys

>>> datalbisect_left (keys, 0)]
("black’, 0)

>>> data([bisect_left (keys, 1)]
("blue’, 1)

>>> datal[bisect_left (keys, 5)]
("red’", 5)

>>> datalbisect_left (keys, 8)]
("yellow’, 8)

7.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes
"o’ signed char int 1

"B’ unsigned char | int 1

ru’ Py_UNICODE | Unicode character | 2 (see note)
"h' signed short int 2

"H' unsigned short | int 2

ri’ signed int int 2

"I’ unsigned int int 2

r1r signed long int 4

N unsigned long | int 4

i float float 4

rd’ double float 8

Note: The ' u’ typecode corresponds to Python’s unicode character. On narrow Unicode builds this is 2-bytes,
on wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed through the itemsize attribute.

The module defines the following type:

class array.array (typecode [, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, object supporting the buffer interface, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist (), frombytes (), or
fromunicode () method (see below) to add initial items to the array. Otherwise, the iterable initializer is
passed to the extend () method.

array.typecodes
A string with all available type codes.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

164 Chapter 7. Data Types

The Python Library Reference, Release 3.2

array.itemsize
The length in bytes of one array item in the internal representation.

array.append (x)
Append a new item with value x to the end of the array.

array.buffer info ()
Return a tuple (address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info () [1] % array.itemsize. This is occasionally useful when working with
low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct1l ()
operations. The returned numbers are valid as long as the array exists and no length-changing operations
are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in bufferobjects.

array.byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, Runt imeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

array.count (x)
Return the number of occurrences of x in the array.

array .extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

array.frombytes (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been
read from a file using the fromfile () method). New in version 3.2: fromstring () is renamed to
frombytes () for clarity.

array.fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array.
Jf must be a real built-in file object; something else with a read () method won’t do.

array.fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if
there is a type error, the array is unchanged.

array.fromstring()
Deprecated alias for frombytes ().

array.fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ’ u’ array; otherwise
a ValueError is raised. Use array.frombytes (unicodestring.encode (enc)) to append
Unicode data to an array of some other type.

array.index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

array.insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to
the end of the array.

array.pop ([l])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1, so

7.6. array — Efficient arrays of numeric values 165

The Python Library Reference, Release 3.2

that by default the last item is removed and returned.

array.remove (x)
Remove the first occurrence of x from the array.

array.reverse ()
Reverse the order of the items in the array.

array.tobytes ()
Convert the array to an array of machine values and return the bytes representation (the same sequence of
bytes that would be written to a file by the tofile () method.) New in version 3.2: tostring () is
renamed to tobytes () for clarity.

array.tofile (f)
Write all items (as machine values) to the file object f.

array.tolist ()
Convert the array to an ordinary list with the same items.

array.tostring()
Deprecated alias for tobytes ().

array.tounicode ()
Convert the array to a unicode string. The array must be a type ' u’ array; otherwise a ValueError is
raised. Use array.tobytes () .decode (enc) to obtain a unicode string from an array of some other

type.

When an array object is printed or converted to a string, it is represented as array (typecode,
initializer). The initializer is omitted if the array is empty, otherwise it is a string if the typecode is " u’,
otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value using eval (), so long as the array () function has been imported using from array
import array. Examples:

array (1)

array (‘u’, "hello \u2641’)
array(’1", [1, 2, 3, 4, 51)
array ('d’, [1.0, 2.0, 3.1417)

See Also:
Module st ruct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF version of the
NumPy manual is available at http://numpy.sourceforge.net/numdoc/numdoc.pdf).

7.7 sched — Event scheduler

Source code: Lib/sched.py

The sched module defines a class which implements a general purpose event scheduler:

class sched. scheduler (timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” — timefunc should be callable without arguments, and return a number (the
“time”, in any units whatsoever). The delayfunc function should be callable with one argument, compatible
with the output of timefunc, and should delay that many time units. delayfunc will also be called with the
argument O after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

166 Chapter 7. Data Types

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf
http://svn.python.org/view/python/branches/py3k/Lib/sched.py?view=markup

The Python Library Reference, Release 3.2

>>> import sched, time
>>> s = sched.scheduler (time.time, time.sleep)
>>> def print_time(): print ("From print_time", time.time())

>>> def print_some_times():
print (time.time ())
s.enter (5, 1, print_time, ())
s.enter (10, 1, print_time, ())
s.run ()
print (time.time ())

>>> print_some_times ()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

In multi-threaded environments, the scheduler class has limitations with respect to thread-safety, inability to
insert a new task before the one currently pending in a running scheduler, and holding up the main thread until the
event queue is empty. Instead, the preferred approach is to use the threading. Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time():
print ("From print_time", time.time())

>>> def print_some_times() :
print (time.time ())
(

Timer (5, print_time, ()) .start /()
Timer (10, print_time, ()).start()
time.sleep(11) # sleep while time-delay events execute

print (time.time ())

>>> print_some_times ()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343701.301

7.7.1 Scheduler Objects

scheduler instances have the following methods and attributes:

scheduler.enterabs (time, priority, action, argument)
Schedule a new event. The fime argument should be a numeric type compatible with the return value of
the timefunc function passed to the constructor. Events scheduled for the same time will be executed in the
order of their priority.

Executing the event means executing action (xargument). argument must be a sequence holding the
parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel ()).

scheduler.enter (delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments, the effect
and the return value are the same as those for enterabs ().

scheduler.cancel (event)
Remove the event from the queue. If event is not an event currently in the queue, this method will raise a

7.7. sched — Event scheduler 167

The Python Library Reference, Release 3.2

ValueError.

scheduler.empty ()
Return true if the event queue is empty.

scheduler.run ()
Run all scheduled events. This function will wait (using the delayfunc () function passed to the con-
structor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raised by action, the event will not be attempted in
future calls to run ().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which
are no longer pertinent.

scheduler.queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as
a named tuple with the following fields: time, priority, action, argument.

7.8 queue — A synchronized queue class

Source code: Lib/queue.py

The queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

Implements three types of queue whose only difference is the order that the entries are retrieved. In a FIFO queue,
the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved
(operating like a stack). With a priority queue, the entries are kept sorted (using the heapg module) and the
lowest valued entry is retrieved first.

The queue module defines the following classes and exceptions:

class queue . Queue (maxsize=0)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue . LifoQueue (maxsize=0)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue .PriorityQueue (maxsize=0)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned
by sorted(list (entries)) [0]). A typical pattern for entries is a tuple in the form:
(priority_number, data).

exception queue . Empty
Exception raised when non-blocking get () (or get_nowait ()) is called on a Queue object which is
empty.

168 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/queue.py?view=markup

The Python Library Reference, Release 3.2

exception queue .Full
Exception raised when non-blocking put () (or put_nowait ()) is called on a Queue object which is
full.

7.8.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

Queue.gsize ()
Return the approximate size of the queue. Note, gsize() > 0 doesn’t guarantee that a subsequent get() will
not block, nor will gsize() < maxsize guarantee that put() will not block.

Queue.empty ()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that
a subsequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a
subsequent call to get() will not block.

Queue. full ()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a sub-
sequent call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent
call to put() will not block.

Queue . put (item, block=True, timeout=None)
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary
until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the
Full exception if no free slot was available within that time. Otherwise (block is false), put an item on the
queue if a free slot is immediately available, else raise the Ful 1 exception (timeout is ignored in that case).

Queue.put_nowait (item)
Equivalent to put (item, False).

Queue.get (block=True, timeout=None)
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout
seconds and raises the Empty exception if no item was available within that time. Otherwise (block is
false), return an item if one is immediately available, else raise the Empty exception (timeout is ignored in
that case).

Queue.get_nowait ()
Equivalent to get (False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon con-
sumer threads.

Queue.task_done ()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get ()
used to fetch a task, a subsequent call to task_done () tells the queue that the processing on the task is
complete.

If a join () is currently blocking, it will resume when all items have been processed (meaning that a
task_done () call was received for every item that had been put () into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

Queue. join ()
Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done () to indicate that the item was retrieved and all work on it
is complete. When the count of unfinished tasks drops to zero, join () unblocks.

Example of how to wait for enqueued tasks to be completed:

def worker () :
while True:

7.8. queue — A synchronized queue class 169

The Python Library Reference, Release 3.2

item = g.get ()
do_work (item)
g.task_done ()

q = Queue()

for i in range (num_worker_threads) :
t = Thread(target=worker)
t.daemon = True
t.start ()

for item in source() :

g.put (item)
g.join () # block until all tasks are done
See Also:

Class multiprocessing.Queue A queue class for use in a multi-processing (rather than multi-threading)
context.

collections.deque is an alternative implementation of unbounded queues with fast atomic append () and
popleft () operations that do not require locking.

7.9 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it’s
desired that a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references
to construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for
example, an image object is a value in a WeakValueDictionary, then when the last remaining references to
that image object are the weak references held by weak mappings, garbage collection can reclaim the object, and
its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting
up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. WeakSet implements the set interface, but keeps weak references to its
elements, just like a WeakKeyDictionary does.

Most programs should find that using one of these weak container types is all they need — it’s not usually necessary
to create your own weak references directly. The low-level machinery used by the weak dictionary implementa-
tions is exposed by the weak re f module for the benefit of advanced uses.

Note: Weak references to an object are cleared before the object’s __del__ () is called, to ensure that the weak
reference callback (if any) finds the object still alive.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets,

170 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/weakref.py?view=markup

The Python Library Reference, Release 3.2

arrays, deques, regular expression pattern objects, and code objects. Changed in version 3.2: Added support for
thread.lock, threading.Lock, and code objects. Several built-in types such as 1ist and dict do not directly
support weak references but can add support through subclassing:

class Dict (dict):
pass

obj = Dict (red=1, green=2, blue=3) # this object is weak referenceable

Other built-in types such as tuple and int do not support weak references even when subclassed (This is an
implementation detail and may be different across various Python implementations.).

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref (object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback
will be called when the object is about to be finalized; the weak reference object will be passed as the only
parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the
object was deleted. If hash () is called the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of the callback). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

weakref .proxy (object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of either ProxyType or CallableProxyType, depending on whether object is callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to
their fundamentally mutable nature, and prevent their use as dictionary keys. callback is the same as the
parameter of the same name to the ref () function.

weakref.getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

weakref .getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref .WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references
directly. The references are not guaranteed to be “live” at the time they are used, so the result of calling the

7.9. weakref — Weak references 171

The Python Library Reference, Release 3.2

references needs to be checked before being used. This can be used to avoid creating references that will cause
the garbage collector to keep the keys around longer than needed.

WeakKeyDictionary.keyrefs ()
Return an iterable of the weak references to the keys.

class weakref .WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues
as the and keyrefs () method of WeakKeyDictionary objects.

WeakValueDictionary.valuerefs ()
Return an iterable of the weak references to the values.

class weakref .WeakSet ([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong reference
to it exists any more.

weakref.ReferenceType
The type object for weak references objects.

weakref.ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref .ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception weakref .ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standard ReferenceError exception.

See Also:

PEP 0205 - Weak References The proposal and rationale for this feature, including links to earlier implementa-
tions and information about similar features in other languages.

7.9.1 Weak Reference Objects
Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:

pass
>>> o = Object ()
>>> r = weakref.ref (0)
>>> 02 r()
>>> o is 02
True

If the referent no longer exists, calling the reference object returns None:

172 Chapter 7. Data Types

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 3.2

>>> del o, o2
>>> print(r())
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
referent has been garbage collected
print ("Object has been deallocated; can’t frobnicate.")
else:
print ("Object is still live!")
o.do_something_ useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of
the WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect
the value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def _ init__ (self, ob, callback=None, **annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._ counter = 0

for k, v in annotations.items /() :
setattr(self, k, v)

def _ call_ (self):
"""Return a palr containing the referent and the number of
times the reference has been called.

mmn

ob = super (ExtendedRef, self).__call__ ()
if ob is not None:

self.__counter += 1

ob = (ob, self._ counter)

return ob

7.9.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_1d2o0bj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(ob7j)
_id2obj_dict[oid] = obj
return oid

7.9. weakref — Weak references 173

The Python Library Reference, Release 3.2

def id2obij(oid) :
return _id2obj_dict[oid]

7.10 types — Names for built-in types

Source code: Lib/types.py

This module defines names for some object types that are used by the standard Python interpreter, but not exposed
as builtins like int or str are. Also, it does not include some of the types that arise transparently during
processing such as the 1istiterator type.

