
The Python Library Reference
Release 3.2

Guido van Rossum
Fred L. Drake, Jr., editor

February 20, 2011

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3

2 Built-in Functions 5

3 Built-in Constants 23
3.1 Constants added by the site module . 23

4 Built-in Types 25
4.1 Truth Value Testing . 25
4.2 Boolean Operations — and, or, not . 25
4.3 Comparisons . 26
4.4 Numeric Types — int, float, complex . 26
4.5 Iterator Types . 31
4.6 Sequence Types — str, bytes, bytearray, list, tuple, range 32
4.7 Set Types — set, frozenset . 42
4.8 Mapping Types — dict . 45
4.9 memoryview type . 48
4.10 Context Manager Types . 50
4.11 Other Built-in Types . 50
4.12 Special Attributes . 52

5 Built-in Exceptions 55
5.1 Exception hierarchy . 59

6 String Services 61
6.1 string — Common string operations . 61
6.2 re — Regular expression operations . 70
6.3 struct — Interpret bytes as packed binary data . 86
6.4 difflib — Helpers for computing deltas . 90
6.5 textwrap — Text wrapping and filling . 99
6.6 codecs — Codec registry and base classes . 102
6.7 unicodedata — Unicode Database . 114
6.8 stringprep — Internet String Preparation . 116

7 Data Types 119
7.1 datetime — Basic date and time types . 119
7.2 calendar — General calendar-related functions . 142
7.3 collections — Container datatypes . 145
7.4 heapq — Heap queue algorithm . 158
7.5 bisect — Array bisection algorithm . 162
7.6 array — Efficient arrays of numeric values . 164
7.7 sched — Event scheduler . 166
7.8 queue — A synchronized queue class . 168
7.9 weakref — Weak references . 170

i

7.10 types — Names for built-in types . 174
7.11 copy — Shallow and deep copy operations . 174
7.12 pprint — Data pretty printer . 175
7.13 reprlib — Alternate repr() implementation . 178

8 Numeric and Mathematical Modules 181
8.1 numbers — Numeric abstract base classes . 181
8.2 math — Mathematical functions . 184
8.3 cmath — Mathematical functions for complex numbers . 188
8.4 decimal — Decimal fixed point and floating point arithmetic 190
8.5 fractions — Rational numbers . 213
8.6 random — Generate pseudo-random numbers . 215

9 Functional Programming Modules 219
9.1 itertools — Functions creating iterators for efficient looping 219
9.2 functools — Higher order functions and operations on callable objects 230
9.3 operator — Standard operators as functions . 234
9.4 Inplace Operators . 238

10 File and Directory Access 241
10.1 os.path — Common pathname manipulations . 241
10.2 fileinput — Iterate over lines from multiple input streams 244
10.3 stat — Interpreting stat() results . 246
10.4 filecmp — File and Directory Comparisons . 249
10.5 tempfile — Generate temporary files and directories . 251
10.6 glob — Unix style pathname pattern expansion . 254
10.7 fnmatch — Unix filename pattern matching . 254
10.8 linecache — Random access to text lines . 255
10.9 shutil — High-level file operations . 256
10.10 macpath — Mac OS 9 path manipulation functions . 260

11 Data Persistence 263
11.1 pickle — Python object serialization . 263
11.2 copyreg — Register pickle support functions . 273
11.3 shelve — Python object persistence . 274
11.4 marshal — Internal Python object serialization . 276
11.5 dbm — Interfaces to Unix “databases” . 277
11.6 sqlite3 — DB-API 2.0 interface for SQLite databases . 280

12 Data Compression and Archiving 299
12.1 zlib — Compression compatible with gzip . 299
12.2 gzip — Support for gzip files . 301
12.3 bz2 — Compression compatible with bzip2 . 303
12.4 zipfile — Work with ZIP archives . 305
12.5 tarfile — Read and write tar archive files . 310

13 File Formats 319
13.1 csv — CSV File Reading and Writing . 319
13.2 configparser — Configuration file parser . 324
13.3 netrc — netrc file processing . 340
13.4 xdrlib — Encode and decode XDR data . 341
13.5 plistlib — Generate and parse Mac OS X .plist files . 343

14 Cryptographic Services 345
14.1 hashlib — Secure hashes and message digests . 345
14.2 hmac — Keyed-Hashing for Message Authentication . 347

15 Generic Operating System Services 349
15.1 os — Miscellaneous operating system interfaces . 349

ii

15.2 io — Core tools for working with streams . 373
15.3 time — Time access and conversions . 383
15.4 argparse — Parser for command line options, arguments and sub-commands 388
15.5 optparse — Parser for command line options . 413
15.6 getopt — C-style parser for command line options . 437
15.7 logging — Logging facility for Python . 439
15.8 logging.config — Logging configuration . 452
15.9 logging.handlers — Logging handlers . 460
15.10 getpass — Portable password input . 469
15.11 curses — Terminal handling for character-cell displays . 469
15.12 curses.textpad — Text input widget for curses programs 483
15.13 curses.wrapper — Terminal handler for curses programs 485
15.14 curses.ascii — Utilities for ASCII characters . 485
15.15 curses.panel — A panel stack extension for curses . 487
15.16 platform — Access to underlying platform’s identifying data 488
15.17 errno — Standard errno system symbols . 491
15.18 ctypes — A foreign function library for Python . 497

16 Optional Operating System Services 527
16.1 select — Waiting for I/O completion . 527
16.2 threading — Thread-based parallelism . 531
16.3 multiprocessing — Process-based parallelism . 542
16.4 concurrent.futures — Launching parallel tasks . 589
16.5 mmap — Memory-mapped file support . 593
16.6 readline — GNU readline interface . 596
16.7 rlcompleter — Completion function for GNU readline . 598
16.8 dummy_threading — Drop-in replacement for the threading module 599
16.9 _thread — Low-level threading API . 600
16.10 _dummy_thread — Drop-in replacement for the _thread module 601

17 Interprocess Communication and Networking 603
17.1 subprocess — Subprocess management . 603
17.2 socket — Low-level networking interface . 611
17.3 ssl — TLS/SSL wrapper for socket objects . 622
17.4 signal — Set handlers for asynchronous events . 634
17.5 asyncore — Asynchronous socket handler . 637
17.6 asynchat — Asynchronous socket command/response handler 641

18 Internet Data Handling 645
18.1 email — An email and MIME handling package . 645
18.2 json — JSON encoder and decoder . 675
18.3 mailcap — Mailcap file handling . 680
18.4 mailbox — Manipulate mailboxes in various formats . 681
18.5 mimetypes — Map filenames to MIME types . 696
18.6 base64 — RFC 3548: Base16, Base32, Base64 Data Encodings 699
18.7 binhex — Encode and decode binhex4 files . 701
18.8 binascii — Convert between binary and ASCII . 701
18.9 quopri — Encode and decode MIME quoted-printable data 703
18.10 uu — Encode and decode uuencode files . 704

19 Structured Markup Processing Tools 705
19.1 html — HyperText Markup Language support . 705
19.2 html.parser — Simple HTML and XHTML parser . 705
19.3 html.entities — Definitions of HTML general entities . 707
19.4 xml.parsers.expat — Fast XML parsing using Expat . 708
19.5 xml.dom — The Document Object Model API . 716
19.6 xml.dom.minidom — Lightweight DOM implementation 726
19.7 xml.dom.pulldom — Support for building partial DOM trees 730
19.8 xml.sax — Support for SAX2 parsers . 730

iii

19.9 xml.sax.handler — Base classes for SAX handlers . 732
19.10 xml.sax.saxutils — SAX Utilities . 736
19.11 xml.sax.xmlreader — Interface for XML parsers . 737
19.12 xml.etree.ElementTree — The ElementTree XML API 741

20 Internet Protocols and Support 749
20.1 webbrowser — Convenient Web-browser controller . 749
20.2 cgi — Common Gateway Interface support . 751
20.3 cgitb — Traceback manager for CGI scripts . 757
20.4 wsgiref — WSGI Utilities and Reference Implementation . 757
20.5 urllib.request — Extensible library for opening URLs 766
20.6 urllib.response — Response classes used by urllib . 779
20.7 urllib.parse — Parse URLs into components . 780
20.8 urllib.error — Exception classes raised by urllib.request 785
20.9 urllib.robotparser — Parser for robots.txt . 786
20.10 http.client — HTTP protocol client . 787
20.11 ftplib — FTP protocol client . 792
20.12 poplib — POP3 protocol client . 796
20.13 imaplib — IMAP4 protocol client . 798
20.14 nntplib — NNTP protocol client . 803
20.15 smtplib — SMTP protocol client . 809
20.16 smtpd — SMTP Server . 813
20.17 telnetlib — Telnet client . 815
20.18 uuid — UUID objects according to RFC 4122 . 817
20.19 socketserver — A framework for network servers . 820
20.20 http.server — HTTP servers . 827
20.21 http.cookies — HTTP state management . 831
20.22 http.cookiejar — Cookie handling for HTTP clients . 834
20.23 xmlrpc.client — XML-RPC client access . 842
20.24 xmlrpc.server — Basic XML-RPC servers . 848

21 Multimedia Services 853
21.1 audioop — Manipulate raw audio data . 853
21.2 aifc — Read and write AIFF and AIFC files . 856
21.3 sunau — Read and write Sun AU files . 858
21.4 wave — Read and write WAV files . 860
21.5 chunk — Read IFF chunked data . 862
21.6 colorsys — Conversions between color systems . 863
21.7 imghdr — Determine the type of an image . 864
21.8 sndhdr — Determine type of sound file . 865
21.9 ossaudiodev — Access to OSS-compatible audio devices 865

22 Internationalization 871
22.1 gettext — Multilingual internationalization services . 871
22.2 locale — Internationalization services . 879

23 Program Frameworks 885
23.1 turtle — Turtle graphics . 885
23.2 cmd — Support for line-oriented command interpreters . 917
23.3 shlex — Simple lexical analysis . 922

24 Graphical User Interfaces with Tk 927
24.1 tkinter — Python interface to Tcl/Tk . 927
24.2 tkinter.ttk — Tk themed widgets . 936
24.3 tkinter.tix — Extension widgets for Tk . 952
24.4 tkinter.scrolledtext — Scrolled Text Widget . 957
24.5 IDLE . 957
24.6 Other Graphical User Interface Packages . 960

iv

25 Development Tools 963
25.1 pydoc — Documentation generator and online help system . 963
25.2 doctest — Test interactive Python examples . 964
25.3 unittest — Unit testing framework . 985
25.4 2to3 - Automated Python 2 to 3 code translation . 1009
25.5 test — Regression tests package for Python . 1013
25.6 test.support — Utility functions for tests . 1015

26 Debugging and Profiling 1019
26.1 bdb — Debugger framework . 1019
26.2 pdb — The Python Debugger . 1023
26.3 The Python Profilers . 1028
26.4 timeit — Measure execution time of small code snippets . 1035
26.5 trace — Trace or track Python statement execution . 1038

27 Python Runtime Services 1041
27.1 sys — System-specific parameters and functions . 1041
27.2 sysconfig — Provide access to Python’s configuration information 1051
27.3 builtins — Built-in objects . 1055
27.4 __main__ — Top-level script environment . 1055
27.5 warnings — Warning control . 1055
27.6 contextlib — Utilities for with-statement contexts . 1060
27.7 abc — Abstract Base Classes . 1062
27.8 atexit — Exit handlers . 1065
27.9 traceback — Print or retrieve a stack traceback . 1066
27.10 __future__ — Future statement definitions . 1070
27.11 gc — Garbage Collector interface . 1071
27.12 inspect — Inspect live objects . 1073
27.13 site — Site-specific configuration hook . 1079
27.14 fpectl — Floating point exception control . 1081
27.15 distutils — Building and installing Python modules . 1082

28 Custom Python Interpreters 1083
28.1 code — Interpreter base classes . 1083
28.2 codeop — Compile Python code . 1085

29 Importing Modules 1087
29.1 imp — Access the import internals . 1087
29.2 zipimport — Import modules from Zip archives . 1090
29.3 pkgutil — Package extension utility . 1092
29.4 modulefinder — Find modules used by a script . 1094
29.5 runpy — Locating and executing Python modules . 1095
29.6 importlib – An implementation of import . 1097

30 Python Language Services 1103
30.1 parser — Access Python parse trees . 1103
30.2 ast — Abstract Syntax Trees . 1107
30.3 symtable — Access to the compiler’s symbol tables . 1111
30.4 symbol — Constants used with Python parse trees . 1113
30.5 token — Constants used with Python parse trees . 1114
30.6 keyword — Testing for Python keywords . 1115
30.7 tokenize — Tokenizer for Python source . 1115
30.8 tabnanny — Detection of ambiguous indentation . 1117
30.9 pyclbr — Python class browser support . 1118
30.10 py_compile — Compile Python source files . 1119
30.11 compileall — Byte-compile Python libraries . 1120
30.12 dis — Disassembler for Python bytecode . 1121
30.13 pickletools — Tools for pickle developers . 1129

v

31 Miscellaneous Services 1131
31.1 formatter — Generic output formatting . 1131

32 MS Windows Specific Services 1135
32.1 msilib — Read and write Microsoft Installer files . 1135
32.2 msvcrt – Useful routines from the MS VC++ runtime . 1140
32.3 winreg – Windows registry access . 1141
32.4 winsound — Sound-playing interface for Windows . 1148

33 Unix Specific Services 1151
33.1 posix — The most common POSIX system calls . 1151
33.2 pwd — The password database . 1152
33.3 spwd — The shadow password database . 1153
33.4 grp — The group database . 1153
33.5 crypt — Function to check Unix passwords . 1154
33.6 termios — POSIX style tty control . 1154
33.7 tty — Terminal control functions . 1156
33.8 pty — Pseudo-terminal utilities . 1156
33.9 fcntl — The fcntl() and ioctl() system calls . 1157
33.10 pipes — Interface to shell pipelines . 1159
33.11 resource — Resource usage information . 1160
33.12 nis — Interface to Sun’s NIS (Yellow Pages) . 1162
33.13 syslog — Unix syslog library routines . 1163

34 Undocumented Modules 1165
34.1 Platform specific modules . 1165

A Glossary 1167

Bibliography 1175

B About these documents 1177
B.1 Contributors to the Python Documentation . 1177

C History and License 1179
C.1 History of the software . 1179
C.2 Terms and conditions for accessing or otherwise using Python 1180
C.3 Licenses and Acknowledgements for Incorporated Software . 1182

D Copyright 1193

Python Module Index 1195

Index 1199

vi

The Python Library Reference, Release 3.2

Release 3.2

Date February 20, 2011

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 3.2

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter Built-in
Functions, as the remainder of the manual assumes familiarity with this material.

Let the show begin!

3

The Python Library Reference, Release 3.2

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions
abs() dict() help() min() setattr()
all() dir() hex() next() slice()
any() divmod() id() object() sorted()
ascii() enumerate() input() oct() staticmethod()
bin() eval() int() open() str()
bool() exec() isinstance() ord() sum()
bytearray() filter() issubclass() pow() super()
bytes() float() iter() print() tuple()
callable() format() len() property() type()
chr() frozenset() list() range() vars()
classmethod() getattr() locals() repr() zip()
compile() globals() map() reversed() __import__()
complex() hasattr() max() round()
delattr() hash() memoryview() set()

abs(x)
Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:

if not element:
return False

return True

any(iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:

if element:
return True

return False

ascii(object)
As repr(), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr() using \x, \u or \U escapes. This generates a string similar to
that returned by repr() in Python 2.

5

The Python Library Reference, Release 3.2

bin(x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python
int object, it has to define an __index__() method that returns an integer.

bool([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot
be subclassed further. Its only instances are False and True.

bytearray([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well
as most methods that the bytes type has, see Bytes and Byte Array Methods.

The optional source parameter can be used to initialize the array in a few different ways:

•If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray()
then converts the string to bytes using str.encode().

•If it is an integer, the array will have that size and will be initialized with null bytes.

•If it is an object conforming to the buffer interface, a read-only buffer of the object will be used to
initialize the bytes array.

•If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as
the initial contents of the array.

Without an argument, an array of size 0 is created.

bytes([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray – it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray().

Bytes objects can also be created with literals, see strings.

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); instances are callable if their class has a __call__() method. New in
version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr(i)
Return the string representing a character whose Unicode codepoint is the integer i. For example, chr(97)
returns the string ’a’. This is the inverse of ord(). The valid range for the argument is from 0 through
1,114,111 (0x10FFFF in base 16). ValueError will be raised if i is outside that range.

Note that on narrow Unicode builds, the result is a string of length two for i greater than 65,535 (0xFFFF in
hexadecimal).

classmethod(function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, arg1, arg2, ...): ...

The @classmethod form is a function decorator – see the description of function definitions in function
for details.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod() in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in types.

compile(source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec() or eval().
source can either be a string or an AST object. Refer to the ast module documentation for information on
how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if
it wasn’t read from a file (’<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ’exec’ if source consists of a
sequence of statements, ’eval’ if it consists of a single expression, or ’single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None
will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the
compilation of source. If neither is present (or both are zero) the code is compiled with those future state-
ments that are in effect in the code that is calling compile. If the flags argument is given and dont_inherit
is not (or is zero) then the future statements specified by the flags argument are used in addition to those
that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it – the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_flag attribute on the
_Feature instance in the __future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by -O options. Explicit levels are 0 (no optimization;
__debug__ is true), 1 (asserts are removed, __debug__ is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source con-
tains null bytes.

Note: When compiling a string with multi-line code in ’single’ or ’eval’ mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in ’exec’ mode does not
have to end in a newline anymore. Added the optimize parameter.

complex([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a
numeric conversion function like int() and float(). If both arguments are omitted, returns 0j.

The complex type is described in Numeric Types — int, float, complex.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr(x, ’foobar’) is equivalent to del x.foobar.

dict([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in
Mapping Types — dict.

7

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.2

For other containers see the built in list, set, and tuple classes, and the collections module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__() or __getattribute__()
function to customize the way dir() reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__().

The default dir() mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

•If the object is a module object, the list contains the names of the module’s attributes.

•If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

•Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’, ’struct’]
>>> dir(struct)
[’Struct’, ’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’_clearcache’, ’calcsize’, ’error’, ’pack’, ’pack_into’,
’unpack’, ’unpack_from’]
>>> class Foo:
... def __dir__(self):
... return ["kan", "ga", "roo"]
...
>>> f = Foo()
>>> dir(f)
[’ga’, ’kan’, ’roo’]

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(q, a % b), where q is usually math.floor(a / b) but may be 1 less than that. In any case q *
b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b)
< abs(b).

enumerate(iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports
iteration. The __next__() method of the iterator returned by enumerate() returns a tuple containing
a count (from start which defaults to 0) and the corresponding value obtained from iterating over iter-
able. enumerate() is useful for obtaining an indexed series: (0, seq[0]), (1, seq[1]), (2,
seq[2]), For example:

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

>>> for i, season in enumerate([’Spring’, ’Summer’, ’Fall’, ’Winter’]):
... print(i, season)
0 Spring
1 Summer
2 Fall
3 Winter

eval(expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals dictionaries as global and local namespace. If the globals dictionary is
present and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed.
This means that expression normally has full access to the standard builtins module and restricted
environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where eval() is called. The return
value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by compile()). In
this case pass a code object instead of a string. If the code object has been compiled with ’exec’ as the
mode argument, eval()‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec() function. The globals() and
locals() functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval() or exec().

See ast.literal_eval() for a function that can safely evaluate strings with expressions containing
only literals.

exec(object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs). 1 If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed
to the exec() function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals
and locals are given, they are used for the global and local variables, respectively. If provided, locals can be
any mapping object.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins
are available to the executed code by inserting your own __builtins__ dictionary into globals before
passing it to exec().

Note: The built-in functions globals() and locals() return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec().

Note: The default locals act as described for function locals() below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

9

The Python Library Reference, Release 3.2

code on locals after function exec() returns.

filter(function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to the generator expression (item for
item in iterable if function(item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse() for the complementary function that returns elements of iterable for
which function returns false.

float([x])
Convert a string or a number to floating point.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and option-
ally embedded in whitespace. The optional sign may be ’+’ or ’-’; a ’+’ sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or nega-
tive infinity. More precisely, the input must conform to the following grammar after leading and trailing
whitespace characters are removed:

sign ::= “+” | “-“
infinity ::= “Infinity” | “inf”
nan ::= “nan”
numeric_value ::= floatnumber | infinity | nan
numeric_string ::= [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not sig-
nificant, so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive
infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same
value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, float(x) delegates to x.__float__().

If no argument is given, 0.0 is returned.

Examples:

>>> float(’+1.23’)
1.23
>>> float(’ -12345\n’)
-12345.0
>>> float(’1e-003’)
0.001
>>> float(’+1E6’)
1000000.0
>>> float(’-Infinity’)
-inf

The float type is described in Numeric Types — int, float, complex.

format(value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-

mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that
is used by most built-in types: Format Specification Mini-Language.

Note: format(value, format_spec) merely calls value.__format__(format_spec).

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

frozenset([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in
Set Types — set, frozenset.

For other containers see the built in dict, list, and tuple classes, and the collections module.

getattr(object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of
the object’s attributes, the result is the value of that attribute. For example, getattr(x, ’foobar’) is
equivalent to x.foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the ob-
ject’s attributes, False if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an AttributeError or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

hex(x)
Convert an integer number to a hexadecimal string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index__() method that returns an integer.

Note: To obtain a hexadecimal string representation for a float, use the float.hex() method.

id(object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id() value.

CPython implementation detail: This is the address of the object.

input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is read, EOFError is raised. Example:

>>> s = input(’--> ’)
--> Monty Python’s Flying Circus
>>> s
"Monty Python’s Flying Circus"

If the readline module was loaded, then input() will use it to provide elaborate line editing and
history features.

int([number | string[, base]])
Convert a number or string to an integer. If no arguments are given, return 0. If a number is given, return

11

The Python Library Reference, Release 3.2

number.__int__(). Conversion of floating point numbers to integers truncates towards zero. A string
must be a base-radix integer literal optionally preceded by ‘+’ or ‘-‘ (with no space in between) and option-
ally surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with ‘a’ to ‘z’ (or ‘A’ to ‘Z’)
having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 liter-
als can be optionally prefixed with 0b/0B, 0o/0O, or 0x/0X, as with integer literals in code. Base 0 means
to interpret exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int(’010’, 0)
is not legal, while int(’010’) is, as well as int(’010’, 8).

The integer type is described in Numeric Types — int, float, complex.

isinstance(object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. If object is not an object of the given type, the function always returns false. If classinfo is not a
class (type object), it may be a tuple of type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass(class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter(object[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__() method), or it must support the sequence protocol (the __getitem__()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator
created in this case will call object with no arguments for each call to its __next__() method; if the
value returned is equal to sentinel, StopIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter() is to read lines of a file until a certain line is reached.
The following example reads a file until "STOP" is reached:

with open("mydata.txt") as fp:
for line in iter(fp.readline, "STOP"):

process_line(line)

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made
and returned, similar to iterable[:]. For instance, list(’abc’) returns [’a’, ’b’, ’c’] and
list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, returns a new empty list, [].

list is a mutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
and free variables used by the interpreter.

map(function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases
where the function inputs are already arranged into argument tuples, see itertools.starmap().

max(iterable[, args...], *[, key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the largest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort().

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True)[0]
and heapq.nlargest(1, iterable, key=keyfunc).

memoryview(obj)
Return a “memory view” object created from the given argument. See memoryview type for more informa-
tion.

min(iterable[, args...], *[, key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the smallest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort().

If multiple items are minimal, the function returns the first one encountered. This is consistent
with other sort-stability preserving tools such as sorted(iterable, key=keyfunc)[0] and
heapq.nsmallest(1, iterable, key=keyfunc).

next(iterator[, default])
Retrieve the next item from the iterator by calling its __next__() method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

object()
Return a new featureless object. object is a base for all classes. It has the methods that are common to
all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct(x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an __index__() method that returns an integer.

open(file, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
Open file and return a corresponding stream. If the file cannot be opened, an IOError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working direc-
tory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is
given, it is closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ’r’which means
open for reading in text mode. Other common values are ’w’ for writing (truncating the file if it already
exists), and ’a’ for appending (which on some Unix systems, means that all writes append to the end of the
file regardless of the current seek position). In text mode, if encoding is not specified the encoding used is
platform dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

13

The Python Library Reference, Release 3.2

Character Meaning
’r’ open for reading (default)
’w’ open for writing, truncating the file first
’a’ open for writing, appending to the end of the file if it exists
’b’ binary mode
’t’ text mode (default)
’+’ open a disk file for updating (reading and writing)
’U’ universal newline mode (for backwards compatibility; should not be used in new code)

The default mode is ’r’ (open for reading text, synonym of ’rt’). For binary read-write access, the mode
’w+b’ opens and truncates the file to 0 bytes. ’r+b’ opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary
mode (including ’b’ in the mode argument) return contents as bytes objects without any decoding. In
text mode (the default, or when ’t’ is included in the mode argument), the contents of the file are returned
as str, the bytes having been first decoded using a platform-dependent encoding or using the specified
encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the the processing
is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

•Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

•“Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever locale.getpreferredencoding()
returns), but any encoding supported by Python can be used. See the codecs module for the list of
supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled–this cannot be
used in binary mode. Pass ’strict’ to raise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass ’ignore’ to ignore errors. (Note that ignoring encoding
errors can lead to data loss.) ’replace’ causes a replacement marker (such as ’?’) to be inserted
where there is malformed data. When writing, ’xmlcharrefreplace’ (replace with the appropriate
XML character reference) or ’backslashreplace’ (replace with backslashed escape sequences) can
be used. Any other error handling name that has been registered with codecs.register_error() is
also valid.

newline controls how universal newlines works (it only applies to text mode). It can be None, ”, ’\n’,
’\r’, and ’\r\n’. It works as follows:

•On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ’\n’,
’\r’, or ’\r\n’, and these are translated into ’\n’ before being returned to the caller. If it is ”,
universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has
any of the other legal values, input lines are only terminated by the given string, and the line ending is
returned to the caller untranslated.

•On output, if newline is None, any ’\n’ characters written are translated to the system default line
separator, os.linesep. If newline is ”, no translation takes place. If newline is any of the other
legal values, any ’\n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd has no effect and must be True (the
default).

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

The type of file object returned by the open() function depends on the mode. When open() is used
to open a file in a text mode (’w’, ’r’, ’wt’, ’rt’, etc.), it returns a subclass of io.TextIOBase
(specifically io.TextIOWrapper). When used to open a file in a binary mode with buffering, the re-
turned class is a subclass of io.BufferedIOBase. The exact class varies: in read binary mode, it returns
a io.BufferedReader; in write binary and append binary modes, it returns a io.BufferedWriter,
and in read/write mode, it returns a io.BufferedRandom. When buffering is disabled, the raw stream,
a subclass of io.RawIOBase, io.FileIO, is returned.

See also the file handling modules, such as, fileinput, io (where open() is declared), os, os.path,
tempfile, and shutil.

ord(c)
Given a string representing one Uncicode character, return an integer representing the Unicode code point
of that character. For example, ord(’a’) returns the integer 97 and ord(’\u2020’) returns 8224.
This is the inverse of chr().

On wide Unicode builds, if the argument length is not one, a TypeError will be raised. On narrow
Unicode builds, strings of length two are accepted when they form a UTF-16 surrogate pair.

pow(x, y[, z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the power operator:
x**y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10**2 returns 100, but 10**-2 returns 0.01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print([object, ...], *, sep=’ ‘, end=’\n’, file=sys.stdout)
Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use
the default values. If no object is given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None,
sys.stdout will be used.

property(fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C:
def __init__(self):

self._x = None

def getx(self):
return self._x

def setx(self, value):
self._x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I’m the ’x’ property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del
c.x the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property() as a decorator:

15

The Python Library Reference, Release 3.2

class Parrot:
def __init__(self):

self._voltage = 100000

@property
def voltage(self):

"""Get the current voltage."""
return self._voltage

turns the voltage() method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def __init__(self):

self._x = None

@property
def x(self):

"""I’m the ’x’ property."""
return self._x

@x.setter
def x(self, value):

self._x = value

@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

range([start], stop[, step])
This is a versatile function to create iterables yielding arithmetic progressions. It is most often used in
for loops. The arguments must be integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns an iterable of integers [start, start +
step, start + 2 * step, ...]. If step is positive, the last element is the largest start + i

* step less than stop; if step is negative, the last element is the smallest start + i * step greater
than stop. step must not be zero (or else ValueError is raised). Example:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(range(0, 30, 5))
[0, 5, 10, 15, 20, 25]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(0, -10, -1))
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list(range(0))
[]
>>> list(range(1, 0))
[]

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

Range objects implement the collections.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices:

>>> r = range(0, 20, 2)
>>> r
range(0, 20, 2)
>>> 11 in r
False
>>> 10 in r
True
>>> r.index(10)
5
>>> r[5]
10
>>> r[:5]
range(0, 10, 2)
>>> r[-1]
18

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len()) will raise OverflowError. Changed in version 3.2: Implement the Sequence ABC. Support
slicing and negative indices. Test integers for membership in constant time instead of iterating through all
items.

repr(object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval(), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object
together with additional information often including the name and address of the object. A class can control
what this function returns for its instances by defining a __repr__() method.

reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports the
sequence protocol (the __len__() method and the __getitem__() method with integer arguments
starting at 0).

round(x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to
zero. Delegates to x.__round__(n).

For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the power
minus n; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round(0.5) and round(-0.5) are 0, and round(1.5) is 2). The return value is an integer if called
with one argument, otherwise of the same type as x.

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives
2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See tut-fp-issues for more information.

set([iterable])
Return a new set, optionally with elements taken from iterable. The set type is described in Set Types — set,
frozenset.

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For example, setattr(x, ’foobar’, 123) is equivalent to x.foobar
= 123.

slice([start], stop[, step])

17

The Python Library Reference, Release 3.2

Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop,
i]. See itertools.islice() for an alternate version that returns an iterator.

sorted(iterable[, key][, reverse])
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

Use functools.cmp_to_key() to convert an old-style cmp function to a key function.

For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod(function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(arg1, arg2, ...): ...

The @staticmethod form is a function decorator – see the description of function definitions in function
for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod() in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in types.

str([object[, encoding[, errors]]])
Return a string version of an object, using one of the following modes:

If encoding and/or errors are given, str() will decode the object which can either be a byte string or a
character buffer using the codec for encoding. The encoding parameter is a string giving the name of an en-
coding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errors is ’strict’
(the default), a ValueError is raised on errors, while a value of ’ignore’ causes errors to be silently
ignored, and a value of ’replace’ causes the official Unicode replacement character, U+FFFD, to be
used to replace input characters which cannot be decoded. See also the codecs module.

When only object is given, this returns its nicely printable representation. For strings, this is the string itself.
The difference with repr(object) is that str(object) does not always attempt to return a string that
is acceptable to eval(); its goal is to return a printable string. With no arguments, this returns the empty
string.

Objects can specify what str(object) returns by defining a __str__() special method.

For more information on strings see Sequence Types — str, bytes, bytearray, list, tuple, range which de-
scribes sequence functionality (strings are sequences), and also the string-specific methods described in the
String Methods section. To output formatted strings, see the String Formatting section. In addition see the
String Services section.

18 Chapter 2. Built-in Functions

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.2

sum(iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The
iterable‘s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a sequence
of strings is by calling ”.join(sequence). To add floating point values with extended precision, see
math.fsum(). To concatenate a series of iterables, consider using itertools.chain().

super([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful for
accessing inherited methods that have been overridden in a class. The search order is same as that used by
getattr() except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution search order used by both getattr() and
super(). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to
refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base
classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of calls is determined at runtime, because that order adapts to changes in
the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):

super().method(arg) # This does the same thing as:
super(C, self).method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups such
as super().__getitem__(name). It does so by implementing its own __getattribute__()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super() is undefined for implicit lookups using statements or operators such as super()[name].

Also note that super() is not limited to use inside methods. The two argument form specifies the argu-
ments exactly and makes the appropriate references. The zero argument form automatically searches the
stack frame for the class (__class__) and the first argument.

tuple([iterable])
Return a tuple whose items are the same and in the same order as iterable‘s items. iterable may be a se-
quence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned
unchanged. For instance, tuple(’abc’) returns (’a’, ’b’, ’c’) and tuple([1, 2, 3]) re-
turns (1, 2, 3). If no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

type(object)
Return the type of an object. The return value is a type object and generally the same object as returned by
object.__class__.

The isinstance() built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, type() functions as a constructor as detailed below.

19

The Python Library Reference, Release 3.2

type(name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name__ attribute; the bases tuple itemizes the base classes and becomes
the __bases__ attribute; and the dict dictionary is the namespace containing definitions for class body
and becomes the __dict__ attribute. For example, the following two statements create identical type
objects:

>>> class X:
... a = 1
...
>>> X = type(’X’, (object,), dict(a=1))

vars([object])
Without an argument, act like locals().

With a module, class or class instance object as argument (or anything else that has a __dict__ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. 2

zip(*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable
argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(*iterables):
zip(’ABCD’, ’xy’) --> Ax By
sentinel = object()
iterables = [iter(it) for it in iterables]
while iterables:

result = []
for it in iterables:

elem = next(it, sentinel)
if elem is sentinel:

return
result.append(elem)

yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip(*[iter(s)]*n).

zip() should only be used with unequal length inputs when you don’t care about trailing, unmatched val-
ues from the longer iterables. If those values are important, use itertools.zip_longest() instead.

zip() in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> list(zipped)
[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zip(x, y))
>>> x == list(x2) and y == list(y2)
True

2 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2

__import__(name, globals={}, locals={}, fromlist=[], level=0)

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by the import statement. It can be replaced (by importing the builtinsmodule
and assigning to builtins.__import__) in order to change semantics of the import statement, but
nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of __import__() is rare,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should
be imported from the module given by name. The standard implementation does not use its locals argument
at all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute
imports. Positive values for level indicate the number of parent directories to search relative to the directory
of the module calling __import__().

When the name variable is of the form package.module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__(’spam’, globals(), locals(), [], 0)

The statement import spam.ham results in this call:

spam = __import__(’spam.ham’, globals(), locals(), [], 0)

Note how __import__() returns the toplevel module here because this is the object that is bound to a
name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = __import__(’spam.ham’, globals(), locals(), [’eggs’, ’sausage’], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __import__(). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call
__import__() and then look it up in sys.modules:

>>> import sys
>>> name = ’foo.bar.baz’
>>> __import__(name)
<module ’foo’ from ...>
>>> baz = sys.modules[name]
>>> baz
<module ’foo.bar.baz’ from ...>

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

22 Chapter 2. Built-in Functions

CHAPTER

THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__(), __lt__(),
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug__
This constant is true if Python was not started with an -O option. See also the assert statement.

Note: The names None, False, True and __debug__ cannot be reassigned (assignments to them, even as
an attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the -S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.

quit(code=None)
exit(code=None)

Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code.

copyright
license
credits

Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

23

The Python Library Reference, Release 3.2

24 Chapter 3. Built-in Constants

CHAPTER

FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the repr() function or the slightly different str() function).
The latter function is implicitly used when an object is written by the print() function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

• None

• False

• zero of any numeric type, for example, 0, 0.0, 0j.

• any empty sequence, for example, ”, (), [].

• any empty mapping, for example, {}.

• instances of user-defined classes, if the class defines a __bool__() or __len__() method, when that
method returns the integer zero or bool value False. 1

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of
their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, then y, else x (1)
x and y if x is false, then x, else y (2)
not x if x is false, then True, else False (3)

Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.

1 Additional information on these special methods may be found in the Python Reference Manual (customization).

25

The Python Library Reference, Release 3.2

2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x <
y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is
found to be false).

This table summarizes the comparison operations:

Operation Meaning
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal
is object identity
is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for
example, function objects) support only a degenerate notion of comparison where any two objects of that type are
unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a complex number
with another built-in numeric type, when the objects are of different types that cannot be compared, or in other
cases where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__() method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __lt__(), __le__(), __gt__(), and __ge__() (in general,
__lt__() and __eq__() are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition,
Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually imple-
mented using double in C; information about the precision and internal representation of floating point numbers
for the machine on which your program is running is available in sys.float_info. Complex numbers have
a real and imaginary part, which are each a floating point number. To extract these parts from a complex number
z, use z.real and z.imag. (The standard library includes additional numeric types, fractions that hold
rationals, and decimal that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or
an exponent sign yield floating point numbers. Appending ’j’ or ’J’ to a numeric literal yields an imaginary
number (a complex number with a zero real part) which you can add to an integer or float to get a complex number
with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating

26 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

point, which is narrower than complex. Comparisons between numbers of mixed type use the same rule. 2 The
constructors int(), float(), and complex() can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes Full
documentation

x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y
x // y floored quotient of x and y (1)
x % y remainder of x / y (2)
-x x negated
+x x unchanged
abs(x) absolute value or magnitude of x abs()
int(x) x converted to integer (3) int()
float(x) x converted to floating point (4) float()
complex(re,
im)

a complex number with real part re, imaginary part im. im
defaults to zero.

complex()

c.conjugate() conjugate of the complex number c
divmod(x, y) the pair (x // y, x % y) (2) divmod()
pow(x, y) x to the power y (5) pow()
x ** y x to the power y (5)

Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1, 1//(-2)
is -1, and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs() if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions floor() and
ceil() in the math module for well-defined conversions.

4. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

5. Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

All numbers.Real types (int and float) also include the following operations:

Operation Result Notes
math.trunc(x) x truncated to Integral
round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor(x) the greatest integral float <= x
math.ceil(x) the least integral float >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bit-string Operations on Integer Types

Integers support additional operations that make sense only for bit-strings. Negative numbers are treated as their
2’s complement value (this assumes a sufficiently large number of bits that no overflow occurs during the opera-
tion).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 27

The Python Library Reference, Release 3.2

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same
priority):

Operation Result Notes
x | y bitwise or of x and y
x ^ y bitwise exclusive or of x and y
x & y bitwise and of x and y
x << n x shifted left by n bits (1)(2)
x >> n x shifted right by n bits (1)(3)
~x the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

3. A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

int.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = -37
>>> bin(n)
’-0b100101’
>>> n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that
2**(k-1) <= abs(x) < 2**k. Equivalently, when abs(x) is small enough to have a correctly
rounded logarithm, then k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length()
returns 0.

Equivalent to:

def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> ’-0b100101’
s = s.lstrip(’-0b’) # remove leading zeros and minus sign
return len(s) # len(’100101’) --> 6

New in version 3.1.

int.to_bytes(length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024).to_bytes(2, byteorder=’big’)
b’\x04\x00’
>>> (1024).to_bytes(10, byteorder=’big’)
b’\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00’
>>> (-1024).to_bytes(10, byteorder=’big’, signed=True)
b’\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00’
>>> x = 1000
>>> x.to_bytes((x.bit_length() // 8) + 1, byteorder=’little’)
b’\xe8\x03’

The integer is represented using length bytes. An OverflowError is raised if the integer is not repre-
sentable with the given number of bytes.

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is
False and a negative integer is given, an OverflowError is raised. The default value for signed is
False. New in version 3.2.

classmethod int.from_bytes(bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes(b’\x00\x10’, byteorder=’big’)
16
>>> int.from_bytes(b’\x00\x10’, byteorder=’little’)
4096
>>> int.from_bytes(b’\xfc\x00’, byteorder=’big’, signed=True)
-1024
>>> int.from_bytes(b’\xfc\x00’, byteorder=’big’, signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder=’big’)
16711680

The argument bytes must either support the buffer protocol or be an iterable producing bytes. bytes and
bytearray are examples of built-in objects that support the buffer protocol.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer. New in version
3.2.

4.4.3 Additional Methods on Float

The float type has some additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful
when debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading 0x and a trailing p and exponent.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.2

classmethod float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that float.hex() is an instance method, while float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] [’0x’] integer [’.’ fraction] [’p’ exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits,
and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex() is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s %a format character or Java’s Double.toHexString are accepted by float.fromhex().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number
(3 + 10./16 + 7./16**2) * 2.0**10, or 3740.0:

>>> float.fromhex(’0x3.a7p10’)
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
’0x1.d380000000000p+11’

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash(x) == hash(y) whenever x
== y (see the __hash__() method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fraction.Fraction, and all finite instances of float and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of
P is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2**31 - 1 on machines with 32-bit C
longs and P = 2**61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

• If x = m / n is a nonnegative rational number and n is not divisible by P, define hash(x) as m *
invmod(n, P) % P, where invmod(n, P) gives the inverse of n modulo P.

• If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash(x) to be the constant value
sys.hash_info.inf.

• If x = m / n is a negative rational number define hash(x) as -hash(-x). If the resulting hash is -1,
replace it with -2.

• The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans
have the same hash value.)

• For a complex number z, the hash values of the real and imaginary parts are combined
by computing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo
2**sys.hash_info.width so that it lies in range(-2**(sys.hash_info.width - 1),
2**(sys.hash_info.width - 1)). Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the builtin hash, for computing the
hash of a rational number, float, or complex:

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

"""
P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m % P == n % P == 0:

m, n = m // P, n // P

if n % P == 0:
hash_ = sys.hash_info.inf

else:
Fermat’s Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.
hash_ = (abs(m) % P) * pow(n, P - 2, P) % P

if m < 0:
hash_ = -hash_

if hash_ == -1:
hash_ = -2

return hash_

def hash_float(x):
"""Compute the hash of a float x."""

if math.isnan(x):
return sys.hash_info.nan

elif math.isinf(x):
return sys.hash_info.inf if x > 0 else -sys.hash_info.inf

else:
return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)
hash_ = (hash_ & (M - 1)) - (hash & M)
if hash_ == -1:

hash_ == -2
return hash_

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__()
Return an iterator object. The object is required to support the iterator protocol described below. If a

4.5. Iterator Types 31

The Python Library Reference, Release 3.2

container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to the tp_iter slot of the type structure for Python
objects in the Python/C API.

iterator.__next__()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__() method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__() method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter__() and __next__() methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — str, bytes, bytearray, list, tuple,
range

There are six sequence types: strings, byte sequences (bytes objects), byte arrays (bytearray objects), lists,
tuples, and range objects. For other containers see the built in dict and set classes, and the collections
module.

Strings contain Unicode characters. Their literals are written in single or double quotes: ’xyzzy’, "frobozz".
See strings for more about string literals. In addition to the functionality described here, there are also string-
specific methods described in the String Methods section.

Bytes and bytearray objects contain single bytes – the former is immutable while the latter is a mutable sequence.
Bytes objects can be constructed the constructor, bytes(), and from literals; use a b prefix with normal string
syntax: b’xyzzy’. To construct byte arrays, use the bytearray() function.

While string objects are sequences of characters (represented by strings of length 1), bytes and bytearray objects
are sequences of integers (between 0 and 255), representing the ASCII value of single bytes. That means that for
a bytes or bytearray object b, b[0] will be an integer, while b[0:1] will be a bytes or bytearray object of length
1. The representation of bytes objects uses the literal format (b’...’) since it is generally more useful than e.g.
bytes([50, 19, 100]). You can always convert a bytes object into a list of integers using list(b).

Also, while in previous Python versions, byte strings and Unicode strings could be exchanged for each other rather
freely (barring encoding issues), strings and bytes are now completely separate concepts. There’s no implicit en-
/decoding if you pass an object of the wrong type. A string always compares unequal to a bytes or bytearray
object.

Lists are constructed with square brackets, separating items with commas: [a, b, c]. Tuples are constructed
by the comma operator (not within square brackets), with or without enclosing parentheses, but an empty tuple

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

must have the enclosing parentheses, such as a, b, c or (). A single item tuple must have a trailing comma,
such as (d,).

Objects of type range are created using the range() function. They don’t support concatenation or repetition,
and using min() or max() on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities
as the comparison operations. The + and * operations have the same priority as the corresponding numeric
operations. 3 Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the table, s and t are sequences of the same type; n, i, j and k are integers.

Operation Result Notes
x in s True if an item of s is equal to x, else False (1)
x not in s False if an item of s is equal to x, else True (1)
s + t the concatenation of s and t (6)
s * n, n * s n shallow copies of s concatenated (2)
s[i] i‘th item of s, origin 0 (3)
s[i:j] slice of s from i to j (3)(4)
s[i:j:k] slice of s from i to j with step k (3)(5)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s
s.index(i) index of the first occurence of i in s
s.count(i) total number of occurences of i in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by com-
paring corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:

1. When s is a string object, the in and not in operations act like a substring test.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[]] * 3 are (pointers to) this single empty list. Modifying any of the elements of lists modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]

3. If i or j is negative, the index is relative to the end of the string: len(s) + i or len(s) + j is substi-
tuted. But note that -0 is still 0.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i or j is
greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s).

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 33

The Python Library Reference, Release 3.2

If i is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such
that 0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping
when j is reached (but never including j). If i or j is greater than len(s), use len(s). If i or j are omitted
or None, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is
None, it is treated like 1.

6. CPython implementation detail: If s and t are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the form s = s + t or s += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version
and implementation dependent. For performance sensitive code, it is preferable to use the str.join()
method which assures consistent linear concatenation performance across versions and implementations.

4.6.1 String Methods

String objects support the methods listed below.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, bytes,
bytearray, list, tuple, range section. To output formatted strings, see the String Formatting section. Also, see the
re module for string functions based on regular expressions.

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.center(width[, fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).

str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

str.encode(encoding=”utf-8”, errors=”strict”)
Return an encoded version of the string as a bytes object. Default encoding is ’utf-8’. er-
rors may be given to set a different error handling scheme. The default for errors is ’strict’,
meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
’replace’, ’xmlcharrefreplace’, ’backslashreplace’ and any other name registered via
codecs.register_error(), see section Codec Base Classes. For a list of possible encodings, see
section Standard Encodings. Changed in version 3.1: Support for keyword arguments added.

str.endswith(suffix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position.

str.expandtabs([tabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each newline occurring
in the string. If tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other
non-printing characters or escape sequences.

str.find(sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub
is not found.

str.format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text
or replacement fields delimited by braces {}. Each replacement field contains either the numeric index
of a positional argument, or the name of a keyword argument. Returns a copy of the string where each
replacement field is replaced with the string value of the corresponding argument.

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

>>> "The sum of 1 + 2 is {0}".format(1+2)
’The sum of 1 + 2 is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

str.format_map(mapping)
Similar to str.format(**mapping), except that mapping is used directly and not copied to a dict
. This is useful if for example mapping is a dict subclass:

>>> class Default(dict):
... def __missing__(self, key):
... return key
...
>>> ’{name} was born in {country}’.format_map(Default(name=’Guido’))
’Guido was born in country’

New in version 3.2.

str.index(sub[, start[, end]])
Like find(), but raise ValueError when the substring is not found.

str.isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal(),
c.isdigit(), or c.isnumeric().

str.isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different
from the “Alphabetic” property defined in the Unicode Standard.

str.isdecimal()
Return true if all characters in the string are decimal characters and there is at least one character, false
otherwise. Decimal characters are those from general category “Nd”. This category includes digit charac-
ters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC
DIGIT ZERO.

str.isdigit()
Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

str.isidentifier()
Return true if the string is a valid identifier according to the language definition, section identifiers.

str.islower()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “Ll”, or “Lt” and
lowercase characters are those with general category property “Ll”.

str.isnumeric()
Return true if all characters in the string are numeric characters, and there is at least one character, false
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric
value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those
with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

str.isprintable()
Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, except-
ing the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 35

The Python Library Reference, Release 3.2

those which should not be escaped when repr() is invoked on a string. It has no bearing on the handling
of strings written to sys.stdout or sys.stderr.)

str.isspace()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise. Whitespace characters are those characters defined in the Unicode character database as “Other”
or “Separator” and those with bidirectional property being one of “WS”, “B”, or “S”.

str.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

str.isupper()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “Ll”, or “Lt” and
uppercase characters are those with general category property “Lu”.

str.join(iterable)
Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will be
raised if there are any non-string values in seq, including bytes objects. The separator between elements
is the string providing this method.

str.ljust(width[, fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than len(s).

str.lower()
Return a copy of the string converted to lowercase.

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ’ spacious ’.lstrip()
’spacious ’
>>> ’www.example.com’.lstrip(’cmowz.’)
’example.com’

static str.maketrans(x[, y[, z]])
This static method returns a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
(strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be
converted to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each char-
acter in x will be mapped to the character at the same position in y. If there is a third argument, it must be a
string, whose characters will be mapped to None in the result.

str.partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings.

str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

str.rfind(sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on
failure.

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

str.rindex(sub[, start[, end]])
Like rfind() but raises ValueError when the substring sub is not found.

str.rjust(width[, fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than len(s).

str.rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself.

str.rsplit([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator.
Except for splitting from the right, rsplit() behaves like split() which is described in detail below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ’ spacious ’.rstrip()
’ spacious’
>>> ’mississippi’.rstrip(’ipz’)
’mississ’

str.split([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, ’1„2’.split(’,’) returns [’1’, ”, ’2’]). The sep argument may consist of multiple
characters (for example, ’1<>2<>3’.split(’<>’) returns [’1’, ’2’, ’3’]). Splitting an empty
string with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just
whitespace with a None separator returns [].

For example, ’ 1 2 3 ’.split() returns [’1’, ’2’, ’3’], and ’ 1 2 3 ’.split(None,
1) returns [’1’, ’2 3 ’].

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

str.startswith(prefix[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes
to look for. With optional start, test string beginning at that position. With optional end, stop comparing
string at that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ’ spacious ’.strip()
’spacious’
>>> ’www.example.com’.strip(’cmowz.’)
’example’

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 37

The Python Library Reference, Release 3.2

str.swapcase()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives form
word boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):

return re.sub(r"[A-Za-z]+(’[A-Za-z]+)?",
lambda mo: mo.group(0)[0].upper() +

mo.group(0)[1:].lower(),
s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

str.translate(map)
Return a copy of the s where all characters have been mapped through the map which must be a dictionary of
Unicode ordinals (integers) to Unicode ordinals, strings or None. Unmapped characters are left untouched.
Characters mapped to None are deleted.

You can use str.maketrans() to create a translation map from character-to-character mappings in
different formats.

Note: An even more flexible approach is to create a custom character mapping codec using the codecs
module (see encodings.cp1251 for an example).

str.upper()
Return a copy of the string converted to uppercase.

str.zfill(width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than len(s).

4.6.2 Old String Formatting Operations

Note: The formatting operations described here are obsolete and may go away in future versions of Python. Use
the new String Formatting in new code.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string format-
ting or interpolation operator. Given format % values (where format is a string), % conversion specifications
in format are replaced with zero or more elements of values. The effect is similar to the using sprintf() in the
C language.

If format requires a single argument, values may be a single non-tuple object. 4 Otherwise, values must be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The ’%’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an ’*’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a ’.’ (dot) followed by the precision. If specified as ’*’ (an asterisk), the
actual width is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the ’%’ character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print(’%(language)s has %(number)03d quote types.’ %
... {’language’: "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
’#’ The value conversion will use the “alternate form” (where defined below).
’0’ The conversion will be zero padded for numeric values.
’-’ The converted value is left adjusted (overrides the ’0’ conversion if both are given).
’ ’ (a space) A blank should be left before a positive number (or empty string) produced by a signed

conversion.
’+’ A sign character (’+’ or ’-’) will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is
identical to %d.

The conversion types are:

Con-
version

Meaning Notes

’d’ Signed integer decimal.
’i’ Signed integer decimal.
’o’ Signed octal value. (1)
’u’ Obsolete type – it is identical to ’d’. (7)
’x’ Signed hexadecimal (lowercase). (2)
’X’ Signed hexadecimal (uppercase). (2)
’e’ Floating point exponential format (lowercase). (3)
’E’ Floating point exponential format (uppercase). (3)
’f’ Floating point decimal format. (3)
’F’ Floating point decimal format. (3)
’g’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not

less than precision, decimal format otherwise.
(4)

’G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not
less than precision, decimal format otherwise.

(4)

’c’ Single character (accepts integer or single character string).
’r’ String (converts any Python object using repr()). (5)
’s’ String (converts any Python object using str()).
’%’ No argument is converted, results in a ’%’ character in the result.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 39

The Python Library Reference, Release 3.2

Notes:

1. The alternate form causes a leading zero (’0’) to be inserted between left-hand padding and the formatting
of the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ’0x’ or ’0X’ (depending on whether the ’x’ or ’X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed
as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to
6.

5. The precision determines the maximal number of characters used.

7. See PEP 237.

Since Python strings have an explicit length, %s conversions do not assume that ’\0’ is the end of the string.
Changed in version 3.1: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced by
%g conversions. Additional string operations are defined in standard modules string and re.

4.6.3 Range Type

The range type is an immutable sequence which is commonly used for looping. The advantage of the range
type is that an range object will always take the same amount of memory, no matter the size of the range it
represents.

Range objects have relatively little behavior: they support indexing, contains, iteration, the len() function, and
the following methods:

range.count(x)
Return the number of i‘s for which s[i] == x.

New in version 3.2.

range.index(x)
Return the smallest i such that s[i] == x. Raises ValueError when x is not in the range.

New in version 3.2.

4.6.4 Mutable Sequence Types

List and bytearray objects support additional operations that allow in-place modification of the object. Other
mutable sequence types (when added to the language) should also support these operations. Strings and tuples are
immutable sequence types: such objects cannot be modified once created. The following operations are defined
on mutable sequence types (where x is an arbitrary object).

Note that while lists allow their items to be of any type, bytearray object “items” are all integers in the range 0 <=
x < 256.

40 Chapter 4. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.2

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:j] = t slice of s from i to j is replaced by the contents of the iterable t
del s[i:j] same as s[i:j] = []
s[i:j:k] = t the elements of s[i:j:k] are replaced by those of t (1)
del s[i:j:k] removes the elements of s[i:j:k] from the list
s.append(x) same as s[len(s):len(s)] = [x]
s.extend(x) same as s[len(s):len(s)] = x (2)
s.count(x) return number of i‘s for which s[i] == x
s.index(x[, i[, j]]) return smallest k such that s[k] == x and i <= k < j (3)
s.insert(i, x) same as s[i:i] = [x] (4)
s.pop([i]) same as x = s[i]; del s[i]; return x (5)
s.remove(x) same as del s[s.index(x)] (3)
s.reverse() reverses the items of s in place (6)
s.sort([key[, reverse]]) sort the items of s in place (6), (7), (8)

Notes:

1. t must have the same length as the slice it is replacing.

2. x can be any iterable object.

3. Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index() method, the sequence length is added, as for slice indices. If it is still negative,
it is truncated to zero, as for slice indices.

4. When a negative index is passed as the first parameter to the insert() method, the sequence length is
added, as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.

5. The optional argument i defaults to -1, so that by default the last item is removed and returned.

6. The sort() and reverse() methods modify the sequence in place for economy of space when sorting
or reversing a large sequence. To remind you that they operate by side effect, they don’t return the sorted or
reversed sequence.

7. The sort() method takes optional arguments for controlling the comparisons. Each must be specified as
a keyword argument.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None. Use functools.cmp_to_key() to convert an old-
style cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

The sort() method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

8. sort() is not supported by bytearray objects.

4.6.5 Bytes and Byte Array Methods

Bytes and bytearray objects, being “strings of bytes”, have all methods found on strings, with the exception of
encode(), format() and isidentifier(), which do not make sense with these types. For converting the
objects to strings, they have a decode() method.

Wherever one of these methods needs to interpret the bytes as characters (e.g. the is...() methods), the ASCII
character set is assumed.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 41

The Python Library Reference, Release 3.2

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write

a = "abc"
b = a.replace("a", "f")

and

a = b"abc"
b = a.replace(b"a", b"f")

bytes.decode(encoding=”utf-8”, errors=”strict”)
bytearray.decode(encoding=”utf-8”, errors=”strict”)

Return a string decoded from the given bytes. Default encoding is ’utf-8’. errors may be given to set a
different error handling scheme. The default for errors is ’strict’, meaning that encoding errors raise a
UnicodeError. Other possible values are ’ignore’, ’replace’ and any other name registered via
codecs.register_error(), see section Codec Base Classes. For a list of possible encodings, see
section Standard Encodings. Changed in version 3.1: Added support for keyword arguments.

The bytes and bytearray types have an additional class method:

classmethod bytes.fromhex(string)
classmethod bytearray.fromhex(string)

This bytes class method returns a bytes or bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, spaces are ignored.

>>> bytes.fromhex(’f0 f1f2 ’)
b’\xf0\xf1\xf2’

The maketrans and translate methods differ in semantics from the versions available on strings:

bytes.translate(table[, delete])
bytearray.translate(table[, delete])

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a
bytes object of length 256.

You can use the bytes.maketrans() method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b’read this short text’.translate(None, b’aeiou’)
b’rd ths shrt txt’

static bytes.maketrans(from, to)
static bytearray.maketrans(from, to)

This static method returns a translation table usable for bytes.translate() that will map each char-
acter in from into the character at the same position in to; from and to must be bytes objects and have the
same length. New in version 3.1.

4.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built in dict, list, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collec-
tion, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing,
or other sequence-like behavior.

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot be
used as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable
— its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of
another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’jack’, ’sjoerd’}, in addition to the set constructor.

The constructors for both classes work the same:

class set([iterable])
class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified,
a new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint(other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset(other)
set <= other

Test whether every element in the set is in other.

set < other
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset(other)
set >= other

Test whether every element in other is in the set.

set > other
Test whether the set is a true superset of other, that is, set >= other and set != other.

union(other, ...)
set | other | ...

Return a new set with elements from the set and all others.

intersection(other, ...)
set & other & ...

Return a new set with elements common to the set and all others.

difference(other, ...)
set - other - ...

Return a new set with elements in the set that are not in the others.

symmetric_difference(other)
set ^ other

Return a new set with elements in either the set or other but not both.

copy()
Return a new set with a shallow copy of s.

4.7. Set Types — set, frozenset 43

The Python Library Reference, Release 3.2

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference(), issubset(), and issuperset() methods will accept any it-
erable as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set(’abc’) & ’cbs’ in favor of the more readable
set(’abc’).intersection(’cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only
if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another
set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set(’abc’) == frozenset(’abc’) returns True and so does set(’abc’) in
set([frozenset(’abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any
two disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b,
a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the list.sort() method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For exam-
ple: frozenset(’ab’) | set(’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update(other, ...)
set |= other | ...

Update the set, adding elements from all others.

intersection_update(other, ...)
set &= other & ...

Update the set, keeping only elements found in it and all others.

difference_update(other, ...)
set -= other | ...

Update the set, removing elements found in others.

symmetric_difference_update(other)
set ^= other

Update the set, keeping only elements found in either set, but not in both.

add(elem)
Add element elem to the set.

remove(elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard(elem)
Remove element elem from the set if it is present.

pop()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update(),
difference_update(), and symmetric_difference_update() methods will accept
any iterable as an argument.

Note, the elem argument to the __contains__(), remove(), and discard() methods may be a
set. To support searching for an equivalent frozenset, the elem set is temporarily mutated during the search

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

and then restored. During the search, the elem set should not be read or mutated since it does not have a
meaningful value.

4.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the dictionary. (For other containers see the built in list, set, and tuple
classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as
keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry. (Note however,
that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary
keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}, or by
the dict constructor.

class dict([arg])
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument arg is a
mapping object, return a dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports iteration, or an iterator
object. The elements of the argument must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a
given key is seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one": 1, "two": 2}:

•dict(one=1, two=2)

•dict({’one’: 1, ’two’: 2})

•dict(zip((’one’, ’two’), (1, 2)))

•dict([[’two’, 2], [’one’, 1]])

The first example only works for keys that are valid Python identifiers; the others work with any valid keys.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__(), if the key key is not present, the d[key]
operation calls that method with the key key as argument. The d[key] operation then returns or raises
whatever is returned or raised by the __missing__(key) call if the key is not present. No other
operations or methods invoke __missing__(). If __missing__() is not defined, KeyError
is raised. __missing__() must be a method; it cannot be an instance variable:

>>> class Counter(dict):
... def __missing__(self, key):
... return 0
>>> c = Counter()
>>> c[’red’]

4.8. Mapping Types — dict 45

The Python Library Reference, Release 3.2

0
>>> c[’red’] += 1
>>> c[’red’]
1

See collections.Counter for a complete implementation including other methods helpful for
accumulating and managing tallies.

d[key] = value
Set d[key] to value.

del d[key]
Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter(d.keys()).

clear()
Remove all items from the dictionary.

copy()
Return a shallow copy of the dictionary.

classmethod fromkeys(seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys() is a class method that returns a new dictionary. value defaults to None.

get(key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to
None, so that this method never raises a KeyError.

items()
Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation
of view objects.

keys()
Return a new view of the dictionary’s keys. See below for documentation of view objects.

pop(key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem()
Remove and return an arbitrary (key, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem() raises a KeyError.

setdefault(key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update() accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update(red=1, blue=2).

values()
Return a new view of the dictionary’s values. See below for documentation of view objects.

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

4.8.1 Dictionary view objects

The objects returned by dict.keys(), dict.values() and dict.items() are view objects. They pro-
vide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects
these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter(dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictio-
nary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python im-
plementations, and depends on the dictionary’s history of insertions and deletions. If keys, values and
items views are iterated over with no intervening modifications to the dictionary, the order of items
will directly correspond. This allows the creation of (value, key) pairs using zip(): pairs =
zip(d.values(), d.keys()). Another way to create the same list is pairs = [(v, k) for
(k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to
iterate over all entries.

x in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a
(key, value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as
set-like since the entries are generally not unique.) For set-like views, all of the operations defined for the abstract
base class collections.Set are available (for example, ==, <, or ^).

An example of dictionary view usage:

>>> dishes = {’eggs’: 2, ’sausage’: 1, ’bacon’: 1, ’spam’: 500}
>>> keys = dishes.keys()
>>> values = dishes.values()

>>> # iteration
>>> n = 0
>>> for val in values:
... n += val
>>> print(n)
504

>>> # keys and values are iterated over in the same order
>>> list(keys)
[’eggs’, ’bacon’, ’sausage’, ’spam’]
>>> list(values)
[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes[’eggs’]
>>> del dishes[’sausage’]
>>> list(keys)
[’spam’, ’bacon’]

>>> # set operations
>>> keys & {’eggs’, ’bacon’, ’salad’}
{’bacon’}

4.8. Mapping Types — dict 47

The Python Library Reference, Release 3.2

>>> keys ^ {’sausage’, ’juice’}
{’juice’, ’eggs’, ’bacon’, ’spam’}

4.9 memoryview type

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying. Memory is generally interpreted as simple bytes.

class memoryview(obj)
Create a memoryview that references obj. obj must support the buffer protocol. Builtin objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other
types such as array.array may have bigger elements.

len(view) returns the total number of elements in the memoryview, view. The itemsize attribute will
give you the number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single index will return a single element as a
bytes object. Full slicing will result in a subview:

>>> v = memoryview(b’abcefg’)
>>> v[1]
b’b’
>>> v[-1]
b’g’
>>> v[1:4]
<memory at 0x77ab28>
>>> bytes(v[1:4])
b’bce’

If the object the memoryview is over supports changing its data, the memoryview supports slice assignment:

>>> data = bytearray(b’abcefg’)
>>> v = memoryview(data)
>>> v.readonly
False
>>> v[0] = b’z’
>>> data
bytearray(b’zbcefg’)
>>> v[1:4] = b’123’
>>> data
bytearray(b’a123fg’)
>>> v[2] = b’spam’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.

memoryview has several methods:

tobytes()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on
the memoryview.

>>> m = memoryview(b"abc")
>>> m.tobytes()

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

b’abc’
>>> bytes(m)
b’abc’

tolist()
Return the data in the buffer as a list of integers.

>>> memoryview(b’abc’).tolist()
[97, 98, 99]

release()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions
when a view is held on them (for example, a bytearray would temporarily forbid resizing); there-
fore, calling release() is handy to remove these restrictions (and free any dangling resources) as soon
as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release() itself which can be called multiple times):

>>> m = memoryview(b’abc’)
>>> m.release()
>>> m[0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b’abc’) as m:
... m[0]
...
b’a’
>>> m[0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

There are also several readonly attributes available:

format
A string containing the format (in struct module style) for each element in the view. This defaults
to ’B’, a simple bytestring.

itemsize
The size in bytes of each element of the memoryview:

>>> m = memoryview(array.array(’H’, [1,2,3]))
>>> m.itemsize
2
>>> m[0]
b’\x01\x00’
>>> len(m[0]) == m.itemsize
True

shape
A tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

4.9. memoryview type 49

The Python Library Reference, Release 3.2

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimen-
sion of the array.

readonly
A bool indicating whether the memory is read only.

4.10 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before
the statement body is executed and exited when the statement ends:

contextmanager.__enter__()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this
context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from
__enter__() to allow open() to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext(). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context
in the body of the with statement without affecting code outside the with statement.

contextmanager.__exit__(exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and
continue execution with the statement immediately following the with statement. Otherwise the exception
continues propagating after this method has finished executing. Exceptions that occur during execution of
this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception.
This allows context management code (such as contextlib.nested) to easily detect whether or not an
__exit__() method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated
specially beyond their implementation of the context management protocol. See the contextlib module for
some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to imple-
ment these protocols. If a generator function is decorated with the contextlib.contextmanager decorator,
it will return a context manager implementing the necessary __enter__() and __exit__() methods, rather
than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

4.11.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a
name defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not,
strictly speaking, an operation on a module object; import foo does not require a module object named foo to
exist, rather it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict__
attribute is not possible (you can write m.__dict__[’a’] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

4.11.2 Classes and Class Instances

See objects and class for these.

4.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object:
a bound method (also called instance method) object. When called, it will add the self argument to the ar-
gument list. Bound methods have two special read-only attributes: m.__self__ is the object on which the
method operates, and m.__func__ is the function implementing the method. Calling m(arg-1, arg-2,
..., arg-n) is completely equivalent to calling m.__func__(m.__self__, arg-1, arg-2, ...,
arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes
are actually stored on the underlying function object (meth.__func__), setting method attributes on bound
methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order to set
a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):

pass

c = C()
c.method.__func__.whoami = ’my name is c’

See types for more information.

4.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution

4.11. Other Built-in Types 51

The Python Library Reference, Release 3.2

environment. Code objects are returned by the built-in compile() function and can be extracted from function
objects through their __code__ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec() or eval()
built-in functions.

See types for more information.

4.11.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type().
There are no special operations on types. The standard module types defines names for all standard built-in
types.

Types are written like this: <class ’int’>.

4.11.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

4.11.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one
ellipsis object, named Ellipsis (a built-in name).

It is written as Ellipsis or

4.11.9 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool() can be
used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

4.11.10 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by the dir() built-in function.

object.__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__
The class to which a class instance belongs.

class.__bases__
The tuple of base classes of a class object.

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2

class.__name__
The name of the class or type.

The following attributes are only supported by new-style classes.

class.__mro__
This attribute is a tuple of classes that are considered when looking for base classes during method resolu-
tion.

class.mro()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It
is called at class instantiation, and its result is stored in __mro__.

class.__subclasses__()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list
of all those references still alive. Example:

>>> int.__subclasses__()
[<type ’bool’>]

4.12. Special Attributes 53

The Python Library Reference, Release 3.2

54 Chapter 4. Built-in Types

CHAPTER

FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement
with an except clause that mentions a particular class, that clause also handles any exception classes derived
from that class (but not exception classes from which it is derived). Two exception classes that are not related via
subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of
several items of information (e.g., an error code and a string explaining the code). The associated value is usually
passed as arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Exception class and not BaseException. More information on defining
exceptions is available in the Python Tutorial under tut-userexceptions.

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If bytes() or str() is called on an instance of this class, the representation of
the argument(s) to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like IOError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback(tb)
This method sets tb as the new traceback for the exception and returns the exception object. It is
usually used in exception handling code like this:

try:
...

except SomeException:
tb = sys.exc_info()[2]
raise OtherException(...).with_traceback(tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should
also be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

55

The Python Library Reference, Release 3.2

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError, KeyError. This can be raised directly by codecs.lookup().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno attribute
(it is assumed to be an error number), and the second item is available on the strerror attribute (it is
usually the associated error message). The tuple itself is also available on the args attribute.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on the filename attribute. However, for backwards compatibility,
the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The errno
and strerror attributes are also None when the instance was created with other than 2 or 3 arguments.
In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input() or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the file.read() and file.readline() methods return an
empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised
when Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER symbol
is defined in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close() method is called. It directly inherits from BaseException instead
of Exception since it is technically not an error.

exception IOError
Raised when an I/O operation (such as the built-in print() or open() functions or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally
caught by code that catches Exception and thus prevent the interpreter from exiting.

56 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.2

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecture (C’s malloc() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method.

exception OSError
This exception is derived from EnvironmentError. It is raised when a function returns a system-

related error (not for illegal argument types or other incidental errors). The errno attribute is a numeric
error code from errno, and the strerror attribute is the corresponding string, as would be printed by
the C function perror(). See the module errno, which contains names for the error codes defined by
the underlying operating system.

For exceptions that involve a file system path (such as chdir() or unlink()), the exception instance
will contain a third attribute, filename, which is the file name passed to the function.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for
integers (which would rather raise MemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy() function, is
used to access an attribute of the referent after it has been garbage collected. For more information on weak
references, see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exception StopIteration
Raised by built-in function next() and an iterator‘s __next__() method to signal that there are no
further values.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call
to the built-in functions exec() or eval(), or when reading the initial script or standard input (also
interactively).

Instances of this class have attributes filename, lineno, offset and text for easier access to the
details. str() of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version; it is also printed at the start of an interactive Python session),

57

The Python Library Reference, Release 3.2

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exception SystemExit
This exception is raised by the sys.exit() function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is an integer, it specifies the system exit status (passed
to C’s exit() function); if it is None, the exit status is zero; if it has another type (such as a string), the
object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly from BaseException and not Exception, since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit() function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to fork()).

The exception inherits from BaseException instead of Exception so that it is not accidentally caught
by code that catches Exception. This allows the exception to properly propagate up and cause the
interpreter to exit.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an
errno value. The winerror and strerror values are created from the return values of the
GetLastError() and FormatMessage() functions from the Windows Platform API. The errno
value maps the winerror value to corresponding errno.h values. This is a subclass of OSError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

58 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.2

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and buffer.

exception ResourceWarning
Base class for warnings related to resource usage. New in version 3.2.

5.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EnvironmentError
| +-- IOError
| +-- OSError
| +-- WindowsError (Windows)
| +-- VMSError (VMS)
+-- EOFError
+-- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
+-- SyntaxError

5.1. Exception hierarchy 59

The Python Library Reference, Release 3.2

| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

60 Chapter 5. Built-in Exceptions

CHAPTER

SIX

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence Types
— str, bytes, bytearray, list, tuple, range section, and also the string-specific methods described in the String
Methods section. To output formatted strings, see the String Formatting section. Also, see the re module for
string functions based on regular expressions.

6.1 string — Common string operations

See Also:

Sequence Types — str, bytes, bytearray, list, tuple, range

String Methods

Source code: Lib/string.py

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters ’abcdefghijklmnopqrstuvwxyz’. This value is not locale-dependent and
will not change.

string.ascii_uppercase
The uppercase letters ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. This value is not locale-dependent and will
not change.

string.digits
The string ’0123456789’.

string.hexdigits
The string ’0123456789abcdefABCDEF’.

string.octdigits
The string ’01234567’.

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

61

http://svn.python.org/view/python/branches/py3k/Lib/string.py?view=markup

The Python Library Reference, Release 3.2

string.printable
String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation, and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format() method described in

PEP 3101. The Formatter class in the string module allows you to create and customize your own string
formatting behaviors using the same implementation as the built-in format() method.

class string.Formatter
The Formatter class has the following public methods:

format(format_string, *args, **kwargs)
format() is the primary API method. It takes a format template string, and an arbitrary set of
positional and keyword argument. format() is just a wrapper that calls vformat().

vformat(format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the
dictionary as individual arguments using the *args and **kwds syntax. vformat() does the
work of breaking up the format template string into character data and replacement fields. It calls the
various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse(format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec,
conversion). This is used by vformat() to break the string into either literal text, or replacement
fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field_name,
format_spec and conversion will be None.

get_field(field_name, args, kwargs)
Given field_name as returned by parse() (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such
as “0[name]” or “label.title”. args and kwargs are as passed in to vformat(). The return value
used_key has the same meaning as the key parameter to get_value().

get_value(key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to vformat(), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value() to be called with a key
argument of 0. The name attribute will be looked up after get_value() returns by calling the
built-in getattr() function.

62 Chapter 6. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.2

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check_unused_args(used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args() is assumed
to raise an exception if the check fails.

format_field(value, format_spec)
format_field() simply calls the global format() built-in. The method is provided so that
subclasses can override it.

convert_field(value, conversion)
Converts the value (returned by get_field()) given a conversion type (as in the tuple returned by
the parse() method). The default version understands ‘r’ (repr) and ‘s’ (str) conversion types.

6.1.3 Format String Syntax

The str.format() method and the Formatter class share the same syntax for format strings (although in
the case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in
braces is considered literal text, which is copied unchanged to the output. If you need to include a brace character
in the literal text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field ::= “{” [field_name] [”!” conversion] [”:” format_spec] “}”
field_name ::= arg_name (”.” attribute_name | “[” element_index “]”)*
arg_name ::= [identifier | integer]
attribute_name ::= identifier
element_index ::= integer | index_string
index_string ::= <any source character except “]”> +
conversion ::= “r” | “s” | “a”
format_spec ::= <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to
be formatted and inserted into the output instead of the replacement field. The field_name is optionally followed
by a conversion field, which is preceded by an exclamation point ’!’, and a format_spec, which is preceded by a
colon ’:’. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either either a number or a keyword. If it’s a number, it
refers to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical
arg_names in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers
0, 1, 2, ... will be automatically inserted in that order. The arg_name can be followed by any number of index or
attribute expressions. An expression of the form ’.name’ selects the named attribute using getattr(), while
an expression of the form ’[index]’ does an index lookup using __getitem__(). Changed in version 3.1:
The positional argument specifiers can be omitted, so ’{} {}’ is equivalent to ’{0} {1}’. Some simple
format string examples:

"First, thou shalt count to {0}" # References first positional argument
"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" # Same as "From {0} to {1}"
"My quest is {name}" # References keyword argument ’name’
"Weight in tons {0.weight}" # ’weight’ attribute of first positional arg
"Units destroyed: {players[0]}" # First element of keyword argument ’players’.

6.1. string — Common string operations 63

The Python Library Reference, Release 3.2

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the __format__() method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
__format__(), the normal formatting logic is bypassed.

Three conversion flags are currently supported: ’!s’ which calls str() on the value, ’!r’ which calls
repr() and ’!a’ which calls ascii().

Some examples:

"Harold’s a clever {0!s}" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first
"More {!a}" # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can
contain only a field name; conversion flags and format specifications are not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of
a value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax). They can also be passed directly to the built-in format()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

A general convention is that an empty format string ("") produces the same result as if you had called str() on
the value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]
fill ::= <a character other than ‘}’>
align ::= “<” | “>” | “=” | “^”
sign ::= “+” | “-” | ” “
width ::= integer
precision ::= integer
type ::= “b” | “c” | “d” | “e” | “E” | “f” | “F” | “g” | “G” | “n” | “o” | “s” | “x” | “X” | “%”

The fill character can be any character other than ‘{‘ or ‘}’. The presence of a fill character is signaled by the
character following it, which must be one of the alignment options. If the second character of format_spec is not
a valid alignment option, then it is assumed that both the fill character and the alignment option are absent.

The meaning of the various alignment options is as follows:

64 Chapter 6. String Services

The Python Library Reference, Release 3.2

Op-
tion

Meaning

’<’ Forces the field to be left-aligned within the available space (this is the default for most
objects).

’>’ Forces the field to be right-aligned within the available space (this is the default for
numbers).

’=’ Forces the padding to be placed after the sign (if any) but before the digits. This is used
for printing fields in the form ‘+000000120’. This alignment option is only valid for
numeric types.

’^’ Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill
it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op-
tion

Meaning

’+’ indicates that a sign should be used for both positive as well as negative numbers.
’-’ indicates that a sign should be used only for negative numbers (this is the default

behavior).
space indicates that a leading space should be used on positive numbers, and a minus sign on

negative numbers.

The ’#’ option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float, complex and Decimal types. For integers, when
binary, octal, or hexadecimal output is used, this option adds the prefix respective ’0b’, ’0o’, or ’0x’ to the
output value. For floats, complex and Decimal the alternate form causes the result of the conversion to always
contain a decimal-point character, even if no digits follow it. Normally, a decimal-point character appears in the
result of these conversions only if a digit follows it. In addition, for ’g’ and ’G’ conversions, trailing zeros are
not removed from the result.

The ’,’ option signals the use of a comma for a thousands separator. For a locale aware separator, use the ’n’
integer presentation type instead. Changed in version 3.1: Added the ’,’ option (see also PEP 378). width is a
decimal integer defining the minimum field width. If not specified, then the field width will be determined by the
content.

If the width field is preceded by a zero (’0’) character, this enables zero-padding. This is equivalent to an
alignment type of ’=’ and a fill character of ’0’.

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a
floating point value formatted with ’f’ and ’F’, or before and after the decimal point for a floating point value
formatted with ’g’ or ’G’. For non-number types the field indicates the maximum field size - in other words,
how many characters will be used from the field content. The precision is not allowed for integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

Type Meaning
’s’ String format. This is the default type for strings and may be omitted.
None The same as ’s’.

The available integer presentation types are:

6.1. string — Common string operations 65

http://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.2

Type Meaning
’b’ Binary format. Outputs the number in base 2.
’c’ Character. Converts the integer to the corresponding unicode character before printing.
’d’ Decimal Integer. Outputs the number in base 10.
’o’ Octal format. Outputs the number in base 8.
’x’ Hex format. Outputs the number in base 16, using lower- case letters for the digits above

9.
’X’ Hex format. Outputs the number in base 16, using upper- case letters for the digits above

9.
’n’ Number. This is the same as ’d’, except that it uses the current locale setting to insert the

appropriate number separator characters.
None The same as ’d’.

In addition to the above presentation types, integers can be formatted with the floating point presentation types
listed below (except ’n’ and None). When doing so, float() is used to convert the integer to a floating point
number before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning
’e’ Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate

the exponent.
’E’ Exponent notation. Same as ’e’ except it uses an upper case ‘E’ as the separator

character.
’f’ Fixed point. Displays the number as a fixed-point number.
’F’ Fixed point. Same as ’f’, but converts nan to NAN and inf to INF.
’g’ General format. For a given precision p >= 1, this rounds the number to p significant

digits and then formats the result in either fixed-point format or in scientific notation,
depending on its magnitude.
The precise rules are as follows: suppose that the result formatted with presentation type
’e’ and precision p-1 would have exponent exp. Then if -4 <= exp < p, the
number is formatted with presentation type ’f’ and precision p-1-exp. Otherwise, the
number is formatted with presentation type ’e’ and precision p-1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is also
removed if there are no remaining digits following it.
Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
-inf, 0, -0 and nan respectively, regardless of the precision.
A precision of 0 is treated as equivalent to a precision of 1.

’G’ General format. Same as ’g’ except switches to ’E’ if the number gets too large. The
representations of infinity and NaN are uppercased, too.

’n’ Number. This is the same as ’g’, except that it uses the current locale setting to insert the
appropriate number separator characters.

’%’ Percentage. Multiplies the number by 100 and displays in fixed (’f’) format, followed by
a percent sign.

None Similar to ’g’, except with at least one digit past the decimal point and a default precision
of 12. This is intended to match str(), except you can add the other format modifiers.

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with : used
instead of %. For example, ’%03.2f’ can be translated to ’{:03.2f}’.