Typical use is for isinstance () or issubclass () checks.
The module defines the following names:

types.FunctionType
types.LambdaType
The type of user-defined functions and functions created by 1ambda expressions.

types.GeneratorType
The type of generator-iterator objects, produced by calling a generator function.

types.CodeType
The type for code objects such as returned by compile ().

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like 1en () or sys.exit (), and methods of built-in classes. (Here, the
term “built-in” means “written in C”.)

types.ModuleType
The type of modules.

types.TracebackType
The type of traceback objects such as found in sys.exc_info () [2].

types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals
or array.array.typecode. This type is used as descriptor for object attributes; it has the same pur-
pose as the property type, but for classes defined in extension modules.

types.MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This type is used as descriptor for simple C data members which
use standard conversion functions; it has the same purpose as the property type, but for classes defined
in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

7.11 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

174 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/types.py?view=markup

The Python Library Reference, Release 3.2

Interface summary:

Copy . copy (x)
Return a shallow copy of x.

copy . deepcopy (x)
Return a deep copy of x.

exception copy .error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into
it to the objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects
found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

* Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

* Because deep copy copies everything it may copy too much, e.g., administrative data structures that should
be shared even between copies.

The deepcopy () function avoids these problems by:
* keeping a “memo” dictionary of objects already copied during the current copying pass; and
* letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or
any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object
unchanged; this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict .copy (), and of lists by assigning a slice of the entire
list, for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
module pickle for information on these methods. The copy module does not use the copyreg registration
module.

In order for a class to define its own copy implementation, it can define special methods __copy__ () and
__deepcopy___ (). The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the ___deepcopy__ () implementation needs to make a deep copy of a component, it should call
the deepcopy () function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

7.12 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can
be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other built-in objects which are not representable as Python constants.

7.12. pprint — Data pretty printer 175

http://svn.python.org/view/python/branches/py3k/Lib/pprint.py?view=markup

The Python Library Reference, Release 3.2

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width
constraint.

Dictionaries are sorted by key before the display is computed.
The pprint module defines one class:

class pprint .PrettyPrinter (indent=1, width=80, depth=None, stream=None)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using the stream keyword; the only method used on the stream object is the
file protocol’s write () method. If not specified, the PrettyPrinter adopts sys.stdout. Three
additional parameters may be used to control the formatted representation. The keywords are indent, depth,
and width. The amount of indentation added for each recursive level is specified by indent; the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled by depth; if the data structure being printed is too deep, the
next contained level is replaced by By default, there is no constraint on the depth of the objects being
formatted. The desired output width is constrained using the width parameter; the default is 80 characters.
If a structure cannot be formatted within the constrained width, a best effort will be made.

>>> import pprint
>>> stuff = [’spam’, ’'eggs’, ’lumberjack’, "knights’, ’"ni’]
>>> stuff.insert (0, stuff[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[["spam’, ’eggs’, ’lumberjack’, ’"knights’, 'ni’],
" spam’,
"eggs’,
" lumberjack’,
"knights’,
"ni’]
>>> tup = ('spam’, ('eggs’, (’lumberjack’, (’knights’, ('ni’, (’dead’,
... ('parrot’, ('fresh fruit’,))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
("spam’, ('eggs’, (’lumberjack’, ("knights’, ('ni’, ("dead’, (...)))))))

The PrettyPrinter class supports several derivative functions:

pprint .pformat (object, indent=1, width=80, depth=None)
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters.

pprint.pprint (object, stream=None, indent=1, width=80, depth=None)
Prints the formatted representation of object on stream, followed by a newline. If stream is None,
sys.stdout is used. This may be used in the interactive interpreter instead of the print () function for
inspecting values (you can even reassign print = pprint.pprint for use within a scope). indent,
width and depth will be passed to the Pret t yPrinter constructor as formatting parameters.

>>> import pprint
>>> stuff = [’'spam’, 'eggs’, ’lumberjack’, ’'knights’, ’'ni’]
>>> stuff.insert (0, stuff)
>>> pprint.pprint (stuff)
[<Recursion on list with id=...>,
" spam’,
"eggs’,
" lumberjack’,
"knights’,
"ni’]

176 Chapter 7. Data Types

The Python Library Reference, Release 3.2

pprint.isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value
using eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)
Determine if object requires a recursive representation.
One more support function is also defined:

pprint.saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representa-
tion of object exposes a recursive entry, the recursive reference will be represented as <Recursion on
typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)

"[<Recursion on list with id=...>, ’‘spam’, ’'eggs’, ’'lumberjack’, ’'knights’

7.12.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be
created.

PrettyPrinter.isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval (). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of the saferepr () implementation.

PrettyPrinter.format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which contains the id () of objects that are part of the current
presentation context (direct and indirect containers for object that are affecting the presentation) as the keys;
if an object needs to be presented which is already represented in context, the third return value should
be True. Recursive calls to the format () method should add additional entries for containers to this
dictionary. The third argument, maxlevels, gives the requested limit to recursion; this will be 0 if there is no
requested limit. This argument should be passed unmodified to recursive calls. The fourth argument, level,
gives the current level; recursive calls should be passed a value less than that of the current call.

7.12.2 pprint Example

This example demonstrates several uses of the pprint () function and its parameters.

7.12. pprint — Data pretty printer 177

The Python Library Reference, Release 3.2

>>> import pprint

>>> tup = ('spam’, (’eggs’, (’lumberjack’, (’"knights’, ('ni’, (’dead’,
L (’parrot', (’fresh fIUlt,,))))))))
>>> stuff = ["a’ » 10, tup, ["a’" » 30, "b" » 301, ['c" = 20, "d" = 20]]

>>> pprint.pprint (stuff)
["aaaaaaaaaa’,
(" spam’,
("eggs’,
(" lumberjack’,
("knights’, ('ni’, ('dead’, ('parrot’, (’fresh fruit’,)))))))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[’ cccceccceccecceccececce’, 'dddddddddddddddddddd’ 1]
>>> pprint.pprint (stuff, depth=3)
[aaaaaaaaaa’,
("spam’, ("eggs’, (...))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
["ccccececececcecccceccecccecece’, "dddddddddddddddddddd’ 1]
>>> pprint.pprint (stuff, width=60)
[aaaaaaaaaa’,
(" spam’,
("eggs’,
(" lumberjack’,
("knights’,
(‘ni’", ('dead’, ('parrot’, ('/fresh fruit’,)))))))),
[" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’,
" bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
["ccccccececececccececccececccececece’, ’dddddddddddddddddddd’]]

7.13 reprlib — Alternate repr () implementation

Source code: Lib/reprlib.py

The repr1ib module provides a means for producing object representations with limits on the size of the result-
ing strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr () ;
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

reprlib.aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

reprlib.repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to
__repr__ () and substituting a placeholder string instead.

@reprlib.recursive_repr (fillvalue="...")
Decorator for __repr__ () methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__ () call is made. For example:

>>> class MyList (list):
@recursive_repr ()

178 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/reprlib.py?view=markup

The Python Library Reference, Release 3.2

def _ repr_ (self):
return '<’ + /|’ .Jjoin (map(repr, self)) + >’/

>>> m = MyList (’abc’)
>>> m.append (m)

>>> m.append (' x’
>>> print (m)
<Ial |Ibl "C’l...l’X,>

)

New in version 3.2.

7.13.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr.maxset

Repr.maxfrozenset

Repr.maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5
for maxarray, and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle.
The default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on
the Repr object. It is applied in a similar manner as maxstring. The defaultis 20.

Repr.repr (obj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

Repr.reprl (obj, level)
Recursive implementation used by repr (). This uses the type of obj to determine which formatting
method to call, passing it obj and level. The type-specific methods should call repr1 () to perform recur-
sive formatting, with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE (obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name, TYPE is replaced by string. join(string.split (type (obj) .__name_ ,
’ _")). Dispatch to these methods is handled by reprl (). Type-specific methods which need to recur-
sively format a value should call self.reprl (subobj, level - 1).

7.13.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.reprl () allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special

7.13. reprlib — Alternate repr () implementation 179

The Python Library Reference, Release 3.2

support for file objects could be added:
import reprlib

import sys

class MyRepr (reprlib.Repr) :
def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’'<stdout>’,

return obj.name
else:
return repr (obj)

"<stderr>']:

’<stdin>’

aRepr MyRepr ()
print (aRepr.repr (sys.stdin)) # prints
180

Chapter 7. Data Types

CHAPTER
EIGHT

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathe-
matical functions for floating-point and complex numbers. For users more interested in decimal accuracy than in
speed, the decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

8.1 numbers — Numeric abstract base classes

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively
define more operations. None of the types defined in this module can be instantiated.

class numbers .Number
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring
what kind, use isinstance (x, Number).

8.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in

complex type. These are: conversions to complex and bool, real, imag, +, —, *, /, abs (),
conjugate (), ==, and !=. All except — and ! = are abstract.
real

Abstract. Retrieves the real component of this number.
imag
Abstract. Retrieves the imaginary component of this number.

conjugate ()
Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, trunc (), round (), math.floor (), math.ceil (),
divmod (), //, %, <, <=,>,and >=.

Real also provides defaults for complex (), real, imag, and conjugate ().

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms.
With these, it provides a default for f1oat ().

181

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.2

numerator
Abstract.

denominator
Abstract.

class numbers.Integral
Subtypes Rational and adds a conversion to int. Provides defaults for f1oat (), numerator, and
denominator, and bit-string operations: <<, >>, &, ", |, ~.

8.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may
be subtle if there are two different extensions of the real numbers. For example, fractions.Fraction
implements hash () as follows:

def _ hash_ (self):

if self.denominator == 1:
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float(self):
return hash (float (self))

else:
Use tuple’s hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation
whose author knew about the types of both arguments, or convert both to the nearest built in type and do the
operation there. For subtypes of Integral, this means that __add__ () and __radd__ () should be defined
as:

class MyIntegral (Integral):

def _ add_ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (self, other)
else:
return NotImplemented

def _ radd__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_ adding_stuff (other, self)

182 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

elif isinstance (other, Integral):

return int (other) + int(self)
elif isinstance (other, Real):

return float (other) + float (self)
elif isinstance (other, Complex):

return complex (other) + complex(self)
else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above
code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance

of A, which is a subtype of Complex (a : A <: Complex),andb : B <: Complex. I'll consider
a + b

1. If A defines an __add___ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add__ (), we’d miss the possi-
bility that B defines a more intelligent ___radd__ (), so the boilerplate should return Not Implemented
from __add__ (). (Or A may not implement __add__ () atall.)

3. Then B‘s __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default
implementation should live.

5. If B <: A, Python tries B.__radd___ before A.__add__. This is ok, because it was implemented
with knowledge of A, so it can handle those instances before delegating to Complex.

IfA <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared oper-
ation is the one involving the built in complex, and both __radd__ () sland there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction
uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance (b, (int, Fraction)):
return monomorphic_operator (a, b)

elif isinstance (b, float):
return fallback_operator (float(a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward.__name_ = '__ " + fallback_operator._ name__ + ’'__ '
forward.__doc__ = monomorphic_operator.__doc_

def reverse(b, a):
if isinstance(a, Rational):
Includes 1ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real) :
return fallback_operator (float(a), float (b))
elif isinstance(a, numbers.Complex) :
return fallback_operator (complex(a), complex (b))

else:
return NotImplemented
reverse.__name__ = '__r’ + fallback_operator._ _name__ + '__ '/
reverse.__doc__ = monomorphic_operator.__doc_

return forward, reverse

8.1. numbers — Numeric abstract base classes 183

The Python Library Reference, Release 3.2

def _add(a, b):
""Ha + b””"
return Fraction (a.numerator * b.denominator +
b.numerator » a.denominator,
a.denominator * b.denominator)

add

—_ —

__radd__ = _operator_fallbacks(_add, operator.add)

#

8.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath
module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats.

8.2.1 Number-theoretic and representation functions

math.ceil (x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to
X.__ceil__ (), which should return an Integral value.

math.copysign (x,y)
Return x with the sign of y. On a platform that supports signed zeros, copysign (1.0, —0.0) returns
-1.0.

math. fabs (x)
Return the absolute value of x.

math.factorial (x)
Return x factorial. Raises ValueError if x is not integral or is negative.

math.floor (x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to
x._ floor__ (), which should return an Integral value.

math. fmod (x, y)

Return fmod (x, vy), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically;
to infinite precision) equal to x — nxy for some integer n such that the result has the same sign as x and
magnitude less than abs (y). Python’s x % vy returns a result with the sign of y instead, and may not
be exactly computable for float arguments. For example, fmod (-1e-100, 1e100) is -1e-100, but
the result of Python’s ~1e-100 % 1e100is 1e100-1e-100, which cannot be represented exactly as
a float, and rounds to the surprising 1e100. For this reason, function fmod () is generally preferred when
working with floats, while Python’s x % v is preferred when working with integers.

math.frexp (x)
Return the mantissa and exponent of x as the pair (m, e). mis afloat and e is an integer such that x ==
m * 2*xe exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to
“pick apart” the internal representation of a float in a portable way.

184 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

math. £sum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
0.9999999999999999

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the round-
ing mode is half-even. On some non-Windows builds, the underlying C library uses extended precision
addition and may occasionally double-round an intermediate sum causing it to be off in its least significant
bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.

math.isfinite (x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered
finite.) New in version 3.2.

math.isinf (x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan (x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp (x, i)
Return x * (2x+1). This is essentially the inverse of function frexp ().

math.modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.trunc (x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__ ().

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), floor (), and modf () functions, note that all floating-point numbers of sufficiently large
magnitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs (x) >= 2*x52 necessarily has no fractional bits.

8.2.2 Power and logarithmic functions
math.exp (x)
Return e xx.

math.expml (x)
Return ex+x — 1. For small floats x, the subtraction in exp (x) - 1 can result in a significant loss of
precision; the expm1 () function provides a way to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (le-5) # result accurate to full precision

1.0000050000166668e-05

New in version 3.2.

8.2. math — Mathematical functions 185

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 3.2

math.log (x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /1log (base).

math.loglp (x)
Return the natural logarithm of 7+x (base e). The result is calculated in a way which is accurate for x near
Zero.

math.loglO (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).

math.pow (x,y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular, pow (1.0, x) and pow (x, 0.0) always return 1.0, even when x is a zero or a NaN.
If both x and y are finite, x is negative, and y is not an integer then pow (x, vy) is undefined, and raises
ValueError.

math.sqrt (x)
Return the square root of x.

8.2.3 Trigonometric functions

math.acos (x)
Return the arc cosine of x, in radians.

math.asin (x)
Return the arc sine of x, in radians.

math.atan (x)
Return the arc tangent of x, in radians.

math.atan2 (y, x)
Return atan (y / x), in radians. The result is between —pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan?2 () is that the signs
of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan (1)
and atan2 (1, 1) arebothpi/4,butatan2 (-1, -1) is-3*pi/4.

math.cos (x)
Return the cosine of x radians.

math.hypot (x, y)
Return the Euclidean norm, sqgrt (x+x + y+y). This is the length of the vector from the origin to point

(x, y).

math.sin (x)
Return the sine of x radians.

math.tan (x)
Return the tangent of x radians.

8.2.4 Angular conversion
math.degrees (x)
Converts angle x from radians to degrees.

math.radians (x)
Converts angle x from degrees to radians.

186 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

8.2.5 Hyperbolic functions

math.acosh (x)
Return the inverse hyperbolic cosine of x.

math.asinh (x)
Return the inverse hyperbolic sine of x.

math.atanh (x)
Return the inverse hyperbolic tangent of x.

math.cosh (x)
Return the hyperbolic cosine of x.

math.sinh (x)
Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

8.2.6 Special functions

math.erf (x)
Return the error function at x. New in version 3.2.

math.erfec (x)
Return the complementary error function at x. New in version 3.2.

math.gamma (x)
Return the Gamma function at x. New in version 3.2.

math.lgamma (x)
Return the natural logarithm of the absolute value of the Gamma function at x. New in version 3.2.

8.2.7 Constants

math.pi
The mathematical constant m = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.718281..., to available precision.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate.
The current implementation will raise ValueError for invalid operations like sgrt (-1.0) or 1og (0.0)
(where C99 Annex F recommends signaling invalid operation or divide-by-zero), and OverflowError for
results that overflow (for example, exp (1000.0)). A NaN will not be returned from any of the functions above
unless one or more of the input arguments was a NaN; in that case, most functions will return a NaN, but (again
following C99 Annex F) there are some exceptions to this rule, for example pow (float (' nan’), 0.0) or
hypot (float ("nan’), float(’inf’)).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See Also:

Module cmath Complex number versions of many of these functions.

8.2. math — Mathematical functions 187

The Python Library Reference, Release 3.2

8.3 cmath — Mathematical functions for complex nhumbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept
any Python object that has either a ___complex__ () ora__float__ () method: these methods are used to
convert the object to a complex or floating-point number, respectively, and the function is then applied to the result
of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

8.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely
determined by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imagx*1l]

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while
the phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that
joins the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and
back.

cmath.phase (x)
Return the phase of x (also known as the argument of x), as a float. phase (x) is equivalent to
math.atan2 (x.imag, x.real). The result lies in the range [-7, 7], and the branch cut for this
operation lies along the negative real axis, continuous from above. On systems with support for signed
zeros (which includes most systems in current use), this means that the sign of the result is the same as the
sign of x . imag, even when x . imag is zero:

>>> phase (complex (-1.0, 0.0))
3.141592653589793
>>> phase (complex (-1.0, -0.0))
—-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function.
There is no separate cmath module function for this operation.

cmath.polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar (x) is equivalentto (abs (x), phase(x)).

cmath.rect (r, phi)
Return the complex number x with polar coordinates r and phi. Equivalentto r » (math.cos (phi) +
math.sin (phi)*173).

8.3.2 Power and logarithmic functions

cmath.exp (x)
Return the exponential value e * x x.

188 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

cmath.log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -0o, continuous from above.

cmath.loglO (x)
Return the base-10 logarithm of x. This has the same branch cut as 1og ().

cmath.sqgrt (x)
Return the square root of x. This has the same branch cut as 1og ().

8.3.3 Trigonometric functions

cmath.acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to co,
continuous from below. The other extends left from -1 along the real axis to -0o, continuous from above.

cmath.asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 7j along the imaginary axis to
o0 7, continuous from the right. The other extends from —1 j along the imaginary axis to —oo j, continuous
from the left.

cmath.cos (x)
Return the cosine of x.

cmath.sin (x)
Return the sine of x.

cmath.tan (x)
Return the tangent of x.

8.3.4 Hyperbolic functions

cmath.acosh (x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

cmath.asinh (x)
Return the hyperbolic arc sine of x. There are two branch cuts: One extends from 1 j along the imaginary
axis to ooj, continuous from the right. The other extends from -1 j along the imaginary axis to —co0 7,
continuous from the left.

cmath.atanh (x)
Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis to
00, continuous from below. The other extends from -1 along the real axis to —oo, continuous from above.

cmath.cosh (x)
Return the hyperbolic cosine of x.

cmath.sinh (x)
Return the hyperbolic sine of x.

cmath.tanh (x)
Return the hyperbolic tangent of x.

8.3.5 Classification functions

cmath.isfinite (x)
Return True if both the real and imaginary parts of x are finite, and False otherwise. New in version 3.2.

8.3. cmath — Mathematical functions for complex numbers 189

The Python Library Reference, Release 3.2

cmath.isinf (x)
Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan (x)
Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

8.3.6 Constants

cmath.pi
The mathematical constant 7, as a float.

cmath.e
The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having
two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather have math.sqgrt (—1) raise an exception than return a complex number. Also note that
the functions defined in cmath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

8.4 decimal — Decimal fixed point and floating point arithmetic

The decimal module provides support for decimal floating point arithmetic. It offers several advantages over
the f1oat datatype:

* Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

¢ Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2. 2 do not have an exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

* The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is
exactly equal to zero. In binary floating point, the resultis 5.5511151231257827e~-017. While near
to zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal is preferred in accounting applications which have strict equality invariants.

* The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The
trailing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook™ approach uses all the figures in the multiplicands. For instance, 1.3
x 1.2 gives1.56whilel1.30 % 1.20 gives 1.5600.

* Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting
to 28 places) which can be as large as needed for a given problem:

>>> from decimal import =
>>> getcontext () .prec = 6
>>> Decimal (1) / Decimal (7)
Decimal (7 0.142857")

>>> getcontext () .prec = 28

190 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

>>> Decimal (1) / Decimal (7)
Decimal (70.1428571428571428571428571429")

* Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts
of the standard. When needed, the programmer has full control over rounding and signal handling. This
includes an option to enforce exact arithmetic by using exceptions to block any inexact operations.

* The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity,
-Infinity, and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN,
ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals
in the decimal module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded,
Subnormal, Overflow, and Underflow.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the
trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring
a calculation.

See Also:
* IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

¢ IEEE standard 854-1987, Unofficial IEEE 854 Text.

8.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and,
if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import =«

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a
float performs an exact conversion of the value of that integer or float. Decimal numbers include special values
such as NaN which stands for “Not a number”, positive and negative Infinity, and -0.

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal ("10")

>>> Decimal (’'3.14")

Decimal (" 3.14")

>>> Decimal (3.14)

Decimal (3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))

Decimal ("3.14")

8.4. decimal — Decimal fixed point and floating point arithmetic 191

http://speleotrove.com/decimal/decarith.html
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 3.2

>>> Decimal (str (2.0 *+ 0.5))

Decimal (1.4142135623730951")

>>> Decimal (2) =+ Decimal(’0.5")

Decimal (71.414213562373095048801688724")
>>> Decimal (" NaN’)

Decimal (' NaN’)

>>> Decimal (' -Infinity’)
Decimal (" -Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ("3.07)

Decimal ("3.0")

>>> Decimal (’3.1415926535")

Decimal (' 3.1415926535")

>>> Decimal ("3.1415926535") + Decimal(’2.7182818285")
Decimal ("5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal (/3.1415926535’) + Decimal(’2.7182818285")
Decimal ('5.85988")

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list (map(Decimal, "1.34 1.87 3.45 2.35 1.00 0.03 9.25" .split()))
>>> max (data)

Decimal (" 9.25")

>>> min (data)

Decimal ("0.03")

>>> sorted(data)

[Decimal ("0.03"), Decimal(’1.00’), Decimal(’1.34"),
Decimal ("2.35"), Decimal(’3.45"), Decimal(’9.257)]
>>> sum(data)

Decimal ("19.29")

>>> a,b,c = datal[:3]

>>> str(a)

r1.347

>>> float (a)

1.34

>>> round(a, 1)

Decimal ("1.3")

>>> int (a)

1

>>> a + 5

Decimal ("6.70")

>>> a * b

Decimal ("2.5058")

>>> Cc % a

Decimal ("0.77")

Decimal ("1.87"),

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqrt ()

Decimal (71.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal (72.718281828459045235360287471")
>>> Decimal ("107) .1n{()

Decimal (72.302585092994045684017991455")
>>> Decimal ("107) .1ogl0 ()

192 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

Decimal ("1")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal (' 7.325") .quantize (Decimal (' .01"), rounding=ROUND_DOWN)
Decimal (" 7.32")

>>> Decimal (' 7.325") .quantize (Decimal (’'1.’), rounding=ROUND_UP)
Decimal (" 8")

As shown above, the get context () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make
an alternate active, use the setcontext () function.