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

>>> ’{0}, {1}, {2}’.format(’a’, ’b’, ’c’)
’a, b, c’
>>> ’{}, {}, {}’.format(’a’, ’b’, ’c’) # 3.1+ only

66 Chapter 6. String Services

The Python Library Reference, Release 3.2

’a, b, c’
>>> ’{2}, {1}, {0}’.format(’a’, ’b’, ’c’)
’c, b, a’
>>> ’{2}, {1}, {0}’.format(*’abc’) # unpacking argument sequence
’c, b, a’
>>> ’{0}{1}{0}’.format(’abra’, ’cad’) # arguments’ indices can be repeated
’abracadabra’

Accessing arguments by name:

>>> ’Coordinates: {latitude}, {longitude}’.format(latitude=’37.24N’, longitude=’-115.81W’)
’Coordinates: 37.24N, -115.81W’
>>> coord = {’latitude’: ’37.24N’, ’longitude’: ’-115.81W’}
>>> ’Coordinates: {latitude}, {longitude}’.format(**coord)
’Coordinates: 37.24N, -115.81W’

Accessing arguments’ attributes:

>>> c = 3-5j
>>> (’The complex number {0} is formed from the real part {0.real} ’
... ’and the imaginary part {0.imag}.’).format(c)
’The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.’
>>> class Point:
... def __init__(self, x, y):
... self.x, self.y = x, y
... def __str__(self):
... return ’Point({self.x}, {self.y})’.format(self=self)
...
>>> str(Point(4, 2))
’Point(4, 2)’

Accessing arguments’ items:

>>> coord = (3, 5)
>>> ’X: {0[0]}; Y: {0[1]}’.format(coord)
’X: 3; Y: 5’

Replacing %s and %r:

>>> "repr() shows quotes: {!r}; str() doesn’t: {!s}".format(’test1’, ’test2’)
"repr() shows quotes: ’test1’; str() doesn’t: test2"

Aligning the text and specifying a width:

>>> ’{:<30}’.format(’left aligned’)
’left aligned ’
>>> ’{:>30}’.format(’right aligned’)
’ right aligned’
>>> ’{:^30}’.format(’centered’)
’ centered ’
>>> ’{:*^30}’.format(’centered’) # use ’*’ as a fill char
’***********centered***********’

Replacing %+f, %-f, and % f and specifying a sign:

>>> ’{:+f}; {:+f}’.format(3.14, -3.14) # show it always
’+3.140000; -3.140000’
>>> ’{: f}; {: f}’.format(3.14, -3.14) # show a space for positive numbers
’ 3.140000; -3.140000’
>>> ’{:-f}; {:-f}’.format(3.14, -3.14) # show only the minus -- same as ’{:f}; {:f}’
’3.140000; -3.140000’

Replacing %x and %o and converting the value to different bases:

6.1. string — Common string operations 67

The Python Library Reference, Release 3.2

>>> # format also supports binary numbers
>>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)
’int: 42; hex: 2a; oct: 52; bin: 101010’
>>> # with 0x, 0o, or 0b as prefix:
>>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)
’int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010’

Using the comma as a thousands separator:

>>> ’{:,}’.format(1234567890)
’1,234,567,890’

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> ’Correct answers: {:.2%}.’.format(points/total)
’Correct answers: 86.36%’

Using type-specific formatting:

>>> import datetime
>>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)
>>> ’{:%Y-%m-%d %H:%M:%S}’.format(d)
’2010-07-04 12:15:58’

Nesting arguments and more complex examples:

>>> for align, text in zip(’<^>’, [’left’, ’center’, ’right’]):
... ’{0:{fill}{align}16}’.format(text, fill=align, align=align)
...
’left<<<<<<<<<<<<’
’^^^^^center^^^^^’
’>>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> ’{:02X}{:02X}{:02X}{:02X}’.format(*octets)
’C0A80001’
>>> int(_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):
... for base in ’dXob’:
... print(’{0:{width}{base}}’.format(num, base=base, width=width), end=’ ’)
... print()
...

5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based substitu-
tions, Templates support $-based substitutions, using the following rules:

• $$ is an escape; it is replaced with a single $.

68 Chapter 6. String Services

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.2

• $identifier names a substitution placeholder matching a mapping key of "identifier". By de-
fault, "identifier" must spell a Python identifier. The first non-identifier character after the $ character
terminates this placeholder specification.

• ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow
the placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.

The string module provides a Template class that implements these rules. The methods of Template are:

class string.Template(template)
The constructor takes a single argument which is the template string.

substitute(mapping, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with
keys that match the placeholders in the template. Alternatively, you can provide keyword arguments,
where the keywords are the placeholders. When both mapping and kwds are given and there are
duplicates, the placeholders from kwds take precedence.

safe_substitute(mapping, **kwds)
Like substitute(), except that if placeholders are missing from mapping and kwds, instead of
raising a KeyError exception, the original placeholder will appear in the resulting string intact.
Also, unlike with substitute(), any other appearances of the $ will simply return $ instead of
raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries
to return a usable string instead of raising an exception. In another sense, safe_substitute()
may be anything other than safe, since it will silently ignore malformed templates containing dangling
delimiters, unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it,
but read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template
>>> s = Template(’$who likes $what’)
>>> s.substitute(who=’tim’, what=’kung pao’)
’tim likes kung pao’
>>> d = dict(who=’tim’)
>>> Template(’Give $who $100’).substitute(d)
Traceback (most recent call last):
[...]
ValueError: Invalid placeholder in string: line 1, col 10
>>> Template(’$who likes $what’).substitute(d)
Traceback (most recent call last):
[...]
KeyError: ’what’
>>> Template(’$who likes $what’).safe_substitute(d)
’tim likes $what’

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter char-
acter, or the entire regular expression used to parse template strings. To do this, you can override these class
attributes:

• delimiter – This is the literal string describing a placeholder introducing delimiter. The default value $.
Note that this should not be a regular expression, as the implementation will call re.escape() on this
string as needed.

• idpattern – This is the regular expression describing the pattern for non-braced placeholders (the braces will
be added automatically as appropriate). The default value is the regular expression [_a-z][_a-z0-9]*.

6.1. string — Common string operations 69

The Python Library Reference, Release 3.2

• flags – The regular expression flags that will be applied when compiling the regular expression used for
recognizing substitutions. The default value is re.IGNORECASE. Note that re.VERBOSE will always be
added to the flags, so custom idpatterns must follow conventions for verbose regular expressions. New in
version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

• escaped – This group matches the escape sequence, e.g. $$, in the default pattern.

• named – This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

• braced – This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

• invalid – This group matches any other delimiter pattern (usually a single delimiter), and it should appear
last in the regular expression.

6.1.5 Helper functions

string.capwords(s, sep=None)
Split the argument into words using str.split(), capitalize each word using str.capitalize(),
and join the capitalized words using str.join(). If the optional second argument sep is absent or
None, runs of whitespace characters are replaced by a single space and leading and trailing whitespace are
removed, otherwise sep is used to split and join the words.

6.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. However, Unicode strings
and 8-bit strings cannot be mixed: that is, you cannot match an Unicode string with a byte pattern or vice-versa;
similarly, when asking for a substitution, the replacement string must be of the same type as both the pattern and
the search string.

Regular expressions use the backslash character (’\’) to indicate special forms or to allow special characters to
be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have to write ’\\\\’ as the
pattern string, because the regular expression must be \\, and each backslash must be expressed as \\ inside a
regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled
in any special way in a string literal prefixed with ’r’. So r"\n" is a two-character string containing ’\’ and
’n’, while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python
code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first,
but miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first edition covered writing good regular
expression patterns in great detail.

70 Chapter 6. String Services

The Python Library Reference, Release 3.2

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string q matches B, the string pq
will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B;
or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ’A’, ’a’,
or ’0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary char-
acters, so last matches the string ’last’. (In the rest of this section, we’ll write RE’s in this special
style, usually without quotes, and strings to be matched ’in single quotes’.)

Some characters, like ’|’ or ’(’, are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted. Regular expression pattern strings may not
contain null bytes, but can specify the null byte using the \number notation, e.g., ’\x00’.

The special characters are:

’.’ (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

’^’ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each
newline.

’$’ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE
mode also matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression
foo$ matches only ‘foo’. More interestingly, searching for foo.$ in ’foo1\nfoo2\n’ matches ‘foo2’
normally, but ‘foo1’ in MULTILINE mode; searching for a single $ in ’foo\n’ will find two (empty)
matches: one just before the newline, and one at the end of the string.

’*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible. ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

’+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed
by any non-zero number of ‘b’s; it will not match just ‘a’.

’?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

?, +?, ?? The ’’, ’+’, and ’?’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <.*> is matched against ’<H1>title</H1>’, it will match the
entire string, and not just ’<H1>’. Adding ’?’ after the qualifier makes it perform the match in non-
greedy or minimal fashion; as few characters as possible will be matched. Using .*? in the previous
expression will match only ’<H1>’.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For example, a{6} will match exactly six ’a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example, a{3,5} will match from 3 to 5 ’a’ characters. Omitting m
specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4,}b
will match aaaab or a thousand ’a’ characters followed by a b, but not aaab. The comma may not be
omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string ’aaaaaa’, a{3,5} will match 5 ’a’ characters, while a{3,5}? will only match 3
characters.

6.2. re — Regular expression operations 71

The Python Library Reference, Release 3.2

’\’ Either escapes special characters (permitting you to match characters like ’*’, ’?’, and so forth), or signals
a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand, so
it’s highly recommended that you use raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be
indicated by giving two characters and separating them by a ’-’. Special characters are not active inside
sets. For example, [akm$] will match any of the characters ’a’, ’k’, ’m’, or ’$’; [a-z] will match
any lowercase letter, and [a-zA-Z0-9] matches any letter or digit. Character classes such as \w or \S
(defined below) are also acceptable inside a range, although the characters they match depends on whether
ASCII or LOCALE mode is in force. If you want to include a ’]’ or a ’-’ inside a set, precede it with a
backslash, or place it as the first character. The pattern []] will match ’]’, for example.

You can match the characters not within a range by complementing the set. This is indicated by including
a ’^’ as the first character of the set; ’^’ elsewhere will simply match the ’^’ character. For example,
[^5] will match any character except ’5’, and [^^] will match any character except ’^’.

Note that inside [] the special forms and special characters lose their meanings and only the syntaxes de-
scribed here are valid. For example, +, *, (,), and so on are treated as literals inside [], and backreferences
cannot be used inside [].

’|’ A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by the ’|’ in this way. This can be used inside groups (see
below) as well. As the target string is scanned, REs separated by ’|’ are tried from left to right. When one
pattern completely matches, that branch is accepted. This means that once A matches, B will not be tested
further, even if it would produce a longer overall match. In other words, the ’|’ operator is never greedy.
To match a literal ’|’, use \|, or enclose it inside a character class, as in [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals ’(’ or ’)’, use \(or
\), or enclose them inside a character class: [(] [)].

(?...) This is an extension notation (a ’?’ following a ’(’ is not meaningful otherwise). The first character
after the ’?’ determines what the meaning and further syntax of the construct is. Extensions usually do
not create a new group; (?P<name>...) is the only exception to this rule. Following are the currently
supported extensions.

(?aiLmsux) (One or more letters from the set ’a’, ’i’, ’L’, ’m’, ’s’, ’u’, ’x’.) The group matches
the empty string; the letters set the corresponding flags: re.A (ASCII-only matching), re.I (ignore case),
re.L (locale dependent), re.M (multi-line), re.S (dot matches all), and re.X (verbose), for the entire
regular expression. (The flags are described in Module Contents.) This is useful if you wish to include the
flags as part of the regular expression, instead of passing a flag argument to the re.compile() function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the group cannot be retrieved after performing a match or refer-
enced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible within
the rest of the regular expression via the symbolic group name name. Group names must be valid Python
identifiers, and each group name must be defined only once within a regular expression. A symbolic group
is also a numbered group, just as if the group were not named. So the group named id in the example below
can also be referenced as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\w*), the group can be referenced by its name in
arguments to methods of match objects, such as m.group(’id’) or m.end(’id’), and also by name

72 Chapter 6. String Services

The Python Library Reference, Release 3.2

in the regular expression itself (using (?P=id)) and replacement text given to .sub() (using \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For example, Isaac (?=Asimov)will match ’Isaac ’ only if it’s followed by ’Asimov’.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!Asimov) will match ’Isaac ’ only if it’s not followed by ’Asimov’.

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in abcdef,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaning that abc or a|b are allowed, but a* and
a{3,4} are not. Note that patterns which start with positive lookbehind assertions will never match at the
beginning of the string being searched; you will most likely want to use the search() function rather than
the match() function:

>>> import re
>>> m = re.search(’(?<=abc)def’, ’abcdef’)
>>> m.group(0)
’def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, ’spam-egg’)
>>> m.group(0)
’egg’

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a
negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only
match strings of some fixed length. Patterns which start with negative lookbehind assertions may match at
the beginning of the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with
given id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can
be omitted. For example, (<)?(\w+@\w+(?:\.\w+)+)(?(1)>) is a poor email matching pat-
tern, which will match with ’<user@host.com>’ as well as ’user@host.com’, but not with
’<user@host.com’.

The special sequences consist of ’\’ and a character from the list below. If the ordinary character is not on the
list, then the resulting RE will match the second character. For example, \$ matches the character ’$’.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches ’the the’ or ’55 55’, but not ’the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of
number is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the ’[’ and ’]’ of a character class, all numeric escapes are treated as
characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of Unicode alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a
non-alphanumeric, non-underscore Unicode character. Note that formally, \b is defined as the boundary
between a \w and a \W character (or vice versa). By default Unicode alphanumerics are the ones used,
but this can be changed by using the ASCII flag. Inside a character range, \b represents the backspace
character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This is just the opposite
of \b, so word characters are Unicode alphanumerics or the underscore, although this can be changed by
using the ASCII flag.

\d

6.2. re — Regular expression operations 73

The Python Library Reference, Release 3.2

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode charac-
ter category [Nd]). This includes [0-9], and also many other digit characters. If the ASCII flag is
used only [0-9] is matched (but the flag affects the entire regular expression, so in such cases using
an explicit [0-9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a Unicode decimal digit. This is the opposite of \d. If the ASCII flag is
used this becomes the equivalent of [^0-9] (but the flag affects the entire regular expression, so in such
cases using an explicit [^0-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v],
and also many other characters, for example the non-breaking spaces mandated by typography rules in
many languages). If the ASCII flag is used, only [\t\n\r\f\v] is matched (but the flag affects
the entire regular expression, so in such cases using an explicit [\t\n\r\f\v] may be a better
choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is
equivalent to [\t\n\r\f\v].

\S Matches any character which is not a Unicode whitespace character. This is the opposite of \s. If the
ASCII flag is used this becomes the equivalent of [^ \t\n\r\f\v] (but the flag affects the entire
regular expression, so in such cases using an explicit [^ \t\n\r\f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be
part of a word in any language, as well as numbers and the underscore. If the ASCII flag is used, only
[a-zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such cases using
an explicit [a-zA-Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalent to [a-zA-Z0-9_].

\W Matches any character which is not a Unicode word character. This is the opposite of \w. If the ASCII flag
is used this becomes the equivalent of [^a-zA-Z0-9_] (but the flag affects the entire regular expression,
so in such cases using an explicit [^a-zA-Z0-9_] may be a better choice).

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
\\

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three
digits in length.

6.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match checks for a match only at
the beginning of the string, while search checks for a match anywhere in the string (this is what Perl does by
default).

Note that match may differ from search even when using a regular expression beginning with ’^’: ’^’ matches
only at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting
position given by the optional pos argument regardless of whether a newline precedes it.

74 Chapter 6. String Services

The Python Library Reference, Release 3.2

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

6.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

re.compile(pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile(pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re.compile() and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match(), re.search() or
re.compile() are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

re.A
re.ASCII

Make \w, \W, \b, \B, \d, \D, \s and \S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns.

Note that for backward compatibility, the re.U flag still exists (as well as its synonym re.UNICODE and
its embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default
for strings (and Unicode matching isn’t allowed for bytes).

re.I
re.IGNORECASE

Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not
affected by the current locale and works for Unicode characters as expected.

re.L
re.LOCALE

Make \w, \W, \b, \B, \s and \S dependent on the current locale. The use of this flag is discouraged as
the locale mechanism is very unreliable, and it only handles one “culture” at a time anyway; you should use
Unicode matching instead, which is the default in Python 3 for Unicode (str) patterns.

re.M
re.MULTILINE

When specified, the pattern character ’^’ matches at the beginning of the string and at the beginning of
each line (immediately following each newline); and the pattern character ’$’ matches at the end of the
string and at the end of each line (immediately preceding each newline). By default, ’^’ matches only at
the beginning of the string, and ’$’ only at the end of the string and immediately before the newline (if
any) at the end of the string.

6.2. re — Regular expression operations 75

The Python Library Reference, Release 3.2

re.S
re.DOTALL

Make the ’.’ special character match any character at all, including a newline; without this flag, ’.’ will
match anything except a newline.

re.X
re.VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ’#’
neither in a character class or preceded by an unescaped backslash, all characters from the leftmost such
’#’ through the end of the line are ignored.

That means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile(r"\d+\.\d*")

re.search(pattern, string, flags=0)
Scan through string looking for a location where the regular expression pattern produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

re.match(pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corre-
sponding match object. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

re.split(pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit
splits occur, and the remainder of the string is returned as the final element of the list.

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]
>>> re.split(’(\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]
>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]
>>> re.split(’[a-f]+’, ’0a3B9’, flags=re.IGNORECASE)
[’0’, ’3’, ’9’]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(’(\W+)’, ’...words, words...’)
[’’, ’...’, ’words’, ’, ’, ’words’, ’...’, ’’]

That way, separator components are always found at the same relative indices within the result list (e.g., if
there’s one capturing group in the separator, the 0th, the 2nd and so forth).

Note that split will never split a string on an empty pattern match. For example:

>>> re.split(’x*’, ’foo’)
[’foo’]

76 Chapter 6. String Services

The Python Library Reference, Release 3.2

>>> re.split("(?m)^$", "foo\n\nbar\n")
[’foo\n\nbar\n’]

Changed in version 3.1: Added the optional flags argument.

re.findall(pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-
right, and matches are returned in the order found. If one or more groups are present in the pattern, return a
list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included
in the result unless they touch the beginning of another match.

re.finditer(pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in
the result unless they touch the beginning of another match.

re.sub(pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by
the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a
function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a single
newline character, \r is converted to a linefeed, and so forth. Unknown escapes such as \j are left alone.
Backreferences, such as \6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r’def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):’,
... r’static PyObject*\npy_\1(void)\n{’,
... ’def myfunc():’)
’static PyObject*\npy_myfunc(void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
... if matchobj.group(0) == ’-’: return ’ ’
... else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’
>>> re.sub(r’\sAND\s’, ’ & ’, ’Baked Beans And Spam’, flags=re.IGNORECASE)
’Baked Beans & Spam’

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must
be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous match, so sub(’x*’, ’-’, ’abc’) returns
’-a-b-c-’.

In addition to character escapes and backreferences as described above, \g<name> will use the substring
matched by the group named name, as defined by the (?P<name>...) syntax. \g<number> uses the
corresponding group number; \g<2> is therefore equivalent to \2, but isn’t ambiguous in a replacement
such as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal character ’0’. The backreference \g<0> substitutes in the entire substring matched by the
RE. Changed in version 3.1: Added the optional flags argument.

re.subn(pattern, repl, string, count=0, flags=0)
Perform the same operation as sub(), but return a tuple (new_string, number_of_subs_made).
Changed in version 3.1: Added the optional flags argument.

re.escape(string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

6.2. re — Regular expression operations 77

The Python Library Reference, Release 3.2

re.purge()
Clear the regular expression cache.

exception re.error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

6.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes.

regex.search(string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the ’^’ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match. If
endpos is less than pos, no match will be found, otherwise, if rx is a compiled regular expression object,
rx.search(string, 0, 50) is equivalent to rx.search(string[:50], 0).

>>> pattern = re.compile("d")
>>> pattern.search("dog") # Match at index 0
<_sre.SRE_Match object at ...>
>>> pattern.search("dog", 1) # No match; search doesn’t include the "d"

regex.match(string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-
length match.

The optional pos and endpos parameters have the same meaning as for the search() method.

Note: If you want to locate a match anywhere in string, use search() instead.

>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

regex.split(string, maxsplit=0)
Identical to the split() function, using the compiled pattern.

regex.findall(string[, pos[, endpos]])
Similar to the findall() function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match().

regex.finditer(string[, pos[, endpos]])
Similar to the finditer() function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match().

regex.sub(repl, string, count=0)
Identical to the sub() function, using the compiled pattern.

78 Chapter 6. String Services

The Python Library Reference, Release 3.2

regex.subn(repl, string, count=0)
Identical to the subn() function, using the compiled pattern.

regex.flags
The flags argument used when the RE object was compiled, or 0 if no flags were provided.

regex.groups
The number of capturing groups in the pattern.

regex.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

regex.pattern
The pattern string from which the RE object was compiled.

6.2.5 Match Objects

Match objects always have a boolean value of True, so that you can test whether e.g. match() resulted in a
match with a simple if statement. They support the following methods and attributes:

match.expand(template)
Return the string obtained by doing backslash substitution on the template string template, as done by the
sub()method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding
group.

match.group([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, group1
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, an IndexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding result is None. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group(0) # The entire match
’Isaac Newton’
>>> m.group(1) # The first parenthesized subgroup.
’Isaac’
>>> m.group(2) # The second parenthesized subgroup.
’Newton’
>>> m.group(1, 2) # Multiple arguments give us a tuple.
(’Isaac’, ’Newton’)

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group(’first_name’)
’Malcolm’
>>> m.group(’last_name’)
’Reynolds’

Named groups can also be referred to by their index:

6.2. re — Regular expression operations 79

The Python Library Reference, Release 3.2

>>> m.group(1)
’Malcolm’
>>> m.group(2)
’Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r"(..)+", "a1b2c3") # Matches 3 times.
>>> m.group(1) # Returns only the last match.
’c3’

match.groups(default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")
>>> m.groups()
(’24’, ’1632’)

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match(r"(\d+)\.?(\d+)?", "24")
>>> m.groups() # Second group defaults to None.
(’24’, None)
>>> m.groups(’0’) # Now, the second group defaults to ’0’.
(’24’, ’0’)

match.groupdict(default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The
default argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict()
{’first_name’: ’Malcolm’, ’last_name’: ’Reynolds’}

match.start([group])
match.end([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning
the whole matched substring). Return -1 if group exists but did not contribute to the match. For a match
object m, and a group g that did contribute to the match, the substring matched by group g (equivalent to
m.group(g)) is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’), m.start(0) is 1, m.end(0) is 2, m.start(1) and
m.end(1) are both 2, and m.start(2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start()] + email[m.end():]
’tony@tiger.net’

80 Chapter 6. String Services

The Python Library Reference, Release 3.2

match.span([group])
For a match m, return the 2-tuple (m.start(group), m.end(group)). Note that if group did not
contribute to the match, this is (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search() or match() method of a match object. This is the
index into the string at which the RE engine started looking for a match.

match.endpos
The value of endpos which was passed to the search() or match() method of a match object. This is
the index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a)(b)), and ((ab)) will have lastindex == 1 if applied to the string
’ab’, while the expression (a)(b) will have lastindex == 2, if applied to the same string.

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

match.re
The regular expression object whose match() or search() method produced this match instance.

match.string
The string passed to match() or search().

6.2.6 Regular Expression Examples

Checking For a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch(match):
if match is None:

return None
return ’<Match: %r, groups=%r>’ % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each
character representing a card, “a” for ace, “k” for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"[0-9akqj]{5}$")
>>> displaymatch(valid.match("ak05q")) # Valid.
"<Match: ’ak05q’, groups=()>"
>>> displaymatch(valid.match("ak05e")) # Invalid.
>>> displaymatch(valid.match("ak0")) # Invalid.
>>> displaymatch(valid.match("727ak")) # Valid.
"<Match: ’727ak’, groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular
expression, one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")
>>> displaymatch(pair.match("717ak")) # Pair of 7s.
"<Match: ’717’, groups=(’7’,)>"
>>> displaymatch(pair.match("718ak")) # No pairs.
>>> displaymatch(pair.match("354aa")) # Pair of aces.
"<Match: ’354aa’, groups=(’a’,)>"

To find out what card the pair consists of, one could use the group() method of the match object in the following
manner:

6.2. re — Regular expression operations 81

The Python Library Reference, Release 3.2

>>> pair.match("717ak").group(1)
’7’

Error because re.match() returns None, which doesn’t have a group() method:
>>> pair.match("718ak").group(1)
Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak").group(1)

AttributeError: ’NoneType’ object has no attribute ’group’

>>> pair.match("354aa").group(1)
’a’

Simulating scanf()

Python does not currently have an equivalent to scanf(). Regular expressions are generally more powerful,
though also more verbose, than scanf() format strings. The table below offers some more-or-less equivalent
mappings between scanf() format tokens and regular expressions.

scanf() Token Regular Expression
%c .
%5c .{5}
%d [-+]?\d+
%e, %E, %f, %g [-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?
%i [-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)
%o 0[0-7]*
%s \S+
%u \d+
%x, %X 0[xX][\dA-Fa-f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the message maximum recursion limit exceeded. For example,

>>> s = ’Begin ’ + 1000*’a very long string ’ + ’end’
>>> re.match(’Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "/usr/local/lib/python3.2/re.py", line 132, in match

return _compile(pattern, flags).match(string)
RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Simple uses of the *? pattern are special-cased to avoid recursion. Thus, the above regular expression can avoid
recursion by being recast as Begin [a-zA-Z0-9_]*?end. As a further benefit, such regular expressions
will run faster than their recursive equivalents.

82 Chapter 6. String Services

The Python Library Reference, Release 3.2

search() vs. match()

In a nutshell, match() only attempts to match a pattern at the beginning of a string where search() will match
a pattern anywhere in a string. For example:

>>> re.match("o", "dog") # No match as "o" is not the first letter of "dog".
>>> re.search("o", "dog") # Match as search() looks everywhere in the string.
<_sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created with
re.compile("pattern"), not the primitives re.match(pattern, string) or
re.search(pattern, string).

match() has an optional second parameter that gives an index in the string where the search is to start:

>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern.match("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):
>>> pattern.match("dog", 1)
<_sre.SRE_Match object at ...>
>>> pattern.match("dog", 2) # No match as "o" is not the 3rd character of "dog."

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> input = """Ross McFluff: 834.345.1254 155 Elm Street
...
... Ronald Heathmore: 892.345.3428 436 Finley Avenue
... Frank Burger: 925.541.7625 662 South Dogwood Way
...
...
... Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split("\n+", input)
>>> entries
[’Ross McFluff: 834.345.1254 155 Elm Street’,
’Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
’Frank Burger: 925.541.7625 662 South Dogwood Way’,
’Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter of split() because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[[’Ross’, ’McFluff’, ’834.345.1254’, ’155 Elm Street’],
[’Ronald’, ’Heathmore’, ’892.345.3428’, ’436 Finley Avenue’],
[’Frank’, ’Burger’, ’925.541.7625’, ’662 South Dogwood Way’],
[’Heather’, ’Albrecht’, ’548.326.4584’, ’919 Park Place’]]

6.2. re — Regular expression operations 83

The Python Library Reference, Release 3.2

The :? pattern matches the colon after the last name, so that it does not occur in the result list. With a maxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]
[[’Ross’, ’McFluff’, ’834.345.1254’, ’155’, ’Elm Street’],
[’Ronald’, ’Heathmore’, ’892.345.3428’, ’436’, ’Finley Avenue’],
[’Frank’, ’Burger’, ’925.541.7625’, ’662’, ’South Dogwood Way’],
[’Heather’, ’Albrecht’, ’548.326.4584’, ’919’, ’Park Place’]]

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub() with a function to “munge” text, or randomize the order of all the characters in each word of a
sentence except for the first and last characters:

>>> def repl(m):
... inner_word = list(m.group(2))
... random.shuffle(inner_word)
... return m.group(1) + "".join(inner_word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
’Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
’Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.’

Finding all Adverbs

findall() matches all occurrences of a pattern, not just the first one as search() does. For example, if one
was a writer and wanted to find all of the adverbs in some text, he or she might use findall() in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall(r"\w+ly", text)
[’carefully’, ’quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer() is useful as it
provides match objects instead of strings. Continuing with the previous example, if one was a writer who wanted
to find all of the adverbs and their positions in some text, he or she would use finditer() in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly", text):
... print(’%02d-%02d: %s’ % (m.start(), m.end(), m.group(0)))
07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (’\’) in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code
are functionally identical:

>>> re.match(r"\W(.)\1\W", " ff ")
<_sre.SRE_Match object at ...>
>>> re.match("\\W(.)\\1\\W", " ff ")
<_sre.SRE_Match object at ...>

84 Chapter 6. String Services

The Python Library Reference, Release 3.2

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means r"\\". Without raw string notation, one must use "\\\\", making the following lines of
code functionally identical:

>>> re.match(r"\\", r"\\")
<_sre.SRE_Match object at ...>
>>> re.match("\\\\", r"\\")
<_sre.SRE_Match object at ...>

Writing a Tokenizer

A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

Token = collections.namedtuple(’Token’, ’typ value line column’)

def tokenize(s):
keywords = {’IF’, ’THEN’, ’FOR’, ’NEXT’, ’GOSUB’, ’RETURN’}
tok_spec = [

(’NUMBER’, r’\d+(\.\d*)?’), # Integer or decimal number
(’ASSIGN’, r’:=’), # Assignment operator
(’END’, ’;’), # Statement terminator
(’ID’, r’[A-Za-z]+’), # Identifiers
(’OP’, r’[+*\/\-]’), # Arithmetic operators
(’NEWLINE’, r’\n’), # Line endings
(’SKIP’, r’[\t]’), # Skip over spaces and tabs

]
tok_re = ’|’.join(’(?P<%s>%s)’ % pair for pair in tok_spec)
gettok = re.compile(tok_re).match
line = 1
pos = line_start = 0
mo = gettok(s)
while mo is not None:

typ = mo.lastgroup
if typ == ’NEWLINE’:

line_start = pos
line += 1

elif typ != ’SKIP’:
if typ == ’ID’ and val in keywords:

typ = val
yield Token(typ, mo.group(typ), line, mo.start()-line_start)

pos = mo.end()
mo = gettok(s, pos)

if pos != len(s):
raise RuntimeError(’Unexpected character %r on line %d’ %(s[pos], line))

>>> statements = ’’’\
total := total + price * quantity;
tax := price * 0.05;

’’’
>>> for token in tokenize(statements):
... print(token)
...
Token(typ=’ID’, value=’total’, line=1, column=8)
Token(typ=’ASSIGN’, value=’:=’, line=1, column=14)
Token(typ=’ID’, value=’total’, line=1, column=17)

6.2. re — Regular expression operations 85

http://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.2

Token(typ=’OP’, value=’+’, line=1, column=23)
Token(typ=’ID’, value=’price’, line=1, column=25)
Token(typ=’OP’, value=’*’, line=1, column=31)
Token(typ=’ID’, value=’quantity’, line=1, column=33)
Token(typ=’END’, value=’;’, line=1, column=41)
Token(typ=’ID’, value=’tax’, line=2, column=9)
Token(typ=’ASSIGN’, value=’:=’, line=2, column=13)
Token(typ=’ID’, value=’price’, line=2, column=16)
Token(typ=’OP’, value=’*’, line=2, column=22)
Token(typ=’NUMBER’, value=’0.05’, line=2, column=24)
Token(typ=’END’, value=’;’, line=2, column=28)

6.3 struct — Interpret bytes as packed binary data

This module performs conversions between Python values and C structs represented as Python bytes objects.
This can be used in handling binary data stored in files or from network connections, among other sources. It uses
Format Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python
values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so
that the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To
handle platform-independent data formats or omit implicit pad bytes, use standard size and alignment instead
of native size and alignment: see Byte Order, Size, and Alignment for details.

6.3.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack(fmt, v1, v2, ...)
Return a bytes object containing the values v1, v2, ... packed according to the format string fmt. The
arguments must match the values required by the format exactly.

struct.pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, ... according to the format string fmt and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

struct.unpack(fmt, buffer)
Unpack from the buffer buffer (presumably packed by pack(fmt, ...)) according to the format string
fmt. The result is a tuple even if it contains exactly one item. The buffer must contain exactly the amount of
data required by the format (len(bytes) must equal calcsize(fmt)).

struct.unpack_from(fmt, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string fmt. The result is a tuple
even if it contains exactly one item. buffer must contain at least the amount of data required by the format
(len(buffer[offset:]) must be at least calcsize(fmt)).

struct.calcsize(fmt)
Return the size of the struct (and hence of the bytes object produced by pack(fmt, ...)) corresponding
to the format string fmt.

86 Chapter 6. String Services

The Python Library Reference, Release 3.2

6.3.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They
are built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are
special characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

Character Byte order Size Alignment
@ native native native
= native standard none
< little-endian standard none
> big-endian standard none
! network (= big-endian) standard none

If the first character is not one of these, ’@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature
switchable endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between ’@’ and ’=’: both use native byte order, but the size and alignment of the latter is
standardized.

The form ’!’ is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ’<’ or
’>’.

Notes:

1. Padding is only automatically added between successive structure members. No padding is added at the
beginning or the end of the encoded struct.

2. No padding is added when using non-native size and alignment, e.g. with ‘<’, ‘>’, ‘=’, and ‘!’.

3. To align the end of a structure to the alignment requirement of a particular type, end the format with the
code for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard
size; that is, when the format string starts with one of ’<’, ’>’, ’!’ or ’=’. When using native size, the size of
the packed value is platform-dependent.

6.3. struct — Interpret bytes as packed binary data 87

The Python Library Reference, Release 3.2

Format C Type Python type Standard size Notes
x pad byte no value
c char bytes of length 1 1
b signed char integer 1 (1),(3)
B unsigned char integer 1 (3)
? _Bool bool 1 (1)
h short integer 2 (3)
H unsigned short integer 2 (3)
i int integer 4 (3)
I unsigned int integer 4 (3)
l long integer 4 (3)
L unsigned long integer 4 (3)
q long long integer 8 (2), (3)
Q unsigned long long integer 8 (2), (3)
f float float 4 (4)
d double float 8 (4)
s char[] bytes
p char[] bytes
P void * integer (5)

Notes:

1. The ’?’ conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

2. The ’q’ and ’Q’ conversion codes are available in native mode only if the platform C compiler supports
C long long, or, on Windows, __int64. They are always available in standard modes.

3. When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__() method then that method is called to convert the argument to an integer before packing.
Changed in version 3.2: Use of the __index__() method for non-integers is new in 3.2.

4. For the ’f’ and ’d’ conversion codes, the packed representation uses the IEEE 754 binary32 (for ’f’) or
binary64 (for ’d’) format, regardless of the floating-point format used by the platform.

5. The ’P’ format character is only available for the native byte ordering (selected as the default or with the
’@’ byte order character). The byte order character ’=’ chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the ’P’ format is not
available.

A format character may be preceded by an integral repeat count. For example, the format string ’4h’ means
exactly the same as ’hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ’s’ format character, the count is interpreted as the length of the bytes, not a repeat count like for the
other format characters; for example, ’10s’ means a single 10-byte string, while ’10c’ means 10 characters.
For packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the
resulting bytes object always has exactly the specified number of bytes. As a special case, ’0s’ means a single,
empty string (while ’0c’ means 0 characters).

When packing a value x using one of the integer formats (’b’, ’B’, ’h’, ’H’, ’i’, ’I’, ’l’, ’L’, ’q’,
’Q’), if x is outside the valid range for that format then struct.error is raised. Changed in version 3.1:
In 3.0, some of the integer formats wrapped out-of-range values and raised DeprecationWarning instead of
struct.error. The ’p’ format character encodes a “Pascal string”, meaning a short variable-length string
stored in a fixed number of bytes, given by the count. The first byte stored is the length of the string, or 255,
whichever is smaller. The bytes of the string follow. If the string passed in to pack() is too long (longer than the
count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note that for unpack(), the ’p’ format
character consumes count bytes, but that the string returned can never contain more than 255 bytes.

For the ’?’ format character, the return value is either True or False. When packing, the truth value of
the argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any
non-zero value will be True when unpacking.

88 Chapter 6. String Services

The Python Library Reference, Release 3.2

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *
>>> pack(’hhl’, 1, 2, 3)
b’\x00\x01\x00\x02\x00\x00\x00\x03’
>>> unpack(’hhl’, b’\x00\x01\x00\x02\x00\x00\x00\x03’)
(1, 2, 3)
>>> calcsize(’hhl’)
8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b’raymond \x32\x12\x08\x01\x08’
>>> name, serialnum, school, gradelevel = unpack(’<10sHHb’, record)

>>> from collections import namedtuple
>>> Student = namedtuple(’Student’, ’name serialnum school gradelevel’)
>>> Student._make(unpack(’<10sHHb’, record))
Student(name=b’raymond ’, serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment
requirements is different:

>>> pack(’ci’, b’*’, 0x12131415)
b’*\x00\x00\x00\x12\x13\x14\x15’
>>> pack(’ic’, 0x12131415, b’*’)
b’\x12\x13\x14\x15*’
>>> calcsize(’ci’)
8
>>> calcsize(’ic’)
5

The following format ’llh0l’ specifies two pad bytes at the end, assuming longs are aligned on 4-byte bound-
aries:

>>> pack(’llh0l’, 1, 2, 3)
b’\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00’

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See Also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

6.3.3 Classes

The struct module also defines the following type:

class struct.Struct(format)
Return a new Struct object which writes and reads binary data according to the format string format. Cre-
ating a Struct object once and calling its methods is more efficient than calling the struct functions with
the same format since the format string only needs to be compiled once.

Compiled Struct objects support the following methods and attributes:

6.3. struct — Interpret bytes as packed binary data 89

The Python Library Reference, Release 3.2

pack(v1, v2, ...)
Identical to the pack() function, using the compiled format. (len(result) will equal
self.size.)

pack_into(buffer, offset, v1, v2, ...)
Identical to the pack_into() function, using the compiled format.

unpack(buffer)
Identical to the unpack() function, using the compiled format. (len(buffer) must equal
self.size).

unpack_from(buffer, offset=0)
Identical to the unpack_from() function, using the compiled format.
(len(buffer[offset:]) must be at least self.size).

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the bytes object produced by the pack() method)
corresponding to format.

6.4 difflib — Helpers for computing deltas

This module provides classes and functions for comparing sequences. It can be used for example, for comparing
files, and can produce difference information in various formats, including HTML and context and unified diffs.
For comparing directories and files, see also, the filecmp module.

class difflib.SequenceMatcher
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain
sequence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the autojunk argument to False when creating the
SequenceMatcher. New in version 3.2: The autojunk parameter.

class difflib.Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

Code Meaning
’- ’ line unique to sequence 1
’+ ’ line unique to sequence 2
’ ’ line common to both sequences
’? ’ line not present in either input sequence

90 Chapter 6. String Services

The Python Library Reference, Release 3.2

Lines beginning with ‘?‘ attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can
be generated in either full or contextual difference mode.

The constructor for this class is:

__init__(tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of HtmlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff() (used by HtmlDiff
to generate the side by side HTML differences). See ndiff() documentation for argument default
values and descriptions.

The following methods are public:

make_file(fromlines, tolines, fromdesc=’‘, todesc=’‘, context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before a
difference highlight when using the “next” hyperlinks (setting to zero would cause the “next” hyper-
links to place the next difference highlight at the top of the browser without any leading context).

make_table(fromlines, tolines, fromdesc=’‘, todesc=’‘, context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file() method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of
its use.

difflib.context_diff(a, b, fromfile=’‘, tofile=’‘, fromfiledate=’‘, tofiledate=’‘, n=3,
lineterm=’\n’)

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with *** or ---) are created with a trailing newline. This is
helpful so that inputs created from file.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

6.4. difflib — Helpers for computing deltas 91

The Python Library Reference, Release 3.2

>>> s1 = [’bacon\n’, ’eggs\n’, ’ham\n’, ’guido\n’]
>>> s2 = [’python\n’, ’eggy\n’, ’hamster\n’, ’guido\n’]
>>> for line in context_diff(s1, s2, fromfile=’before.py’, tofile=’after.py’):
... sys.stdout.write(line)

*** before.py
--- after.py

*** 1,4 ****
! bacon
! eggs
! ham

guido
--- 1,4 ----
! python
! eggy
! hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches(word, possibilities, n=3, cutoff=0.6)
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than
0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches(’appel’, [’ape’, ’apple’, ’peach’, ’puppy’])
[’apple’, ’ape’]
>>> import keyword
>>> get_close_matches(’wheel’, keyword.kwlist)
[’while’]
>>> get_close_matches(’apple’, keyword.kwlist)
[]
>>> get_close_matches(’accept’, keyword.kwlist)
[’except’]

difflib.ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a Differ-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false
if not. The default is None. There is also a module-level function IS_LINE_JUNK(), which filters out
lines without visible characters, except for at most one pound character (’#’) – however the underlying
SequenceMatcher class does a dynamic analysis of which lines are so frequent as to constitute noise,
and this usually works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function IS_CHARACTER_JUNK(), which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

92 Chapter 6. String Services

The Python Library Reference, Release 3.2

>>> diff = ndiff(’one\ntwo\nthree\n’.splitlines(1),
... ’ore\ntree\nemu\n’.splitlines(1))
>>> print(’’.join(diff), end="")
- one
? ^
+ ore
? ^
- two
- three
? -
+ tree
+ emu

difflib.restore(sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff(), extract lines originating from file 1
or 2 (parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff(’one\ntwo\nthree\n’.splitlines(1),
... ’ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print(’’.join(restore(diff, 1)), end="")
one
two
three
>>> print(’’.join(restore(diff, 2)), end="")
ore
tree
emu

difflib.unified_diff(a, b, fromfile=’‘, tofile=’‘, fromfiledate=’‘, tofiledate=’‘, n=3,
lineterm=’\n’)

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ---, +++, or @@) are created with a trailing newline. This
is helpful so that inputs created from file.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = [’bacon\n’, ’eggs\n’, ’ham\n’, ’guido\n’]
>>> s2 = [’python\n’, ’eggy\n’, ’hamster\n’, ’guido\n’]
>>> for line in unified_diff(s1, s2, fromfile=’before.py’, tofile=’after.py’):
... sys.stdout.write(line)
--- before.py
+++ after.py
@@ -1,4 +1,4 @@
-bacon

6.4. difflib — Helpers for computing deltas 93

The Python Library Reference, Release 3.2

-eggs
-ham
+python
+eggy
+hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.IS_LINE_JUNK(line)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single ’#’, otherwise
it is not ignorable. Used as a default for parameter linejunk in ndiff() in older versions.

difflib.IS_CHARACTER_JUNK(ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff().

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class difflib.SequenceMatcher(isjunk=None, a=’‘, b=’‘, autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk
is equivalent to passing lambda x: 0; in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic. New in version 3.2:
The autojunk parameter. SequenceMatcher objects get three data attributes: bjunk is the set of elements
of b for which isjunk is True; bpopular is the set of non-junk elements considered popular by the heuristic
(if it is not disabled); b2j is a dict mapping the remaining elements of b to a list of positions where they
occur. All three are reset whenever b is reset with set_seqs() or set_seq2(). New in version 3.2:
The bjunk and bpopular attributes. SequenceMatcher objects have the following methods:

set_seqs(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seq2() to set the commonly used sequence
once and call set_seq1() repeatedly, once for each of the other sequences.

set_seq1(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match(alo, ahi, blo, bhi)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match() returns (i, j, k) such that
a[i:i+k] is equal to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <=
j+k <= bhi. For all (i’, j’, k’) meeting those conditions, the additional conditions k >=

94 Chapter 6. String Services

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 3.2

k’, i <= i’, and if i == i’, j <= j’ are also met. In other words, of all maximal matching
blocks, return one that starts earliest in a, and of all those maximal matching blocks that start earliest
in a, return the one that starts earliest in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ’ abcd’ from
matching the ’ abcd’ at the tail end of the second sequence directly. Instead only the ’abcd’ can
match, and matches the leftmost ’abcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).

This method returns a named tuple Match(a, b, size).

get_matching_blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with
n == 0. If (i, j, n) and (i’, j’, n’) are adjacent triples in the list, and the second is not
the last triple in the list, then i+n != i’ or j+n != j’; in other words, adjacent triples always
describe non-adjacent equal blocks.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,
j1, j2). The first tuple has i1 == j1 == 0, and remaining tuples have i1 equal to the i2 from
the preceding tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning
’replace’ a[i1:i2] should be replaced by b[j1:j2].
’delete’ a[i1:i2] should be deleted. Note that j1 == j2 in this case.
’insert’ b[j1:j2] should be inserted at a[i1:i1]. Note that i1 == i2 in this case.
’equal’ a[i1:i2] == b[j1:j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
... print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
delete a[0:1] (q) b[0:0] ()
equal a[1:3] (ab) b[0:2] (ab)

replace a[3:4] (x) b[2:3] (y)

6.4. difflib — Helpers for computing deltas 95

The Python Library Reference, Release 3.2

equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

get_grouped_opcodes(n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes(), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get_matching_blocks() or get_opcodes() hasn’t already
been called, in which case you may want to try quick_ratio() or real_quick_ratio() first
to get an upper bound.

quick_ratio()
Return an upper bound on ratio() relatively quickly.

real_quick_ratio()
Return an upper bound on ratio() very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio() and real_quick_ratio() are always at least as large
as ratio():

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75
>>> s.quick_ratio()
0.75
>>> s.real_quick_ratio()
1.0

6.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher(lambda x: x == " ",
... "private Thread currentThread;",
... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio()
value over 0.6 means the sequences are close matches:

>>> print(round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks() is handy:

>>> for block in s.get_matching_blocks():
... print("a[%d] and b[%d] match for %d elements" % block)
a[0] and b[0] match for 8 elements
a[8] and b[17] match for 21 elements
a[29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks() is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

96 Chapter 6. String Services

The Python Library Reference, Release 3.2

If you want to know how to change the first sequence into the second, use get_opcodes():

>>> for opcode in s.get_opcodes():
... print("%6s a[%d:%d] b[%d:%d]" % opcode)
equal a[0:8] b[0:8]

insert a[8:8] b[8:17]
equal a[8:29] b[17:38]

See Also:

• The get_close_matches() function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

• Simple version control recipe for a small application built with SequenceMatcher.

6.4.3 Differ Objects

Note that Differ-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

The Differ class has this constructor:

class difflib.Differ(linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare(a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines() method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines() method of a file-like
object.

6.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines() method of file-like objects):

>>> text1 = ’’’ 1. Beautiful is better than ugly.
... 2. Explicit is better than implicit.
... 3. Simple is better than complex.
... 4. Complex is better than complicated.
... ’’’.splitlines(1)
>>> len(text1)
4
>>> text1[0][-1]
’\n’
>>> text2 = ’’’ 1. Beautiful is better than ugly.
... 3. Simple is better than complex.
... 4. Complicated is better than complex.
... 5. Flat is better than nested.
... ’’’.splitlines(1)

6.4. difflib — Helpers for computing deltas 97

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.2

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Differ object we may pass functions to filter out line and character “junk.” See
the Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(text1, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[’ 1. Beautiful is better than ugly.\n’,
’- 2. Explicit is better than implicit.\n’,
’- 3. Simple is better than complex.\n’,
’+ 3. Simple is better than complex.\n’,
’? ++\n’,
’- 4. Complex is better than complicated.\n’,
’? ^ ---- ^\n’,
’+ 4. Complicated is better than complex.\n’,
’? ++++ ^ ^\n’,
’+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.
- 3. Simple is better than complex.
+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
? ^ ---- ^
+ 4. Complicated is better than complex.
? ++++ ^ ^
+ 5. Flat is better than nested.

6.4.5 A command-line interface to difflib

This example shows how to use difflib to create a diff-like utility. It is also contained in the Python source
distribution, as Tools/scripts/diff.py.

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.

* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

"""

import sys, os, time, difflib, optparse

def main():
Configure the option parser

usage = "usage: %prog [options] fromfile tofile"
parser = optparse.OptionParser(usage)
parser.add_option("-c", action="store_true", default=False,

98 Chapter 6. String Services

The Python Library Reference, Release 3.2

help=’Produce a context format diff (default)’)
parser.add_option("-u", action="store_true", default=False,

help=’Produce a unified format diff’)
hlp = ’Produce HTML side by side diff (can use -c and -l in conjunction)’
parser.add_option("-m", action="store_true", default=False, help=hlp)
parser.add_option("-n", action="store_true", default=False,

help=’Produce a ndiff format diff’)
parser.add_option("-l", "--lines", type="int", default=3,

help=’Set number of context lines (default 3)’)
(options, args) = parser.parse_args()

if len(args) == 0:
parser.print_help()
sys.exit(1)

if len(args) != 2:
parser.error("need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile = args # as specified in the usage string

we’re passing these as arguments to the diff function
fromdate = time.ctime(os.stat(fromfile).st_mtime)
todate = time.ctime(os.stat(tofile).st_mtime)
fromlines = open(fromfile, ’U’).readlines()
tolines = open(tofile, ’U’).readlines()

if options.u:
diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile,

fromdate, todate, n=n)
elif options.n:

diff = difflib.ndiff(fromlines, tolines)
elif options.m:

diff = difflib.HtmlDiff().make_file(fromlines, tolines, fromfile,
tofile, context=options.c,
numlines=n)

else:
diff = difflib.context_diff(fromlines, tolines, fromfile, tofile,

fromdate, todate, n=n)

we’re using writelines because diff is a generator
sys.stdout.writelines(diff)

if __name__ == ’__main__’:
main()

6.5 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides two convenience functions, wrap() and fill(), as well as TextWrapper,
the class that does all the work, and a utility function dedent(). If you’re just wrapping or filling one or
two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

textwrap.wrap(text, width=70, **kwargs)
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of

6.5. textwrap — Text wrapping and filling 99

http://svn.python.org/view/python/branches/py3k/Lib/textwrap.py?view=markup

The Python Library Reference, Release 3.2

output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

textwrap.fill(text, width=70, **kwargs)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph. fill()
is shorthand for

"\n".join(wrap(text, ...))

In particular, fill() accepts exactly the same keyword arguments as wrap().

Both wrap() and fill() work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long
words be broken if necessary, unless TextWrapper.break_long_words is set to false.

An additional utility function, dedent(), is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

textwrap.dedent(text)
Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

For example:

def test():
end first line with \ to avoid the empty line!
s = ’’’\
hello

world
’’’
print(repr(s)) # prints ’ hello\n world\n ’
print(repr(dedent(s))) # prints ’hello\n world\n’

class textwrap.TextWrapper(**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in
the input text longer than width, TextWrapper guarantees that no output line will be longer than
width characters.

100 Chapter 6. String Services

The Python Library Reference, Release 3.2

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs() method of text.

replace_whitespace
(default: True) If true, each whitespace character (as defined by string.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace_whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines() or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (leading whitespace in the first line is always preserved, though).

initial_indent
(default: ”) String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line.

subsequent_indent
(default: ”) String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sen-
tences are always separated by exactly two spaces. This is generally desired for text in a monospaced
font. However, the sentence detection algorithm is imperfect: it assumes that a sentence ending con-
sists of a lowercase letter followed by one of ’.’, ’!’, or ’?’, possibly followed by one of ’"’
or "’", followed by a space. One problem with this is algorithm is that it is unable to detect the
difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lower-
case letter,” and a convention of using two spaces after a period to separate sentences on the same line,
it is specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer
than width. (Long words will be put on a line by themselves, in order to minimize the amount by
which width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in
compound words, as it is customary in English. If false, only whitespaces will be considered as
potentially good places for line breaks, but you need to set break_long_words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words.

6.5. textwrap — Text wrapping and filling 101

The Python Library Reference, Release 3.2

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap(text)
Wraps the single paragraph in text (a string) so every line is at most width characters long. All
wrapping options are taken from instance attributes of the TextWrapper instance. Returns a list of
output lines, without final newlines.

fill(text)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.

6.6 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

codecs.register(search_function)
Register a codec search function. Search functions are expected to take one argument, the encoding name
in all lower case letters, and return a CodecInfo object having the following attributes:

•name The name of the encoding;

•encode The stateless encoding function;

•decode The stateless decoding function;

•incrementalencoder An incremental encoder class or factory function;

•incrementaldecoder An incremental decoder class or factory function;

•streamwriter A stream writer class or factory function;

•streamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same interface as the
encode()/decode() methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

incrementalencoder and incrementaldecoder: These have to be factory functions providing the following
interface:

factory(errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder and IncrementalDecoder, respectively. Incremental codecs can maintain
state.

streamreader and streamwriter: These have to be factory functions providing the following interface:

factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter and StreamReader, respectively. Stream codecs can maintain state.

Possible values for errors are

•’strict’: raise an exception in case of an encoding error

•’replace’: replace malformed data with a suitable replacement marker, such as ’?’ or
’\ufffd’

•’ignore’: ignore malformed data and continue without further notice

•’xmlcharrefreplace’: replace with the appropriate XML character reference (for encoding
only)

102 Chapter 6. String Services

The Python Library Reference, Release 3.2

•’backslashreplace’: replace with backslashed escape sequences (for encoding only)

•’surrogateescape’: replace with surrogate U+DCxx, see PEP 383

as well as any other error handling name defined via register_error().

In case a search function cannot find a given encoding, it should return None.

codecs.lookup(encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo
object is stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use lookup()
for the codec lookup:

codecs.getencoder(encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder(encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder(encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder(encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs.getreader(encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter(encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.register_error(name, error_handler)
Register the error handling function error_handler under the name name. error_handler will be called
during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

codecs.lookup_error(name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

6.6. codecs — Codec registry and base classes 103

http://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.2

codecs.strict_errors(exception)
Implements the strict error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors(exception)
Implements the replace error handling: malformed data is replaced with a suitable replacement character
such as ’?’ in bytestrings and ’\ufffd’ in Unicode strings.

codecs.ignore_errors(exception)
Implements the ignore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

codecs.xmlcharrefreplace_errors(exception)
Implements the xmlcharrefreplace error handling (for encoding only): the unencodable character is
replaced by an appropriate XML character reference.

codecs.backslashreplace_errors(exception)
Implements the backslashreplace error handling (for encoding only): the unencodable character is
replaced by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

codecs.open(filename, mode[, encoding[, errors[, buffering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode is ’r’ meaning to open the file in read mode.

Note: The wrapped version’s methods will accept and return strings only. Bytes arguments will be rejected.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid
data loss due to encodings using 8-bit values. This means that no automatic conversion of b’\n’ is done
on reading and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to ’strict’ which causes a ValueError
to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to line buffered.

codecs.EncodedFile(file, data_encoding, file_encoding=None, errors=’strict’)
Return a wrapped version of file which provides transparent encoding translation.

Bytes written to the wrapped file are interpreted according to the given data_encoding and then written to
the original file as bytes using the file_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to ’strict’, which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode(iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a genera-
tor. errors (as well as any other keyword argument) is passed through to the incremental encoder.

codecs.iterdecode(iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a genera-
tor. errors (as well as any other keyword argument) is passed through to the incremental decoder.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs.BOM
codecs.BOM_BE
codecs.BOM_LE
codecs.BOM_UTF8

104 Chapter 6. String Services

The Python Library Reference, Release 3.2

codecs.BOM_UTF16
codecs.BOM_UTF16_BE
codecs.BOM_UTF16_LE
codecs.BOM_UTF32
codecs.BOM_UTF32_BE
codecs.BOM_UTF32_LE

These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte or-
der, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE.
The others represent the BOM in UTF-8 and UTF-32 encodings.

6.6.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write
your own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode() and decode() methods may implement different
error handling schemes by providing the errors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning
’strict’ Raise UnicodeError (or a subclass); this is the default.
’ignore’ Ignore the character and continue with the next.
’replace’ Replace with a suitable replacement character; Python will use the official U+FFFD

REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?’ on
encoding.

’xmlcharrefreplace’Replace with the appropriate XML character reference (only for encoding).
’backslashreplace’Replace with backslashed escape sequences (only for encoding).
’surrogateescape’Replace byte with surrogate U+DCxx, as defined in PEP 383.

In addition, the following error handlers are specific to a single codec:

Value Codec Meaning
’surrogatepass’ utf-8 Allow encoding and decoding of surrogate codes in UTF-8.

New in version 3.1: The ’surrogateescape’ and ’surrogatepass’ error handlers. The set of allowed
values can be extended via register_error().

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

Codec.encode(input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). Encoding converts a string
object to a bytes object using a particular character set encoding (e.g., cp1252 or iso-8859-1).

errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

6.6. codecs — Codec registry and base classes 105

http://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.2

Codec.decode(input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). Decoding converts a bytes
object encoded using a particular character set encoding to a string object.

input must be a bytes object or one which provides the read-only character buffer interface – for example,
buffer objects and memory mapped files.

errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode()/decode() method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode()/decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following
methods which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

•’xmlcharrefreplace’ Replace with the appropriate XML character reference

•’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

The set of allowed values for the errors argument can be extended with register_error().

encode(object[, final])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode() final must be true (the default is false).

reset()
Reset the encoder to the initial state.

IncrementalEncoder.getstate()
Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into an
integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer).

IncrementalEncoder.setstate(state)
Set the state of the encoder to state. state must be an encoder state returned by getstate().

106 Chapter 6. String Services

The Python Library Reference, Release 3.2

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalDecoder object.

The set of allowed values for the errors argument can be extended with register_error().

decode(object[, final])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode() final must be true (the default is false). If final is true
the decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g.
because of incomplete byte sequences at the end of the input) it must initiate error handling just like
in the stateless case (which might raise an exception).

reset()
Reset the decoder to the initial state.

getstate()
Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that 0 is the most common additional state info.) If this
additional state info is 0 it must be possible to set the decoder to the state which has no input buffered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns
it to the previous state without producing any output. (Additional state info that is more complicated
than integers can be converted into an integer by marshaling/pickling the info and encoding the bytes
of the resulting string into an integer.)

setstate(state)
Set the state of the encoder to state. state must be a decoder state returned by getstate().

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter(stream[, errors])
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

6.6. codecs — Codec registry and base classes 107

The Python Library Reference, Release 3.2

The StreamWriter may implement different error handling schemes by providing the errors keyword
argument. These parameters are predefined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

•’xmlcharrefreplace’ Replace with the appropriate XML character reference

•’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the StreamWriter
object.

The set of allowed values for the errors argument can be extended with register_error().

write(object)
Writes the object’s contents encoded to the stream.

writelines(list)
Writes the concatenated list of strings to the stream (possibly by reusing the write() method).

reset()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader(stream[, errors])
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing the errors keyword
argument. These parameters are defined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the StreamReader
object.

The set of allowed values for the errors argument can be extended with register_error().

read([size[, chars[, firstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read() will never return more than
chars characters, but it might return less, if there are not enough characters available.

108 Chapter 6. String Services

The Python Library Reference, Release 3.2

size indicates the approximate maximum number of bytes to read from the stream for decoding pur-
poses. The decoder can modify this setting as appropriate. The default value -1 indicates to read and
decode as much as possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on
later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state
markers are available on the stream, these should be read too.

readline([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline() method.

If keepends is false line-endings will be stripped from the lines returned.

readlines([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read() method.

reset()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the lookup() function to construct the
instance.

class codecs.StreamReaderWriter(stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the StreamReader and StreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the lookup() function to construct the
instance.

class codecs.StreamRecoder(stream, encode, decode, Reader, Writer, errors)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend (the input to read() and output of write()) while Reader and Writer work on the
backend (reading and writing to the stream).

6.6. codecs — Codec registry and base classes 109

The Python Library Reference, Release 3.2

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.

stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the StreamReader and StreamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes.
They inherit all other methods and attributes from the underlying stream.

6.6.2 Encodings and Unicode

Strings are stored internally as sequences of codepoints (to be precise as Py_UNICODE arrays). Depending on
the way Python is compiled (either via --without-wide-unicode or --with-wide-unicode, with
the former being the default) Py_UNICODE is either a 16-bit or 32-bit data type. Once a string object is
used outside of CPU and memory, CPU endianness and how these arrays are stored as bytes become an is-
sue. Transforming a string object into a sequence of bytes is called encoding and recreating the string object
from the sequence of bytes is known as decoding. There are many different methods for how this transfor-
mation can be done (these methods are also called encodings). The simplest method is to map the codepoints
0-255 to the bytes 0x0-0xff. This means that a string object that contains codepoints above U+00FF can’t
be encoded with this method (which is called ’latin-1’ or ’iso-8859-1’). str.encode() will raise
a UnicodeEncodeError that looks like this: UnicodeEncodeError: ’latin-1’ codec can’t
encode character ’\u1234’ in position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these codepoints are mapped to the bytes 0x0-0xff. To see how this is done simply open
e.g. encodings/cp1252.py (which is an encoding that is used primarily on Windows). There’s a string
constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in Unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive
bytes. There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings
are called UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a
little endian machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem:
Bytes will always be in natural endianness. When these bytes are read by a CPU with a different endianness, then
bytes have to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so
called BOM (the “Byte Order Mark”). This is the Unicode character U+FEFF. This character will be prepended
to every UTF-16 byte sequence. The byte swapped version of this character (0xFFFE) is an illegal character
that may not appear in a Unicode text. So when the first character in an UTF-16 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately upto Unicode 4.0 the character U+FEFF had
a second purpose as a ZERO WIDTH NO-BREAK SPACE: A character that has no width and doesn’t allow a
word to be split. It can e.g. be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a
ZERO WIDTH NO-BREAK SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role).
Nevertheless Unicode software still must be able to handle U+FEFF in both roles: As a BOM it’s a device to
determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been decoded into a
string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
six 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

110 Chapter 6. String Services

The Python Library Reference, Release 3.2

Range Encoding
U-00000000 ... U-0000007F 0xxxxxxx
U-00000080 ... U-000007FF 110xxxxx 10xxxxxx
U-00000800 ... U-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
U-00010000 ... U-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
U-00200000 ... U-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
U-04000000 ... U-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s
the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-
8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which
a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls "utf-8-sig")
for its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM
(which looks like this as a byte sequence: 0xef, 0xbb, 0xbf) is written. As it’s rather improbable that any
charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in iso-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write
0xef, 0xbb, 0xbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they
appear as the first three bytes in the file.

6.6.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.
Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases; therefore, e.g. ’utf-8’ is a valid alias for the ’utf_8’ codec.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

• an ISO 8859 codeset

• a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

• an IBM EBCDIC code page

• an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5hkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp720 Arabic

Continued on next page

6.6. codecs — Codec registry and base classes 111

The Python Library Reference, Release 3.2

Table 6.1 – continued from previous page
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedonian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cp1006 Urdu
cp1026 ibm1026 Turkish
cp1140 ibm1140 Western Europe
cp1250 windows-1250 Central and Eastern Europe
cp1251 windows-1251 Bulgarian, Byelorussian, Macedonian, Russian, Serbian
cp1252 windows-1252 Western Europe
cp1253 windows-1253 Greek
cp1254 windows-1254 Turkish
cp1255 windows-1255 Hebrew
cp1256 windows-1256 Arabic
cp1257 windows-1257 Baltic languages
cp1258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001 Korean
gb2312 chinese, csiso58gb231280, euc- cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso- ir-58 Simplified Chinese
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
iso2022_jp csiso2022jp, iso2022jp, iso-2022-jp Japanese
iso2022_jp_1 iso2022jp-1, iso-2022-jp-1 Japanese
iso2022_jp_2 iso2022jp-2, iso-2022-jp-2 Japanese, Korean, Simplified Chinese, Western Europe, Greek
iso2022_jp_2004 iso2022jp-2004, iso-2022-jp-2004 Japanese
iso2022_jp_3 iso2022jp-3, iso-2022-jp-3 Japanese
iso2022_jp_ext iso2022jp-ext, iso-2022-jp-ext Japanese
iso2022_kr csiso2022kr, iso2022kr, iso-2022-kr Korean
latin_1 iso-8859-1, iso8859-1, 8859, cp819, latin, latin1, L1 West Europe
iso8859_2 iso-8859-2, latin2, L2 Central and Eastern Europe
iso8859_3 iso-8859-3, latin3, L3 Esperanto, Maltese
iso8859_4 iso-8859-4, latin4, L4 Baltic languages
iso8859_5 iso-8859-5, cyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbian
iso8859_6 iso-8859-6, arabic Arabic
iso8859_7 iso-8859-7, greek, greek8 Greek
iso8859_8 iso-8859-8, hebrew Hebrew

Continued on next page

112 Chapter 6. String Services

The Python Library Reference, Release 3.2

Table 6.1 – continued from previous page
iso8859_9 iso-8859-9, latin5, L5 Turkish
iso8859_10 iso-8859-10, latin6, L6 Nordic languages
iso8859_13 iso-8859-13, latin7, L7 Baltic languages
iso8859_14 iso-8859-14, latin8, L8 Celtic languages
iso8859_15 iso-8859-15, latin9, L9 Western Europe
iso8859_16 iso-8859-16, latin10, L10 South-Eastern Europe
johab cp1361, ms1361 Korean
koi8_r Russian
koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbian
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Eastern Europe
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcp154 csptcp154, pt154, cp154, cyrillic-asian Kazakh
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, s_jisx0213 Japanese
utf_32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 U16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8 all languages
utf_8_sig all languages

Codec Aliases Purpose
idna Implements RFC 3490, see also encodings.idna
mbcs dbcs Windows only: Encode operand according to the ANSI codepage (CP_ACP)
palmos Encoding of PalmOS 3.5
punycode Implements RFC 3492
raw_unicode_escape Produce a string that is suitable as raw Unicode literal in Python source code
undefined Raise an exception for all conversions. Can be used as the system encoding if no

automatic coercion between byte and Unicode strings is desired.
uni-
code_escape

Produce a string that is suitable as Unicode literal in Python source code

uni-
code_internal

Return the internal representation of the operand

The following codecs provide bytes-to-bytes mappings.

Codec Aliases Purpose
base64_codec base64, base-64 Convert operand to MIME base64
bz2_codec bz2 Compress the operand using bz2
hex_codec hex Convert operand to hexadecimal representation, with two

digits per byte
quo-
pri_codec

quopri, quoted-printable,
quotedprintable

Convert operand to MIME quoted printable

uu_codec uu Convert the operand using uuencode
zlib_codec zip, zlib Compress the operand using gzip

The following codecs provide string-to-string mappings.

Codec Aliases Purpose
rot_13 rot13 Returns the Caesar-cypher encryption of the operand

6.6. codecs — Codec registry and base classes 113

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 3.2

New in version 3.2: bytes-to-bytes and string-to-string codecs.

6.6.4 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492
(Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode
encoding and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name
containing non-ASCII characters (such as www.Alliancefrançaise.nu) is converted into an ASCII-
compatible encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the do-
main name is then used in all places where arbitrary characters are not allowed by the protocol, such as DNS
queries, HTTP Host fields, and so on. This conversion is carried out in the application; if possible invisible to
the user: The application should transparently convert Unicode domain labels to IDNA on the wire, and convert
back ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: The idna codec allows to convert between Unicode and the
ACE. Furthermore, the socket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On
top of that, modules that have host names as function parameters, such as http.client and ftplib, accept
Unicode host names (http.client then also transparently sends an IDNA hostname in the Host field if it
sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings.idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

encodings.idna.nameprep(label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII(label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode(label)
Convert a label to Unicode, as specified in RFC 3490.

6.6.5 encodings.mbcs — Windows ANSI codepage

Encode operand according to the ANSI codepage (CP_ACP). This codec only supports ’strict’ and
’replace’ error handlers to encode, and ’strict’ and ’ignore’ error handlers to decode.

Availability: Windows only. Changed in version 3.2: Before 3.2, the errors argument was ignored; ’replace’
was always used to encode, and ’ignore’ to decode.

6.6.6 encodings.utf_8_sig — UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be prepended
to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream).
For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

6.7 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 6.0.0.

114 Chapter 6. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
http://www.unicode.org/Public/6.0.0/ucd

The Python Library Reference, Release 3.2

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup(name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

unicodedata.name(chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if
not given, ValueError is raised.

unicodedata.decimal(chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit(chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.numeric(chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.category(chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional(chr)
Returns the bidirectional category assigned to the character chr as string. If no such value is defined, an
empty string is returned.

unicodedata.combining(chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining
class is defined.

unicodedata.east_asian_width(chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored(chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition(chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize(form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL
LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence.
In Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility

6.7. unicodedata — Unicode Database 115

http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/reports/tr44/tr44-6.html

The Python Library Reference, Release 3.2

characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ucd_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata
>>> unicodedata.lookup(’LEFT CURLY BRACKET’)
’{’
>>> unicodedata.name(’/’)
’SOLIDUS’
>>> unicodedata.decimal(’9’)
9
>>> unicodedata.decimal(’a’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category(’A’) # ’L’etter, ’u’ppercase
’Lu’
>>> unicodedata.bidirectional(’\u0660’) # ’A’rabic, ’N’umber
’AN’

6.8 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of the stringprep procedure are part of the profile. One example of a stringprep
profile is nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, stringprep provides the “characteristic function”, i.e. a function that returns true
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

stringprep.in_table_a1(code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_b1(code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

116 Chapter 6. String Services

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.2

stringprep.map_table_b2(code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3(code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

stringprep.in_table_c11(code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_c12(code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_c11_c12(code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21(code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22(code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22(code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3(code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4(code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5(code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6(code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7(code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8(code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9(code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1(code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2(code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.8. stringprep — Internet String Preparation 117

The Python Library Reference, Release 3.2

118 Chapter 6. String Services

CHAPTER

SEVEN

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-
type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, list, set and frozenset, and tuple.
The str class is used to hold Unicode strings, and the bytes class is used to hold binary data.

The following modules are documented in this chapter:

7.1 datetime — Basic date and time types

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for
output formatting and manipulation. For related functionality, see also the time and calendar modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object
has any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment.
Whether a naive datetime object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it’s up to the program whether a particular number represents
metres, miles, or mass. Naive datetime objects are easy to understand and to work with, at the cost of ignoring
some aspects of reality.

For applications requiring more, datetime and time objects have an optional time zone information member,
tzinfo, that can contain an instance of a subclass of the abstract tzinfo class. These tzinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect.
Note that only one concrete tzinfo class, the timezone class, is supplied by the datetime module. The
timezone class can reprsent simple timezones with fixed offset from UTC such as UTC itself or North American
EST and EDT timezones. Supporting timezones at whatever level of detail is required is up to the application.
The rules for time adjustment across the world are more political than rational, change frequently, and there is no
standard suitable for every application aside from UTC.

The datetime module exports the following constants:

datetime.MINYEAR
The smallest year number allowed in a date or datetime object. MINYEAR is 1.

datetime.MAXYEAR
The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

See Also:

Module calendar General calendar related functions.

Module time Time access and conversions.

119

The Python Library Reference, Release 3.2

7.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond, and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

class datetime.timezone
A class that implements the tzinfo abstract base class as a fixed offset from the UTC. New in version 3.2.

Objects of these types are immutable.

Objects of the date type are always naive.

An object d of type time or datetime may be naive or aware. d is aware if d.tzinfo is not None and
d.tzinfo.utcoffset(d) does not return None. If d.tzinfo is None, or if d.tzinfo is not None but
d.tzinfo.utcoffset(d) returns None, d is naive.

The distinction between naive and aware doesn’t apply to timedelta objects.

Subclass relationships:

object
timedelta
tzinfo

timezone
time
date

datetime

7.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0,
hours=0, weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or
negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

•A millisecond is converted to 1000 microseconds.

•A minute is converted to 60 seconds.

•An hour is converted to 3600 seconds.

•A week is converted to 7 days.

120 Chapter 7. Data Types

The Python Library Reference, Release 3.2

and days, seconds and microseconds are then normalized so that the representation is unique, with

•0 <= microseconds < 1000000

•0 <= seconds < 3600*24 (the number of seconds in one day)

•-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float,
the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> from datetime import timedelta
>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

timedelta.min
The most negative timedelta object, timedelta(-999999999).

timedelta.max
The most positive timedelta object, timedelta(days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,
timedelta(microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. -timedelta.max is not
representable as a timedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive

Supported operations:

7.1. datetime — Basic date and time types 121

The Python Library Reference, Release 3.2

Operation Result
t1 = t2 + t3 Sum of t2 and t3. Afterwards t1-t2 == t3 and t1-t3 == t2 are true. (1)
t1 = t2 - t3 Difference of t2 and t3. Afterwards t1 == t2 - t3 and t2 == t1 + t3 are true. (1)
t1 = t2 * i or
t1 = i * t2

Delta multiplied by an integer. Afterwards t1 // i == t2 is true, provided i != 0.

In general, t1 * i == t1 * (i-1) + t1 is true. (1)
t1 = t2 * f or
t1 = f * t2

Delta multiplied by a float. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

f = t2 / t3 Division (3) of t2 by t3. Returns a float object.
t1 = t2 / f or
t1 = t2 / i

Delta divided by a float or an int. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

t1 = t2 // i or t1
= t2 // t3

The floor is computed and the remainder (if any) is thrown away. In the second
case, an integer is returned. (3)

t1 = t2 % t3 The remainder is computed as a timedelta object. (3)
q, r =
divmod(t1, t2)

Computes the quotient and the remainder: q = t1 // t2 (3) and r = t1 %
t2. q is an integer and r is a timedelta object.

+t1 Returns a timedelta object with the same value. (2)
-t1 equivalent to timedelta(-t1.days, -t1.seconds, -t1.microseconds), and to t1*

-1. (1)(4)
abs(t) equivalent to +t when t.days >= 0, and to -t when t.days < 0. (2)
str(t) Returns a string in the form [D day[s],][H]H:MM:SS[.UUUUUU],

where D is negative for negative t. (5)
repr(t) Returns a string in the form datetime.timedelta(D[, S[, U]]),

where D is negative for negative t. (5)

Notes:

1. This is exact, but may overflow.

2. This is exact, and cannot overflow.

3. Division by 0 raises ZeroDivisionError.

4. -timedelta.max is not representable as a timedelta object.

5. String representations of timedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta(hours=-5)
datetime.timedelta(-1, 68400)
>>> print(_)
-1 day, 19:00:00

In addition to the operations listed above timedelta objects support certain additions and subtractions with
date and datetime objects (see below). Changed in version 3.2: Floor division and true division of a
timedelta object by another timedelta object are now supported, as are remainder operations and the
divmod() function. True division and multiplication of a timedelta object by a float object are now sup-
ported. Comparisons of timedelta objects are supported with the timedelta object representing the smaller
duration considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a timedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or !=. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
a timedelta object is considered to be true if and only if it isn’t equal to timedelta(0).

Instance methods:

timedelta.total_seconds()
Return the total number of seconds contained in the duration. Equivalent to td /
timedelta(seconds=1).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose
microsecond accuracy. New in version 3.2.

Example usage:

122 Chapter 7. Data Types

The Python Library Reference, Release 3.2

>>> from datetime import timedelta
>>> year = timedelta(days=365)
>>> another_year = timedelta(weeks=40, days=84, hours=23,
... minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds()
31536000.0
>>> year == another_year
True
>>> ten_years = 10 * year
>>> ten_years, ten_years.days // 365
(datetime.timedelta(3650), 10)
>>> nine_years = ten_years - year
>>> nine_years, nine_years.days // 365
(datetime.timedelta(3285), 9)
>>> three_years = nine_years // 3;
>>> three_years, three_years.days // 365
(datetime.timedelta(1095), 3)
>>> abs(three_years - ten_years) == 2 * three_years + year
True

7.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

class datetime.date(year, month, day)
All arguments are required. Arguments may be integers, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

classmethod date.today()
Return the current local date. This is equivalent to date.fromtimestamp(time.time()).

classmethod date.fromtimestamp(timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time().
This may raise ValueError, if the timestamp is out of the range of values supported by the platform
C localtime() function. It’s common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored by fromtimestamp().

classmethod date.fromordinal(ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal(). For any date d,
date.fromordinal(d.toordinal()) == d.

Class attributes:

date.min
The earliest representable date, date(MINYEAR, 1, 1).

date.max
The latest representable date, date(MAXYEAR, 12, 31).

7.1. datetime — Basic date and time types 123

The Python Library Reference, Release 3.2

date.resolution
The smallest possible difference between non-equal date objects, timedelta(days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = date1 + timedelta date2 is timedelta.days days removed from date1. (1)
date2 = date1 - timedelta Computes date2 such that date2 + timedelta == date1. (2)
timedelta = date1 - date2 (3)
date1 < date2 date1 is considered less than date2 when date1 precedes date2 in time. (4)

Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days
< 0. Afterward date2 - date1 == timedelta.days. timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to date1 + (-timedelta), because -timedelta in isolation can overflow in cases
where date1 - timedelta does not. timedelta.seconds and timedelta.microseconds are ig-
nored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == date1 after.

4. In other words, date1 < date2 if and only if date1.toordinal() < date2.toordinal().
In order to stop comparison from falling back to the default scheme of comparing object addresses, date
comparison normally raises TypeError if the other comparand isn’t also a date object. However,
NotImplemented is returned instead if the other comparand has a timetuple() attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date
object is compared to an object of a different type, TypeError is raised unless the comparison is == or
!=. The latter cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.

Instance methods:

date.replace(year, month, day)
Return a date with the same value, except for those members given new values by whichever keyword
arguments are specified. For example, if d == date(2002, 12, 31), then d.replace(day=26)
== date(2002, 12, 26).

date.timetuple()
Return a time.struct_time such as returned by time.localtime(). The hours,
minutes and seconds are 0, and the DST flag is -1. d.timetuple() is equivalent
to time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday,
-1)), where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the
day number within the current year starting with 1 for January 1st.

date.toordinal()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
object d, date.fromordinal(d.toordinal()) == d.

date.weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date(2002,
12, 4).weekday() == 2, a Wednesday. See also isoweekday().

124 Chapter 7. Data Types

The Python Library Reference, Release 3.2

date.isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date(2002,
12, 4).isoweekday() == 3, a Wednesday. See also weekday(), isocalendar().

date.isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so that date(2003, 12, 29).isocalendar() == (2004, 1,
1) and date(2004, 1, 4).isocalendar() == (2004, 1, 7).

date.isoformat()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date(2002,
12, 4).isoformat() == ’2002-12-04’.

date.__str__()
For a date d, str(d) is equivalent to d.isoformat().

date.ctime()
Return a string representing the date, for example date(2002, 12,
4).ctime() == ’Wed Dec 4 00:00:00 2002’. d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native C ctime()
function (which time.ctime() invokes, but which date.ctime() does not invoke) conforms to the
C standard.

date.strftime(format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. See section strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time
>>> from datetime import date
>>> today = date.today()
>>> today
datetime.date(2007, 12, 5)
>>> today == date.fromtimestamp(time.time())
True
>>> my_birthday = date(today.year, 6, 24)
>>> if my_birthday < today:
... my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday
datetime.date(2008, 6, 24)
>>> time_to_birthday = abs(my_birthday - today)
>>> time_to_birthday.days
202

Example of working with date:

>>> from datetime import date
>>> d = date.fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d
datetime.date(2002, 3, 11)
>>> t = d.timetuple()
>>> for i in t:
... print(i)
2002 # year

7.1. datetime — Basic date and time types 125

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

The Python Library Reference, Release 3.2

3 # month
11 # day
0
0
0
0 # weekday (0 = Monday)
70 # 70th day in the year
-1
>>> ic = d.isocalendar()
>>> for i in ic:
... print(i)
2002 # ISO year
11 # ISO week number
1 # ISO day number (1 = Monday)
>>> d.isoformat()
’2002-03-11’
>>> d.strftime("%d/%m/%y")
’11/03/02’
>>> d.strftime("%A %d. %B %Y")
’Monday 11. March 2002’

7.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a time object.
Like a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time
object, datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime(year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None)

The year, month and day arguments are required. tzinfo may be None, or an instance of a tzinfo subclass.
The remaining arguments may be integers, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond < 1000000

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

classmethod datetime.today()
Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp(time.time()). See also now(), fromtimestamp().

classmethod datetime.now(tz=None)
Return the current local date and time. If optional argument tz is None or not specified, this is
like today(), but, if possible, supplies more precision than can be gotten from going through
a time.time() timestamp (for example, this may be possible on platforms supplying the C
gettimeofday() function).

126 Chapter 7. Data Types

The Python Library Reference, Release 3.2

Else tz must be an instance of a class tzinfo subclass, and the current date
and time are converted to tz‘s time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcnow().replace(tzinfo=tz)). See also today(), utcnow().

classmethod datetime.utcnow()
Return the current UTC date and time, with tzinfo None. This is like now(), but returns the current
UTC date and time, as a naive datetime object. An aware current UTC datetime can be obtained by
calling datetime.now(timezone.utc). See also now().

classmethod datetime.fromtimestamp(timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time(). If optional argument tz is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returned datetime object is naive.