In accordance with the standard, the Decimal module provides two ready to use standard contexts,
BasicContext and ExtendedContext. The former is especially useful for debugging because many of
the traps are enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal (1 0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1l, clamp=0, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal (Y 0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal (' Infinity’)

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by
using the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags()

>>> Decimal (355) / Decimal (113)

Decimal ("3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to P i was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (0)
Decimal (' Infinity’)

>>> getcontext () .traps[DivisionByZero] = 1
>>> Decimal (1) / Decimal (0)

Traceback (most recent call last):

8.4. decimal — Decimal fixed point and floating point arithmetic 193

The Python Library Reference, Release 3.2

File "<pyshell#112>", line 1, in -toplevel-

Decimal (1) / Decimal (0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

8.4.2 Decimal objects

class decimal .Decimal (value="0", context=None)

Construct a new Decimal object based from value.

value can be an integer, string, tuple, f1oat, or another Decimal object. If no value is given, returns
Decimal (* 0"). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign HHE A A A

digit A A A A L A S A LA I LA A A I < 4
indicator ti= e’ | TE!

digits ::= digit [digit]...

decimal-part ::= digits 7.’ [digits] | [’.’] digits

exponent-part ::= indicator [sign] digits

infinity ::= 'Infinity’” | "Inf’

nan ::= ’'NaN’ [digits] | ’sNaN’ [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanagari digits) along with the fullwidth
digits " \uf£10"’ through " \uff19’.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returns
Decimal ("1.414").

If value is a float, the binary floating point value 1is losslessly converted to
its exact decimal equivalent. This conversion can often require 53 or more
digits of precision. For example, Decimal (float ("1.1"7)) converts to
Decimal (*1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by the
number of digits in value. For example, Decimal (3.00000’) records all five zeros even if the context
precision is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with
the value of NaN.

Once constructed, Decimal objects are immutable. Changed in version 3.2: The argument to the con-
structor is now permitted to be a £ 1oat instance. Decimal floating point objects share many properties
with the other built-in numeric types such as f1oat and int. All of the usual math operations and special
methods apply. Likewise, decimal objects can be copied, pickled, printed, used as dictionary keys, used as
set elements, compared, sorted, and coerced to another type (such as float or int).

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in
arithmetic operations: an attempt to add a Decimal to a f1loat, for example, will raise a TypeError.
However, it is possible to use Python’s comparison operators to compare a Decimal instance x with
another number y. This avoids confusing results when doing equality comparisons between numbers of
different types. Changed in version 3.2: Mixed-type comparisons between Decimal instances and other

194

Chapter 8. Numeric and Mathematical Modules

191

The Python Library Reference, Release 3.2

numeric types are now fully supported. In addition to the standard numeric properties, decimal floating
point objects also have a number of specialized methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal (' 321e+5’) .adjusted () returns seven. Used for determining the position
of the most significant digit with respect to the decimal point.

as_tuple()
Return a named tuple representation of the number: DecimalTuple (sign, digits,
exponent).

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is
always canonical, so this operation returns its argument unchanged.

compare (other[, Context])
Compare the values of two Decimal instances. compare () returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN’)
a <b ==> Decimal (' -1")
a ==>b ==> Decimal (" 0")
a >b ==> Decimal ("1")

compare_signal (other[, context])
This operation is identical to the compare () method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.

compare_total (other)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare () method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal ("12.0’) .compare_total (Decimal ("12"))
Decimal ("-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal (' 0") if both operands have the same representation, Decimal (' -1’) if the first
operand is lower in the total order than the second, and Decimal (’ 1’) if the first operand is higher
in the total order than the second operand. See the specification for details of the total order.

compare_total_mag (other)
Compare two operands using their abstract representation rather than their value as in
compare_total (), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x . copy_abs () .compare_total (y.copy_abs()).

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_sign (other)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand.
For example:

8.4. decimal — Decimal fixed point and floating point arithmetic 195

The Python Library Reference, Release 3.2

>>> Decimal ('2.3") .copy_sign(Decimal ("-1.5"))
Decimal ("-2.3")

This operation is unaffected by the context and is quiet: no flags are changed and no rounding is
performed.

exp ([context])

Return the value of the (natural) exponential function e » % at the given number. The result is correctly
rounded using the ROUND__HALF_EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal (72.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ("2.561702493119680037517373933E+139")

from_float (f)

Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(‘0.1°). Since 0.1 is not ex-
actly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is
0.1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a
float.

>>> Decimal.from_ float (0.1)

Decimal (0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_ float (float ('nan’))

Decimal (" NaN’)

>>> Decimal.from_float (float ('inf’))

Decimal (! Infinity’)

>>> Decimal.from_float (float (' —inf’))

Decimal (' -Infinity’)

New in version 3.1.

£fma (other, third [, cantext])

Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal (2) .fma (3, 5)
Decimal ("117)

is_canonical ()

Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True.

is_finite()

Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.

is _infinite()

Return True if the argument is either positive or negative infinity and Fa 1l se otherwise.

is_nan{()

Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is normal ()

Return True if the argument is a normal finite number. Return False if the argument is zero,
subnormal, infinite or a NaN.

196

Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

is_qgnan()
Return True if the argument is a quiet NaN, and Fa 1 se otherwise.

is_signed()
Return True if the argument has a negative sign and a1 se otherwise. Note that zeros and NaNs can
both carry signs.

is_snan|()
Return True if the argument is a signaling NaN and False otherwise.

is_subnormal ()
Return True if the argument is subnormal, and False otherwise.

is_zero()
Return True if the argument is a (positive or negative) zero and Fa 1 se otherwise.

1n ([context])
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

loglO ([context])
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb ([context])
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the
operand is a zero then Decimal (' —Infinity’) is returned and the DivisionByZero flag is
raised. If the operand is an infinity then Decimal (' Infinity’) is returned.

logical_and (other[, context])
logical_and/() is a logical operation which takes two logical operands (see Logical operands).
The result is the digit-wise and of the two operands.

logical_invert ([context])
logical_invert () is alogical operation. The result is the digit-wise inversion of the operand.

logical_or (other[, context])
logical_or () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor (other[, context])
logical_xor () is a logical operation which takes two logical operands (see Logical operands).
The result is the digit-wise exclusive or of the two operands.

max (other[, context])
Likemax (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

max_mag (other[, context])
Similar to the max () method, but the comparison is done using the absolute values of the operands.

min (other[, context])
Likemin (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

min_mag (other[, context])
Similar to the min () method, but the comparison is done using the absolute values of the operands.

next_minus ([context])
Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand.

next_plus ([context])
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand.

8.4. decimal — Decimal fixed point and floating point arithmetic 197

The Python Library Reference, Release 3.2

next_toward (other[, context])
If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the
sign set to be the same as the sign of the second operand.

normalize ([context])
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to
Decimal ("0’) to Decimal (' 0e0’). Used for producing canonical values for members of an
equivalence class. For example, Decimal (* 32.100’) and Decimal (* 0.321000e+2") both
normalize to the equivalent value Decimal (1 32.1").

number class ([context])
Return a string describing the class of the operand. The returned value is one of the following ten
strings.

*"-Infinity", indicating that the operand is negative infinity.
*"-Normal", indicating that the operand is a negative normal number.
*"—Subnormal", indicating that the operand is negative and subnormal.
*"-Zero", indicating that the operand is a negative zero.
*"+Zero", indicating that the operand is a positive zero.
*"+Subnormal", indicating that the operand is positive and subnormal.
*"+Normal", indicating that the operand is a positive normal number.
*"+Infinity", indicating that the operand is positive infinity.
*"NaN", indicating that the operand is a quiet NaN (Not a Number).
*"sNaN", indicating that the operand is a signaling NaN.

quantize (exp[, rounding[, context[, watchexp]]])

Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal (71.41421356") .quantize (Decimal (’1.000"))
Decimal ("1.414")

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an
error condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and
inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

If watchexp is set (default), then an error is returned whenever the resulting exponent is greater than
Emax or less than Etiny.

radix ()
Return Decimal (10), the radix (base) in which the Decimal class does all its arithmetic. Included
for compatibility with the specification.

remainder_ near (other[, context])
Compute the modulo as either a positive or negative value depending on which is closest to zero.
For instance, Decimal (10) .remainder_near (6) returns Decimal (' -2’) which is closer
to zero than Decimal (' 4’).

If both are equally close, the one chosen will have the same sign as self.

198 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

rotate (other[, context])
Return the result of rotating the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand
is padded on the left with zeros to length precision if necessary. The sign and exponent of the first
operand are unchanged.

same_quantum (other[, context])
Test whether self and other have the same exponent or whether both are NaN.

scaleb (other[, context])
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10+ «other. The second operand must be an integer.

shift (other[, context])
Return the result of shifting the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to shift. If the second operand is
positive then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient
are zeros. The sign and exponent of the first operand are unchanged.

sqgrt ([context])
Return the square root of the argument to full precision.

to_eng_string([context])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the
decimal place. For example, converts Decimal (123E+1’) toDecimal (' 1.23E+3")

to_integral ([rounding[, context]])
Identical to the to_integral_value () method. The to_integral name has been kept for
compatibility with older versions.

to_integral_exact ([rounding[, context]])
Round to the nearest integer, signaling Tnexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used.

to_integral_value ([ronnding[, context]])
Round to the nearest integer without signaling Tnexact or Rounded. If given, applies rounding;
otherwise, uses the rounding method in either the supplied context or the current context.

Logical operands

The logical_and (), logical_invert (), logical_or (), and logical_xor () methods expect
their arguments to be logical operands. A logical operand is a Decimal instance whose exponent and sign
are both zero, and whose digits are all either O or 1.

8.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext () and
setcontext () functions:

decimal .getcontext ()

Return the current context for the active thread.

decimal.setcontext (¢)

Set the current context for the active thread to c.

8.4. decimal — Decimal fixed point and floating point arithmetic 199

The Python Library Reference, Release 3.2

You can also use the with statement and the 1ocalcontext () function to temporarily change the active
context.

decimal.localcontext ([c])
Return a context manager that will set the current context for the active thread to a copy of ¢ on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified,
a copy of the current context is used.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and
then automatically restores the previous context:

from decimal import localcontext

with localcontext () as ctx:

ctx.prec = 42 # Perform a high precision calculation
s = calculate_something ()
s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor described below. In addition, the module
provides three pre-made contexts:

class decimal .BasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions)
except Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal .ExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence
of conditions that would otherwise halt the program.

class decimal .DefaultContext
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal .Context (prec=None, rounding=None, traps=None, flags=None, Emin=None,

Emax=None, capitals=None, clamp=None)
Creates a new context. If a field is not specified or is None, the default values are copied from the

DefaultContext. If the flags field is not specified or is None, all flags are cleared.
The prec field is a positive integer that sets the precision for arithmetic operations in the context.
The rounding option is one of:

*ROUND_CEILING (towards Infinity),

*ROUND_DOWN (towards zero),

*ROUND_FLOOR (towards —Infinity),

200 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

*ROUND_HALF_DOWN (to nearest with ties going towards zero),
*ROUND_HALF_EVEN (to nearest with ties going to nearest even integer),
*ROUND_HALF_UP (to nearest with ties going away from zero), or
*ROUND_UP (away from zero).

*ROUND_05UP (away from zero if last digit after rounding towards zero would have been O or 5;
otherwise towards zero)

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave
the flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents.

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise,
a lowercase e is used: Decimal (' 6.02e+23").

The clamp field is either O (the default) or 1. If set to 1, the exponent e of a Decimal instance representable
in this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1.If
clamp is 0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at most
Emax. When clamp is 1, a large normal number will, where possible, have its exponent reduced and a
corresponding number of zeros added to its coefficient, in order to fit the exponent constraints; this preserves
the value of the number but loses information about significant trailing zeros. For example:

>>> Context (prec=6, Emax=999, clamp=1) .create_decimal (’1.23e999")
Decimal ("1.23000E+999")

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE
754.