Else tz must be an instance of a class tzinfo subclass, and the times-
tamp is converted to tz‘s time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).

fromtimestamp() may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime() or gmtime() functions. It’s common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a times-
tamp, leap seconds are ignored by fromtimestamp(), and then it’s possible to have two timestamps
differing by a second that yield identical datetime objects. See also utcfromtimestamp().

classmethod datetime.utcfromtimestamp(timestamp)
Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may raise
ValueError, if the timestamp is out of the range of values supported by the platform C gmtime() func-
tion. It’s common for this to be restricted to years in 1970 through 2038. See also fromtimestamp().

classmethod datetime.fromordinal(ordinal)
Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal(). The
hour, minute, second and microsecond of the result are all 0, and tzinfo is None.

classmethod datetime.combine(date, time)
Return a new datetime object whose date members are equal to the given date object’s, and whose
time and tzinfo members are equal to the given time object’s. For any datetime object d, d
== datetime.combine(d.date(), d.timetz()). If date is a datetime object, its time and
tzinfo members are ignored.

classmethod datetime.strptime(date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime(*(time.strptime(date_string, format)[0:6])). ValueError is raised if
the date_string and format can’t be parsed by time.strptime() or if it returns a value which isn’t a
time tuple. See section strftime() and strptime() Behavior.

Class attributes:

datetime.min
The earliest representable datetime, datetime(MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects,
timedelta(microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

7.1. datetime — Basic date and time types 127

The Python Library Reference, Release 3.2

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range(24).

datetime.minute
In range(60).

datetime.second
In range(60).

datetime.microsecond
In range(1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the datetime constructor, or None if none was passed.

Supported operations:

Operation Result
datetime2 = datetime1 + timedelta (1)
datetime2 = datetime1 - timedelta (2)
timedelta = datetime1 - datetime2 (3)
datetime1 < datetime2 Compares datetime to datetime. (4)

1. datetime2 is a duration of timedelta removed from datetime1, moving forward in time if
timedelta.days > 0, or backward if timedelta.days < 0. The result has the same tzinfo mem-
ber as the input datetime, and datetime2 - datetime1 == timedelta after. OverflowError is raised if
datetime2.year would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone adjust-
ments are done even if the input is an aware object.

2. Computes the datetime2 such that datetime2 + timedelta == datetime1. As for addition, the result has the
same tzinfo member as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn’t quite equivalent to datetime1 + (-timedelta), because -timedelta in isolation can overflow
in cases where datetime1 - timedelta does not.

3. Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo member, the tzinfo members are ignored,
and the result is a timedelta object t such that datetime2 + t == datetime1. No time zone
adjustments are done in this case.

If both are aware and have different tzinfo members, a-b acts as if a and b were first converted
to naive UTC datetimes first. The result is (a.replace(tzinfo=None) - a.utcoffset())
- (b.replace(tzinfo=None) - b.utcoffset()) except that the implementation never over-
flows.

4. datetime1 is considered less than datetime2 when datetime1 precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware,
and have the same tzinfo member, the common tzinfo member is ignored and the base datetimes are
compared. If both comparands are aware and have different tzinfo members, the comparands are first
adjusted by subtracting their UTC offsets (obtained from self.utcoffset()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datetime object.
However, NotImplemented is returned instead if the other comparand has a timetuple() attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a
datetime object is compared to an object of a different type, TypeError is raised unless the comparison
is == or !=. The latter cases return False or True, respectively.

128 Chapter 7. Data Types

The Python Library Reference, Release 3.2

datetime objects can be used as dictionary keys. In Boolean contexts, all datetime objects are considered to
be true.

Instance methods:

datetime.date()
Return date object with same year, month and day.

datetime.time()
Return time object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz().

datetime.timetz()
Return time object with same hour, minute, second, microsecond, and tzinfo members. See also method
time().

datetime.replace([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]
])

Return a datetime with the same members, except for those members given new values by whichever key-
word arguments are specified. Note that tzinfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.

datetime.astimezone(tz)
Return a datetime object with new tzinfo member tz, adjusting the date and time members so the
result is the same UTC time as self, but in tz‘s local time.

tz must be an instance of a tzinfo subclass, and its utcoffset() and dst() methods must not return
None. self must be aware (self.tzinfomust not be None, and self.utcoffset()must not return
None).

If self.tzinfo is tz, self.astimezone(tz) is equal to self : no adjustment of date or time mem-
bers is performed. Else the result is local time in time zone tz, representing the same UTC time as self : after
astz = dt.astimezone(tz), astz - astz.utcoffset()will usually have the same date and
time members as dt - dt.utcoffset(). The discussion of class tzinfo explains the cases at Day-
light Saving Time transition boundaries where this cannot be achieved (an issue only if tz models both
standard and daylight time).

If you merely want to attach a time zone object tz to a datetime dt without adjustment of date and time
members, use dt.replace(tzinfo=tz). If you merely want to remove the time zone object from an
aware datetime dt without conversion of date and time members, use dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc() method can be overridden in a tzinfo subclass to affect the
result returned by astimezone(). Ignoring error cases, astimezone() acts like:

def astimezone(self, tz):
if self.tzinfo is tz:

return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz’s local time.
return tz.fromutc(utc)

datetime.utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(self), and raises an
exception if the latter doesn’t return None, or a timedelta object representing a whole number of minutes
with magnitude less than one day.

datetime.dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(self), and raises an exception
if the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

7.1. datetime — Basic date and time types 129

The Python Library Reference, Release 3.2

datetime.tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(self), raises an exception if
the latter doesn’t return None or a string object,

datetime.timetuple()
Return a time.struct_time such as returned by time.localtime(). d.timetuple() is
equivalent to time.struct_time((d.year, d.month, d.day, d.hour, d.minute,
d.second, d.weekday(), yday, dst)), where yday = d.toordinal() -
date(d.year, 1, 1).toordinal() + 1 is the day number within the current year starting
with 1 for January 1st. The tm_isdst flag of the result is set according to the dst() method: tzinfo
is None or dst() returns None, tm_isdst is set to -1; else if dst() returns a non-zero value,
tm_isdst is set to 1; else tm_isdst is set to 0.

datetime.utctimetuple()
If datetime instance d is naive, this is the same as d.timetuple() except that tm_isdst is forced
to 0 regardless of what d.dst() returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset(), and a
time.struct_time for the normalized time is returned. tm_isdst is forced to 0. Note that an
OverflowError may be raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a
year boundary.

datetime.toordinal()
Return the proleptic Gregorian ordinal of the date. The same as self.date().toordinal().

datetime.weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date().weekday(). See also isoweekday().

datetime.isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date().isoweekday(). See also weekday(), isocalendar().

datetime.isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date().isocalendar().

datetime.isoformat(sep=’T’)
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecond is 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default ’T’) is a one-character separator, placed between the date and time
portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(’ ’)
’2002-12-25 00:00:00-06:39’

datetime.__str__()
For a datetime instance d, str(d) is equivalent to d.isoformat(’ ’).

datetime.ctime()
Return a string representing the date and time, for example datetime(2002, 12, 4,
20, 30, 40).ctime() == ’Wed Dec 4 20:30:40 2002’. d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native C ctime() func-
tion (which time.ctime() invokes, but which datetime.ctime() does not invoke) conforms to the
C standard.

130 Chapter 7. Data Types

The Python Library Reference, Release 3.2

datetime.strftime(format)
Return a string representing the date and time, controlled by an explicit format string. See section strftime()
and strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time
>>> # Using datetime.combine()
>>> d = date(2005, 7, 14)
>>> t = time(12, 30)
>>> datetime.combine(d, t)
datetime.datetime(2005, 7, 14, 12, 30)
>>> # Using datetime.now() or datetime.utcnow()
>>> datetime.now()
datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow()
datetime.datetime(2007, 12, 6, 15, 29, 43, 79060)
>>> # Using datetime.strptime()
>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y %H:%M")
>>> dt
datetime.datetime(2006, 11, 21, 16, 30)
>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple()
>>> for it in tt:
... print(it)
...
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January
-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
>>> ic = dt.isocalendar()
>>> for it in ic:
... print(it)
...
2006 # ISO year
47 # ISO week
2 # ISO weekday
>>> # Formatting datetime
>>> dt.strftime("%A, %d. %B %Y %I:%M%p")
’Tuesday, 21. November 2006 04:30PM’

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1(tzinfo):
... def __init__(self): # DST starts last Sunday in March
... d = datetime(dt.year, 4, 1) # ends last Sunday in October
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... def utcoffset(self, dt):
... return timedelta(hours=1) + self.dst(dt)
... def dst(self, dt):
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:

7.1. datetime — Basic date and time types 131

The Python Library Reference, Release 3.2

... return timedelta(hours=1)

... else:

... return timedelta(0)

... def tzname(self,dt):

... return "GMT +1"

...
>>> class GMT2(tzinfo):
... def __init__(self):
... d = datetime(dt.year, 4, 1)
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... def utcoffset(self, dt):
... return timedelta(hours=1) + self.dst(dt)
... def dst(self, dt):
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
... return timedelta(hours=2)
... else:
... return timedelta(0)
... def tzname(self,dt):
... return "GMT +2"
...
>>> gmt1 = GMT1()
>>> # Daylight Saving Time
>>> dt1 = datetime(2006, 11, 21, 16, 30, tzinfo=gmt1)
>>> dt1.dst()
datetime.timedelta(0)
>>> dt1.utcoffset()
datetime.timedelta(0, 3600)
>>> dt2 = datetime(2006, 6, 14, 13, 0, tzinfo=gmt1)
>>> dt2.dst()
datetime.timedelta(0, 3600)
>>> dt2.utcoffset()
datetime.timedelta(0, 7200)
>>> # Convert datetime to another time zone
>>> dt3 = dt2.astimezone(GMT2())
>>> dt3
datetime.datetime(2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2
datetime.datetime(2006, 6, 14, 13, 0, tzinfo=<GMT1 object at 0x...>)
>>> dt2.utctimetuple() == dt3.utctimetuple()
True

7.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time(hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
All arguments are optional. tzinfo may be None, or an instance of a tzinfo subclass. The remaining
arguments may be integers, in the following ranges:

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond < 1000000.

132 Chapter 7. Data Types

The Python Library Reference, Release 3.2

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable time, time(0, 0, 0, 0).

time.max
The latest representable time, time(23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal time objects, timedelta(microseconds=1),
although note that arithmetic on time objects is not supported.

Instance attributes (read-only):

time.hour
In range(24).

time.minute
In range(60).

time.second
In range(60).

time.microsecond
In range(1000000).

time.tzinfo
The object passed as the tzinfo argument to the time constructor, or None if none was passed.

Supported operations:

• comparison of time to time, where a is considered less than b when a precedes b in time. If one com-
parand is naive and the other is aware, TypeError is raised. If both comparands are aware, and have the
same tzinfo member, the common tzinfo member is ignored and the base times are compared. If both
comparands are aware and have different tzinfo members, the comparands are first adjusted by subtract-
ing their UTC offsets (obtained from self.utcoffset()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, when a time object is compared to an object
of a different type, TypeError is raised unless the comparison is == or !=. The latter cases return False
or True, respectively.

• hash, use as dict key

• efficient pickling

• in Boolean contexts, a time object is considered to be true if and only if, after converting it to minutes and
subtracting utcoffset() (or 0 if that’s None), the result is non-zero.

Instance methods:

time.replace([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Return a time with the same value, except for those members given new values by whichever keyword
arguments are specified. Note that tzinfo=None can be specified to create a naive time from an aware
time, without conversion of the time members.

time.isoformat()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

time.__str__()
For a time t, str(t) is equivalent to t.isoformat().

7.1. datetime — Basic date and time types 133

The Python Library Reference, Release 3.2

time.strftime(format)
Return a string representing the time, controlled by an explicit format string. See section strftime() and
strptime() Behavior.

time.utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(None), and raises an
exception if the latter doesn’t return None or a timedelta object representing a whole number of minutes
with magnitude less than one day.

time.dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(None), and raises an exception
if the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

time.tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(None), or raises an exception
if the latter doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT1(tzinfo):
... def utcoffset(self, dt):
... return timedelta(hours=1)
... def dst(self, dt):
... return timedelta(0)
... def tzname(self,dt):
... return "Europe/Prague"
...
>>> t = time(12, 10, 30, tzinfo=GMT1())
>>> t
datetime.time(12, 10, 30, tzinfo=<GMT1 object at 0x...>)
>>> gmt = GMT1()
>>> t.isoformat()
’12:10:30+01:00’
>>> t.dst()
datetime.timedelta(0)
>>> t.tzname()
’Europe/Prague’
>>> t.strftime("%H:%M:%S %Z")
’12:10:30 Europe/Prague’

7.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the standard tzinfo methods needed by
the datetime methods you use. The datetime module supplies a simple concrete subclass of tzinfo
timezone which can reprsent timezones with fixed offset from UTC such as UTC itself or North American EST
and EDT.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their members as being in local time, and the tzinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init__() method that can be called
with no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datetime objects. If in doubt, simply implement all of them.

134 Chapter 7. Data Types

The Python Library Reference, Release 3.2

tzinfo.utcoffset(dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for example, if a tzinfo object
represents both time zone and DST adjustments, utcoffset() should return their sum. If the UTC offset
isn’t known, return None. Else the value returned must be a timedelta object specifying a whole number
of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementations of utcoffset() will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not return None, dst() should not return None either.

The default implementation of utcoffset() raises NotImplementedError.

tzinfo.dst(dt)
Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta(0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset() for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned by utcoffset(), so there’s no need to consult dst() unless you’re
interested in obtaining DST info separately. For example, datetime.timetuple() calls its tzinfo
member’s dst() method to determine how the tm_isdst flag should be set, and tzinfo.fromutc()
calls dst() to account for DST changes when crossing time zones.

An instance tz of a tzinfo subclass that models both standard and daylight times must be consistent in
this sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for every datetime dt with dt.tzinfo == tz For sane tzinfo sub-
classes, this expression yields the time zone’s “standard offset”, which should not depend on the date or
the time, but only on geographic location. The implementation of datetime.astimezone() relies on
this, but cannot detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass
cannot guarantee this, it may be able to override the default implementation of tzinfo.fromutc() to
work correctly with astimezone() regardless.

Most implementations of dst() will probably look like one of these two:

def dst(self):
a fixed-offset class: doesn’t account for DST
return timedelta(0)

or

def dst(self):
Code to set dston and dstoff to the time zone’s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

The default implementation of dst() raises NotImplementedError.

tzinfo.tzname(dt)
Return the time zone name corresponding to the datetime object dt, as a string. Nothing about string
names is defined by the datetime module, and there’s no requirement that it mean anything in particular.
For example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid
replies. Return None if a string name isn’t known. Note that this is a method rather than a fixed string

7.1. datetime — Basic date and time types 135

The Python Library Reference, Release 3.2

primarily because some tzinfo subclasses will wish to return different names depending on the specific
value of dt passed, especially if the tzinfo class is accounting for daylight time.

The default implementation of tzname() raises NotImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a time object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a dt argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the tzinfo protocols. It may be more
useful for utcoffset(None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as
self. tzinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the
tzinfo methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more tzinfo method that a subclass may wish to override:

tzinfo.fromutc(dt)
This is called from the default datetime.astimezone() implementation. When called from that,
dt.tzinfo is self, and dt‘s date and time members are to be viewed as expressing a UTC time. The
purpose of fromutc() is to adjust the date and time members, returning an equivalent datetime in self ‘s
local time.

Most tzinfo subclasses should be able to inherit the default fromutc() implementation without prob-
lems. It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the default fromutc() implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political
reasons. The default implementations of astimezone() and fromutc() may not produce the result
you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc() implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:

dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError if dtdst is None

if dtdst:
return dt + dtdst

else:
return dt

Example tzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.

class UTC(tzinfo):
"""UTC"""

136 Chapter 7. Data Types

The Python Library Reference, Release 3.2

def utcoffset(self, dt):
return ZERO

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
"""Fixed offset in minutes east from UTC."""

def __init__(self, offset, name):
self.__offset = timedelta(minutes = offset)
self.__name = name

def utcoffset(self, dt):
return self.__offset

def tzname(self, dt):
return self.__name

def dst(self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone(tzinfo):

def utcoffset(self, dt):
if self._isdst(dt):

return DSTOFFSET
else:

return STDOFFSET

def dst(self, dt):
if self._isdst(dt):

return DSTDIFF
else:

return ZERO

def tzname(self, dt):

7.1. datetime — Basic date and time types 137

The Python Library Reference, Release 3.2

return _time.tzname[self._isdst(dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,

dt.hour, dt.minute, dt.second,
dt.weekday(), 0, 0)

stamp = _time.mktime(tt)
tt = _time.localtime(stamp)
return tt.tm_isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday()
if days_to_go:

dt += timedelta(days_to_go)
return dt

US DST Rules
#
This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-link.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)
#
In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime(1, 3, 8, 2)
and ends at 2am (DST time; 1am standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)
From 1987 to 2006, DST used to start at 2am (standard time) on the first
Sunday in April and to end at 2am (DST time; 1am standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)
DSTEND_1987_2006 = datetime(1, 10, 25, 1)
From 1967 to 1986, DST used to start at 2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time;
1am standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.
DSTSTART_1967_1986 = datetime(1, 4, 24, 2)
DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone(tzinfo):

def __init__(self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta(hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def __repr__(self):
return self.reprname

138 Chapter 7. Data Types

The Python Library Reference, Release 3.2

def tzname(self, dt):
if self.dst(dt):

return self.dstname
else:

return self.stdname

def utcoffset(self, dt):
return self.stdoffset + self.dst(dt)

def dst(self, dt):
if dt is None or dt.tzinfo is None:

An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:

dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:

return ZERO

start = first_sunday_on_or_after(dststart.replace(year=dt.year))
end = first_sunday_on_or_after(dstend.replace(year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:

return HOUR
else:

return ZERO

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a tzinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the
first Sunday in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM

end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so astimezone(Eastern) won’t deliver a result with hour == 2 on
the day DST begins. In order for astimezone() to make this guarantee, the rzinfo.dst() method must

7.1. datetime — Basic date and time types 139

The Python Library Reference, Release 3.2

consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. astimezone() mimics the local clock’s behavior by mapping
two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In order for astimezone() to make this guarantee,
the tzinfo.dst() method must consider times in the “repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid tzinfo subclasses; there are no ambi-
guities when using timezone, or any other fixed-offset tzinfo subclass (such as a class representing only EST
(fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

7.1.7 timezone Objects

A timezone object represents a timezone that is defined by a fixed offset from UTC. Note that objects of this
class cannot be used to represent timezone information in the locations where different offsets are used in different
days of the year or where historical changes have been made to civil time.

class datetime.timezone(offset[, name])
The offset argument must be specified as a timedelta object representing the difference between the local
time and UTC. It must be strictly between -timedelta(hours=24) and timedelta(hours=24)
and represent a whole number of minutes, otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that is used as the value returned by the
tzname(dt) method. Otherwise, tzname(dt) returns a string ‘UTCsHH:MM’, where s is the sign of
offset, HH and MM are two digits of offset.hours and offset.minutes respectively.

timezone.utcoffset(dt)
Return the fixed value specified when the timezone instance is constructed. The dt argument is ignored.
The return value is a timedelta instance equal to the difference between the local time and UTC.

timezone.tzname(dt)
Return the fixed value specified when the timezone instance is constructed or a string ‘UTCsHH:MM’,
where s is the sign of offset, HH and MM are two digits of offset.hours and offset.minutes
respectively.

timezone.dst(dt)
Always returns None.

timezone.fromutc(dt)
Return dt + offset. The dt argument must be an aware datetime instance, with tzinfo set to
self.

Class attributes:

timezone.utc
The UTC timezone, timezone(timedelta(0)).

7.1.8 strftime() and strptime() Behavior

date, datetime, and time objects all support a strftime(format)method, to create a string representing
the time under the control of an explicit format string. Broadly speaking, d.strftime(fmt) acts like the time
module’s time.strftime(fmt, d.timetuple()) although not all objects support a timetuple()
method.

Conversely, the datetime.strptime() class method creates a datetime object from a string representing
a date and time and a corresponding format string. datetime.strptime(date_string, format) is
equivalent to datetime(*(time.strptime(date_string, format)[0:6])).

140 Chapter 7. Data Types

The Python Library Reference, Release 3.2

For time objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, 0 is substituted for them.

For a naive object, the %z and %Z format codes are replaced by empty strings.

For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, if utcoffset() returns timedelta(hours=-3, minutes=-30),
%z is replaced with the string ’-0330’.

%Z If tzname() returns None, %Z is replaced by an empty string. Otherwise %Z is replaced by the returned
value, which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

Di-
rec-
tive

Meaning Notes

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%f Microsecond as a decimal number [0,999999], zero-padded on the left (1)
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. (2)
%S Second as a decimal number [00,59]. (3)
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53].

All days in a new year preceding the first Sunday are considered to be in week 0.
(4)

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53].

All days in a new year preceding the first Monday are considered to be in week 0.
(4)

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number [0001,9999] (strptime), [1000,9999] (strftime). (5)
%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). (6)
%Z Time zone name (empty string if the object is naive).
%% A literal ’%’ character.

Notes:

1. When used with the strptime() method, the %f directive accepts from one to six digits and zero pads on
the right. %f is an extension to the set of format characters in the C standard (but implemented separately
in datetime objects, and therefore always available).

2. When used with the strptime() method, the %p directive only affects the output hour field if the %I
directive is used to parse the hour.

7.1. datetime — Basic date and time types 141

The Python Library Reference, Release 3.2

3. Unlike time module, datetime module does not support leap seconds.

4. When used with the strptime() method, %U and %W are only used in calculations when the day of the
week and the year are specified.

5. For technical reasons, strftime() method does not support dates before year 1000:
t.strftime(format) will raise a ValueError when t.year < 1000 even if format
does not contain %Y directive. The strptime() method can parse years in the full [1, 9999] range,
but years < 1000 must be zero-filled to 4-digit width. Changed in version 3.2: In previous versions,
strftime() method was restricted to years >= 1900.

6. For example, if utcoffset() returns timedelta(hours=-3, minutes=-30), %z is replaced
with the string ’-0330’.

Changed in version 3.2: When the %z directive is provided to the strptime() method, an aware datetime
object will be produced. The tzinfo of the result will be set to a timezone instance.

7.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Use setfirstweekday() to set the first day of the week to Sunday (6) or
to any other weekday. Parameters that specify dates are given as integers. For related functionality, see also the
datetime and time modules.

Most of these functions and classes rely on the datetime module which uses an idealized calendar, the current
Gregorian calendar extended in both directions. This matches the definition of the “proleptic Gregorian” calendar
in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations.

class calendar.Calendar(firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for format-
ting. This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the firstweekday property.

itermonthdates(year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end
of the month that are required to get a complete week.

itermonthdays2(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days
returned will simply be day numbers.

monthdatescalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

142 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/calendar.py?view=markup

The Python Library Reference, Release 3.2

monthdays2calendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar(year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month rows.
Each month row contains up to width months (defaulting to 3). Each month contains between 4 and 6
weeks and each week contains 1–7 days. Days are datetime.date objects.

yeardays2calendar(year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar(year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar(firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatmonth(theyear, themonth, w=0, l=0)
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date
columns, which are centered. If l is given, it specifies the number of lines that each week will use.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday()
method.

prmonth(theyear, themonth, w=0, l=0)
Print a month’s calendar as returned by formatmonth().

formatyear(theyear, w=2, l=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, l, and c
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear(theyear, w=2, l=1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear().

class calendar.HTMLCalendar(firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth(theyear, themonth, withyear=True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the
header, otherwise just the month name will be used.

formatyear(theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months
per row.

formatyearpage(theyear, width=3, css=’calendar.css’, encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no
style sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the
system default encoding).

class calendar.LocaleTextCalendar(firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and

7.2. calendar — General calendar-related functions 143

The Python Library Reference, Release 3.2

weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar(firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

Note: The formatweekday() and formatmonthname() methods of these two classes temporarily change
the current locale to the given locale. Because the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday(weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

calendar.firstweekday()
Returns the current setting for the weekday to start each week.

calendar.isleap(year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays(y1, y2)
Returns the number of leap years in the range from y1 to y2 (exclusive), where y1 and y2 are years.

This function works for ranges spanning a century change.

calendar.weekday(year, month, day)
Returns the day of the week (0 is Monday) for year (1970–...), month (1–12), day (1–31).

calendar.weekheader(n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar.monthrange(year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar.monthcalendar(year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by setfirstweekday().

calendar.prmonth(theyear, themonth, w=0, l=0)
Prints a month’s calendar as returned by month().

calendar.month(theyear, themonth, w=0, l=0)
Returns a month’s calendar in a multi-line string using the formatmonth() of the TextCalendar
class.

calendar.prcal(year, w=0, l=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar().

calendar.calendar(year, w=2, l=1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear() of the
TextCalendar class.

calendar.timegm(tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime() function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

The calendar module exports the following data attributes:

144 Chapter 7. Data Types

The Python Library Reference, Release 3.2

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar.month_name
An array that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13 and month_name[0] is the empty string.

calendar.month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr[0] is the empty
string.

See Also:

Module datetime Object-oriented interface to dates and times with similar functionality to the time module.

Module time Low-level time related functions.

7.3 collections — Container datatypes

Source code: Lib/collections.py and Lib/_abcoll.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-
in containers, dict, list, set, and tuple.

namedtuple() factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
Counter dict subclass for counting hashable objects
OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values
UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

In addition to the concrete container classes, the collections module provides ABCs - abstract base classes that can
be used to test whether a class provides a particular interface, for example, whether it is hashable or a mapping.

7.3.1 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list
>>> cnt = Counter()
>>> for word in [’red’, ’blue’, ’red’, ’green’, ’blue’, ’blue’]:
... cnt[word] += 1
>>> cnt
Counter({’blue’: 3, ’red’: 2, ’green’: 1})

>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall(’\w+’, open(’hamlet.txt’).read().lower())
>>> Counter(words).most_common(10)
[(’the’, 1143), (’and’, 966), (’to’, 762), (’of’, 669), (’i’, 631),
(’you’, 554), (’a’, 546), (’my’, 514), (’hamlet’, 471), (’in’, 451)]

7.3. collections — Container datatypes 145

http://svn.python.org/view/python/branches/py3k/Lib/collections.py?view=markup
http://svn.python.org/view/python/branches/py3k/Lib/_abcoll.py?view=markup

The Python Library Reference, Release 3.2

class collections.Counter([iterable-or-mapping])
A Counter is a dict subclass for counting hashable objects. It is an unordered collection where elements
are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any
integer value including zero or negative counts. The Counter class is similar to bags or multisets in other
languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> c = Counter() # a new, empty counter
>>> c = Counter(’gallahad’) # a new counter from an iterable
>>> c = Counter({’red’: 4, ’blue’: 2}) # a new counter from a mapping
>>> c = Counter(cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> c = Counter([’eggs’, ’ham’])
>>> c[’bacon’] # count of a missing element is zero
0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c[’sausage’] = 0 # counter entry with a zero count
>>> del c[’sausage’] # del actually removes the entry

New in version 3.1. Counter objects support three methods beyond those available for all dictionaries:

elements()
Return an iterator over elements repeating each as many times as its count. Elements are returned in
arbitrary order. If an element’s count is less than one, elements() will ignore it.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> list(c.elements())
[’a’, ’a’, ’a’, ’a’, ’b’, ’b’]

most_common([n])
Return a list of the n most common elements and their counts from the most common to the least. If
n is not specified, most_common() returns all elements in the counter. Elements with equal counts
are ordered arbitrarily:

>>> Counter(’abracadabra’).most_common(3)
[(’a’, 5), (’r’, 2), (’b’, 2)]

subtract([iterable-or-mapping])
Elements are subtracted from an iterable or from another mapping (or counter). Like
dict.update() but subtracts counts instead of replacing them. Both inputs and outputs may be
zero or negative.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d)
Counter({’a’: 3, ’b’: 0, ’c’: -3, ’d’: -6})

New in version 3.2.

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys(iterable)
This class method is not implemented for Counter objects.

146 Chapter 7. Data Types

The Python Library Reference, Release 3.2

update([iterable-or-mapping])
Elements are counted from an iterable or added-in from another mapping (or counter). Like
dict.update() but adds counts instead of replacing them. Also, the iterable is expected to be
a sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values()) # total of all counts
c.clear() # reset all counts
list(c) # list unique elements
set(c) # convert to a set
dict(c) # convert to a regular dictionary
c.items() # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common()[:-n:-1] # n least common elements
c += Counter() # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts.
Each operation can accept inputs with signed counts, but the output will exclude results with counts of zero or
less.

>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d # add two counters together: c[x] + d[x]
Counter({’a’: 4, ’b’: 3})
>>> c - d # subtract (keeping only positive counts)
Counter({’a’: 2})
>>> c & d # intersection: min(c[x], d[x])
Counter({’a’: 1, ’b’: 1})
>>> c | d # union: max(c[x], d[x])
Counter({’a’: 3, ’b’: 2})

Note: Counters were primarily designed to work with positive integers to represent running counts; however,
care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those
use cases, this section documents the minimum range and type restrictions.

• The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

• The most_common() method requires only that the values be orderable.

• For in-place operations such as c[key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update() and subtract() which allow negative and zero values for both inputs and outputs.

• The multiset methods are designed only for use cases with positive values. The inputs may be negative or
zero, but only outputs with positive values are created. There are no type restrictions, but the value type
needs to support support addition, subtraction, and comparison.

• The elements() method requires integer counts. It ignores zero and negative counts.

See Also:

• Counter class adapted for Python 2.5 and an early Bag recipe for Python 2.4.

• Bag class in Smalltalk.

• Wikipedia entry for Multisets.

• C++ multisets tutorial with examples.

7.3. collections — Container datatypes 147

http://code.activestate.com/recipes/576611/
http://code.activestate.com/recipes/259174/
http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
http://en.wikipedia.org/wiki/Multiset
http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.2

• For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer
Programming Volume II, Section 4.6.3, Exercise 19.

• To enumerate all distinct multisets of a given size over a given set of elements, see
itertools.combinations_with_replacement().

map(Counter, combinations_with_replacement(‘ABC’, 2)) –> AA AB AC BB BC CC

7.3.2 deque objects

class collections.deque([iterable[, maxlen]])
Returns a new deque object initialized left-to-right (using append()) with data from iterable. If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the
deque with approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs for pop(0) and insert(0, v) operations which change both the
size and position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is
bounded to the specified maximum length. Once a bounded length deque is full, when new items are added,
a corresponding number of items are discarded from the opposite end. Bounded length deques provide
functionality similar to the tail filter in Unix. They are also useful for tracking transactions and other
pools of data where only the most recent activity is of interest.

Deque objects support the following methods:

append(x)
Add x to the right side of the deque.

appendleft(x)
Add x to the left side of the deque.

clear()
Remove all elements from the deque leaving it with length 0.

count(x)
Count the number of deque elements equal to x. New in version 3.2.

extend(iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft(iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove(value)
Removed the first occurrence of value. If not found, raises a ValueError.

reverse()
Reverse the elements of the deque in-place and then return None. New in version 3.2.

rotate(n)
Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to the right is
equivalent to: d.appendleft(d.pop()).

148 Chapter 7. Data Types

The Python Library Reference, Release 3.2

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded. New in version 3.1.

In addition to the above, deques support iteration, pickling, len(d), reversed(d), copy.copy(d),
copy.deepcopy(d), membership testing with the in operator, and subscript references such as d[-1]. In-
dexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

>>> from collections import deque
>>> d = deque(’ghi’) # make a new deque with three items
>>> for elem in d: # iterate over the deque’s elements
... print(elem.upper())
G
H
I

>>> d.append(’j’) # add a new entry to the right side
>>> d.appendleft(’f’) # add a new entry to the left side
>>> d # show the representation of the deque
deque([’f’, ’g’, ’h’, ’i’, ’j’])

>>> d.pop() # return and remove the rightmost item
’j’
>>> d.popleft() # return and remove the leftmost item
’f’
>>> list(d) # list the contents of the deque
[’g’, ’h’, ’i’]
>>> d[0] # peek at leftmost item
’g’
>>> d[-1] # peek at rightmost item
’i’

>>> list(reversed(d)) # list the contents of a deque in reverse
[’i’, ’h’, ’g’]
>>> ’h’ in d # search the deque
True
>>> d.extend(’jkl’) # add multiple elements at once
>>> d
deque([’g’, ’h’, ’i’, ’j’, ’k’, ’l’])
>>> d.rotate(1) # right rotation
>>> d
deque([’l’, ’g’, ’h’, ’i’, ’j’, ’k’])
>>> d.rotate(-1) # left rotation
>>> d
deque([’g’, ’h’, ’i’, ’j’, ’k’, ’l’])

>>> deque(reversed(d)) # make a new deque in reverse order
deque([’l’, ’k’, ’j’, ’i’, ’h’, ’g’])
>>> d.clear() # empty the deque
>>> d.pop() # cannot pop from an empty deque
Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel-
d.pop()

IndexError: pop from an empty deque

>>> d.extendleft(’abc’) # extendleft() reverses the input order
>>> d

7.3. collections — Container datatypes 149

The Python Library Reference, Release 3.2

deque([’c’, ’b’, ’a’])

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail(filename, n=10):
’Return the last n lines of a file’
return deque(open(filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:

def moving_average(iterable, n=3):
moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average
it = iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft(0)
s = sum(d)
for elem in it:

s += elem - d.popleft()
d.append(elem)
yield s / n

The rotate() method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate() method to position elements to be popped:

def delete_nth(d, n):
d.rotate(-n)
d.popleft()
d.rotate(n)

To implement deque slicing, use a similar approach applying rotate() to bring a target element to the left
side of the deque. Remove old entries with popleft(), add new entries with extend(), and then reverse the
rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as
dup, drop, swap, over, pick, rot, and roll.

7.3.3 defaultdict objects

class collections.defaultdict([default_factory[, ...]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for the
dict class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None.
All remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__(key)
If the default_factory attribute is None, this raises a KeyError exception with the key as
argument.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

150 Chapter 7. Data Types

The Python Library Reference, Release 3.2

This method is called by the __getitem__() method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__().

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__() method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using list as the default_factory, it is easy to group a sequence of key-value pairs into a dictionary of
lists:

>>> s = [(’yellow’, 1), (’blue’, 2), (’yellow’, 3), (’blue’, 4), (’red’, 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
... d[k].append(v)
...
>>> list(d.items())
[(’blue’, [2, 4]), (’red’, [1]), (’yellow’, [1, 3])]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty list. The list.append() operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the list.append() operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict.setdefault():

>>> d = {}
>>> for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> list(d.items())
[(’blue’, [2, 4]), (’red’, [1]), (’yellow’, [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset
in other languages):

>>> s = ’mississippi’
>>> d = defaultdict(int)
>>> for k in s:
... d[k] += 1
...
>>> list(d.items())
[(’i’, 4), (’p’, 2), (’s’, 4), (’m’, 1)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls
int() to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int() which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is to use a lambda function which can supply any constant value (not just
zero):

>>> def constant_factory(value):
... return lambda: value
>>> d = defaultdict(constant_factory(’<missing>’))
>>> d.update(name=’John’, action=’ran’)
>>> ’%(name)s %(action)s to %(object)s’ % d
’John ran to <missing>’

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

7.3. collections — Container datatypes 151

The Python Library Reference, Release 3.2

>>> s = [(’red’, 1), (’blue’, 2), (’red’, 3), (’blue’, 4), (’red’, 1), (’blue’, 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
... d[k].add(v)
...
>>> list(d.items())
[(’blue’, set([2, 4])), (’red’, set([1, 3]))]

7.3.4 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead of
position index.

collections.namedtuple(typename, field_names, verbose=False, rename=False)
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that
have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass
also have a helpful docstring (with typename and field_names) and a helpful __repr__() method which
lists the tuple contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for exam-
ple ’x y’ or ’x, y’. Alternatively, field_names can be a sequence of strings such as [’x’, ’y’].

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be
a keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example,
[’abc’, ’def’, ’ghi’, ’abc’] is converted to [’abc’, ’_1’, ’ghi’, ’_3’], eliminat-
ing the keyword def and the duplicate fieldname abc.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples. Changed in version 3.1: Added support for rename.

>>> # Basic example
>>> Point = namedtuple(’Point’, ’x y’)
>>> p = Point(x=10, y=11)

>>> # Example using the verbose option to print the class definition
>>> Point = namedtuple(’Point’, ’x y’, verbose=True)
class Point(tuple):

’Point(x, y)’

__slots__ = ()

_fields = (’x’, ’y’)

def __new__(_cls, x, y):
’Create a new instance of Point(x, y)’
return _tuple.__new__(_cls, (x, y))

@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):

’Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) != 2:

raise TypeError(’Expected 2 arguments, got %d’ % len(result))
return result

152 Chapter 7. Data Types

The Python Library Reference, Release 3.2

def __repr__(self):
’Return a nicely formatted representation string’
return self.__class__.__name__ + ’(x=%r, y=%r)’ % self

def _asdict(self):
’Return a new OrderedDict which maps field names to their values’
return OrderedDict(zip(self._fields, self))

def _replace(_self, **kwds):
’Return a new Point object replacing specified fields with new values’
result = _self._make(map(kwds.pop, (’x’, ’y’), _self))
if kwds:

raise ValueError(’Got unexpected field names: %r’ % list(kwds.keys()))
return result

def __getnewargs__(self):
’Return self as a plain tuple. Used by copy and pickle.’
return tuple(self)

x = _property(_itemgetter(0), doc=’Alias for field number 0’)
y = _property(_itemgetter(1), doc=’Alias for field number 1’)

>>> p = Point(11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + p[1] # indexable like the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr__ with a name=value style
Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sqlite3
modules:

EmployeeRecord = namedtuple(’EmployeeRecord’, ’name, age, title, department, paygrade’)

import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):

print(emp.name, emp.title)

import sqlite3
conn = sqlite3.connect(’/companydata’)
cursor = conn.cursor()
cursor.execute(’SELECT name, age, title, department, paygrade FROM employees’)
for emp in map(EmployeeRecord._make, cursor.fetchall()):

print(emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute.
To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make(iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make(t)
Point(x=11, y=22)

somenamedtuple._asdict()
Return a new OrderedDict which maps field names to their corresponding values:

7.3. collections — Container datatypes 153

The Python Library Reference, Release 3.2

>>> p._asdict()
OrderedDict([(’x’, 11), (’y’, 22)])

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

somenamedtuple._replace(kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point(x=33, y=22)

>>> for partnum, record in inventory.items():
... inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

somenamedtuple._fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types
from existing named tuples.

>>> p._fields # view the field names
(’x’, ’y’)

>>> Color = namedtuple(’Color’, ’red green blue’)
>>> Pixel = namedtuple(’Pixel’, Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr() function:

>>> getattr(p, ’x’)
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>>> d = {’x’: 11, ’y’: 22}
>>> Point(**d)
Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is
how to add a calculated field and a fixed-width print format:

>>> class Point(namedtuple(’Point’, ’x y’)):
... __slots__ = ()
... @property
... def hypot(self):
... return (self.x ** 2 + self.y ** 2) ** 0.5
... def __str__(self):
... return ’Point: x=%6.3f y=%6.3f hypot=%6.3f’ % (self.x, self.y, self.hypot)

>>> for p in Point(3, 4), Point(14, 5/7):
... print(p)
Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple(’Point3D’, Point._fields + (’z’,))

Default values can be implemented by using _replace() to customize a prototype instance:

154 Chapter 7. Data Types

The Python Library Reference, Release 3.2

>>> Account = namedtuple(’Account’, ’owner balance transaction_count’)
>>> default_account = Account(’<owner name>’, 0.0, 0)
>>> johns_account = default_account._replace(owner=’John’)

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple
class declaration:

>>> Status = namedtuple(’Status’, ’open pending closed’)._make(range(3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)
>>> class Status:
... open, pending, closed = range(3)

See Also:

Named tuple recipe adapted for Python 2.4.

7.3.5 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted. When
iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict that
remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original
insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end. New in
version 3.1.

popitem(last=True)
The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs
are returned in LIFO order if last is true or FIFO order if false.

move_to_end(key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last
is true (the default) or to the beginning if last is false. Raises KeyError if the key does not exist:

>>> d = OrderedDict.fromkeys(’abcde’)
>>> d.move_to_end(’b’)
>>> ’’.join(d.keys)
’acdeb’
>>> d.move_to_end(’b’, last=False)
>>> ’’.join(d.keys)
’bacde’

New in version 3.2.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed().

Equality tests between OrderedDict objects are order-sensitive and are implemented as
list(od1.items())==list(od2.items()). Equality tests between OrderedDict objects and
other Mapping objects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be
substituted anywhere a regular dictionary is used.

The OrderedDict constructor and update() method both accept keyword arguments, but their order is lost
because Python’s function call semantics pass-in keyword arguments using a regular unordered dictionary.

See Also:

Equivalent OrderedDict recipe that runs on Python 2.4 or later.

Since an ordered dictionary remembers its insertion order, it can be used in conjuction with sorting to make a
sorted dictionary:

7.3. collections — Container datatypes 155

http://code.activestate.com/recipes/500261/
http://code.activestate.com/recipes/576693/

The Python Library Reference, Release 3.2

>>> # regular unsorted dictionary
>>> d = {’banana’: 3, ’apple’:4, ’pear’: 1, ’orange’: 2}

>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([(’apple’, 4), (’banana’, 3), (’orange’, 2), (’pear’, 1)])

>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([(’pear’, 1), (’orange’, 2), (’banana’, 3), (’apple’, 4)])

>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([(’pear’, 1), (’apple’, 4), (’orange’, 2), (’banana’, 3)])

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are added, the
keys are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that the remembers the order the keys were last
inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to the
end:

class LastUpdatedOrderedDict(OrderedDict):
’Store items in the order the keys were last added’
def __setitem__(self, key, value):

if key in self:
del self[key]

OrderedDict.__setitem__(self, key, value)

7.3.6 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially
supplanted by the ability to subclass directly from dict; however, this class can be easier to work with because
the underlying dictionary is accessible as an attribute.

class collections.UserDict([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its
contents; note that a reference to initialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the fol-
lowing attribute:

data
A real dictionary used to store the contents of the UserDict class.

7.3.7 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can
inherit from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from list; however, this
class can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, for example a real Python list or a UserList object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide
the following attribute:

156 Chapter 7. Data Types

The Python Library Reference, Release 3.2

data
A real list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

7.3.8 UserString objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially
supplanted by the ability to subclass directly from str; however, this class can be easier to work with because the
underlying string is accessible as an attribute.

class collections.UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string
object, which is accessible via the data attribute of UserString instances. The instance’s contents are
initially set to a copy of sequence. The sequence can be an instance of bytes, str, UserString (or a
subclass) or an arbitrary sequence which can be converted into a string using the built-in str() function.

7.3.9 ABCs - abstract base classes

The collections module offers the following ABCs:

ABC Inherits Abstract Methods Mixin Methods
Container __contains__
Hashable __hash__
Iterable __iter__
Iterator Iterable __next__ __iter__
Sized __len__
Callable __call__
Sequence Sized,

Iterable,
Container

__getitem__ __contains__, __iter__, __reversed__,
index, and count

MutableSequenceSequence __setitem__
__delitem__,
and insert

Inherited Sequence methods and append, reverse,
extend, pop, remove, and __iadd__

Set Sized,
Iterable,
Container

__le__, __lt__, __eq__, __ne__, __gt__,
__ge__, __and__, __or__, __sub__,
__xor__, and isdisjoint

MutableSetSet add and discard Inherited Set methods and clear, pop, remove,
__ior__, __iand__, __ixor__, and __isub__

Mapping Sized,
Iterable,
Container

__getitem__ __contains__, keys, items, values, get,
__eq__, and __ne__

MutableMappingMapping __setitem__ and
__delitem__

Inherited Mapping methods and pop, popitem,
clear, update, and setdefault

MappingViewSized __len__
KeysView MappingView,

Set
__contains__, __iter__

ItemsViewMappingView,
Set

__contains__, __iter__

ValuesViewMappingView __contains__, __iter__

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

7.3. collections — Container datatypes 157

The Python Library Reference, Release 3.2

size = None
if isinstance(myvar, collections.Sized):

size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs.
For example, to write a class supporting the full Set API, it only necessary to supply the three underlying abstract
methods: __contains__(), __iter__(), and __len__(). The ABC supplies the remaining methods
such as __and__() and isdisjoint()

class ListBasedSet(collections.Set):
’’’ Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. ’’’
def __init__(self, iterable):

self.elements = lst = []
for value in iterable:

if value not in lst:
lst.append(value)

def __iter__(self):
return iter(self.elements)

def __contains__(self, value):
return value in self.elements

def __len__(self):
return len(self.elements)

s1 = ListBasedSet(’abcdef’)
s2 = ListBasedSet(’defghi’)
overlap = s1 & s2 # The __and__() method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new
instances from an iterable. The class constructor is assumed to have a signature in the form
ClassName(iterable). That assumption is factored-out to an internal classmethod called
_from_iterable() which calls cls(iterable) to produce a new set. If the Set mixin is be-
ing used in a class with a different constructor signature, you will need to override from_iterable()
with a classmethod that can construct new instances from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__() and
then the other operations will automatically follow suit.

3. The Set mixin provides a _hash() method to compute a hash value for the set; however, __hash__()
is not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit
from both Set() and Hashable(), then define __hash__ = Set._hash.

See Also:

• Latest version of the Python source code for the collections abstract base classes

• OrderedSet recipe for an example built on MutableSet.

• For more about ABCs, see the abc module and PEP 3119.

7.4 heapq — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This
implementation uses arrays for which heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for

158 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/_abcoll.py?view=markup
http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119
http://svn.python.org/view/python/branches/py3k/Lib/heapq.py?view=markup

The Python Library Reference, Release 3.2

all k, counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite.
The interesting property of a heap is that its smallest element is always the root, heap[0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a “min heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap[0] is the smallest
item, and heap.sort() maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify().

The following functions are provided:

heapq.heappush(heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapq.heappop(heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heapq.heappushpop(heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush() followed by a separate call to heappop().

heapq.heapify(x)
Transform list x into a heap, in-place, in linear time.

heapq.heapreplace(heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change.
If the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop() followed by heappush() and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the
heap and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using
heappushpop() instead. Its push/pop combination returns the smaller of the two values, leaving the
larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapq.merge(*iterables)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns an iterator over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

heapq.nlargest(n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key, reverse=True)[:n]

heapq.nsmallest(n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key)[:n]

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted() function. Also, when n==1, it is more efficient to use the built-in min() and max() functions.

7.4. heapq — Heap queue algorithm 159

The Python Library Reference, Release 3.2

7.4.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at
a time:

>>> def heapsort(iterable):
... ’Equivalent to sorted(iterable)’
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []
>>> heappush(h, (5, ’write code’))
>>> heappush(h, (7, ’release product’))
>>> heappush(h, (1, ’write spec’))
>>> heappush(h, (3, ’create tests’))
>>> heappop(h)
(1, ’write spec’)

7.4.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

• Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

• Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a
default comparison order.

• If the priority of a task changes, how do you move it to a new position in the heap?

• Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants.
So, a possible solution is to mark an entry as invalid and optionally add a new entry with the revised priority:

pq = [] # the priority queue list
counter = itertools.count(1) # unique sequence count
task_finder = {} # mapping of tasks to entries
INVALID = 0 # mark an entry as deleted

def add_task(priority, task, count=None):
if count is None:

count = next(counter)
entry = [priority, count, task]
task_finder[task] = entry
heappush(pq, entry)

160 Chapter 7. Data Types

http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.2

def get_top_priority():
while True:

priority, count, task = heappop(pq)
del task_finder[task]
if count is not INVALID:

return task

def delete_task(task):
entry = task_finder[task]
entry[1] = INVALID

def reprioritize(priority, task):
entry = task_finder[task]
add_task(priority, task, entry[1])
entry[1] = INVALID

7.4.3 Theory

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below are k, not a[k]:

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the
two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way
to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0
position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the “win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer
:-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a

7.4. heapq — Heap queue algorithm 161

The Python Library Reference, Release 3.2

merging passes for these runs, which merging is often very cleverly organised 1. It is very important that the initial
sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

7.5 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is called bisect because it uses a basic bisection algorithm to do its work.
The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect.bisect_left(a, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters lo and hi may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in a,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as
the first parameter to list.insert() assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all(val < x for val in
a[lo:i]) for the left side and all(val >= x for val in a[i:hi]) for the right side.

bisect.bisect_right(a, x, lo=0, hi=len(a))
bisect.bisect(a, x, lo=0, hi=len(a))

Similar to bisect_left(), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all(val <= x for val
in a[lo:i]) for the left side and all(val > x for val in a[i:hi]) for the right side.

bisect.insort_left(a, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalent to a.insert(bisect.bisect_left(a, x, lo,
hi), x) assuming that a is already sorted. Keep in mind that the O(log n) search is dominated by the
slow O(n) insertion step.

bisect.insort_right(a, x, lo=0, hi=len(a))
bisect.insort(a, x, lo=0, hi=len(a))

Similar to insort_left(), but inserting x in a after any existing entries of x.

See Also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search meth-
ods and support for a key-function. The keys are precomputed to save unnecessary calls to the key function during
searches.

1 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

162 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/bisect.py?view=markup
http://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.2

7.5.1 Searching Sorted Lists

The above bisect() functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups for
sorted lists:

def index(a, x):
’Locate the leftmost value exactly equal to x’
i = bisect_left(a, x)
if i != len(a) and a[i] == x:

return i
raise ValueError

def find_lt(a, x):
’Find rightmost value less than x’
i = bisect_left(a, x)
if i:

return a[i-1]
raise ValueError

def find_le(a, x):
’Find rightmost value less than or equal to x’
i = bisect_right(a, x)
if i:

return a[i-1]
raise ValueError

def find_gt(a, x):
’Find leftmost value greater than x’
i = bisect_right(a, x)
if i != len(a):

return a[i]
raise ValueError

def find_ge(a, x):
’Find leftmost item greater than or equal to x’
i = bisect_left(a, x)
if i != len(a):

return a[i]
raise ValueError

7.5.2 Other Examples

The bisect() function can be useful for numeric table lookups. This example uses bisect() to look up a
letter grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is
a ‘B’, and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades=’FDCBA’):
... i = bisect(breakpoints, score)
... return grades[i]
...
>>> [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
[’F’, ’A’, ’C’, ’C’, ’B’, ’A’, ’A’]

Unlike the sorted() function, it does not make sense for the bisect() functions to have key or reversed argu-
ments because that would lead to an inefficient design (successive calls to bisect functions would not “remember”
all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

7.5. bisect — Array bisection algorithm 163

The Python Library Reference, Release 3.2

>>> data = [(’red’, 5), (’blue’, 1), (’yellow’, 8), (’black’, 0)]
>>> data.sort(key=lambda r: r[1])
>>> keys = [r[1] for r in data] # precomputed list of keys
>>> data[bisect_left(keys, 0)]
(’black’, 0)
>>> data[bisect_left(keys, 1)]
(’blue’, 1)
>>> data[bisect_left(keys, 5)]
(’red’, 5)
>>> data[bisect_left(keys, 8)]
(’yellow’, 8)

7.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes
’b’ signed char int 1
’B’ unsigned char int 1
’u’ Py_UNICODE Unicode character 2 (see note)
’h’ signed short int 2
’H’ unsigned short int 2
’i’ signed int int 2
’I’ unsigned int int 2
’l’ signed long int 4
’L’ unsigned long int 4
’f’ float float 4
’d’ double float 8

Note: The ’u’ typecode corresponds to Python’s unicode character. On narrow Unicode builds this is 2-bytes,
on wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed through the itemsize attribute.

The module defines the following type:

class array.array(typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, object supporting the buffer interface, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist(), frombytes(), or
fromunicode() method (see below) to add initial items to the array. Otherwise, the iterable initializer is
passed to the extend() method.

array.typecodes
A string with all available type codes.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

164 Chapter 7. Data Types

The Python Library Reference, Release 3.2

array.itemsize
The length in bytes of one array item in the internal representation.

array.append(x)
Append a new item with value x to the end of the array.

array.buffer_info()
Return a tuple (address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info()[1] * array.itemsize. This is occasionally useful when working with
low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl()
operations. The returned numbers are valid as long as the array exists and no length-changing operations
are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in bufferobjects.

array.byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, RuntimeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

array.count(x)
Return the number of occurrences of x in the array.

array.extend(iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

array.frombytes(s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been
read from a file using the fromfile() method). New in version 3.2: fromstring() is renamed to
frombytes() for clarity.

array.fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else with a read() method won’t do.

array.fromlist(list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if
there is a type error, the array is unchanged.

array.fromstring()
Deprecated alias for frombytes().

array.fromunicode(s)
Extends this array with data from the given unicode string. The array must be a type ’u’ array; otherwise
a ValueError is raised. Use array.frombytes(unicodestring.encode(enc)) to append
Unicode data to an array of some other type.

array.index(x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

array.insert(i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to
the end of the array.

array.pop([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1, so

7.6. array — Efficient arrays of numeric values 165

The Python Library Reference, Release 3.2

that by default the last item is removed and returned.

array.remove(x)
Remove the first occurrence of x from the array.

array.reverse()
Reverse the order of the items in the array.

array.tobytes()
Convert the array to an array of machine values and return the bytes representation (the same sequence of
bytes that would be written to a file by the tofile() method.) New in version 3.2: tostring() is
renamed to tobytes() for clarity.

array.tofile(f)
Write all items (as machine values) to the file object f.

array.tolist()
Convert the array to an ordinary list with the same items.

array.tostring()
Deprecated alias for tobytes().

array.tounicode()
Convert the array to a unicode string. The array must be a type ’u’ array; otherwise a ValueError is
raised. Use array.tobytes().decode(enc) to obtain a unicode string from an array of some other
type.

When an array object is printed or converted to a string, it is represented as array(typecode,
initializer). The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ’u’,
otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value using eval(), so long as the array() function has been imported using from array
import array. Examples:

array(’l’)
array(’u’, ’hello \u2641’)
array(’l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

See Also:

Module struct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF version of the
NumPy manual is available at http://numpy.sourceforge.net/numdoc/numdoc.pdf).

7.7 sched — Event scheduler

Source code: Lib/sched.py

The sched module defines a class which implements a general purpose event scheduler:

class sched.scheduler(timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” — timefunc should be callable without arguments, and return a number (the
“time”, in any units whatsoever). The delayfunc function should be callable with one argument, compatible
with the output of timefunc, and should delay that many time units. delayfunc will also be called with the
argument 0 after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

166 Chapter 7. Data Types

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf
http://svn.python.org/view/python/branches/py3k/Lib/sched.py?view=markup

The Python Library Reference, Release 3.2

>>> import sched, time
>>> s = sched.scheduler(time.time, time.sleep)
>>> def print_time(): print("From print_time", time.time())
...
>>> def print_some_times():
... print(time.time())
... s.enter(5, 1, print_time, ())
... s.enter(10, 1, print_time, ())
... s.run()
... print(time.time())
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343700.276

In multi-threaded environments, the scheduler class has limitations with respect to thread-safety, inability to
insert a new task before the one currently pending in a running scheduler, and holding up the main thread until the
event queue is empty. Instead, the preferred approach is to use the threading.Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time():
... print("From print_time", time.time())
...
>>> def print_some_times():
... print(time.time())
... Timer(5, print_time, ()).start()
... Timer(10, print_time, ()).start()
... time.sleep(11) # sleep while time-delay events execute
... print(time.time())
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343701.301

7.7.1 Scheduler Objects

scheduler instances have the following methods and attributes:

scheduler.enterabs(time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return value of
the timefunc function passed to the constructor. Events scheduled for the same time will be executed in the
order of their priority.

Executing the event means executing action(*argument). argument must be a sequence holding the
parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

scheduler.enter(delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments, the effect
and the return value are the same as those for enterabs().

scheduler.cancel(event)
Remove the event from the queue. If event is not an event currently in the queue, this method will raise a

7.7. sched — Event scheduler 167

The Python Library Reference, Release 3.2

ValueError.

scheduler.empty()
Return true if the event queue is empty.

scheduler.run()
Run all scheduled events. This function will wait (using the delayfunc() function passed to the con-
structor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raised by action, the event will not be attempted in
future calls to run().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which
are no longer pertinent.

scheduler.queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as
a named tuple with the following fields: time, priority, action, argument.

7.8 queue — A synchronized queue class

Source code: Lib/queue.py

The queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

Implements three types of queue whose only difference is the order that the entries are retrieved. In a FIFO queue,
the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved
(operating like a stack). With a priority queue, the entries are kept sorted (using the heapq module) and the
lowest valued entry is retrieved first.

The queue module defines the following classes and exceptions:

class queue.Queue(maxsize=0)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue.LifoQueue(maxsize=0)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue.PriorityQueue(maxsize=0)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned
by sorted(list(entries))[0]). A typical pattern for entries is a tuple in the form:
(priority_number, data).

exception queue.Empty
Exception raised when non-blocking get() (or get_nowait()) is called on a Queue object which is
empty.

168 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/queue.py?view=markup

The Python Library Reference, Release 3.2

exception queue.Full
Exception raised when non-blocking put() (or put_nowait()) is called on a Queue object which is
full.

7.8.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

Queue.qsize()
Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get() will
not block, nor will qsize() < maxsize guarantee that put() will not block.

Queue.empty()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that
a subsequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a
subsequent call to get() will not block.

Queue.full()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a sub-
sequent call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent
call to put() will not block.

Queue.put(item, block=True, timeout=None)
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary
until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the
Full exception if no free slot was available within that time. Otherwise (block is false), put an item on the
queue if a free slot is immediately available, else raise the Full exception (timeout is ignored in that case).

Queue.put_nowait(item)
Equivalent to put(item, False).

Queue.get(block=True, timeout=None)
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout
seconds and raises the Empty exception if no item was available within that time. Otherwise (block is
false), return an item if one is immediately available, else raise the Empty exception (timeout is ignored in
that case).

Queue.get_nowait()
Equivalent to get(False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon con-
sumer threads.

Queue.task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get()
used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is
complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

Queue.join()
Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done() to indicate that the item was retrieved and all work on it
is complete. When the count of unfinished tasks drops to zero, join() unblocks.

Example of how to wait for enqueued tasks to be completed:

def worker():
while True:

7.8. queue — A synchronized queue class 169

The Python Library Reference, Release 3.2

item = q.get()
do_work(item)
q.task_done()

q = Queue()
for i in range(num_worker_threads):

t = Thread(target=worker)
t.daemon = True
t.start()

for item in source():
q.put(item)

q.join() # block until all tasks are done

See Also:

Class multiprocessing.Queue A queue class for use in a multi-processing (rather than multi-threading)
context.

collections.deque is an alternative implementation of unbounded queues with fast atomic append() and
popleft() operations that do not require locking.

7.9 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.

In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it’s
desired that a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references
to construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for
example, an image object is a value in a WeakValueDictionary, then when the last remaining references to
that image object are the weak references held by weak mappings, garbage collection can reclaim the object, and
its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting
up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. WeakSet implements the set interface, but keeps weak references to its
elements, just like a WeakKeyDictionary does.

Most programs should find that using one of these weak container types is all they need – it’s not usually necessary
to create your own weak references directly. The low-level machinery used by the weak dictionary implementa-
tions is exposed by the weakref module for the benefit of advanced uses.

Note: Weak references to an object are cleared before the object’s __del__() is called, to ensure that the weak
reference callback (if any) finds the object still alive.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets,

170 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/weakref.py?view=markup

The Python Library Reference, Release 3.2

arrays, deques, regular expression pattern objects, and code objects. Changed in version 3.2: Added support for
thread.lock, threading.Lock, and code objects. Several built-in types such as list and dict do not directly
support weak references but can add support through subclassing:

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

Other built-in types such as tuple and int do not support weak references even when subclassed (This is an
implementation detail and may be different across various Python implementations.).

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref(object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback
will be called when the object is about to be finalized; the weak reference object will be passed as the only
parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__() method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the
object was deleted. If hash() is called the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of the callback). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

weakref.proxy(object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of either ProxyType or CallableProxyType, depending on whether object is callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to
their fundamentally mutable nature, and prevent their use as dictionary keys. callback is the same as the
parameter of the same name to the ref() function.

weakref.getweakrefcount(object)
Return the number of weak references and proxies which refer to object.

weakref.getweakrefs(object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references
directly. The references are not guaranteed to be “live” at the time they are used, so the result of calling the

7.9. weakref — Weak references 171

The Python Library Reference, Release 3.2

references needs to be checked before being used. This can be used to avoid creating references that will cause
the garbage collector to keep the keys around longer than needed.

WeakKeyDictionary.keyrefs()
Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues
as the and keyrefs() method of WeakKeyDictionary objects.

WeakValueDictionary.valuerefs()
Return an iterable of the weak references to the values.

class weakref.WeakSet([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong reference
to it exists any more.

weakref.ReferenceType
The type object for weak references objects.

weakref.ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref.ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception weakref.ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standard ReferenceError exception.

See Also:

PEP 0205 - Weak References The proposal and rationale for this feature, including links to earlier implementa-
tions and information about similar features in other languages.

7.9.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
... pass
...
>>> o = Object()
>>> r = weakref.ref(o)
>>> o2 = r()
>>> o is o2
True

If the referent no longer exists, calling the reference object returns None:

172 Chapter 7. Data Types

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 3.2

>>> del o, o2
>>> print(r())
None

Testing that a weak reference object is still live should be done using the expression ref() is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:

referent has been garbage collected
print("Object has been deallocated; can’t frobnicate.")

else:
print("Object is still live!")
o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of
the WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect
the value that’s returned when the referent is accessed:

import weakref

class ExtendedRef(weakref.ref):
def __init__(self, ob, callback=None, **annotations):

super(ExtendedRef, self).__init__(ob, callback)
self.__counter = 0
for k, v in annotations.items():

setattr(self, k, v)

def __call__(self):
"""Return a pair containing the referent and the number of
times the reference has been called.
"""
ob = super(ExtendedRef, self).__call__()
if ob is not None:

self.__counter += 1
ob = (ob, self.__counter)

return ob

7.9.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

7.9. weakref — Weak references 173

The Python Library Reference, Release 3.2

def id2obj(oid):
return _id2obj_dict[oid]

7.10 types — Names for built-in types

Source code: Lib/types.py

This module defines names for some object types that are used by the standard Python interpreter, but not exposed
as builtins like int or str are. Also, it does not include some of the types that arise transparently during
processing such as the listiterator type.

Typical use is for isinstance() or issubclass() checks.

The module defines the following names:

types.FunctionType
types.LambdaType

The type of user-defined functions and functions created by lambda expressions.

types.GeneratorType
The type of generator-iterator objects, produced by calling a generator function.

types.CodeType
The type for code objects such as returned by compile().

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType
types.BuiltinMethodType

The type of built-in functions like len() or sys.exit(), and methods of built-in classes. (Here, the
term “built-in” means “written in C”.)

types.ModuleType
The type of modules.

types.TracebackType
The type of traceback objects such as found in sys.exc_info()[2].

types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGetSetDef, such as FrameType.f_locals
or array.array.typecode. This type is used as descriptor for object attributes; it has the same pur-
pose as the property type, but for classes defined in extension modules.

types.MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This type is used as descriptor for simple C data members which
use standard conversion functions; it has the same purpose as the property type, but for classes defined
in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

7.11 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

174 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/types.py?view=markup

The Python Library Reference, Release 3.2

Interface summary:

copy.copy(x)
Return a shallow copy of x.

copy.deepcopy(x)
Return a deep copy of x.

exception copy.error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

• A shallow copy constructs a new compound object and then (to the extent possible) inserts references into
it to the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects
found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

• Because deep copy copies everything it may copy too much, e.g., administrative data structures that should
be shared even between copies.

The deepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or
any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object
unchanged; this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict.copy(), and of lists by assigning a slice of the entire
list, for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
module pickle for information on these methods. The copy module does not use the copyreg registration
module.

In order for a class to define its own copy implementation, it can define special methods __copy__() and
__deepcopy__(). The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the __deepcopy__() implementation needs to make a deep copy of a component, it should call
the deepcopy() function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

7.12 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can
be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other built-in objects which are not representable as Python constants.

7.12. pprint — Data pretty printer 175

http://svn.python.org/view/python/branches/py3k/Lib/pprint.py?view=markup

The Python Library Reference, Release 3.2

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width
constraint.

Dictionaries are sorted by key before the display is computed.

The pprint module defines one class:

class pprint.PrettyPrinter(indent=1, width=80, depth=None, stream=None)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using the stream keyword; the only method used on the stream object is the
file protocol’s write() method. If not specified, the PrettyPrinter adopts sys.stdout. Three
additional parameters may be used to control the formatted representation. The keywords are indent, depth,
and width. The amount of indentation added for each recursive level is specified by indent; the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled by depth; if the data structure being printed is too deep, the
next contained level is replaced by By default, there is no constraint on the depth of the objects being
formatted. The desired output width is constrained using the width parameter; the default is 80 characters.
If a structure cannot be formatted within the constrained width, a best effort will be made.

>>> import pprint
>>> stuff = [’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[[’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’],

’spam’,
’eggs’,
’lumberjack’,
’knights’,
’ni’]

>>> tup = (’spam’, (’eggs’, (’lumberjack’, (’knights’, (’ni’, (’dead’,
... (’parrot’, (’fresh fruit’,))))))))
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(’spam’, (’eggs’, (’lumberjack’, (’knights’, (’ni’, (’dead’, (...)))))))

The PrettyPrinter class supports several derivative functions:

pprint.pformat(object, indent=1, width=80, depth=None)
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters.

pprint.pprint(object, stream=None, indent=1, width=80, depth=None)
Prints the formatted representation of object on stream, followed by a newline. If stream is None,
sys.stdout is used. This may be used in the interactive interpreter instead of the print() function for
inspecting values (you can even reassign print = pprint.pprint for use within a scope). indent,
width and depth will be passed to the PrettyPrinter constructor as formatting parameters.

>>> import pprint
>>> stuff = [’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=...>,
’spam’,
’eggs’,
’lumberjack’,
’knights’,
’ni’]

176 Chapter 7. Data Types

The Python Library Reference, Release 3.2

pprint.isreadable(object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value

using eval(). This always returns False for recursive objects.

>>> pprint.isreadable(stuff)
False

pprint.isrecursive(object)
Determine if object requires a recursive representation.

One more support function is also defined:

pprint.saferepr(object)
Return a string representation of object, protected against recursive data structures. If the representa-
tion of object exposes a recursive entry, the recursive reference will be represented as <Recursion on
typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=...>, ’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’]"

7.12.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat(object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint(object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be
created.

PrettyPrinter.isreadable(object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the

value using eval(). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive(object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of the saferepr() implementation.

PrettyPrinter.format(object, context, maxlevels, level)
Returns three values: the formatted version of object as a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which contains the id() of objects that are part of the current
presentation context (direct and indirect containers for object that are affecting the presentation) as the keys;
if an object needs to be presented which is already represented in context, the third return value should
be True. Recursive calls to the format() method should add additional entries for containers to this
dictionary. The third argument, maxlevels, gives the requested limit to recursion; this will be 0 if there is no
requested limit. This argument should be passed unmodified to recursive calls. The fourth argument, level,
gives the current level; recursive calls should be passed a value less than that of the current call.

7.12.2 pprint Example

This example demonstrates several uses of the pprint() function and its parameters.

7.12. pprint — Data pretty printer 177

The Python Library Reference, Release 3.2

>>> import pprint
>>> tup = (’spam’, (’eggs’, (’lumberjack’, (’knights’, (’ni’, (’dead’,
... (’parrot’, (’fresh fruit’,))))))))
>>> stuff = [’a’ * 10, tup, [’a’ * 30, ’b’ * 30], [’c’ * 20, ’d’ * 20]]
>>> pprint.pprint(stuff)
[’aaaaaaaaaa’,
(’spam’,
(’eggs’,
(’lumberjack’,
(’knights’, (’ni’, (’dead’, (’parrot’, (’fresh fruit’,)))))))),

[’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[’cccccccccccccccccccc’, ’dddddddddddddddddddd’]]

>>> pprint.pprint(stuff, depth=3)
[’aaaaaaaaaa’,
(’spam’, (’eggs’, (...))),
[’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[’cccccccccccccccccccc’, ’dddddddddddddddddddd’]]

>>> pprint.pprint(stuff, width=60)
[’aaaaaaaaaa’,
(’spam’,
(’eggs’,
(’lumberjack’,
(’knights’,
(’ni’, (’dead’, (’parrot’, (’fresh fruit’,)))))))),

[’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’,
’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[’cccccccccccccccccccc’, ’dddddddddddddddddddd’]]

7.13 reprlib — Alternate repr() implementation

Source code: Lib/reprlib.py

The reprlib module provides a means for producing object representations with limits on the size of the result-
ing strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr();
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

reprlib.aRepr
This is an instance of Repr which is used to provide the repr() function described below. Changing the
attributes of this object will affect the size limits used by repr() and the Python debugger.

reprlib.repr(obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to
__repr__() and substituting a placeholder string instead.

@reprlib.recursive_repr(fillvalue=”...”)
Decorator for __repr__() methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__() call is made. For example:

>>> class MyList(list):
... @recursive_repr()

178 Chapter 7. Data Types

http://svn.python.org/view/python/branches/py3k/Lib/reprlib.py?view=markup

The Python Library Reference, Release 3.2

... def __repr__(self):

... return ’<’ + ’|’.join(map(repr, self)) + ’>’

...
>>> m = MyList(’abc’)
>>> m.append(m)
>>> m.append(’x’)
>>> print(m)
<’a’|’b’|’c’|...|’x’>

New in version 3.2.

7.13.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict
Repr.maxlist
Repr.maxtuple
Repr.maxset
Repr.maxfrozenset
Repr.maxdeque
Repr.maxarray

Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5
for maxarray, and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle.
The default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on
the Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.repr(obj)
The equivalent to the built-in repr() that uses the formatting imposed by the instance.

Repr.repr1(obj, level)
Recursive implementation used by repr(). This uses the type of obj to determine which formatting
method to call, passing it obj and level. The type-specific methods should call repr1() to perform recur-
sive formatting, with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name, TYPE is replaced by string.join(string.split(type(obj).__name__,
’_’)). Dispatch to these methods is handled by repr1(). Type-specific methods which need to recur-
sively format a value should call self.repr1(subobj, level - 1).

7.13.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special

7.13. reprlib — Alternate repr() implementation 179

The Python Library Reference, Release 3.2

support for file objects could be added:

import reprlib
import sys

class MyRepr(reprlib.Repr):
def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name

else:
return repr(obj)

aRepr = MyRepr()
print(aRepr.repr(sys.stdin)) # prints ’<stdin>’

180 Chapter 7. Data Types

CHAPTER

EIGHT

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathe-
matical functions for floating-point and complex numbers. For users more interested in decimal accuracy than in
speed, the decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

8.1 numbers — Numeric abstract base classes

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively
define more operations. None of the types defined in this module can be instantiated.

class numbers.Number
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring
what kind, use isinstance(x, Number).

8.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in
complex type. These are: conversions to complex and bool, real, imag, +, -, *, /, abs(),
conjugate(), ==, and !=. All except - and != are abstract.

real
Abstract. Retrieves the real component of this number.

imag
Abstract. Retrieves the imaginary component of this number.

conjugate()
Abstract. Returns the complex conjugate. For example, (1+3j).conjugate() == (1-3j).

class numbers.Real
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, trunc(), round(), math.floor(), math.ceil(),
divmod(), //, %, <, <=, >, and >=.

Real also provides defaults for complex(), real, imag, and conjugate().

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms.
With these, it provides a default for float().

181

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.2

numerator
Abstract.

denominator
Abstract.

class numbers.Integral
Subtypes Rational and adds a conversion to int. Provides defaults for float(), numerator, and
denominator, and bit-string operations: <<, >>, &, ^, |, ~.

8.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may
be subtle if there are two different extensions of the real numbers. For example, fractions.Fraction
implements hash() as follows:

def __hash__(self):
if self.denominator == 1:

Get integers right.
return hash(self.numerator)

Expensive check, but definitely correct.
if self == float(self):

return hash(float(self))
else:

Use tuple’s hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo(Complex): ...
MyFoo.register(Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation
whose author knew about the types of both arguments, or convert both to the nearest built in type and do the
operation there. For subtypes of Integral, this means that __add__() and __radd__() should be defined
as:

class MyIntegral(Integral):

def __add__(self, other):
if isinstance(other, MyIntegral):

return do_my_adding_stuff(self, other)
elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(self, other)
else:

return NotImplemented

def __radd__(self, other):
if isinstance(other, MyIntegral):

return do_my_adding_stuff(other, self)
elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(other, self)

182 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

elif isinstance(other, Integral):
return int(other) + int(self)

elif isinstance(other, Real):
return float(other) + float(self)

elif isinstance(other, Complex):
return complex(other) + complex(self)

else:
return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I’ll refer to all of the above
code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance
of A, which is a subtype of Complex (a : A <: Complex), and b : B <: Complex. I’ll consider
a + b:

1. If A defines an __add__() which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add__(), we’d miss the possi-
bility that B defines a more intelligent __radd__(), so the boilerplate should return NotImplemented
from __add__(). (Or A may not implement __add__() at all.)

3. Then B‘s __radd__() gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default
implementation should live.

5. If B <: A, Python tries B.__radd__ before A.__add__. This is ok, because it was implemented
with knowledge of A, so it can handle those instances before delegating to Complex.

If A <: Complex and B <: Real without sharing any other knowledge, then the appropriate shared oper-
ation is the one involving the built in complex, and both __radd__() s land there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction
uses:

def _operator_fallbacks(monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance(b, (int, Fraction)):
return monomorphic_operator(a, b)

elif isinstance(b, float):
return fallback_operator(float(a), b)

elif isinstance(b, complex):
return fallback_operator(complex(a), b)

else:
return NotImplemented

forward.__name__ = ’__’ + fallback_operator.__name__ + ’__’
forward.__doc__ = monomorphic_operator.__doc__

def reverse(b, a):
if isinstance(a, Rational):

Includes ints.
return monomorphic_operator(a, b)

elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))

elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))

else:
return NotImplemented

reverse.__name__ = ’__r’ + fallback_operator.__name__ + ’__’
reverse.__doc__ = monomorphic_operator.__doc__

return forward, reverse

8.1. numbers — Numeric abstract base classes 183

The Python Library Reference, Release 3.2

def _add(a, b):
"""a + b"""
return Fraction(a.numerator * b.denominator +

b.numerator * a.denominator,
a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

...

8.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath
module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats.

8.2.1 Number-theoretic and representation functions

math.ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to
x.__ceil__(), which should return an Integral value.

math.copysign(x, y)
Return x with the sign of y. On a platform that supports signed zeros, copysign(1.0, -0.0) returns
-1.0.

math.fabs(x)
Return the absolute value of x.

math.factorial(x)
Return x factorial. Raises ValueError if x is not integral or is negative.

math.floor(x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to
x.__floor__(), which should return an Integral value.

math.fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod(x, y) be exactly (mathematically;
to infinite precision) equal to x - n*y for some integer n such that the result has the same sign as x and
magnitude less than abs(y). Python’s x % y returns a result with the sign of y instead, and may not
be exactly computable for float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but
the result of Python’s -1e-100 % 1e100 is 1e100-1e-100, which cannot be represented exactly as
a float, and rounds to the surprising 1e100. For this reason, function fmod() is generally preferred when
working with floats, while Python’s x % y is preferred when working with integers.

math.frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x ==
m * 2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to
“pick apart” the internal representation of a float in a portable way.

184 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

math.fsum(iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the round-
ing mode is half-even. On some non-Windows builds, the underlying C library uses extended precision
addition and may occasionally double-round an intermediate sum causing it to be off in its least significant
bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.

math.isfinite(x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered
finite.) New in version 3.2.

math.isinf(x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan(x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().

math.modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.trunc(x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__().

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil(), floor(), and modf() functions, note that all floating-point numbers of sufficiently large
magnitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs(x) >= 2**52 necessarily has no fractional bits.

8.2.2 Power and logarithmic functions

math.exp(x)
Return e**x.

math.expm1(x)
Return e**x - 1. For small floats x, the subtraction in exp(x) - 1 can result in a significant loss of
precision; the expm1() function provides a way to compute this quantity to full precision:

>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05

New in version 3.2.

8.2. math — Mathematical functions 185

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 3.2

math.log(x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).

math.log1p(x)
Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near
zero.

math.log10(x)
Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).

math.pow(x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN.
If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises
ValueError.

math.sqrt(x)
Return the square root of x.

8.2.3 Trigonometric functions

math.acos(x)
Return the arc cosine of x, in radians.

math.asin(x)
Return the arc sine of x, in radians.

math.atan(x)
Return the arc tangent of x, in radians.

math.atan2(y, x)
Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan2() is that the signs
of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan(1)
and atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

math.cos(x)
Return the cosine of x radians.

math.hypot(x, y)
Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point
(x, y).

math.sin(x)
Return the sine of x radians.

math.tan(x)
Return the tangent of x radians.

8.2.4 Angular conversion

math.degrees(x)
Converts angle x from radians to degrees.

math.radians(x)
Converts angle x from degrees to radians.

186 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

8.2.5 Hyperbolic functions

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.cosh(x)
Return the hyperbolic cosine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.tanh(x)
Return the hyperbolic tangent of x.

8.2.6 Special functions

math.erf(x)
Return the error function at x. New in version 3.2.

math.erfc(x)
Return the complementary error function at x. New in version 3.2.

math.gamma(x)
Return the Gamma function at x. New in version 3.2.

math.lgamma(x)
Return the natural logarithm of the absolute value of the Gamma function at x. New in version 3.2.

8.2.7 Constants

math.pi
The mathematical constant π = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.718281..., to available precision.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate.
The current implementation will raise ValueError for invalid operations like sqrt(-1.0) or log(0.0)
(where C99 Annex F recommends signaling invalid operation or divide-by-zero), and OverflowError for
results that overflow (for example, exp(1000.0)). A NaN will not be returned from any of the functions above
unless one or more of the input arguments was a NaN; in that case, most functions will return a NaN, but (again
following C99 Annex F) there are some exceptions to this rule, for example pow(float(’nan’), 0.0) or
hypot(float(’nan’), float(’inf’)).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See Also:

Module cmath Complex number versions of many of these functions.

8.2. math — Mathematical functions 187

The Python Library Reference, Release 3.2

8.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept
any Python object that has either a __complex__() or a __float__() method: these methods are used to
convert the object to a complex or floating-point number, respectively, and the function is then applied to the result
of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

8.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely
determined by its real part z.real and its imaginary part z.imag. In other words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while
the phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that
joins the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and
back.

cmath.phase(x)
Return the phase of x (also known as the argument of x), as a float. phase(x) is equivalent to
math.atan2(x.imag, x.real). The result lies in the range [-π, π], and the branch cut for this
operation lies along the negative real axis, continuous from above. On systems with support for signed
zeros (which includes most systems in current use), this means that the sign of the result is the same as the
sign of x.imag, even when x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.141592653589793
>>> phase(complex(-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs() function.
There is no separate cmath module function for this operation.

cmath.polar(x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar(x) is equivalent to (abs(x), phase(x)).

cmath.rect(r, phi)
Return the complex number x with polar coordinates r and phi. Equivalent to r * (math.cos(phi) +
math.sin(phi)*1j).

8.3.2 Power and logarithmic functions

cmath.exp(x)
Return the exponential value e**x.

188 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

cmath.log(x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -∞, continuous from above.

cmath.log10(x)
Return the base-10 logarithm of x. This has the same branch cut as log().

cmath.sqrt(x)
Return the square root of x. This has the same branch cut as log().

8.3.3 Trigonometric functions

cmath.acos(x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to∞,
continuous from below. The other extends left from -1 along the real axis to -∞, continuous from above.

cmath.asin(x)
Return the arc sine of x. This has the same branch cuts as acos().

cmath.atan(x)
Return the arc tangent of x. There are two branch cuts: One extends from 1j along the imaginary axis to
∞j, continuous from the right. The other extends from -1j along the imaginary axis to -∞j, continuous
from the left.

cmath.cos(x)
Return the cosine of x.

cmath.sin(x)
Return the sine of x.

cmath.tan(x)
Return the tangent of x.

8.3.4 Hyperbolic functions

cmath.acosh(x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to
-∞, continuous from above.

cmath.asinh(x)
Return the hyperbolic arc sine of x. There are two branch cuts: One extends from 1j along the imaginary
axis to ∞j, continuous from the right. The other extends from -1j along the imaginary axis to -∞j,
continuous from the left.

cmath.atanh(x)
Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis to
∞, continuous from below. The other extends from -1 along the real axis to -∞, continuous from above.

cmath.cosh(x)
Return the hyperbolic cosine of x.

cmath.sinh(x)
Return the hyperbolic sine of x.

cmath.tanh(x)
Return the hyperbolic tangent of x.

8.3.5 Classification functions

cmath.isfinite(x)
Return True if both the real and imaginary parts of x are finite, and False otherwise. New in version 3.2.

8.3. cmath — Mathematical functions for complex numbers 189

The Python Library Reference, Release 3.2

cmath.isinf(x)
Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan(x)
Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

8.3.6 Constants

cmath.pi
The mathematical constant π, as a float.

cmath.e
The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having
two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather have math.sqrt(-1) raise an exception than return a complex number. Also note that
the functions defined in cmath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

8.4 decimal — Decimal fixed point and floating point arithmetic

The decimal module provides support for decimal floating point arithmetic. It offers several advantages over
the float datatype:

• Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle – computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” – excerpt from the decimal arithmetic specification.

• Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have an exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

• The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is
exactly equal to zero. In binary floating point, the result is 5.5511151231257827e-017. While near
to zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal is preferred in accounting applications which have strict equality invariants.

• The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The
trailing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3
* 1.2 gives 1.56 while 1.30 * 1.20 gives 1.5600.

• Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting
to 28 places) which can be as large as needed for a given problem:

>>> from decimal import *
>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857’)
>>> getcontext().prec = 28

190 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

>>> Decimal(1) / Decimal(7)
Decimal(’0.1428571428571428571428571429’)

• Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts
of the standard. When needed, the programmer has full control over rounding and signal handling. This
includes an option to enforce exact arithmetic by using exceptions to block any inexact operations.

• The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” – excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity,
-Infinity, and NaN. The standard also differentiates -0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN,
ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals
in the decimal module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded,
Subnormal, Overflow, and Underflow.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the
trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring
a calculation.

See Also:

• IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

• IEEE standard 854-1987, Unofficial IEEE 854 Text.

8.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with getcontext() and,
if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,

capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a
float performs an exact conversion of the value of that integer or float. Decimal numbers include special values
such as NaN which stands for “Not a number”, positive and negative Infinity, and -0.

>>> getcontext().prec = 28
>>> Decimal(10)
Decimal(’10’)
>>> Decimal(’3.14’)
Decimal(’3.14’)
>>> Decimal(3.14)
Decimal(’3.140000000000000124344978758017532527446746826171875’)
>>> Decimal((0, (3, 1, 4), -2))
Decimal(’3.14’)

8.4. decimal — Decimal fixed point and floating point arithmetic 191

http://speleotrove.com/decimal/decarith.html
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 3.2

>>> Decimal(str(2.0 ** 0.5))
Decimal(’1.4142135623730951’)
>>> Decimal(2) ** Decimal(’0.5’)
Decimal(’1.414213562373095048801688724’)
>>> Decimal(’NaN’)
Decimal(’NaN’)
>>> Decimal(’-Infinity’)
Decimal(’-Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext().prec = 6
>>> Decimal(’3.0’)
Decimal(’3.0’)
>>> Decimal(’3.1415926535’)
Decimal(’3.1415926535’)
>>> Decimal(’3.1415926535’) + Decimal(’2.7182818285’)
Decimal(’5.85987’)
>>> getcontext().rounding = ROUND_UP
>>> Decimal(’3.1415926535’) + Decimal(’2.7182818285’)
Decimal(’5.85988’)

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list(map(Decimal, ’1.34 1.87 3.45 2.35 1.00 0.03 9.25’.split()))
>>> max(data)
Decimal(’9.25’)
>>> min(data)
Decimal(’0.03’)
>>> sorted(data)
[Decimal(’0.03’), Decimal(’1.00’), Decimal(’1.34’), Decimal(’1.87’),
Decimal(’2.35’), Decimal(’3.45’), Decimal(’9.25’)]

>>> sum(data)
Decimal(’19.29’)
>>> a,b,c = data[:3]
>>> str(a)
’1.34’
>>> float(a)
1.34
>>> round(a, 1)
Decimal(’1.3’)
>>> int(a)
1
>>> a * 5
Decimal(’6.70’)
>>> a * b
Decimal(’2.5058’)
>>> c % a
Decimal(’0.77’)

And some mathematical functions are also available to Decimal:

>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal(’1.414213562373095048801688724’)
>>> Decimal(1).exp()
Decimal(’2.718281828459045235360287471’)
>>> Decimal(’10’).ln()
Decimal(’2.302585092994045684017991455’)
>>> Decimal(’10’).log10()

192 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

Decimal(’1’)

The quantize() method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal(’7.325’).quantize(Decimal(’.01’), rounding=ROUND_DOWN)
Decimal(’7.32’)
>>> Decimal(’7.325’).quantize(Decimal(’1.’), rounding=ROUND_UP)
Decimal(’8’)

As shown above, the getcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make
an alternate active, use the setcontext() function.

In accordance with the standard, the Decimal module provides two ready to use standard contexts,
BasicContext and ExtendedContext. The former is especially useful for debugging because many of
the traps are enabled:

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857142857142857142857142857142857142857142857142857142857’)

>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,

capitals=1, clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857143’)
>>> Decimal(42) / Decimal(0)
Decimal(’Infinity’)

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):

File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)

DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by
using the clear_flags() method.

>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal(’3.14159292’)
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,

capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the traps field of a context:

>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal(’Infinity’)
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):

8.4. decimal — Decimal fixed point and floating point arithmetic 193

The Python Library Reference, Release 3.2

File "<pyshell#112>", line 1, in -toplevel-
Decimal(1) / Decimal(0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

8.4.2 Decimal objects

class decimal.Decimal(value=”0”, context=None)
Construct a new Decimal object based from value.

value can be an integer, string, tuple, float, or another Decimal object. If no value is given, returns
Decimal(’0’). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign ::= ’+’ | ’-’
digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’
indicator ::= ’e’ | ’E’
digits ::= digit [digit]...
decimal-part ::= digits ’.’ [digits] | [’.’] digits
exponent-part ::= indicator [sign] digits
infinity ::= ’Infinity’ | ’Inf’
nan ::= ’NaN’ [digits] | ’sNaN’ [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanāgarı̄ digits) along with the fullwidth
digits ’\uff10’ through ’\uff19’.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, Decimal((0, (1, 4, 1, 4), -3)) returns
Decimal(’1.414’).

If value is a float, the binary floating point value is losslessly converted to
its exact decimal equivalent. This conversion can often require 53 or more
digits of precision. For example, Decimal(float(’1.1’)) converts to
Decimal(’1.100000000000000088817841970012523233890533447265625’).

The context precision does not affect how many digits are stored. That is determined exclusively by the
number of digits in value. For example, Decimal(’3.00000’) records all five zeros even if the context
precision is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with
the value of NaN.

Once constructed, Decimal objects are immutable. Changed in version 3.2: The argument to the con-
structor is now permitted to be a float instance. Decimal floating point objects share many properties
with the other built-in numeric types such as float and int. All of the usual math operations and special
methods apply. Likewise, decimal objects can be copied, pickled, printed, used as dictionary keys, used as
set elements, compared, sorted, and coerced to another type (such as float or int).

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in
arithmetic operations: an attempt to add a Decimal to a float, for example, will raise a TypeError.
However, it is possible to use Python’s comparison operators to compare a Decimal instance x with
another number y. This avoids confusing results when doing equality comparisons between numbers of
different types. Changed in version 3.2: Mixed-type comparisons between Decimal instances and other

194 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

numeric types are now fully supported. In addition to the standard numeric properties, decimal floating
point objects also have a number of specialized methods:

adjusted()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal(’321e+5’).adjusted() returns seven. Used for determining the position
of the most significant digit with respect to the decimal point.

as_tuple()
Return a named tuple representation of the number: DecimalTuple(sign, digits,
exponent).

canonical()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is
always canonical, so this operation returns its argument unchanged.

compare(other[, context])
Compare the values of two Decimal instances. compare() returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal(’NaN’)
a < b ==> Decimal(’-1’)
a == b ==> Decimal(’0’)
a > b ==> Decimal(’1’)

compare_signal(other[, context])
This operation is identical to the compare() method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.

compare_total(other)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal(’12.0’).compare_total(Decimal(’12’))
Decimal(’-1’)

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal(’0’) if both operands have the same representation, Decimal(’-1’) if the first
operand is lower in the total order than the second, and Decimal(’1’) if the first operand is higher
in the total order than the second operand. See the specification for details of the total order.

compare_total_mag(other)
Compare two operands using their abstract representation rather than their value as in
compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x.copy_abs().compare_total(y.copy_abs()).

conjugate()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_sign(other)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand.
For example:

8.4. decimal — Decimal fixed point and floating point arithmetic 195

The Python Library Reference, Release 3.2

>>> Decimal(’2.3’).copy_sign(Decimal(’-1.5’))
Decimal(’-2.3’)

This operation is unaffected by the context and is quiet: no flags are changed and no rounding is
performed.

exp([context])
Return the value of the (natural) exponential function e**x at the given number. The result is correctly
rounded using the ROUND_HALF_EVEN rounding mode.

>>> Decimal(1).exp()
Decimal(’2.718281828459045235360287471’)
>>> Decimal(321).exp()
Decimal(’2.561702493119680037517373933E+139’)

from_float(f)
Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(‘0.1’). Since 0.1 is not ex-
actly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is
0.1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a
float.

>>> Decimal.from_float(0.1)
Decimal(’0.1000000000000000055511151231257827021181583404541015625’)
>>> Decimal.from_float(float(’nan’))
Decimal(’NaN’)
>>> Decimal.from_float(float(’inf’))
Decimal(’Infinity’)
>>> Decimal.from_float(float(’-inf’))
Decimal(’-Infinity’)

New in version 3.1.

fma(other, third[, context])
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal(2).fma(3, 5)
Decimal(’11’)

is_canonical()
Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True.

is_finite()
Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.

is_infinite()
Return True if the argument is either positive or negative infinity and False otherwise.

is_nan()
Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is_normal()
Return True if the argument is a normal finite number. Return False if the argument is zero,
subnormal, infinite or a NaN.

196 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

is_qnan()
Return True if the argument is a quiet NaN, and False otherwise.

is_signed()
Return True if the argument has a negative sign and False otherwise. Note that zeros and NaNs can
both carry signs.

is_snan()
Return True if the argument is a signaling NaN and False otherwise.

is_subnormal()
Return True if the argument is subnormal, and False otherwise.

is_zero()
Return True if the argument is a (positive or negative) zero and False otherwise.

ln([context])
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

log10([context])
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb([context])
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the
operand is a zero then Decimal(’-Infinity’) is returned and the DivisionByZero flag is
raised. If the operand is an infinity then Decimal(’Infinity’) is returned.

logical_and(other[, context])
logical_and() is a logical operation which takes two logical operands (see Logical operands).
The result is the digit-wise and of the two operands.

logical_invert([context])
logical_invert() is a logical operation. The result is the digit-wise inversion of the operand.

logical_or(other[, context])
logical_or() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor(other[, context])
logical_xor() is a logical operation which takes two logical operands (see Logical operands).
The result is the digit-wise exclusive or of the two operands.

max(other[, context])
Like max(self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

max_mag(other[, context])
Similar to the max() method, but the comparison is done using the absolute values of the operands.

min(other[, context])
Like min(self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

min_mag(other[, context])
Similar to the min() method, but the comparison is done using the absolute values of the operands.

next_minus([context])
Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand.

next_plus([context])
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand.

8.4. decimal — Decimal fixed point and floating point arithmetic 197

The Python Library Reference, Release 3.2

next_toward(other[, context])
If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the
sign set to be the same as the sign of the second operand.

normalize([context])
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to
Decimal(’0’) to Decimal(’0e0’). Used for producing canonical values for members of an
equivalence class. For example, Decimal(’32.100’) and Decimal(’0.321000e+2’) both
normalize to the equivalent value Decimal(’32.1’).

number_class([context])
Return a string describing the class of the operand. The returned value is one of the following ten
strings.

•"-Infinity", indicating that the operand is negative infinity.

•"-Normal", indicating that the operand is a negative normal number.

•"-Subnormal", indicating that the operand is negative and subnormal.

•"-Zero", indicating that the operand is a negative zero.

•"+Zero", indicating that the operand is a positive zero.

•"+Subnormal", indicating that the operand is positive and subnormal.

•"+Normal", indicating that the operand is a positive normal number.

•"+Infinity", indicating that the operand is positive infinity.

•"NaN", indicating that the operand is a quiet NaN (Not a Number).

•"sNaN", indicating that the operand is a signaling NaN.

quantize(exp[, rounding[, context[, watchexp]]])
Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal(’1.41421356’).quantize(Decimal(’1.000’))
Decimal(’1.414’)

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an
error condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and
inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

If watchexp is set (default), then an error is returned whenever the resulting exponent is greater than
Emax or less than Etiny.

radix()
Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included
for compatibility with the specification.

remainder_near(other[, context])
Compute the modulo as either a positive or negative value depending on which is closest to zero.
For instance, Decimal(10).remainder_near(6) returns Decimal(’-2’) which is closer
to zero than Decimal(’4’).

If both are equally close, the one chosen will have the same sign as self.

198 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

rotate(other[, context])
Return the result of rotating the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand
is padded on the left with zeros to length precision if necessary. The sign and exponent of the first
operand are unchanged.

same_quantum(other[, context])
Test whether self and other have the same exponent or whether both are NaN.

scaleb(other[, context])
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other. The second operand must be an integer.

shift(other[, context])
Return the result of shifting the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to shift. If the second operand is
positive then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient
are zeros. The sign and exponent of the first operand are unchanged.

sqrt([context])
Return the square root of the argument to full precision.

to_eng_string([context])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the
decimal place. For example, converts Decimal(’123E+1’) to Decimal(’1.23E+3’)

to_integral([rounding[, context]])
Identical to the to_integral_value() method. The to_integral name has been kept for
compatibility with older versions.

to_integral_exact([rounding[, context]])
Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used.

to_integral_value([rounding[, context]])
Round to the nearest integer without signaling Inexact or Rounded. If given, applies rounding;
otherwise, uses the rounding method in either the supplied context or the current context.

Logical operands

The logical_and(), logical_invert(), logical_or(), and logical_xor() methods expect
their arguments to be logical operands. A logical operand is a Decimal instance whose exponent and sign
are both zero, and whose digits are all either 0 or 1.

8.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext() and
setcontext() functions:

decimal.getcontext()
Return the current context for the active thread.

decimal.setcontext(c)
Set the current context for the active thread to c.

8.4. decimal — Decimal fixed point and floating point arithmetic 199

The Python Library Reference, Release 3.2

You can also use the with statement and the localcontext() function to temporarily change the active
context.

decimal.localcontext([c])
Return a context manager that will set the current context for the active thread to a copy of c on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified,
a copy of the current context is used.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and
then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()

s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor described below. In addition, the module
provides three pre-made contexts:

class decimal.BasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions)
except Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal.ExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence
of conditions that would otherwise halt the program.

class decimal.DefaultContext
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal.Context(prec=None, rounding=None, traps=None, flags=None, Emin=None,
Emax=None, capitals=None, clamp=None)

Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContext. If the flags field is not specified or is None, all flags are cleared.

The prec field is a positive integer that sets the precision for arithmetic operations in the context.

The rounding option is one of:

•ROUND_CEILING (towards Infinity),

•ROUND_DOWN (towards zero),

•ROUND_FLOOR (towards -Infinity),

200 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

•ROUND_HALF_DOWN (to nearest with ties going towards zero),

•ROUND_HALF_EVEN (to nearest with ties going to nearest even integer),

•ROUND_HALF_UP (to nearest with ties going away from zero), or

•ROUND_UP (away from zero).

•ROUND_05UP (away from zero if last digit after rounding towards zero would have been 0 or 5;
otherwise towards zero)

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave
the flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents.

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise,
a lowercase e is used: Decimal(’6.02e+23’).

The clamp field is either 0 (the default) or 1. If set to 1, the exponent e of a Decimal instance representable
in this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1. If
clamp is 0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at most
Emax. When clamp is 1, a large normal number will, where possible, have its exponent reduced and a
corresponding number of zeros added to its coefficient, in order to fit the exponent constraints; this preserves
the value of the number but loses information about significant trailing zeros. For example:

>>> Context(prec=6, Emax=999, clamp=1).create_decimal(’1.23e999’)
Decimal(’1.23000E+999’)

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE
754.

The Context class defines several general purpose methods as well as a large number of methods for
doing arithmetic directly in a given context. In addition, for each of the Decimal methods described above
(with the exception of the adjusted() and as_tuple() methods) there is a corresponding Context
method. For example, for a Context instance C and Decimal instance x, C.exp(x) is equivalent to
x.exp(context=C). Each Context method accepts a Python integer (an instance of int) anywhere
that a Decimal instance is accepted.

clear_flags()
Resets all of the flags to 0.

copy()
Return a duplicate of the context.

copy_decimal(num)
Return a copy of the Decimal instance num.

create_decimal(num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the
current precision. In the following example, using unrounded inputs means that adding zero to a sum
can change the result:

>>> getcontext().prec = 3
>>> Decimal(’3.4445’) + Decimal(’1.0023’)
Decimal(’4.45’)
>>> Decimal(’3.4445’) + Decimal(0) + Decimal(’1.0023’)
Decimal(’4.44’)

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace is permitted.

8.4. decimal — Decimal fixed point and floating point arithmetic 201

The Python Library Reference, Release 3.2

create_decimal_from_float(f)
Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal.from_float() class method, the context precision, rounding method, flags, and traps
are applied to the conversion.

>>> context = Context(prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float(math.pi)
Decimal(’3.1415’)
>>> context = Context(prec=5, traps=[Inexact])
>>> context.create_decimal_from_float(math.pi)
Traceback (most recent call last):

...
decimal.Inexact: None

New in version 3.1.

Etiny()
Returns a value equal to Emin - prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Etiny.

Etop()
Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic
operations which take place within the current context for the active thread. An alternative approach is
to use context methods for calculating within a specific context. The methods are similar to those for the
Decimal class and are only briefly recounted here.

abs(x)
Returns the absolute value of x.

add(x, y)
Return the sum of x and y.

canonical(x)
Returns the same Decimal object x.

compare(x, y)
Compares x and y numerically.

compare_signal(x, y)
Compares the values of the two operands numerically.

compare_total(x, y)
Compares two operands using their abstract representation.

compare_total_mag(x, y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs(x)
Returns a copy of x with the sign set to 0.

copy_negate(x)
Returns a copy of x with the sign inverted.

copy_sign(x, y)
Copies the sign from y to x.

divide(x, y)
Return x divided by y.

divide_int(x, y)
Return x divided by y, truncated to an integer.

divmod(x, y)
Divides two numbers and returns the integer part of the result.

202 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

exp(x)
Returns e ** x.

fma(x, y, z)
Returns x multiplied by y, plus z.

is_canonical(x)
Returns True if x is canonical; otherwise returns False.

is_finite(x)
Returns True if x is finite; otherwise returns False.

is_infinite(x)
Returns True if x is infinite; otherwise returns False.

is_nan(x)
Returns True if x is a qNaN or sNaN; otherwise returns False.

is_normal(x)
Returns True if x is a normal number; otherwise returns False.

is_qnan(x)
Returns True if x is a quiet NaN; otherwise returns False.

is_signed(x)
Returns True if x is negative; otherwise returns False.

is_snan(x)
Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal(x)
Returns True if x is subnormal; otherwise returns False.

is_zero(x)
Returns True if x is a zero; otherwise returns False.

ln(x)
Returns the natural (base e) logarithm of x.

log10(x)
Returns the base 10 logarithm of x.

logb(x)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and(x, y)
Applies the logical operation and between each operand’s digits.

logical_invert(x)
Invert all the digits in x.

logical_or(x, y)
Applies the logical operation or between each operand’s digits.

logical_xor(x, y)
Applies the logical operation xor between each operand’s digits.

max(x, y)
Compares two values numerically and returns the maximum.

max_mag(x, y)
Compares the values numerically with their sign ignored.

min(x, y)
Compares two values numerically and returns the minimum.

min_mag(x, y)
Compares the values numerically with their sign ignored.

8.4. decimal — Decimal fixed point and floating point arithmetic 203

The Python Library Reference, Release 3.2

minus(x)
Minus corresponds to the unary prefix minus operator in Python.

multiply(x, y)
Return the product of x and y.

next_minus(x)
Returns the largest representable number smaller than x.

next_plus(x)
Returns the smallest representable number larger than x.

next_toward(x, y)
Returns the number closest to x, in direction towards y.

normalize(x)
Reduces x to its simplest form.

number_class(x)
Returns an indication of the class of x.

plus(x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context preci-
sion and rounding, so it is not an identity operation.

power(x, y[, modulo])
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then ymust be integral. The result will be inexact
unless y is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The result
should always be correctly rounded, using the rounding mode of the current thread’s context.

With three arguments, compute (x**y) % modulo. For the three argument form, the following
restrictions on the arguments hold:

•all three arguments must be integral

•y must be nonnegative

•at least one of x or y must be nonzero

•modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power(x, y, modulo) is equal to the value that would
be obtained by computing (x**y) % modulo with unbounded precision, but is computed more
efficiently. The exponent of the result is zero, regardless of the exponents of x, y and modulo. The
result is always exact.

quantize(x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix()
Just returns 10, as this is Decimal, :)

remainder(x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near(x, y)
Returns x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then
its sign will be the sign of x).

rotate(x, y)
Returns a rotated copy of x, y times.

same_quantum(x, y)
Returns True if the two operands have the same exponent.

204 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

scaleb(x, y)
Returns the first operand after adding the second value its exp.

shift(x, y)
Returns a shifted copy of x, y times.

sqrt(x)
Square root of a non-negative number to context precision.

subtract(x, y)
Return the difference between x and y.

to_eng_string(x)
Converts a number to a string, using scientific notation.

to_integral_exact(x)
Rounds to an integer.

to_sci_string(x)
Converts a number to a string using scientific notation.

8.4.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context
trap enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon encountering
the condition.

class decimal.Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible,
the exponent is reduced to fit by adding zeros to the coefficient.

class decimal.DecimalException
Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is
not trapped, returns Infinity or -Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal
flag or trap is used to detect when results are inexact.

class decimal.InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible
causes include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x

8.4. decimal — Decimal fixed point and floating point arithmetic 205

The Python Library Reference, Release 3.2

x._rescale(non-integer)
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity

class decimal.Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends
on the rounding mode, either pulling inward to the largest representable finite number or rounding outward
to Infinity. In either case, Inexact and Rounded are also signaled.

class decimal.Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0).
If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class decimal.Underflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also
signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.Exception)
DecimalException

Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact

Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)

InvalidOperation
Rounded
Subnormal

8.4.5 Floating Point Notes

Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0.1
exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with
insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111’)
>>> (u + v) + w
Decimal(’9.5111111’)
>>> u + (v + w)

206 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

Decimal(’10’)

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)
Decimal(’0.01’)
>>> u * (v+w)
Decimal(’0.0060000’)

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid
loss of significance:

>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111’)
>>> (u + v) + w
Decimal(’9.51111111’)
>>> u + (v + w)
Decimal(’9.51111111’)
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)
Decimal(’0.0060000’)
>>> u * (v+w)
Decimal(’0.0060000’)

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal(’Infinity’). Also, they can arise from dividing by
zero when the DivisionByZero signal is not trapped. Likewise, when the Overflow signal is not trapped,
infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large,
indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once
created, will flow through other computations always resulting in another NaN. This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value
when an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal(’NaN’)==Decimal(’NaN’)), while a test for inequality always returns True. An attempt to
compare two Decimals using any of the <, <=, > or >= operators will raise the InvalidOperation signal if
either operand is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic
specification does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN
were taken from the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use
the compare() and compare-signal() methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative
zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with dif-
fering precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized
floating point representations, it is not immediately obvious that the following calculation returns a value equal to
zero:

8.4. decimal — Decimal fixed point and floating point arithmetic 207

The Python Library Reference, Release 3.2

>>> 1 / Decimal(’Infinity’)
Decimal(’0E-1000000026’)

8.4.6 Working with threads

The getcontext() function accesses a different Context object for each thread. Having separate thread
contexts means that threads may make changes (such as getcontext.prec=10) without interfering with
other threads.

Likewise, the setcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called before getcontext(), then getcontext() will automatically cre-
ate a new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each
thread will use the same values throughout the application, directly modify the DefaultContext object. This
should be done before any threads are started so that there won’t be a race condition between threads calling
getcontext(). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)

Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
. . .

8.4.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt(value, places=2, curr=’’, sep=’,’, dp=’.’,
pos=’’, neg=’-’, trailneg=’’):

"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: ’+’, space or blank
neg: optional sign for negative numbers: ’-’, ’(’, space or blank
trailneg:optional trailing minus indicator: ’-’, ’)’, space or blank

>>> d = Decimal(’-1234567.8901’)
>>> moneyfmt(d, curr=’$’)
’-$1,234,567.89’
>>> moneyfmt(d, places=0, sep=’.’, dp=’’, neg=’’, trailneg=’-’)
’1.234.568-’
>>> moneyfmt(d, curr=’$’, neg=’(’, trailneg=’)’)
’($1,234,567.89)’
>>> moneyfmt(Decimal(123456789), sep=’ ’)
’123 456 789.00’
>>> moneyfmt(Decimal(’-0.02’), neg=’<’, trailneg=’>’)

208 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

’<0.02>’

"""
q = Decimal(10) ** -places # 2 places --> ’0.01’
sign, digits, exp = value.quantize(q).as_tuple()
result = []
digits = list(map(str, digits))
build, next = result.append, digits.pop
if sign:

build(trailneg)
for i in range(places):

build(next() if digits else ’0’)
if places:

build(dp)
if not digits:

build(’0’)
i = 0
while digits:

build(next())
i += 1
if i == 3 and digits:

i = 0
build(sep)

build(curr)
build(neg if sign else pos)
return ’’.join(reversed(result))

def pi():
"""Compute Pi to the current precision.

>>> print(pi())
3.141592653589793238462643383

"""
getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

lasts = s
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
s += t

getcontext().prec -= 2
return +s # unary plus applies the new precision

def exp(x):
"""Return e raised to the power of x. Result type matches input type.

>>> print(exp(Decimal(1)))
2.718281828459045235360287471
>>> print(exp(Decimal(2)))
7.389056098930650227230427461
>>> print(exp(2.0))
7.38905609893
>>> print(exp(2+0j))
(7.38905609893+0j)

8.4. decimal — Decimal fixed point and floating point arithmetic 209

The Python Library Reference, Release 3.2

"""
getcontext().prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1
while s != lasts:

lasts = s
i += 1
fact *= i
num *= x
s += num / fact

getcontext().prec -= 2
return +s

def cos(x):
"""Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).

>>> print(cos(Decimal(’0.5’)))
0.8775825618903727161162815826
>>> print(cos(0.5))
0.87758256189
>>> print(cos(0.5+0j))
(0.87758256189+0j)

"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
while s != lasts:

lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign

getcontext().prec -= 2
return +s

def sin(x):
"""Return the sine of x as measured in radians.

The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).

>>> print(sin(Decimal(’0.5’)))
0.4794255386042030002732879352
>>> print(sin(0.5))
0.479425538604
>>> print(sin(0.5+0j))
(0.479425538604+0j)

"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
while s != lasts:

lasts = s
i += 2
fact *= i * (i-1)

210 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

num *= x * x
sign *= -1
s += num / fact * sign

getcontext().prec -= 2
return +s

8.4.8 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal(’1234.5’). Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D(’1.23’) + D(’3.45’)
Decimal(’4.68’)

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize() method rounds to a fixed number of decimal places. If the Inexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal(’0.01’)

>>> # Round to two places
>>> Decimal(’3.214’).quantize(TWOPLACES)
Decimal(’3.21’)

>>> # Validate that a number does not exceed two places
>>> Decimal(’3.21’).quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal(’3.21’)

>>> Decimal(’3.214’).quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):

...
Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed
point. Others operations, like division and non-integer multiplication, will change the number of decimal places
and need to be followed-up with a quantize() step:

>>> a = Decimal(’102.72’) # Initial fixed-point values
>>> b = Decimal(’3.17’)
>>> a + b # Addition preserves fixed-point
Decimal(’105.89’)
>>> a - b
Decimal(’99.55’)
>>> a * 42 # So does integer multiplication
Decimal(’4314.24’)
>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal(’325.62’)
>>> (b / a).quantize(TWOPLACES) # And quantize division
Decimal(’0.03’)

In developing fixed-point applications, it is convenient to define functions to handle the quantize() step:

>>> def mul(x, y, fp=TWOPLACES):
... return (x * y).quantize(fp)
>>> def div(x, y, fp=TWOPLACES):
... return (x / y).quantize(fp)

8.4. decimal — Decimal fixed point and floating point arithmetic 211

The Python Library Reference, Release 3.2

>>> mul(a, b) # Automatically preserve fixed-point
Decimal(’325.62’)
>>> div(b, a)
Decimal(’0.03’)

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize() method maps all equivalent values to a single representative:

>>> values = map(Decimal, ’200 200.000 2E2 .02E+4’.split())
>>> [v.normalize() for v in values]
[Decimal(’2E+2’), Decimal(’2E+2’), Decimal(’2E+2’), Decimal(’2E+2’)]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential represen-
tation?

A. For some values, exponential notation is the only way to express the number of significant places in the co-
efficient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s
two-place significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes,
losing significance, but keeping the value unchanged:

>>> def remove_exponent(d):
... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()

>>> remove_exponent(Decimal(’5E+3’))
Decimal(’5000’)

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a Decimal though an exact conversion may
take more precision than intuition would suggest:

>>> Decimal(math.pi)
Decimal(’3.141592653589793115997963468544185161590576171875’)

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only
the results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that
the results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext().prec = 3
>>> Decimal(’3.104’) + Decimal(’2.104’)
Decimal(’5.21’)
>>> Decimal(’3.104’) + Decimal(’0.000’) + Decimal(’2.104’)
Decimal(’5.20’)

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext().prec = 3
>>> +Decimal(’1.23456789’) # unary plus triggers rounding
Decimal(’1.23’)

Alternatively, inputs can be rounded upon creation using the Context.create_decimal() method:

>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal(’1.2345678’)
Decimal(’1.2345’)

212 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

8.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction(numerator=0, denominator=1)
class fractions.Fraction(other_fraction)
class fractions.Fraction(float)
class fractions.Fraction(decimal)
class fractions.Fraction(string)

The first version requires that numerator and denominator are instances of numbers.Rational and
returns a new Fraction instance with value numerator/denominator. If denominator is 0, it
raises a ZeroDivisionError. The second version requires that other_fraction is an instance of
numbers.Rational and returns a Fraction instance with the same value. The next two ver-
sions accept either a float or a decimal.Decimal instance, and return a Fraction instance
with exactly the same value. Note that due to the usual issues with binary floating-point (see tut-fp-
issues), the argument to Fraction(1.1) is not exactly equal to 11/10, and so Fraction(1.1)
does not return Fraction(11, 10) as one might expect. (But see the documentation for the
limit_denominator() method below.) The last version of the constructor expects a string or uni-
code instance. The usual form for this instance is:

[sign] numerator [’/’ denominator]

where the optional sign may be either ‘+’ or ‘-‘ and numerator and denominator (if present) are
strings of decimal digits. In addition, any string that represents a finite value and is accepted by the float
constructor is also accepted by the Fraction constructor. In either form the input string may also have
leading and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction(’3/7’)
Fraction(3, 7)
[40794 refs]
>>> Fraction(’ -3/7 ’)
Fraction(-3, 7)
>>> Fraction(’1.414213 \t\n’)
Fraction(1414213, 1000000)
>>> Fraction(’-.125’)
Fraction(-1, 8)
>>> Fraction(’7e-6’)
Fraction(7, 1000000)
>>> Fraction(2.25)
Fraction(9, 4)
>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction(Decimal(’1.1’))
Fraction(11, 10)

8.5. fractions — Rational numbers 213

http://svn.python.org/view/python/branches/py3k/Lib/fractions.py?view=markup

The Python Library Reference, Release 3.2

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of
the methods and operations from that class. Fraction instances are hashable, and should be treated as
immutable. In addition, Fraction has the following methods: Changed in version 3.2: The Fraction
constructor now accepts float and decimal.Decimal instances.

from_float(flt)
This class method constructs a Fraction representing the exact value of flt, which must be a float.
Beware that Fraction.from_float(0.3) is not the same value as Fraction(3, 10)

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
float.

from_decimal(dec)
This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal instance.

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
decimal.Decimal instance.

limit_denominator(max_denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator.
This method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction(’3.1415926535897932’).limit_denominator(1000)
Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos
>>> Fraction(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)).limit_denominator()
Fraction(1, 2)
>>> Fraction(1.1).limit_denominator()
Fraction(11, 10)

__floor__()
Returns the greatest int <= self. This method can also be accessed through the math.floor()
function:

>>> from math import floor
>>> floor(Fraction(355, 113))
3

__ceil__()
Returns the least int >= self. This method can also be accessed through the math.ceil()
function.

__round__()
__round__(ndigits)

The first version returns the nearest int to self, rounding half to even. The second version rounds
self to the nearest multiple of Fraction(1, 10**ndigits) (logically, if ndigits is neg-
ative), again rounding half toward even. This method can also be accessed through the round()
function.

fractions.gcd(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the absolute

214 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

value of gcd(a, b) is the largest integer that divides both a and b. gcd(a,b) has the same sign as b if
b is nonzero; otherwise it takes the sign of a. gcd(0, 0) returns 0.

See Also:

Module numbers The abstract base classes making up the numeric tower.

8.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random
element, a function to generate a random permutation of a list in-place, and a function for random sampling
without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However,
being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic
purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in
that case, override the random(), seed(), getstate(), and setstate() methods. Optionally, a new
generator can supply a getrandbits() method — this allows randrange() to produce selections over an
arbitrarily large range.

The random module also provides the SystemRandom class which uses the system function os.urandom()
to generate random numbers from sources provided by the operating system.

Bookkeeping functions:

random.seed([x], version=2)
Initialize the random number generator.

If x is omitted or None, the current system time is used. If randomness sources are provided by the op-
erating system, they are used instead of the system time (see the os.urandom() function for details on
availability).

If x is an int, it is used directly.

With version 2 (the default), a str, bytes, or bytearray object gets converted to an int and all of
its bits are used. With version 1, the hash() of x is used instead. Changed in version 3.2: Moved to the
version 2 scheme which uses all of the bits in a string seed.

random.getstate()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate() to restore the state.

random.setstate(state)
state should have been obtained from a previous call to getstate(), and setstate() restores the
internal state of the generator to what it was at the time setstate() was called.

8.6. random — Generate pseudo-random numbers 215

http://svn.python.org/view/python/branches/py3k/Lib/random.py?view=markup

The Python Library Reference, Release 3.2

random.getrandbits(k)
Returns a Python integer with k random bits. This method is supplied with the MersenneTwister gen-
erator and some other generators may also provide it as an optional part of the API. When available,
getrandbits() enables randrange() to handle arbitrarily large ranges.

Functions for integers:

random.randrange([start], stop[, step])
Return a randomly selected element from range(start, stop, step). This is equivalent to
choice(range(start, stop, step)), but doesn’t actually build a range object.

The positional argument pattern matches that of range(). Keyword arguments should not be used because
the function may use them in unexpected ways. Changed in version 3.2: randrange() is more sophisti-
cated about producing equally distributed values. Formerly it used a style like int(random()*n) which
could produce slightly uneven distributions.

random.randint(a, b)
Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).

Functions for sequences:

random.choice(seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.shuffle(x[, random])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(x), the total number of permutations of x is larger than the period
of most random number generators; this implies that most permutations of a long sequence can never be
generated.

random.sample(population, k)
Return a k length list of unique elements chosen from the population sequence or set. Used for random
sampling without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows
raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an range() object as an argument. This is especially
fast and space efficient for sampling from a large population: sample(range(10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these
equations can be found in any statistics text.

random.random()
Return the next random floating point number in the range [0.0, 1.0).

random.uniform(a, b)
Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for
b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equation a + (b-a) * random().

random.triangular(low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode
between those bounds. The low and high bounds default to zero and one. The mode argument defaults to
the midpoint between the bounds, giving a symmetric distribution.

216 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2

random.betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random.expovariate(lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter
would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive
infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta
> 0.

random.gauss(mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate() function defined below.

random.lognormvariate(mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

random.normalvariate(mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate(mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

random.paretovariate(alpha)
Pareto distribution. alpha is the shape parameter.

random.weibullvariate(alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generator:

class random.SystemRandom([seed])
Class that uses the os.urandom() function for generating random numbers from sources provided by
the operating system. Not available on all systems. Does not rely on software state, and sequences are
not reproducible. Accordingly, the seed() method has no effect and is ignored. The getstate() and
setstate() methods raise NotImplementedError if called.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30
1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long
period and comparatively simple update operations.

8.6.1 Notes on Reproducibility

Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator. By
re-using a seed value, the same sequence should be reproducible from run to run as long as multiple threads are
not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but
two aspects are guaranteed not to change:

• If a new seeding method is added, then a backward compatible seeder will be offered.

• The generator’s random()method will continue to produce the same sequence when the compatible seeder
is given the same seed.

8.6. random — Generate pseudo-random numbers 217

http://code.activestate.com/recipes/576707/

The Python Library Reference, Release 3.2

8.6.2 Examples and Recipes

Basic usage:

>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646

>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523

>>> random.randrange(10) # Integer from 0 to 9
7

>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26

>>> random.choice(’abcdefghij’) # Single random element
’c’

>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
[4, 1, 5]

A common task is to make a random.choice() with weighted probababilites.

If the weights are small integer ratios, a simple technique is to build a sample population with repeats:

>>> weighted_choices = [(’Red’, 3), (’Blue’, 2), (’Yellow’, 1), (’Green’, 4)]
>>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
>>> random.choice(population)
’Green’

A more general approach is to arrange the weights in a cumulative distribution with
itertools.accumulate(), and then locate the random value with bisect.bisect():

>>> choices, weights = zip(*weighted_choices)
>>> cumdist = list(itertools.accumulate(weights))
>>> x = random.random() * cumdist[-1]
>>> choices[bisect.bisect(cumdist, x)]
’Blue’

218 Chapter 8. Numeric and Mathematical Modules

CHAPTER

NINE

FUNCTIONAL PROGRAMMING
MODULES

The modules described in this chapter provide functions and classes that support a functional programming style,
and general operations on callables.

The following modules are documented in this chapter:

9.1 itertools — Functions creating iterators for efficient looping

This module implements a number of iterator building blocks inspired by constructs from APL, Haskell, and
SML. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently
in pure Python.

For instance, SML provides a tabulation tool: tabulate(f) which produces a sequence f(0), f(1),
The same effect can be achieved in Python by combining map() and count() to form map(f, count()).

These tools and their built-in counterparts also work well with the high-speed functions in the operatormodule.
For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum(map(operator.mul, vector1, vector2)).

Infinite Iterators:
Iterator Argu-

ments
Results Example

count() start,
[step]

start, start+step, start+2*step, ... count(10) --> 10 11 12 13 14
...

cycle() p p0, p1, ... plast, p0, p1, ... cycle(’ABCD’) --> A B C D A B
C D ...

repeat() elem [,n] elem, elem, elem, ... endlessly or up
to n times

repeat(10, 3) --> 10 10 10

Iterators terminating on the shortest input sequence:

219

The Python Library Reference, Release 3.2

Iterator Arguments Results Example
accumulate()p p0, p0+p1, p0+p1+p2, ... accumulate([1,2,3,4,5]) --> 1 3

6 10 15
chain() p, q, ... p0, p1, ... plast, q0, q1, ... chain(’ABC’, ’DEF’) --> A B C D

E F
compress()data,

selectors
(d[0] if s[0]), (d[1] if
s[1]), ...

compress(’ABCDEF’,
[1,0,1,0,1,1]) --> A C E F

dropwhile()pred, seq seq[n], seq[n+1], starting
when pred fails

dropwhile(lambda x: x<5,
[1,4,6,4,1]) --> 6 4 1

filterfalse()pred, seq elements of seq where
pred(elem) is False

filterfalse(lambda x: x%2,
range(10)) --> 0 2 4 6 8

groupby() iterable[,
keyfunc]

sub-iterators grouped by
value of keyfunc(v)

islice() seq, [start,]
stop [, step]

elements from
seq[start:stop:step]

islice(’ABCDEFG’, 2, None) --> C
D E F G

starmap() func, seq func(*seq[0]),
func(*seq[1]), ...

starmap(pow, [(2,5), (3,2),
(10,3)]) --> 32 9 1000

takewhile()pred, seq seq[0], seq[1], until pred
fails

takewhile(lambda x: x<5,
[1,4,6,4,1]) --> 1 4

tee() it, n it1, it2 , ... itn splits one
iterator into n

zip_longest()p, q, ... (p[0], q[0]), (p[1], q[1]),
...

zip_longest(’ABCD’, ’xy’,
fillvalue=’-’) --> Ax By C- D-

Combinatoric generators:

Iterator Arguments Results
product() p, q, ...

[repeat=1]
cartesian product, equivalent to a nested for-loop

permutations() p[, r] r-length tuples, all possible orderings, no
repeated elements

combinations() p, r r-length tuples, in sorted order, no repeated
elements

combinations_with_replacement()p, r r-length tuples, in sorted order, with repeated
elements

product(’ABCD’, repeat=2) AA AB AC AD BA BB BC BD CA CB CC
CD DA DB DC DD

permutations(’ABCD’, 2) AB AC AD BA BC BD CA CB CD DA DB
DC

combinations(’ABCD’, 2) AB AC AD BC BD CD
combinations_with_replacement(’ABCD’,
2)

AA AB AC AD BB BC BD CC CD DD

9.1.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

itertools.accumulate(iterable)
Make an iterator that returns accumulated sums. Elements may be any addable type including Decimal or
Fraction. Equivalent to:

def accumulate(iterable):
’Return running totals’
accumulate([1,2,3,4,5]) --> 1 3 6 10 15
it = iter(iterable)
total = next(it)
yield total
for element in it:

220 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

total = total + element
yield total

New in version 3.2.

itertools.chain(*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the
next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single
sequence. Equivalent to:

def chain(*iterables):
chain(’ABC’, ’DEF’) --> A B C D E F
for it in iterables:

for element in it:
yield element

classmethod chain.from_iterable(iterable)
Alternate constructor for chain(). Gets chained inputs from a single iterable argument that is evaluated
lazily. Equivalent to:

@classmethod
def from_iterable(iterables):

chain.from_iterable([’ABC’, ’DEF’]) --> A B C D E F
for it in iterables:

for element in it:
yield element

itertools.combinations(iterable, r)
Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, there will be no repeat values in each combination.

Equivalent to:

def combinations(iterable, r):
combinations(’ABCD’, 2) --> AB AC AD BC BD CD
combinations(range(4), 3) --> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:

return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:

for i in reversed(range(r)):
if indices[i] != i + n - r:

break
else:

return
indices[i] += 1
for j in range(i+1, r):

indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations() can be also expressed as a subsequence of permutations() after
filtering entries where the elements are not in sorted order (according to their position in the input pool):

9.1. itertools — Functions creating iterators for efficient looping 221

The Python Library Reference, Release 3.2

def combinations(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in permutations(range(n), r):

if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)

The number of items returned is n! / r! / (n-r)! when 0 <= r <= n or zero when r > n.

itertools.combinations_with_replacement(iterable, r)
Return r length subsequences of elements from the input iterable allowing individual elements to be re-
peated more than once.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, the generated combinations will also be unique.

Equivalent to:

def combinations_with_replacement(iterable, r):
combinations_with_replacement(’ABC’, 2) --> AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:

return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:

for i in reversed(range(r)):
if indices[i] != n - 1:

break
else:

return
indices[i:] = [indices[i] + 1] * (r - i)
yield tuple(pool[i] for i in indices)

The code for combinations_with_replacement() can be also expressed as a subsequence of
product() after filtering entries where the elements are not in sorted order (according to their position in
the input pool):

def combinations_with_replacement(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in product(range(n), repeat=r):

if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)

The number of items returned is (n+r-1)! / r! / (n-1)! when n > 0. New in version 3.1.

itertools.compress(data, selectors)
Make an iterator that filters elements from data returning only those that have a corresponding element
in selectors that evaluates to True. Stops when either the data or selectors iterables has been exhausted.
Equivalent to:

def compress(data, selectors):
compress(’ABCDEF’, [1,0,1,0,1,1]) --> A C E F
return (d for d, s in zip(data, selectors) if s)

New in version 3.1.

222 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

itertools.count(start=0, step=1)
Make an iterator that returns evenly spaced values starting with n. Often used as an argument to map() to
generate consecutive data points. Also, used with zip() to add sequence numbers. Equivalent to:

def count(start=0, step=1):
count(10) --> 10 11 12 13 14 ...
count(2.5, 0.5) -> 2.5 3.0 3.5 ...
n = start
while True:

yield n
n += step

When counting with floating point numbers, better accuracy can sometimes be achieved by substituting
multiplicative code such as: (start + step * i for i in count()). Changed in version 3.1:
Added step argument and allowed non-integer arguments.

itertools.cycle(iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):
cycle(’ABCD’) --> A B C D A B C D A B C D ...
saved = []
for element in iterable:

yield element
saved.append(element)

while saved:
for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the
iterable).

itertools.dropwhile(predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element. Note, the iterator does not produce any output until the predicate first becomes false, so it
may have a lengthy start-up time. Equivalent to:

def dropwhile(predicate, iterable):
dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
iterable = iter(iterable)
for x in iterable:

if not predicate(x):
yield x
break

for x in iterable:
yield x

itertools.filterfalse(predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is False.
If predicate is None, return the items that are false. Equivalent to:

def filterfalse(predicate, iterable):
filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
if predicate is None:

predicate = bool
for x in iterable:

if not predicate(x):
yield x

9.1. itertools — Functions creating iterators for efficient looping 223

The Python Library Reference, Release 3.2

itertools.groupby(iterable, key=None)
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation of groupby() is similar to the uniq filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements
regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby(). Because the
source is shared, when the groupby() object is advanced, the previous group is no longer visible. So, if
that data is needed later, it should be stored as a list:

groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):

groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)

groupby() is equivalent to:

class groupby:
[k for k, g in groupby(’AAAABBBCCDAABBB’)] --> A B C D A B
[list(g) for k, g in groupby(’AAAABBBCCD’)] --> AAAA BBB CC D
def __init__(self, iterable, key=None):

if key is None:
key = lambda x: x

self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()

def __iter__(self):
return self

def __next__(self):
while self.currkey == self.tgtkey:

self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))

def _grouper(self, tgtkey):
while self.currkey == tgtkey:

yield self.currvalue
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

itertools.islice(iterable[, start], stop[, step])
Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from
the iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is
set higher than one which results in items being skipped. If stop is None, then iteration continues until the
iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing, islice()
does not support negative values for start, stop, or step. Can be used to extract related fields from data where
the internal structure has been flattened (for example, a multi-line report may list a name field on every third
line). Equivalent to:

def islice(iterable, *args):
islice(’ABCDEFG’, 2) --> A B
islice(’ABCDEFG’, 2, 4) --> C D
islice(’ABCDEFG’, 2, None) --> C D E F G

224 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

islice(’ABCDEFG’, 0, None, 2) --> A C E G
s = slice(*args)
it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
nexti = next(it)
for i, element in enumerate(iterable):

if i == nexti:
yield element
nexti = next(it)

If start is None, then iteration starts at zero. If step is None, then the step defaults to one.

itertools.permutations(iterable, r=None)
Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length
permutations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, there will be no repeat values in each permutation.

Equivalent to:

def permutations(iterable, r=None):
permutations(’ABCD’, 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:

return
indices = list(range(n))
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:

for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:

indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i

else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break

else:
return

The code for permutations() can be also expressed as a subsequence of product(), filtered to
exclude entries with repeated elements (those from the same position in the input pool):

def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):

if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)

9.1. itertools — Functions creating iterators for efficient looping 225

The Python Library Reference, Release 3.2

The number of items returned is n! / (n-r)! when 0 <= r <= n or zero when r > n.

itertools.product(*iterables, repeat=1)
Cartesian product of input iterables.

Equivalent to nested for-loops in a generator expression. For example, product(A, B) returns the same
as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This
pattern creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are
emitted in sorted order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat
keyword argument. For example, product(A, repeat=4) means the same as product(A, A, A,
A).

This function is equivalent to the following code, except that the actual implementation does not build up
intermediate results in memory:

def product(*args, repeat=1):
product(’ABCD’, ’xy’) --> Ax Ay Bx By Cx Cy Dx Dy
product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:

result = [x+[y] for x in result for y in pool]
for prod in result:

yield tuple(prod)

itertools.repeat(object[, times])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is
specified. Used as argument to map() for invariant parameters to the called function. Also used with
zip() to create an invariant part of a tuple record. Equivalent to:

def repeat(object, times=None):
repeat(10, 3) --> 10 10 10
if times is None:

while True:
yield object

else:
for i in range(times):

yield object

itertools.starmap(function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead
of map() when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference between map() and starmap() parallels the distinction between
function(a,b) and function(*c). Equivalent to:

def starmap(function, iterable):
starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:

yield function(*args)

itertools.takewhile(predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile(predicate, iterable):
takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
for x in iterable:

if predicate(x):

226 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

yield x
else:

break

itertools.tee(iterable, n=2)
Return n independent iterators from a single iterable. Equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):

while True:
if not mydeque: # when the local deque is empty

newval = next(it) # fetch a new value and
for d in deques: # load it to all the deques

d.append(newval)
yield mydeque.popleft()

return tuple(gen(d) for d in deques)

Once tee() has made a split, the original iterable should not be used anywhere else; otherwise, the iterable
could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use
list() instead of tee().

itertools.zip_longest(*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted. Equiv-
alent to:

def zip_longest(*args, fillvalue=None):
zip_longest(’ABCD’, ’xy’, fillvalue=’-’) --> Ax By C- D-
def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):

yield counter() # yields the fillvalue, or raises IndexError
fillers = repeat(fillvalue)
iters = [chain(it, sentinel(), fillers) for it in args]
try:

for tup in zip(*iters):
yield tup

except IndexError:
pass

If one of the iterables is potentially infinite, then the zip_longest() function should be wrapped with
something that limits the number of calls (for example islice() or takewhile()). If not specified,
fillvalue defaults to None.

9.1.2 Itertools Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which
incur interpreter overhead.

def take(n, iterable):
"Return first n items of the iterable as a list"

9.1. itertools — Functions creating iterators for efficient looping 227

The Python Library Reference, Release 3.2

return list(islice(iterable, n))

def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))

def consume(iterator, n):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
Use functions that consume iterators at C speed.
if n is None:

feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)

else:
advance to the empty slice starting at position n
next(islice(iterator, n, n), None)

def nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)

def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
return sum(map(pred, iterable))

def padnone(iterable):
"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.
"""
return chain(iterable, repeat(None))

def ncycles(iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable(repeat(tuple(iterable), n))

def dotproduct(vec1, vec2):
return sum(map(operator.mul, vec1, vec2))

def flatten(listOfLists):
"Flatten one level of nesting"
return chain.from_iterable(listOfLists)

def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.

Example: repeatfunc(random.random)
"""
if times is None:

return starmap(func, repeat(args))
return starmap(func, repeat(args, times))

def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)

def grouper(n, iterable, fillvalue=None):

228 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

"grouper(3, ’ABCDEFG’, ’x’) --> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)

def roundrobin(*iterables):
"roundrobin(’ABC’, ’D’, ’EF’) --> A D E B F C"
Recipe credited to George Sakkis
pending = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
while pending:

try:
for next in nexts:

yield next()
except StopIteration:

pending -= 1
nexts = cycle(islice(nexts, pending))

def partition(pred, iterable):
’Use a predicate to partition entries into false entries and true entries’
partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
return filterfalse(pred, t1), filter(pred, t2)

def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
unique_everseen(’AAAABBBCCDAABBB’) --> A B C D
unique_everseen(’ABBCcAD’, str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:

for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
yield element

else:
for element in iterable:

k = key(element)
if k not in seen:

seen_add(k)
yield element

def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
unique_justseen(’AAAABBBCCDAABBB’) --> A B C D A B
unique_justseen(’ABBCcAD’, str.lower) --> A B C A D
return map(next, map(itemgetter(1), groupby(iterable, key)))

def iter_except(func, exception, first=None):
""" Call a function repeatedly until an exception is raised.

Converts a call-until-exception interface to an iterator interface.
Like __builtin__.iter(func, sentinel) but uses an exception instead
of a sentinel to end the loop.

9.1. itertools — Functions creating iterators for efficient looping 229

The Python Library Reference, Release 3.2

Examples:
iter_except(functools.partial(heappop, h), IndexError) # priority queue iterator
iter_except(d.popitem, KeyError) # non-blocking dict iterator
iter_except(d.popleft, IndexError) # non-blocking deque iterator
iter_except(q.get_nowait, Queue.Empty) # loop over a producer Queue
iter_except(s.pop, KeyError) # non-blocking set iterator

"""
try:

if first is not None:
yield first() # For database APIs needing an initial cast to db.first()

while 1:
yield func()

except exception:
pass

def random_product(*args, repeat=1):
"Random selection from itertools.product(*args, **kwds)"
pools = [tuple(pool) for pool in args] * repeat
return tuple(random.choice(pool) for pool in pools)

def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))

def random_combination(iterable, r):
"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample(range(n), r))
return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
"Random selection from itertools.combinations_with_replacement(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.randrange(n) for i in range(r))
return tuple(pool[i] for i in indices)

Note, many of the above recipes can be optimized by replacing global lookups with local variables defined as
default values. For example, the dotproduct recipe can be written as:

def dotproduct(vec1, vec2, sum=sum, map=map, mul=operator.mul):
return sum(map(mul, vec1, vec2))

9.2 functools — Higher order functions and operations on
callable objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return other functions. In general,
any callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

230 Chapter 9. Functional Programming Modules

http://svn.python.org/view/python/branches/py3k/Lib/functools.py?view=markup

The Python Library Reference, Release 3.2

functools.cmp_to_key(func)
Transform an old-style comparison function to a key-function. Used with tools that accept key
functions (such as sorted(), min(), max(), heapq.nlargest(), heapq.nsmallest(),
itertools.groupby()). This function is primarily used as a transition tool for programs being con-
verted from Py2.x which supported the use of comparison functions.

A compare function is any callable that accept two arguments, compares them, and returns a negative
number for less-than, zero for equality, or a positive number for greater-than. A key function is a callable
that accepts one argument and returns another value indicating the position in the desired collation sequence.

Example:

sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order

New in version 3.2.

@functools.lru_cache(maxsize=100)
Decorator to wrap a function with a memoizing callable that saves up to the maxsize most recent calls. It
can save time when an expensive or I/O bound function is periodically called with the same arguments.

Since a dictionary is used to cache results, the positional and keyword arguments to the function must be
hashable.

If maxsize is set to None, the LRU feature is disabled and the cache can grow without bound.

To help measure the effectiveness of the cache and tune the maxsize parameter, the wrapped function is
instrumented with a cache_info() function that returns a named tuple showing hits, misses, maxsize
and currsize. In a multi-threaded environment, the hits and misses are approximate.

The decorator also provides a cache_clear() function for clearing or invalidating the cache.

The original underlying function is accessible through the __wrapped__ attribute. This is useful for
introspection, for bypassing the cache, or for rewrapping the function with a different cache.

An LRU (least recently used) cache works best when more recent calls are the best predictors of upcoming
calls (for example, the most popular articles on a news server tend to change daily). The cache’s size limit
assures that the cache does not grow without bound on long-running processes such as web servers.

Example of an LRU cache for static web content:

@lru_cache(maxsize=20)
def get_pep(num):

’Retrieve text of a Python Enhancement Proposal’
resource = ’http://www.python.org/dev/peps/pep-%04d/’ % num
try:

with urllib.request.urlopen(resource) as s:
return s.read()

except urllib.error.HTTPError:
return ’Not Found’

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
... pep = get_pep(n)
... print(n, len(pep))

>>> print(get_pep.cache_info())
CacheInfo(hits=3, misses=8, maxsize=20, currsize=8)

Example of efficiently computing Fibonacci numbers using a cache to implement a dynamic programming
technique:

@lru_cache(maxsize=None)
def fib(n):

if n < 2:

9.2. functools — Higher order functions and operations on callable objects 231

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Dynamic_programming

The Python Library Reference, Release 3.2

return n
return fib(n-1) + fib(n-2)

>>> print([fib(n) for n in range(16)])
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

>>> print(fib.cache_info())
CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)

New in version 3.2.

@functools.total_ordering
Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest.
This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must define one of __lt__(), __le__(), __gt__(), or __ge__(). In addition, the class
should supply an __eq__() method.

For example:

@total_ordering
class Student:

def __eq__(self, other):
return ((self.lastname.lower(), self.firstname.lower()) ==

(other.lastname.lower(), other.firstname.lower()))
def __lt__(self, other):

return ((self.lastname.lower(), self.firstname.lower()) <
(other.lastname.lower(), other.firstname.lower()))

New in version 3.2.

functools.partial(func, *args, **keywords)
Return a new partial object which when called will behave like func called with the positional arguments
args and keyword arguments keywords. If more arguments are supplied to the call, they are appended to
args. If additional keyword arguments are supplied, they extend and override keywords. Roughly equivalent
to:

def partial(func, *args, **keywords):
def newfunc(*fargs, **fkeywords):

newkeywords = keywords.copy()
newkeywords.update(fkeywords)
return func(*(args + fargs), **newkeywords)

newfunc.func = func
newfunc.args = args
newfunc.keywords = keywords
return newfunc

The partial() is used for partial function application which “freezes” some portion of a function’s
arguments and/or keywords resulting in a new object with a simplified signature. For example, partial()
can be used to create a callable that behaves like the int() function where the base argument defaults to
two:

>>> from functools import partial
>>> basetwo = partial(int, base=2)
>>> basetwo.__doc__ = ’Convert base 2 string to an int.’
>>> basetwo(’10010’)
18

functools.reduce(function, iterable[, initializer])
Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce

232 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument,
y, is the update value from the sequence. If the optional initializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the sequence is empty. If initializer is not
given and sequence contains only one item, the first item is returned.

functools.update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, up-
dated=WRAPPER_UPDATES)

Update a wrapper function to look like the wrapped function. The optional arguments are tuples to spec-
ify which attributes of the original function are assigned directly to the matching attributes on the wrap-
per function and which attributes of the wrapper function are updated with the corresponding attributes
from the original function. The default values for these arguments are the module level constants WRAP-
PER_ASSIGNMENTS (which assigns to the wrapper function’s __name__, __module__, __annotations__
and __doc__, the documentation string) and WRAPPER_UPDATES (which updates the wrapper function’s
__dict__, i.e. the instance dictionary).

To allow access to the original function for introspection and other purposes (e.g. bypassing a caching
decorator such as lru_cache()), this function automatically adds a __wrapped__ attribute to the wrapper
that refers to the original function.

The main intended use for this function is in decorator functions which wrap the decorated function and
return the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect
the wrapper definition rather than the original function definition, which is typically less than helpful.

update_wrapper() may be used with callables other than functions. Any attributes named in assigned
or updated that are missing from the object being wrapped are ignored (i.e. this function will not attempt
to set them on the wrapper function). AttributeError is still raised if the wrapper function itself is
missing any attributes named in updated. New in version 3.2: Automatic addition of the __wrapped__
attribute.New in version 3.2: Copying of the __annotations__ attribute by default.Changed in version
3.2: Missing attributes no longer trigger an AttributeError.

@functools.wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, up-
dated=WRAPPER_UPDATES)

This is a convenience function for invoking partial(update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated) as a function decorator when defining a wrapper func-
tion. For example:

>>> from functools import wraps
>>> def my_decorator(f):
... @wraps(f)
... def wrapper(*args, **kwds):
... print(’Calling decorated function’)
... return f(*args, **kwds)
... return wrapper
...
>>> @my_decorator
... def example():
... """Docstring"""
... print(’Called example function’)
...
>>> example()
Calling decorated function
Called example function
>>> example.__name__
’example’
>>> example.__doc__
’Docstring’

Without the use of this decorator factory, the name of the example function would have been ’wrapper’,
and the docstring of the original example() would have been lost.

9.2. functools — Higher order functions and operations on callable objects 233

The Python Library Reference, Release 3.2

9.2.1 partial Objects

partial objects are callable objects created by partial(). They have three read-only attributes:

partial.func
A callable object or function. Calls to the partial object will be forwarded to func with new arguments
and keywords.

partial.args
The leftmost positional arguments that will be prepended to the positional arguments provided to a
partial object call.

partial.keywords
The keyword arguments that will be supplied when the partial object is called.

partial objects are like function objects in that they are callable, weak referencable, and can have attributes.
There are some important differences. For instance, the __name__ and __doc__ attributes are not created
automatically. Also, partial objects defined in classes behave like static methods and do not transform into
bound methods during instance attribute look-up.

9.3 operator — Standard operators as functions

The operator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function names are
those used for special class methods; variants without leading and trailing __ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations
and sequence operations.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

operator.lt(a, b)
operator.le(a, b)
operator.eq(a, b)
operator.ne(a, b)
operator.ge(a, b)
operator.gt(a, b)
operator.__lt__(a, b)
operator.__le__(a, b)
operator.__eq__(a, b)
operator.__ne__(a, b)
operator.__ge__(a, b)
operator.__gt__(a, b)

Perform “rich comparisons” between a and b. Specifically, lt(a, b) is equivalent to a < b, le(a,
b) is equivalent to a <= b, eq(a, b) is equivalent to a == b, ne(a, b) is equivalent to a != b,
gt(a, b) is equivalent to a > b and ge(a, b) is equivalent to a >= b. Note that these functions
can return any value, which may or may not be interpretable as a Boolean value. See comparisons for more
information about rich comparisons.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

operator.not_(obj)
operator.__not__(obj)

Return the outcome of not obj. (Note that there is no __not__() method for object instances; only
the interpreter core defines this operation. The result is affected by the __bool__() and __len__()
methods.)

operator.truth(obj)
Return True if obj is true, and False otherwise. This is equivalent to using the bool constructor.

234 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

operator.is_(a, b)
Return a is b. Tests object identity.

operator.is_not(a, b)
Return a is not b. Tests object identity.

The mathematical and bitwise operations are the most numerous:

operator.abs(obj)
operator.__abs__(obj)

Return the absolute value of obj.

operator.add(a, b)
operator.__add__(a, b)

Return a + b, for a and b numbers.

operator.and_(a, b)
operator.__and__(a, b)

Return the bitwise and of a and b.

operator.floordiv(a, b)
operator.__floordiv__(a, b)

Return a // b.

operator.index(a)
operator.__index__(a)

Return a converted to an integer. Equivalent to a.__index__().

operator.inv(obj)
operator.invert(obj)
operator.__inv__(obj)
operator.__invert__(obj)

Return the bitwise inverse of the number obj. This is equivalent to ~obj.

operator.lshift(a, b)
operator.__lshift__(a, b)

Return a shifted left by b.

operator.mod(a, b)
operator.__mod__(a, b)

Return a % b.

operator.mul(a, b)
operator.__mul__(a, b)

Return a * b, for a and b numbers.

operator.neg(obj)
operator.__neg__(obj)

Return obj negated (-obj).

operator.or_(a, b)
operator.__or__(a, b)

Return the bitwise or of a and b.

operator.pos(obj)
operator.__pos__(obj)

Return obj positive (+obj).

operator.pow(a, b)
operator.__pow__(a, b)

Return a ** b, for a and b numbers.

operator.rshift(a, b)
operator.__rshift__(a, b)

Return a shifted right by b.

operator.sub(a, b)

9.3. operator — Standard operators as functions 235

The Python Library Reference, Release 3.2

operator.__sub__(a, b)
Return a - b.

operator.truediv(a, b)
operator.__truediv__(a, b)

Return a / b where 2/3 is .66 rather than 0. This is also known as “true” division.

operator.xor(a, b)
operator.__xor__(a, b)

Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

operator.concat(a, b)
operator.__concat__(a, b)

Return a + b for a and b sequences.

operator.contains(a, b)
operator.__contains__(a, b)

Return the outcome of the test b in a. Note the reversed operands.

operator.countOf(a, b)
Return the number of occurrences of b in a.

operator.delitem(a, b)
operator.__delitem__(a, b)

Remove the value of a at index b.

operator.getitem(a, b)
operator.__getitem__(a, b)

Return the value of a at index b.

operator.indexOf(a, b)
Return the index of the first of occurrence of b in a.

operator.setitem(a, b, c)
operator.__setitem__(a, b, c)

Set the value of a at index b to c.

Example: Build a dictionary that maps the ordinals from 0 to 255 to their character equivalents.

>>> d = {}
>>> keys = range(256)
>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)

The operator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments for map(), sorted(), itertools.groupby(), or other functions that
expect a function argument.

operator.attrgetter(attr[, args...])
Return a callable object that fetches attr from its operand. If more than one attribute is requested, returns
a tuple of attributes. After, f = attrgetter(’name’), the call f(b) returns b.name. After, f =
attrgetter(’name’, ’date’), the call f(b) returns (b.name, b.date). Equivalent to:

def attrgetter(*items):
if any(not isinstance(item, str) for item in items):

raise TypeError(’attribute name must be a string’)
if len(items) == 1:

attr = items[0]
def g(obj):

return resolve_attr(obj, attr)
else:

def g(obj):
return tuple(resolve_att(obj, attr) for attr in items)

236 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

return g

def resolve_attr(obj, attr):
for name in attr.split("."):

obj = getattr(obj, name)
return obj

The attribute names can also contain dots; after f = attrgetter(’date.month’), the call f(b)
returns b.date.month.

operator.itemgetter(item[, args...])
Return a callable object that fetches item from its operand using the operand’s __getitem__() method.
If multiple items are specified, returns a tuple of lookup values. Equivalent to:

def itemgetter(*items):
if len(items) == 1:

item = items[0]
def g(obj):

return obj[item]
else:

def g(obj):
return tuple(obj[item] for item in items)

return g

The items can be any type accepted by the operand’s __getitem__() method. Dictionaries accept any
hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter(1)(’ABCDEFG’)
’B’
>>> itemgetter(1,3,5)(’ABCDEFG’)
(’B’, ’D’, ’F’)
>>> itemgetter(slice(2,None))(’ABCDEFG’)
’CDEFG’

Example of using itemgetter() to retrieve specific fields from a tuple record:

>>> inventory = [(’apple’, 3), (’banana’, 2), (’pear’, 5), (’orange’, 1)]
>>> getcount = itemgetter(1)
>>> list(map(getcount, inventory))
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[(’orange’, 1), (’banana’, 2), (’apple’, 3), (’pear’, 5)]

operator.methodcaller(name[, args...])
Return a callable object that calls the method name on its operand. If additional arguments and/or keyword
arguments are given, they will be given to the method as well. After f = methodcaller(’name’),
the call f(b) returns b.name(). After f = methodcaller(’name’, ’foo’, bar=1), the call
f(b) returns b.name(’foo’, bar=1). Equivalent to:

def methodcaller(name, *args, **kwargs):
def caller(obj):

return getattr(obj, name)(*args, **kwargs)
return caller

9.3.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions
in the operator module.

9.3. operator — Standard operators as functions 237

The Python Library Reference, Release 3.2

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test obj in seq contains(seq, obj)
Division a / b div(a, b)
Division a // b floordiv(a, b)
Bitwise And a & b and_(a, b)
Bitwise Exclusive Or a ^ b xor(a, b)
Bitwise Inversion ~ a invert(a)
Bitwise Or a | b or_(a, b)
Exponentiation a ** b pow(a, b)
Identity a is b is_(a, b)
Identity a is not b is_not(a, b)
Indexed Assignment obj[k] = v setitem(obj, k, v)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj[k] getitem(obj, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not_(a)
Positive + a pos(a)
Right Shift a >> b rshift(a, b)
Sequence Repetition seq * i repeat(seq, i)
Slice Assignment seq[i:j] = values setitem(seq, slice(i, j), values)
Slice Deletion del seq[i:j] delitem(seq, slice(i, j))
Slicing seq[i:j] getitem(seq, slice(i, j))
String Formatting s % obj mod(s, obj)
Subtraction a - b sub(a, b)
Truth Test obj truth(obj)
Ordering a < b lt(a, b)
Ordering a <= b le(a, b)
Equality a == b eq(a, b)
Difference a != b ne(a, b)
Ordering a >= b ge(a, b)
Ordering a > b gt(a, b)

9.4 Inplace Operators

Many operations have an “in-place” version. Listed below are functions providing a more primitive access
to in-place operators than the usual syntax does; for example, the statement x += y is equivalent to x =
operator.iadd(x, y). Another way to put it is to say that z = operator.iadd(x, y) is equiva-
lent to the compound statement z = x; z += y.

In those examples, note that when an in-place method is called, the computation and assignment are performed
in two separate steps. The in-place functions listed below only do the first step, calling the in-place method. The
second step, assignment, is not handled.

For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned back
to the input variable:

>>> a = ’hello’
>>> iadd(a, ’ world’)
’hello world’
>>> a
’hello’

238 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2

For mutable targets such as lists and dictionaries, the inplace method will perform the update, so no subsequent
assignment is necessary:

>>> s = [’h’, ’e’, ’l’, ’l’, ’o’]
>>> iadd(s, [’ ’, ’w’, ’o’, ’r’, ’l’, ’d’])
[’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’, ’o’, ’r’, ’l’, ’d’]
>>> s
[’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’, ’o’, ’r’, ’l’, ’d’]

operator.iadd(a, b)
operator.__iadd__(a, b)

a = iadd(a, b) is equivalent to a += b.

operator.iand(a, b)
operator.__iand__(a, b)

a = iand(a, b) is equivalent to a &= b.

operator.iconcat(a, b)
operator.__iconcat__(a, b)

a = iconcat(a, b) is equivalent to a += b for a and b sequences.

operator.ifloordiv(a, b)
operator.__ifloordiv__(a, b)

a = ifloordiv(a, b) is equivalent to a //= b.

operator.ilshift(a, b)
operator.__ilshift__(a, b)

a = ilshift(a, b) is equivalent to a <<= b.

operator.imod(a, b)
operator.__imod__(a, b)

a = imod(a, b) is equivalent to a %= b.

operator.imul(a, b)
operator.__imul__(a, b)

a = imul(a, b) is equivalent to a *= b.

operator.ior(a, b)
operator.__ior__(a, b)

a = ior(a, b) is equivalent to a |= b.

operator.ipow(a, b)
operator.__ipow__(a, b)

a = ipow(a, b) is equivalent to a **= b.

operator.irshift(a, b)
operator.__irshift__(a, b)

a = irshift(a, b) is equivalent to a >>= b.

operator.isub(a, b)
operator.__isub__(a, b)

a = isub(a, b) is equivalent to a -= b.

operator.itruediv(a, b)
operator.__itruediv__(a, b)

a = itruediv(a, b) is equivalent to a /= b.

operator.ixor(a, b)
operator.__ixor__(a, b)

a = ixor(a, b) is equivalent to a ^= b.

9.4. Inplace Operators 239

The Python Library Reference, Release 3.2

240 Chapter 9. Functional Programming Modules

CHAPTER

TEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules for
reading the properties of files, manipulating paths in a portable way, and creating temporary files. The full list of
modules in this chapter is:

10.1 os.path — Common pathname manipulations

This module implements some useful functions on pathnames. To read or write files see open(), and for access-
ing the filesystem see the os module. The path parameters can be passed as either strings, or bytes. Applications
are encouraged to represent file names as (Unicode) character strings. Unfortunately, some file names may not
be representable as strings on Unix, so applications that need to support arbitrary file names on Unix should use
bytes objects to represent path names. Vice versa, using bytes objects cannot represent all file names on Windows
(in the standard mbcs encoding), hence Windows applications should use string objects to access all files.

Note: All of these functions accept either only bytes or only string objects as their parameters. The result is an
object of the same type, if a path or file name is returned.

Note: Since different operating systems have different path name conventions, there are several versions of this
module in the standard library. The os.path module is always the path module suitable for the operating system
Python is running on, and therefore usable for local paths. However, you can also import and use the individual
modules if you want to manipulate a path that is always in one of the different formats. They all have the same
interface:

• posixpath for UNIX-style paths

• ntpath for Windows paths

• macpath for old-style MacOS paths

• os2emxpath for OS/2 EMX paths

os.path.abspath(path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equivalent to
normpath(join(os.getcwd(), path)).

os.path.basename(path)
Return the base name of pathname path. This is the second half of the pair returned by split(path).
Note that the result of this function is different from the Unix basename program; where basename for
’/foo/bar/’ returns ’bar’, the basename() function returns an empty string (”).

os.path.commonprefix(list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list. If list is
empty, return the empty string (”). Note that this may return invalid paths because it works a character at a
time.

241

The Python Library Reference, Release 3.2

os.path.dirname(path)
Return the directory name of pathname path. This is the first half of the pair returned by split(path).

os.path.exists(path)
Return True if path refers to an existing path. Returns False for broken symbolic links. On some
platforms, this function may return False if permission is not granted to execute os.stat() on the
requested file, even if the path physically exists.

os.path.lexists(path)
Return True if path refers to an existing path. Returns True for broken symbolic links. Equivalent to
exists() on platforms lacking os.lstat().

os.path.expanduser(path)
On Unix and Windows, return the argument with an initial component of ~ or ~user replaced by that
user‘s home directory.

On Unix, an initial ~ is replaced by the environment variable HOME if it is set; otherwise the current user’s
home directory is looked up in the password directory through the built-in module pwd. An initial ~user
is looked up directly in the password directory.

On Windows, HOME and USERPROFILE will be used if set, otherwise a combination of HOMEPATH and
HOMEDRIVE will be used. An initial ~user is handled by stripping the last directory component from the
created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

os.path.expandvars(path)
Return the argument with environment variables expanded. Substrings of the form $name or ${name}
are replaced by the value of environment variable name. Malformed variable names and references to non-
existing variables are left unchanged.

On Windows, %name% expansions are supported in addition to $name and ${name}.

os.path.getatime(path)
Return the time of last access of path. The return value is a number giving the number of seconds since the
epoch (see the time module). Raise os.error if the file does not exist or is inaccessible.

If os.stat_float_times() returns True, the result is a floating point number.

os.path.getmtime(path)
Return the time of last modification of path. The return value is a number giving the number of seconds
since the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible.

If os.stat_float_times() returns True, the result is a floating point number.

os.path.getctime(path)
Return the system’s ctime which, on some systems (like Unix) is the time of the last change, and, on others
(like Windows), is the creation time for path. The return value is a number giving the number of seconds
since the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible.

os.path.getsize(path)
Return the size, in bytes, of path. Raise os.error if the file does not exist or is inaccessible.

os.path.isabs(path)
Return True if path is an absolute pathname. On Unix, that means it begins with a slash, on Windows that
it begins with a (back)slash after chopping off a potential drive letter.

os.path.isfile(path)
Return True if path is an existing regular file. This follows symbolic links, so both islink() and
isfile() can be true for the same path.

os.path.isdir(path)
Return True if path is an existing directory. This follows symbolic links, so both islink() and
isdir() can be true for the same path.

242 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2

os.path.islink(path)
Return True if path refers to a directory entry that is a symbolic link. Always False if symbolic links are
not supported.

os.path.ismount(path)
Return True if pathname path is a mount point: a point in a file system where a different file system has
been mounted. The function checks whether path‘s parent, path/.., is on a different device than path, or
whether path/.. and path point to the same i-node on the same device — this should detect mount points
for all Unix and POSIX variants.

os.path.join(path1[, path2[, ...]])
Join one or more path components intelligently. If any component is an absolute path, all previous com-
ponents (on Windows, including the previous drive letter, if there was one) are thrown away, and joining
continues. The return value is the concatenation of path1, and optionally path2, etc., with exactly one direc-
tory separator (os.sep) inserted between components, unless path2 is empty. Note that on Windows, since
there is a current directory for each drive, os.path.join("c:", "foo") represents a path relative to
the current directory on drive C: (c:foo), not c:\foo.

os.path.normcase(path)
Normalize the case of a pathname. On Unix and Mac OS X, this returns the path unchanged; on case-
insensitive filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to
backward slashes. Raise a TypeError if the type of path is not str or bytes.

os.path.normpath(path)
Normalize a pathname. This collapses redundant separators and up-level references so that A//B, A/B/,
A/./B and A/foo/../B all become A/B.

It does not normalize the case (use normcase() for that). On Windows, it converts forward slashes to
backward slashes. It should be understood that this may change the meaning of the path if it contains
symbolic links!

os.path.realpath(path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path
(if they are supported by the operating system).

os.path.relpath(path, start=None)
Return a relative filepath to path either from the current directory or from an optional start point.

start defaults to os.curdir.

Availability: Unix, Windows.

os.path.samefile(path1, path2)
Return True if both pathname arguments refer to the same file or directory. On Unix, this is determined
by the device number and i-node number and raises an exception if a os.stat() call on either pathname
fails.

On Windows, two files are the same if they resolve to the same final path name using the Windows API call
GetFinalPathNameByHandle. This function raises an exception if handles cannot be obtained to either file.

Availability: Unix, Windows. Changed in version 3.2: Added Windows support.

os.path.sameopenfile(fp1, fp2)
Return True if the file descriptors fp1 and fp2 refer to the same file.

Availability: Unix, Windows. Changed in version 3.2: Added Windows support.

os.path.samestat(stat1, stat2)
Return True if the stat tuples stat1 and stat2 refer to the same file. These structures may have been
returned by fstat(), lstat(), or stat(). This function implements the underlying comparison used
by samefile() and sameopenfile().

Availability: Unix.

os.path.split(path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head
is everything leading up to that. The tail part will never contain a slash; if path ends in a slash, tail

10.1. os.path — Common pathname manipulations 243

The Python Library Reference, Release 3.2

will be empty. If there is no slash in path, head will be empty. If path is empty, both head and tail are
empty. Trailing slashes are stripped from head unless it is the root (one or more slashes only). In all cases,
join(head, tail) returns a path to the same location as path (but the strings may differ).

os.path.splitdrive(path)
Split the pathname path into a pair (drive, tail) where drive is either a mount point or the empty
string. On systems which do not use drive specifications, drive will always be the empty string. In all cases,
drive + tail will be the same as path.

On Windows, splits a pathname into drive/UNC sharepoint and relative path.

If the path contains a drive letter, drive will contain everything up to and including the colon. e.g.
splitdrive("c:/dir") returns ("c:", "/dir")

If the path contains a UNC path, drive will contain the host name and share, up to but not including the fourth
separator. e.g. splitdrive("//host/computer/dir") returns ("//host/computer",
"/dir")

os.path.splitext(path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty
or begins with a period and contains at most one period. Leading periods on the basename are ignored;
splitext(’.cshrc’) returns (’.cshrc’, ”).

os.path.splitunc(path)
Deprecated since version 3.1: Use splitdrive instead. Split the pathname path into a pair (unc, rest)
so that unc is the UNC mount point (such as r’\\host\mount’), if present, and rest the rest of the path
(such as r’\path\file.ext’). For paths containing drive letters, unc will always be the empty string.

Availability: Windows.

os.path.supports_unicode_filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system).

10.2 fileinput — Iterate over lines from multiple input streams

Source code: Lib/fileinput.py

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.
If you just want to read or write one file see open().