The Context class defines several general purpose methods as well as a large number of methods for
doing arithmetic directly in a given context. In addition, for each of the Decimal methods described above
(with the exception of the adjusted () and as_tuple () methods) there is a corresponding Context
method. For example, for a Context instance C and Decimal instance x, C.exp (x) is equivalent to
x.exp (context=C). Each Context method accepts a Python integer (an instance of int) anywhere
that a Decimal instance is accepted.

clear_flags ()
Resets all of the flags to 0.

copy ()
Return a duplicate of the context.

copy_decimal (num)
Return a copy of the Decimal instance num.

create_decimal (num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the
current precision. In the following example, using unrounded inputs means that adding zero to a sum
can change the result:

>>> getcontext () .prec = 3

>>> Decimal (" 3.4445") + Decimal (’1.0023")

Decimal ("4.45")

>>> Decimal (" 3.4445") + Decimal (0) + Decimal ("1.00237)
Decimal ("4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace is permitted.

8.4. decimal — Decimal fixed point and floating point arithmetic 201

The Python Library Reference, Release 3.2

create_decimal_from float (f)
Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal.from_float () class method, the context precision, rounding method, flags, and traps
are applied to the conversion.

>>> context = Context (prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float (math.pi)
Decimal (¥ 3.1415")

>>> context = Context (prec=5, traps=[Inexact])

>>> context.create_decimal_from float (math.pi)
Traceback (most recent call last):

decimal.Inexact: None

New in version 3.1.

Etiny ()
Returns a value equal to Emin — prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Et iny.

Etop ()
Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic
operations which take place within the current context for the active thread. An alternative approach is
to use context methods for calculating within a specific context. The methods are similar to those for the
Decimal class and are only briefly recounted here.

abs (x)
Returns the absolute value of x.

add (x, y)
Return the sum of x and y.

canonical (x)
Returns the same Decimal object x.

compare (x, y)
Compares x and y numerically.

compare_signal (x,y)
Compares the values of the two operands numerically.

compare_total (x,y)
Compares two operands using their abstract representation.

compare_total_mag (x,y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs (x)
Returns a copy of x with the sign set to 0.

copy_negate (x)
Returns a copy of x with the sign inverted.

copy_sign (x,y)
Copies the sign from y to x.

divide (x,y)
Return x divided by y.

divide_int (x,y)
Return x divided by y, truncated to an integer.

divmod (x, y)
Divides two numbers and returns the integer part of the result.

202

Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

exp (x)
Returns e ** x.

fma (x, y,)
Returns x multiplied by y, plus z.

is canonical (x)
Returns True if x is canonical; otherwise returns False.

is_finite (x)
Returns True if x is finite; otherwise returns False.

is _infinite (x)
Returns True if x is infinite; otherwise returns False.

is_nan (x)
Returns True if x is a gNaN or sNaN; otherwise returns False.

is normal (x)
Returns True if x is a normal number; otherwise returns False.

is_gnan (x)
Returns True if x is a quiet NaN; otherwise returns False.

is_signed (x)
Returns True if x is negative; otherwise returns False.

is_snan (x)
Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal (x)
Returns True if x is subnormal; otherwise returns False.

is_ zero (x)
Returns True if x is a zero; otherwise returns False.

1n (x)
Returns the natural (base e) logarithm of x.

logl0 (x)
Returns the base 10 logarithm of x.

logb (x)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and (x,y)
Applies the logical operation and between each operand’s digits.

logical_invert (x)
Invert all the digits in x.

logical_or (x,y)
Applies the logical operation or between each operand’s digits.

logical_xor (x,y)
Applies the logical operation xor between each operand’s digits.

max (x,y)
Compares two values numerically and returns the maximum.

max_mag (x, y)
Compares the values numerically with their sign ignored.

min (x,y)
Compares two values numerically and returns the minimum.

min_mag (x,y)
Compares the values numerically with their sign ignored.

8.4. decimal — Decimal fixed point and floating point arithmetic 203

The Python Library Reference, Release 3.2

minus (x)
Minus corresponds to the unary prefix minus operator in Python.

multiply (x,y)
Return the product of x and y.

next_minus (x)
Returns the largest representable number smaller than x.

next_plus (x)
Returns the smallest representable number larger than x.

next_toward (x,y)
Returns the number closest to x, in direction towards y.

normalize (x)
Reduces x to its simplest form.

number class (x)
Returns an indication of the class of x.

plus (x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context preci-
sion and rounding, so it is not an identity operation.

power (x, y[, modulo])
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x * «y. If x is negative then y must be integral. The result will be inexact
unless y is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The result
should always be correctly rounded, using the rounding mode of the current thread’s context.

With three arguments, compute (x*xy) % modulo. For the three argument form, the following
restrictions on the arguments hold:

eall three arguments must be integral

ey must be nonnegative

eat least one of x or y must be nonzero

e'modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power (x, y, modulo) is equal to the value that would
be obtained by computing (xx*y) % modulo with unbounded precision, but is computed more
efficiently. The exponent of the result is zero, regardless of the exponents of x, y and modulo. The
result is always exact.

quantize (x,y)
Returns a value equal to x (rounded), having the exponent of y.

radix ()
Just returns 10, as this is Decimal, :)

remainder (x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (x,y)
Returns x — y % n, where n is the integer nearest the exact value of x / y (if the result is 0 then
its sign will be the sign of x).

rotate (x,y)
Returns a rotated copy of x, y times.

same_quantum (x, y)
Returns True if the two operands have the same exponent.

204

Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

scaleb (x,y)
Returns the first operand after adding the second value its exp.

shift (x,y)
Returns a shifted copy of x, y times.

sqgrt (x)
Square root of a non-negative number to context precision.

subtract (x, y)
Return the difference between x and y.

to_eng_string (x)
Converts a number to a string, using scientific notation.

to_integral_exact (x)
Rounds to an integer.

to_sci_string (x)
Converts a number to a string using scientific notation.

8.4.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context
trap enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trapis set, then aDivisionByZero exception is raised upon encountering
the condition.

class decimal .Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible,
the exponent is reduced to fit by adding zeros to the coefficient.

class decimal .DecimalException
Base class for other signals and a subclass of ArithmeticError.

class decimal .DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is
not trapped, returns Infinity or —Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal
flag or trap is used to detect when results are inexact.

class decimal.InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible
causes include:

Infinity - Infinity
0 » Infinity
Infinity / Infinity
x % 0

Infinity % x

8.4. decimal — Decimal fixed point and floating point arithmetic 205

The Python Library Reference, Release 3.2

X._rescale(non—-integer)
sqrt (-x) and x > 0

0 % O

X %% (non—-integer)

x *+ Infinity

class decimal.Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends
on the rounding mode, either pulling inward to the largest representable finite number or rounding outward
to Infinity. In either case, Inexact and Rounded are also signaled.

class decimal .Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5. 0).
If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal . Subnormal
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class decimal.Underflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also
signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.Exception)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

8.4.5 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0.1
exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with
insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal (" 9.5111111")

>>> u + (Vv + W)

206 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

Decimal ("10")

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal (’6.0000003")
>>> (uxv) + (uxw)

Decimal ("0.01")

>>> u o+ (VHw)

Decimal (" 0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid
loss of significance:

>>> getcontext () .prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal (¥9.51111111")

>>> u + (v + w)

Decimal (¥ 9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal(’6.0000003")
>>> (u*v) + (u*w)

Decimal ("0.0060000")

>>> u * (v+w)

Decimal ("0.0060000")

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal (' Infinity’). Also, they can arise from dividing by
zero when the DivisionByZero signal is not trapped. Likewise, when the Overf1ow signal is not trapped,
infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large,
indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the ITnvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once
created, will flow through other computations always resulting in another NaN. This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value
when an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal (' NaN’)==Decimal (' NaN'’)), while a test for inequality always returns True. An attempt to
compare two Decimals using any of the <, <=, > or >= operators will raise the ITnvalidOperation signal if
either operand is a NaN, and return Fa 1 se if this signal is not trapped. Note that the General Decimal Arithmetic
specification does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN
were taken from the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use
the compare () and compare-signal () methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative
zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with dif-
fering precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized
floating point representations, it is not immediately obvious that the following calculation returns a value equal to
Zero:

8.4. decimal — Decimal fixed point and floating point arithmetic 207

The Python Library Reference, Release 3.2

>>> 1 / Decimal (' Infinity’)
Decimal (" OE-1000000026")

8.4.6 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread
contexts means that threads may make changes (such as getcontext.prec=10) without interfering with
other threads.

Likewise, the setcontext () function automatically assigns its target to the current thread.

If setcontext () has not been called before get context (), then getcontext () will automatically cre-
ate a new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each
thread will use the same values throughout the application, directly modify the DefaultContext object. This
should be done before any threads are started so that there won’t be a race condition between threads calling
getcontext (). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()
t2.start ()
t3.start ()

8.4.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt (value, places=2, curr='', sep=',’, dp='.’",
pos=''", neg='-', trailneg=''):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places 1s zero
pos: optional sign for positive numbers: ’+’, space or blank
neg: optional sign for negative numbers: -7, ’(’, space or blank
trailneg:optional trailing minus indicator: -/, ’)’, sSpace or blank

>>> d = Decimal ('-1234567.8901")

>>> moneyfmt (d, curr=’5")

’-$1,234,567.89”

>>> moneyfmt (d, places=0, sep=’.’, dp=’’, neg=’’, trailneg=’-")
71.234.568-"

>>> moneyfmt (d, curr=’S$’, neg=’(’, trailneg=")")

/7 (s$1,234,567.89) "

>>> moneyfmt (Decimal (123456789), sep=" ")

7123 456 789.007

>>> moneyfmt (Decimal (’-0.02’), neg=’<’, trailneg=’'>")

208 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

7<0.02>"

mmn

g = Decimal (10) *x —-places # 2 places ——>

sign, digits, exp = value.quantize(q) .as_tuple()
result = []

digits = list (map(str, digits))

build, next = result.append, digits.pop

if sign:

build(trailneq)
for i in range(places):

build(next () if digits else '0')
if places:

build (dp)
if not digits:

build(’0")
i=0

while digits:
build(next ())
i+=1
if 1 == 3
i=0
build
build (curr)
build(neg if sign else pos)
return '’ .join(reversed(result))

and digits:

(sep)

def pi():
"""Compute Pi to the current precision.

>>> print (pi())
3.141592653589793238462643383

mmn

getcontext () .prec += 2

three = Decimal (3) # substitute

lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, O,
while s != lasts:

lasts = s

n, na = n+tna, nat+8

d, da = d+da, da+32

t = (~n) / d

s += t
getcontext () .prec —= 2

return +s

def exp (x):
"""Return e raised to the power of Xx.

>>> print (exp (Decimal (1)))
2.718281828459045235360287471
>>> print (exp (Decimal (2)))
7.389056098930650227230427461
>>> print (exp(2.0))
7.38905609893

>>> print (exp (2+07))
(7.38905609893+07)

70.01”7

extra digits for intermediate steps
"three=3.0" for regular floats

24

unary plus applies the new precision

Result type matches input type.

8.4. decimal — Decimal fixed point and floating point arithmetic

209

The Python Library Reference, Release 3.2

mmn

getcontext () .prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1

while s != lasts:
lasts = s
i +=1

fact »= i

num = X

s += num / fact
getcontext () .prec —= 2
return +s

def cos(x):
""'Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of X.

o

For larger values, first compute x = x % (2 x pi).
>>> print (cos (Decimal (70.57)))
0.8775825618903727161162815826

>>> print (cos(0.5))

0.87758256189

>>> print (cos (0.5+037))
(0.87758256189+07)

mmn

getcontext () .prec += 2

i, lasts, s, fact, num, sign = 0, O, 1, 1, 1, 1
while s != lasts:

lasts = s

i 4= 2

fact »= 1 % (i-1)
num *= X * X

sign x= -1
s += num / fact * sign
getcontext () .prec —= 2

return +s

def sin(x):
""'Return the sine of x as measured 1in radians.

The Taylor series approximation works best for a small value of x.