The typical use is:

import fileinput
for line in fileinput.input():

process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty.
If a filename is ’-’, it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it as the
first argument to input(). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in the call
to input() or FileInput. If an I/O error occurs during opening or reading a file, IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for inter-
active use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable
at all is when the last file opened is empty.

Lines are returned with any newlines intact, which means that the last line in a file may not have one.

You can control how files are opened by providing an opening hook via the openhook parameter to
fileinput.input() or FileInput(). The hook must be a function that takes two arguments, filename

244 Chapter 10. File and Directory Access

http://svn.python.org/view/python/branches/py3k/Lib/fileinput.py?view=markup

The Python Library Reference, Release 3.2

and mode, and returns an accordingly opened file-like object. Two useful hooks are already provided by this
module.

The following function is the primary interface of this module:

fileinput.input(files=None, inplace=False, backup=’‘, bufsize=0, mode=’r’, openhook=None)
Create an instance of the FileInput class. The instance will be used as global state for the functions
of this module, and is also returned to use during iteration. The parameters to this function will be passed
along to the constructor of the FileInput class.

The FileInput instance can be used as a context manager in the with statement. In this example, input
is closed after the with statement is exited, even if an exception occurs:

with fileinput.input(files=(’spam.txt’, ’eggs.txt’)) as f:
for line in f:

process(line)

Changed in version 3.2: Can be used as a context manager.

The following functions use the global state created by fileinput.input(); if there is no active state,
RuntimeError is raised.

fileinput.filename()
Return the name of the file currently being read. Before the first line has been read, returns None.

fileinput.fileno()
Return the integer “file descriptor” for the current file. When no file is opened (before the first line and
between files), returns -1.

fileinput.lineno()
Return the cumulative line number of the line that has just been read. Before the first line has been read,
returns 0. After the last line of the last file has been read, returns the line number of that line.

fileinput.filelineno()
Return the line number in the current file. Before the first line has been read, returns 0. After the last line
of the last file has been read, returns the line number of that line within the file.

fileinput.isfirstline()
Returns true if the line just read is the first line of its file, otherwise returns false.

fileinput.isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

fileinput.nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not
read from the file will not count towards the cumulative line count. The filename is not changed until after
the first line of the next file has been read. Before the first line has been read, this function has no effect;
it cannot be used to skip the first file. After the last line of the last file has been read, this function has no
effect.

fileinput.close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

class fileinput.FileInput(files=None, inplace=False, backup=’‘, bufsize=0, mode=’r’, open-
hook=None)

Class FileInput is the implementation; its methods filename(), fileno(), lineno(),
filelineno(), isfirstline(), isstdin(), nextfile() and close() correspond to the
functions of the same name in the module. In addition it has a readline() method which returns the
next input line, and a __getitem__() method which implements the sequence behavior. The sequence
must be accessed in strictly sequential order; random access and readline() cannot be mixed.

With mode you can specify which file mode will be passed to open(). It must be one of ’r’, ’rU’, ’U’
and ’rb’.

10.2. fileinput — Iterate over lines from multiple input streams 245

The Python Library Reference, Release 3.2

The openhook, when given, must be a function that takes two arguments, filename and mode, and returns an
accordingly opened file-like object. You cannot use inplace and openhook together.

A FileInput instance can be used as a context manager in the with statement. In this example, input is
closed after the with statement is exited, even if an exception occurs:

with FileInput(files=(’spam.txt’, ’eggs.txt’)) as input:
process(input)

Changed in version 3.2: Can be used as a context manager.

Optional in-place filtering: if the keyword argument inplace=True is passed to fileinput.input() or
to the FileInput constructor, the file is moved to a backup file and standard output is directed to the input file
(if a file of the same name as the backup file already exists, it will be replaced silently). This makes it possible to
write a filter that rewrites its input file in place. If the backup parameter is given (typically as backup=’.<some
extension>’), it specifies the extension for the backup file, and the backup file remains around; by default, the
extension is ’.bak’ and it is deleted when the output file is closed. In-place filtering is disabled when standard
input is read.

Note: The current implementation does not work for MS-DOS 8+3 filesystems.

The two following opening hooks are provided by this module:

fileinput.hook_compressed(filename, mode)
Transparently opens files compressed with gzip and bzip2 (recognized by the extensions ’.gz’ and
’.bz2’) using the gzip and bz2 modules. If the filename extension is not ’.gz’ or ’.bz2’, the
file is opened normally (ie, using open() without any decompression).

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_compressed)

fileinput.hook_encoded(encoding)
Returns a hook which opens each file with codecs.open(), using the given encoding to read the file.

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_encoded("iso-8859-1"))

10.3 stat — Interpreting stat() results

Source code: Lib/stat.py

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat() and
os.lstat() (if they exist). For complete details about the stat(), fstat() and lstat() calls, consult
the documentation for your system.

The stat module defines the following functions to test for specific file types:

stat.S_ISDIR(mode)
Return non-zero if the mode is from a directory.

stat.S_ISCHR(mode)
Return non-zero if the mode is from a character special device file.

stat.S_ISBLK(mode)
Return non-zero if the mode is from a block special device file.

stat.S_ISREG(mode)
Return non-zero if the mode is from a regular file.

stat.S_ISFIFO(mode)
Return non-zero if the mode is from a FIFO (named pipe).

246 Chapter 10. File and Directory Access

http://svn.python.org/view/python/branches/py3k/Lib/stat.py?view=markup

The Python Library Reference, Release 3.2

stat.S_ISLNK(mode)
Return non-zero if the mode is from a symbolic link.

stat.S_ISSOCK(mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

stat.S_IMODE(mode)
Return the portion of the file’s mode that can be set by os.chmod()—that is, the file’s permission bits,
plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

stat.S_IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by the S_IS*() functions above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here are
useful when you are doing multiple tests of the same file and wish to avoid the overhead of the stat() system
call for each test. These are also useful when checking for information about a file that isn’t handled by os.path,
like the tests for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat(), os.fstat()
or os.lstat().

stat.ST_MODE
Inode protection mode.

stat.ST_INO
Inode number.

stat.ST_DEV
Device inode resides on.

stat.ST_NLINK
Number of links to the inode.

stat.ST_UID
User id of the owner.

stat.ST_GID
Group id of the owner.

stat.ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

stat.ST_ATIME
Time of last access.

stat.ST_MTIME
Time of last modification.

stat.ST_CTIME
The “ctime” as reported by the operating system. On some systems (like Unix) is the time of the last meta-
data change, and, on others (like Windows), is the creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most flavors of Unix (including Linux in particular), the “size” is the number of bytes
waiting to be read at the time of the call to os.stat(), os.fstat(), or os.lstat(); this can sometimes
be useful, especially for polling one of these special files after a non-blocking open. The meaning of the size field
for other character and block devices varies more, depending on the implementation of the underlying system call.

The variables below define the flags used in the ST_MODE field.

Use of the functions above is more portable than use of the first set of flags:

stat.S_IFMT
Bit mask for the file type bit fields.

stat.S_IFSOCK
Socket.

10.3. stat — Interpreting stat() results 247

The Python Library Reference, Release 3.2

stat.S_IFLNK
Symbolic link.

stat.S_IFREG
Regular file.

stat.S_IFBLK
Block device.

stat.S_IFDIR
Directory.

stat.S_IFCHR
Character device.

stat.S_IFIFO
FIFO.

The following flags can also be used in the mode argument of os.chmod():

stat.S_ISUID
Set UID bit.

stat.S_ISGID
Set-group-ID bit. This bit has several special uses. For a directory it indicates that BSD semantics is to be
used for that directory: files created there inherit their group ID from the directory, not from the effective
group ID of the creating process, and directories created there will also get the S_ISGID bit set. For a
file that does not have the group execution bit (S_IXGRP) set, the set-group-ID bit indicates mandatory
file/record locking (see also S_ENFMT).

stat.S_ISVTX
Sticky bit. When this bit is set on a directory it means that a file in that directory can be renamed or deleted
only by the owner of the file, by the owner of the directory, or by a privileged process.

stat.S_IRWXU
Mask for file owner permissions.

stat.S_IRUSR
Owner has read permission.

stat.S_IWUSR
Owner has write permission.

stat.S_IXUSR
Owner has execute permission.

stat.S_IRWXG
Mask for group permissions.

stat.S_IRGRP
Group has read permission.

stat.S_IWGRP
Group has write permission.

stat.S_IXGRP
Group has execute permission.

stat.S_IRWXO
Mask for permissions for others (not in group).

stat.S_IROTH
Others have read permission.

stat.S_IWOTH
Others have write permission.

stat.S_IXOTH
Others have execute permission.

248 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2

stat.S_ENFMT
System V file locking enforcement. This flag is shared with S_ISGID: file/record locking is enforced on
files that do not have the group execution bit (S_IXGRP) set.

stat.S_IREAD
Unix V7 synonym for S_IRUSR.

stat.S_IWRITE
Unix V7 synonym for S_IWUSR.

stat.S_IEXEC
Unix V7 synonym for S_IXUSR.

Example:

import os, sys
from stat import *

def walktree(top, callback):
’’’recursively descend the directory tree rooted at top,

calling the callback function for each regular file’’’

for f in os.listdir(top):
pathname = os.path.join(top, f)
mode = os.stat(pathname)[ST_MODE]
if S_ISDIR(mode):

It’s a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It’s a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print(’Skipping %s’ % pathname)

def visitfile(file):
print(’visiting’, file)

if __name__ == ’__main__’:
walktree(sys.argv[1], visitfile)

10.4 filecmp — File and Directory Comparisons

Source code: Lib/filecmp.py

The filecmp module defines functions to compare files and directories, with various optional time/correctness
trade-offs. For comparing files, see also the difflib module.

The filecmp module defines the following functions:

filecmp.cmp(f1, f2, shallow=True)
Compare the files named f1 and f2, returning True if they seem equal, False otherwise.

Unless shallow is given and is false, files with identical os.stat() signatures are taken to be equal.

Files that were compared using this function will not be compared again unless their os.stat() signature
changes.

Note that no external programs are called from this function, giving it portability and efficiency.

10.4. filecmp — File and Directory Comparisons 249

http://svn.python.org/view/python/branches/py3k/Lib/filecmp.py?view=markup

The Python Library Reference, Release 3.2

filecmp.cmpfiles(dir1, dir2, common, shallow=True)
Compare the files in the two directories dir1 and dir2 whose names are given by common.

Returns three lists of file names: match, mismatch, errors. match contains the list of files that match,
mismatch contains the names of those that don’t, and errors lists the names of files which could not be
compared. Files are listed in errors if they don’t exist in one of the directories, the user lacks permission to
read them or if the comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for filecmp.cmp().

For example, cmpfiles(’a’, ’b’, [’c’, ’d/e’])will compare a/cwith b/c and a/d/ewith
b/d/e. ’c’ and ’d/e’ will each be in one of the three returned lists.

Example:

>>> import filecmp
>>> filecmp.cmp(’undoc.rst’, ’undoc.rst’)
True
>>> filecmp.cmp(’undoc.rst’, ’index.rst’)
False

10.4.1 The dircmp class

dircmp instances are built using this constructor:

class filecmp.dircmp(a, b, ignore=None, hide=None)
Construct a new directory comparison object, to compare the directories a and b. ignore is a list of names
to ignore, and defaults to [’RCS’, ’CVS’, ’tags’]. hide is a list of names to hide, and defaults to
[os.curdir, os.pardir].

The dircmp class provides the following methods:

report()
Print (to sys.stdout) a comparison between a and b.

report_partial_closure()
Print a comparison between a and b and common immediate subdirectories.

report_full_closure()
Print a comparison between a and b and common subdirectories (recursively).

The dircmp offers a number of interesting attributes that may be used to get various bits of information
about the directory trees being compared.

Note that via __getattr__() hooks, all attributes are computed lazily, so there is no speed penalty if
only those attributes which are lightweight to compute are used.

left_list
Files and subdirectories in a, filtered by hide and ignore.

right_list
Files and subdirectories in b, filtered by hide and ignore.

common
Files and subdirectories in both a and b.

left_only
Files and subdirectories only in a.

right_only
Files and subdirectories only in b.

common_dirs
Subdirectories in both a and b.

common_files
Files in both a and b

250 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2

common_funny
Names in both a and b, such that the type differs between the directories, or names for which
os.stat() reports an error.

same_files
Files which are identical in both a and b.

diff_files
Files which are in both a and b, whose contents differ.

funny_files
Files which are in both a and b, but could not be compared.

subdirs
A dictionary mapping names in common_dirs to dircmp objects.

10.5 tempfile — Generate temporary files and directories

Source code: Lib/tempfile.py

This module generates temporary files and directories. It works on all supported platforms. It provides three new
functions, NamedTemporaryFile(), mkstemp(), and mkdtemp(), which should eliminate all remaining
need to use the insecure mktemp() function. Temporary file names created by this module no longer contain the
process ID; instead a string of six random characters is used.

Also, all the user-callable functions now take additional arguments which allow direct control over the location and
name of temporary files. It is no longer necessary to use the global tempdir and template variables. To maintain
backward compatibility, the argument order is somewhat odd; it is recommended to use keyword arguments for
clarity.

The module defines the following user-callable items:

tempfile.TemporaryFile(mode=’w+b’, buffering=None, encoding=None, newline=None, suf-
fix=’‘, prefix=’tmp’, dir=None)

Return a file-like object that can be used as a temporary storage area. The file is created using mkstemp().
It will be destroyed as soon as it is closed (including an implicit close when the object is garbage collected).
Under Unix, the directory entry for the file is removed immediately after the file is created. Other platforms
do not support this; your code should not rely on a temporary file created using this function having or not
having a visible name in the file system.

The mode parameter defaults to ’w+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
buffering, encoding and newline are interpreted as for open().

The dir, prefix and suffix parameters are passed to mkstemp().

The returned object is a true file object on POSIX platforms. On other platforms, it is a file-like object whose
file attribute is the underlying true file object. This file-like object can be used in a with statement, just
like a normal file.

tempfile.NamedTemporaryFile(mode=’w+b’, buffering=None, encoding=None, newline=None,
suffix=’‘, prefix=’tmp’, dir=None, delete=True)

This function operates exactly as TemporaryFile() does, except that the file is guaranteed to have a
visible name in the file system (on Unix, the directory entry is not unlinked). That name can be retrieved
from the name member of the file object. Whether the name can be used to open the file a second time,
while the named temporary file is still open, varies across platforms (it can be so used on Unix; it cannot on
Windows NT or later). If delete is true (the default), the file is deleted as soon as it is closed. The returned
object is always a file-like object whose file attribute is the underlying true file object. This file-like object
can be used in a with statement, just like a normal file.

10.5. tempfile — Generate temporary files and directories 251

http://svn.python.org/view/python/branches/py3k/Lib/tempfile.py?view=markup

The Python Library Reference, Release 3.2

tempfile.SpooledTemporaryFile(max_size=0, mode=’w+b’, buffering=None, encoding=None,
newline=None, suffix=’‘, prefix=’tmp’, dir=None)

This function operates exactly as TemporaryFile() does, except that data is spooled in memory until
the file size exceeds max_size, or until the file’s fileno() method is called, at which point the contents
are written to disk and operation proceeds as with TemporaryFile().

The resulting file has one additional method, rollover(), which causes the file to roll over to an on-disk
file regardless of its size.

The returned object is a file-like object whose _file attribute is either a StringIO object or a true file
object, depending on whether rollover() has been called. This file-like object can be used in a with
statement, just like a normal file.

tempfile.TemporaryDirectory(suffix=’‘, prefix=’tmp’, dir=None)
This function creates a temporary directory using mkdtemp() (the supplied arguments are passed directly
to the underlying function). The resulting object can be used as a context manager (see context-managers).
On completion of the context (or destruction of the temporary directory object), the newly created temporary
directory and all its contents are removed from the filesystem.

The directory name can be retrieved from the name member of the returned object.

The directory can be explicitly cleaned up by calling the cleanup() method. New in version 3.2.

tempfile.mkstemp(suffix=’‘, prefix=’tmp’, dir=None, text=False)
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s
creation, assuming that the platform properly implements the os.O_EXCL flag for os.open(). The file
is readable and writable only by the creating user ID. If the platform uses permission bits to indicate whether
a file is executable, the file is executable by no one. The file descriptor is not inherited by child processes.

Unlike TemporaryFile(), the user of mkstemp() is responsible for deleting the temporary file when
done with it.

If suffix is specified, the file name will end with that suffix, otherwise there will be no suffix. mkstemp()
does not put a dot between the file name and the suffix; if you need one, put it at the beginning of suffix.

If prefix is specified, the file name will begin with that prefix; otherwise, a default prefix is used.

If dir is specified, the file will be created in that directory; otherwise, a default directory is used. The default
directory is chosen from a platform-dependent list, but the user of the application can control the directory
location by setting the TMPDIR, TEMP or TMP environment variables. There is thus no guarantee that
the generated filename will have any nice properties, such as not requiring quoting when passed to external
commands via os.popen().

If text is specified, it indicates whether to open the file in binary mode (the default) or text mode. On some
platforms, this makes no difference.

mkstemp() returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open()) and the absolute pathname of that file, in that order.

tempfile.mkdtemp(suffix=’‘, prefix=’tmp’, dir=None)
Creates a temporary directory in the most secure manner possible. There are no race conditions in the
directory’s creation. The directory is readable, writable, and searchable only by the creating user ID.

The user of mkdtemp() is responsible for deleting the temporary directory and its contents when done
with it.

The prefix, suffix, and dir arguments are the same as for mkstemp().

mkdtemp() returns the absolute pathname of the new directory.

tempfile.mktemp(suffix=’‘, prefix=’tmp’, dir=None)
Deprecated since version 2.3: Use mkstemp() instead. Return an absolute pathname of a file that did not
exist at the time the call is made. The prefix, suffix, and dir arguments are the same as for mkstemp().

252 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2

Warning: Use of this function may introduce a security hole in your program. By the time you
get around to doing anything with the file name it returns, someone else may have beaten you to the
punch. mktemp() usage can be replaced easily with NamedTemporaryFile(), passing it the
delete=False parameter:

>>> f = NamedTemporaryFile(delete=False)
>>> f
<open file ’<fdopen>’, mode ’w+b’ at 0x384698>
>>> f.name
’/var/folders/5q/5qTPn6xq2RaWqk+1Ytw3-U+++TI/-Tmp-/tmpG7V1Y0’
>>> f.write("Hello World!\n")
>>> f.close()
>>> os.unlink(f.name)
>>> os.path.exists(f.name)
False

The module uses two global variables that tell it how to construct a temporary name. They are initialized at the
first call to any of the functions above. The caller may change them, but this is discouraged; use the appropriate
function arguments, instead.

tempfile.tempdir
When set to a value other than None, this variable defines the default value for the dir argument to all the
functions defined in this module.

If tempdir is unset or None at any call to any of the above functions, Python searches a standard list of
directories and sets tempdir to the first one which the calling user can create files in. The list is:

1.The directory named by the TMPDIR environment variable.

2.The directory named by the TEMP environment variable.

3.The directory named by the TMP environment variable.

4.A platform-specific location:

•On Windows, the directories C:\TEMP, C:\TMP, \TEMP, and \TMP, in that order.

•On all other platforms, the directories /tmp, /var/tmp, and /usr/tmp, in that order.

5.As a last resort, the current working directory.

tempfile.gettempdir()
Return the directory currently selected to create temporary files in. If tempdir is not None, this simply
returns its contents; otherwise, the search described above is performed, and the result returned.

tempfile.gettempprefix()
Return the filename prefix used to create temporary files. This does not contain the directory component.

10.5.1 Examples

Here are some examples of typical usage of the tempfile module:

>>> import tempfile

create a temporary file and write some data to it
>>> fp = tempfile.TemporaryFile()
>>> fp.write(’Hello world!’)
read data from file
>>> fp.seek(0)
>>> fp.read()
’Hello world!’
close the file, it will be removed
>>> fp.close()

10.5. tempfile — Generate temporary files and directories 253

The Python Library Reference, Release 3.2

create a temporary file using a context manager
>>> with tempfile.TemporaryFile() as fp:
... fp.write(’Hello world!’)
... fp.seek(0)
... fp.read()
’Hello world!’
>>>
file is now closed and removed

create a temporary directory using the context manager
>>> with tempfile.TemporaryDirectory() as tmpdirname:
... print ’created temporary directory’, tmpdirname
>>>
directory and contents have been removed

10.6 glob — Unix style pathname pattern expansion

Source code: Lib/glob.py

The glob module finds all the pathnames matching a specified pattern according to the rules used by the
Unix shell. No tilde expansion is done, but *, ?, and character ranges expressed with [] will be correctly
matched. This is done by using the os.listdir() and fnmatch.fnmatch() functions in concert, and not
by actually invoking a subshell. (For tilde and shell variable expansion, use os.path.expanduser() and
os.path.expandvars().)

glob.glob(pathname)
Return a possibly-empty list of path names that match pathname, which must be a string containing a path
specification. pathname can be either absolute (like /usr/src/Python-1.5/Makefile) or relative
(like ../../Tools/*/*.gif), and can contain shell-style wildcards. Broken symlinks are included in
the results (as in the shell).

glob.iglob(pathname)
Return an iterator which yields the same values as glob() without actually storing them all simultane-
ously.

For example, consider a directory containing only the following files: 1.gif, 2.txt, and card.gif. glob()
will produce the following results. Notice how any leading components of the path are preserved.

>>> import glob
>>> glob.glob(’./[0-9].*’)
[’./1.gif’, ’./2.txt’]
>>> glob.glob(’*.gif’)
[’1.gif’, ’card.gif’]
>>> glob.glob(’?.gif’)
[’1.gif’]

See Also:

Module fnmatch Shell-style filename (not path) expansion

10.7 fnmatch — Unix filename pattern matching

Source code: Lib/fnmatch.py

254 Chapter 10. File and Directory Access

http://svn.python.org/view/python/branches/py3k/Lib/glob.py?view=markup
http://svn.python.org/view/python/branches/py3k/Lib/fnmatch.py?view=markup

The Python Library Reference, Release 3.2

This module provides support for Unix shell-style wildcards, which are not the same as regular expressions (which
are documented in the re module). The special characters used in shell-style wildcards are:

Pattern Meaning
* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any character not in seq

Note that the filename separator (’/’ on Unix) is not special to this module. See module glob for pathname
expansion (glob uses fnmatch() to match pathname segments). Similarly, filenames starting with a period are
not special for this module, and are matched by the * and ? patterns.

fnmatch.fnmatch(filename, pattern)
Test whether the filename string matches the pattern string, returning True or False. If the operating
system is case-insensitive, then both parameters will be normalized to all lower- or upper-case before the
comparison is performed. fnmatchcase() can be used to perform a case-sensitive comparison, regard-
less of whether that’s standard for the operating system.

This example will print all file names in the current directory with the extension .txt:

import fnmatch
import os

for file in os.listdir(’.’):
if fnmatch.fnmatch(file, ’*.txt’):

print(file)

fnmatch.fnmatchcase(filename, pattern)
Test whether filename matches pattern, returning True or False; the comparison is case-sensitive.

fnmatch.filter(names, pattern)
Return the subset of the list of names that match pattern. It is the same as [n for n in names if
fnmatch(n, pattern)], but implemented more efficiently.

fnmatch.translate(pattern)
Return the shell-style pattern converted to a regular expression.

Be aware there is no way to quote meta-characters.

Example:

>>> import fnmatch, re
>>>
>>> regex = fnmatch.translate(’*.txt’)
>>> regex
’.*\\.txt$’
>>> reobj = re.compile(regex)
>>> reobj.match(’foobar.txt’)
<_sre.SRE_Match object at 0x...>

See Also:

Module glob Unix shell-style path expansion.

10.8 linecache — Random access to text lines

Source code: Lib/linecache.py

10.8. linecache — Random access to text lines 255

http://svn.python.org/view/python/branches/py3k/Lib/linecache.py?view=markup

The Python Library Reference, Release 3.2

The linecache module allows one to get any line from any file, while attempting to optimize internally, using
a cache, the common case where many lines are read from a single file. This is used by the traceback module
to retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

linecache.getline(filename, lineno, module_globals=None)
Get line lineno from file named filename. This function will never raise an exception — it will return ” on
errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path, sys.path,
after first checking for a PEP 302 __loader__ in module_globals, in case the module was imported from
a zipfile or other non-filesystem import source.

linecache.clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using getline().

linecache.checkcache(filename=None)
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version. If filename is omitted, it will check all the entries in the cache.

Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\n’

10.9 shutil — High-level file operations

Source code: Lib/shutil.py

The shutil module offers a number of high-level operations on files and collections of files. In particular,
functions are provided which support file copying and removal. For operations on individual files, see also the os
module.

Warning: Even the higher-level file copying functions (copy(), copy2()) cannot copy all file metadata.
On POSIX platforms, this means that file owner and group are lost as well as ACLs. On Mac OS, the resource
fork and other metadata are not used. This means that resources will be lost and file type and creator codes
will not be correct. On Windows, file owners, ACLs and alternate data streams are not copied.

10.9.1 Directory and files operations

shutil.copyfileobj(fsrc, fdst[, length])
Copy the contents of the file-like object fsrc to the file-like object fdst. The integer length, if given, is the
buffer size. In particular, a negative length value means to copy the data without looping over the source
data in chunks; by default the data is read in chunks to avoid uncontrolled memory consumption. Note that
if the current file position of the fsrc object is not 0, only the contents from the current file position to the
end of the file will be copied.

shutil.copyfile(src, dst)
Copy the contents (no metadata) of the file named src to a file named dst. dst must be the complete target
file name; look at copy() for a copy that accepts a target directory path. If src and dst are the same files,
Error is raised. The destination location must be writable; otherwise, an IOError exception will be
raised. If dst already exists, it will be replaced. Special files such as character or block devices and pipes
cannot be copied with this function. src and dst are path names given as strings.

256 Chapter 10. File and Directory Access

http://www.python.org/dev/peps/pep-0302
http://svn.python.org/view/python/branches/py3k/Lib/shutil.py?view=markup

The Python Library Reference, Release 3.2

shutil.copymode(src, dst)
Copy the permission bits from src to dst. The file contents, owner, and group are unaffected. src and dst are
path names given as strings.

shutil.copystat(src, dst)
Copy the permission bits, last access time, last modification time, and flags from src to dst. The file contents,
owner, and group are unaffected. src and dst are path names given as strings.

shutil.copy(src, dst)
Copy the file src to the file or directory dst. If dst is a directory, a file with the same basename as src is
created (or overwritten) in the directory specified. Permission bits are copied. src and dst are path names
given as strings.

shutil.copy2(src, dst)
Similar to copy(), but metadata is copied as well – in fact, this is just copy() followed by copystat().
This is similar to the Unix command cp -p.

shutil.ignore_patterns(*patterns)
This factory function creates a function that can be used as a callable for copytree()‘s ignore argument,
ignoring files and directories that match one of the glob-style patterns provided. See the example below.

shutil.copytree(src, dst, symlinks=False, ignore=None, copy_function=copy2, ig-
nore_dangling_symlinks=False)

Recursively copy an entire directory tree rooted at src. The destination directory, named by dst, must not
already exist; it will be created as well as missing parent directories. Permissions and times of directories
are copied with copystat(), individual files are copied using copy2().

If symlinks is true, symbolic links in the source tree are represented as symbolic links in the new tree; if
false or omitted, the contents of the linked files are copied to the new tree.

When symlinks is false, if the file pointed by the symlink doesn’t exist, a exception will be added in the
list of errors raised in a Error exception at the end of the copy process. You can set the optional ig-
nore_dangling_symlinks flag to true if you want to silence this exception. Notice that this option has no
effect on platforms that don’t support os.symlink().

If ignore is given, it must be a callable that will receive as its arguments the directory being visited by
copytree(), and a list of its contents, as returned by os.listdir(). Since copytree() is called
recursively, the ignore callable will be called once for each directory that is copied. The callable must return
a sequence of directory and file names relative to the current directory (i.e. a subset of the items in its second
argument); these names will then be ignored in the copy process. ignore_patterns() can be used to
create such a callable that ignores names based on glob-style patterns.

If exception(s) occur, an Error is raised with a list of reasons.

If copy_function is given, it must be a callable that will be used to copy each file. It will be called with
the source path and the destination path as arguments. By default, copy2() is used, but any func-
tion that supports the same signature (like copy()) can be used. Changed in version 3.2: Added the
copy_function argument to be able to provide a custom copy function.Changed in version 3.2: Added the
ignore_dangling_symlinks argument to silent dangling symlinks errors when symlinks is false.

shutil.rmtree(path, ignore_errors=False, onerror=None)
Delete an entire directory tree; path must point to a directory (but not a symbolic link to a directory). If
ignore_errors is true, errors resulting from failed removals will be ignored; if false or omitted, such errors
are handled by calling a handler specified by onerror or, if that is omitted, they raise an exception.

If onerror is provided, it must be a callable that accepts three parameters: function, path, and excinfo. The
first parameter, function, is the function which raised the exception; it will be os.path.islink(),
os.listdir(), os.remove() or os.rmdir(). The second parameter, path, will be the path
name passed to function. The third parameter, excinfo, will be the exception information return by
sys.exc_info(). Exceptions raised by onerror will not be caught.

shutil.move(src, dst)
Recursively move a file or directory to another location.

10.9. shutil — High-level file operations 257

The Python Library Reference, Release 3.2

If the destination is on the current filesystem, then simply use rename. Otherwise, copy src (with copy2())
to the dst and then remove src.

exception shutil.Error
This exception collects exceptions that raised during a multi-file operation. For copytree(), the excep-
tion argument is a list of 3-tuples (srcname, dstname, exception).

copytree example

This example is the implementation of the copytree() function, described above, with the docstring omitted.
It demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=False):
names = os.listdir(src)
os.makedirs(dst)
errors = []
for name in names:

srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:

if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)

elif os.path.isdir(srcname):
copytree(srcname, dstname, symlinks)

else:
copy2(srcname, dstname)

XXX What about devices, sockets etc.?
except (IOError, os.error) as why:

errors.append((srcname, dstname, str(why)))
catch the Error from the recursive copytree so that we can
continue with other files
except Error as err:

errors.extend(err.args[0])
try:

copystat(src, dst)
except WindowsError:

can’t copy file access times on Windows
pass

except OSError as why:
errors.extend((src, dst, str(why)))

if errors:
raise Error(errors)

Another example that uses the ignore_patterns() helper:

from shutil import copytree, ignore_patterns

copytree(source, destination, ignore=ignore_patterns(’*.pyc’, ’tmp*’))

This will copy everything except .pyc files and files or directories whose name starts with tmp.

Another example that uses the ignore argument to add a logging call:

from shutil import copytree
import logging

def _logpath(path, names):
logging.info(’Working in %s’ % path)
return [] # nothing will be ignored

258 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2

copytree(source, destination, ignore=_logpath)

10.9.2 Archiving operations

shutil.make_archive(base_name, format[, root_dir[, base_dir[, verbose[, dry_run[, owner[,
group[, logger]]]]]]])

Create an archive file (such as zip or tar) and return its name.

base_name is the name of the file to create, including the path, minus any format-specific extension. format
is the archive format: one of “zip”, “tar”, “bztar” (if the bz2 module is available) or “gztar”.

root_dir is a directory that will be the root directory of the archive; for example, we typically chdir into
root_dir before creating the archive.

base_dir is the directory where we start archiving from; i.e. base_dir will be the common prefix of all files
and directories in the archive.

root_dir and base_dir both default to the current directory.

owner and group are used when creating a tar archive. By default, uses the current owner and group.

logger is an instance of logging.Logger. New in version 3.2.

shutil.get_archive_formats()
Returns a list of supported formats for archiving. Each element of the returned sequence is a tuple (name,
description)

By default shutil provides these formats:

•gztar: gzip’ed tar-file

•bztar: bzip2’ed tar-file (if the bz2 module is available.)

•tar: uncompressed tar file

•zip: ZIP file

You can register new formats or provide your own archiver for any existing formats, by using
register_archive_format(). New in version 3.2.

shutil.register_archive_format(name, function[, extra_args[, description]])
Registers an archiver for the format name. function is a callable that will be used to invoke the archiver.

If given, extra_args is a sequence of (name, value) pairs that will be used as extra keywords arguments
when the archiver callable is used.

description is used by get_archive_formats() which returns the list of archivers. Defaults to an
empty list. New in version 3.2.

shutil.unregister_archive_format(name)
Remove the archive format name from the list of supported formats. New in version 3.2.

shutil.unpack_archive(filename[, extract_dir[, format]])
Unpack an archive. filename is the full path of the archive.

extract_dir is the name of the target directory where the archive is unpacked. If not provided, the current
working directory is used.

format is the archive format: one of “zip”, “tar”, or “gztar”. Or any other format registered with
register_unpack_format(). If not provided, unpack_archive() will use the archive file name
extension and see if an unpacker was registered for that extension. In case none is found, a ValueError
is raised. New in version 3.2.

shutil.register_unpack_format(name, extensions, function[, extra_args[, description]])
Registers an unpack format. name is the name of the format and extensions is a list of extensions corre-
sponding to the format, like .zip for Zip files.

10.9. shutil — High-level file operations 259

The Python Library Reference, Release 3.2

function is the callable that will be used to unpack archives. The callable will receive the path of the archive,
followed by the directory the archive must be extracted to.

When provided, extra_args is a sequence of (name, value) tuples that will be passed as keywords
arguments to the callable.

description can be provided to describe the format, and will be returned by the get_unpack_formats()
function. New in version 3.2.

shutil.unregister_unpack_format(name)
Unregister an unpack format. name is the name of the format. New in version 3.2.

shutil.get_unpack_formats()
Return a list of all registered formats for unpacking. Each element of the returned sequence is a tuple
(name, extensions, description).

By default shutil provides these formats:

•gztar: gzip’ed tar-file

•bztar: bzip2’ed tar-file (if the bz2 module is available.)

•tar: uncompressed tar file

•zip: ZIP file

You can register new formats or provide your own unpacker for any existing formats, by using
register_unpack_format(). New in version 3.2.

Archiving example

In this example, we create a gzip’ed tar-file archive containing all files found in the .ssh directory of the user:

>>> from shutil import make_archive
>>> import os
>>> archive_name = os.path.expanduser(os.path.join(’~’, ’myarchive’))
>>> root_dir = os.path.expanduser(os.path.join(’~’, ’.ssh’))
>>> make_archive(archive_name, ’gztar’, root_dir)
’/Users/tarek/myarchive.tar.gz’

The resulting archive contains:

$ tar -tzvf /Users/tarek/myarchive.tar.gz
drwx------ tarek/staff 0 2010-02-01 16:23:40 ./
-rw-r--r-- tarek/staff 609 2008-06-09 13:26:54 ./authorized_keys
-rwxr-xr-x tarek/staff 65 2008-06-09 13:26:54 ./config
-rwx------ tarek/staff 668 2008-06-09 13:26:54 ./id_dsa
-rwxr-xr-x tarek/staff 609 2008-06-09 13:26:54 ./id_dsa.pub
-rw------- tarek/staff 1675 2008-06-09 13:26:54 ./id_rsa
-rw-r--r-- tarek/staff 397 2008-06-09 13:26:54 ./id_rsa.pub
-rw-r--r-- tarek/staff 37192 2010-02-06 18:23:10 ./known_hosts

10.10 macpath — Mac OS 9 path manipulation functions

This module is the Mac OS 9 (and earlier) implementation of the os.path module. It can be used to manipulate
old-style Macintosh pathnames on Mac OS X (or any other platform).

The following functions are available in this module: normcase(), normpath(), isabs(), join(),
split(), isdir(), isfile(), walk(), exists(). For other functions available in os.path dummy
counterparts are available.

See Also:

260 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2

Module os Operating system interfaces, including functions to work with files at a lower level than Python file
objects.

Module io Python’s built-in I/O library, including both abstract classes and some concrete classes such as file
I/O.

Built-in function open() The standard way to open files for reading and writing with Python.

10.10. macpath — Mac OS 9 path manipulation functions 261

The Python Library Reference, Release 3.2

262 Chapter 10. File and Directory Access

CHAPTER

ELEVEN

DATA PERSISTENCE

The modules described in this chapter support storing Python data in a persistent form on disk. The pickle and
marshal modules can turn many Python data types into a stream of bytes and then recreate the objects from
the bytes. The various DBM-related modules support a family of hash-based file formats that store a mapping of
strings to other strings.

The list of modules described in this chapter is:

11.1 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte
stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierar-
chy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalling,” 1 or “flattening”, however,
to avoid confusion, the terms used here are “pickling” and “unpickling”..

Warning: The pickle module is not intended to be secure against erroneous or maliciously constructed
data. Never unpickle data received from an untrusted or unauthenticated source.

11.1.1 Relationship to other Python modules

The pickle module has an transparent optimizer (_pickle) written in C. It is used whenever available. Other-
wise the pure Python implementation is used.

Python has a more primitive serialization module called marshal, but in general pickle should always be the
preferred way to serialize Python objects. marshal exists primarily to support Python’s .pyc files.

The pickle module differs from marshal in several significant ways:

• The pickle module keeps track of the objects it has already serialized, so that later references to the same
object won’t be serialized again. marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the
same object in different places in the object hierarchy being serialized. pickle stores such objects only
once, and ensures that all other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

• marshal cannot be used to serialize user-defined classes and their instances. pickle can save and restore
class instances transparently, however the class definition must be importable and live in the same module
as when the object was stored.

1 Don’t confuse this with the marshal module

263

The Python Library Reference, Release 3.2

• The marshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support .pyc files, the Python implementers reserve the right to change the serial-
ization format in non-backwards compatible ways should the need arise. The pickle serialization format
is guaranteed to be backwards compatible across Python releases.

Note that serialization is a more primitive notion than persistence; although pickle reads and writes file objects,
it does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. The pickle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do
with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store
them in a database. The module shelve provides a simple interface to pickle and unpickle objects on DBM-style
database files.

11.1.2 Data stream format

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions imposed
by external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a compact binary representation. The module pickletools contains
tools for analyzing data streams generated by pickle.

There are currently 4 different protocols which can be used for pickling.

• Protocol version 0 is the original human-readable protocol and is backwards compatible with earlier versions
of Python.

• Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

• Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes.

• Protocol version 3 was added in Python 3.0. It has explicit support for bytes and cannot be unpickled by
Python 2.x pickle modules. This is the current recommended protocol, use it whenever it is possible.

Refer to PEP 307 for information about improvements brought by protocol 2. See pickletools‘s source code
for extensive comments about opcodes used by pickle protocols.

11.1.3 Module Interface

To serialize an object hierarchy, you first create a pickler, then you call the pickler’s dump() method. To de-
serialize a data stream, you first create an unpickler, then you call the unpickler’s load() method. The pickle
module provides the following constant:

pickle.HIGHEST_PROTOCOL
The highest protocol version available. This value can be passed as a protocol value.

pickle.DEFAULT_PROTOCOL
The default protocol used for pickling. May be less than HIGHEST_PROTOCOL. Currently the default
protocol is 3; a backward-incompatible protocol designed for Python 3.0.

The pickle module provides the following functions to make the pickling process more convenient:

pickle.dump(obj, file, protocol=None, *, fix_imports=True)
Write a pickled representation of obj to the open file object file. This is equivalent to Pickler(file,
protocol).dump(obj).

The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2,
3. The default protocol is 3; a backward-incompatible protocol designed for Python 3.0.

Specifying a negative protocol version selects the highest protocol version supported. The higher the proto-
col used, the more recent the version of Python needed to read the pickle produced.

264 Chapter 11. Data Persistence

http://www.python.org/dev/peps/pep-0307

The Python Library Reference, Release 3.2

The file argument must have a write() method that accepts a single bytes argument. It can thus be an on-
disk file opened for binary writing, a io.BytesIO instance, or any other custom object that meets this
interface.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3.x names to the old
module names used in Python 2.x, so that the pickle data stream is readable with Python 2.x.

pickle.dumps(obj, protocol=None, *, fix_imports=True)
Return the pickled representation of the object as a bytes object, instead of writing it to a file.

The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2,
3. The default protocol is 3; a backward-incompatible protocol designed for Python 3.0.

Specifying a negative protocol version selects the highest protocol version supported. The higher the proto-
col used, the more recent the version of Python needed to read the pickle produced.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3.x names to the old
module names used in Python 2.x, so that the pickle data stream is readable with Python 2.x.

pickle.load(file, *, fix_imports=True, encoding=”ASCII”, errors=”strict”)
Read a pickled object representation from the open file object file and return the reconstituted object hierar-
chy specified therein. This is equivalent to Unpickler(file).load().

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past
the pickled object’s representation are ignored.

The argument file must have two methods, a read() method that takes an integer argument, and a readline()
method that requires no arguments. Both methods should return bytes. Thus file can be an on-disk file
opened for binary reading, a io.BytesIO object, or any other custom object that meets this interface.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compatibility
support for pickle stream generated by Python 2.x. If fix_imports is True, pickle will try to map the old
Python 2.x names to the new names used in Python 3.x. The encoding and errors tell pickle how to decode
8-bit string instances pickled by Python 2.x; these default to ‘ASCII’ and ‘strict’, respectively.

pickle.loads(bytes_object, *, fix_imports=True, encoding=”ASCII”, errors=”strict”)
Read a pickled object hierarchy from a bytes object and return the reconstituted object hierarchy specified
therein

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past
the pickled object’s representation are ignored.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compatibility
support for pickle stream generated by Python 2.x. If fix_imports is True, pickle will try to map the old
Python 2.x names to the new names used in Python 3.x. The encoding and errors tell pickle how to decode
8-bit string instances pickled by Python 2.x; these default to ‘ASCII’ and ‘strict’, respectively.

The pickle module defines three exceptions:

exception pickle.PickleError
Common base class for the other pickling exceptions. It inherits Exception.

exception pickle.PicklingError
Error raised when an unpicklable object is encountered by Pickler. It inherits PickleError.

Refer to What can be pickled and unpickled? to learn what kinds of objects can be pickled.

exception pickle.UnpicklingError
Error raised when there a problem unpickling an object, such as a data corruption or a security violation. It
inherits PickleError.

Note that other exceptions may also be raised during unpickling, including (but not necessarily limited to)
AttributeError, EOFError, ImportError, and IndexError.

The pickle module exports two classes, Pickler and Unpickler:

class pickle.Pickler(file, protocol=None, *, fix_imports=True)
This takes a binary file for writing a pickle data stream.

11.1. pickle — Python object serialization 265

The Python Library Reference, Release 3.2

The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2,
3. The default protocol is 3; a backward-incompatible protocol designed for Python 3.0.

Specifying a negative protocol version selects the highest protocol version supported. The higher the proto-
col used, the more recent the version of Python needed to read the pickle produced.

The file argument must have a write() method that accepts a single bytes argument. It can thus be an on-
disk file opened for binary writing, a io.BytesIO instance, or any other custom object that meets this
interface.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3.x names to the old
module names used in Python 2.x, so that the pickle data stream is readable with Python 2.x.

dump(obj)
Write a pickled representation of obj to the open file object given in the constructor.

persistent_id(obj)
Do nothing by default. This exists so a subclass can override it.

If persistent_id() returns None, obj is pickled as usual. Any other value causes Pickler to
emit the returned value as a persistent ID for obj. The meaning of this persistent ID should be defined
by Unpickler.persistent_load(). Note that the value returned by persistent_id()
cannot itself have a persistent ID.

See Persistence of External Objects for details and examples of uses.

fast
Deprecated. Enable fast mode if set to a true value. The fast mode disables the usage of memo,
therefore speeding the pickling process by not generating superfluous PUT opcodes. It should not be
used with self-referential objects, doing otherwise will cause Pickler to recurse infinitely.

Use pickletools.optimize() if you need more compact pickles.

class pickle.Unpickler(file, *, fix_imports=True, encoding=”ASCII”, errors=”strict”)
This takes a binary file for reading a pickle data stream.

The protocol version of the pickle is detected automatically, so no protocol argument is needed.

The argument file must have two methods, a read() method that takes an integer argument, and a readline()
method that requires no arguments. Both methods should return bytes. Thus file can be an on-disk file object
opened for binary reading, a io.BytesIO object, or any other custom object that meets this interface.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compatibility
support for pickle stream generated by Python 2.x. If fix_imports is True, pickle will try to map the old
Python 2.x names to the new names used in Python 3.x. The encoding and errors tell pickle how to decode
8-bit string instances pickled by Python 2.x; these default to ‘ASCII’ and ‘strict’, respectively.

load()
Read a pickled object representation from the open file object given in the constructor, and return
the reconstituted object hierarchy specified therein. Bytes past the pickled object’s representation are
ignored.

persistent_load(pid)
Raise an UnpickingError by default.

If defined, persistent_load() should return the object specified by the persistent ID pid. If an
invalid persistent ID is encountered, an UnpickingError should be raised.

See Persistence of External Objects for details and examples of uses.

find_class(module, name)
Import module if necessary and return the object called name from it, where the module and name
arguments are str objects. Note, unlike its name suggests, find_class() is also used for finding
functions.

Subclasses may override this to gain control over what type of objects and how they can be loaded,
potentially reducing security risks. Refer to Restricting Globals for details.

266 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

11.1.4 What can be pickled and unpickled?

The following types can be pickled:

• None, True, and False

• integers, floating point numbers, complex numbers

• strings, bytes, bytearrays

• tuples, lists, sets, and dictionaries containing only picklable objects

• functions defined at the top level of a module

• built-in functions defined at the top level of a module

• classes that are defined at the top level of a module

• instances of such classes whose __dict__ or __setstate__() is picklable (see section Pickling Class
Instances for details)

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an unspec-
ified number of bytes may have already been written to the underlying file. Trying to pickle a highly recursive
data structure may exceed the maximum recursion depth, a RuntimeError will be raised in this case. You can
carefully raise this limit with sys.setrecursionlimit().

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither
the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in
the unpickling environment, and the module must contain the named object, otherwise an exception will be raised.
2

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class attribute attr is not
restored in the unpickling environment:

class Foo:
attr = ’A class attribute’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and
still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that
will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class’s __setstate__() method.

11.1.5 Pickling Class Instances

In this section, we describe the general mechanisms available to you to define, customize, and control how class
instances are pickled and unpickled.

In most cases, no additional code is needed to make instances picklable. By default, pickle will retrieve the class
and the attributes of an instance via introspection. When a class instance is unpickled, its __init__() method
is usually not invoked. The default behaviour first creates an uninitialized instance and then restores the saved
attributes. The following code shows an implementation of this behaviour:

def save(obj):
return (obj.__class__, obj.__dict__)

def load(cls, attributes):
obj = cls.__new__(cls)

2 The exception raised will likely be an ImportError or an AttributeError but it could be something else.

11.1. pickle — Python object serialization 267

The Python Library Reference, Release 3.2

obj.__dict__.update(attributes)
return obj

Classes can alter the default behaviour by providing one or several special methods:

object.__getnewargs__()
In protocol 2 and newer, classes that implements the __getnewargs__() method can dictate the values
passed to the __new__() method upon unpickling. This is often needed for classes whose __new__()
method requires arguments.

object.__getstate__()
Classes can further influence how their instances are pickled; if the class defines the method
__getstate__(), it is called and the returned object is pickled as the contents for the instance, instead
of the contents of the instance’s dictionary. If the __getstate__() method is absent, the instance’s
__dict__ is pickled as usual.

object.__setstate__(state)
Upon unpickling, if the class defines __setstate__(), it is called with the unpickled state. In that
case, there is no requirement for the state object to be a dictionary. Otherwise, the pickled state must be a
dictionary and its items are assigned to the new instance’s dictionary.

Note: If __getstate__() returns a false value, the __setstate__() method will not be called
upon unpickling.

Refer to the section Handling Stateful Objects for more information about how to use the methods
__getstate__() and __setstate__().

Note: At unpickling time, some methods like __getattr__(), __getattribute__(), or
__setattr__() may be called upon the instance. In case those methods rely on some internal invariant be-
ing true, the type should implement __getnewargs__() to establish such an invariant; otherwise, neither
__new__() nor __init__() will be called.

As we shall see, pickle does not use directly the methods described above. In fact, these methods are part of
the copy protocol which implements the __reduce__() special method. The copy protocol provides a unified
interface for retrieving the data necessary for pickling and copying objects. 3

Although powerful, implementing __reduce__() directly in your classes is error prone. For this rea-
son, class designers should use the high-level interface (i.e., __getnewargs__(), __getstate__() and
__setstate__()) whenever possible. We will show, however, cases where using __reduce__() is the
only option or leads to more efficient pickling or both.

object.__reduce__()
The interface is currently defined as follows. The __reduce__() method takes no argument and shall
return either a string or preferably a tuple (the returned object is often referred to as the “reduce value”).

If a string is returned, the string should be interpreted as the name of a global variable. It should be the
object’s local name relative to its module; the pickle module searches the module namespace to determine
the object’s module. This behaviour is typically useful for singletons.

When a tuple is returned, it must be between two and five items long. Optional items can either be omitted,
or None can be provided as their value. The semantics of each item are in order:

•A callable object that will be called to create the initial version of the object.

•A tuple of arguments for the callable object. An empty tuple must be given if the callable does not
accept any argument.

•Optionally, the object’s state, which will be passed to the object’s __setstate__() method as
previously described. If the object has no such method then, the value must be a dictionary and it will
be added to the object’s __dict__ attribute.

3 The copy module uses this protocol for shallow and deep copying operations.

268 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

•Optionally, an iterator (and not a sequence) yielding successive items. These items
will be appended to the object either using obj.append(item) or, in batch, using
obj.extend(list_of_items). This is primarily used for list subclasses, but may be used by
other classes as long as they have append() and extend() methods with the appropriate signa-
ture. (Whether append() or extend() is used depends on which pickle protocol version is used
as well as the number of items to append, so both must be supported.)

•Optionally, an iterator (not a sequence) yielding successive key-value pairs. These items will be stored
to the object using obj[key] = value. This is primarily used for dictionary subclasses, but may
be used by other classes as long as they implement __setitem__().

object.__reduce_ex__(protocol)
Alternatively, a __reduce_ex__() method may be defined. The only difference is this method
should take a single integer argument, the protocol version. When defined, pickle will prefer it over the
__reduce__() method. In addition, __reduce__() automatically becomes a synonym for the ex-
tended version. The main use for this method is to provide backwards-compatible reduce values for older
Python releases.

Persistence of External Objects

For the benefit of object persistence, the picklemodule supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a persistent ID, which should be either a string of alphanumeric
characters (for protocol 0) 4 or just an arbitrary object (for any newer protocol).

The resolution of such persistent IDs is not defined by the pickle module; it will delegate this resolution to the
user defined methods on the pickler and unpickler, persistent_id() and persistent_load() respec-
tively.

To pickle objects that have an external persistent id, the pickler must have a custom persistent_id() method
that takes an object as an argument and returns either None or the persistent id for that object. When None is
returned, the pickler simply pickles the object as normal. When a persistent ID string is returned, the pickler will
pickle that object, along with a marker so that the unpickler will recognize it as a persistent ID.

To unpickle external objects, the unpickler must have a custom persistent_load() method that takes a
persistent ID object and returns the referenced object.

Here is a comprehensive example presenting how persistent ID can be used to pickle external objects by reference.

Simple example presenting how persistent ID can be used to pickle
external objects by reference.

import pickle
import sqlite3
from collections import namedtuple

Simple class representing a record in our database.
MemoRecord = namedtuple("MemoRecord", "key, task")

class DBPickler(pickle.Pickler):

def persistent_id(self, obj):
Instead of pickling MemoRecord as a regular class instance, we emit a
persistent ID.
if isinstance(obj, MemoRecord):

Here, our persistent ID is simply a tuple, containing a tag and a
key, which refers to a specific record in the database.
return ("MemoRecord", obj.key)

else:
If obj does not have a persistent ID, return None. This means obj

4 The limitation on alphanumeric characters is due to the fact the persistent IDs, in protocol 0, are delimited by the newline character.
Therefore if any kind of newline characters occurs in persistent IDs, the resulting pickle will become unreadable.

11.1. pickle — Python object serialization 269

The Python Library Reference, Release 3.2

needs to be pickled as usual.
return None

class DBUnpickler(pickle.Unpickler):

def __init__(self, file, connection):
super().__init__(file)
self.connection = connection

def persistent_load(self, pid):
This method is invoked whenever a persistent ID is encountered.
Here, pid is the tuple returned by DBPickler.
cursor = self.connection.cursor()
type_tag, key_id = pid
if type_tag == "MemoRecord":

Fetch the referenced record from the database and return it.
cursor.execute("SELECT * FROM memos WHERE key=?", (str(key_id),))
key, task = cursor.fetchone()
return MemoRecord(key, task)

else:
Always raises an error if you cannot return the correct object.
Otherwise, the unpickler will think None is the object referenced
by the persistent ID.
raise pickle.UnpicklingError("unsupported persistent object")

def main():
import io, pprint

Initialize and populate our database.
conn = sqlite3.connect(":memory:")
cursor = conn.cursor()
cursor.execute("CREATE TABLE memos(key INTEGER PRIMARY KEY, task TEXT)")
tasks = (

’give food to fish’,
’prepare group meeting’,
’fight with a zebra’,
)

for task in tasks:
cursor.execute("INSERT INTO memos VALUES(NULL, ?)", (task,))

Fetch the records to be pickled.
cursor.execute("SELECT * FROM memos")
memos = [MemoRecord(key, task) for key, task in cursor]
Save the records using our custom DBPickler.
file = io.BytesIO()
DBPickler(file).dump(memos)

print("Pickled records:")
pprint.pprint(memos)

Update a record, just for good measure.
cursor.execute("UPDATE memos SET task=’learn italian’ WHERE key=1")

Load the records from the pickle data stream.
file.seek(0)
memos = DBUnpickler(file, conn).load()

270 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

print("Unpickled records:")
pprint.pprint(memos)

if __name__ == ’__main__’:
main()

Handling Stateful Objects

Here’s an example that shows how to modify pickling behavior for a class. The TextReader class opens
a text file, and returns the line number and line contents each time its readline() method is called. If a
TextReader instance is pickled, all attributes except the file object member are saved. When the instance
is unpickled, the file is reopened, and reading resumes from the last location. The __setstate__() and
__getstate__() methods are used to implement this behavior.

class TextReader:
"""Print and number lines in a text file."""

def __init__(self, filename):
self.filename = filename
self.file = open(filename)
self.lineno = 0

def readline(self):
self.lineno += 1
line = self.file.readline()
if not line:

return None
if line.endswith(’\n’):

line = line[:-1]
return "%i: %s" % (self.lineno, line)

def __getstate__(self):
Copy the object’s state from self.__dict__ which contains
all our instance attributes. Always use the dict.copy()
method to avoid modifying the original state.
state = self.__dict__.copy()
Remove the unpicklable entries.
del state[’file’]
return state

def __setstate__(self, state):
Restore instance attributes (i.e., filename and lineno).
self.__dict__.update(state)
Restore the previously opened file’s state. To do so, we need to
reopen it and read from it until the line count is restored.
file = open(self.filename)
for _ in range(self.lineno):

file.readline()
Finally, save the file.
self.file = file

A sample usage might be something like this:

>>> reader = TextReader("hello.txt")
>>> reader.readline()
’1: Hello world!’
>>> reader.readline()

11.1. pickle — Python object serialization 271

The Python Library Reference, Release 3.2

’2: I am line number two.’
>>> new_reader = pickle.loads(pickle.dumps(reader))
>>> new_reader.readline()
’3: Goodbye!’

11.1.6 Restricting Globals

By default, unpickling will import any class or function that it finds in the pickle data. For many applications, this
behaviour is unacceptable as it permits the unpickler to import and invoke arbitrary code. Just consider what this
hand-crafted pickle data stream does when loaded:

>>> import pickle
>>> pickle.loads(b"cos\nsystem\n(S’echo hello world’\ntR.")
hello world
0

In this example, the unpickler imports the os.system() function and then apply the string argument “echo hello
world”. Although this example is inoffensive, it is not difficult to imagine one that could damage your system.

For this reason, you may want to control what gets unpickled by customizing Unpickler.find_class().
Unlike its name suggests, find_class() is called whenever a global (i.e., a class or a function) is requested.
Thus it is possible to either forbid completely globals or restrict them to a safe subset.

Here is an example of an unpickler allowing only few safe classes from the builtins module to be loaded:

import builtins
import io
import pickle

safe_builtins = {
’range’,
’complex’,
’set’,
’frozenset’,
’slice’,

}

class RestrictedUnpickler(pickle.Unpickler):

def find_class(self, module, name):
Only allow safe classes from builtins.
if module == "builtins" and name in safe_builtins:

return getattr(builtins, name)
Forbid everything else.
raise pickle.UnpicklingError("global ’%s.%s’ is forbidden" %

(module, name))

def restricted_loads(s):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler(io.BytesIO(s)).load()

A sample usage of our unpickler working has intended:

>>> restricted_loads(pickle.dumps([1, 2, range(15)]))
[1, 2, range(0, 15)]
>>> restricted_loads(b"cos\nsystem\n(S’echo hello world’\ntR.")
Traceback (most recent call last):

...
pickle.UnpicklingError: global ’os.system’ is forbidden
>>> restricted_loads(b’cbuiltins\neval\n’
... b’(S\’getattr(__import__("os"), "system")’

272 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

... b’("echo hello world")\’\ntR.’)
Traceback (most recent call last):

...
pickle.UnpicklingError: global ’builtins.eval’ is forbidden

As our examples shows, you have to be careful with what you allow to be unpickled. Therefore if security is a
concern, you may want to consider alternatives such as the marshalling API in xmlrpc.client or third-party
solutions.

11.1.7 Examples

For the simplest code, use the dump() and load() functions.

import pickle

An arbitrary collection of objects supported by pickle.
data = {

’a’: [1, 2.0, 3, 4+6j],
’b’: ("character string", b"byte string"),
’c’: set([None, True, False])

}

with open(’data.pickle’, ’wb’) as f:
Pickle the ’data’ dictionary using the highest protocol available.
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)

The following example reads the resulting pickled data.

import pickle

with open(’data.pickle’, ’rb’) as f:
The protocol version used is detected automatically, so we do not
have to specify it.
data = pickle.load(f)

See Also:

Module copyreg Pickle interface constructor registration for extension types.

Module pickletools Tools for working with and analyzing pickled data.

Module shelve Indexed databases of objects; uses pickle.

Module copy Shallow and deep object copying.

Module marshal High-performance serialization of built-in types.

11.2 copyreg — Register pickle support functions

The copyreg module provides support for the pickle module. The copy module is likely to use this in
the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

copyreg.constructor(object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a constructor),
raises TypeError.

copyreg.pickle(type, function, constructor=None)
Declares that function should be used as a “reduction” function for objects of type type. function should
return either a string or a tuple containing two or three elements.

11.2. copyreg — Register pickle support functions 273

The Python Library Reference, Release 3.2

The optional constructor parameter, if provided, is a callable object which can be used to reconstruct the
object when called with the tuple of arguments returned by function at pickling time. TypeError will be
raised if object is a class or constructor is not callable.

See the pickle module for more details on the interface expected of function and constructor.

11.3 shelve — Python object persistence

Source code: Lib/shelve.py

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the
keys!) in a shelf can be essentially arbitrary Python objects — anything that the pickle module can handle. This
includes most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are
ordinary strings.

shelve.open(filename, flag=’c’, protocol=None, writeback=False)
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The optional flag parameter has the same
interpretation as the flag parameter of dbm.open().

By default, version 3 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter.

Because of Python semantics, a shelf cannot know when a mutable persistent-dictionary entry is modified.
By default modified objects are written only when assigned to the shelf (see Example). If the optional
writeback parameter is set to True, all entries accessed are also cached in memory, and written back on
sync() and close(); this can make it handier to mutate mutable entries in the persistent dictionary, but,
if many entries are accessed, it can consume vast amounts of memory for the cache, and it can make the
close operation very slow since all accessed entries are written back (there is no way to determine which
accessed entries are mutable, nor which ones were actually mutated).

Note: Do not rely on the shelf being closed automatically; always call close() explicitly when you don’t
need it any more, or use a with statement with contextlib.closing().

Warning: Because the shelve module is backed by pickle, it is insecure to load a shelf from an untrusted
source. Like with pickle, loading a shelf can execute arbitrary code.

Shelf objects support all methods supported by dictionaries. This eases the transition from dictionary based scripts
to those requiring persistent storage.

Two additional methods are supported:

Shelf.sync()
Write back all entries in the cache if the shelf was opened with writeback set to True. Also empty the
cache and synchronize the persistent dictionary on disk, if feasible. This is called automatically when the
shelf is closed with close().

Shelf.close()
Synchronize and close the persistent dict object. Operations on a closed shelf will fail with a ValueError.

See Also:

Persistent dictionary recipe with widely supported storage formats and having the speed of native dictionaries.

274 Chapter 11. Data Persistence

http://svn.python.org/view/python/branches/py3k/Lib/shelve.py?view=markup
http://code.activestate.com/recipes/576642/

The Python Library Reference, Release 3.2

11.3.1 Restrictions

• The choice of which database package will be used (such as dbm.ndbm or dbm.gnu) depends on which
interface is available. Therefore it is not safe to open the database directly using dbm. The database is also
(unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled representation
of) the objects stored in the database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

• The shelve module does not support concurrent read/write access to shelved objects. (Multiple simulta-
neous read accesses are safe.) When a program has a shelf open for writing, no other program should have it
open for reading or writing. Unix file locking can be used to solve this, but this differs across Unix versions
and requires knowledge about the database implementation used.

class shelve.Shelf(dict, protocol=None, writeback=False, keyencoding=’utf-8’)
A subclass of collections.MutableMapping which stores pickled values in the dict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. See the pickle documentation for a discussion of the pickle protocols.

If the writeback parameter is True, the object will hold a cache of all entries accessed and write them back
to the dict at sync and close times. This allows natural operations on mutable entries, but can consume much
more memory and make sync and close take a long time.

The keyencoding parameter is the encoding used to encode keys before they are used with the underlying
dict. New in version 3.2: The keyencoding parameter; previously, keys were always encoded in UTF-8.

class shelve.BsdDbShelf(dict, protocol=None, writeback=False, keyencoding=’utf-8’)
A subclass of Shelf which exposes first(), next(), previous(), last() and
set_location() which are available in the third-party bsddb module from pybsddb but not in other
database modules. The dict object passed to the constructor must support those methods. This is generally
accomplished by calling one of bsddb.hashopen(), bsddb.btopen() or bsddb.rnopen().
The optional protocol, writeback, and keyencoding parameters have the same interpretation as for the
Shelf class.

class shelve.DbfilenameShelf(filename, flag=’c’, protocol=None, writeback=False)
A subclass of Shelf which accepts a filename instead of a dict-like object. The underlying file will be
opened using dbm.open(). By default, the file will be created and opened for both read and write. The
optional flag parameter has the same interpretation as for the open() function. The optional protocol and
writeback parameters have the same interpretation as for the Shelf class.

11.3.2 Example

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open -- file may get suffix added by low-level
library

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = key in d # true if the key exists
klist = list(d.keys()) # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:
d[’xx’] = [0, 1, 2] # this works as expected, but...

11.3. shelve — Python object persistence 275

http://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.2

d[’xx’].append(3) # *this doesn’t!* -- d[’xx’] is STILL [0, 1, 2]!

having opened d without writeback=True, you need to code carefully:
temp = d[’xx’] # extracts the copy
temp.append(5) # mutates the copy
d[’xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d[’xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Module dbm Generic interface to dbm-style databases.

Module pickle Object serialization used by shelve.

11.4 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific
to Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC,
transport the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may
change between Python versions (although it rarely does). 5

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modules pickle and shelve. The marshal module exists mainly to support reading and writing
the “pseudo-compiled” code for Python modules of .pyc files. Therefore, the Python maintainers reserve the
right to modify the marshal format in backward incompatible ways should the need arise. If you’re serializing
and de-serializing Python objects, use the pickle module instead – the performance is comparable, version
independence is guaranteed, and pickle supports a substantially wider range of objects than marshal.

Warning: The marshal module is not intended to be secure against erroneous or maliciously constructed
data. Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular in-
vocation of Python can be written and read by this module. The following types are supported: booleans, integers,
floating point numbers, complex numbers, strings, bytes, bytearrays, tuples, lists, sets, frozensets, dictionaries, and
code objects, where it should be understood that tuples, lists, sets, frozensets and dictionaries are only supported
as long as the values contained therein are themselves supported; and recursive lists, sets and dictionaries should
not be written (they will cause infinite loops). The singletons None, Ellipsis and StopIteration can also
be marshalled and unmarshalled.

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

marshal.dump(value, file[, version])
Write the value on the open file. The value must be a supported type. The file must be an open file object
such as sys.stdout or returned by open() or os.popen(). It must be opened in binary mode (’wb’
or ’w+b’).

If the value has (or contains an object that has) an unsupported type, a ValueError exception is raised —
but garbage data will also be written to the file. The object will not be properly read back by load().

The version argument indicates the data format that dump should use (see below).

5 The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term
“marshalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal
to external form (in an RPC buffer for instance) and “unmarshalling” for the reverse process.

276 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

marshal.load(file)
Read one value from the open file and return it. If no valid value is read (e.g. because the data has a different
Python version’s incompatible marshal format), raise EOFError, ValueError or TypeError. The file
must be an open file object opened in binary mode (’rb’ or ’r+b’).

Note: If an object containing an unsupported type was marshalled with dump(), load() will substitute
None for the unmarshallable type.

marshal.dumps(value[, version])
Return the string that would be written to a file by dump(value, file). The value must be a supported
type. Raise a ValueError exception if value has (or contains an object that has) an unsupported type.

The version argument indicates the data format that dumps should use (see below).

marshal.loads(string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

In addition, the following constants are defined:

marshal.version
Indicates the format that the module uses. Version 0 is the historical format, version 1 shares interned strings
and version 2 uses a binary format for floating point numbers. The current version is 2.

11.5 dbm — Interfaces to Unix “databases”

dbm is a generic interface to variants of the DBM database — dbm.gnu or dbm.ndbm. If none of these mod-
ules is installed, the slow-but-simple implementation in module dbm.dumb will be used. There is a third party
interface to the Oracle Berkeley DB.

exception dbm.error
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique
exception also named dbm.error as the first item — the latter is used when dbm.error is raised.

dbm.whichdb(filename)
This function attempts to guess which of the several simple database modules available — dbm.gnu,
dbm.ndbm or dbm.dumb — should be used to open a given file.

Returns one of the following values: None if the file can’t be opened because it’s unreadable or doesn’t
exist; the empty string (”) if the file’s format can’t be guessed; or a string containing the required module
name, such as ’dbm.ndbm’ or ’dbm.gnu’.

dbm.open(filename, flag=’r’, mode=0o666)
Open the database file filename and return a corresponding object.

If the database file already exists, the whichdb() function is used to determine its type and the appropriate
module is used; if it does not exist, the first module listed above that can be imported is used.

The optional flag argument can be:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0o666 (and will be modified by the prevailing umask).

The object returned by open() supports the same basic functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, and the in operator and the keys() method are available, as well
as get() and setdefault(). Changed in version 3.2: get() and setdefault() are now available in

11.5. dbm — Interfaces to Unix “databases” 277

http://www.jcea.es/programacion/pybsddb.htm
http://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.2

all database modules. Key and values are always stored as bytes. This means that when strings are used they are
implicitly converted to the default encoding before being stored.

The following example records some hostnames and a corresponding title, and then prints out the contents of the
database:

import dbm

Open database, creating it if necessary.
db = dbm.open(’cache’, ’c’)

Record some values
db[b’hello’] = b’there’
db[’www.python.org’] = ’Python Website’
db[’www.cnn.com’] = ’Cable News Network’

Note that the keys are considered bytes now.
assert db[b’www.python.org’] == b’Python Website’
Notice how the value is now in bytes.
assert db[’www.cnn.com’] == b’Cable News Network’

Often-used methods of the dict interface work too.
print(db.get(’python.org’, b’not present’))

Storing a non-string key or value will raise an exception (most
likely a TypeError).
db[’www.yahoo.com’] = 4

Close when done.
db.close()

See Also:

Module shelve Persistence module which stores non-string data.

The individual submodules are described in the following sections.

11.5.1 dbm.gnu — GNU’s reinterpretation of dbm

Platforms: Unix

This module is quite similar to the dbmmodule, but uses the GNU library gdbm instead to provide some additional
functionality. Please note that the file formats created by dbm.gnu and dbm.ndbm are incompatible.

The dbm.gnu module provides an interface to the GNU DBM library. dbm.gnu.gdbm objects behave like
mappings (dictionaries), except that keys and values are always converted to bytes before storing. Printing a
gdbm object doesn’t print the keys and values, and the items() and values() methods are not supported.

exception dbm.gnu.error
Raised on dbm.gnu-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

dbm.gnu.open(filename[, flag[, mode]])
Open a gdbm database and return a gdbm object. The filename argument is the name of the database file.

The optional flag argument can be:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

278 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

The following additional characters may be appended to the flag to control how the database is opened:

Value Meaning
’f’ Open the database in fast mode. Writes to the database will not be synchronized.
’s’ Synchronized mode. This will cause changes to the database to be immediately written to the file.
’u’ Do not lock database.

Not all flags are valid for all versions of gdbm. The module constant open_flags is a string of supported
flag characters. The exception error is raised if an invalid flag is specified.

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0o666.

In addition to the dictionary-like methods, gdbm objects have the following methods:

gdbm.firstkey()
It’s possible to loop over every key in the database using this method and the nextkey() method.
The traversal is ordered by gdbm‘s internal hash values, and won’t be sorted by the key values. This
method returns the starting key.

gdbm.nextkey(key)
Returns the key that follows key in the traversal. The following code prints every key in the database
db, without having to create a list in memory that contains them all:

k = db.firstkey()
while k != None:

print(k)
k = db.nextkey(k)

gdbm.reorganize()
If you have carried out a lot of deletions and would like to shrink the space used by the gdbm file, this
routine will reorganize the database. gdbm objects will not shorten the length of a database file except
by using this reorganization; otherwise, deleted file space will be kept and reused as new (key, value)
pairs are added.

gdbm.sync()
When the database has been opened in fast mode, this method forces any unwritten data to be written
to the disk.

11.5.2 dbm.ndbm — Interface based on ndbm

Platforms: Unix

The dbm.ndbm module provides an interface to the Unix “(n)dbm” library. Dbm objects behave like mappings
(dictionaries), except that keys and values are always stored as bytes. Printing a dbm object doesn’t print the keys
and values, and the items() and values() methods are not supported.

This module can be used with the “classic” ndbm interface or the GNU GDBM compatibility interface. On Unix,
the configure script will attempt to locate the appropriate header file to simplify building this module.

exception dbm.ndbm.error
Raised on dbm.ndbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

dbm.ndbm.library
Name of the ndbm implementation library used.

dbm.ndbm.open(filename[, flag[, mode]])
Open a dbm database and return a dbm object. The filename argument is the name of the database file
(without the .dir or .pag extensions).

The optional flag argument must be one of these values:

11.5. dbm — Interfaces to Unix “databases” 279

The Python Library Reference, Release 3.2

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0o666 (and will be modified by the prevailing umask).

11.5.3 dbm.dumb — Portable DBM implementation

Note: The dbm.dumb module is intended as a last resort fallback for the dbm module when a more robust
module is not available. The dbm.dumb module is not written for speed and is not nearly as heavily used as the
other database modules.

The dbm.dumb module provides a persistent dictionary-like interface which is written entirely in Python. Unlike
other modules such as dbm.gnu no external library is required. As with other persistent mappings, the keys and
values are always stored as bytes.

The module defines the following:

exception dbm.dumb.error
Raised on dbm.dumb-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

dbm.dumb.open(filename[, flag[, mode]])
Open a dumbdbm database and return a dumbdbm object. The filename argument is the basename of the
database file (without any specific extensions). When a dumbdbm database is created, files with .dat and
.dir extensions are created.

The optional flag argument is currently ignored; the database is always opened for update, and will be
created if it does not exist.

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0o666 (and will be modified by the prevailing umask).

In addition to the methods provided by the collections.MutableMapping class, dumbdbm objects
provide the following method:

dumbdbm.sync()
Synchronize the on-disk directory and data files. This method is called by the Shelve.sync()
method.

11.6 sqlite3 — DB-API 2.0 interface for SQLite databases

SQLite is a C library that provides a lightweight disk-based database that doesn’t require a separate server process
and allows accessing the database using a nonstandard variant of the SQL query language. Some applications can
use SQLite for internal data storage. It’s also possible to prototype an application using SQLite and then port the
code to a larger database such as PostgreSQL or Oracle.

sqlite3 was written by Gerhard Häring and provides a SQL interface compliant with the DB-API 2.0 specification
described by PEP 249.

To use the module, you must first create a Connection object that represents the database. Here the data will
be stored in the /tmp/example file:

conn = sqlite3.connect(’/tmp/example’)

You can also supply the special name :memory: to create a database in RAM.

280 Chapter 11. Data Persistence

http://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 3.2

Once you have a Connection, you can create a Cursor object and call its execute() method to perform
SQL commands:

c = conn.cursor()

Create table
c.execute(’’’create table stocks
(date text, trans text, symbol text,
qty real, price real)’’’)

Insert a row of data
c.execute("""insert into stocks

values (’2006-01-05’,’BUY’,’RHAT’,100,35.14)""")

Save (commit) the changes
conn.commit()

We can also close the cursor if we are done with it
c.close()

Usually your SQL operations will need to use values from Python variables. You shouldn’t assemble your query
using Python’s string operations because doing so is insecure; it makes your program vulnerable to an SQL
injection attack.

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder wherever you want to use a value,
and then provide a tuple of values as the second argument to the cursor’s execute() method. (Other database
modules may use a different placeholder, such as %s or :1.) For example:

Never do this -- insecure!
symbol = ’IBM’
c.execute("... where symbol = ’%s’" % symbol)

Do this instead
t = (symbol,)
c.execute(’select * from stocks where symbol=?’, t)

Larger example
for t in [(’2006-03-28’, ’BUY’, ’IBM’, 1000, 45.00),

(’2006-04-05’, ’BUY’, ’MSOFT’, 1000, 72.00),
(’2006-04-06’, ’SELL’, ’IBM’, 500, 53.00),

]:
c.execute(’insert into stocks values (?,?,?,?,?)’, t)

To retrieve data after executing a SELECT statement, you can either treat the cursor as an iterator, call the cursor’s
fetchone() method to retrieve a single matching row, or call fetchall() to get a list of the matching rows.

This example uses the iterator form:

>>> c = conn.cursor()
>>> c.execute(’select * from stocks order by price’)
>>> for row in c:
... print(row)
...
(’2006-01-05’, ’BUY’, ’RHAT’, 100, 35.14)
(’2006-03-28’, ’BUY’, ’IBM’, 1000, 45.0)
(’2006-04-06’, ’SELL’, ’IBM’, 500, 53.0)
(’2006-04-05’, ’BUY’, ’MSOFT’, 1000, 72.0)
>>>

See Also:

http://code.google.com/p/pysqlite/ The pysqlite web page – sqlite3 is developed externally under the name
“pysqlite”.

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 281

http://code.google.com/p/pysqlite/

The Python Library Reference, Release 3.2

http://www.sqlite.org The SQLite web page; the documentation describes the syntax and the available data types
for the supported SQL dialect.

PEP 249 - Database API Specification 2.0 PEP written by Marc-André Lemburg.

11.6.1 Module functions and constants

sqlite3.PARSE_DECLTYPES
This constant is meant to be used with the detect_types parameter of the connect() function.

Setting it makes the sqlite3 module parse the declared type for each column it returns. It will parse
out the first word of the declared type, i. e. for “integer primary key”, it will parse out “integer”, or for
“number(10)” it will parse out “number”. Then for that column, it will look into the converters dictionary
and use the converter function registered for that type there.

sqlite3.PARSE_COLNAMES
This constant is meant to be used with the detect_types parameter of the connect() function.

Setting this makes the SQLite interface parse the column name for each column it returns. It will look for a
string formed [mytype] in there, and then decide that ‘mytype’ is the type of the column. It will try to find
an entry of ‘mytype’ in the converters dictionary and then use the converter function found there to return
the value. The column name found in Cursor.description is only the first word of the column name,
i. e. if you use something like ’as "x [datetime]"’ in your SQL, then we will parse out everything
until the first blank for the column name: the column name would simply be “x”.

sqlite3.connect(database[, timeout, detect_types, isolation_level, check_same_thread, factory,
cached_statements])

Opens a connection to the SQLite database file database. You can use ":memory:" to open a database
connection to a database that resides in RAM instead of on disk.

When a database is accessed by multiple connections, and one of the processes modifies the database, the
SQLite database is locked until that transaction is committed. The timeout parameter specifies how long
the connection should wait for the lock to go away until raising an exception. The default for the timeout
parameter is 5.0 (five seconds).

For the isolation_level parameter, please see the Connection.isolation_level property of
Connection objects.

SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If you want to use
other types you must add support for them yourself. The detect_types parameter and the using custom
converters registered with the module-level register_converter() function allow you to easily do
that.

detect_types defaults to 0 (i. e. off, no type detection), you can set it to any combination of
PARSE_DECLTYPES and PARSE_COLNAMES to turn type detection on.

By default, the sqlite3 module uses its Connection class for the connect call. You can, however,
subclass the Connection class and make connect() use your class instead by providing your class for
the factory parameter.

Consult the section SQLite and Python types of this manual for details.

The sqlite3 module internally uses a statement cache to avoid SQL parsing overhead. If you want to
explicitly set the number of statements that are cached for the connection, you can set the cached_statements
parameter. The currently implemented default is to cache 100 statements.

sqlite3.register_converter(typename, callable)
Registers a callable to convert a bytestring from the database into a custom Python type. The callable will
be invoked for all database values that are of the type typename. Confer the parameter detect_types of the
connect() function for how the type detection works. Note that the case of typename and the name of
the type in your query must match!

sqlite3.register_adapter(type, callable)
Registers a callable to convert the custom Python type type into one of SQLite’s supported types. The

282 Chapter 11. Data Persistence

http://www.sqlite.org
http://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 3.2

callable callable accepts as single parameter the Python value, and must return a value of the following
types: int, float, str or bytes.

sqlite3.complete_statement(sql)
Returns True if the string sql contains one or more complete SQL statements terminated by semicolons. It
does not verify that the SQL is syntactically correct, only that there are no unclosed string literals and the
statement is terminated by a semicolon.

This can be used to build a shell for SQLite, as in the following example:

A minimal SQLite shell for experiments

import sqlite3

con = sqlite3.connect(":memory:")
con.isolation_level = None
cur = con.cursor()

buffer = ""

print("Enter your SQL commands to execute in sqlite3.")
print("Enter a blank line to exit.")

while True:
line = input()
if line == "":

break
buffer += line
if sqlite3.complete_statement(buffer):

try:
buffer = buffer.strip()
cur.execute(buffer)

if buffer.lstrip().upper().startswith("SELECT"):
print(cur.fetchall())

except sqlite3.Error as e:
print("An error occurred:", e.args[0])

buffer = ""

con.close()

sqlite3.enable_callback_tracebacks(flag)
By default you will not get any tracebacks in user-defined functions, aggregates, converters, authorizer
callbacks etc. If you want to debug them, you can call this function with flag as True. Afterwards, you will
get tracebacks from callbacks on sys.stderr. Use False to disable the feature again.

11.6.2 Connection Objects

class sqlite3.Connection
A SQLite database connection has the following attributes and methods:

Connection.isolation_level
Get or set the current isolation level. None for autocommit mode or one of “DEFERRED”, “IMMEDIATE”
or “EXCLUSIVE”. See section Controlling Transactions for a more detailed explanation.

Connection.in_transaction
True if a transaction is active (there are uncommitted changes), False otherwise. Read-only attribute.
New in version 3.2.

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 283

The Python Library Reference, Release 3.2

Connection.cursor([cursorClass])
The cursor method accepts a single optional parameter cursorClass. If supplied, this must be a custom
cursor class that extends sqlite3.Cursor.

Connection.commit()
This method commits the current transaction. If you don’t call this method, anything you did since the last
call to commit() is not visible from from other database connections. If you wonder why you don’t see
the data you’ve written to the database, please check you didn’t forget to call this method.

Connection.rollback()
This method rolls back any changes to the database since the last call to commit().

Connection.close()
This closes the database connection. Note that this does not automatically call commit(). If you just close
your database connection without calling commit() first, your changes will be lost!

Connection.execute(sql[, parameters])
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then
calls the cursor’s execute method with the parameters given.

Connection.executemany(sql[, parameters])
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then
calls the cursor’s executemany method with the parameters given.

Connection.executescript(sql_script)
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then
calls the cursor’s executescript method with the parameters given.

Connection.create_function(name, num_params, func)
Creates a user-defined function that you can later use from within SQL statements under the function name
name. num_params is the number of parameters the function accepts, and func is a Python callable that is
called as the SQL function.

The function can return any of the types supported by SQLite: bytes, str, int, float and None.

Example:

import sqlite3
import hashlib

def md5sum(t):
return hashlib.md5(t).hexdigest()

con = sqlite3.connect(":memory:")
con.create_function("md5", 1, md5sum)
cur = con.cursor()
cur.execute("select md5(?)", ("foo",))
print(cur.fetchone()[0])

Connection.create_aggregate(name, num_params, aggregate_class)
Creates a user-defined aggregate function.

The aggregate class must implement a stepmethod, which accepts the number of parameters num_params,
and a finalize method which will return the final result of the aggregate.

The finalize method can return any of the types supported by SQLite: bytes, str, int, float and None.

Example:

import sqlite3

class MySum:
def __init__(self):

self.count = 0

284 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

def step(self, value):
self.count += value

def finalize(self):
return self.count

con = sqlite3.connect(":memory:")
con.create_aggregate("mysum", 1, MySum)
cur = con.cursor()
cur.execute("create table test(i)")
cur.execute("insert into test(i) values (1)")
cur.execute("insert into test(i) values (2)")
cur.execute("select mysum(i) from test")
print(cur.fetchone()[0])

Connection.create_collation(name, callable)
Creates a collation with the specified name and callable. The callable will be passed two string arguments.
It should return -1 if the first is ordered lower than the second, 0 if they are ordered equal and 1 if the first is
ordered higher than the second. Note that this controls sorting (ORDER BY in SQL) so your comparisons
don’t affect other SQL operations.

Note that the callable will get its parameters as Python bytestrings, which will normally be encoded in
UTF-8.

The following example shows a custom collation that sorts “the wrong way”:

import sqlite3

def collate_reverse(string1, string2):
if string1 == string2:

return 0
elif string1 < string2:

return 1
else:

return -1

con = sqlite3.connect(":memory:")
con.create_collation("reverse", collate_reverse)

cur = con.cursor()
cur.execute("create table test(x)")
cur.executemany("insert into test(x) values (?)", [("a",), ("b",)])
cur.execute("select x from test order by x collate reverse")
for row in cur:

print(row)
con.close()

To remove a collation, call create_collation with None as callable:

con.create_collation("reverse", None)

Connection.interrupt()
You can call this method from a different thread to abort any queries that might be executing on the connec-
tion. The query will then abort and the caller will get an exception.

Connection.set_authorizer(authorizer_callback)
This routine registers a callback. The callback is invoked for each attempt to access a column of a table in
the database. The callback should return SQLITE_OK if access is allowed, SQLITE_DENY if the entire

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 285

The Python Library Reference, Release 3.2

SQL statement should be aborted with an error and SQLITE_IGNORE if the column should be treated as a
NULL value. These constants are available in the sqlite3 module.

The first argument to the callback signifies what kind of operation is to be authorized. The second and third
argument will be arguments or None depending on the first argument. The 4th argument is the name of
the database (“main”, “temp”, etc.) if applicable. The 5th argument is the name of the inner-most trigger
or view that is responsible for the access attempt or None if this access attempt is directly from input SQL
code.

Please consult the SQLite documentation about the possible values for the first argument and the meaning
of the second and third argument depending on the first one. All necessary constants are available in the
sqlite3 module.

Connection.set_progress_handler(handler, n)
This routine registers a callback. The callback is invoked for every n instructions of the SQLite virtual
machine. This is useful if you want to get called from SQLite during long-running operations, for example
to update a GUI.

If you want to clear any previously installed progress handler, call the method with None for handler.

Connection.enable_load_extension(enabled)
This routine allows/disallows the SQLite engine to load SQLite extensions from shared libraries. SQLite
extensions can define new functions, aggregates or whole new virtual table implementations. One well-
known extension is the fulltext-search extension distributed with SQLite. New in version 3.2.

import sqlite3

con = sqlite3.connect(":memory:")

enable extension loading
con.enable_load_extension(True)

Load the fulltext search extension
con.execute("select load_extension(’./fts3.so’)")

alternatively you can load the extension using an API call:
con.load_extension("./fts3.so")

disable extension laoding again
con.enable_load_extension(False)

example from SQLite wiki
con.execute("create virtual table recipe using fts3(name, ingredients)")
con.executescript("""

insert into recipe (name, ingredients) values (’broccoli stew’, ’broccoli peppers cheese tomatoes’);
insert into recipe (name, ingredients) values (’pumpkin stew’, ’pumpkin onions garlic celery’);
insert into recipe (name, ingredients) values (’broccoli pie’, ’broccoli cheese onions flour’);
insert into recipe (name, ingredients) values (’pumpkin pie’, ’pumpkin sugar flour butter’);
""")

for row in con.execute("select rowid, name, ingredients from recipe where name match ’pie’"):
print(row)

Loadable extensions are disabled by default. See 6.

Connection.load_extension(path)
This routine loads a SQLite extension from a shared library. You have to enable extension loading with
enable_load_extension() before you can use this routine. New in version 3.2. Loadable extensions
are disabled by default. See 1.

6 The sqlite3 module is not built with loadable extension support by default, because some platforms (notably Mac OS X) have SQLite
libraries which are compiled without this feature. To get loadable extension support, you must pass –enable-loadable-sqlite-extensions to
configure.

286 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

Connection.row_factory
You can change this attribute to a callable that accepts the cursor and the original row as a tuple and will
return the real result row. This way, you can implement more advanced ways of returning results, such as
returning an object that can also access columns by name.

Example:

import sqlite3

def dict_factory(cursor, row):
d = {}
for idx, col in enumerate(cursor.description):

d[col[0]] = row[idx]
return d

con = sqlite3.connect(":memory:")
con.row_factory = dict_factory
cur = con.cursor()
cur.execute("select 1 as a")
print(cur.fetchone()["a"])

If returning a tuple doesn’t suffice and you want name-based access to columns, you should consider setting
row_factory to the highly-optimized sqlite3.Row type. Row provides both index-based and case-
insensitive name-based access to columns with almost no memory overhead. It will probably be better than
your own custom dictionary-based approach or even a db_row based solution.

Connection.text_factory
Using this attribute you can control what objects are returned for the TEXT data type. By default, this
attribute is set to str and the sqlite3 module will return Unicode objects for TEXT. If you want to
return bytestrings instead, you can set it to bytes.

For efficiency reasons, there’s also a way to return str objects only for non-ASCII data, and bytes
otherwise. To activate it, set this attribute to sqlite3.OptimizedUnicode.

You can also set it to any other callable that accepts a single bytestring parameter and returns the resulting
object.

See the following example code for illustration:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()

Create the table
con.execute("create table person(lastname, firstname)")

AUSTRIA = "\xd6sterreich"

by default, rows are returned as Unicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert row[0] == AUSTRIA

but we can make sqlite3 always return bytestrings ...
con.text_factory = str
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == str
the bytestrings will be encoded in UTF-8, unless you stored garbage in the
database ...

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 287

The Python Library Reference, Release 3.2

assert row[0] == AUSTRIA.encode("utf-8")

we can also implement a custom text_factory ...
here we implement one that will ignore Unicode characters that cannot be
decoded from UTF-8
con.text_factory = lambda x: str(x, "utf-8", "ignore")
cur.execute("select ?", ("this is latin1 and would normally create errors" +

"\xe4\xf6\xfc".encode("latin1"),))
row = cur.fetchone()
assert type(row[0]) == str

sqlite3 offers a built-in optimized text_factory that will return bytestring
objects, if the data is in ASCII only, and otherwise return unicode objects
con.text_factory = sqlite3.OptimizedUnicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == str

cur.execute("select ?", ("Germany",))
row = cur.fetchone()
assert type(row[0]) == str

Connection.total_changes
Returns the total number of database rows that have been modified, inserted, or deleted since the database
connection was opened.

Connection.iterdump
Returns an iterator to dump the database in an SQL text format. Useful when saving an in-memory database
for later restoration. This function provides the same capabilities as the .dump command in the sqlite3
shell.

Example:

Convert file existing_db.db to SQL dump file dump.sql
import sqlite3, os

con = sqlite3.connect(’existing_db.db’)
with open(’dump.sql’, ’w’) as f:

for line in con.iterdump():
f.write(’%s\n’ % line)

11.6.3 Cursor Objects

class sqlite3.Cursor
A Cursor instance has the following attributes and methods.

Cursor.execute(sql[, parameters])
Executes an SQL statement. The SQL statement may be parametrized (i. e. placeholders instead of SQL
literals). The sqlite3 module supports two kinds of placeholders: question marks (qmark style) and
named placeholders (named style).

This example shows how to use parameters with qmark style:

import sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

288 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=? and age=?", (who, age))
print(cur.fetchone())

This example shows how to use the named style:

import sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=:who and age=:age",
{"who": who, "age": age})

print(cur.fetchone())

execute() will only execute a single SQL statement. If you try to execute more than one statement with
it, it will raise a Warning. Use executescript() if you want to execute multiple SQL statements with
one call.

Cursor.executemany(sql, seq_of_parameters)
Executes an SQL command against all parameter sequences or mappings found in the sequence sql. The
sqlite3 module also allows using an iterator yielding parameters instead of a sequence.

import sqlite3

class IterChars:
def __init__(self):

self.count = ord(’a’)

def __iter__(self):
return self

def __next__(self):
if self.count > ord(’z’):

raise StopIteration
self.count += 1
return (chr(self.count - 1),) # this is a 1-tuple

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

theIter = IterChars()
cur.executemany("insert into characters(c) values (?)", theIter)

cur.execute("select c from characters")
print(cur.fetchall())

Here’s a shorter example using a generator:

import sqlite3

def char_generator():

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 289

The Python Library Reference, Release 3.2

import string
for c in string.letters[:26]:

yield (c,)

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

cur.executemany("insert into characters(c) values (?)", char_generator())

cur.execute("select c from characters")
print(cur.fetchall())

Cursor.executescript(sql_script)
This is a nonstandard convenience method for executing multiple SQL statements at once. It issues a
COMMIT statement first, then executes the SQL script it gets as a parameter.

sql_script can be an instance of str or bytes.

Example:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.executescript("""

create table person(
firstname,
lastname,
age

);

create table book(
title,
author,
published

);

insert into book(title, author, published)
values (

’Dirk Gently’’s Holistic Detective Agency’,
’Douglas Adams’,
1987

);
""")

Cursor.fetchone()
Fetches the next row of a query result set, returning a single sequence, or None when no more data is
available.

Cursor.fetchmany([size=cursor.arraysize])
Fetches the next set of rows of a query result, returning a list. An empty list is returned when no more rows
are available.

The number of rows to fetch per call is specified by the size parameter. If it is not given, the cursor’s arraysize
determines the number of rows to be fetched. The method should try to fetch as many rows as indicated
by the size parameter. If this is not possible due to the specified number of rows not being available, fewer
rows may be returned.

Note there are performance considerations involved with the size parameter. For optimal performance, it is
usually best to use the arraysize attribute. If the size parameter is used, then it is best for it to retain the same

290 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

value from one fetchmany() call to the next.

Cursor.fetchall()
Fetches all (remaining) rows of a query result, returning a list. Note that the cursor’s arraysize attribute can
affect the performance of this operation. An empty list is returned when no rows are available.

Cursor.rowcount
Although the Cursor class of the sqlite3 module implements this attribute, the database engine’s own
support for the determination of “rows affected”/”rows selected” is quirky.

For DELETE statements, SQLite reports rowcount as 0 if you make a DELETE FROM table without
any condition.

For executemany() statements, the number of modifications are summed up into rowcount.

As required by the Python DB API Spec, the rowcount attribute “is -1 in case no executeXX() has
been performed on the cursor or the rowcount of the last operation is not determinable by the interface”.

This includes SELECT statements because we cannot determine the number of rows a query produced until
all rows were fetched.

Cursor.lastrowid
This read-only attribute provides the rowid of the last modified row. It is only set if you issued a INSERT
statement using the execute() method. For operations other than INSERT or when executemany()
is called, lastrowid is set to None.

Cursor.description
This read-only attribute provides the column names of the last query. To remain compatible with the Python
DB API, it returns a 7-tuple for each column where the last six items of each tuple are None.

It is set for SELECT statements without any matching rows as well.

11.6.4 Row Objects

class sqlite3.Row
A Row instance serves as a highly optimized row_factory for Connection objects. It tries to mimic
a tuple in most of its features.

It supports mapping access by column name and index, iteration, representation, equality testing and
len().

If two Row objects have exactly the same columns and their members are equal, they compare equal.

keys()
This method returns a tuple of column names. Immediately after a query, it is the first member of each
tuple in Cursor.description.

Let’s assume we initialize a table as in the example given above:

conn = sqlite3.connect(":memory:")
c = conn.cursor()
c.execute(’’’create table stocks
(date text, trans text, symbol text,
qty real, price real)’’’)

c.execute("""insert into stocks
values (’2006-01-05’,’BUY’,’RHAT’,100,35.14)""")

conn.commit()
c.close()

Now we plug Row in:

>>> conn.row_factory = sqlite3.Row
>>> c = conn.cursor()
>>> c.execute(’select * from stocks’)
<sqlite3.Cursor object at 0x7f4e7dd8fa80>

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 291

The Python Library Reference, Release 3.2

>>> r = c.fetchone()
>>> type(r)
<class ’sqlite3.Row’>
>>> tuple(r)
(’2006-01-05’, ’BUY’, ’RHAT’, 100.0, 35.14)
>>> len(r)
5
>>> r[2]
’RHAT’
>>> r.keys()
[’date’, ’trans’, ’symbol’, ’qty’, ’price’]
>>> r[’qty’]
100.0
>>> for member in r:
... print(member)
...
2006-01-05
BUY
RHAT
100.0
35.14

11.6.5 SQLite and Python types

Introduction

SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.

The following Python types can thus be sent to SQLite without any problem:

Python type SQLite type
None NULL
int INTEGER
float REAL
str TEXT
bytes BLOB

This is how SQLite types are converted to Python types by default:

SQLite type Python type
NULL None
INTEGER int
REAL float
TEXT depends on text_factory, str by default
BLOB bytes

The type system of the sqlite3 module is extensible in two ways: you can store additional Python types in a
SQLite database via object adaptation, and you can let the sqlite3 module convert SQLite types to different
Python types via converters.

Using adapters to store additional Python types in SQLite databases

As described before, SQLite supports only a limited set of types natively. To use other Python types with SQLite,
you must adapt them to one of the sqlite3 module’s supported types for SQLite: one of NoneType, int, float, str,
bytes.

The sqlite3 module uses Python object adaptation, as described in

PEP 246 for this. The protocol to use is PrepareProtocol.

292 Chapter 11. Data Persistence

http://www.python.org/dev/peps/pep-0246

The Python Library Reference, Release 3.2

There are two ways to enable the sqlite3 module to adapt a custom Python type to one of the supported ones.

Letting your object adapt itself

This is a good approach if you write the class yourself. Let’s suppose you have a class like this:

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

Now you want to store the point in a single SQLite column. First you’ll have to choose one of the supported types
first to be used for representing the point. Let’s just use str and separate the coordinates using a semicolon. Then
you need to give your class a method __conform__(self, protocol) which must return the converted
value. The parameter protocol will be PrepareProtocol.

import sqlite3

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def __conform__(self, protocol):
if protocol is sqlite3.PrepareProtocol:

return "%f;%f" % (self.x, self.y)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print(cur.fetchone()[0])

Registering an adapter callable

The other possibility is to create a function that converts the type to the string representation and register the
function with register_adapter().

import sqlite3

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def adapt_point(point):
return "%f;%f" % (point.x, point.y)

sqlite3.register_adapter(Point, adapt_point)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print(cur.fetchone()[0])

The sqlite3 module has two default adapters for Python’s built-in datetime.date and
datetime.datetime types. Now let’s suppose we want to store datetime.datetime objects not
in ISO representation, but as a Unix timestamp.

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 293

The Python Library Reference, Release 3.2

import sqlite3
import datetime, time

def adapt_datetime(ts):
return time.mktime(ts.timetuple())

sqlite3.register_adapter(datetime.datetime, adapt_datetime)

con = sqlite3.connect(":memory:")
cur = con.cursor()

now = datetime.datetime.now()
cur.execute("select ?", (now,))
print(cur.fetchone()[0])

Converting SQLite values to custom Python types

Writing an adapter lets you send custom Python types to SQLite. But to make it really useful we need to make the
Python to SQLite to Python roundtrip work.

Enter converters.

Let’s go back to the Point class. We stored the x and y coordinates separated via semicolons as strings in SQLite.

First, we’ll define a converter function that accepts the string as a parameter and constructs a Point object from
it.

Note: Converter functions always get called with a string, no matter under which data type you sent the value to
SQLite.

def convert_point(s):
x, y = map(float, s.split(";"))
return Point(x, y)

Now you need to make the sqlite3 module know that what you select from the database is actually a point.
There are two ways of doing this:

• Implicitly via the declared type

• Explicitly via the column name

Both ways are described in section Module functions and constants, in the entries for the constants
PARSE_DECLTYPES and PARSE_COLNAMES.

The following example illustrates both approaches.

import sqlite3

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def __repr__(self):
return "(%f;%f)" % (self.x, self.y)

def adapt_point(point):
return "%f;%f" % (point.x, point.y)

def convert_point(s):
x, y = list(map(float, s.split(";")))
return Point(x, y)

294 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

Register the adapter
sqlite3.register_adapter(Point, adapt_point)

Register the converter
sqlite3.register_converter("point", convert_point)

p = Point(4.0, -3.2)

#########################
1) Using declared types
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
cur = con.cursor()
cur.execute("create table test(p point)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute("select p from test")
print("with declared types:", cur.fetchone()[0])
cur.close()
con.close()

#######################
1) Using column names
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(p)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute(’select p as "p [point]" from test’)
print("with column names:", cur.fetchone()[0])
cur.close()
con.close()

Default adapters and converters

There are default adapters for the date and datetime types in the datetime module. They will be sent as ISO
dates/ISO timestamps to SQLite.

The default converters are registered under the name “date” for datetime.date and under the name “times-
tamp” for datetime.datetime.

This way, you can use date/timestamps from Python without any additional fiddling in most cases. The format of
the adapters is also compatible with the experimental SQLite date/time functions.

The following example demonstrates this.

import sqlite3
import datetime

con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(d date, ts timestamp)")

today = datetime.date.today()
now = datetime.datetime.now()

cur.execute("insert into test(d, ts) values (?, ?)", (today, now))
cur.execute("select d, ts from test")
row = cur.fetchone()

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 295

The Python Library Reference, Release 3.2

print(today, "=>", row[0], type(row[0]))
print(now, "=>", row[1], type(row[1]))

cur.execute(’select current_date as "d [date]", current_timestamp as "ts [timestamp]"’)
row = cur.fetchone()
print("current_date", row[0], type(row[0]))
print("current_timestamp", row[1], type(row[1]))

11.6.6 Controlling Transactions

By default, the sqlite3 module opens transactions implicitly before a Data Modification Language (DML)
statement (i.e. INSERT/UPDATE/DELETE/REPLACE), and commits transactions implicitly before a non-DML,
non-query statement (i. e. anything other than SELECT or the aforementioned).

So if you are within a transaction and issue a command like CREATE TABLE ..., VACUUM, PRAGMA, the
sqlite3 module will commit implicitly before executing that command. There are two reasons for doing that.
The first is that some of these commands don’t work within transactions. The other reason is that sqlite3 needs
to keep track of the transaction state (if a transaction is active or not). The current transaction state is exposed
through the Connection.in_transaction attribute of the connection object.

You can control which kind of BEGIN statements sqlite3 implicitly executes (or none at all) via the isolation_level
parameter to the connect() call, or via the isolation_level property of connections.

If you want autocommit mode, then set isolation_level to None.

Otherwise leave it at its default, which will result in a plain “BEGIN” statement, or set it to one of SQLite’s
supported isolation levels: “DEFERRED”, “IMMEDIATE” or “EXCLUSIVE”.

11.6.7 Using sqlite3 efficiently

Using shortcut methods

Using the nonstandard execute(), executemany() and executescript() methods of the
Connection object, your code can be written more concisely because you don’t have to create the (often super-
fluous) Cursor objects explicitly. Instead, the Cursor objects are created implicitly and these shortcut methods
return the cursor objects. This way, you can execute a SELECT statement and iterate over it directly using only a
single call on the Connection object.

import sqlite3

persons = [
("Hugo", "Boss"),
("Calvin", "Klein")
]

con = sqlite3.connect(":memory:")

Create the table
con.execute("create table person(firstname, lastname)")

Fill the table
con.executemany("insert into person(firstname, lastname) values (?, ?)", persons)

Print the table contents
for row in con.execute("select firstname, lastname from person"):

print(row)

Using a dummy WHERE clause to not let SQLite take the shortcut table deletes.
print("I just deleted", con.execute("delete from person where 1=1").rowcount, "rows")

296 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2

Accessing columns by name instead of by index

One useful feature of the sqlite3 module is the built-in sqlite3.Row class designed to be used as a row
factory.

Rows wrapped with this class can be accessed both by index (like tuples) and case-insensitively by name:

import sqlite3

con = sqlite3.connect("mydb")
con.row_factory = sqlite3.Row

cur = con.cursor()
cur.execute("select name_last, age from people")
for row in cur:

assert row[0] == row["name_last"]
assert row["name_last"] == row["nAmE_lAsT"]
assert row[1] == row["age"]
assert row[1] == row["AgE"]

Using the connection as a context manager

Connection objects can be used as context managers that automatically commit or rollback transactions. In the
event of an exception, the transaction is rolled back; otherwise, the transaction is committed:

import sqlite3

con = sqlite3.connect(":memory:")
con.execute("create table person (id integer primary key, firstname varchar unique)")

Successful, con.commit() is called automatically afterwards
with con:

con.execute("insert into person(firstname) values (?)", ("Joe",))

con.rollback() is called after the with block finishes with an exception, the
exception is still raised and must be catched
try:

with con:
con.execute("insert into person(firstname) values (?)", ("Joe",))

except sqlite3.IntegrityError:
print("couldn’t add Joe twice")

11.6.8 Common issues

Multithreading

Older SQLite versions had issues with sharing connections between threads. That’s why the Python module
disallows sharing connections and cursors between threads. If you still try to do so, you will get an exception at
runtime.

The only exception is calling the interrupt() method, which only makes sense to call from a different thread.

11.6. sqlite3 — DB-API 2.0 interface for SQLite databases 297

The Python Library Reference, Release 3.2

298 Chapter 11. Data Persistence

CHAPTER

TWELVE

DATA COMPRESSION AND
ARCHIVING

The modules described in this chapter support data compression with the zlib, gzip, and bzip2 algorithms, and the
creation of ZIP- and tar-format archives.

12.1 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompres-
sion, using the zlib library. The zlib library has its own home page at http://www.zlib.net. There are known
incompatibilities between the Python module and versions of the zlib library earlier than 1.1.3; 1.1.3 has a secu-
rity vulnerability, so we recommend using 1.1.4 or later.

zlib’s functions have many options and often need to be used in a particular order. This documentation doesn’t at-
tempt to cover all of the permutations; consult the zlib manual at http://www.zlib.net/manual.html for authoritative
information.

For reading and writing .gz files see the gzip module. For other archive formats, see the bz2, zipfile, and
tarfile modules.

The available exception and functions in this module are:

exception zlib.error
Exception raised on compression and decompression errors.

zlib.adler32(data[, value])
Computes a Adler-32 checksum of data. (An Adler-32 checksum is almost as reliable as a CRC32 but
can be computed much more quickly.) If value is present, it is used as the starting value of the checksum;
otherwise, a fixed default value is used. This allows computing a running checksum over the concatenation
of several inputs. The algorithm is not cryptographically strong, and should not be used for authentication
or digital signatures. Since the algorithm is designed for use as a checksum algorithm, it is not suitable for
use as a general hash algorithm.

Always returns an unsigned 32-bit integer.

Note: To generate the same numeric value across all Python versions and platforms use adler32(data) & 0xffffffff.
If you are only using the checksum in packed binary format this is not necessary as the return value is the correct
32bit binary representation regardless of sign.

zlib.compress(data[, level])
Compresses the bytes in data, returning a bytes object containing compressed data. level is an integer from
1 to 9 controlling the level of compression; 1 is fastest and produces the least compression, 9 is slowest
and produces the most. The default value is 6. Raises the error exception if any error occurs.

zlib.compressobj([level])
Returns a compression object, to be used for compressing data streams that won’t fit into memory at once.

299

http://www.zlib.net
http://www.zlib.net/manual.html

The Python Library Reference, Release 3.2

level is an integer from 1 to 9 controlling the level of compression; 1 is fastest and produces the least
compression, 9 is slowest and produces the most. The default value is 6.

zlib.crc32(data[, value])
Computes a CRC (Cyclic Redundancy Check) checksum of data. If value is present, it is used as the

starting value of the checksum; otherwise, a fixed default value is used. This allows computing a running
checksum over the concatenation of several inputs. The algorithm is not cryptographically strong, and
should not be used for authentication or digital signatures. Since the algorithm is designed for use as a
checksum algorithm, it is not suitable for use as a general hash algorithm.

Always returns an unsigned 32-bit integer.

Note: To generate the same numeric value across all Python versions and platforms use crc32(data) & 0xffffffff.
If you are only using the checksum in packed binary format this is not necessary as the return value is the correct
32bit binary representation regardless of sign.

zlib.decompress(data[, wbits[, bufsize]])
Decompresses the bytes in data, returning a bytes object containing the uncompressed data. The wbits
parameter controls the size of the window buffer, and is discussed further below. If bufsize is given, it is
used as the initial size of the output buffer. Raises the error exception if any error occurs.

The absolute value of wbits is the base two logarithm of the size of the history buffer (the “window size”)
used when compressing data. Its absolute value should be between 8 and 15 for the most recent versions of
the zlib library, larger values resulting in better compression at the expense of greater memory usage. When
decompressing a stream, wbits must not be smaller than the size originally used to compress the stream;
using a too-small value will result in an exception. The default value is therefore the highest value, 15.
When wbits is negative, the standard gzip header is suppressed.

bufsize is the initial size of the buffer used to hold decompressed data. If more space is required, the buffer
size will be increased as needed, so you don’t have to get this value exactly right; tuning it will only save a
few calls to malloc(). The default size is 16384.

zlib.decompressobj([wbits])
Returns a decompression object, to be used for decompressing data streams that won’t fit into memory at
once. The wbits parameter controls the size of the window buffer.

Compression objects support the following methods:

Compress.compress(data)
Compress data, returning a bytes object containing compressed data for at least part of the data in data. This
data should be concatenated to the output produced by any preceding calls to the compress() method.
Some input may be kept in internal buffers for later processing.

Compress.flush([mode])
All pending input is processed, and a bytes object containing the remaining compressed output is returned.
mode can be selected from the constants Z_SYNC_FLUSH, Z_FULL_FLUSH, or Z_FINISH, default-
ing to Z_FINISH. Z_SYNC_FLUSH and Z_FULL_FLUSH allow compressing further bytestrings of data,
while Z_FINISH finishes the compressed stream and prevents compressing any more data. After call-
ing flush() with mode set to Z_FINISH, the compress() method cannot be called again; the only
realistic action is to delete the object.

Compress.copy()
Returns a copy of the compression object. This can be used to efficiently compress a set of data that share a
common initial prefix.

Decompression objects support the following methods, and two attributes:

Decompress.unused_data
A bytes object which contains any bytes past the end of the compressed data. That is, this remains ""
until the last byte that contains compression data is available. If the whole bytestring turned out to contain
compressed data, this is b"", an empty bytes object.

300 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 3.2

The only way to determine where a bytestring of compressed data ends is by actually decompressing it. This
means that when compressed data is contained part of a larger file, you can only find the end of it by reading
data and feeding it followed by some non-empty bytestring into a decompression object’s decompress()
method until the unused_data attribute is no longer empty.

Decompress.unconsumed_tail
A bytes object that contains any data that was not consumed by the last decompress() call because it
exceeded the limit for the uncompressed data buffer. This data has not yet been seen by the zlib machinery,
so you must feed it (possibly with further data concatenated to it) back to a subsequent decompress()
method call in order to get correct output.

Decompress.decompress(data[, max_length])
Decompress data, returning a bytes object containing the uncompressed data corresponding to at least part
of the data in string. This data should be concatenated to the output produced by any preceding calls to the
decompress() method. Some of the input data may be preserved in internal buffers for later processing.

If the optional parameter max_length is supplied then the return value will be no longer than max_length.
This may mean that not all of the compressed input can be processed; and unconsumed data will be stored in
the attribute unconsumed_tail. This bytestring must be passed to a subsequent call to decompress()
if decompression is to continue. If max_length is not supplied then the whole input is decompressed, and
unconsumed_tail is empty.

Decompress.flush([length])
All pending input is processed, and a bytes object containing the remaining uncompressed output is returned.
After calling flush(), the decompress() method cannot be called again; the only realistic action is to
delete the object.

The optional parameter length sets the initial size of the output buffer.

Decompress.copy()
Returns a copy of the decompression object. This can be used to save the state of the decompressor midway
through the data stream in order to speed up random seeks into the stream at a future point.

See Also:

Module gzip Reading and writing gzip-format files.

http://www.zlib.net The zlib library home page.

http://www.zlib.net/manual.html The zlib manual explains the semantics and usage of the library’s many func-
tions.

12.2 gzip — Support for gzip files

Source code: Lib/gzip.py

This module provides a simple interface to compress and decompress files just like the GNU programs gzip and
gunzip would.

The data compression is provided by the zlib module.

The gzip module provides the GzipFile class. The GzipFile class reads and writes gzip-format files,
automatically compressing or decompressing the data so that it looks like an ordinary file object.

Note that additional file formats which can be decompressed by the gzip and gunzip programs, such as those
produced by compress and pack, are not supported by this module.

For other archive formats, see the bz2, zipfile, and tarfile modules.

The module defines the following items:

12.2. gzip — Support for gzip files 301

http://www.zlib.net
http://www.zlib.net/manual.html
http://svn.python.org/view/python/branches/py3k/Lib/gzip.py?view=markup

The Python Library Reference, Release 3.2

class gzip.GzipFile(filename=None, mode=None, compresslevel=9, fileobj=None, mtime=None)
Constructor for the GzipFile class, which simulates most of the methods of a file object, with the excep-
tion of the truncate() method. At least one of fileobj and filename must be given a non-trivial value.

The new class instance is based on fileobj, which can be a regular file, a StringIO object, or any other
object which simulates a file. It defaults to None, in which case filename is opened to provide a file object.

When fileobj is not None, the filename argument is only used to be included in the gzip file header, which
may includes the original filename of the uncompressed file. It defaults to the filename of fileobj, if dis-
cernible; otherwise, it defaults to the empty string, and in this case the original filename is not included in
the header.

The mode argument can be any of ’r’, ’rb’, ’a’, ’ab’, ’w’, or ’wb’, depending on whether the file
will be read or written. The default is the mode of fileobj if discernible; otherwise, the default is ’rb’. If not
given, the ‘b’ flag will be added to the mode to ensure the file is opened in binary mode for cross-platform
portability.

The compresslevel argument is an integer from 1 to 9 controlling the level of compression; 1 is fastest and
produces the least compression, and 9 is slowest and produces the most compression. The default is 9.

The mtime argument is an optional numeric timestamp to be written to the stream when compressing. All
gzip compressed streams are required to contain a timestamp. If omitted or None, the current time is used.
This module ignores the timestamp when decompressing; however, some programs, such as gunzip, make
use of it. The format of the timestamp is the same as that of the return value of time.time() and of the
st_mtime member of the object returned by os.stat().

Calling a GzipFile object’s close() method does not close fileobj, since you might wish to append
more material after the compressed data. This also allows you to pass a io.BytesIO object opened for
writing as fileobj, and retrieve the resulting memory buffer using the io.BytesIO object’s getvalue()
method.

GzipFile supports the io.BufferedIOBase interface, including iteration and the with statement.
Only the truncate() method isn’t implemented.

GzipFile also provides the following method:

peek([n])
Read n uncompressed bytes without advancing the file position. At most one single read on the com-
pressed stream is done to satisfy the call. The number of bytes returned may be more or less than
requested. New in version 3.2.

Changed in version 3.1: Support for the with statement was added.Changed in version 3.2: Support for
zero-padded files was added.Changed in version 3.2: Support for unseekable files was added.

gzip.open(filename, mode=’rb’, compresslevel=9)
This is a shorthand for GzipFile(filename, mode, compresslevel). The filename argument is
required; mode defaults to ’rb’ and compresslevel defaults to 9.

gzip.compress(data, compresslevel=9)
Compress the data, returning a bytes object containing the compressed data. compresslevel has the same
meaning as in the GzipFile constructor above. New in version 3.2.

gzip.decompress(data)
Decompress the data, returning a bytes object containing the uncompressed data. New in version 3.2.

12.2.1 Examples of usage

Example of how to read a compressed file:

import gzip
with gzip.open(’/home/joe/file.txt.gz’, ’rb’) as f:

file_content = f.read()

Example of how to create a compressed GZIP file:

302 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 3.2

import gzip
content = b"Lots of content here"
with gzip.open(’/home/joe/file.txt.gz’, ’wb’) as f:

f.write(content)

Example of how to GZIP compress an existing file:

import gzip
with open(’/home/joe/file.txt’, ’rb’) as f_in:

with gzip.open(’/home/joe/file.txt.gz’, ’wb’) as f_out:
f_out.writelines(f_in)

Example of how to GZIP compress a binary string:

import gzip
s_in = b"Lots of content here"
s_out = gzip.compress(s_in)

See Also:

Module zlib The basic data compression module needed to support the gzip file format.

12.3 bz2 — Compression compatible with bzip2

This module provides a comprehensive interface for the bz2 compression library. It implements a complete file
interface, one-shot (de)compression functions, and types for sequential (de)compression.

For other archive formats, see the gzip, zipfile, and tarfile modules.

Here is a summary of the features offered by the bz2 module:

• BZ2File class implements a complete file interface, including readline(), readlines(),
writelines(), seek(), etc;

• BZ2File class implements emulated seek() support;

• BZ2File class implements universal newline support;

• BZ2File class offers an optimized line iteration using a readahead algorithm;

• Sequential (de)compression supported by BZ2Compressor and BZ2Decompressor classes;

• One-shot (de)compression supported by compress() and decompress() functions;

• Thread safety uses individual locking mechanism.

12.3.1 (De)compression of files

Handling of compressed files is offered by the BZ2File class.

class bz2.BZ2File(filename, mode=’r’, buffering=0, compresslevel=9)
Open a bz2 file. Mode can be either ’r’ or ’w’, for reading (default) or writing. When opened for writing,
the file will be created if it doesn’t exist, and truncated otherwise. If buffering is given, 0 means unbuffered,
and larger numbers specify the buffer size; the default is 0. If compresslevel is given, it must be a number
between 1 and 9; the default is 9. Add a ’U’ to mode to open the file for input with universal newline
support. Any line ending in the input file will be seen as a ’\n’ in Python. Also, a file so opened gains
the attribute newlines; the value for this attribute is one of None (no newline read yet), ’\r’, ’\n’,
’\r\n’ or a tuple containing all the newline types seen. Universal newlines are available only when
reading. Instances support iteration in the same way as normal file instances.

BZ2File supports the with statement. Changed in version 3.1: Support for the with statement was
added.

12.3. bz2 — Compression compatible with bzip2 303

The Python Library Reference, Release 3.2

close()
Close the file. Sets data attribute closed to true. A closed file cannot be used for further I/O
operations. close() may be called more than once without error.

read([size])
Read at most size uncompressed bytes, returned as a byte string. If the size argument is negative or
omitted, read until EOF is reached.

readline([size])
Return the next line from the file, as a byte string, retaining newline. A non-negative size argument
limits the maximum number of bytes to return (an incomplete line may be returned then). Return an
empty byte string at EOF.

readlines([size])
Return a list of lines read. The optional size argument, if given, is an approximate bound on the total
number of bytes in the lines returned.

seek(offset[, whence])
Move to new file position. Argument offset is a byte count. Optional argument whence de-
faults to os.SEEK_SET or 0 (offset from start of file; offset should be >= 0); other values are
os.SEEK_CUR or 1 (move relative to current position; offset can be positive or negative), and
os.SEEK_END or 2 (move relative to end of file; offset is usually negative, although many platforms
allow seeking beyond the end of a file).

Note that seeking of bz2 files is emulated, and depending on the parameters the operation may be
extremely slow.

tell()
Return the current file position, an integer.

write(data)
Write the byte string data to file. Note that due to buffering, close() may be needed before the file
on disk reflects the data written.

writelines(sequence_of_byte_strings)
Write the sequence of byte strings to the file. Note that newlines are not added. The sequence can be
any iterable object producing byte strings. This is equivalent to calling write() for each byte string.

12.3.2 Sequential (de)compression

Sequential compression and decompression is done using the classes BZ2Compressor and
BZ2Decompressor.

class bz2.BZ2Compressor(compresslevel=9)
Create a new compressor object. This object may be used to compress data sequentially. If you want to
compress data in one shot, use the compress() function instead. The compresslevel parameter, if given,
must be a number between 1 and 9; the default is 9.

compress(data)
Provide more data to the compressor object. It will return chunks of compressed data whenever pos-
sible. When you’ve finished providing data to compress, call the flush() method to finish the
compression process, and return what is left in internal buffers.

flush()
Finish the compression process and return what is left in internal buffers. You must not use the com-
pressor object after calling this method.

class bz2.BZ2Decompressor
Create a new decompressor object. This object may be used to decompress data sequentially. If you want
to decompress data in one shot, use the decompress() function instead.

decompress(data)
Provide more data to the decompressor object. It will return chunks of decompressed data whenever

304 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 3.2

possible. If you try to decompress data after the end of stream is found, EOFError will be raised. If
any data was found after the end of stream, it’ll be ignored and saved in unused_data attribute.

12.3.3 One-shot (de)compression

One-shot compression and decompression is provided through the compress() and decompress() func-
tions.

bz2.compress(data, compresslevel=9)
Compress data in one shot. If you want to compress data sequentially, use an instance of BZ2Compressor
instead. The compresslevel parameter, if given, must be a number between 1 and 9; the default is 9.

bz2.decompress(data)
Decompress data in one shot. If you want to decompress data sequentially, use an instance of
BZ2Decompressor instead.

12.4 zipfile — Work with ZIP archives

Source code: Lib/zipfile.py

The ZIP file format is a common archive and compression standard. This module provides tools to create, read,
write, append, and list a ZIP file. Any advanced use of this module will require an understanding of the format, as
defined in PKZIP Application Note.

This module does not currently handle multi-disk ZIP files. It can handle ZIP files that use the ZIP64 extensions
(that is ZIP files that are more than 4 GByte in size). It supports decryption of encrypted files in ZIP archives, but
it currently cannot create an encrypted file. Decryption is extremely slow as it is implemented in native Python
rather than C.

For other archive formats, see the bz2, gzip, and tarfile modules.

The module defines the following items:

exception zipfile.BadZipFile
The error raised for bad ZIP files (old name: zipfile.error). New in version 3.2.

exception zipfile.BadZipfile
This is an alias for BadZipFile that exists for compatibility with Python versions prior to 3.2. Usage is
deprecated.

exception zipfile.LargeZipFile
The error raised when a ZIP file would require ZIP64 functionality but that has not been enabled.

class zipfile.ZipFile
The class for reading and writing ZIP files. See section ZipFile Objects for constructor details.

class zipfile.PyZipFile
Class for creating ZIP archives containing Python libraries.

class zipfile.ZipInfo(filename=’NoName’, date_time=(1980, 1, 1, 0, 0, 0))
Class used to represent information about a member of an archive. Instances of this class are returned by
the getinfo() and infolist() methods of ZipFile objects. Most users of the zipfile module
will not need to create these, but only use those created by this module. filename should be the full name
of the archive member, and date_time should be a tuple containing six fields which describe the time of the
last modification to the file; the fields are described in section ZipInfo Objects.

zipfile.is_zipfile(filename)
Returns True if filename is a valid ZIP file based on its magic number, otherwise returns False. filename
may be a file or file-like object too. Changed in version 3.1: Support for file and file-like objects.

12.4. zipfile — Work with ZIP archives 305

http://svn.python.org/view/python/branches/py3k/Lib/zipfile.py?view=markup
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

The Python Library Reference, Release 3.2

zipfile.ZIP_STORED
The numeric constant for an uncompressed archive member.

zipfile.ZIP_DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module. No other
compression methods are currently supported.

See Also:

PKZIP Application Note Documentation on the ZIP file format by Phil Katz, the creator of the format and
algorithms used.

Info-ZIP Home Page Information about the Info-ZIP project’s ZIP archive programs and development libraries.

12.4.1 ZipFile Objects

class zipfile.ZipFile(file, mode=’r’, compression=ZIP_STORED, allowZip64=False)
Open a ZIP file, where file can be either a path to a file (a string) or a file-like object. The mode parameter
should be ’r’ to read an existing file, ’w’ to truncate and write a new file, or ’a’ to append to an
existing file. If mode is ’a’ and file refers to an existing ZIP file, then additional files are added to it. If
file does not refer to a ZIP file, then a new ZIP archive is appended to the file. This is meant for adding
a ZIP archive to another file (such as python.exe). If mode is a and the file does not exist at all, it
is created. compression is the ZIP compression method to use when writing the archive, and should be
ZIP_STORED or ZIP_DEFLATED; unrecognized values will cause RuntimeError to be raised. If
ZIP_DEFLATED is specified but the zlib module is not available, RuntimeError is also raised. The
default is ZIP_STORED. If allowZip64 is True zipfile will create ZIP files that use the ZIP64 extensions
when the zipfile is larger than 2 GB. If it is false (the default) zipfile will raise an exception when the
ZIP file would require ZIP64 extensions. ZIP64 extensions are disabled by default because the default zip
and unzip commands on Unix (the InfoZIP utilities) don’t support these extensions.

If the file is created with mode ’a’ or ’w’ and then close()d without adding any files to the archive,
the appropriate ZIP structures for an empty archive will be written to the file.

ZipFile is also a context manager and therefore supports the with statement. In the example, myzip is
closed after the with statement’s suite is finished—even if an exception occurs:

with ZipFile(’spam.zip’, ’w’) as myzip:
myzip.write(’eggs.txt’)

New in version 3.2: Added the ability to use ZipFile as a context manager.

ZipFile.close()
Close the archive file. You must call close() before exiting your program or essential records will not be
written.

ZipFile.getinfo(name)
Return a ZipInfo object with information about the archive member name. Calling getinfo() for a
name not currently contained in the archive will raise a KeyError.

ZipFile.infolist()
Return a list containing a ZipInfo object for each member of the archive. The objects are in the same
order as their entries in the actual ZIP file on disk if an existing archive was opened.

ZipFile.namelist()
Return a list of archive members by name.

ZipFile.open(name, mode=’r’, pwd=None)
Extract a member from the archive as a file-like object (ZipExtFile). name is the name of the file in the
archive, or a ZipInfo object. The mode parameter, if included, must be one of the following: ’r’ (the
default), ’U’, or ’rU’. Choosing ’U’ or ’rU’ will enable universal newline support in the read-only
object. pwd is the password used for encrypted files. Calling open() on a closed ZipFile will raise a
RuntimeError.

306 Chapter 12. Data Compression and Archiving

http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.info-zip.org/

The Python Library Reference, Release 3.2

Note: The file-like object is read-only and provides the following methods: read(), readline(),
readlines(), __iter__(), __next__().

Note: If the ZipFile was created by passing in a file-like object as the first argument to the constructor,
then the object returned by open() shares the ZipFile’s file pointer. Under these circumstances, the object
returned by open() should not be used after any additional operations are performed on the ZipFile object.
If the ZipFile was created by passing in a string (the filename) as the first argument to the constructor, then
open()will create a new file object that will be held by the ZipExtFile, allowing it to operate independently
of the ZipFile.

Note: The open(), read() and extract() methods can take a filename or a ZipInfo object. You
will appreciate this when trying to read a ZIP file that contains members with duplicate names.

ZipFile.extract(member, path=None, pwd=None)
Extract a member from the archive to the current working directory; member must be its full name or a
ZipInfo object). Its file information is extracted as accurately as possible. path specifies a different
directory to extract to. member can be a filename or a ZipInfo object. pwd is the password used for
encrypted files.

ZipFile.extractall(path=None, members=None, pwd=None)
Extract all members from the archive to the current working directory. path specifies a different directory
to extract to. members is optional and must be a subset of the list returned by namelist(). pwd is the
password used for encrypted files.

Warning: Never extract archives from untrusted sources without prior inspection. It is possible that files
are created outside of path, e.g. members that have absolute filenames starting with "/" or filenames
with two dots "..".

ZipFile.printdir()
Print a table of contents for the archive to sys.stdout.

ZipFile.setpassword(pwd)
Set pwd as default password to extract encrypted files.

ZipFile.read(name, pwd=None)
Return the bytes of the file name in the archive. name is the name of the file in the archive, or a ZipInfo
object. The archive must be open for read or append. pwd is the password used for encrypted files and, if
specified, it will override the default password set with setpassword(). Calling read() on a closed
ZipFile will raise a RuntimeError.

ZipFile.testzip()
Read all the files in the archive and check their CRC’s and file headers. Return the name of the first bad file,
or else return None. Calling testzip() on a closed ZipFile will raise a RuntimeError.

ZipFile.write(filename, arcname=None, compress_type=None)
Write the file named filename to the archive, giving it the archive name arcname (by default, this will
be the same as filename, but without a drive letter and with leading path separators removed). If given,
compress_type overrides the value given for the compression parameter to the constructor for the new entry.
The archive must be open with mode ’w’ or ’a’ – calling write() on a ZipFile created with mode ’r’
will raise a RuntimeError. Calling write() on a closed ZipFile will raise a RuntimeError.

Note: There is no official file name encoding for ZIP files. If you have unicode file names, you must
convert them to byte strings in your desired encoding before passing them to write(). WinZip interprets
all file names as encoded in CP437, also known as DOS Latin.

12.4. zipfile — Work with ZIP archives 307

The Python Library Reference, Release 3.2

Note: Archive names should be relative to the archive root, that is, they should not start with a path
separator.

Note: If arcname (or filename, if arcname is not given) contains a null byte, the name of the file in
the archive will be truncated at the null byte.

ZipFile.writestr(zinfo_or_arcname, bytes[, compress_type])
Write the string bytes to the archive; zinfo_or_arcname is either the file name it will be given in the archive,
or a ZipInfo instance. If it’s an instance, at least the filename, date, and time must be given. If it’s a
name, the date and time is set to the current date and time. The archive must be opened with mode ’w’ or
’a’ – calling writestr() on a ZipFile created with mode ’r’ will raise a RuntimeError. Calling
writestr() on a closed ZipFile will raise a RuntimeError.

If given, compress_type overrides the value given for the compression parameter to the constructor for the
new entry, or in the zinfo_or_arcname (if that is a ZipInfo instance).

Note: When passing a ZipInfo instance as the zinfo_or_arcname parameter, the compression method
used will be that specified in the compress_type member of the given ZipInfo instance. By default, the
ZipInfo constructor sets this member to ZIP_STORED.

Changed in version 3.2: The compression_type argument.

The following data attributes are also available:

ZipFile.debug
The level of debug output to use. This may be set from 0 (the default, no output) to 3 (the most output).
Debugging information is written to sys.stdout.

ZipFile.comment
The comment text associated with the ZIP file. If assigning a comment to a ZipFile instance created with
mode ‘a’ or ‘w’, this should be a string no longer than 65535 bytes. Comments longer than this will be
truncated in the written archive when ZipFile.close() is called.

12.4.2 PyZipFile Objects

The PyZipFile constructor takes the same parameters as the ZipFile constructor, and one additional param-
eter, optimize.

class zipfile.PyZipFile(file, mode=’r’, compression=ZIP_STORED, allowZip64=False,
optimize=-1)

New in version 3.2: The optimize parameter. Instances have one method in addition to those of ZipFile
objects:

writepy(pathname, basename=’‘)
Search for files *.py and add the corresponding file to the archive.

If the optimize parameter to PyZipFile was not given or -1, the corresponding file is a *.pyo file
if available, else a *.pyc file, compiling if necessary.

If the optimize parameter to PyZipFile was 0, 1 or 2, only files with that optimization level (see
compile()) are added to the archive, compiling if necessary.

If the pathname is a file, the filename must end with .py, and just the (corresponding *.py[co])
file is added at the top level (no path information). If the pathname is a file that does not end with
.py, a RuntimeError will be raised. If it is a directory, and the directory is not a package direc-
tory, then all the files *.py[co] are added at the top level. If the directory is a package directory,
then all *.py[co] are added under the package name as a file path, and if any subdirectories are
package directories, all of these are added recursively. basename is intended for internal use only. The
writepy() method makes archives with file names like this:

308 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 3.2

string.pyc # Top level name
test/__init__.pyc # Package directory
test/testall.pyc # Module test.testall
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

12.4.3 ZipInfo Objects

Instances of the ZipInfo class are returned by the getinfo() and infolist() methods of ZipFile
objects. Each object stores information about a single member of the ZIP archive.

Instances have the following attributes:

ZipInfo.filename
Name of the file in the archive.

ZipInfo.date_time
The time and date of the last modification to the archive member. This is a tuple of six values:

Index Value
0 Year
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

ZipInfo.compress_type
Type of compression for the archive member.

ZipInfo.comment
Comment for the individual archive member.

ZipInfo.extra
Expansion field data. The PKZIP Application Note contains some comments on the internal structure of the
data contained in this string.

ZipInfo.create_system
System which created ZIP archive.

ZipInfo.create_version
PKZIP version which created ZIP archive.

ZipInfo.extract_version
PKZIP version needed to extract archive.

ZipInfo.reserved
Must be zero.

ZipInfo.flag_bits
ZIP flag bits.

ZipInfo.volume
Volume number of file header.

ZipInfo.internal_attr
Internal attributes.

ZipInfo.external_attr
External file attributes.

ZipInfo.header_offset
Byte offset to the file header.

ZipInfo.CRC
CRC-32 of the uncompressed file.

12.4. zipfile — Work with ZIP archives 309

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

The Python Library Reference, Release 3.2

ZipInfo.compress_size
Size of the compressed data.

ZipInfo.file_size
Size of the uncompressed file.

12.5 tarfile — Read and write tar archive files

Source code: Lib/tarfile.py

The tarfile module makes it possible to read and write tar archives, including those using gzip or bz2 com-
pression. (.zip files can be read and written using the zipfile module.)

Some facts and figures:

• reads and writes gzip and bz2 compressed archives.

• read/write support for the POSIX.1-1988 (ustar) format.

• read/write support for the GNU tar format including longname and longlink extensions, read-only support
for all variants of the sparse extension including restoration of sparse files.

• read/write support for the POSIX.1-2001 (pax) format.

• handles directories, regular files, hardlinks, symbolic links, fifos, character devices and block devices and is
able to acquire and restore file information like timestamp, access permissions and owner.

tarfile.open(name=None, mode=’r’, fileobj=None, bufsize=10240, **kwargs)
Return a TarFile object for the pathname name. For detailed information on TarFile objects and the
keyword arguments that are allowed, see TarFile Objects.

mode has to be a string of the form ’filemode[:compression]’, it defaults to ’r’. Here is a full
list of mode combinations:

mode action
’r’ or ’r:*’ Open for reading with transparent compression (recommended).
’r:’ Open for reading exclusively without compression.
’r:gz’ Open for reading with gzip compression.
’r:bz2’ Open for reading with bzip2 compression.
’a’ or ’a:’ Open for appending with no compression. The file is created if it does not exist.
’w’ or ’w:’ Open for uncompressed writing.
’w:gz’ Open for gzip compressed writing.
’w:bz2’ Open for bzip2 compressed writing.

Note that ’a:gz’ or ’a:bz2’ is not possible. If mode is not suitable to open a certain (compressed) file
for reading, ReadError is raised. Use mode ’r’ to avoid this. If a compression method is not supported,
CompressionError is raised.

If fileobj is specified, it is used as an alternative to a file object opened in binary mode for name. It is
supposed to be at position 0.

For special purposes, there is a second format for mode: ’filemode|[compression]’.
tarfile.open() will return a TarFile object that processes its data as a stream of blocks. No random
seeking will be done on the file. If given, fileobj may be any object that has a read() or write() method
(depending on the mode). bufsize specifies the blocksize and defaults to 20 * 512 bytes. Use this variant
in combination with e.g. sys.stdin, a socket file object or a tape device. However, such a TarFile
object is limited in that it does not allow to be accessed randomly, see Examples. The currently possible
modes:

310 Chapter 12. Data Compression and Archiving

http://svn.python.org/view/python/branches/py3k/Lib/tarfile.py?view=markup

The Python Library Reference, Release 3.2

Mode Action
’r|*’ Open a stream of tar blocks for reading with transparent compression.
’r|’ Open a stream of uncompressed tar blocks for reading.
’r|gz’ Open a gzip compressed stream for reading.
’r|bz2’ Open a bzip2 compressed stream for reading.
’w|’ Open an uncompressed stream for writing.
’w|gz’ Open an gzip compressed stream for writing.
’w|bz2’ Open an bzip2 compressed stream for writing.

class tarfile.TarFile
Class for reading and writing tar archives. Do not use this class directly, better use tarfile.open()
instead. See TarFile Objects.

tarfile.is_tarfile(name)
Return True if name is a tar archive file, that the tarfile module can read.

The tarfile module defines the following exceptions:

exception tarfile.TarError
Base class for all tarfile exceptions.

exception tarfile.ReadError
Is raised when a tar archive is opened, that either cannot be handled by the tarfilemodule or is somehow
invalid.

exception tarfile.CompressionError
Is raised when a compression method is not supported or when the data cannot be decoded properly.

exception tarfile.StreamError
Is raised for the limitations that are typical for stream-like TarFile objects.

exception tarfile.ExtractError
Is raised for non-fatal errors when using TarFile.extract(), but only if
TarFile.errorlevel== 2.

exception tarfile.HeaderError
Is raised by TarInfo.frombuf() if the buffer it gets is invalid.

Each of the following constants defines a tar archive format that the tarfile module is able to create. See
section Supported tar formats for details.

tarfile.USTAR_FORMAT
POSIX.1-1988 (ustar) format.

tarfile.GNU_FORMAT
GNU tar format.

tarfile.PAX_FORMAT
POSIX.1-2001 (pax) format.

tarfile.DEFAULT_FORMAT
The default format for creating archives. This is currently GNU_FORMAT.

The following variables are available on module level:

tarfile.ENCODING
The default character encoding: ’utf-8’ on Windows, sys.getfilesystemencoding() other-
wise.

See Also:

Module zipfile Documentation of the zipfile standard module.

GNU tar manual, Basic Tar Format Documentation for tar archive files, including GNU tar extensions.

12.5. tarfile — Read and write tar archive files 311

http://www.gnu.org/software/tar/manual/html_node/Standard.html

The Python Library Reference, Release 3.2

12.5.1 TarFile Objects

The TarFile object provides an interface to a tar archive. A tar archive is a sequence of blocks. An archive
member (a stored file) is made up of a header block followed by data blocks. It is possible to store a file in a tar
archive several times. Each archive member is represented by a TarInfo object, see TarInfo Objects for details.

A TarFile object can be used as a context manager in a with statement. It will automatically be closed when
the block is completed. Please note that in the event of an exception an archive opened for writing will not be
finalized; only the internally used file object will be closed. See the Examples section for a use case. New in
version 3.2: Added support for the context manager protocol.

class tarfile.TarFile(name=None, mode=’r’, fileobj=None, format=DEFAULT_FORMAT,
tarinfo=TarInfo, dereference=False, ignore_zeros=False, encod-
ing=ENCODING, errors=’surrogateescape’, pax_headers=None, debug=0,
errorlevel=0)

All following arguments are optional and can be accessed as instance attributes as well.

name is the pathname of the archive. It can be omitted if fileobj is given. In this case, the file object’s name
attribute is used if it exists.

mode is either ’r’ to read from an existing archive, ’a’ to append data to an existing file or ’w’ to create
a new file overwriting an existing one.

If fileobj is given, it is used for reading or writing data. If it can be determined, mode is overridden by
fileobj‘s mode. fileobj will be used from position 0.

Note: fileobj is not closed, when TarFile is closed.

format controls the archive format. It must be one of the constants USTAR_FORMAT, GNU_FORMAT or
PAX_FORMAT that are defined at module level.

The tarinfo argument can be used to replace the default TarInfo class with a different one.

If dereference is False, add symbolic and hard links to the archive. If it is True, add the content of the
target files to the archive. This has no effect on systems that do not support symbolic links.

If ignore_zeros is False, treat an empty block as the end of the archive. If it is True, skip empty (and
invalid) blocks and try to get as many members as possible. This is only useful for reading concatenated or
damaged archives.

debug can be set from 0 (no debug messages) up to 3 (all debug messages). The messages are written to
sys.stderr.

If errorlevel is 0, all errors are ignored when using TarFile.extract(). Nevertheless, they appear as
error messages in the debug output, when debugging is enabled. If 1, all fatal errors are raised as OSError
or IOError exceptions. If 2, all non-fatal errors are raised as TarError exceptions as well.

The encoding and errors arguments define the character encoding to be used for reading or writing the
archive and how conversion errors are going to be handled. The default settings will work for most users.
See section Unicode issues for in-depth information. Changed in version 3.2: Use ’surrogateescape’
as the default for the errors argument. The pax_headers argument is an optional dictionary of strings which
will be added as a pax global header if format is PAX_FORMAT.

TarFile.open(...)
Alternative constructor. The tarfile.open() function is actually a shortcut to this classmethod.

TarFile.getmember(name)
Return a TarInfo object for member name. If name can not be found in the archive, KeyError is raised.

Note: If a member occurs more than once in the archive, its last occurrence is assumed to be the most
up-to-date version.

312 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 3.2

TarFile.getmembers()
Return the members of the archive as a list of TarInfo objects. The list has the same order as the members
in the archive.

TarFile.getnames()
Return the members as a list of their names. It has the same order as the list returned by getmembers().

TarFile.list(verbose=True)
Print a table of contents to sys.stdout. If verbose is False, only the names of the members are printed.
If it is True, output similar to that of ls -l is produced.

TarFile.next()
Return the next member of the archive as a TarInfo object, when TarFile is opened for reading. Return
None if there is no more available.

TarFile.extractall(path=”.”, members=None)
Extract all members from the archive to the current working directory or directory path. If optional members
is given, it must be a subset of the list returned by getmembers(). Directory information like owner,
modification time and permissions are set after all members have been extracted. This is done to work
around two problems: A directory’s modification time is reset each time a file is created in it. And, if a
directory’s permissions do not allow writing, extracting files to it will fail.

Warning: Never extract archives from untrusted sources without prior inspection. It is possible that files
are created outside of path, e.g. members that have absolute filenames starting with "/" or filenames
with two dots "..".

TarFile.extract(member, path=”“, set_attrs=True)
Extract a member from the archive to the current working directory, using its full name. Its file information
is extracted as accurately as possible. member may be a filename or a TarInfo object. You can specify a
different directory using path. File attributes (owner, mtime, mode) are set unless set_attrs is False.

Note: The extract() method does not take care of several extraction issues. In most cases you should
consider using the extractall() method.

Warning: See the warning for extractall().

Changed in version 3.2: Added the set_attrs parameter.

TarFile.extractfile(member)
Extract a member from the archive as a file object. member may be a filename or a TarInfo object. If
member is a regular file, a file-like object is returned. If member is a link, a file-like object is constructed
from the link’s target. If member is none of the above, None is returned.

Note: The file-like object is read-only. It provides the methods read(), readline(), readlines(),
seek(), tell(), and close(), and also supports iteration over its lines.

TarFile.add(name, arcname=None, recursive=True, exclude=None, *, filter=None)
Add the file name to the archive. name may be any type of file (directory, fifo, symbolic link, etc.). If given,
arcname specifies an alternative name for the file in the archive. Directories are added recursively by default.
This can be avoided by setting recursive to False. If exclude is given, it must be a function that takes one
filename argument and returns a boolean value. Depending on this value the respective file is either excluded
(True) or added (False). If filter is specified it must be a keyword argument. It should be a function that
takes a TarInfo object argument and returns the changed TarInfo object. If it instead returns None the
TarInfo object will be excluded from the archive. See Examples for an example. Changed in version 3.2:
Added the filter parameter.Deprecated since version 3.2: The exclude parameter is deprecated, please use
the filter parameter instead.

TarFile.addfile(tarinfo, fileobj=None)
Add the TarInfo object tarinfo to the archive. If fileobj is given, tarinfo.size bytes are read from it
and added to the archive. You can create TarInfo objects using gettarinfo().

12.5. tarfile — Read and write tar archive files 313

The Python Library Reference, Release 3.2

Note: On Windows platforms, fileobj should always be opened with mode ’rb’ to avoid irritation about
the file size.

TarFile.gettarinfo(name=None, arcname=None, fileobj=None)
Create a TarInfo object for either the file name or the file object fileobj (using os.fstat() on its file
descriptor). You can modify some of the TarInfo‘s attributes before you add it using addfile(). If
given, arcname specifies an alternative name for the file in the archive.

TarFile.close()
Close the TarFile. In write mode, two finishing zero blocks are appended to the archive.

TarFile.pax_headers
A dictionary containing key-value pairs of pax global headers.

12.5.2 TarInfo Objects

A TarInfo object represents one member in a TarFile. Aside from storing all required attributes of a file (like
file type, size, time, permissions, owner etc.), it provides some useful methods to determine its type. It does not
contain the file’s data itself.

TarInfo objects are returned by TarFile‘s methods getmember(), getmembers() and
gettarinfo().

class tarfile.TarInfo(name=”“)
Create a TarInfo object.

TarInfo.frombuf(buf)
Create and return a TarInfo object from string buffer buf.

Raises HeaderError if the buffer is invalid..

TarInfo.fromtarfile(tarfile)
Read the next member from the TarFile object tarfile and return it as a TarInfo object.

TarInfo.tobuf(format=DEFAULT_FORMAT, encoding=ENCODING, errors=’surrogateescape’)
Create a string buffer from a TarInfo object. For information on the arguments see the constructor of
the TarFile class. Changed in version 3.2: Use ’surrogateescape’ as the default for the errors
argument.

A TarInfo object has the following public data attributes:

TarInfo.name
Name of the archive member.

TarInfo.size
Size in bytes.

TarInfo.mtime
Time of last modification.

TarInfo.mode
Permission bits.

TarInfo.type
File type. type is usually one of these constants: REGTYPE, AREGTYPE, LNKTYPE, SYMTYPE,
DIRTYPE, FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE, GNUTYPE_SPARSE. To determine the type
of a TarInfo object more conveniently, use the is_*() methods below.

TarInfo.linkname
Name of the target file name, which is only present in TarInfo objects of type LNKTYPE and SYMTYPE.

TarInfo.uid
User ID of the user who originally stored this member.

314 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 3.2

TarInfo.gid
Group ID of the user who originally stored this member.

TarInfo.uname
User name.

TarInfo.gname
Group name.

TarInfo.pax_headers
A dictionary containing key-value pairs of an associated pax extended header.

A TarInfo object also provides some convenient query methods:

TarInfo.isfile()
Return True if the Tarinfo object is a regular file.

TarInfo.isreg()
Same as isfile().

TarInfo.isdir()
Return True if it is a directory.

TarInfo.issym()
Return True if it is a symbolic link.

TarInfo.islnk()
Return True if it is a hard link.

TarInfo.ischr()
Return True if it is a character device.

TarInfo.isblk()
Return True if it is a block device.

TarInfo.isfifo()
Return True if it is a FIFO.

TarInfo.isdev()
Return True if it is one of character device, block device or FIFO.

12.5.3 Examples

How to extract an entire tar archive to the current working directory:

import tarfile
tar = tarfile.open("sample.tar.gz")
tar.extractall()
tar.close()

How to extract a subset of a tar archive with TarFile.extractall() using a generator function instead of a
list:

import os
import tarfile

def py_files(members):
for tarinfo in members:

if os.path.splitext(tarinfo.name)[1] == ".py":
yield tarinfo

tar = tarfile.open("sample.tar.gz")
tar.extractall(members=py_files(tar))
tar.close()

How to create an uncompressed tar archive from a list of filenames:

12.5. tarfile — Read and write tar archive files 315

The Python Library Reference, Release 3.2

import tarfile
tar = tarfile.open("sample.tar", "w")
for name in ["foo", "bar", "quux"]:

tar.add(name)
tar.close()

The same example using the with statement:

import tarfile
with tarfile.open("sample.tar", "w") as tar:

for name in ["foo", "bar", "quux"]:
tar.add(name)

How to read a gzip compressed tar archive and display some member information:

import tarfile
tar = tarfile.open("sample.tar.gz", "r:gz")
for tarinfo in tar:

print(tarinfo.name, "is", tarinfo.size, "bytes in size and is", end="")
if tarinfo.isreg():

print("a regular file.")
elif tarinfo.isdir():

print("a directory.")
else:

print("something else.")
tar.close()

How to create an archive and reset the user information using the filter parameter in TarFile.add():

import tarfile
def reset(tarinfo):

tarinfo.uid = tarinfo.gid = 0
tarinfo.uname = tarinfo.gname = "root"
return tarinfo

tar = tarfile.open("sample.tar.gz", "w:gz")
tar.add("foo", filter=reset)
tar.close()

12.5.4 Supported tar formats

There are three tar formats that can be created with the tarfile module:

• The POSIX.1-1988 ustar format (USTAR_FORMAT). It supports filenames up to a length of at best 256
characters and linknames up to 100 characters. The maximum file size is 8 gigabytes. This is an old and
limited but widely supported format.

• The GNU tar format (GNU_FORMAT). It supports long filenames and linknames, files bigger than 8 giga-
bytes and sparse files. It is the de facto standard on GNU/Linux systems. tarfile fully supports the GNU
tar extensions for long names, sparse file support is read-only.

• The POSIX.1-2001 pax format (PAX_FORMAT). It is the most flexible format with virtually no limits. It
supports long filenames and linknames, large files and stores pathnames in a portable way. However, not all
tar implementations today are able to handle pax archives properly.

The pax format is an extension to the existing ustar format. It uses extra headers for information that cannot
be stored otherwise. There are two flavours of pax headers: Extended headers only affect the subsequent
file header, global headers are valid for the complete archive and affect all following files. All the data in a
pax header is encoded in UTF-8 for portability reasons.

There are some more variants of the tar format which can be read, but not created:

316 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 3.2

• The ancient V7 format. This is the first tar format from Unix Seventh Edition, storing only regular files and
directories. Names must not be longer than 100 characters, there is no user/group name information. Some
archives have miscalculated header checksums in case of fields with non-ASCII characters.

• The SunOS tar extended format. This format is a variant of the POSIX.1-2001 pax format, but is not
compatible.

12.5.5 Unicode issues

The tar format was originally conceived to make backups on tape drives with the main focus on preserving file
system information. Nowadays tar archives are commonly used for file distribution and exchanging archives over
networks. One problem of the original format (which is the basis of all other formats) is that there is no concept
of supporting different character encodings. For example, an ordinary tar archive created on a UTF-8 system
cannot be read correctly on a Latin-1 system if it contains non-ASCII characters. Textual metadata (like filenames,
linknames, user/group names) will appear damaged. Unfortunately, there is no way to autodetect the encoding of
an archive. The pax format was designed to solve this problem. It stores non-ASCII metadata using the universal
character encoding UTF-8.

The details of character conversion in tarfile are controlled by the encoding and errors keyword arguments of
the TarFile class.

encoding defines the character encoding to use for the metadata in the archive. The default value is
sys.getfilesystemencoding() or ’ascii’ as a fallback. Depending on whether the archive is read
or written, the metadata must be either decoded or encoded. If encoding is not set appropriately, this conversion
may fail.

The errors argument defines how characters are treated that cannot be converted. Possible values are listed in
section Codec Base Classes. The default scheme is ’surrogateescape’ which Python also uses for its file
system calls, see File Names, Command Line Arguments, and Environment Variables.

In case of PAX_FORMAT archives, encoding is generally not needed because all the metadata is stored using UTF-
8. encoding is only used in the rare cases when binary pax headers are decoded or when strings with surrogate
characters are stored.

12.5. tarfile — Read and write tar archive files 317

The Python Library Reference, Release 3.2

318 Chapter 12. Data Compression and Archiving

CHAPTER

THIRTEEN

FILE FORMATS

The modules described in this chapter parse various miscellaneous file formats that aren’t markup languages and
are not related to e-mail.

13.1 csv — CSV File Reading and Writing

The so-called CSV (Comma Separated Values) format is the most common import and export format for spread-
sheets and databases. There is no “CSV standard”, so the format is operationally defined by the many applications
which read and write it. The lack of a standard means that subtle differences often exist in the data produced and
consumed by different applications. These differences can make it annoying to process CSV files from multiple
sources. Still, while the delimiters and quoting characters vary, the overall format is similar enough that it is pos-
sible to write a single module which can efficiently manipulate such data, hiding the details of reading and writing
the data from the programmer.

The csv module implements classes to read and write tabular data in CSV format. It allows programmers to say,
“write this data in the format preferred by Excel,” or “read data from this file which was generated by Excel,”
without knowing the precise details of the CSV format used by Excel. Programmers can also describe the CSV
formats understood by other applications or define their own special-purpose CSV formats.

The csv module’s reader and writer objects read and write sequences. Programmers can also read and write
data in dictionary form using the DictReader and DictWriter classes.

See Also:

PEP 305 - CSV File API The Python Enhancement Proposal which proposed this addition to Python.

13.1.1 Module Contents

The csv module defines the following functions:

csv.reader(csvfile, dialect=’excel’, **fmtparams)
Return a reader object which will iterate over lines in the given csvfile. csvfile can be any object which
supports the iterator protocol and returns a string each time its __next__() method is called — file
objects and list objects are both suitable. If csvfile is a file object, it should be opened with newline=”. 1

An optional dialect parameter can be given which is used to define a set of parameters specific to a particular
CSV dialect. It may be an instance of a subclass of the Dialect class or one of the strings returned by the
list_dialects() function. The other optional fmtparams keyword arguments can be given to override
individual formatting parameters in the current dialect. For full details about the dialect and formatting
parameters, see section Dialects and Formatting Parameters.

Each row read from the csv file is returned as a list of strings. No automatic data type conversion is
performed unless the QUOTE_NONNUMERIC format option is specified (in which case unquoted fields
are transformed into floats).

1 If newline=” is not specified, newlines embedded inside quoted fields will not be interpreted correctly. It should always be safe to
specify newline=”, since the csv module does its own universal newline handling on input.

319

http://www.python.org/dev/peps/pep-0305

The Python Library Reference, Release 3.2

A short usage example:

>>> import csv
>>> spamReader = csv.reader(open(’eggs.csv’, newline=’’), delimiter=’ ’, quotechar=’|’)
>>> for row in spamReader:
... print(’, ’.join(row))
Spam, Spam, Spam, Spam, Spam, Baked Beans
Spam, Lovely Spam, Wonderful Spam

csv.writer(csvfile, dialect=’excel’, **fmtparams)
Return a writer object responsible for converting the user’s data into delimited strings on the given file-like
object. csvfile can be any object with a write() method. An optional dialect parameter can be given
which is used to define a set of parameters specific to a particular CSV dialect. It may be an instance of a
subclass of the Dialect class or one of the strings returned by the list_dialects() function. The
other optional fmtparams keyword arguments can be given to override individual formatting parameters in
the current dialect. For full details about the dialect and formatting parameters, see section Dialects and
Formatting Parameters. To make it as easy as possible to interface with modules which implement the
DB API, the value None is written as the empty string. While this isn’t a reversible transformation, it
makes it easier to dump SQL NULL data values to CSV files without preprocessing the data returned from
a cursor.fetch* call. All other non-string data are stringified with str() before being written.

A short usage example:

>>> import csv
>>> spamWriter = csv.writer(open(’eggs.csv’, ’w’), delimiter=’ ’,
... quotechar=’|’, quoting=csv.QUOTE_MINIMAL)
>>> spamWriter.writerow([’Spam’] * 5 + [’Baked Beans’])
>>> spamWriter.writerow([’Spam’, ’Lovely Spam’, ’Wonderful Spam’])

csv.register_dialect(name[, dialect], **fmtparams)
Associate dialect with name. name must be a string. The dialect can be specified either by passing a
sub-class of Dialect, or by fmtparams keyword arguments, or both, with keyword arguments overriding
parameters of the dialect. For full details about the dialect and formatting parameters, see section Dialects
and Formatting Parameters.

csv.unregister_dialect(name)
Delete the dialect associated with name from the dialect registry. An Error is raised if name is not a
registered dialect name.

csv.get_dialect(name)
Return the dialect associated with name. An Error is raised if name is not a registered dialect name. This
function returns an immutable Dialect.

csv.list_dialects()
Return the names of all registered dialects.

csv.field_size_limit([new_limit])
Returns the current maximum field size allowed by the parser. If new_limit is given, this becomes the new
limit.

The csv module defines the following classes:

class csv.DictReader(csvfile, fieldnames=None, restkey=None, restval=None, dialect=’excel’, *args,
**kwds)

Create an object which operates like a regular reader but maps the information read into a dict whose keys
are given by the optional fieldnames parameter. If the fieldnames parameter is omitted, the values in the
first row of the csvfile will be used as the fieldnames. If the row read has more fields than the fieldnames
sequence, the remaining data is added as a sequence keyed by the value of restkey. If the row read has fewer
fields than the fieldnames sequence, the remaining keys take the value of the optional restval parameter.
Any other optional or keyword arguments are passed to the underlying reader instance.

320 Chapter 13. File Formats

The Python Library Reference, Release 3.2

class csv.DictWriter(csvfile, fieldnames, restval=’‘, extrasaction=’raise’, dialect=’excel’, *args,
**kwds)

Create an object which operates like a regular writer but maps dictionaries onto output rows. The fieldnames
parameter identifies the order in which values in the dictionary passed to the writerow() method are
written to the csvfile. The optional restval parameter specifies the value to be written if the dictionary is
missing a key in fieldnames. If the dictionary passed to the writerow() method contains a key not found
in fieldnames, the optional extrasaction parameter indicates what action to take. If it is set to ’raise’ a
ValueError is raised. If it is set to ’ignore’, extra values in the dictionary are ignored. Any other
optional or keyword arguments are passed to the underlying writer instance.

Note that unlike the DictReader class, the fieldnames parameter of the DictWriter is not optional.
Since Python’s dict objects are not ordered, there is not enough information available to deduce the order
in which the row should be written to the csvfile.

class csv.Dialect
The Dialect class is a container class relied on primarily for its attributes, which are used to define the
parameters for a specific reader or writer instance.

class csv.excel
The excel class defines the usual properties of an Excel-generated CSV file. It is registered with the
dialect name ’excel’.

class csv.excel_tab
The excel_tab class defines the usual properties of an Excel-generated TAB-delimited file. It is regis-
tered with the dialect name ’excel-tab’.

class csv.unix_dialect
The unix_dialect class defines the usual properties of a CSV file generated on UNIX systems, i.e.
using ’\n’ as line terminator and quoting all fields. It is registered with the dialect name ’unix’. New
in version 3.2.

class csv.Sniffer
The Sniffer class is used to deduce the format of a CSV file.

The Sniffer class provides two methods:

sniff(sample, delimiters=None)
Analyze the given sample and return a Dialect subclass reflecting the parameters found. If the
optional delimiters parameter is given, it is interpreted as a string containing possible valid delimiter
characters.

has_header(sample)
Analyze the sample text (presumed to be in CSV format) and return True if the first row appears to
be a series of column headers.

An example for Sniffer use:

csvfile = open("example.csv")
dialect = csv.Sniffer().sniff(csvfile.read(1024))
csvfile.seek(0)
reader = csv.reader(csvfile, dialect)
... process CSV file contents here ...

The csv module defines the following constants:

csv.QUOTE_ALL
Instructs writer objects to quote all fields.

csv.QUOTE_MINIMAL
Instructs writer objects to only quote those fields which contain special characters such as delimiter,
quotechar or any of the characters in lineterminator.

csv.QUOTE_NONNUMERIC
Instructs writer objects to quote all non-numeric fields.

Instructs the reader to convert all non-quoted fields to type float.

13.1. csv — CSV File Reading and Writing 321

The Python Library Reference, Release 3.2

csv.QUOTE_NONE
Instructs writer objects to never quote fields. When the current delimiter occurs in output data it is
preceded by the current escapechar character. If escapechar is not set, the writer will raise Error if any
characters that require escaping are encountered.

Instructs reader to perform no special processing of quote characters.

The csv module defines the following exception:

exception csv.Error
Raised by any of the functions when an error is detected.

13.1.2 Dialects and Formatting Parameters

To make it easier to specify the format of input and output records, specific formatting parameters are grouped
together into dialects. A dialect is a subclass of the Dialect class having a set of specific methods and a single
validate() method. When creating reader or writer objects, the programmer can specify a string or
a subclass of the Dialect class as the dialect parameter. In addition to, or instead of, the dialect parameter,
the programmer can also specify individual formatting parameters, which have the same names as the attributes
defined below for the Dialect class.

Dialects support the following attributes:

Dialect.delimiter
A one-character string used to separate fields. It defaults to ’,’.

Dialect.doublequote
Controls how instances of quotechar appearing inside a field should be themselves be quoted. When True,
the character is doubled. When False, the escapechar is used as a prefix to the quotechar. It defaults to
True.

On output, if doublequote is False and no escapechar is set, Error is raised if a quotechar is found in a
field.

Dialect.escapechar
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and the
quotechar if doublequote is False. On reading, the escapechar removes any special meaning from the
following character. It defaults to None, which disables escaping.

Dialect.lineterminator
The string used to terminate lines produced by the writer. It defaults to ’\r\n’.

Note: The reader is hard-coded to recognise either ’\r’ or ’\n’ as end-of-line, and ignores lineter-
minator. This behavior may change in the future.

Dialect.quotechar
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ’"’.

Dialect.quoting
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

Dialect.skipinitialspace
When True, whitespace immediately following the delimiter is ignored. The default is False.

13.1.3 Reader Objects

Reader objects (DictReader instances and objects returned by the reader() function) have the following
public methods:

322 Chapter 13. File Formats

The Python Library Reference, Release 3.2

csvreader.__next__()
Return the next row of the reader’s iterable object as a list, parsed according to the current dialect. Usually
you should call this as next(reader).

Reader objects have the following public attributes:

csvreader.dialect
A read-only description of the dialect in use by the parser.

csvreader.line_num
The number of lines read from the source iterator. This is not the same as the number of records returned,
as records can span multiple lines.

DictReader objects have the following public attribute:

csvreader.fieldnames
If not passed as a parameter when creating the object, this attribute is initialized upon first access or when
the first record is read from the file.

13.1.4 Writer Objects

Writer objects (DictWriter instances and objects returned by the writer() function) have the following
public methods. A row must be a sequence of strings or numbers for Writer objects and a dictionary mapping
fieldnames to strings or numbers (by passing them through str() first) for DictWriter objects. Note that
complex numbers are written out surrounded by parens. This may cause some problems for other programs which
read CSV files (assuming they support complex numbers at all).

csvwriter.writerow(row)
Write the row parameter to the writer’s file object, formatted according to the current dialect.

csvwriter.writerows(rows)
Write all the rows parameters (a list of row objects as described above) to the writer’s file object, formatted
according to the current dialect.

Writer objects have the following public attribute:

csvwriter.dialect
A read-only description of the dialect in use by the writer.

DictWriter objects have the following public method:

DictWriter.writeheader()
Write a row with the field names (as specified in the constructor). New in version 3.2.