)

For larger values, first compute x = x % (2 x pi).
>>> print (sin(Decimal (70.57)))
0.4794255386042030002732879352

>>> print (sin(0.5))

0.479425538604

>>> print (sin(0.5+07))
(0.479425538604+07)

mmn

getcontext () .prec += 2

i, lasts, s, fact, num, sign =1, 0, x, 1, x, 1
while s != lasts:

lasts = s

i += 2

fact »= 1 % (i-1)

210 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

num = X * X

sign %= -1
s += num / fact x sign
getcontext () .prec —= 2

return +s

8.4.8 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal (' 1234.5"). Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D(’1.23") + D(’3.45")
Decimal ("4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize () method rounds to a fixed number of decimal places. If the Tnexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal (10) % -2 # same as Decimal (70.01")

>>> # Round to two places
>>> Decimal (’3.214") .quantize (TWOPLACES)
Decimal ("3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal (' 3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ("3.21")

>>> Decimal ('3.214") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Traceback (most recent call last):

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed
point. Others operations, like division and non-integer multiplication, will change the number of decimal places
and need to be followed-up with a quantize () step:

>>> a = Decimal (’102.72") # Initial fixed-point values

>>> Db Decimal ("3.17")

>>> a + b # Addition preserves fixed-point
Decimal (¥105.89")

>>> a — b

Decimal (' 99.55")

>>> a * 42 # So does integer multiplication
Decimal ("4314.24")

>>> (a % b).quantize (TWOPLACES) # Must quantize non-integer multiplication
Decimal (" 325.62")

>>> (b / a).quantize (TWOPLACES) # And quantize division

Decimal (" 0.03")
In developing fixed-point applications, it is convenient to define functions to handle the quantize () step:

>>> def mul (x, y, fp=TWOPLACES) :

.. return (x * y).quantize (fp)

>>> def div(x, y, fp=TWOPLACES) :
return (x / y).quantize (fp)

8.4. decimal — Decimal fixed point and floating point arithmetic 211

The Python Library Reference, Release 3.2

>>> mul (a, b) # Automatically preserve fixed-point
Decimal (" 325.62")

>>> div (b, a)

Decimal (" 0.03")

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize () method maps all equivalent values to a single representative:

>>> values = map(Decimal, 200 200.000 2E2 .02E+4’ .split())
>>> [v.normalize () for v in values]
[Decimal (' 2E+2’), Decimal (' 2E+2’), Decimal (' 2E+2’), Decimal (' 2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential represen-
tation?

A. For some values, exponential notation is the only way to express the number of significant places in the co-
efficient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s
two-place significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes,
losing significance, but keeping the value unchanged:

>>> def remove_exponent (d) :
return d.quantize (Decimal (1)) if d == d.to_integral() else d.normalize ()

>>> remove_exponent (Decimal (' 5E+37))
Decimal (" 5000")

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a Decimal though an exact conversion may
take more precision than intuition would suggest:

>>> Decimal (math.pi)
Decimal (7 3.141592653589793115997963468544185161590576171875")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only
the results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that
the results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3

>>> Decimal ("3.104") + Decimal(’2.104")

Decimal ("5.21")

>>> Decimal ("3.104") + Decimal(’0.000’) + Decimal(’2.104")
Decimal ("5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext () .prec = 3
>>> +Decimal (' 1.23456789") # unary plus triggers rounding
Decimal ("1.23")

Alternatively, inputs can be rounded upon creation using the Context .create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal ("' 1.2345678")
Decimal (1.2345")

212 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

8.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction (numerator=0, denominator=1)
class fractions.Fraction (other_fraction)

class fractions.Fraction (float)

class fractions.Fraction (decimal)

class fractions.Fraction (string)

The first version requires that numerator and denominator are instances of numbers.Rational and
returns a new Fraction instance with value numerator/denominator. If denominator is 0, it
raises a ZeroDivisionError. The second version requires that other_fraction is an instance of
numbers.Rational and returns a Fraction instance with the same value. The next two ver-
sions accept either a float or a decimal.Decimal instance, and return a Fraction instance
with exactly the same value. Note that due to the usual issues with binary floating-point (see tuz-fp-
issues), the argument to Fraction (1.1) is not exactly equal to 11/10, and so Fraction(1.1)
does not return Fraction (11, 10) as one might expect. (But see the documentation for the
limit_denominator () method below.) The last version of the constructor expects a string or uni-
code instance. The usual form for this instance is:

[sign] numerator [’/’ denominator]

where the optional sign may be either ‘+’ or *-* and numerator and denominator (if present) are
strings of decimal digits. In addition, any string that represents a finite value and is accepted by the f1oat
constructor is also accepted by the Fraction constructor. In either form the input string may also have
leading and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction (16, -10)

Fraction (-8, 5)

>>> Fraction (123)

Fraction (123, 1)

>>> Fraction/()

Fraction (0, 1)

>>> Fraction(’3/7")

Fraction (3, 7)

[40794 refs]

>>> Fraction(’ -3/7 ')

Fraction (-3, 7)

>>> Fraction(’1.414213 \t\n’)
Fraction (1414213, 1000000)

>>> Fraction(’-.125")

Fraction (-1, 8)

>>> Fraction(’7e-6")
Fraction (7, 1000000)

>>> Fraction(2.25)

Fraction (9, 4)

>>> Fraction(1l.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction(Decimal(’1.1"))
Fraction (11, 10)

8.5.

fractions — Rational numbers 213

http://svn.python.org/view/python/branches/py3k/Lib/fractions.py?view=markup

The Python Library Reference, Release 3.2

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of
the methods and operations from that class. Fraction instances are hashable, and should be treated as
immutable. In addition, Fraction has the following methods: Changed in version 3.2: The Fraction
constructor now accepts £1loat and decimal.Decimal instances.

from float (fit)
This class method constructs a F ract i on representing the exact value of fIf, which mustbe a f1oat.
Beware that Fraction.from_float (0.3) is not the same value as Fraction (3, 10)

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
float.

from decimal (dec)
This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal instance.

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
decimal.Decimal instance.

limit_denominator (max_denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator.
This method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction(’3.1415926535897932") .1limit_denominator (1000)
Fraction (355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction (cos (pi/3))

Fraction (4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)).limit_denominator ()
Fraction (1, 2)

>>> Fraction(l.1l).limit_denominator ()
Fraction (11, 10)

_ floor ()
Returns the greatest int <= self. This method can also be accessed through the math. floor ()
function:

>>> from math import floor
>>> floor (Fraction (355, 113))
3

__ceil ()
Returns the least int >= self. This method can also be accessed through the math.ceil ()
function.

_ _round__ ()

__round___ (ndigits)
The first version returns the nearest int to self, rounding half to even. The second version rounds
self to the nearest multiple of Fraction(l, 10x*ndigits) (logically, if ndigits is neg-
ative), again rounding half toward even. This method can also be accessed through the round ()
function.

fractions.ged (a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the absolute

214 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

value of gcd (a, b) is the largest integer that divides both a and b. gcd (a, b) has the same sign as b if
b is nonzero; otherwise it takes the sign of a. gcd (0, 0) returns 0.

See Also:

Module numbers The abstract base classes making up the numeric tower.

8.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random
element, a function to generate a random permutation of a list in-place, and a function for random sampling
without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random () , which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2¥#19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However,
being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic
purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in
that case, override the random (), seed (), getstate (), and setstate () methods. Optionally, a new
generator can supply a getrandbits () method — this allows randrange () to produce selections over an
arbitrarily large range.

The random module also provides the Sy stemRandom class which uses the system function os . urandom ()
to generate random numbers from sources provided by the operating system.

Bookkeeping functions:

random. seed ([x] version=2)
Initialize the random number generator.

If x is omitted or None, the current system time is used. If randomness sources are provided by the op-
erating system, they are used instead of the system time (see the os.urandom () function for details on
availability).

If x is an int, it is used directly.

With version 2 (the default), a st r, bytes, or bytearray object gets converted to an int and all of
its bits are used. With version 1, the hash () of x is used instead. Changed in version 3.2: Moved to the
version 2 scheme which uses all of the bits in a string seed.

random.getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate () to restore the state.

random.setstate (state)
state should have been obtained from a previous call to getstate (), and setstate () restores the
internal state of the generator to what it was at the time setstate () was called.

8.6. random — Generate pseudo-random numbers 215

http://svn.python.org/view/python/branches/py3k/Lib/random.py?view=markup

The Python Library Reference, Release 3.2

random.getrandbits (k)
Returns a Python integer with k£ random bits. This method is supplied with the MersenneTwister gen-
erator and some other generators may also provide it as an optional part of the API. When available,
getrandbits () enables randrange () to handle arbitrarily large ranges.

Functions for integers:

random. randrange ([start], stop[, step])
Return a randomly selected element from range (start, stop, step). This is equivalent to
choice (range (start, stop, step)),butdoesn’tactually build a range object.

The positional argument pattern matches that of range (). Keyword arguments should not be used because
the function may use them in unexpected ways. Changed in version 3.2: randrange () is more sophisti-
cated about producing equally distributed values. Formerly it used a style like int (random () *n) which
could produce slightly uneven distributions.

random.randint (a, b)
Return a random integer N such that a <= N <= b. Alias for randrange (a, b+1).

Functions for sequences:

random. choice (seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.shuffle (x[, mndom])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the function random ().

Note that for even rather small 1en (x), the total number of permutations of x is larger than the period
of most random number generators; this implies that most permutations of a long sequence can never be
generated.

random. sample (population, k)
Return a k length list of unique elements chosen from the population sequence or set. Used for random
sampling without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows
raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an range () object as an argument. This is especially
fast and space efficient for sampling from a large population: sample (range (10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these
equations can be found in any statistics text.

random.random ()
Return the next random floating point number in the range [0.0, 1.0).

random.uniform (a, b)
Return a random floating point number N such thata <= N <= bfora <= bandb <= N <= a for
b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equationa + (b-a) * random().

random.triangular (low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode
between those bounds. The low and high bounds default to zero and one. The mode argument defaults to
the midpoint between the bounds, giving a symmetric distribution.

216 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

random.betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random.expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter
would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive
infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate (alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta
> 0.

random.gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate () function defined below.

random.lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

random.normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

random.paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

random.weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generator:

class random. SystemRandom ([seed])
Class that uses the os.urandom () function for generating random numbers from sources provided by
the operating system. Not available on all systems. Does not rely on software state, and sequences are
not reproducible. Accordingly, the seed () method has no effect and is ignored. The getstate () and
setstate () methods raise Not ImplementedError if called.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator”’, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30
1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long
period and comparatively simple update operations.

8.6.1 Notes on Reproducibility

Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator. By
re-using a seed value, the same sequence should be reproducible from run to run as long as multiple threads are
not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but
two aspects are guaranteed not to change:

 If a new seeding method is added, then a backward compatible seeder will be offered.

* The generator’s random () method will continue to produce the same sequence when the compatible seeder
is given the same seed.

8.6. random — Generate pseudo-random numbers 217

http://code.activestate.com/recipes/576707/

The Python Library Reference, Release 3.2

8.6.2 Examples and Recipes

Basic usage:
>>> random.random () # Random float x, 0.0 <= x < 1.0

0.37444887175646646

>>> random.uniform (1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523

>>> random.randrange (10) # Integer from 0 to 9

7

>>> random.randrange (0, 101, 2) # Even integer from 0 to 100
26

>>> random.choice (" abcdefghij’) # Single random element

ICI

>>> items = [1, 2, 3, 4, 5, 6, 7]

>>> random.shuffle (items)
>>> jtems
(7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1l, 2, 3, 4, 51, 3) # Three samples without replacement
(4, 1, 5]
A common task is to make a random. choice () with weighted probababilites.

If the weights are small integer ratios, a simple technique is to build a sample population with repeats:

>>> weighted_choices = [('Red’, 3), ('Blue’, 2), ('Yellow’, 1), ('Green’, 4)]
>>> population = [val for val, cnt in weighted_choices for i in range (cnt)]
>>> random.choice (population)

"Green’

A more general approach 1is to arrange the weights in a cumulative distribution with
itertools.accumulate (), and then locate the random value with bisect .bisect ():

>>> choices, weights = zip(*weighted_choices)

>>> cumdist = list (itertools.accumulate (weights))
>>> x = random.random() * cumdist[—-1]

>>> choices[bisect.bisect (cumdist, x)]

"Blue’

218 Chapter 8. Numeric and Mathematical Modules

CHAPTER
NINE

FUNCTIONAL PROGRAMMING
MODULES

The modules described in this chapter provide functions and classes that support a functional programming style,
and general operations on callables.

The following modules are documented in this chapter:

9.1 itertools — Functions creating iterators for efficient looping

This module implements a number of iferator building blocks inspired by constructs from APL, Haskell, and
SML. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently
in pure Python.

For instance, SML provides a tabulation tool: tabulate (£) which produces a sequence £ (0) , £(1),
The same effect can be achieved in Python by combining map () and count () to formmap (£, count ()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator module.
For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum (map (operator.mul, vectorl, vector2)).

Infinite Iterators:

Iterator | Argu- Results Example
ments
count () | start, start, start+step, start+2*step, ... count (10) —--> 10 11 12 13 14
[step] ...
cycle() | p PO, pl, ... plast, p0, p1, ... cycle(’ABCD’) -——=> A B CDARB
C D
repeat (] elem [,n] elem, elem, elem, ... endlessly orup | repeat (10, 3) —--> 10 10 10
to n times

Iterators terminating on the shortest input sequence:

219

The Python Library Reference, Release 3.2

Iterator Arguments Results Example
accumulatiep() PO, pO+pl, pO+pl+p2, ... accumulate([1,2,3,4,5]) -—> 1 3
6 10 15
chain () P9 - PO, pl, ... plast, 0, q1, ... chain (’ABC’, 'DEF’) ——> A B C D
EF
compress ()data, (d[O] if s[O]), (d[1] if compress (' ABCDEF,
selectors s[1]), ... [1,0,1,0,1,11]) -—> A CEF
dropwhilg (pred, seq seq[n], seq[n+1], starting dropwhile (lambda x: x<5,
when pred fails [1,4,6,4,1]1) ——> 6 4 1
filterfalspréd, seq elements of seq where filterfalse (lambda x: x%2,
pred(elem) is False range (10)) -—> 0 2 4 6 8
groupby ()| iterable[, sub-iterators grouped by
keyfunc] value of keyfunc(v)
islice () | seq, [start,] elements from islice (' ABCDEFG’, 2, None) —-—> C
stop [, step] seq[start:stop:step] DEFG
starmap ()| func, seq func(*seq[0]), starmap (pow, [(2,5), (3,2),
func(*seq[1]), ... (10,3)]1) ——> 32 9 1000
takewhilg (pred, seq seq[0], seq[1], until pred takewhile (lambda x: x<5,
fails [1,4,6,4,1]) -——> 1 4
tee () it, n itl, it2 , ... itn splits one
iterator into n
zip_longgsp,) ... (pl0], q[OD), (p[1], q[1D), zip_longest (' ABCD’, ’xy’,
.. fillvalue='-') --> Ax By C- D-
Combinatoric generators:
Iterator Arguments | Results
product () P9 - cartesian product, equivalent to a nested for-loop
[repeat=1]
permutations () pL, 1] r-length tuples, all possible orderings, no
repeated elements
combinations () p,T r-length tuples, in sorted order, no repeated
elements
combinations_with_replacement|(p,r r-length tuples, in sorted order, with repeated
elements
product ("ABCD’, repeat=2) AA AB AC AD BA BB BC BD CA CB CC
CD DA DB DC DD
permutations (" ABCD’, 2) AB AC AD BA BC BD CA CB CD DA DB
DC
combinations (" ABCD’, 2) AB AC AD BC BD CD
combinations_with_replacement|(’ ABCD’, AA AB AC AD BB BC BD CC CD DD
2)

9.1.1 ltertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

itertools.accumulate (iterable)
Make an iterator that returns accumulated sums. Elements may be any addable type including Decimal or
Fraction. Equivalent to:

def accumulate (iterable):
"Return running totals’
accumulate([1,2,3,4,5])
it = iter(iterable)
total = next (it)
yield total
for element in it:

-—> 1 3 6 10 15

220 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

total = total + element
yield total

New in version 3.2.

itertools.chain (*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the
next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single
sequence. Equivalent to:

def chain(xiterables) :
chain(’ABC’, ’'DEF’) —-—> A B C D E F
for it in iterables:
for element in it:
yield element

classmethod chain. from iterable (iterable)
Alternate constructor for chain (). Gets chained inputs from a single iterable argument that is evaluated

lazily. Equivalent to:

@classmethod
def from_iterable(iterables):
chain.from iterable([’ABC’, ’'DEF’]) —-——> A B C D E F
for it in iterables:
for element in it:
yield element

itertools.combinations (iterable, r)
Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, there will be no repeat values in each combination.

Equivalent to:

def combinations (iterable, r):
combinations (’ABCD’, 2) —-—> AB AC AD BC BD CD
combinations (range(4), 3) ——> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list (range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] '= i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+l, r):
indices[]j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations () can be also expressed as a subsequence of permutations () after
filtering entries where the elements are not in sorted order (according to their position in the input pool):

9.1. itertools — Functions creating iterators for efficient looping 221

The Python Library Reference, Release 3.2

def combinations (iterable, r):
pool = tuple(iterable)

n = len(pool)
for indices in permutations(range(n), r):
if sorted(indices) == list (indices):
yield tuple(pool[i] for i in indices)

The number of items returnedisn! / r! / (n-r)! when0 <= r <= norzerowhenr > n.

itertools.combinations_with_replacement (iterable, r)
Return r length subsequences of elements from the input iterable allowing individual elements to be re-
peated more than once.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, the generated combinations will also be unique.

Equivalent to:

def combinations_with_replacement (iterable, 1r):
combinations_with replacement (’ABC’, 2) —--> AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:
return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
1

if indices[i] != n - 1:
break
else:
return
indices[i:] = [indices[i] + 1] %= (r - 1)

yield tuple(pool[i] for i in indices)

The code for combinations_with_replacement () can be also expressed as a subsequence of
product () after filtering entries where the elements are not in sorted order (according to their position in
the input pool):

def combinations_with_replacement (iterable, 1r):
pool = tuple(iterable)

n = len(pool)
for indices in product (range(n), repeat=r):
if sorted(indices) == list (indices):

yield tuple(pool[i] for i in indices)

The number of items returned is (n+r-1)'! / r! / (n-1)! whenn > 0. New in version 3.1.

itertools.compress (data, selectors)
Make an iterator that filters elements from data returning only those that have a corresponding element
in selectors that evaluates to True. Stops when either the data or selectors iterables has been exhausted.
Equivalent to:

def compress(data, selectors):
compress (’ABCDEF’, [1,0,1,0,1,1]) —-——> A C E F

return (d for d, s in zip(data, selectors) if s)

New in version 3.1.

222 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

itertools.count (start=0, step=1)
Make an iterator that returns evenly spaced values starting with n. Often used as an argument to map () to
generate consecutive data points. Also, used with zip () to add sequence numbers. Equivalent to:

def count (start=0, step=1):
count (10) —-—-> 10 11 12 13 14
count (2.5, 0.5) -—> 2.5 3.0 3.5

n = start
while True:
yield n

n += step

When counting with floating point numbers, better accuracy can sometimes be achieved by substituting
multiplicative code such as: (start + step » i1 for i in count ()). Changed in version 3.1:
Added step argument and allowed non-integer arguments.

itertools.ecycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):

cycle(’ABCD’”) --—> A B CDABTCDADBTCD
saved = []
for element in iterable:

yield element

saved.append (element)
while saved:

for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the
iterable).

itertools.dropwhile (predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element. Note, the iterator does not produce any output until the predicate first becomes false, so it
may have a lengthy start-up time. Equivalent to:

def dropwhile (predicate, iterable):
dropwhile (lambda x: x<5, [1,4,6,4,1]) ——> 6 4 1
iterable = iter (iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

itertools.filterfalse (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is False.
If predicate is None, return the items that are false. Equivalent to:

def filterfalse(predicate, iterable):
filterfalse(lambda x: x%2, range(10)) —-—> 0 2 4 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate (x):
yield x

9.1. itertools — Functions creating iterators for efficient looping 223

The Python Library Reference, Release 3.2

itertools.groupby (iterable, key=None)

Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation of groupby () is similar to the unigq filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements
regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby (). Because the
source is shared, when the groupby () object is advanced, the previous group is no longer visible. So, if
that data is needed later, it should be stored as a list:

groups = []

uniquekeys = []

data = sorted(data, key=keyfunc)

for k, g in groupby (data, keyfunc):
groups.append (list (g)) # Store group iterator as a list
uniquekeys.append (k)

groupby () is equivalent to:

class groupby:

[k for k, g in groupby (’AAAABBBCCDAABBB’)] --> A B C D A B
[list(g) for k, g in groupby (’AAAABBBCCD’)] —--> AAAA BBB CC D
def _ init_ (self, iterable, key=None):

if key is None:

key = lambda x: x

self.keyfunc = key

self.it = iter (iterable)

self.tgtkey = self.currkey = self.currvalue = object ()
def iter_ (self):

return self
def _ next_ (self):

while self.currkey == self.tgtkey:
self.currvalue = next (self.it) # Exit on Stoplteration
self.currkey = self.keyfunc(self.currvalue)

self.tgtkey = self.currkey
return (self.currkey, self._grouper (self.tgtkey))
def _grouper(self, tgtkey):

while self.currkey == tgtkey:
yield self.currvalue
self.currvalue = next (self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

itertools.islice(ﬁwubk[wﬂaﬂ],ﬂqus%p])

Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from
the iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is
set higher than one which results in items being skipped. If stop is None, then iteration continues until the
iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing, islice ()
does not support negative values for start, stop, or step. Can be used to extract related fields from data where
the internal structure has been flattened (for example, a multi-line report may list a name field on every third
line). Equivalent to:

def islice(iterable, =xargs):
islice(’ABCDEFG’, 2) —-——> A B
islice (’ABCDEFG’, 2, 4) ——> C D
islice(’ABCDEFG’, 2, None) ——> C D E F G

224

Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

islice(’ABCDEFG’, 0, None, 2) ——> A C E G

s = slice(*args)
it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
nexti = next (it)
for i, element in enumerate (iterable) :
if i == nexti:
yield element
nexti = next (it)

If start is None, then iteration starts at zero. If step is None, then the step defaults to one.

itertools.permutations (iterable, r=None)
Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length
permutations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iferable is sorted, the permutation
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, there will be no repeat values in each permutation.

Equivalent to:

def permutations(iterable, r=None):
permutations (’ABCD’, 2) —-—-> AB AC AD BA BC BD CA CB CD DA DB DC
permutations (range(3)) —--> 012 021 102 120 201 210
pool = tuple(iterable)

n = len(pool)
r = n if r is None else r
if r > n:
return
indices = list (range(n))
cycles = range(n, n-r, —-1)
yield tuple(pool[i] for i in indices([:r])
while n:
for i in reversed(range(r)):
cycles[i] =1
if cycles[i] == O0:
indices[i:] = indices[i+1l:] + indices[i:i+1]
cycles([i] = n — 1
else:
Jj = cycles[i]
indices([i], indices[-]J] = indices[-3j], indices[i]
yield tuple(pool[i] for i in indices([:r])
break
else:
return

The code for permutations () can be also expressed as a subsequence of product (), filtered to
exclude entries with repeated elements (those from the same position in the input pool):

def permutations(iterable, r=None):
pool = tuple(iterable)

n = len(pool)

r = n if r is None else r

for indices in product (range(n), repeat=r):
if len(set(indices)) == r:

yield tuple(pool[i] for i in indices)

9.1. itertools — Functions creating iterators for efficient looping 225

The Python Library Reference, Release 3.2

The number of items returnedisn! / (n-r)! when 0 <= r <= norzerowhenr > n.

itertools.product (*iterables, repeat=1)
Cartesian product of input iterables.