13.1.5 Examples

The simplest example of reading a CSV file:

import csv
reader = csv.reader(open("some.csv", newline=’’))
for row in reader:

print(row)

Reading a file with an alternate format:

import csv
reader = csv.reader(open("passwd"), delimiter=’:’, quoting=csv.QUOTE_NONE)
for row in reader:

print(row)

The corresponding simplest possible writing example is:

13.1. csv — CSV File Reading and Writing 323

The Python Library Reference, Release 3.2

import csv
writer = csv.writer(open("some.csv", "w"))
writer.writerows(someiterable)

Since open() is used to open a CSV file for reading, the file will by default be decoded into unicode using
the system default encoding (see locale.getpreferredencoding()). To decode a file using a different
encoding, use the encoding argument of open:

import csv
reader = csv.reader(open("some.csv", newline=’’, encoding=’utf-8’))
for row in reader:

print(row)

The same applies to writing in something other than the system default encoding: specify the encoding argument
when opening the output file.

Registering a new dialect:

import csv
csv.register_dialect(’unixpwd’, delimiter=’:’, quoting=csv.QUOTE_NONE)
reader = csv.reader(open("passwd"), ’unixpwd’)

A slightly more advanced use of the reader — catching and reporting errors:

import csv, sys
filename = "some.csv"
reader = csv.reader(open(filename, newline=’’))
try:

for row in reader:
print(row)

except csv.Error as e:
sys.exit(’file {}, line {}: {}’.format(filename, reader.line_num, e))

And while the module doesn’t directly support parsing strings, it can easily be done:

import csv
for row in csv.reader([’one,two,three’]):

print(row)

13.2 configparser — Configuration file parser

This module provides the ConfigParser class which implements a basic configuration language which pro-
vides a structure similar to what’s found in Microsoft Windows INI files. You can use this to write Python
programs which can be customized by end users easily.

Note: This library does not interpret or write the value-type prefixes used in the Windows Registry extended
version of INI syntax.

See Also:

Module shlex Support for a creating Unix shell-like mini-languages which can be used as an alternate format
for application configuration files.

Module json The json module implements a subset of JavaScript syntax which can also be used for this purpose.

13.2.1 Quick Start

Let’s take a very basic configuration file that looks like this:

324 Chapter 13. File Formats

The Python Library Reference, Release 3.2

[DEFAULT]
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes

[bitbucket.org]
User = hg

[topsecret.server.com]
Port = 50022
ForwardX11 = no

The structure of INI files is described in the following section. Essentially, the file consists of sections, each of
which contains keys with values. configparser classes can read and write such files. Let’s start by creating
the above configuration file programatically.

>>> import configparser
>>> config = configparser.ConfigParser()
>>> config[’DEFAULT’] = {’ServerAliveInterval’: ’45’,
... ’Compression’: ’yes’,
... ’CompressionLevel’: ’9’}
>>> config[’bitbucket.org’] = {}
>>> config[’bitbucket.org’][’User’] = ’hg’
>>> config[’topsecret.server.com’] = {}
>>> topsecret = config[’topsecret.server.com’]
>>> topsecret[’Port’] = ’50022’ # mutates the parser
>>> topsecret[’ForwardX11’] = ’no’ # same here
>>> config[’DEFAULT’][’ForwardX11’] = ’yes’
>>> with open(’example.ini’, ’w’) as configfile:
... config.write(configfile)
...

As you can see, we can treat a config parser much like a dictionary. There are differences, outlined later, but the
behavior is very close to what you would expect from a dictionary.

Now that we have created and saved a configuration file, let’s read it back and explore the data it holds.

>>> import configparser
>>> config = configparser.ConfigParser()
>>> config.sections()
[]
>>> config.read(’example.ini’)
[’example.ini’]
>>> config.sections()
[’bitbucket.org’, ’topsecret.server.com’]
>>> ’bitbucket.org’ in config
True
>>> ’bytebong.com’ in config
False
>>> config[’bitbucket.org’][’User’]
’hg’
>>> config[’DEFAULT’][’Compression’]
’yes’
>>> topsecret = config[’topsecret.server.com’]
>>> topsecret[’ForwardX11’]
’no’
>>> topsecret[’Port’]
’50022’
>>> for key in config[’bitbucket.org’]: print(key)
...

13.2. configparser — Configuration file parser 325

The Python Library Reference, Release 3.2

user
compressionlevel
serveraliveinterval
compression
forwardx11
>>> config[’bitbucket.org’][’ForwardX11’]
’yes’

As we can see above, the API is pretty straightforward. The only bit of magic involves the DEFAULT section
which provides default values for all other sections 2. Note also that keys in sections are case-insensitive and
stored in lowercase 1.

13.2.2 Supported Datatypes

Config parsers do not guess datatypes of values in configuration files, always storing them internally as strings.
This means that if you need other datatypes, you should convert on your own:

>>> int(topsecret[’Port’])
50022
>>> float(topsecret[’CompressionLevel’])
9.0

Extracting Boolean values is not that simple, though. Passing the value to bool() would do no good since
bool(’False’) is still True. This is why config parsers also provide getboolean(). This method is
case-insensitive and recognizes Boolean values from ’yes’/’no’, ’on’/’off’ and ’1’/’0’ 1. For example:

>>> topsecret.getboolean(’ForwardX11’)
False
>>> config[’bitbucket.org’].getboolean(’ForwardX11’)
True
>>> config.getboolean(’bitbucket.org’, ’Compression’)
True

Apart from getboolean(), config parsers also provide equivalent getint() and getfloat() methods,
but these are far less useful since conversion using int() and float() is sufficient for these types.

13.2.3 Fallback Values

As with a dictionary, you can use a section’s get() method to provide fallback values:

>>> topsecret.get(’Port’)
’50022’
>>> topsecret.get(’CompressionLevel’)
’9’
>>> topsecret.get(’Cipher’)
>>> topsecret.get(’Cipher’, ’3des-cbc’)
’3des-cbc’

Please note that default values have precedence over fallback values. For instance, in our example the
’CompressionLevel’ key was specified only in the ’DEFAULT’ section. If we try to get it from the section
’topsecret.server.com’, we will always get the default, even if we specify a fallback:

>>> topsecret.get(’CompressionLevel’, ’3’)
’9’

One more thing to be aware of is that the parser-level get() method provides a custom, more complex inter-
face, maintained for backwards compatibility. When using this method, a fallback value can be provided via the
fallback keyword-only argument:

2 Config parsers allow for heavy customization. If you are interested in changing the behaviour outlined by the footnote reference, consult
the Customizing Parser Behaviour section.

326 Chapter 13. File Formats

The Python Library Reference, Release 3.2

>>> config.get(’bitbucket.org’, ’monster’,
... fallback=’No such things as monsters’)
’No such things as monsters’

The same fallback argument can be used with the getint(), getfloat() and getboolean()methods,
for example:

>>> ’BatchMode’ in topsecret
False
>>> topsecret.getboolean(’BatchMode’, fallback=True)
True
>>> config[’DEFAULT’][’BatchMode’] = ’no’
>>> topsecret.getboolean(’BatchMode’, fallback=True)
False

13.2.4 Supported INI File Structure

A configuration file consists of sections, each led by a [section] header, followed by key/value entries sep-
arated by a specific string (= or : by default 1). By default, section names are case sensitive but keys are not
1. Leading and trailing whitespace is removed from keys and values. Values can be omitted, in which case the
key/value delimiter may also be left out. Values can also span multiple lines, as long as they are indented deeper
than the first line of the value. Depending on the parser’s mode, blank lines may be treated as parts of multiline
values or ignored.

Configuration files may include comments, prefixed by specific characters (# and ; by default 1). Comments may
appear on their own on an otherwise empty line, possibly indented. 1

For example:

[Simple Values]
key=value
spaces in keys=allowed
spaces in values=allowed as well
spaces around the delimiter = obviously
you can also use : to delimit keys from values

[All Values Are Strings]
values like this: 1000000
or this: 3.14159265359
are they treated as numbers? : no
integers, floats and booleans are held as: strings
can use the API to get converted values directly: true

[Multiline Values]
chorus: I’m a lumberjack, and I’m okay

I sleep all night and I work all day

[No Values]
key_without_value
empty string value here =

[You can use comments]
like this
; or this

By default only in an empty line.
Inline comments can be harmful because they prevent users
from using the delimiting characters as parts of values.
That being said, this can be customized.

13.2. configparser — Configuration file parser 327

The Python Library Reference, Release 3.2

[Sections Can Be Indented]
can_values_be_as_well = True
does_that_mean_anything_special = False
purpose = formatting for readability
multiline_values = are

handled just fine as
long as they are indented
deeper than the first line
of a value

Did I mention we can indent comments, too?

13.2.5 Interpolation of values

On top of the core functionality, ConfigParser supports interpolation. This means values can be preprocessed
before returning them from get() calls.

class configparser.BasicInterpolation
The default implementation used by ConfigParser. It enables values to contain format strings which
refer to other values in the same section, or values in the special default section 1. Additional default values
can be provided on initialization.

For example:

[Paths]
home_dir: /Users
my_dir: %(home_dir)s/lumberjack
my_pictures: %(my_dir)s/Pictures

In the example above, ConfigParser with interpolation set to BasicInterpolation() would re-
solve %(home_dir)s to the value of home_dir (/Users in this case). %(my_dir)s in effect would
resolve to /Users/lumberjack. All interpolations are done on demand so keys used in the chain of
references do not have to be specified in any specific order in the configuration file.

With interpolation set to None, the parser would simply return %(my_dir)s/Pictures as the
value of my_pictures and %(home_dir)s/lumberjack as the value of my_dir.

class configparser.ExtendedInterpolation
An alternative handler for interpolation which implements a more advanced syntax, used for instance in
zc.buildout. Extended interpolation is using ${section:option} to denote a value from a for-
eign section. Interpolation can span multiple levels. For convenience, if the section: part is omitted,
interpolation defaults to the current section (and possibly the default values from the special section).

For example, the configuration specified above with basic interpolation, would look like this with extended
interpolation:

[Paths]
home_dir: /Users
my_dir: ${home_dir}/lumberjack
my_pictures: ${my_dir}/Pictures

Values from other sections can be fetched as well:

[Common]
home_dir: /Users
library_dir: /Library
system_dir: /System
macports_dir: /opt/local

[Frameworks]
Python: 3.2

328 Chapter 13. File Formats

The Python Library Reference, Release 3.2

path: ${Common:system_dir}/Library/Frameworks/

[Arthur]
nickname: Two Sheds
last_name: Jackson
my_dir: ${Common:home_dir}/twosheds
my_pictures: ${my_dir}/Pictures
python_dir: ${Frameworks:path}/Python/Versions/${Frameworks:Python}

13.2.6 Mapping Protocol Access

New in version 3.2. Mapping protocol access is a generic name for functionality that enables using custom objects
as if they were dictionaries. In case of configparser, the mapping interface implementation is using the
parser[’section’][’option’] notation.

parser[’section’] in particular returns a proxy for the section’s data in the parser. This means that the
values are not copied but they are taken from the original parser on demand. What’s even more important is that
when values are changed on a section proxy, they are actually mutated in the original parser.

configparser objects behave as close to actual dictionaries as possible. The mapping interface is complete
and adheres to the MutableMapping ABC. However, there are a few differences that should be taken into
account:

• By default, all keys in sections are accessible in a case-insensitive manner 1. E.g. for option in
parser["section"] yields only optionxform‘ed option key names. This means lowercased keys
by default. At the same time, for a section that holds the key ’a’, both expressions return True:

"a" in parser["section"]
"A" in parser["section"]

• All sections include DEFAULTSECT values as well which means that .clear() on a section may not
leave the section visibly empty. This is because default values cannot be deleted from the section (because
technically they are not there). If they are overriden in the section, deleting causes the default value to be
visible again. Trying to delete a default value causes a KeyError.

• Trying to delete the DEFAULTSECT raises ValueError.

• parser.get(section, option, **kwargs) - the second argument is not a fallback value. Note
however that the section-level get() methods are compatible both with the mapping protocol and the
classic configparser API.

• parser.items() is compatible with the mapping protocol (returns a list of section_name, sec-
tion_proxy pairs including the DEFAULTSECT). However, this method can also be invoked with argu-
ments: parser.items(section, raw, vars). The latter call returns a list of option, value pairs
for a specified section, with all interpolations expanded (unless raw=True is provided).

The mapping protocol is implemented on top of the existing legacy API so that subclasses overriding the original
interface still should have mappings working as expected.

13.2.7 Customizing Parser Behaviour

There are nearly as many INI format variants as there are applications using it. configparser goes a long way
to provide support for the largest sensible set of INI styles available. The default functionality is mainly dictated
by historical background and it’s very likely that you will want to customize some of the features.

The most common way to change the way a specific config parser works is to use the __init__() options:

• defaults, default value: None

This option accepts a dictionary of key-value pairs which will be initially put in the DEFAULT section. This
makes for an elegant way to support concise configuration files that don’t specify values which are the same
as the documented default.

13.2. configparser — Configuration file parser 329

The Python Library Reference, Release 3.2

Hint: if you want to specify default values for a specific section, use read_dict() before you read the
actual file.

• dict_type, default value: collections.OrderedDict

This option has a major impact on how the mapping protocol will behave and how the written configuration
files look. With the default ordered dictionary, every section is stored in the order they were added to the
parser. Same goes for options within sections.

An alternative dictionary type can be used for example to sort sections and options on write-back. You can
also use a regular dictionary for performance reasons.

Please note: there are ways to add a set of key-value pairs in a single operation. When you use a regular
dictionary in those operations, the order of the keys may be random. For example:

>>> parser = configparser.ConfigParser()
>>> parser.read_dict({’section1’: {’key1’: ’value1’,
... ’key2’: ’value2’,
... ’key3’: ’value3’},
... ’section2’: {’keyA’: ’valueA’,
... ’keyB’: ’valueB’,
... ’keyC’: ’valueC’},
... ’section3’: {’foo’: ’x’,
... ’bar’: ’y’,
... ’baz’: ’z’}
... })
>>> parser.sections()
[’section3’, ’section2’, ’section1’]
>>> [option for option in parser[’section3’]]
[’baz’, ’foo’, ’bar’]

In these operations you need to use an ordered dictionary as well:

>>> from collections import OrderedDict
>>> parser = configparser.ConfigParser()
>>> parser.read_dict(
... OrderedDict((
... (’s1’,
... OrderedDict((
... (’1’, ’2’),
... (’3’, ’4’),
... (’5’, ’6’),
...))
...),
... (’s2’,
... OrderedDict((
... (’a’, ’b’),
... (’c’, ’d’),
... (’e’, ’f’),
...))
...),
...))
...)
>>> parser.sections()
[’s1’, ’s2’]
>>> [option for option in parser[’s1’]]
[’1’, ’3’, ’5’]
>>> [option for option in parser[’s2’].values()]
[’b’, ’d’, ’f’]

• allow_no_value, default value: False

Some configuration files are known to include settings without values, but which otherwise conform to the

330 Chapter 13. File Formats

The Python Library Reference, Release 3.2

syntax supported by configparser. The allow_no_value parameter to the constructor can be used to
indicate that such values should be accepted:

>>> import configparser

>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-external-locking
... old_passwords = 1
... skip-bdb
... # we don’t need ACID today
... skip-innodb
... """
>>> config = configparser.ConfigParser(allow_no_value=True)
>>> config.read_string(sample_config)

>>> # Settings with values are treated as before:
>>> config["mysqld"]["user"]
’mysql’

>>> # Settings without values provide None:
>>> config["mysqld"]["skip-bdb"]

>>> # Settings which aren’t specified still raise an error:
>>> config["mysqld"]["does-not-exist"]
Traceback (most recent call last):

...
KeyError: ’does-not-exist’

• delimiters, default value: (’=’, ’:’)

Delimiters are substrings that delimit keys from values within a section. The first occurence of a delimiting
substring on a line is considered a delimiter. This means values (but not keys) can contain the delimiters.

See also the space_around_delimiters argument to ConfigParser.write().

• comment_prefixes, default value: (’#’, ’;’)

• inline_comment_prefixes, default value: None

Comment prefixes are strings that indicate the start of a valid comment within a config file.
comment_prefixes are used only on otherwise empty lines (optionally indented) whereas in-
line_comment_prefixes can be used after every valid value (e.g. section names, options and empty lines
as well). By default inline comments are disabled and ’#’ and ’;’ are used as prefixes for whole
line comments. Changed in version 3.2: In previous versions of configparser behaviour matched
comment_prefixes=(’#’,’;’) and inline_comment_prefixes=(’;’,). Please note that
config parsers don’t support escaping of comment prefixes so using inline_comment_prefixes may prevent
users from specifying option values with characters used as comment prefixes. When in doubt, avoid setting
inline_comment_prefixes. In any circumstances, the only way of storing comment prefix characters at the
beginning of a line in multiline values is to interpolate the prefix, for example:

>>> from configparser import ConfigParser, ExtendedInterpolation
>>> parser = ConfigParser(interpolation=ExtendedInterpolation())
>>> # the default BasicInterpolation could be used as well
>>> parser.read_string("""
... [DEFAULT]
... hash = #
...
... [hashes]
... shebang =

13.2. configparser — Configuration file parser 331

The Python Library Reference, Release 3.2

... ${hash}!/usr/bin/env python

... ${hash} -*- coding: utf-8 -*-

...

... extensions =

... enabled_extension

... another_extension

... #disabled_by_comment

... yet_another_extension

...

... interpolation not necessary = if # is not at line start

... even in multiline values = line #1

... line #2

... line #3

... """)
>>> print(parser[’hashes’][’shebang’])

#!/usr/bin/env python
-*- coding: utf-8 -*-
>>> print(parser[’hashes’][’extensions’])

enabled_extension
another_extension
yet_another_extension
>>> print(parser[’hashes’][’interpolation not necessary’])
if # is not at line start
>>> print(parser[’hashes’][’even in multiline values’])
line #1
line #2
line #3

• strict, default value: True

When set to True, the parser will not allow for any section or option duplicates while reading from a single
source (using read_file(), read_string() or read_dict()). It is recommended to use strict
parsers in new applications. Changed in version 3.2: In previous versions of configparser behaviour
matched strict=False.

• empty_lines_in_values, default value: True

In config parsers, values can span multiple lines as long as they are indented more than the key that holds
them. By default parsers also let empty lines to be parts of values. At the same time, keys can be arbitrarily
indented themselves to improve readability. In consequence, when configuration files get big and complex,
it is easy for the user to lose track of the file structure. Take for instance:

[Section]
key = multiline

value with a gotcha

this = is still a part of the multiline value of ’key’

This can be especially problematic for the user to see if she’s using a proportional font to edit the file. That
is why when your application does not need values with empty lines, you should consider disallowing them.
This will make empty lines split keys every time. In the example above, it would produce two keys, key
and this.

• default_section, default value: configparser.DEFAULTSECT (that is: "DEFAULT")

The convention of allowing a special section of default values for other sections or interpolation purposes
is a powerful concept of this library, letting users create complex declarative configurations. This section
is normally called "DEFAULT" but this can be customized to point to any other valid section name. Some
typical values include: "general" or "common". The name provided is used for recognizing default sec-
tions when reading from any source and is used when writing configuration back to a file. Its current value

332 Chapter 13. File Formats

The Python Library Reference, Release 3.2

can be retrieved using the parser_instance.default_section attribute and may be modified at
runtime (i.e. to convert files from one format to another).

• interpolation, default value: configparser.BasicInterpolation

Interpolation behaviour may be customized by providing a custom handler through the interpolation argu-
ment. None can be used to turn off interpolation completely, ExtendedInterpolation() provides
a more advanced variant inspired by zc.buildout. More on the subject in the dedicated documentation
section. RawConfigParser has a default value of None.

More advanced customization may be achieved by overriding default values of these parser attributes. The defaults
are defined on the classes, so they may be overriden by subclasses or by attribute assignment.

configparser.BOOLEAN_STATES
By default when using getboolean(), config parsers consider the following values True: ’1’, ’yes’,
’true’, ’on’ and the following values False: ’0’, ’no’, ’false’, ’off’. You can override this
by specifying a custom dictionary of strings and their Boolean outcomes. For example:

>>> custom = configparser.ConfigParser()
>>> custom[’section1’] = {’funky’: ’nope’}
>>> custom[’section1’].getboolean(’funky’)
Traceback (most recent call last):
...
ValueError: Not a boolean: nope
>>> custom.BOOLEAN_STATES = {’sure’: True, ’nope’: False}
>>> custom[’section1’].getboolean(’funky’)
False

Other typical Boolean pairs include accept/reject or enabled/disabled.

configparser.optionxform(option)
This method transforms option names on every read, get, or set operation. The default converts the name to
lowercase. This also means that when a configuration file gets written, all keys will be lowercase. Override
this method if that’s unsuitable. For example:

>>> config = """
... [Section1]
... Key = Value
...
... [Section2]
... AnotherKey = Value
... """
>>> typical = configparser.ConfigParser()
>>> typical.read_string(config)
>>> list(typical[’Section1’].keys())
[’key’]
>>> list(typical[’Section2’].keys())
[’anotherkey’]
>>> custom = configparser.RawConfigParser()
>>> custom.optionxform = lambda option: option
>>> custom.read_string(config)
>>> list(custom[’Section1’].keys())
[’Key’]
>>> list(custom[’Section2’].keys())
[’AnotherKey’]

configparser.SECTCRE
A compiled regular expression used to parse section headers. The default matches [section] to the
name "section". Whitespace is considered part of the section name, thus [larch] will be read as a
section of name " larch ". Override this attribute if that’s unsuitable. For example:

13.2. configparser — Configuration file parser 333

The Python Library Reference, Release 3.2

>>> config = """
... [Section 1]
... option = value
...
... [Section 2]
... another = val
... """
>>> typical = ConfigParser()
>>> typical.read_string(config)
>>> typical.sections()
[’Section 1’, ’ Section 2 ’]
>>> custom = ConfigParser()
>>> custom.SECTCRE = re.compile(r"\[*(?P<header>[^]]+?) *\]")
>>> custom.read_string(config)
>>> custom.sections()
[’Section 1’, ’Section 2’]

Note: While ConfigParser objects also use an OPTCRE attribute for recognizing option lines, it’s not
recommended to override it because that would interfere with constructor options allow_no_value and de-
limiters.

13.2.8 Legacy API Examples

Mainly because of backwards compatibility concerns, configparser provides also a legacy API with explicit
get/set methods. While there are valid use cases for the methods outlined below, mapping protocol access is
preferred for new projects. The legacy API is at times more advanced, low-level and downright counterintuitive.

An example of writing to a configuration file:

import configparser

config = configparser.RawConfigParser()

Please note that using RawConfigParser’s set functions, you can assign
non-string values to keys internally, but will receive an error when
attempting to write to a file or when you get it in non-raw mode. Setting
values using the mapping protocol or ConfigParser’s set() does not allow
such assignments to take place.
config.add_section(’Section1’)
config.set(’Section1’, ’int’, ’15’)
config.set(’Section1’, ’bool’, ’true’)
config.set(’Section1’, ’float’, ’3.1415’)
config.set(’Section1’, ’baz’, ’fun’)
config.set(’Section1’, ’bar’, ’Python’)
config.set(’Section1’, ’foo’, ’%(bar)s is %(baz)s!’)

Writing our configuration file to ’example.cfg’
with open(’example.cfg’, ’w’) as configfile:

config.write(configfile)

An example of reading the configuration file again:

import configparser

config = configparser.RawConfigParser()
config.read(’example.cfg’)

getfloat() raises an exception if the value is not a float

334 Chapter 13. File Formats

The Python Library Reference, Release 3.2

getint() and getboolean() also do this for their respective types
float = config.getfloat(’Section1’, ’float’)
int = config.getint(’Section1’, ’int’)
print(float + int)

Notice that the next output does not interpolate ’%(bar)s’ or ’%(baz)s’.
This is because we are using a RawConfigParser().
if config.getboolean(’Section1’, ’bool’):

print(config.get(’Section1’, ’foo’))

To get interpolation, use ConfigParser:

import configparser

cfg = configparser.ConfigParser()
cfg.read(’example.cfg’)

Set the optional ‘raw‘ argument of get() to True if you wish to disable
interpolation in a single get operation.
print(cfg.get(’Section1’, ’foo’, raw=False)) # -> "Python is fun!"
print(cfg.get(’Section1’, ’foo’, raw=True)) # -> "%(bar)s is %(baz)s!"

The optional ‘vars‘ argument is a dict with members that will take
precedence in interpolation.
print(cfg.get(’Section1’, ’foo’, vars={’bar’: ’Documentation’,

’baz’: ’evil’}))

The optional ‘fallback‘ argument can be used to provide a fallback value
print(cfg.get(’Section1’, ’foo’))

-> "Python is fun!"

print(cfg.get(’Section1’, ’foo’, fallback=’Monty is not.’))
-> "Python is fun!"

print(cfg.get(’Section1’, ’monster’, fallback=’No such things as monsters.’))
-> "No such things as monsters."

A bare print(cfg.get(’Section1’, ’monster’)) would raise NoOptionError
but we can also use:

print(cfg.get(’Section1’, ’monster’, fallback=None))
-> None

Default values are available in both types of ConfigParsers. They are used in interpolation if an option used is not
defined elsewhere.

import configparser

New instance with ’bar’ and ’baz’ defaulting to ’Life’ and ’hard’ each
config = configparser.ConfigParser({’bar’: ’Life’, ’baz’: ’hard’})
config.read(’example.cfg’)

print(config.get(’Section1’, ’foo’)) # -> "Python is fun!"
config.remove_option(’Section1’, ’bar’)
config.remove_option(’Section1’, ’baz’)
print(config.get(’Section1’, ’foo’)) # -> "Life is hard!"

13.2. configparser — Configuration file parser 335

The Python Library Reference, Release 3.2

13.2.9 ConfigParser Objects

class configparser.ConfigParser(defaults=None, dict_type=collections.OrderedDict,
allow_no_value=False, delimiters=(‘=’, ‘:’), com-
ment_prefixes=(‘#’, ‘;’), inline_comment_prefixes=None,
strict=True, empty_lines_in_values=True, de-
fault_section=configparser.DEFAULTSECT, interpola-
tion=BasicInterpolation())

The main configuration parser. When defaults is given, it is initialized into the dictionary of intrinsic de-
faults. When dict_type is given, it will be used to create the dictionary objects for the list of sections, for the
options within a section, and for the default values.

When delimiters is given, it is used as the set of substrings that divide keys from values. When com-
ment_prefixes is given, it will be used as the set of substrings that prefix comments in otherwise empty lines.
Comments can be indented. When inline_comment_prefixes is given, it will be used as the set of substrings
that prefix comments in non-empty lines.

line and inline comments. For backwards compatibility, the default value for comment_prefixes is a special
value that indicates that ; and # can start whole line comments while only ; can start inline comments.

When strict is True (the default), the parser won’t allow for any section or option duplicates while
reading from a single source (file, string or dictionary), raising DuplicateSectionError or
DuplicateOptionError. When empty_lines_in_values is False (default: True), each empty line
marks the end of an option. Otherwise, internal empty lines of a multiline option are kept as part of the
value. When allow_no_value is True (default: False), options without values are accepted; the value
held for these is None and they are serialized without the trailing delimiter.

When default_section is given, it specifies the name for the special section holding default values for
other sections and interpolation purposes (normally named "DEFAULT"). This value can be retrieved
and changed on runtime using the default_section instance attribute.

Interpolation behaviour may be customized by providing a custom handler through the interpolation argu-
ment. None can be used to turn off interpolation completely, ExtendedInterpolation() provides
a more advanced variant inspired by zc.buildout. More on the subject in the dedicated documentation
section.

All option names used in interpolation will be passed through the optionxform() method just like
any other option name reference. For example, using the default implementation of optionxform()
(which converts option names to lower case), the values foo %(bar)s and foo %(BAR)s are equiva-
lent. Changed in version 3.1: The default dict_type is collections.OrderedDict.Changed in ver-
sion 3.2: allow_no_value, delimiters, comment_prefixes, strict, empty_lines_in_values, default_section and
interpolation were added.

defaults()
Return a dictionary containing the instance-wide defaults.

sections()
Return a list of the sections available; the default section is not included in the list.

add_section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised. If the default section name is passed, ValueError is
raised. The name of the section must be a string; if not, TypeError is raised. Changed in version
3.2: Non-string section names raise TypeError.

has_section(section)
Indicates whether the named section is present in the configuration. The default section is not ac-
knowledged.

options(section)
Return a list of options available in the specified section.

has_option(section, option)
If the given section exists, and contains the given option, return True; otherwise return False. If the

336 Chapter 13. File Formats

The Python Library Reference, Release 3.2

specified section is None or an empty string, DEFAULT is assumed.

read(filenames, encoding=None)
Attempt to read and parse a list of filenames, returning a list of filenames which were successfully
parsed. If filenames is a string, it is treated as a single filename. If a file named in filenames can-
not be opened, that file will be ignored. This is designed so that you can specify a list of potential
configuration file locations (for example, the current directory, the user’s home directory, and some
system-wide directory), and all existing configuration files in the list will be read. If none of the named
files exist, the ConfigParser instance will contain an empty dataset. An application which requires
initial values to be loaded from a file should load the required file or files using read_file() before
calling read() for any optional files:

import configparser, os

config = configparser.ConfigParser()
config.read_file(open(’defaults.cfg’))
config.read([’site.cfg’, os.path.expanduser(’~/.myapp.cfg’)],

encoding=’cp1250’)

New in version 3.2: The encoding parameter. Previously, all files were read using the default encoding
for open().

read_file(f, source=None)
Read and parse configuration data from the file or file-like object in f (only the readline() method
is used). The file-like object must operate in text mode. Specifically, it must return strings from
readline().

Optional argument source specifies the name of the file being read. If not given and f has a name
attribute, that is used for source; the default is ’<???>’. New in version 3.2: Replaces readfp().

read_string(string, source=’<string>’)
Parse configuration data from a string.

Optional argument source specifies a context-specific name of the string passed. If not given,
’<string>’ is used. This should commonly be a filesystem path or a URL. New in version 3.2.

read_dict(dictionary, source=’<dict>’)
Load configuration from any object that provides a dict-like items() method. Keys are section
names, values are dictionaries with keys and values that should be present in the section. If the used
dictionary type preserves order, sections and their keys will be added in order. Values are automatically
converted to strings.

Optional argument source specifies a context-specific name of the dictionary passed. If not given,
<dict> is used.

This method can be used to copy state between parsers. New in version 3.2.

get(section, option, raw=False[, vars, fallback])
Get an option value for the named section. If vars is provided, it must be a dictionary. The option is
looked up in vars (if provided), section, and in DEFAULTSECT in that order. If the key is not found
and fallback is provided, it is used as a fallback value. None can be provided as a fallback value.

All the ’%’ interpolations are expanded in the return values, unless the raw argument is true. Values
for interpolation keys are looked up in the same manner as the option. Changed in version 3.2: Argu-
ments raw, vars and fallback are keyword only to protect users from trying to use the third argument
as the fallback fallback (especially when using the mapping protocol).

getint(section, option, raw=False[, vars, fallback])
A convenience method which coerces the option in the specified section to an integer. See get() for
explanation of raw, vars and fallback.

getfloat(section, option, raw=False[, vars, fallback])
A convenience method which coerces the option in the specified section to a floating point number.
See get() for explanation of raw, vars and fallback.

13.2. configparser — Configuration file parser 337

The Python Library Reference, Release 3.2

getboolean(section, option, raw=False[, vars, fallback])
A convenience method which coerces the option in the specified section to a Boolean value. Note that
the accepted values for the option are ’1’, ’yes’, ’true’, and ’on’, which cause this method to
return True, and ’0’, ’no’, ’false’, and ’off’, which cause it to return False. These string
values are checked in a case-insensitive manner. Any other value will cause it to raise ValueError.
See get() for explanation of raw, vars and fallback.

items([section], raw=False, vars=None)
When section is not given, return a list of section_name, section_proxy pairs, including DEFAULT-
SECT.

Otherwise, return a list of name, value pairs for the options in the given section. Optional arguments
have the same meaning as for the get() method.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise
NoSectionError. option and value must be strings; if not, TypeError is raised.

write(fileobject, space_around_delimiters=True)
Write a representation of the configuration to the specified file object, which must be opened in
text mode (accepting strings). This representation can be parsed by a future read() call. If
space_around_delimiters is true, delimiters between keys and values are surrounded by spaces.

remove_option(section, option)
Remove the specified option from the specified section. If the section does not exist, raise
NoSectionError. If the option existed to be removed, return True; otherwise return False.

remove_section(section)
Remove the specified section from the configuration. If the section in fact existed, return True.
Otherwise return False.

optionxform(option)
Transforms the option name option as found in an input file or as passed in by client code to the form
that should be used in the internal structures. The default implementation returns a lower-case version
of option; subclasses may override this or client code can set an attribute of this name on instances to
affect this behavior.

You don’t need to subclass the parser to use this method, you can also set it on an instance, to a function
that takes a string argument and returns a string. Setting it to str, for example, would make option
names case sensitive:

cfgparser = ConfigParser()
cfgparser.optionxform = str

Note that when reading configuration files, whitespace around the option names is stripped before
optionxform() is called.

readfp(fp, filename=None)
Deprecated since version 3.2: Use read_file() instead.

configparser.MAX_INTERPOLATION_DEPTH
The maximum depth for recursive interpolation for get() when the raw parameter is false. This is relevant
only when the default interpolation is used.

338 Chapter 13. File Formats

The Python Library Reference, Release 3.2

13.2.10 RawConfigParser Objects

class configparser.RawConfigParser(defaults=None, dict_type=collections.OrderedDict,
allow_no_value=False, delimiters=(‘=’, ‘:’), com-
ment_prefixes=(‘#’, ‘;’), inline_comment_prefixes=None,
strict=True, empty_lines_in_values=True, de-
fault_section=configaparser.DEFAULTSECT, inter-
polation=None)

Legacy variant of the ConfigParser with interpolation disabled by default and unsafe add_section
and set methods.

Note: Consider using ConfigParser instead which checks types of the values to be stored internally. If
you don’t want interpolation, you can use ConfigParser(interpolation=None).

add_section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised. If the default section name is passed, ValueError is
raised.

Type of section is not checked which lets users create non-string named sections. This behaviour is
unsupported and may cause internal errors.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise
NoSectionError. While it is possible to use RawConfigParser (or ConfigParser with
raw parameters set to true) for internal storage of non-string values, full functionality (including in-
terpolation and output to files) can only be achieved using string values.

This method lets users assign non-string values to keys internally. This behaviour is unsupported and
will cause errors when attempting to write to a file or get it in non-raw mode. Use the mapping
protocol API which does not allow such assignments to take place.

13.2.11 Exceptions

exception configparser.Error
Base class for all other configparser exceptions.

exception configparser.NoSectionError
Exception raised when a specified section is not found.

exception configparser.DuplicateSectionError
Exception raised if add_section() is called with the name of a section that is already present or in strict
parsers when a section if found more than once in a single input file, string or dictionary. New in version
3.2: Optional source and lineno attributes and arguments to __init__() were added.

exception configparser.DuplicateOptionError
Exception raised by strict parsers if a single option appears twice during reading from a single file, string
or dictionary. This catches misspellings and case sensitivity-related errors, e.g. a dictionary may have two
keys representing the same case-insensitive configuration key.

exception configparser.NoOptionError
Exception raised when a specified option is not found in the specified section.

exception configparser.InterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exception configparser.InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX_INTERPOLATION_DEPTH. Subclass of InterpolationError.

13.2. configparser — Configuration file parser 339

The Python Library Reference, Release 3.2

exception configparser.InterpolationMissingOptionError
Exception raised when an option referenced from a value does not exist. Subclass of
InterpolationError.

exception configparser.InterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the required
syntax. Subclass of InterpolationError.

exception configparser.MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exception configparser.ParsingError
Exception raised when errors occur attempting to parse a file. Changed in version 3.2: The filename
attribute and __init__() argument were renamed to source for consistency.

13.3 netrc — netrc file processing

Source code: Lib/netrc.py

The netrc class parses and encapsulates the netrc file format used by the Unix ftp program and other FTP clients.

class netrc.netrc([file])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument, if
present, specifies the file to parse. If no argument is given, the file .netrc in the user’s home directory will
be read. Parse errors will raise NetrcParseError with diagnostic information including the file name,
line number, and terminating token.

exception netrc.NetrcParseError
Exception raised by the netrc class when syntactical errors are encountered in source text. Instances of
this exception provide three interesting attributes: msg is a textual explanation of the error, filename is
the name of the source file, and lineno gives the line number on which the error was found.

13.3.1 netrc Objects

A netrc instance has the following methods:

netrc.authenticators(host)
Return a 3-tuple (login, account, password) of authenticators for host. If the netrc file did not
contain an entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching
host nor default entry is available, return None.

netrc.__repr__()
Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder the
entries.)

Instances of netrc have public instance variables:

netrc.hosts
Dictionary mapping host names to (login, account, password) tuples. The ‘default’ entry, if
any, is represented as a pseudo-host by that name.

netrc.macros
Dictionary mapping macro names to string lists.

Note: Passwords are limited to a subset of the ASCII character set. All ASCII punctuation is allowed in pass-
words, however, note that whitespace and non-printable characters are not allowed in passwords. This is a limita-
tion of the way the .netrc file is parsed and may be removed in the future.

340 Chapter 13. File Formats

http://svn.python.org/view/python/branches/py3k/Lib/netrc.py?view=markup

The Python Library Reference, Release 3.2

13.4 xdrlib — Encode and decode XDR data

Source code: Lib/xdrlib.py

The xdrlib module supports the External Data Representation Standard as described in RFC 1014, written by
Sun Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another for
unpacking from XDR representation. There are also two exception classes.

class xdrlib.Packer
Packer is the class for packing data into XDR representation. The Packer class is instantiated with no
arguments.

class xdrlib.Unpacker(data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input
buffer is given as data.

See Also:

RFC 1014 - XDR: External Data Representation Standard This RFC defined the encoding of data which was
XDR at the time this module was originally written. It has apparently been obsoleted by RFC 1832.

RFC 1832 - XDR: External Data Representation Standard Newer RFC that provides a revised definition of
XDR.

13.4.1 Packer Objects

Packer instances have the following methods:

Packer.get_buffer()
Returns the current pack buffer as a string.

Packer.reset()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriate pack_type()
method. Each method takes a single argument, the value to pack. The following simple data type packing meth-
ods are supported: pack_uint(), pack_int(), pack_enum(), pack_bool(), pack_uhyper(), and
pack_hyper().

Packer.pack_float(value)
Packs the single-precision floating point number value.

Packer.pack_double(value)
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

Packer.pack_fstring(n, s)
Packs a fixed length string, s. n is the length of the string but it is not packed into the data buffer. The string
is padded with null bytes if necessary to guaranteed 4 byte alignment.

Packer.pack_fopaque(n, data)
Packs a fixed length opaque data stream, similarly to pack_fstring().

Packer.pack_string(s)
Packs a variable length string, s. The length of the string is first packed as an unsigned integer, then the
string data is packed with pack_fstring().

Packer.pack_opaque(data)
Packs a variable length opaque data string, similarly to pack_string().

13.4. xdrlib — Encode and decode XDR data 341

http://svn.python.org/view/python/branches/py3k/Lib/xdrlib.py?view=markup
http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1832.html
http://tools.ietf.org/html/rfc1832.html

The Python Library Reference, Release 3.2

Packer.pack_bytes(bytes)
Packs a variable length byte stream, similarly to pack_string().

The following methods support packing arrays and lists:

Packer.pack_list(list, pack_item)
Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is
not available until the entire list has been walked. For each item in the list, an unsigned integer 1 is packed
first, followed by the data value from the list. pack_item is the function that is called to pack the individual
item. At the end of the list, an unsigned integer 0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

Packer.pack_farray(n, array, pack_item)
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed into the
buffer, but a ValueError exception is raised if len(array) is not equal to n. As above, pack_item is
the function used to pack each element.

Packer.pack_array(list, pack_item)
Packs a variable length list of homogeneous items. First, the length of the list is packed as an unsigned
integer, then each element is packed as in pack_farray() above.

13.4.2 Unpacker Objects

The Unpacker class offers the following methods:

Unpacker.reset(data)
Resets the string buffer with the given data.

Unpacker.get_position()
Returns the current unpack position in the data buffer.

Unpacker.set_position(position)
Sets the data buffer unpack position to position. You should be careful about using get_position()
and set_position().

Unpacker.get_buffer()
Returns the current unpack data buffer as a string.

Unpacker.done()
Indicates unpack completion. Raises an Error exception if all of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker. Unpacking
methods are of the form unpack_type(), and take no arguments. They return the unpacked object.

Unpacker.unpack_float()
Unpacks a single-precision floating point number.

Unpacker.unpack_double()
Unpacks a double-precision floating point number, similarly to unpack_float().

In addition, the following methods unpack strings, bytes, and opaque data:

Unpacker.unpack_fstring(n)
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with null bytes
to guaranteed 4 byte alignment is assumed.

Unpacker.unpack_fopaque(n)
Unpacks and returns a fixed length opaque data stream, similarly to unpack_fstring().

342 Chapter 13. File Formats

The Python Library Reference, Release 3.2

Unpacker.unpack_string()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned
integer, then the string data is unpacked with unpack_fstring().

Unpacker.unpack_opaque()
Unpacks and returns a variable length opaque data string, similarly to unpack_string().

Unpacker.unpack_bytes()
Unpacks and returns a variable length byte stream, similarly to unpack_string().

The following methods support unpacking arrays and lists:

Unpacker.unpack_list(unpack_item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first
unpacking an unsigned integer flag. If the flag is 1, then the item is unpacked and appended to the list. A
flag of 0 indicates the end of the list. unpack_item is the function that is called to unpack the items.

Unpacker.unpack_farray(n, unpack_item)
Unpacks and returns (as a list) a fixed length array of homogeneous items. n is number of list elements to
expect in the buffer. As above, unpack_item is the function used to unpack each element.

Unpacker.unpack_array(unpack_item)
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is unpacked as
an unsigned integer, then each element is unpacked as in unpack_farray() above.

13.4.3 Exceptions

Exceptions in this module are coded as class instances:

exception xdrlib.Error
The base exception class. Error has a single public data member msg containing the description of the
error.

exception xdrlib.ConversionError
Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError as instance:

print(’packing the double failed:’, instance.msg)

13.5 plistlib — Generate and parse Mac OS X .plist files

Source code: Lib/plistlib.py

This module provides an interface for reading and writing the “property list” XML files used mainly by Mac OS
X.

The property list (.plist) file format is a simple XML pickle supporting basic object types, like dictionaries,
lists, numbers and strings. Usually the top level object is a dictionary.

To write out and to parse a plist file, use the writePlist() and readPlist() functions.

To work with plist data in bytes objects, use writePlistToBytes() and readPlistFromBytes().

Values can be strings, integers, floats, booleans, tuples, lists, dictionaries (but only with string keys), Data or
datetime.datetime objects. String values (including dictionary keys) have to be unicode strings – they will
be written out as UTF-8.

13.5. plistlib — Generate and parse Mac OS X .plist files 343

http://svn.python.org/view/python/branches/py3k/Lib/plistlib.py?view=markup

The Python Library Reference, Release 3.2

The <data> plist type is supported through the Data class. This is a thin wrapper around a Python bytes object.
Use Data if your strings contain control characters.

See Also:

PList manual page Apple’s documentation of the file format.

This module defines the following functions:

plistlib.readPlist(pathOrFile)
Read a plist file. pathOrFile may either be a file name or a (readable) file object. Return the unpacked root
object (which usually is a dictionary).

The XML data is parsed using the Expat parser from xml.parsers.expat – see its documentation for
possible exceptions on ill-formed XML. Unknown elements will simply be ignored by the plist parser.

plistlib.writePlist(rootObject, pathOrFile)
Write rootObject to a plist file. pathOrFile may either be a file name or a (writable) file object.

A TypeError will be raised if the object is of an unsupported type or a container that contains objects of
unsupported types.

plistlib.readPlistFromBytes(data)
Read a plist data from a bytes object. Return the root object.

plistlib.writePlistToBytes(rootObject)
Return rootObject as a plist-formatted bytes object.

The following class is available:

class plistlib.Data(data)
Return a “data” wrapper object around the bytes object data. This is used in functions converting from/to
plists to represent the <data> type available in plists.

It has one attribute, data, that can be used to retrieve the Python bytes object stored in it.

13.5.1 Examples

Generating a plist:

pl = dict(
aString = "Doodah",
aList = ["A", "B", 12, 32.1, [1, 2, 3]],
aFloat = 0.1,
anInt = 728,
aDict = dict(

anotherString = "<hello & hi there!>",
aThirdString = "M\xe4ssig, Ma\xdf",
aTrueValue = True,
aFalseValue = False,

),
someData = Data(b"<binary gunk>"),
someMoreData = Data(b"<lots of binary gunk>" * 10),
aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())),

)
writePlist(pl, fileName)

Parsing a plist:

pl = readPlist(pathOrFile)
print(pl["aKey"])

344 Chapter 13. File Formats

http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html

CHAPTER

FOURTEEN

CRYPTOGRAPHIC SERVICES

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available
at the discretion of the installation. Here’s an overview:

14.1 hashlib — Secure hashes and message digests

Source code: Lib/hashlib.py

This module implements a common interface to many different secure hash and message digest algorithms. In-
cluded are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and SHA512 (defined in FIPS
180-2) as well as RSA’s MD5 algorithm (defined in Internet RFC 1321). The terms “secure hash” and “message
digest” are interchangeable. Older algorithms were called message digests. The modern term is secure hash.

Note: If you want the adler32 or crc32 hash functions they are available in the zlib module.

Warning: Some algorithms have known hash collision weaknesses, see the FAQ at the end.

There is one constructor method named for each type of hash. All return a hash object with the same simple
interface. For example: use sha1() to create a SHA1 hash object. You can now feed this object with objects
conforming to the buffer interface (normally bytes objects) using the update() method. At any point you
can ask it for the digest of the concatenation of the data fed to it so far using the digest() or hexdigest()
methods.

Note: For better multithreading performance, the Python GIL is released for strings of more than 2047 bytes at
object creation or on update.

Note: Feeding string objects is to update() is not supported, as hashes work on bytes, not on characters.

Constructors for hash algorithms that are always present in this module are md5(), sha1(), sha224(),
sha256(), sha384(), and sha512(). Additional algorithms may also be available depending upon the
OpenSSL library that Python uses on your platform.

For example, to obtain the digest of the byte string b’Nobody inspects the spammish
repetition’:

>>> import hashlib
>>> m = hashlib.md5()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()

345

http://svn.python.org/view/python/branches/py3k/Lib/hashlib.py?view=markup
http://tools.ietf.org/html/rfc1321.html

The Python Library Reference, Release 3.2

b’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
’a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2’

hashlib.new(name[, data])
Is a generic constructor that takes the string name of the desired algorithm as its first parameter. It also
exists to allow access to the above listed hashes as well as any other algorithms that your OpenSSL library
may offer. The named constructors are much faster than new() and should be preferred.

Using new() with an algorithm provided by OpenSSL:

>>> h = hashlib.new(’ripemd160’)
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
’cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc’

Hashlib provides the following constant attributes:

hashlib.algorithms_guaranteed
Contains the names of the hash algorithms guaranteed to be supported by this module on all platforms. New
in version 3.2.

hashlib.algorithms_available
Contains the names of the hash algorithms that are available in the running Python interpreter. These
names will be recognized when passed to new(). algorithms_guaranteed will always be a subset.
Duplicate algorithms with different name formats may appear in this set (thanks to OpenSSL). New in
version 3.2.

The following values are provided as constant attributes of the hash objects returned by the constructors:

hash.digest_size
The size of the resulting hash in bytes.

hash.block_size
The internal block size of the hash algorithm in bytes.

A hash object has the following methods:

hash.update(arg)
Update the hash object with the object arg, which must be interpretable as a buffer of bytes. Re-
peated calls are equivalent to a single call with the concatenation of all the arguments: m.update(a);
m.update(b) is equivalent to m.update(a+b). Changed in version 3.1: The Python GIL is released
to allow other threads to run while hash updates on data larger than 2048 bytes is taking place when using
hash algorithms supplied by OpenSSL.

hash.digest()
Return the digest of the data passed to the update() method so far. This is a bytes object of size
digest_size which may contain bytes in the whole range from 0 to 255.

hash.hexdigest()
Like digest() except the digest is returned as a string object of double length, containing only hexadec-
imal digits. This may be used to exchange the value safely in email or other non-binary environments.

hash.copy()
Return a copy (“clone”) of the hash object. This can be used to efficiently compute the digests of data
sharing a common initial substring.

See Also:

Module hmac A module to generate message authentication codes using hashes.

346 Chapter 14. Cryptographic Services

The Python Library Reference, Release 3.2

Module base64 Another way to encode binary hashes for non-binary environments.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf The FIPS 180-2 publication on Secure Hash Al-
gorithms.

http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms Wikipedia
article with information on which algorithms have known issues and what that means regarding their use.

14.2 hmac — Keyed-Hashing for Message Authentication

Source code: Lib/hmac.py

This module implements the HMAC algorithm as described by RFC 2104.

hmac.new(key, msg=None, digestmod=None)
Return a new hmac object. key is a bytes object giving the secret key. If msg is present, the method call
update(msg) is made. digestmod is the digest constructor or module for the HMAC object to use. It
defaults to the hashlib.md5() constructor.

An HMAC object has the following methods:

hmac.update(msg)
Update the hmac object with the bytes object msg. Repeated calls are equivalent to a single call with the
concatenation of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a +
b).

hmac.digest()
Return the digest of the bytes passed to the update() method so far. This bytes object will be the same
length as the digest_size of the digest given to the constructor. It may contain non-ASCII bytes, including
NUL bytes.

hmac.hexdigest()
Like digest() except the digest is returned as a string twice the length containing only hexadecimal
digits. This may be used to exchange the value safely in email or other non-binary environments.

hmac.copy()
Return a copy (“clone”) of the hmac object. This can be used to efficiently compute the digests of strings
that share a common initial substring.

See Also:

Module hashlib The Python module providing secure hash functions.

Hardcore cypherpunks will probably find the cryptographic modules written by A.M. Kuchling of further interest;
the package contains modules for various encryption algorithms, most notably AES. These modules are not dis-
tributed with Python but available separately. See the URL http://www.amk.ca/python/code/crypto.html for more
information.

14.2. hmac — Keyed-Hashing for Message Authentication 347

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
http://svn.python.org/view/python/branches/py3k/Lib/hmac.py?view=markup
http://tools.ietf.org/html/rfc2104.html
http://www.amk.ca/python/code/crypto.html

The Python Library Reference, Release 3.2

348 Chapter 14. Cryptographic Services

CHAPTER

FIFTEEN

GENERIC OPERATING SYSTEM
SERVICES

The modules described in this chapter provide interfaces to operating system features that are available on (almost)
all operating systems, such as files and a clock. The interfaces are generally modeled after the Unix or C interfaces,
but they are available on most other systems as well. Here’s an overview:

15.1 os — Miscellaneous operating system interfaces

This module provides a portable way of using operating system dependent functionality. If you just want to read
or write a file see open(), if you want to manipulate paths, see the os.path module, and if you want to read
all the lines in all the files on the command line see the fileinput module. For creating temporary files and
directories see the tempfile module, and for high-level file and directory handling see the shutil module.

Notes on the availability of these functions:

• The design of all built-in operating system dependent modules of Python is such that as long as the same
functionality is available, it uses the same interface; for example, the function os.stat(path) returns
stat information about path in the same format (which happens to have originated with the POSIX interface).

• Extensions peculiar to a particular operating system are also available through the os module, but using
them is of course a threat to portability.

• All functions accepting path or file names accept both bytes and string objects, and result in an object of the
same type, if a path or file name is returned.

Note: If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which
builds on a Unix core.

• An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not
make any claims about its existence on a specific operating system.

• If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which
builds on a Unix core.

Note: All functions in this module raise OSError in the case of invalid or inaccessible file names and paths, or
other arguments that have the correct type, but are not accepted by the operating system.

exception os.error
An alias for the built-in OSError exception.

os.name
The name of the operating system dependent module imported. The following names have currently been
registered: ’posix’, ’nt’, ’mac’, ’os2’, ’ce’, ’java’.

349

The Python Library Reference, Release 3.2

15.1.1 File Names, Command Line Arguments, and Environment Variables

In Python, file names, command line arguments, and environment variables are represented using the
string type. On some systems, decoding these strings to and from bytes is necessary before passing
them to the operating system. Python uses the file system encoding to perform this conversion (see
sys.getfilesystemencoding()). Changed in version 3.1: On some systems, conversion using the file
system encoding may fail. In this case, Python uses the surrogateescape encoding error handler, which
means that undecodable bytes are replaced by a Unicode character U+DCxx on decoding, and these are again
translated to the original byte on encoding. The file system encoding must guarantee to successfully decode all
bytes below 128. If the file system encoding fails to provide this guarantee, API functions may raise UnicodeEr-
rors.

15.1.2 Process Parameters

These functions and data items provide information and operate on the current process and user.

os.environ
A mapping object representing the string environment. For example, environ[’HOME’] is the pathname
of your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

This mapping is captured the first time the os module is imported, typically during Python startup as part of
processing site.py. Changes to the environment made after this time are not reflected in os.environ,
except for changes made by modifying os.environ directly.

If the platform supports the putenv() function, this mapping may be used to modify the environment as
well as query the environment. putenv() will be called automatically when the mapping is modified.

On Unix, keys and values use sys.getfilesystemencoding() and ’surrogateescape’ error
handler. Use environb if you would like to use a different encoding.

Note: Calling putenv() directly does not change os.environ, so it’s better to modify os.environ.

Note: On some platforms, including FreeBSD and Mac OS X, setting environ may cause memory leaks.
Refer to the system documentation for putenv().

If putenv() is not provided, a modified copy of this mapping may be passed to the appropriate process-
creation functions to cause child processes to use a modified environment.

If the platform supports the unsetenv() function, you can delete items in this mapping to unset environ-
ment variables. unsetenv() will be called automatically when an item is deleted from os.environ,
and when one of the pop() or clear() methods is called.

os.environb
Bytes version of environ: a mapping object representing the environment as byte strings. environ and
environb are synchronized (modify environb updates environ, and vice versa).

environb is only available if supports_bytes_environ is True. New in version 3.2.

os.chdir(path)
os.fchdir(fd)
os.getcwd()

These functions are described in Files and Directories.

os.fsencode(filename)
Encode filename to the filesystem encoding with ’surrogateescape’ error handler, or ’strict’ on
Windows; return bytes unchanged.

fsdecode() is the reverse function. New in version 3.2.

350 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

os.fsdecode(filename)
Decode filename from the filesystem encoding with ’surrogateescape’ error handler, or ’strict’
on Windows; return str unchanged.

fsencode() is the reverse function. New in version 3.2.

os.get_exec_path(env=None)
Returns the list of directories that will be searched for a named executable, similar to a shell, when launching
a process. env, when specified, should be an environment variable dictionary to lookup the PATH in. By
default, when env is None, environ is used. New in version 3.2.

os.ctermid()
Return the filename corresponding to the controlling terminal of the process.

Availability: Unix.

os.getegid()
Return the effective group id of the current process. This corresponds to the “set id” bit on the file being
executed in the current process.

Availability: Unix.

os.geteuid()
Return the current process’s effective user id.

Availability: Unix.

os.getgid()
Return the real group id of the current process.

Availability: Unix.

os.getgroups()
Return list of supplemental group ids associated with the current process.

Availability: Unix.

os.initgroups(username, gid)
Call the system initgroups() to initialize the group access list with all of the groups of which the specified
username is a member, plus the specified group id.

Availability: Unix. New in version 3.2.

os.getlogin()
Return the name of the user logged in on the controlling terminal of the process. For most purposes, it is
more useful to use the environment variables

LOGNAME or USERNAME to find out who the user is, or pwd.getpwuid(os.getuid())[0] to get
the login name of the currently effective user id.

Availability: Unix, Windows.

os.getpgid(pid)
Return the process group id of the process with process id pid. If pid is 0, the process group id of the current
process is returned.

Availability: Unix.

os.getpgrp()
Return the id of the current process group.

Availability: Unix.

os.getpid()
Return the current process id.

Availability: Unix, Windows.

15.1. os — Miscellaneous operating system interfaces 351

The Python Library Reference, Release 3.2

os.getppid()
Return the parent’s process id. When the parent process has exited, on Unix the id returned is the one of the
init process (1), on Windows it is still the same id, which may be already reused by another process.

Availability: Unix, Windows Changed in version 3.2: Added support for Windows.

os.getresuid()
Return a tuple (ruid, euid, suid) denoting the current process’s real, effective, and saved user ids.

Availability: Unix. New in version 3.2.

os.getresgid()
Return a tuple (rgid, egid, sgid) denoting the current process’s real, effective, and saved group ids.

Availability: Unix. New in version 3.2.

os.getuid()
Return the current process’s user id.

Availability: Unix.

os.getenv(key, default=None)
Return the value of the environment variable key if it exists, or default if it doesn’t. key, default and the
result are str.

On Unix, keys and values are decoded with sys.getfilesystemencoding() and
’surrogateescape’ error handler. Use os.getenvb() if you would like to use a different
encoding.

Availability: most flavors of Unix, Windows.

os.getenvb(key, default=None)
Return the value of the environment variable key if it exists, or default if it doesn’t. key, default and the
result are bytes.

Availability: most flavors of Unix. New in version 3.2.

os.putenv(key, value)
Set the environment variable named key to the string value. Such changes to the environment affect subpro-
cesses started with os.system(), popen() or fork() and execv().

Availability: most flavors of Unix, Windows.

Note: On some platforms, including FreeBSD and Mac OS X, setting environ may cause memory leaks.
Refer to the system documentation for putenv.

When putenv() is supported, assignments to items in os.environ are automatically translated into
corresponding calls to putenv(); however, calls to putenv() don’t update os.environ, so it is
actually preferable to assign to items of os.environ.

os.setegid(egid)
Set the current process’s effective group id.

Availability: Unix.

os.seteuid(euid)
Set the current process’s effective user id.

Availability: Unix.

os.setgid(gid)
Set the current process’ group id.

Availability: Unix.

os.setgroups(groups)
Set the list of supplemental group ids associated with the current process to groups. groups must be a

352 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

sequence, and each element must be an integer identifying a group. This operation is typically available
only to the superuser.

Availability: Unix.

os.setpgrp()
Call the system call setpgrp() or setpgrp(0, 0)() depending on which version is implemented (if
any). See the Unix manual for the semantics.

Availability: Unix.

os.setpgid(pid, pgrp)
Call the system call setpgid() to set the process group id of the process with id pid to the process group
with id pgrp. See the Unix manual for the semantics.

Availability: Unix.

os.setregid(rgid, egid)
Set the current process’s real and effective group ids.

Availability: Unix.

os.setresgid(rgid, egid, sgid)
Set the current process’s real, effective, and saved group ids.

Availability: Unix. New in version 3.2.

os.setresuid(ruid, euid, suid)
Set the current process’s real, effective, and saved user ids.

Availability: Unix. New in version 3.2.

os.setreuid(ruid, euid)
Set the current process’s real and effective user ids.

Availability: Unix.

os.getsid(pid)
Call the system call getsid(). See the Unix manual for the semantics.

Availability: Unix.

os.setsid()
Call the system call setsid(). See the Unix manual for the semantics.

Availability: Unix.

os.setuid(uid)
Set the current process’s user id.

Availability: Unix.

os.strerror(code)
Return the error message corresponding to the error code in code. On platforms where strerror()
returns NULL when given an unknown error number, ValueError is raised.

Availability: Unix, Windows.

os.supports_bytes_environ
True if the native OS type of the environment is bytes (eg. False on Windows). New in version 3.2.

os.umask(mask)
Set the current numeric umask and return the previous umask.

Availability: Unix, Windows.

os.uname()
Return a 5-tuple containing information identifying the current operating system. The tuple con-

tains 5 strings: (sysname, nodename, release, version, machine). Some systems trun-
cate the nodename to 8 characters or to the leading component; a better way to get the hostname is
socket.gethostname() or even socket.gethostbyaddr(socket.gethostname()).

15.1. os — Miscellaneous operating system interfaces 353

The Python Library Reference, Release 3.2

Availability: recent flavors of Unix.

os.unsetenv(key)
Unset (delete) the environment variable named key. Such changes to the environment affect subprocesses
started with os.system(), popen() or fork() and execv().

When unsetenv() is supported, deletion of items in os.environ is automatically translated into a
corresponding call to unsetenv(); however, calls to unsetenv() don’t update os.environ, so it is
actually preferable to delete items of os.environ.

Availability: most flavors of Unix, Windows.

15.1.3 File Object Creation

These functions create new file objects. (See also open().)

os.fdopen(fd[, mode[, bufsize]])
Return an open file object connected to the file descriptor fd. The mode and bufsize arguments have the
same meaning as the corresponding arguments to the built-in open() function.

When specified, the mode argument must start with one of the letters ’r’, ’w’, or ’a’, otherwise a
ValueError is raised.

On Unix, when the mode argument starts with ’a’, the O_APPEND flag is set on the file descriptor (which
the fdopen() implementation already does on most platforms).

Availability: Unix, Windows.

15.1.4 File Descriptor Operations

These functions operate on I/O streams referenced using file descriptors.

File descriptors are small integers corresponding to a file that has been opened by the current process. For example,
standard input is usually file descriptor 0, standard output is 1, and standard error is 2. Further files opened by
a process will then be assigned 3, 4, 5, and so forth. The name “file descriptor” is slightly deceptive; on Unix
platforms, sockets and pipes are also referenced by file descriptors.

The fileno() method can be used to obtain the file descriptor associated with a file object when required. Note
that using the file descriptor directly will bypass the file object methods, ignoring aspects such as internal buffering
of data.

os.close(fd)
Close file descriptor fd.

Availability: Unix, Windows.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned
by os.open() or pipe(). To close a “file object” returned by the built-in function open() or by
popen() or fdopen(), use its close() method.

os.closerange(fd_low, fd_high)
Close all file descriptors from fd_low (inclusive) to fd_high (exclusive), ignoring errors. Equivalent to:

for fd in range(fd_low, fd_high):
try:

os.close(fd)
except OSError:

pass

Availability: Unix, Windows.

354 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

os.device_encoding(fd)
Return a string describing the encoding of the device associated with fd if it is connected to a terminal; else
return None.

os.dup(fd)
Return a duplicate of file descriptor fd.

Availability: Unix, Windows.

os.dup2(fd, fd2)
Duplicate file descriptor fd to fd2, closing the latter first if necessary.

Availability: Unix, Windows.

os.fchmod(fd, mode)
Change the mode of the file given by fd to the numeric mode. See the docs for chmod() for possible values
of mode.

Availability: Unix.

os.fchown(fd, uid, gid)
Change the owner and group id of the file given by fd to the numeric uid and gid. To leave one of the ids
unchanged, set it to -1.

Availability: Unix.

os.fdatasync(fd)
Force write of file with filedescriptor fd to disk. Does not force update of metadata.

Availability: Unix.

Note: This function is not available on MacOS.

os.fpathconf(fd, name)
Return system configuration information relevant to an open file. name specifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional names as
well. The names known to the host operating system are given in the pathconf_names dictionary. For
configuration variables not included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL
for the error number.

Availability: Unix.

os.fstat(fd)
Return status for file descriptor fd, like stat().

Availability: Unix, Windows.

os.fstatvfs(fd)
Return information about the filesystem containing the file associated with file descriptor fd, like
statvfs().

Availability: Unix.

os.fsync(fd)
Force write of file with filedescriptor fd to disk. On Unix, this calls the native fsync() function; on
Windows, the MS _commit() function.

If you’re starting with a buffered Python file object f, first do f.flush(), and then do
os.fsync(f.fileno()), to ensure that all internal buffers associated with f are written to disk.

Availability: Unix, and Windows.

15.1. os — Miscellaneous operating system interfaces 355

The Python Library Reference, Release 3.2

os.ftruncate(fd, length)
Truncate the file corresponding to file descriptor fd, so that it is at most length bytes in size.

Availability: Unix.

os.isatty(fd)
Return True if the file descriptor fd is open and connected to a tty(-like) device, else False.

Availability: Unix.

os.lseek(fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how: SEEK_SET or 0 to set
the position relative to the beginning of the file; SEEK_CUR or 1 to set it relative to the current position;
os.SEEK_END or 2 to set it relative to the end of the file.

Availability: Unix, Windows.

os.SEEK_SET
os.SEEK_CUR
os.SEEK_END

Parameters to the lseek() function. Their values are 0, 1, and 2, respectively. Availability: Windows,
Unix.

os.open(file, flags[, mode])
Open the file file and set various flags according to flags and possibly its mode according to mode. The
default mode is 0o777 (octal), and the current umask value is first masked out. Return the file descriptor
for the newly opened file.

For a description of the flag and mode values, see the C run-time documentation; flag constants (like
O_RDONLY and O_WRONLY) are defined in this module too (see open() flag constants). In particular,
on Windows adding O_BINARY is needed to open files in binary mode.

Availability: Unix, Windows.

Note: This function is intended for low-level I/O. For normal usage, use the built-in function open(),
which returns a file object with read() and write()methods (and many more). To wrap a file descriptor
in a file object, use fdopen().

os.openpty()
Open a new pseudo-terminal pair. Return a pair of file descriptors (master, slave) for the pty and

the tty, respectively. For a (slightly) more portable approach, use the pty module.

Availability: some flavors of Unix.

os.pipe()
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively.

Availability: Unix, Windows.

os.read(fd, n)
Read at most n bytes from file descriptor fd. Return a bytestring containing the bytes read. If the end of the
file referred to by fd has been reached, an empty bytes object is returned.

Availability: Unix, Windows.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned by
os.open() or pipe(). To read a “file object” returned by the built-in function open() or by popen()
or fdopen(), or sys.stdin, use its read() or readline() methods.

os.tcgetpgrp(fd)
Return the process group associated with the terminal given by fd (an open file descriptor as returned by
os.open()).

Availability: Unix.

356 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

os.tcsetpgrp(fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned by
os.open()) to pg.

Availability: Unix.

os.ttyname(fd)
Return a string which specifies the terminal device associated with file descriptor fd. If fd is not associated
with a terminal device, an exception is raised.

Availability: Unix.

os.write(fd, str)
Write the bytestring in str to file descriptor fd. Return the number of bytes actually written.

Availability: Unix, Windows.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned
by os.open() or pipe(). To write a “file object” returned by the built-in function open() or by
popen() or fdopen(), or sys.stdout or sys.stderr, use its write() method.

open() flag constants

The following constants are options for the flags parameter to the open() function. They can be combined using
the bitwise OR operator |. Some of them are not available on all platforms. For descriptions of their availability
and use, consult the open(2) manual page on Unix or the MSDN on Windows.

os.O_RDONLY
os.O_WRONLY
os.O_RDWR
os.O_APPEND
os.O_CREAT
os.O_EXCL
os.O_TRUNC

These constants are available on Unix and Windows.

os.O_DSYNC
os.O_RSYNC
os.O_SYNC
os.O_NDELAY
os.O_NONBLOCK
os.O_NOCTTY
os.O_SHLOCK
os.O_EXLOCK

These constants are only available on Unix.

os.O_BINARY
os.O_NOINHERIT
os.O_SHORT_LIVED
os.O_TEMPORARY
os.O_RANDOM
os.O_SEQUENTIAL
os.O_TEXT

These constants are only available on Windows.

os.O_ASYNC
os.O_DIRECT
os.O_DIRECTORY
os.O_NOFOLLOW
os.O_NOATIME

These constants are GNU extensions and not present if they are not defined by the C library.

15.1. os — Miscellaneous operating system interfaces 357

http://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx

The Python Library Reference, Release 3.2

15.1.5 Files and Directories

os.access(path, mode)
Use the real uid/gid to test for access to path. Note that most operations will use the effective uid/gid,
therefore this routine can be used in a suid/sgid environment to test if the invoking user has the specified
access to path. mode should be F_OK to test the existence of path, or it can be the inclusive OR of one or
more of R_OK, W_OK, and X_OK to test permissions. Return True if access is allowed, False if not. See
the Unix man page access(2) for more information.

Availability: Unix, Windows.

Note: Using access() to check if a user is authorized to e.g. open a file before actually doing so using
open() creates a security hole, because the user might exploit the short time interval between checking
and opening the file to manipulate it.

Note: I/O operations may fail even when access() indicates that they would succeed, particularly
for operations on network filesystems which may have permissions semantics beyond the usual POSIX
permission-bit model.

os.F_OK
Value to pass as the mode parameter of access() to test the existence of path.

os.R_OK
Value to include in the mode parameter of access() to test the readability of path.

os.W_OK
Value to include in the mode parameter of access() to test the writability of path.

os.X_OK
Value to include in the mode parameter of access() to determine if path can be executed.

os.chdir(path)
Change the current working directory to path.

Availability: Unix, Windows.

os.fchdir(fd)
Change the current working directory to the directory represented by the file descriptor fd. The descriptor
must refer to an opened directory, not an open file.

Availability: Unix.

os.getcwd()
Return a string representing the current working directory.

Availability: Unix, Windows.

os.getcwdb()
Return a bytestring representing the current working directory.

Availability: Unix, Windows.

os.chflags(path, flags)
Set the flags of path to the numeric flags. flags may take a combination (bitwise OR) of the following values
(as defined in the stat module):

•UF_NODUMP

•UF_IMMUTABLE

•UF_APPEND

•UF_OPAQUE

•UF_NOUNLINK

358 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

•SF_ARCHIVED

•SF_IMMUTABLE

•SF_APPEND

•SF_NOUNLINK

•SF_SNAPSHOT

Availability: Unix.

os.chroot(path)
Change the root directory of the current process to path. Availability: Unix.

os.chmod(path, mode)
Change the mode of path to the numeric mode. mode may take one of the following values (as defined in
the stat module) or bitwise ORed combinations of them:

•stat.S_ISUID

•stat.S_ISGID

•stat.S_ENFMT

•stat.S_ISVTX

•stat.S_IREAD

•stat.S_IWRITE

•stat.S_IEXEC

•stat.S_IRWXU

•stat.S_IRUSR

•stat.S_IWUSR

•stat.S_IXUSR

•stat.S_IRWXG

•stat.S_IRGRP

•stat.S_IWGRP

•stat.S_IXGRP

•stat.S_IRWXO

•stat.S_IROTH

•stat.S_IWOTH

•stat.S_IXOTH

Availability: Unix, Windows.

Note: Although Windows supports chmod(), you can only set the file’s read-only flag with it (via the
stat.S_IWRITE and stat.S_IREAD constants or a corresponding integer value). All other bits are
ignored.

os.chown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. To leave one of the ids unchanged, set
it to -1.

Availability: Unix.

15.1. os — Miscellaneous operating system interfaces 359

The Python Library Reference, Release 3.2

os.lchflags(path, flags)
Set the flags of path to the numeric flags, like chflags(), but do not follow symbolic links.

Availability: Unix.

os.lchmod(path, mode)
Change the mode of path to the numeric mode. If path is a symlink, this affects the symlink rather than the
target. See the docs for chmod() for possible values of mode.

Availability: Unix.

os.lchown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. This function will not follow symbolic
links.

Availability: Unix.

os.link(source, link_name)
Create a hard link pointing to source named link_name.

Availability: Unix, Windows. Changed in version 3.2: Added Windows support.

os.listdir(path=’.’)
Return a list containing the names of the entries in the directory given by path (default: ’.’). The list is
in arbitrary order. It does not include the special entries ’.’ and ’..’ even if they are present in the
directory.

This function can be called with a bytes or string argument, and returns filenames of the same datatype.

Availability: Unix, Windows. Changed in version 3.2: The path parameter became optional.

os.lstat(path)
Perform the equivalent of an lstat() system call on the given path. Similar to stat(), but does not
follow symbolic links. On platforms that do not support symbolic links, this is an alias for stat().
Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic links.

os.mkfifo(path[, mode])
Create a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0o666 (octal).
The current umask value is first masked out from the mode.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes:
the server opens the FIFO for reading, and the client opens it for writing. Note that mkfifo() doesn’t
open the FIFO — it just creates the rendezvous point.

Availability: Unix.

os.mknod(filename[, mode=0o600[, device]])
Create a filesystem node (file, device special file or named pipe) named filename. mode specifies both
the permissions to use and the type of node to be created, being combined (bitwise OR) with one of
stat.S_IFREG, stat.S_IFCHR, stat.S_IFBLK, and stat.S_IFIFO (those constants are avail-
able in stat). For stat.S_IFCHR and stat.S_IFBLK, device defines the newly created device special
file (probably using os.makedev()), otherwise it is ignored.

os.major(device)
Extract the device major number from a raw device number (usually the st_dev or st_rdev field from
stat).

os.minor(device)
Extract the device minor number from a raw device number (usually the st_dev or st_rdev field from
stat).

os.makedev(major, minor)
Compose a raw device number from the major and minor device numbers.

os.mkdir(path[, mode])
Create a directory named path with numeric mode mode. The default mode is 0o777 (octal). On some

360 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

systems, mode is ignored. Where it is used, the current umask value is first masked out. If the directory
already exists, OSError is raised.

It is also possible to create temporary directories; see the tempfile module’s tempfile.mkdtemp()
function.

Availability: Unix, Windows.

os.makedirs(path, mode=0o777, exist_ok=False)
Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories needed
to contain the leaf directory. If the target directory with the same mode as specified already exists, raises an
OSError exception if exist_ok is False, otherwise no exception is raised. If the directory cannot be created
in other cases, raises an OSError exception. The default mode is 0o777 (octal). On some systems, mode
is ignored. Where it is used, the current umask value is first masked out.

Note: makedirs() will become confused if the path elements to create include pardir.

This function handles UNC paths correctly. New in version 3.2: The exist_ok parameter.

os.pathconf(path, name)
Return system configuration information relevant to a named file. name specifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional names as
well. The names known to the host operating system are given in the pathconf_names dictionary. For
configuration variables not included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL
for the error number.

Availability: Unix.

os.pathconf_names
Dictionary mapping names accepted by pathconf() and fpathconf() to the integer values defined
for those names by the host operating system. This can be used to determine the set of names known to the
system. Availability: Unix.

os.readlink(path)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(path), result).

If the path is a string object, the result will also be a string object, and the call may raise an UnicodeDe-
codeError. If the path is a bytes object, the result will be a bytes object.

Availability: Unix, Windows Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic
links.

os.remove(path)
Remove (delete) the file path. If path is a directory, OSError is raised; see rmdir() below to remove
a directory. This is identical to the unlink() function documented below. On Windows, attempting to
remove a file that is in use causes an exception to be raised; on Unix, the directory entry is removed but the
storage allocated to the file is not made available until the original file is no longer in use.

Availability: Unix, Windows.

os.removedirs(path)
Remove directories recursively. Works like rmdir() except that, if the leaf directory is successfully
removed, removedirs() tries to successively remove every parent directory mentioned in path until an
error is raised (which is ignored, because it generally means that a parent directory is not empty). For
example, os.removedirs(’foo/bar/baz’) will first remove the directory ’foo/bar/baz’, and
then remove ’foo/bar’ and ’foo’ if they are empty. Raises OSError if the leaf directory could not
be successfully removed.

15.1. os — Miscellaneous operating system interfaces 361

The Python Library Reference, Release 3.2

os.rename(src, dst)
Rename the file or directory src to dst. If dst is a directory, OSError will be raised. On Unix, if dst exists
and is a file, it will be replaced silently if the user has permission. The operation may fail on some Unix
flavors if src and dst are on different filesystems. If successful, the renaming will be an atomic operation
(this is a POSIX requirement). On Windows, if dst already exists, OSError will be raised even if it is a
file; there may be no way to implement an atomic rename when dst names an existing file.

Availability: Unix, Windows.

os.renames(old, new)
Recursive directory or file renaming function. Works like rename(), except creation of any intermedi-
ate directories needed to make the new pathname good is attempted first. After the rename, directories
corresponding to rightmost path segments of the old name will be pruned away using removedirs().

Note: This function can fail with the new directory structure made if you lack permissions needed to
remove the leaf directory or file.

os.rmdir(path)
Remove (delete) the directory path. Only works when the directory is empty, otherwise, OSError is raised.
In order to remove whole directory trees, shutil.rmtree() can be used.

Availability: Unix, Windows.

os.stat(path)
Perform the equivalent of a stat() system call on the given path. (This function follows symlinks; to stat
a symlink use lstat().)

The return value is an object whose attributes correspond to the members of the stat structure, namely:

•st_mode - protection bits,

•st_ino - inode number,

•st_dev - device,

•st_nlink - number of hard links,

•st_uid - user id of owner,

•st_gid - group id of owner,

•st_size - size of file, in bytes,

•st_atime - time of most recent access,

•st_mtime - time of most recent content modification,

•st_ctime - platform dependent; time of most recent metadata change on Unix, or the time of cre-
ation on Windows)

On some Unix systems (such as Linux), the following attributes may also be available:

•st_blocks - number of blocks allocated for file

•st_blksize - filesystem blocksize

•st_rdev - type of device if an inode device

•st_flags - user defined flags for file

On other Unix systems (such as FreeBSD), the following attributes may be available (but may be only filled
out if root tries to use them):

•st_gen - file generation number

•st_birthtime - time of file creation

On Mac OS systems, the following attributes may also be available:

•st_rsize

362 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

•st_creator

•st_type

Note: The exact meaning and resolution of the st_atime, st_mtime, and st_ctime members de-
pends on the operating system and the file system. For example, on Windows systems using the FAT or
FAT32 file systems, st_mtime has 2-second resolution, and st_atime has only 1-day resolution. See
your operating system documentation for details.

For backward compatibility, the return value of stat() is also accessible as a tuple of at least 10 integers
giving the most important (and portable) members of the stat structure, in the order st_mode, st_ino,
st_dev, st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime, st_ctime. More items
may be added at the end by some implementations.

The standard module stat defines functions and constants that are useful for extracting information from
a stat structure. (On Windows, some items are filled with dummy values.)

Example:

>>> import os
>>> statinfo = os.stat(’somefile.txt’)
>>> statinfo
posix.stat_result(st_mode=33188, st_ino=7876932, st_dev=234881026,
st_nlink=1, st_uid=501, st_gid=501, st_size=264, st_atime=1297230295,
st_mtime=1297230027, st_ctime=1297230027)
>>> statinfo.st_size
264

Availability: Unix, Windows.

os.stat_float_times([newvalue])
Determine whether stat_result represents time stamps as float objects. If newvalue is True, future
calls to stat() return floats, if it is False, future calls return ints. If newvalue is omitted, return the
current setting.

For compatibility with older Python versions, accessing stat_result as a tuple always returns integers.

Python now returns float values by default. Applications which do not work correctly with floating point
time stamps can use this function to restore the old behaviour.

The resolution of the timestamps (that is the smallest possible fraction) depends on the system. Some
systems only support second resolution; on these systems, the fraction will always be zero.

It is recommended that this setting is only changed at program startup time in the __main__ module; libraries
should never change this setting. If an application uses a library that works incorrectly if floating point time
stamps are processed, this application should turn the feature off until the library has been corrected.

os.statvfs(path)
Perform a statvfs() system call on the given path. The return value is an object whose attributes
describe the filesystem on the given path, and correspond to the members of the statvfs struc-
ture, namely: f_bsize, f_frsize, f_blocks, f_bfree, f_bavail, f_files, f_ffree,
f_favail, f_flag, f_namemax.

Two module-level constants are defined for the f_flag attribute’s bit-flags: if ST_RDONLY is set, the
filesystem is mounted read-only, and if ST_NOSUID is set, the semantics of setuid/setgid bits are disabled
or not supported. Changed in version 3.2: The ST_RDONLY and ST_NOSUID constants were added.
Availability: Unix.

os.symlink(source, link_name)
os.symlink(source, link_name, target_is_directory=False)

Create a symbolic link pointing to source named link_name.

15.1. os — Miscellaneous operating system interfaces 363

The Python Library Reference, Release 3.2

On Windows, symlink version takes an additional optional parameter, target_is_directory, which defaults
to False.

On Windows, a symlink represents a file or a directory, and does not morph to the target dynamically. For
this reason, when creating a symlink on Windows, if the target is not already present, the symlink will
default to being a file symlink. If target_is_directory is set to True, the symlink will be created as a
directory symlink. This parameter is ignored if the target exists (and the symlink is created with the same
type as the target).

Symbolic link support was introduced in Windows 6.0 (Vista). symlink() will raise a
NotImplementedError on Windows versions earlier than 6.0.