Equivalent to nested for-loops in a generator expression. For example, product (A, B) returns the same
as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This
pattern creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are
emitted in sorted order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat
keyword argument. For example, product (A, repeat=4) meansthe same as product (A, A, A,
A).

This function is equivalent to the following code, except that the actual implementation does not build up
intermediate results in memory:

def product (xargs, repeat=1):
product (ABCD’, ’xy’) —-—-> Ax Ay Bx By Cx Cy Dx Dy
product (range (2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] =* repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple (prod)

itertools.repeat (object[, times])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is
specified. Used as argument to map () for invariant parameters to the called function. Also used with
zip () to create an invariant part of a tuple record. Equivalent to:

def repeat (object, times=None) :
repeat (10, 3) —--> 10 10 10
if times is None:
while True:
yield obiject
else:
for i in range(times):
yield object

itertools.starmap (function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead
of map () when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference between map () and starmap () parallels the distinction between
function (a,b) and function (xc). Equivalent to:

def starmap (function, iterable):
starmap (pow, [(2,5), (3,2), (10,3)]) ——> 32 9 1000
for args in iterable:
yield function (xargs)

itertools.takewhile (predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile (predicate, iterable):
takewhile (lambda x: x<5, [1,4,6,4,1]) ——> 1 4
for x in iterable:
if predicate (x):

226 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

yield x
else:
break

itertools.tee (iterable, n=2)
Return » independent iterators from a single iterable. Equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen (mydeque) :
while True:

if not mydeque: # when the local deque is empty
newval = next (it) # fetch a new value and
for d in deques: # load it to all the deques

d.append (newval)
yield mydeque.popleft ()
return tuple(gen(d) for d in deques)

Once tee () has made a split, the original iterable should not be used anywhere else; otherwise, the iterable
could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use
list () instead of tee ().

itertools.zip_longest (*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted. Equiv-
alent to:

def zip_longest (xargs, fillvalue=None):

zip_ longest (’ABCD’, ’xy’, fillvalue=’-’) —--> Ax By C- D-
def sentinel (counter = ([fillvaluel]= (len(args)-1)) .pop):

yield counter () # yields the fillvalue, or raises IndexError
fillers = repeat(fillvalue)
iters = [chain(it, sentinel(), fillers) for it in args]
try:

for tup in zip(xiters):

yield tup

except IndexError:

pass

If one of the iterables is potentially infinite, then the zip_longest () function should be wrapped with
something that limits the number of calls (for example islice () or takewhile ()). If not specified,
fillvalue defaults to None.

9.1.2 ltertools Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which
incur interpreter overhead.

def take(n, iterable):
"Return first n items of the iterable as a list"

9.1. itertools — Functions creating iterators for efficient looping 227

The Python Library Reference, Release 3.2

return list (islice(iterable,

n))
def tabulate (function, start=0):

"Return function(0), function(l),
return map (function, count (start))

n

consume entirely."

def consume (iterator, n):
"Advance the iterator n-steps ahead. If n is none,
Use functions that consume iterators at C speed.
if n is None:
feed the entire iterator into a zero-length deque
collections.deque (iterator, maxlen=0)
else:
advance to the empty slice starting at position n
next (islice (iterator, n, n), None)
def nth(iterable, n, default=None) :
"Returns the nth item or a default value"
return next (islice(iterable, n, None), default)
def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
return sum (map (pred, iterable))
def padnone (iterable):

"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.

mmn

return chain(iterable,

def ncycles(iterable, n):

repeat (None))

"Returns the sequence elements n times"

return chain.from_iterable (repeat (tuple (iterable),

def dotproduct (vecl, vec2):

return sum(map (operator.mul, vecl,
def flatten(listOfLists):

"Flatten one level of nesting"

vec2))

return chain.from _iterable(listOfLists)

n))

def repeatfunc(func, times=None, xargs):
"""Repeat calls to func with specified arguments.
Example: repeatfunc (random.random)

mmn

if times is None:
return starmap (func,
return starmap (func, repeat (args,
def pairwise(iterable):
"s -> (s0,s1), (sl1,s2),
a, b = tee(iterable)
next (b, None)
return zip(a,

(s2, s3),

b)

def grouper (n, iterable,

repeat (args))
times))

"

fillvalue=None) :

228

Chapter 9

. Functional Programming Modules

The Python Library Reference, Release 3.2

"grouper (3, ’'ABCDEFG’, ’'x’") —--> ABC DEF Gxx"
args = [iter (iterable)] * n
return zip_longest (rargs, fillvalue=fillvalue)

def roundrobin (xiterables) :

"roundrobin (’ABC’, 'D’, 'EF’) -—> A D E B F C"
Recipe credited to George Sakkis
pending = len(iterables)
nexts = cycle(iter(it) .__next__ for it in iterables)
while pending:
try:

for next in nexts:
yield next ()
except StopIteration:
pending —= 1
nexts = cycle(islice (nexts, pending))

def partition(pred, iterable):
"Use a predicate to partition entries into false entries and true entries’
partition(is_odd, range(10)) —--> 0 2 4 6 8 and 1 3 5 7 9
tl, t2 = tee(iterable)
return filterfalse(pred, tl), filter(pred, t2)

def powerset (iterable):
"powerset ([1,2,31) ——> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list (iterable)
return chain.from_iterable (combinations (s, r) for r in range(len(s)+1))

def unique_everseen (iterable, key=None) :
"List unique elements, preserving order. Remember all elements ever seen."
unique_everseen (' AAAABBBCCDAABBB’) —--> A B C D
unique_everseen (’ABBCcAD’, str.lower) —-——> A B C D
seen = set ()
seen_add = seen.add
if key is None:
for element in filterfalse(seen._ contains_ , iterable):
seen_add (element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add (k)
yield element

def unique_justseen(iterable, key=None) :
"List unique elements, preserving order. Remember only the element just seen."
unique_justseen (' AAAABBBCCDAABBB’) —--> A B C D A B
unique_justseen (’ABBCcAD’, str.lower) —-——-> A B C A D
return map (next, map (itemgetter (1), groupby(iterable, key)))

def iter_except (func, exception, first=None) :
"mm Call a function repeatedly until an exception is raised.

Converts a call-until-exception interface to an iterator interface.
Like __builtin__ .iter (func, sentinel) but uses an exception instead
of a sentinel to end the loop.

9.1. itertools — Functions creating iterators for efficient looping 229

The Python Library Reference, Release 3.2

Examples:
iter_except (functools.partial (heappop, h), IndexError)
iter_except (d.popitem, KeyError)

iter_except (g.get_nowait, Queue.Empty)

priority queue iterat
non-blocking dict ite

loop over a producer

#
#
iter_except (d.popleft, IndexError) # non-blocking deque it
#
#

iter_except (s.pop, KeyError)

mmn

try:
if first is not None:

yield first () # For database APIs needing an initial cast to db.:

while 1:
yield func()
except exception:
pass

def random_product (xargs, repeat=1):
"Random selection from itertools.product (xargs, =**kwds)"
pools [tuple (pool) for pool in args] * repeat
return tuple (random.choice (pool) for pool in pools)

def random_permutation(iterable, r=None) :
"Random selection from itertools.permutations (iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple (random.sample (pool, r))

def random combination (iterable, r):
"Random selection from itertools.combinations (iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample (range(n), r))
return tuple (pool[i] for i in indices)

def random_combination_with_replacement (iterable, 1r):
"Random selection from itertools.combinations_with_replacement (iterable,
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.randrange (n) for i in range(r))
return tuple(pool[i] for i in indices)

Note, many of the above recipes can be optimized by replacing global lookups with local variables defined as
default values. For example, the dotproduct recipe can be written as:

def dotproduct (vecl, vec2, sum=sum, map=map, mul=operator.mul) :
return sum(map (mul, vecl, vec2))

9.2 functools — Higher order functions and operations on
callable objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return other functions. In general,
any callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

230 Chapter 9. Functional Programming Modules

non-blocking set itei

http://svn.python.org/view/python/branches/py3k/Lib/functools.py?view=markup

The Python Library Reference, Release 3.2

functools.cmp_to_key (func)
Transform an old-style comparison function to a key-function. Used with tools that accept key
functions (such as sorted (), min (), max (), heapg.nlargest (), heapg.nsmallest (),
itertools.groupby ()). This function is primarily used as a transition tool for programs being con-
verted from Py2.x which supported the use of comparison functions.

A compare function is any callable that accept two arguments, compares them, and returns a negative
number for less-than, zero for equality, or a positive number for greater-than. A key function is a callable
that accepts one argument and returns another value indicating the position in the desired collation sequence.

Example:
sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale—-aware sort order

New in version 3.2.

@functools.lru_cache (maxsize=100)
Decorator to wrap a function with a memoizing callable that saves up to the maxsize most recent calls. It
can save time when an expensive or I/O bound function is periodically called with the same arguments.

Since a dictionary is used to cache results, the positional and keyword arguments to the function must be
hashable.

If maxsize is set to None, the LRU feature is disabled and the cache can grow without bound.

To help measure the effectiveness of the cache and tune the maxsize parameter, the wrapped function is
instrumented with a cache_info () function that returns a named tuple showing hits, misses, maxsize
and currsize. In a multi-threaded environment, the hits and misses are approximate.

The decorator also provides a cache_clear () function for clearing or invalidating the cache.

The original underlying function is accessible through the _ wrapped___ attribute. This is useful for
introspection, for bypassing the cache, or for rewrapping the function with a different cache.

An LRU (least recently used) cache works best when more recent calls are the best predictors of upcoming
calls (for example, the most popular articles on a news server tend to change daily). The cache’s size limit
assures that the cache does not grow without bound on long-running processes such as web servers.

Example of an LRU cache for static web content:

@lru_cache (maxsize=20)
def get_pep (num) :
"Retrieve text of a Python Enhancement Proposal’
resource = ’'http://www.python.org/dev/peps/pep-%04d/’ % num
try:
with urllib.request.urlopen(resource) as s:
return s.read()
except urllib.error.HTTPError:
return ’'Not Found’

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:

pep = get_pep (n)
print (n, len (pep))

>>> print (get_pep.cache_info())
CacheInfo(hits=3, misses=8, maxsize=20, currsize=38)

Example of efficiently computing Fibonacci numbers using a cache to implement a dynamic programming
technique:

@lru_cache (maxsize=None)
def fib(n):
if n < 2:

9.2. functools — Higher order functions and operations on callable objects 231

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Dynamic_programming

The Python Library Reference, Release 3.2

return n
return fib(n-1) + fib(n-2)

>>> print ([fib(n) for n in range(16)1])
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

>>> print (fib.cache_info())
CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)

New in version 3.2.

@functools.total_ordering

Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest.
This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must defineoneof __ 1t__ (),__le_ (),
should supply an __eq___ () method.

gt__(),or__ge__ (). In addition, the class

For example:

@total_ordering
class Student:
def _ eq_ (self, other):
return ((self.lastname.lower (), self.firstname.lower()) ==
(other.lastname.lower (), other.firstname.lower()))
def _ 1t (self, other):
return ((self.lastname.lower (), self.firstname.lower()) <
(other.lastname.lower (), other.firstname.lower()))

New in version 3.2.

functools.partial (func, *args, **keywords)

Return anew partial object which when called will behave like func called with the positional arguments
args and keyword arguments keywords. If more arguments are supplied to the call, they are appended to
args. If additional keyword arguments are supplied, they extend and override keywords. Roughly equivalent
to:

def partial (func, *args, =*keywords):
def newfunc (xfargs, =*xfkeywords):
newkeywords = keywords.copy ()
newkeywords.update (fkeywords)

return func (* (args + fargs), =*xnewkeywords)

newfunc. func = func
newfunc.args = args
newfunc.keywords = keywords

return newfunc

The partial () is used for partial function application which “freezes” some portion of a function’s
arguments and/or keywords resulting in a new object with a simplified signature. For example, partial (