Note: The SeCreateSymbolicLinkPrivilege is required in order to successfully create symlinks. This privi-
lege is not typically granted to regular users but is available to accounts which can escalate privileges to the
administrator level. Either obtaining the privilege or running your application as an administrator are ways
to successfully create symlinks.

OSError is raised when the function is called by an unprivileged user.

Availability: Unix, Windows. Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic
links.

os.unlink(path)
Remove (delete) the file path. This is the same function as remove(); the unlink() name is its tradi-
tional Unix name.

Availability: Unix, Windows.

os.utime(path, times)
Set the access and modified times of the file specified by path. If times is None, then the file’s access and
modified times are set to the current time. (The effect is similar to running the Unix program touch on the
path.) Otherwise, times must be a 2-tuple of numbers, of the form (atime, mtime) which is used to set
the access and modified times, respectively. Whether a directory can be given for path depends on whether
the operating system implements directories as files (for example, Windows does not). Note that the exact
times you set here may not be returned by a subsequent stat() call, depending on the resolution with
which your operating system records access and modification times; see stat().

Availability: Unix, Windows.

os.walk(top, topdown=True, onerror=None, followlinks=False)
Generate the file names in a directory tree by walking the tree either top-down or bottom-up. For each direc-
tory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath, dirnames,
filenames).

dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath
(excluding ’.’ and ’..’). filenames is a list of the names of the non-directory files in dirpath. Note that
the names in the lists contain no path components. To get a full path (which begins with top) to a file or
directory in dirpath, do os.path.join(dirpath, name).

If optional argument topdown is True or not specified, the triple for a directory is generated before the
triples for any of its subdirectories (directories are generated top-down). If topdown is False, the triple for
a directory is generated after the triples for all of its subdirectories (directories are generated bottom-up).

When topdown is True, the caller can modify the dirnames list in-place (perhaps using del or slice assign-
ment), and walk() will only recurse into the subdirectories whose names remain in dirnames; this can be
used to prune the search, impose a specific order of visiting, or even to inform walk() about directories the
caller creates or renames before it resumes walk() again. Modifying dirnames when topdown is False
is ineffective, because in bottom-up mode the directories in dirnames are generated before dirpath itself is
generated.

By default errors from the listdir() call are ignored. If optional argument onerror is specified, it should
be a function; it will be called with one argument, an OSError instance. It can report the error to continue

364 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

with the walk, or raise the exception to abort the walk. Note that the filename is available as the filename
attribute of the exception object.

By default, walk() will not walk down into symbolic links that resolve to directories. Set followlinks to
True to visit directories pointed to by symlinks, on systems that support them.

Note: Be aware that setting followlinks to True can lead to infinite recursion if a link points to a parent
directory of itself. walk() does not keep track of the directories it visited already.

Note: If you pass a relative pathname, don’t change the current working directory between resumptions of
walk(). walk() never changes the current directory, and assumes that its caller doesn’t either.

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn’t look under any CVS subdirectory:

import os
from os.path import join, getsize
for root, dirs, files in os.walk(’python/Lib/email’):

print(root, "consumes", end=" ")
print(sum(getsize(join(root, name)) for name in files), end=" ")
print("bytes in", len(files), "non-directory files")
if ’CVS’ in dirs:

dirs.remove(’CVS’) # don’t visit CVS directories

In the next example, walking the tree bottom-up is essential: rmdir() doesn’t allow deleting a directory
before the directory is empty:

Delete everything reachable from the directory named in "top",
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == ’/’, it
could delete all your disk files.
import os
for root, dirs, files in os.walk(top, topdown=False):

for name in files:
os.remove(os.path.join(root, name))

for name in dirs:
os.rmdir(os.path.join(root, name))

15.1.6 Process Management

These functions may be used to create and manage processes.

The various exec*() functions take a list of arguments for the new program loaded into the process. In each
case, the first of these arguments is passed to the new program as its own name rather than as an argument a
user may have typed on a command line. For the C programmer, this is the argv[0] passed to a program’s
main(). For example, os.execv(’/bin/echo’, [’foo’, ’bar’]) will only print bar on standard
output; foo will seem to be ignored.

os.abort()
Generate a SIGABRT signal to the current process. On Unix, the default behavior is to produce a core
dump; on Windows, the process immediately returns an exit code of 3. Be aware that programs which use
signal.signal() to register a handler for SIGABRT will behave differently.

Availability: Unix, Windows.

os.execl(path, arg0, arg1, ...)
os.execle(path, arg0, arg1, ..., env)
os.execlp(file, arg0, arg1, ...)

15.1. os — Miscellaneous operating system interfaces 365

The Python Library Reference, Release 3.2

os.execlpe(file, arg0, arg1, ..., env)
os.execv(path, args)
os.execve(path, args, env)
os.execvp(file, args)
os.execvpe(file, args, env)

These functions all execute a new program, replacing the current process; they do not return. On Unix, the
new executable is loaded into the current process, and will have the same process id as the caller. Errors
will be reported as OSError exceptions.

The current process is replaced immediately. Open file objects and descriptors are not flushed, so if
there may be data buffered on these open files, you should flush them using sys.stdout.flush()
or os.fsync() before calling an exec*() function.

The “l” and “v” variants of the exec*() functions differ in how command-line arguments are passed.
The “l” variants are perhaps the easiest to work with if the number of parameters is fixed when the code is
written; the individual parameters simply become additional parameters to the execl*() functions. The
“v” variants are good when the number of parameters is variable, with the arguments being passed in a list
or tuple as the args parameter. In either case, the arguments to the child process should start with the name
of the command being run, but this is not enforced.

The variants which include a “p” near the end (execlp(), execlpe(), execvp(), and execvpe())
will use the

PATH environment variable to locate the program file. When the environment is being replaced (using one
of the exec*e() variants, discussed in the next paragraph), the new environment is used as the source of
the PATH variable. The other variants, execl(), execle(), execv(), and execve(), will not use
the PATH variable to locate the executable; path must contain an appropriate absolute or relative path.

For execle(), execlpe(), execve(), and execvpe() (note that these all end in “e”), the env
parameter must be a mapping which is used to define the environment variables for the new process (these
are used instead of the current process’ environment); the functions execl(), execlp(), execv(),
and execvp() all cause the new process to inherit the environment of the current process.

Availability: Unix, Windows.

os._exit(n)
Exit the process with status n, without calling cleanup handlers, flushing stdio buffers, etc.

Availability: Unix, Windows.

Note: The standard way to exit is sys.exit(n). _exit() should normally only be used in the child
process after a fork().

The following exit codes are defined and can be used with _exit(), although they are not required. These are
typically used for system programs written in Python, such as a mail server’s external command delivery program.

Note: Some of these may not be available on all Unix platforms, since there is some variation. These constants
are defined where they are defined by the underlying platform.

os.EX_OK
Exit code that means no error occurred.

Availability: Unix.

os.EX_USAGE
Exit code that means the command was used incorrectly, such as when the wrong number of arguments are
given.

Availability: Unix.

os.EX_DATAERR
Exit code that means the input data was incorrect.

366 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Availability: Unix.

os.EX_NOINPUT
Exit code that means an input file did not exist or was not readable.

Availability: Unix.

os.EX_NOUSER
Exit code that means a specified user did not exist.

Availability: Unix.

os.EX_NOHOST
Exit code that means a specified host did not exist.

Availability: Unix.

os.EX_UNAVAILABLE
Exit code that means that a required service is unavailable.

Availability: Unix.

os.EX_SOFTWARE
Exit code that means an internal software error was detected.

Availability: Unix.

os.EX_OSERR
Exit code that means an operating system error was detected, such as the inability to fork or create a pipe.

Availability: Unix.

os.EX_OSFILE
Exit code that means some system file did not exist, could not be opened, or had some other kind of error.

Availability: Unix.

os.EX_CANTCREAT
Exit code that means a user specified output file could not be created.

Availability: Unix.

os.EX_IOERR
Exit code that means that an error occurred while doing I/O on some file.

Availability: Unix.

os.EX_TEMPFAIL
Exit code that means a temporary failure occurred. This indicates something that may not really be an error,
such as a network connection that couldn’t be made during a retryable operation.

Availability: Unix.

os.EX_PROTOCOL
Exit code that means that a protocol exchange was illegal, invalid, or not understood.

Availability: Unix.

os.EX_NOPERM
Exit code that means that there were insufficient permissions to perform the operation (but not intended for
file system problems).

Availability: Unix.

os.EX_CONFIG
Exit code that means that some kind of configuration error occurred.

Availability: Unix.

15.1. os — Miscellaneous operating system interfaces 367

The Python Library Reference, Release 3.2

os.EX_NOTFOUND
Exit code that means something like “an entry was not found”.

Availability: Unix.

os.fork()
Fork a child process. Return 0 in the child and the child’s process id in the parent. If an error occurs
OSError is raised.

Note that some platforms including FreeBSD <= 6.3, Cygwin and OS/2 EMX have known issues when
using fork() from a thread.

Availability: Unix.

os.forkpty()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair of
(pid, fd), where pid is 0 in the child, the new child’s process id in the parent, and fd is the file descriptor
of the master end of the pseudo-terminal. For a more portable approach, use the pty module. If an error
occurs OSError is raised.

Availability: some flavors of Unix.

os.kill(pid, sig)
Send signal sig to the process pid. Constants for the specific signals available on the host platform are

defined in the signal module.

Windows: The signal.CTRL_C_EVENT and signal.CTRL_BREAK_EVENT signals are special sig-
nals which can only be sent to console processes which share a common console window, e.g., some subpro-
cesses. Any other value for sig will cause the process to be unconditionally killed by the TerminateProcess
API, and the exit code will be set to sig. The Windows version of kill() additionally takes process
handles to be killed. New in version 3.2: Windows support.

os.killpg(pgid, sig)
Send the signal sig to the process group pgid.

Availability: Unix.

os.nice(increment)
Add increment to the process’s “niceness”. Return the new niceness.

Availability: Unix.

os.plock(op)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which
segments are locked.

Availability: Unix.

os.popen(...)
Run child processes, returning opened pipes for communications. These functions are described in section
File Object Creation.

os.spawnl(mode, path, ...)
os.spawnle(mode, path, ..., env)
os.spawnlp(mode, file, ...)
os.spawnlpe(mode, file, ..., env)
os.spawnv(mode, path, args)
os.spawnve(mode, path, args, env)
os.spawnvp(mode, file, args)
os.spawnvpe(mode, file, args, env)

Execute the program path in a new process.

(Note that the subprocess module provides more powerful facilities for spawning new processes and
retrieving their results; using that module is preferable to using these functions. Check especially the Re-
placing Older Functions with the subprocess Module section.)

368 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

If mode is P_NOWAIT, this function returns the process id of the new process; if mode is P_WAIT, returns
the process’s exit code if it exits normally, or -signal, where signal is the signal that killed the process.
On Windows, the process id will actually be the process handle, so can be used with the waitpid()
function.

The “l” and “v” variants of the spawn*() functions differ in how command-line arguments are passed.
The “l” variants are perhaps the easiest to work with if the number of parameters is fixed when the code is
written; the individual parameters simply become additional parameters to the spawnl*() functions. The
“v” variants are good when the number of parameters is variable, with the arguments being passed in a list
or tuple as the args parameter. In either case, the arguments to the child process must start with the name of
the command being run.

The variants which include a second “p” near the end (spawnlp(), spawnlpe(), spawnvp(), and
spawnvpe()) will use the

PATH environment variable to locate the program file. When the environment is being replaced (using one
of the spawn*e() variants, discussed in the next paragraph), the new environment is used as the source of
the PATH variable. The other variants, spawnl(), spawnle(), spawnv(), and spawnve(), will not
use the

PATH variable to locate the executable; path must contain an appropriate absolute or relative path.

For spawnle(), spawnlpe(), spawnve(), and spawnvpe() (note that these all end in “e”), the env
parameter must be a mapping which is used to define the environment variables for the new process (they are
used instead of the current process’ environment); the functions spawnl(), spawnlp(), spawnv(),
and spawnvp() all cause the new process to inherit the environment of the current process. Note that keys
and values in the env dictionary must be strings; invalid keys or values will cause the function to fail, with
a return value of 127.

As an example, the following calls to spawnlp() and spawnvpe() are equivalent:

import os
os.spawnlp(os.P_WAIT, ’cp’, ’cp’, ’index.html’, ’/dev/null’)

L = [’cp’, ’index.html’, ’/dev/null’]
os.spawnvpe(os.P_WAIT, ’cp’, L, os.environ)

Availability: Unix, Windows. spawnlp(), spawnlpe(), spawnvp() and spawnvpe() are not
available on Windows.

os.P_NOWAIT
os.P_NOWAITO

Possible values for the mode parameter to the spawn*() family of functions. If either of these values is
given, the spawn*() functions will return as soon as the new process has been created, with the process
id as the return value.

Availability: Unix, Windows.

os.P_WAIT
Possible value for the mode parameter to the spawn*() family of functions. If this is given as mode, the
spawn*() functions will not return until the new process has run to completion and will return the exit
code of the process the run is successful, or -signal if a signal kills the process.

Availability: Unix, Windows.

os.P_DETACH
os.P_OVERLAY

Possible values for the mode parameter to the spawn*() family of functions. These are less portable than
those listed above. P_DETACH is similar to P_NOWAIT, but the new process is detached from the console
of the calling process. If P_OVERLAY is used, the current process will be replaced; the spawn*() function
will not return.

Availability: Windows.

15.1. os — Miscellaneous operating system interfaces 369

The Python Library Reference, Release 3.2

os.startfile(path[, operation])
Start a file with its associated application.

When operation is not specified or ’open’, this acts like double-clicking the file in Windows Explorer, or
giving the file name as an argument to the start command from the interactive command shell: the file is
opened with whatever application (if any) its extension is associated.

When another operation is given, it must be a “command verb” that specifies what should be done with the
file. Common verbs documented by Microsoft are ’print’ and ’edit’ (to be used on files) as well as
’explore’ and ’find’ (to be used on directories).

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. The path parameter is relative to the
current directory. If you want to use an absolute path, make sure the first character is not a slash (’/’); the
underlying Win32 ShellExecute() function doesn’t work if it is. Use the os.path.normpath()
function to ensure that the path is properly encoded for Win32.

Availability: Windows.

os.system(command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system(), and has the same limitations. Changes to sys.stdin, etc. are not reflected in the environ-
ment of the executed command. If command generates any output, it will be sent to the interpreter standard
output stream.

On Unix, the return value is the exit status of the process encoded in the format specified for wait(). Note
that POSIX does not specify the meaning of the return value of the C system() function, so the return
value of the Python function is system-dependent.

On Windows, the return value is that returned by the system shell after running command. The shell is given
by the Windows environment variable

COMSPEC: it is usually cmd.exe, which returns the exit status of the command run; on systems using a
non-native shell, consult your shell documentation.

The subprocess module provides more powerful facilities for spawning new processes and retrieving
their results; using that module is preferable to using this function. See the Replacing Older Functions with
the subprocess Module section in the subprocess documentation for some helpful recipes.

Availability: Unix, Windows.

os.times()
Return a 5-tuple of floating point numbers indicating accumulated (processor or other) times, in seconds.
The items are: user time, system time, children’s user time, children’s system time, and elapsed real time
since a fixed point in the past, in that order. See the Unix manual page times(2) or the corresponding
Windows Platform API documentation. On Windows, only the first two items are filled, the others are zero.

Availability: Unix, Windows

os.wait()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a
16-bit number, whose low byte is the signal number that killed the process, and whose high byte is the exit
status (if the signal number is zero); the high bit of the low byte is set if a core file was produced.

Availability: Unix.

os.waitpid(pid, options)
The details of this function differ on Unix and Windows.

On Unix: Wait for completion of a child process given by process id pid, and return a tuple containing its
process id and exit status indication (encoded as for wait()). The semantics of the call are affected by the
value of the integer options, which should be 0 for normal operation.

If pid is greater than 0, waitpid() requests status information for that specific process. If pid is 0, the
request is for the status of any child in the process group of the current process. If pid is -1, the request
pertains to any child of the current process. If pid is less than -1, status is requested for any process in the
process group -pid (the absolute value of pid).

370 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

An OSError is raised with the value of errno when the syscall returns -1.

On Windows: Wait for completion of a process given by process handle pid, and return a tuple containing
pid, and its exit status shifted left by 8 bits (shifting makes cross-platform use of the function easier). A pid
less than or equal to 0 has no special meaning on Windows, and raises an exception. The value of integer
options has no effect. pid can refer to any process whose id is known, not necessarily a child process. The
spawn() functions called with P_NOWAIT return suitable process handles.

os.wait3([options])
Similar to waitpid(), except no process id argument is given and a 3-element tuple containing
the child’s process id, exit status indication, and resource usage information is returned. Refer to
resource.getrusage() for details on resource usage information. The option argument is the same as
that provided to waitpid() and wait4().

Availability: Unix.

os.wait4(pid, options)
Similar to waitpid(), except a 3-element tuple, containing the child’s process id, exit status indication,
and resource usage information is returned. Refer to resource.getrusage() for details on resource
usage information. The arguments to wait4() are the same as those provided to waitpid().

Availability: Unix.

os.WNOHANG
The option for waitpid() to return immediately if no child process status is available immediately. The
function returns (0, 0) in this case.

Availability: Unix.

os.WCONTINUED
This option causes child processes to be reported if they have been continued from a job control stop since
their status was last reported.

Availability: Some Unix systems.

os.WUNTRACED
This option causes child processes to be reported if they have been stopped but their current state has not
been reported since they were stopped.

Availability: Unix.

The following functions take a process status code as returned by system(), wait(), or waitpid() as a
parameter. They may be used to determine the disposition of a process.

os.WCOREDUMP(status)
Return True if a core dump was generated for the process, otherwise return False.

Availability: Unix.

os.WIFCONTINUED(status)
Return True if the process has been continued from a job control stop, otherwise return False.

Availability: Unix.

os.WIFSTOPPED(status)
Return True if the process has been stopped, otherwise return False.

Availability: Unix.

os.WIFSIGNALED(status)
Return True if the process exited due to a signal, otherwise return False.

Availability: Unix.

os.WIFEXITED(status)
Return True if the process exited using the exit(2) system call, otherwise return False.

Availability: Unix.

15.1. os — Miscellaneous operating system interfaces 371

The Python Library Reference, Release 3.2

os.WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to the exit(2) system call. Otherwise,
the return value is meaningless.

Availability: Unix.

os.WSTOPSIG(status)
Return the signal which caused the process to stop.

Availability: Unix.

os.WTERMSIG(status)
Return the signal which caused the process to exit.

Availability: Unix.

15.1.7 Miscellaneous System Information

os.confstr(name)
Return string-valued system configuration values. name specifies the configuration value to retrieve; it may
be a string which is the name of a defined system value; these names are specified in a number of standards
(POSIX, Unix 95, Unix 98, and others). Some platforms define additional names as well. The names known
to the host operating system are given as the keys of the confstr_names dictionary. For configuration
variables not included in that mapping, passing an integer for name is also accepted.

If the configuration value specified by name isn’t defined, None is returned.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in confstr_names, an OSError is raised with errno.EINVAL
for the error number.

Availability: Unix

os.confstr_names
Dictionary mapping names accepted by confstr() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

os.getloadavg()
Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes or raises
OSError if the load average was unobtainable.

Availability: Unix.

os.sysconf(name)
Return integer-valued system configuration values. If the configuration value specified by name isn’t de-
fined, -1 is returned. The comments regarding the name parameter for confstr() apply here as well;
the dictionary that provides information on the known names is given by sysconf_names.

Availability: Unix.

os.sysconf_names
Dictionary mapping names accepted by sysconf() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

The following data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined in the os.path module.

os.curdir
The constant string used by the operating system to refer to the current directory. This is ’.’ for Windows
and POSIX. Also available via os.path.

372 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

os.pardir
The constant string used by the operating system to refer to the parent directory. This is ’..’ for Windows
and POSIX. Also available via os.path.

os.sep
The character used by the operating system to separate pathname components. This is ’/’ for POSIX and
’\\’ for Windows. Note that knowing this is not sufficient to be able to parse or concatenate pathnames
— use os.path.split() and os.path.join() — but it is occasionally useful. Also available via
os.path.

os.altsep
An alternative character used by the operating system to separate pathname components, or None if only
one separator character exists. This is set to ’/’ on Windows systems where sep is a backslash. Also
available via os.path.

os.extsep
The character which separates the base filename from the extension; for example, the ’.’ in os.py. Also
available via os.path.

os.pathsep
The character conventionally used by the operating system to separate search path components (as in PATH),
such as ’:’ for POSIX or ’;’ for Windows. Also available via os.path.

os.defpath
The default search path used by exec*p*() and spawn*p*() if the environment doesn’t have a ’PATH’
key. Also available via os.path.

os.linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single
character, such as ’\n’ for POSIX, or multiple characters, for example, ’\r\n’ for Windows. Do not
use os.linesep as a line terminator when writing files opened in text mode (the default); use a single ’\n’
instead, on all platforms.

os.devnull
The file path of the null device. For example: ’/dev/null’ for POSIX, ’nul’ for Windows. Also
available via os.path.

15.1.8 Miscellaneous Functions

os.urandom(n)
Return a string of n random bytes suitable for cryptographic use.

This function returns random bytes from an OS-specific randomness source. The returned data should be
unpredictable enough for cryptographic applications, though its exact quality depends on the OS implemen-
tation. On a UNIX-like system this will query /dev/urandom, and on Windows it will use CryptGenRandom.
If a randomness source is not found, NotImplementedError will be raised.

15.2 io — Core tools for working with streams

15.2.1 Overview

The io module provides Python’s main facilities for dealing for various types of I/O. There are three main types
of I/O: text I/O, binary I/O, raw I/O. These are generic categories, and various backing stores can be used for each
of them. Concrete objects belonging to any of these categories will often be called streams; another common term
is file-like objects.

Independently of its category, each concrete stream object will also have various capabilities: it can be read-
only, write-only, or read-write. It can also allow arbitrary random access (seeking forwards or backwards to any
location), or only sequential access (for example in the case of a socket or pipe).

15.2. io — Core tools for working with streams 373

The Python Library Reference, Release 3.2

All streams are careful about the type of data you give to them. For example giving a str object to the write()
method of a binary stream will raise a TypeError. So will giving a bytes object to the write() method of
a text stream.

Text I/O

Text I/O expects and produces str objects. This means that whenever the backing store is natively made of bytes
(such as in the case of a file), encoding and decoding of data is made transparently as well as optional translation
of platform-specific newline characters.

The easiest way to create a text stream is with open(), optionally specifying an encoding:

f = open("myfile.txt", "r", encoding="utf-8")

In-memory text streams are also available as StringIO objects:

f = io.StringIO("some initial text data")

The text stream API is described in detail in the documentation for the TextIOBase.

Binary I/O

Binary I/O (also called buffered I/O) expects and produces bytes objects. No encoding, decoding, or newline
translation is performed. This category of streams can be used for all kinds of non-text data, and also when manual
control over the handling of text data is desired.

The easiest way to create a binary stream is with open() with ’b’ in the mode string:

f = open("myfile.jpg", "rb")

In-memory binary streams are also available as BytesIO objects:

f = io.BytesIO(b"some initial binary data: \x00\x01")

The binary stream API is described in detail in the docs of BufferedIOBase.

Other library modules may provide additional ways to create text or binary streams. See
socket.socket.makefile() for example.

Raw I/O

Raw I/O (also called unbuffered I/O) is generally used as a low-level building-block for binary and text streams; it
is rarely useful to directly manipulate a raw stream from user code. Nevertheless, you can create a raw stream by
opening a file in binary mode with buffering disabled:

f = open("myfile.jpg", "rb", buffering=0)

The raw stream API is described in detail in the docs of RawIOBase.

15.2.2 High-level Module Interface

io.DEFAULT_BUFFER_SIZE
An int containing the default buffer size used by the module’s buffered I/O classes. open() uses the file’s
blksize (as obtained by os.stat()) if possible.

io.open(file, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
This is an alias for the builtin open() function.

exception io.BlockingIOError
Error raised when blocking would occur on a non-blocking stream. It inherits IOError.

In addition to those of IOError, BlockingIOError has one attribute:

374 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

characters_written
An integer containing the number of characters written to the stream before it blocked.

exception io.UnsupportedOperation
An exception inheriting IOError and ValueError that is raised when an unsupported operation is called
on a stream.

In-memory streams

It is also possible to use a str or bytes-like object as a file for both reading and writing. For strings StringIO
can be used like a file opened in text mode. BytesIO can be used like a file opened in binary mode. Both provide
full read-write capabilities with random access.

See Also:

sys contains the standard IO streams: sys.stdin, sys.stdout, and sys.stderr.

15.2.3 Class hierarchy

The implementation of I/O streams is organized as a hierarchy of classes. First abstract base classes (ABCs),
which are used to specify the various categories of streams, then concrete classes providing the standard stream
implementations.

Note: The abstract base classes also provide default implementations of some methods in order to
help implementation of concrete stream classes. For example, BufferedIOBase provides unopti-
mized implementations of readinto() and readline().

At the top of the I/O hierarchy is the abstract base class IOBase. It defines the basic interface to a stream. Note,
however, that there is no separation between reading and writing to streams; implementations are allowed to raise
UnsupportedOperation if they do not support a given operation.

The RawIOBase ABC extends IOBase. It deals with the reading and writing of bytes to a stream. FileIO
subclasses RawIOBase to provide an interface to files in the machine’s file system.

The BufferedIOBase ABC deals with buffering on a raw byte stream (RawIOBase). Its subclasses,
BufferedWriter, BufferedReader, and BufferedRWPair buffer streams that are readable, writable,
and both readable and writable. BufferedRandom provides a buffered interface to random access streams.
Another BufferedIOBase subclass, BytesIO, is a stream of in-memory bytes.

The TextIOBaseABC, another subclass of IOBase, deals with streams whose bytes represent text, and handles
encoding and decoding to and from strings. TextIOWrapper, which extends it, is a buffered text interface to a
buffered raw stream (BufferedIOBase). Finally, StringIO is an in-memory stream for text.

Argument names are not part of the specification, and only the arguments of open() are intended to be used as
keyword arguments.

I/O Base Classes

class io.IOBase
The abstract base class for all I/O classes, acting on streams of bytes. There is no public constructor.

This class provides empty abstract implementations for many methods that derived classes can override
selectively; the default implementations represent a file that cannot be read, written or seeked.

Even though IOBase does not declare read(), readinto(), or write() because their signatures
will vary, implementations and clients should consider those methods part of the interface. Also, implemen-
tations may raise a IOError when operations they do not support are called.

The basic type used for binary data read from or written to a file is bytes. bytearrays are accepted too,
and in some cases (such as readinto) required. Text I/O classes work with str data.

15.2. io — Core tools for working with streams 375

The Python Library Reference, Release 3.2

Note that calling any method (even inquiries) on a closed stream is undefined. Implementations may raise
IOError in this case.

IOBase (and its subclasses) support the iterator protocol, meaning that an IOBase object can be iterated
over yielding the lines in a stream. Lines are defined slightly differently depending on whether the stream
is a binary stream (yielding bytes), or a text stream (yielding character strings). See readline() below.

IOBase is also a context manager and therefore supports the with statement. In this example, file is closed
after the with statement’s suite is finished—even if an exception occurs:

with open(’spam.txt’, ’w’) as file:
file.write(’Spam and eggs!’)

IOBase provides these data attributes and methods:

close()
Flush and close this stream. This method has no effect if the file is already closed. Once the file is
closed, any operation on the file (e.g. reading or writing) will raise a ValueError.

As a convenience, it is allowed to call this method more than once; only the first call, however, will
have an effect.

closed
True if the stream is closed.

fileno()
Return the underlying file descriptor (an integer) of the stream if it exists. An IOError is raised if
the IO object does not use a file descriptor.

flush()
Flush the write buffers of the stream if applicable. This does nothing for read-only and non-blocking
streams.

isatty()
Return True if the stream is interactive (i.e., connected to a terminal/tty device).

readable()
Return True if the stream can be read from. If False, read() will raise IOError.

readline(limit=-1)
Read and return one line from the stream. If limit is specified, at most limit bytes will be read.

The line terminator is always b’\n’ for binary files; for text files, the newlines argument to open()
can be used to select the line terminator(s) recognized.

readlines(hint=-1)
Read and return a list of lines from the stream. hint can be specified to control the number of lines
read: no more lines will be read if the total size (in bytes/characters) of all lines so far exceeds hint.

seek(offset, whence=SEEK_SET)
Change the stream position to the given byte offset. offset is interpreted relative to the position indi-
cated by whence. Values for whence are:

•SEEK_SET or 0 – start of the stream (the default); offset should be zero or positive

•SEEK_CUR or 1 – current stream position; offset may be negative

•SEEK_END or 2 – end of the stream; offset is usually negative

Return the new absolute position. New in version 3.1: The SEEK_* constants.

seekable()
Return True if the stream supports random access. If False, seek(), tell() and truncate()
will raise IOError.

tell()
Return the current stream position.

376 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

truncate(size=None)
Resize the stream to the given size in bytes (or the current position if size is not specified). The current
stream position isn’t changed. This resizing can extend or reduce the current file size. In case of
extension, the contents of the new file area depend on the platform (on most systems, additional bytes
are zero-filled, on Windows they’re undetermined). The new file size is returned.

writable()
Return True if the stream supports writing. If False, write() and truncate() will raise
IOError.

writelines(lines)
Write a list of lines to the stream. Line separators are not added, so it is usual for each of the lines
provided to have a line separator at the end.

class io.RawIOBase
Base class for raw binary I/O. It inherits IOBase. There is no public constructor.

Raw binary I/O typically provides low-level access to an underlying OS device or API, and does not try to
encapsulate it in high-level primitives (this is left to Buffered I/O and Text I/O, described later in this page).

In addition to the attributes and methods from IOBase, RawIOBase provides the following methods:

read(n=-1)
Read up to n bytes from the object and return them. As a convenience, if n is unspecified or -1,
readall() is called. Otherwise, only one system call is ever made. Fewer than n bytes may be
returned if the operating system call returns fewer than n bytes.

If 0 bytes are returned, and n was not 0, this indicates end of file. If the object is in non-blocking mode
and no bytes are available, None is returned.

readall()
Read and return all the bytes from the stream until EOF, using multiple calls to the stream if necessary.

readinto(b)
Read up to len(b) bytes into bytearray b and return the number of bytes read. If the object is in
non-blocking mode and no bytes are available, None is returned.

write(b)
Write the given bytes or bytearray object, b, to the underlying raw stream and return the number of
bytes written. This can be less than len(b), depending on specifics of the underlying raw stream,
and especially if it is in non-blocking mode. None is returned if the raw stream is set not to block and
no single byte could be readily written to it.

class io.BufferedIOBase
Base class for binary streams that support some kind of buffering. It inherits IOBase. There is no public
constructor.

The main difference with RawIOBase is that methods read(), readinto() and write() will try
(respectively) to read as much input as requested or to consume all given output, at the expense of making
perhaps more than one system call.

In addition, those methods can raise BlockingIOError if the underlying raw stream is in non-blocking
mode and cannot take or give enough data; unlike their RawIOBase counterparts, they will never return
None.

Besides, the read() method does not have a default implementation that defers to readinto().

A typical BufferedIOBase implementation should not inherit from a RawIOBase implementation, but
wrap one, like BufferedWriter and BufferedReader do.

BufferedIOBase provides or overrides these members in addition to those from IOBase:

raw
The underlying raw stream (a RawIOBase instance) that BufferedIOBase deals with. This is not
part of the BufferedIOBase API and may not exist on some implementations.

15.2. io — Core tools for working with streams 377

The Python Library Reference, Release 3.2

detach()
Separate the underlying raw stream from the buffer and return it.

After the raw stream has been detached, the buffer is in an unusable state.

Some buffers, like BytesIO, do not have the concept of a single raw stream to return from this
method. They raise UnsupportedOperation. New in version 3.1.

read(n=-1)
Read and return up to n bytes. If the argument is omitted, None, or negative, data is read and returned
until EOF is reached. An empty bytes object is returned if the stream is already at EOF.

If the argument is positive, and the underlying raw stream is not interactive, multiple raw reads may be
issued to satisfy the byte count (unless EOF is reached first). But for interactive raw streams, at most
one raw read will be issued, and a short result does not imply that EOF is imminent.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no
data available at the moment.

read1(n=-1)
Read and return up to n bytes, with at most one call to the underlying raw stream’s read() method.
This can be useful if you are implementing your own buffering on top of a BufferedIOBase object.

readinto(b)
Read up to len(b) bytes into bytearray b and return the number of bytes read.

Like read(), multiple reads may be issued to the underlying raw stream, unless the latter is ‘interac-
tive’.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no
data available at the moment.

write(b)
Write the given bytes or bytearray object, b and return the number of bytes written (never less than
len(b), since if the write fails an IOError will be raised). Depending on the actual implementa-
tion, these bytes may be readily written to the underlying stream, or held in a buffer for performance
and latency reasons.

When in non-blocking mode, a BlockingIOError is raised if the data needed to be written to the
raw stream but it couldn’t accept all the data without blocking.

Raw File I/O

class io.FileIO(name, mode=’r’, closefd=True)
FileIO represents an OS-level file containing bytes data. It implements the RawIOBase interface (and
therefore the IOBase interface, too).

The name can be one of two things:

•a character string or bytes object representing the path to the file which will be opened;

•an integer representing the number of an existing OS-level file descriptor to which the resulting
FileIO object will give access.

The mode can be ’r’, ’w’ or ’a’ for reading (default), writing, or appending. The file will be created if
it doesn’t exist when opened for writing or appending; it will be truncated when opened for writing. Add a
’+’ to the mode to allow simultaneous reading and writing.

The read() (when called with a positive argument), readinto() and write() methods on this class
will only make one system call.

In addition to the attributes and methods from IOBase and RawIOBase, FileIO provides the following
data attributes and methods:

mode
The mode as given in the constructor.

378 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

name
The file name. This is the file descriptor of the file when no name is given in the constructor.

Buffered Streams

Buffered I/O streams provide a higher-level interface to an I/O device than raw I/O does.

class io.BytesIO([initial_bytes])
A stream implementation using an in-memory bytes buffer. It inherits BufferedIOBase.

The argument initial_bytes contains optional initial bytes data.

BytesIO provides or overrides these methods in addition to those from BufferedIOBase and IOBase:

getbuffer()
Return a readable and writable view over the contents of the buffer without copying them. Also,
mutating the view will transparently update the contents of the buffer:

>>> b = io.BytesIO(b"abcdef")
>>> view = b.getbuffer()
>>> view[2:4] = b"56"
>>> b.getvalue()
b’ab56ef’

Note: As long as the view exists, the BytesIO object cannot be resized.

New in version 3.2.

getvalue()
Return bytes containing the entire contents of the buffer.

read1()
In BytesIO, this is the same as read().

class io.BufferedReader(raw, buffer_size=DEFAULT_BUFFER_SIZE)
A buffer providing higher-level access to a readable, sequential RawIOBase object. It inherits
BufferedIOBase. When reading data from this object, a larger amount of data may be requested from
the underlying raw stream, and kept in an internal buffer. The buffered data can then be returned directly on
subsequent reads.

The constructor creates a BufferedReader for the given readable raw stream and buffer_size. If
buffer_size is omitted, DEFAULT_BUFFER_SIZE is used.

BufferedReader provides or overrides these methods in addition to those from BufferedIOBase
and IOBase:

peek([n])
Return bytes from the stream without advancing the position. At most one single read on the raw
stream is done to satisfy the call. The number of bytes returned may be less or more than requested.

read([n])
Read and return n bytes, or if n is not given or negative, until EOF or if the read call would block in
non-blocking mode.

read1(n)
Read and return up to n bytes with only one call on the raw stream. If at least one byte is buffered,
only buffered bytes are returned. Otherwise, one raw stream read call is made.

class io.BufferedWriter(raw, buffer_size=DEFAULT_BUFFER_SIZE)
A buffer providing higher-level access to a writeable, sequential RawIOBase object. It inherits
BufferedIOBase. When writing to this object, data is normally held into an internal buffer. The buffer
will be written out to the underlying RawIOBase object under various conditions, including:

15.2. io — Core tools for working with streams 379

The Python Library Reference, Release 3.2

•when the buffer gets too small for all pending data;

•when flush() is called;

•when a seek() is requested (for BufferedRandom objects);

•when the BufferedWriter object is closed or destroyed.

The constructor creates a BufferedWriter for the given writeable raw stream. If the buffer_size is not
given, it defaults to DEFAULT_BUFFER_SIZE.

A third argument, max_buffer_size, is supported, but unused and deprecated.

BufferedWriter provides or overrides these methods in addition to those from BufferedIOBase
and IOBase:

flush()
Force bytes held in the buffer into the raw stream. A BlockingIOError should be raised if the raw
stream blocks.

write(b)
Write the bytes or bytearray object, b and return the number of bytes written. When in non-blocking
mode, a BlockingIOError is raised if the buffer needs to be written out but the raw stream blocks.

class io.BufferedRWPair(reader, writer, buffer_size=DEFAULT_BUFFER_SIZE)
A buffered I/O object giving a combined, higher-level access to two sequential RawIOBase objects: one
readable, the other writeable. It is useful for pairs of unidirectional communication channels (pipes, for
instance). It inherits BufferedIOBase.

reader and writer are RawIOBase objects that are readable and writeable respectively. If the buffer_size is
omitted it defaults to DEFAULT_BUFFER_SIZE.

A fourth argument, max_buffer_size, is supported, but unused and deprecated.

BufferedRWPair implements all of BufferedIOBase‘s methods except for detach(), which
raises UnsupportedOperation.

class io.BufferedRandom(raw, buffer_size=DEFAULT_BUFFER_SIZE)
A buffered interface to random access streams. It inherits BufferedReader and BufferedWriter,
and further supports seek() and tell() functionality.

The constructor creates a reader and writer for a seekable raw stream, given in the first argument. If the
buffer_size is omitted it defaults to DEFAULT_BUFFER_SIZE.

A third argument, max_buffer_size, is supported, but unused and deprecated.

BufferedRandom is capable of anything BufferedReader or BufferedWriter can do.

Text I/O

class io.TextIOBase
Base class for text streams. This class provides a character and line based interface to stream I/O. There is
no readinto() method because Python’s character strings are immutable. It inherits IOBase. There is
no public constructor.

TextIOBase provides or overrides these data attributes and methods in addition to those from IOBase:

encoding
The name of the encoding used to decode the stream’s bytes into strings, and to encode strings into
bytes.

errors
The error setting of the decoder or encoder.

newlines
A string, a tuple of strings, or None, indicating the newlines translated so far. Depending on the
implementation and the initial constructor flags, this may not be available.

380 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

buffer
The underlying binary buffer (a BufferedIOBase instance) that TextIOBase deals with. This is
not part of the TextIOBase API and may not exist on some implementations.

detach()
Separate the underlying binary buffer from the TextIOBase and return it.

After the underlying buffer has been detached, the TextIOBase is in an unusable state.

Some TextIOBase implementations, like StringIO, may not have the concept of an underlying
buffer and calling this method will raise UnsupportedOperation. New in version 3.1.

read(n)
Read and return at most n characters from the stream as a single str. If n is negative or None, reads
until EOF.

readline()
Read until newline or EOF and return a single str. If the stream is already at EOF, an empty string is
returned.

write(s)
Write the string s to the stream and return the number of characters written.

class io.TextIOWrapper(buffer, encoding=None, errors=None, newline=None,
line_buffering=False)

A buffered text stream over a BufferedIOBase binary stream. It inherits TextIOBase.

encoding gives the name of the encoding that the stream will be decoded or encoded with. It defaults to
locale.getpreferredencoding().

errors is an optional string that specifies how encoding and decoding errors are to be handled. Pass
’strict’ to raise a ValueError exception if there is an encoding error (the default of None has
the same effect), or pass ’ignore’ to ignore errors. (Note that ignoring encoding errors can lead to data
loss.) ’replace’ causes a replacement marker (such as ’?’) to be inserted where there is malformed
data. When writing, ’xmlcharrefreplace’ (replace with the appropriate XML character reference)
or ’backslashreplace’ (replace with backslashed escape sequences) can be used. Any other error
handling name that has been registered with codecs.register_error() is also valid.

newline can be None, ”, ’\n’, ’\r’, or ’\r\n’. It controls the handling of line endings. If it is None,
universal newlines is enabled. With this enabled, on input, the lines endings ’\n’, ’\r’, or ’\r\n’
are translated to ’\n’ before being returned to the caller. Conversely, on output, ’\n’ is translated to
the system default line separator, os.linesep. If newline is any other of its legal values, that newline
becomes the newline when the file is read and it is returned untranslated. On output, ’\n’ is converted to
the newline.

If line_buffering is True, flush() is implied when a call to write contains a newline character.

TextIOWrapper provides one attribute in addition to those of TextIOBase and its parents:

line_buffering
Whether line buffering is enabled.

class io.StringIO(initial_value=’‘, newline=None)
An in-memory stream for text I/O.

The initial value of the buffer (an empty string by default) can be set by providing initial_value. The newline
argument works like that of TextIOWrapper. The default is to do no newline translation.

StringIO provides this method in addition to those from TextIOBase and its parents:

getvalue()
Return a str containing the entire contents of the buffer at any time before the StringIO object’s
close() method is called.

Example usage:

15.2. io — Core tools for working with streams 381

The Python Library Reference, Release 3.2

import io

output = io.StringIO()
output.write(’First line.\n’)
print(’Second line.’, file=output)

Retrieve file contents -- this will be
’First line.\nSecond line.\n’
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

class io.IncrementalNewlineDecoder
A helper codec that decodes newlines for universal newlines mode. It inherits
codecs.IncrementalDecoder.

15.2.4 Advanced topics

Here we will discuss several advanced topics pertaining to the concrete I/O implementations described above.

Performance

Binary I/O

By reading and writing only large chunks of data even when the user asks for a single byte, buffered I/O is designed
to hide any inefficiency in calling and executing the operating system’s unbuffered I/O routines. The gain will vary
very much depending on the OS and the kind of I/O which is performed (for example, on some contemporary OSes
such as Linux, unbuffered disk I/O can be as fast as buffered I/O). The bottom line, however, is that buffered I/O
will offer you predictable performance regardless of the platform and the backing device. Therefore, it is most
always preferable to use buffered I/O rather than unbuffered I/O.

Text I/O

Text I/O over a binary storage (such as a file) is significantly slower than binary I/O over the same storage, because
it implies conversions from unicode to binary data using a character codec. This can become noticeable if you
handle huge amounts of text data (for example very large log files). Also, TextIOWrapper.tell() and
TextIOWrapper.seek() are both quite slow due to the reconstruction algorithm used.

StringIO, however, is a native in-memory unicode container and will exhibit similar speed to BytesIO.

Multi-threading

FileIO objects are thread-safe to the extent that the operating system calls (such as read(2) under Unix) they
are wrapping are thread-safe too.

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and
BufferedRWPair) protect their internal structures using a lock; it is therefore safe to call them from multi-
ple threads at once.

TextIOWrapper objects are not thread-safe.

382 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Reentrancy

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and
BufferedRWPair) are not reentrant. While reentrant calls will not happen in normal situations, they can
arise if you are doing I/O in a signal handler. If it is attempted to enter a buffered object again while already
being accessed from the same thread, then a RuntimeError is raised.

The above implicitly extends to text files, since the open() function will wrap a buffered object inside a
TextIOWrapper. This includes standard streams and therefore affects the built-in function print() as well.

15.3 time — Time access and conversions

This module provides various time-related functions. For related functionality, see also the datetime and
calendar modules.

Although this module is always available, not all functions are available on all platforms. Most of the functions
defined in this module call platform C library functions with the same name. It may sometimes be helpful to
consult the platform documentation, because the semantics of these functions varies among platforms.

An explanation of some terminology and conventions is in order.

• The epoch is the point where the time starts. On January 1st of that year, at 0 hours, the “time since the
epoch” is zero. For Unix, the epoch is 1970. To find out what the epoch is, look at gmtime(0).

• The functions in this module may not handle dates and times before the epoch or far in the future. The
cut-off point in the future is determined by the C library; for 32-bit systems, it is typically in 2038.

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t have year
2000 issues, since all dates and times are represented internally as seconds since the epoch. Function
strptime() can parse 2-digit years when given %y format code. When 2-digit years are parsed, they
are converted according to the POSIX and ISO C standards: values 69–99 are mapped to 1969–1999, and
values 0–68 are mapped to 2000–2068.

For backward compatibility, years with less than 4 digits are treated specially by asctime(), mktime(),
and strftime() functions that operate on a 9-tuple or struct_time values. If year (the first value in
the 9-tuple) is specified with less than 4 digits, its interpretation depends on the value of accept2dyear
variable.

If accept2dyear is true (default), a backward compatibility behavior is invoked as follows:

– for 2-digit year, century is guessed according to POSIX rules for %y strptime format. A deprecation
warning is issued when century information is guessed in this way.

– for 3-digit or negative year, a ValueError exception is raised.

If accept2dyear is false (set by the program or as a result of a non-empty value assigned to PYTHONY2K
environment variable) all year values are interpreted as given.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym
UTC is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year.
DST rules are magic (determined by local law) and can change from year to year. The C library has a table
containing the local rules (often it is read from a system file for flexibility) and is the only source of True
Wisdom in this respect.

• The precision of the various real-time functions may be less than suggested by the units in which their value
or argument is expressed. E.g. on most Unix systems, the clock “ticks” only 50 or 100 times a second.

• On the other hand, the precision of time() and sleep() is better than their Unix equivalents: times
are expressed as floating point numbers, time() returns the most accurate time available (using Unix
gettimeofday() where available), and sleep() will accept a time with a nonzero fraction (Unix
select() is used to implement this, where available).

15.3. time — Time access and conversions 383

The Python Library Reference, Release 3.2

• The time value as returned by gmtime(), localtime(), and strptime(), and accepted by
asctime(), mktime() and strftime(), is a sequence of 9 integers. The return values of gmtime(),
localtime(), and strptime() also offer attribute names for individual fields.

See struct_time for a description of these objects.

• Use the following functions to convert between time representations:

From To Use
seconds since the epoch struct_time in UTC gmtime()
seconds since the epoch struct_time in local time localtime()
struct_time in UTC seconds since the epoch calendar.timegm()
struct_time in local time seconds since the epoch mktime()

The module defines the following functions and data items:

time.accept2dyear
Boolean value indicating whether two-digit year values will be mapped to 1969–2068 range by
asctime(), mktime(), and strftime() functions. This is true by default, but will be set to false
if the environment variable PYTHONY2K has been set to a non-empty string. It may also be modified
at run time. Deprecated since version 3.2: Mapping of 2-digit year values by asctime(), mktime(),
and strftime() functions to 1969–2068 range is deprecated. Programs that need to process 2-digit years
should use %y code available in strptime() function or convert 2-digit year values to 4-digit themselves.

time.altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the
local DST timezone is east of UTC (as in Western Europe, including the UK). Only use this if daylight
is nonzero.

time.asctime([t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime() to a
string of the following form: ’Sun Jun 20 23:21:05 1993’. If t is not provided, the current time
as returned by localtime() is used. Locale information is not used by asctime().

Note: Unlike the C function of the same name, there is no trailing newline.

time.clock()
On Unix, return the current processor time as a floating point number expressed in seconds. The precision,
and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the
same name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a
floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution
is typically better than one microsecond.

time.ctime([secs])
Convert a time expressed in seconds since the epoch to a string representing local time. If secs is not
provided or None, the current time as returned by time() is used. ctime(secs) is equivalent to
asctime(localtime(secs)). Locale information is not used by ctime().

time.daylight
Nonzero if a DST timezone is defined.

time.gmtime([secs])
Convert a time expressed in seconds since the epoch to a struct_time in UTC in which the dst
flag is always zero. If secs is not provided or None, the current time as returned by time() is used.
Fractions of a second are ignored. See above for a description of the struct_time object. See
calendar.timegm() for the inverse of this function.

time.localtime([secs])
Like gmtime() but converts to local time. If secs is not provided or None, the current time as returned by
time() is used. The dst flag is set to 1 when DST applies to the given time.

384 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

time.mktime(t)
This is the inverse function of localtime(). Its argument is the struct_time or full 9-tuple (since the
dst flag is needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC.
It returns a floating point number, for compatibility with time(). If the input value cannot be represented
as a valid time, either OverflowError or ValueError will be raised (which depends on whether the
invalid value is caught by Python or the underlying C libraries). The earliest date for which it can generate
a time is platform-dependent.

time.sleep(secs)
Suspend execution for the given number of seconds. The argument may be a floating point number to
indicate a more precise sleep time. The actual suspension time may be less than that requested because any
caught signal will terminate the sleep() following execution of that signal’s catching routine. Also, the
suspension time may be longer than requested by an arbitrary amount because of the scheduling of other
activity in the system.

time.strftime(format[, t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime()
to a string as specified by the format argument. If t is not provided, the current time as returned by
localtime() is used. format must be a string. ValueError is raised if any field in t is outside of
the allowed range.

0 is a legal argument for any position in the time tuple; if it is normally illegal the value is forced to a correct
one.

The following directives can be embedded in the format string. They are shown without the optional field
width and precision specification, and are replaced by the indicated characters in the strftime() result:

Di-
rec-
tive

Meaning Notes

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. (1)
%S Second as a decimal number [00,61]. (2)
%U Week number of the year (Sunday as the first day of the week) as a decimal number

[00,53]. All days in a new year preceding the first Sunday are considered to be in week
0.

(3)

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number

[00,53]. All days in a new year preceding the first Monday are considered to be in week
0.

(3)

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number. (4)
%Z Time zone name (no characters if no time zone exists).
%% A literal ’%’ character.

Notes:

1.When used with the strptime() function, the %p directive only affects the output hour field if the
%I directive is used to parse the hour.

15.3. time — Time access and conversions 385

The Python Library Reference, Release 3.2

2.The range really is 0 to 61; value 60 is valid in timestamps representing leap seconds and value 61 is
supported for historical reasons.

3.When used with the strptime() function, %U and %W are only used in calculations when the day
of the week and the year are specified.

4.Produces different results depending on the value of time.accept2dyear variable. See Year 2000
(Y2K) issues for details.

Here is an example, a format for dates compatible with that specified in the

RFC 2822 Internet email standard. 1

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
’Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial
’%’ of a directive in the following order; this is also not portable. The field width is normally 2 except for
%j where it is 3.

time.strptime(string[, format])
Parse a string representing a time according to a format. The return value is a struct_time as returned
by gmtime() or localtime().

The format parameter uses the same directives as those used by strftime(); it defaults to "%a %b
%d %H:%M:%S %Y" which matches the formatting returned by ctime(). If string cannot be parsed
according to format, or if it has excess data after parsing, ValueError is raised. The default values used
to fill in any missing data when more accurate values cannot be inferred are (1900, 1, 1, 0, 0, 0,
0, 1, -1). Both string and format must be strings.

For example:

>>> import time
>>> time.strptime("30 Nov 00", "%d %b %y")
time.struct_time(tm_year=2000, tm_mon=11, tm_mday=30, tm_hour=0, tm_min=0,

tm_sec=0, tm_wday=3, tm_yday=335, tm_isdst=-1)

Support for the %Z directive is based on the values contained in tzname and whether daylight is true.
Because of this, it is platform-specific except for recognizing UTC and GMT which are always known (and
are considered to be non-daylight savings timezones).

Only the directives specified in the documentation are supported. Because strftime() is implemented
per platform it can sometimes offer more directives than those listed. But strptime() is independent
of any platform and thus does not necessarily support all directives available that are not documented as
supported.

class time.struct_time
The type of the time value sequence returned by gmtime(), localtime(), and strptime(). It is an
object with a named tuple interface: values can be accessed by index and by attribute name. The following
values are present:

1 The use of %Z is now deprecated, but the %z escape that expands to the preferred hour/minute offset is not supported by all ANSI C
libraries. Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to
4-digit years long before the year 2000. The 4-digit year has been mandated by RFC 2822, which obsoletes

RFC 822.

386 Chapter 15. Generic Operating System Services

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.2

Index Attribute Values
0 tm_year (for example, 1993)
1 tm_mon range [1, 12]
2 tm_mday range [1, 31]
3 tm_hour range [0, 23]
4 tm_min range [0, 59]
5 tm_sec range [0, 61]; see (2) in strftime() description
6 tm_wday range [0, 6], Monday is 0
7 tm_yday range [1, 366]
8 tm_isdst 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of [1, 12], not [0, 11]. A year value will be
handled as described under Year 2000 (Y2K) issues above. A -1 argument as the daylight savings flag,
passed to mktime() will usually result in the correct daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expecting a struct_time, or having ele-
ments of the wrong type, a TypeError is raised.

time.time()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even
though the time is always returned as a floating point number, not all systems provide time with a better
precision than 1 second. While this function normally returns non-decreasing values, it can return a lower
value than a previous call if the system clock has been set back between the two calls.

time.timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western Europe,
positive in the US, zero in the UK).

time.tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the
local DST timezone. If no DST timezone is defined, the second string should not be used.

time.tzset()
Resets the time conversion rules used by the library routines. The environment variable TZ specifies how
this is done.

Availability: Unix.

Note: Although in many cases, changing the TZ environment variable may affect the output of functions
like localtime() without calling tzset(), this behavior should not be relied on.

The TZ environment variable should contain no whitespace.

The standard format of the TZ environment variable is (whitespace added for clarity):

std offset [dst [offset [,start[/time], end[/time]]]]

Where the components are:

std and dst Three or more alphanumerics giving the timezone abbreviations. These will be propagated
into time.tzname

offset The offset has the form: ± hh[:mm[:ss]]. This indicates the value added the local time to
arrive at UTC. If preceded by a ‘-‘, the timezone is east of the Prime Meridian; otherwise, it is west.
If no offset follows dst, summer time is assumed to be one hour ahead of standard time.

start[/time], end[/time] Indicates when to change to and back from DST. The format of the
start and end dates are one of the following:

‘Jn’ The Julian day n (1 <= n <= 365). Leap days are not counted, so in all years February 28 is day
59 and March 1 is day 60.

‘n’ The zero-based Julian day (0 <= n <= 365). Leap days are counted, and it is possible to refer to
February 29.

15.3. time — Time access and conversions 387

The Python Library Reference, Release 3.2

‘Mm.n.d’ The d‘th day (0 <= d <= 6) or week n of month m of the year (1 <= n <= 5, 1 <= m <= 12,
where week 5 means “the last d day in month m” which may occur in either the fourth or the fifth
week). Week 1 is the first week in which the d‘th day occurs. Day zero is Sunday.

time has the same format as offset except that no leading sign (‘-‘ or ‘+’) is allowed. The default,
if time is not given, is 02:00:00.

>>> os.environ[’TZ’] = ’EST+05EDT,M4.1.0,M10.5.0’
>>> time.tzset()
>>> time.strftime(’%X %x %Z’)
’02:07:36 05/08/03 EDT’
>>> os.environ[’TZ’] = ’AEST-10AEDT-11,M10.5.0,M3.5.0’
>>> time.tzset()
>>> time.strftime(’%X %x %Z’)
’16:08:12 05/08/03 AEST’

On many Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more convenient to use the
system’s zoneinfo (tzfile(5)) database to specify the timezone rules. To do this, set the TZ envi-
ronment variable to the path of the required timezone datafile, relative to the root of the systems ‘zone-
info’ timezone database, usually located at /usr/share/zoneinfo. For example, ’US/Eastern’,
’Australia/Melbourne’, ’Egypt’ or ’Europe/Amsterdam’.

>>> os.environ[’TZ’] = ’US/Eastern’
>>> time.tzset()
>>> time.tzname
(’EST’, ’EDT’)
>>> os.environ[’TZ’] = ’Egypt’
>>> time.tzset()
>>> time.tzname
(’EET’, ’EEST’)

See Also:

Module datetime More object-oriented interface to dates and times.

Module locale Internationalization services. The locale settings can affect the return values for some of the
functions in the time module.

Module calendar General calendar-related functions. timegm() is the inverse of gmtime() from this mod-
ule.

15.4 argparse — Parser for command line options, arguments
and sub-commands

Source code: Lib/argparse.py New in version 3.2.

The argparse module makes it easy to write user friendly command line interfaces. The program defines what
arguments it requires, and argparse will figure out how to parse those out of sys.argv. The argparse
module also automatically generates help and usage messages and issues errors when users give the program
invalid arguments.

15.4.1 Example

The following code is a Python program that takes a list of integers and produces either the sum or the max:

388 Chapter 15. Generic Operating System Services

http://svn.python.org/view/python/branches/py3k/Lib/argparse.py?view=markup

The Python Library Reference, Release 3.2

import argparse

parser = argparse.ArgumentParser(description=’Process some integers.’)
parser.add_argument(’integers’, metavar=’N’, type=int, nargs=’+’,

help=’an integer for the accumulator’)
parser.add_argument(’--sum’, dest=’accumulate’, action=’store_const’,

const=sum, default=max,
help=’sum the integers (default: find the max)’)

args = parser.parse_args()
print(args.accumulate(args.integers))

Assuming the Python code above is saved into a file called prog.py, it can be run at the command line and
provides useful help messages:

$ prog.py -h
usage: prog.py [-h] [--sum] N [N ...]

Process some integers.

positional arguments:
N an integer for the accumulator

optional arguments:
-h, --help show this help message and exit
--sum sum the integers (default: find the max)

When run with the appropriate arguments, it prints either the sum or the max of the command-line integers:

$ prog.py 1 2 3 4
4

$ prog.py 1 2 3 4 --sum
10

If invalid arguments are passed in, it will issue an error:

$ prog.py a b c
usage: prog.py [-h] [--sum] N [N ...]
prog.py: error: argument N: invalid int value: ’a’

The following sections walk you through this example.

Creating a parser

The first step in using the argparse is creating an ArgumentParser object:

>>> parser = argparse.ArgumentParser(description=’Process some integers.’)

The ArgumentParser object will hold all the information necessary to parse the command line into python
data types.

Adding arguments

Filling an ArgumentParser with information about program arguments is done by making calls to the
add_argument() method. Generally, these calls tell the ArgumentParser how to take the strings on the
command line and turn them into objects. This information is stored and used when parse_args() is called.
For example:

>>> parser.add_argument(’integers’, metavar=’N’, type=int, nargs=’+’,
... help=’an integer for the accumulator’)
>>> parser.add_argument(’--sum’, dest=’accumulate’, action=’store_const’,

15.4. argparse — Parser for command line options, arguments and sub-commands 389

The Python Library Reference, Release 3.2

... const=sum, default=max,

... help=’sum the integers (default: find the max)’)

Later, calling parse_args() will return an object with two attributes, integers and accumulate. The
integers attribute will be a list of one or more ints, and the accumulate attribute will be either the sum()
function, if --sum was specified at the command line, or the max() function if it was not.

Parsing arguments

ArgumentParser parses args through the parse_args() method. This will inspect the command-line,
convert each arg to the appropriate type and then invoke the appropriate action. In most cases, this means a simple
namespace object will be built up from attributes parsed out of the command-line:

>>> parser.parse_args([’--sum’, ’7’, ’-1’, ’42’])
Namespace(accumulate=<built-in function sum>, integers=[7, -1, 42])

In a script, parse_args() will typically be called with no arguments, and the ArgumentParser will auto-
matically determine the command-line args from sys.argv.

15.4.2 ArgumentParser objects

class argparse.ArgumentParser([description][, epilog][, prog][, usage][, add_help][, argu-
ment_default][, parents][, prefix_chars][, conflict_handler][,
formatter_class])

Create a new ArgumentParser object. Each parameter has its own more detailed description below, but
in short they are:

•description - Text to display before the argument help.

•epilog - Text to display after the argument help.

•add_help - Add a -h/–help option to the parser. (default: True)

•argument_default - Set the global default value for arguments. (default: None)

•parents - A list of ArgumentParser objects whose arguments should also be included.

•prefix_chars - The set of characters that prefix optional arguments. (default: ‘-‘)

•fromfile_prefix_chars - The set of characters that prefix files from which additional arguments should
be read. (default: None)

•formatter_class - A class for customizing the help output.

•conflict_handler - Usually unnecessary, defines strategy for resolving conflicting optionals.

•prog - The name of the program (default: sys.argv[0])

•usage - The string describing the program usage (default: generated)

The following sections describe how each of these are used.

description

Most calls to the ArgumentParser constructor will use the description= keyword argument. This argu-
ment gives a brief description of what the program does and how it works. In help messages, the description is
displayed between the command-line usage string and the help messages for the various arguments:

>>> parser = argparse.ArgumentParser(description=’A foo that bars’)
>>> parser.print_help()
usage: argparse.py [-h]

A foo that bars

390 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

optional arguments:
-h, --help show this help message and exit

By default, the description will be line-wrapped so that it fits within the given space. To change this behavior, see
the formatter_class argument.

epilog

Some programs like to display additional description of the program after the description of the arguments. Such
text can be specified using the epilog= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(
... description=’A foo that bars’,
... epilog="And that’s how you’d foo a bar")
>>> parser.print_help()
usage: argparse.py [-h]

A foo that bars

optional arguments:
-h, --help show this help message and exit

And that’s how you’d foo a bar

As with the description argument, the epilog= text is by default line-wrapped, but this behavior can be adjusted
with the formatter_class argument to ArgumentParser.

add_help

By default, ArgumentParser objects add an option which simply displays the parser’s help message. For example,
consider a file named myprogram.py containing the following code:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--foo’, help=’foo help’)
args = parser.parse_args()

If -h or --help is supplied is at the command-line, the ArgumentParser help will be printed:

$ python myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo help

Occasionally, it may be useful to disable the addition of this help option. This can be achieved by passing False
as the add_help= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(prog=’PROG’, add_help=False)
>>> parser.add_argument(’--foo’, help=’foo help’)
>>> parser.print_help()
usage: PROG [--foo FOO]

optional arguments:
--foo FOO foo help

The help option is typically -h/--help. The exception to this is if the prefix_chars= is specified and
does not include ’-’, in which case -h and --help are not valid options. In this case, the first character in
prefix_chars is used to prefix the help options:

15.4. argparse — Parser for command line options, arguments and sub-commands 391

The Python Library Reference, Release 3.2

>>> parser = argparse.ArgumentParser(prog=’PROG’, prefix_chars=’+/’)
>>> parser.print_help()
usage: PROG [+h]

optional arguments:
+h, ++help show this help message and exit

prefix_chars

Most command-line options will use ’-’ as the prefix, e.g. -f/--foo. Parsers that need to support different
or additional prefix characters, e.g. for options like +f or /foo, may specify them using the prefix_chars=
argument to the ArgumentParser constructor:

>>> parser = argparse.ArgumentParser(prog=’PROG’, prefix_chars=’-+’)
>>> parser.add_argument(’+f’)
>>> parser.add_argument(’++bar’)
>>> parser.parse_args(’+f X ++bar Y’.split())
Namespace(bar=’Y’, f=’X’)

The prefix_chars= argument defaults to ’-’. Supplying a set of characters that does not include ’-’ will
cause -f/--foo options to be disallowed.

fromfile_prefix_chars

Sometimes, for example when dealing with a particularly long argument lists, it may make sense to keep the list of
arguments in a file rather than typing it out at the command line. If the fromfile_prefix_chars= argument
is given to the ArgumentParser constructor, then arguments that start with any of the specified characters will
be treated as files, and will be replaced by the arguments they contain. For example:

>>> with open(’args.txt’, ’w’) as fp:
... fp.write(’-f\nbar’)
>>> parser = argparse.ArgumentParser(fromfile_prefix_chars=’@’)
>>> parser.add_argument(’-f’)
>>> parser.parse_args([’-f’, ’foo’, ’@args.txt’])
Namespace(f=’bar’)

Arguments read from a file must by default be one per line (but see also convert_arg_line_to_args())
and are treated as if they were in the same place as the original file referencing argument on the command line.
So in the example above, the expression [’-f’, ’foo’, ’@args.txt’] is considered equivalent to the
expression [’-f’, ’foo’, ’-f’, ’bar’].

The fromfile_prefix_chars= argument defaults to None, meaning that arguments will never be treated
as file references.

argument_default

Generally, argument defaults are specified either by passing a default to add_argument() or by call-
ing the set_defaults() methods with a specific set of name-value pairs. Sometimes however, it may
be useful to specify a single parser-wide default for arguments. This can be accomplished by passing the
argument_default= keyword argument to ArgumentParser. For example, to globally suppress attribute
creation on parse_args() calls, we supply argument_default=SUPPRESS:

>>> parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
>>> parser.add_argument(’--foo’)
>>> parser.add_argument(’bar’, nargs=’?’)
>>> parser.parse_args([’--foo’, ’1’, ’BAR’])
Namespace(bar=’BAR’, foo=’1’)
>>> parser.parse_args([])
Namespace()

392 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

parents

Sometimes, several parsers share a common set of arguments. Rather than repeating the definitions of these argu-
ments, a single parser with all the shared arguments and passed to parents= argument to ArgumentParser
can be used. The parents= argument takes a list of ArgumentParser objects, collects all the positional and
optional actions from them, and adds these actions to the ArgumentParser object being constructed:

>>> parent_parser = argparse.ArgumentParser(add_help=False)
>>> parent_parser.add_argument(’--parent’, type=int)

>>> foo_parser = argparse.ArgumentParser(parents=[parent_parser])
>>> foo_parser.add_argument(’foo’)
>>> foo_parser.parse_args([’--parent’, ’2’, ’XXX’])
Namespace(foo=’XXX’, parent=2)

>>> bar_parser = argparse.ArgumentParser(parents=[parent_parser])
>>> bar_parser.add_argument(’--bar’)
>>> bar_parser.parse_args([’--bar’, ’YYY’])
Namespace(bar=’YYY’, parent=None)

Note that most parent parsers will specify add_help=False. Otherwise, the ArgumentParser will see two
-h/--help options (one in the parent and one in the child) and raise an error.

formatter_class

ArgumentParser objects allow the help formatting to be customized by specifying an alternate format-
ting class. Currently, there are three such classes: argparse.RawDescriptionHelpFormatter,
argparse.RawTextHelpFormatter and argparse.ArgumentDefaultsHelpFormatter. The
first two allow more control over how textual descriptions are displayed, while the last automatically adds in-
formation about argument default values.

By default, ArgumentParser objects line-wrap the description and epilog texts in command-line help mes-
sages:

>>> parser = argparse.ArgumentParser(
... prog=’PROG’,
... description=’’’this description
... was indented weird
... but that is okay’’’,
... epilog=’’’
... likewise for this epilog whose whitespace will
... be cleaned up and whose words will be wrapped
... across a couple lines’’’)
>>> parser.print_help()
usage: PROG [-h]

this description was indented weird but that is okay

optional arguments:
-h, --help show this help message and exit

likewise for this epilog whose whitespace will be cleaned up and whose words
will be wrapped across a couple lines

Passing argparse.RawDescriptionHelpFormatter as formatter_class= indicates that descrip-
tion and epilog are already correctly formatted and should not be line-wrapped:

>>> parser = argparse.ArgumentParser(
... prog=’PROG’,
... formatter_class=argparse.RawDescriptionHelpFormatter,

15.4. argparse — Parser for command line options, arguments and sub-commands 393

The Python Library Reference, Release 3.2

... description=textwrap.dedent(’’’\

... Please do not mess up this text!

... --------------------------------

... I have indented it

... exactly the way

... I want it

... ’’’))
>>> parser.print_help()
usage: PROG [-h]

Please do not mess up this text!

I have indented it
exactly the way
I want it

optional arguments:
-h, --help show this help message and exit

RawTextHelpFormatter maintains whitespace for all sorts of help text including argument descriptions.

The other formatter class available, ArgumentDefaultsHelpFormatter, will add information about the
default value of each of the arguments:

>>> parser = argparse.ArgumentParser(
... prog=’PROG’,
... formatter_class=argparse.ArgumentDefaultsHelpFormatter)
>>> parser.add_argument(’--foo’, type=int, default=42, help=’FOO!’)
>>> parser.add_argument(’bar’, nargs=’*’, default=[1, 2, 3], help=’BAR!’)
>>> parser.print_help()
usage: PROG [-h] [--foo FOO] [bar [bar ...]]

positional arguments:
bar BAR! (default: [1, 2, 3])

optional arguments:
-h, --help show this help message and exit
--foo FOO FOO! (default: 42)

conflict_handler

ArgumentParser objects do not allow two actions with the same option string. By default,
ArgumentParser objects raises an exception if an attempt is made to create an argument with an option string
that is already in use:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-f’, ’--foo’, help=’old foo help’)
>>> parser.add_argument(’--foo’, help=’new foo help’)
Traceback (most recent call last):
..

ArgumentError: argument --foo: conflicting option string(s): --foo

Sometimes (e.g. when using parents) it may be useful to simply override any older arguments with the same option
string. To get this behavior, the value ’resolve’ can be supplied to the conflict_handler= argument of
ArgumentParser:

>>> parser = argparse.ArgumentParser(prog=’PROG’, conflict_handler=’resolve’)
>>> parser.add_argument(’-f’, ’--foo’, help=’old foo help’)
>>> parser.add_argument(’--foo’, help=’new foo help’)
>>> parser.print_help()

394 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

usage: PROG [-h] [-f FOO] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
-f FOO old foo help
--foo FOO new foo help

Note that ArgumentParser objects only remove an action if all of its option strings are overridden. So, in the
example above, the old -f/--foo action is retained as the -f action, because only the --foo option string was
overridden.

prog

By default, ArgumentParser objects uses sys.argv[0] to determine how to display the name of the pro-
gram in help messages. This default is almost always desirable because it will make the help messages match how
the program was invoked on the command line. For example, consider a file named myprogram.py with the
following code:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--foo’, help=’foo help’)
args = parser.parse_args()

The help for this program will display myprogram.py as the program name (regardless of where the program
was invoked from):

$ python myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo help

$ cd ..
$ python subdir\myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo help

To change this default behavior, another value can be supplied using the prog= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(prog=’myprogram’)
>>> parser.print_help()
usage: myprogram [-h]

optional arguments:
-h, --help show this help message and exit

Note that the program name, whether determined from sys.argv[0] or from the prog= argument, is available
to help messages using the %(prog)s format specifier.

>>> parser = argparse.ArgumentParser(prog=’myprogram’)
>>> parser.add_argument(’--foo’, help=’foo of the %(prog)s program’)
>>> parser.print_help()
usage: myprogram [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo of the myprogram program

15.4. argparse — Parser for command line options, arguments and sub-commands 395

The Python Library Reference, Release 3.2

usage

By default, ArgumentParser calculates the usage message from the arguments it contains:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’--foo’, nargs=’?’, help=’foo help’)
>>> parser.add_argument(’bar’, nargs=’+’, help=’bar help’)
>>> parser.print_help()
usage: PROG [-h] [--foo [FOO]] bar [bar ...]

positional arguments:
bar bar help

optional arguments:
-h, --help show this help message and exit
--foo [FOO] foo help

The default message can be overridden with the usage= keyword argument:

>>> parser = argparse.ArgumentParser(prog=’PROG’, usage=’%(prog)s [options]’)
>>> parser.add_argument(’--foo’, nargs=’?’, help=’foo help’)
>>> parser.add_argument(’bar’, nargs=’+’, help=’bar help’)
>>> parser.print_help()
usage: PROG [options]

positional arguments:
bar bar help

optional arguments:
-h, --help show this help message and exit
--foo [FOO] foo help

The %(prog)s format specifier is available to fill in the program name in your usage messages.

15.4.3 The add_argument() method

ArgumentParser.add_argument(name or flags...[, action][, nargs][, const][, default][, type][,
choices][, required][, help][, metavar][, dest])

Define how a single command line argument should be parsed. Each parameter has its own more detailed
description below, but in short they are:

•name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo

•action - The basic type of action to be taken when this argument is encountered at the command-line.

•nargs - The number of command-line arguments that should be consumed.

•const - A constant value required by some action and nargs selections.

•default - The value produced if the argument is absent from the command-line.

•type - The type to which the command-line arg should be converted.

•choices - A container of the allowable values for the argument.

•required - Whether or not the command-line option may be omitted (optionals only).

•help - A brief description of what the argument does.

•metavar - A name for the argument in usage messages.

•dest - The name of the attribute to be added to the object returned by parse_args().

The following sections describe how each of these are used.

396 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

name or flags

The add_argument() method must know whether an optional argument, like -f or --foo, or a positional
argument, like a list of filenames, is expected. The first arguments passed to add_argument() must therefore
be either a series of flags, or a simple argument name. For example, an optional argument could be created like:

>>> parser.add_argument(’-f’, ’--foo’)

while a positional argument could be created like:

>>> parser.add_argument(’bar’)

When parse_args() is called, optional arguments will be identified by the - prefix, and the remaining argu-
ments will be assumed to be positional:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-f’, ’--foo’)
>>> parser.add_argument(’bar’)
>>> parser.parse_args([’BAR’])
Namespace(bar=’BAR’, foo=None)
>>> parser.parse_args([’BAR’, ’--foo’, ’FOO’])
Namespace(bar=’BAR’, foo=’FOO’)
>>> parser.parse_args([’--foo’, ’FOO’])
usage: PROG [-h] [-f FOO] bar
PROG: error: too few arguments

action

ArgumentParser objects associate command-line args with actions. These actions can do just about anything
with the command-line args associated with them, though most actions simply add an attribute to the object
returned by parse_args(). The action keyword argument specifies how the command-line args should be
handled. The supported actions are:

• ’store’ - This just stores the argument’s value. This is the default action. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’)
>>> parser.parse_args(’--foo 1’.split())
Namespace(foo=’1’)

• ’store_const’ - This stores the value specified by the const keyword argument. (Note that the
const keyword argument defaults to the rather unhelpful None.) The ’store_const’ action is
most commonly used with optional arguments that specify some sort of flag. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, action=’store_const’, const=42)
>>> parser.parse_args(’--foo’.split())
Namespace(foo=42)

• ’store_true’ and ’store_false’ - These store the values True and False respectively. These
are special cases of ’store_const’. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, action=’store_true’)
>>> parser.add_argument(’--bar’, action=’store_false’)
>>> parser.parse_args(’--foo --bar’.split())
Namespace(bar=False, foo=True)

• ’append’ - This stores a list, and appends each argument value to the list. This is useful to allow an option
to be specified multiple times. Example usage:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, action=’append’)

15.4. argparse — Parser for command line options, arguments and sub-commands 397

The Python Library Reference, Release 3.2

>>> parser.parse_args(’--foo 1 --foo 2’.split())
Namespace(foo=[’1’, ’2’])

• ’append_const’ - This stores a list, and appends the value specified by the const keyword argument
to the list. (Note that the const keyword argument defaults to None.) The ’append_const’ action is
typically useful when multiple arguments need to store constants to the same list. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--str’, dest=’types’, action=’append_const’, const=str)
>>> parser.add_argument(’--int’, dest=’types’, action=’append_const’, const=int)
>>> parser.parse_args(’--str --int’.split())
Namespace(types=[<type ’str’>, <type ’int’>])

• ’version’ - This expects a version= keyword argument in the add_argument() call, and prints
version information and exits when invoked.

>>> import argparse
>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’--version’, action=’version’, version=’%(prog)s 2.0’)
>>> parser.parse_args([’--version’])
PROG 2.0

You can also specify an arbitrary action by passing an object that implements the Action API. The easiest way
to do this is to extend argparse.Action, supplying an appropriate __call__ method. The __call__
method should accept four parameters:

• parser - The ArgumentParser object which contains this action.

• namespace - The namespace object that will be returned by parse_args(). Most actions add an
attribute to this object.

• values - The associated command-line args, with any type-conversions applied. (Type-conversions are
specified with the type keyword argument to add_argument().

• option_string - The option string that was used to invoke this action. The option_string argu-
ment is optional, and will be absent if the action is associated with a positional argument.

An example of a custom action:

>>> class FooAction(argparse.Action):
... def __call__(self, parser, namespace, values, option_string=None):
... print(’%r %r %r’ % (namespace, values, option_string))
... setattr(namespace, self.dest, values)
...
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, action=FooAction)
>>> parser.add_argument(’bar’, action=FooAction)
>>> args = parser.parse_args(’1 --foo 2’.split())
Namespace(bar=None, foo=None) ’1’ None
Namespace(bar=’1’, foo=None) ’2’ ’--foo’
>>> args
Namespace(bar=’1’, foo=’2’)

nargs

ArgumentParser objects usually associate a single command-line argument with a single action to be taken. The
nargs keyword argument associates a different number of command-line arguments with a single action.. The
supported values are:

• N (an integer). N args from the command-line will be gathered together into a list. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, nargs=2)
>>> parser.add_argument(’bar’, nargs=1)

398 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> parser.parse_args(’c --foo a b’.split())
Namespace(bar=[’c’], foo=[’a’, ’b’])

Note that nargs=1 produces a list of one item. This is different from the default, in which the item is
produced by itself.

• ’?’. One arg will be consumed from the command-line if possible, and produced as a single item. If no
command-line arg is present, the value from default will be produced. Note that for optional arguments,
there is an additional case - the option string is present but not followed by a command-line arg. In this case
the value from const will be produced. Some examples to illustrate this:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, nargs=’?’, const=’c’, default=’d’)
>>> parser.add_argument(’bar’, nargs=’?’, default=’d’)
>>> parser.parse_args(’XX --foo YY’.split())
Namespace(bar=’XX’, foo=’YY’)
>>> parser.parse_args(’XX --foo’.split())
Namespace(bar=’XX’, foo=’c’)
>>> parser.parse_args(’’.split())
Namespace(bar=’d’, foo=’d’)

One of the more common uses of nargs=’?’ is to allow optional input and output files:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’infile’, nargs=’?’, type=argparse.FileType(’r’),
... default=sys.stdin)
>>> parser.add_argument(’outfile’, nargs=’?’, type=argparse.FileType(’w’),
... default=sys.stdout)
>>> parser.parse_args([’input.txt’, ’output.txt’])
Namespace(infile=<_io.TextIOWrapper name=’input.txt’ encoding=’UTF-8’>,

outfile=<_io.TextIOWrapper name=’output.txt’ encoding=’UTF-8’>)
>>> parser.parse_args([])
Namespace(infile=<_io.TextIOWrapper name=’<stdin>’ encoding=’UTF-8’>,

outfile=<_io.TextIOWrapper name=’<stdout>’ encoding=’UTF-8’>)

• ’*’. All command-line args present are gathered into a list. Note that it generally doesn’t make much
sense to have more than one positional argument with nargs=’*’, but multiple optional arguments with
nargs=’*’ is possible. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, nargs=’*’)
>>> parser.add_argument(’--bar’, nargs=’*’)
>>> parser.add_argument(’baz’, nargs=’*’)
>>> parser.parse_args(’a b --foo x y --bar 1 2’.split())
Namespace(bar=[’1’, ’2’], baz=[’a’, ’b’], foo=[’x’, ’y’])

• ’+’. Just like ’*’, all command-line args present are gathered into a list. Additionally, an error message
will be generated if there wasn’t at least one command-line arg present. For example:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’foo’, nargs=’+’)
>>> parser.parse_args(’a b’.split())
Namespace(foo=[’a’, ’b’])
>>> parser.parse_args(’’.split())
usage: PROG [-h] foo [foo ...]
PROG: error: too few arguments

If the nargs keyword argument is not provided, the number of args consumed is determined by the action.
Generally this means a single command-line arg will be consumed and a single item (not a list) will be produced.

15.4. argparse — Parser for command line options, arguments and sub-commands 399

The Python Library Reference, Release 3.2

const

The const argument of add_argument() is used to hold constant values that are not read from the command
line but are required for the various ArgumentParser actions. The two most common uses of it are:

• When add_argument() is called with action=’store_const’ or action=’append_const’.
These actions add the const value to one of the attributes of the object returned by parse_args(). See
the action description for examples.

• When add_argument() is called with option strings (like -f or --foo) and nargs=’?’. This creates
an optional argument that can be followed by zero or one command-line args. When parsing the command-
line, if the option string is encountered with no command-line arg following it, the value of const will be
assumed instead. See the nargs description for examples.

The const keyword argument defaults to None.

default

All optional arguments and some positional arguments may be omitted at the command-line. The default
keyword argument of add_argument(), whose value defaults to None, specifies what value should be used if
the command-line arg is not present. For optional arguments, the default value is used when the option string
was not present at the command line:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, default=42)
>>> parser.parse_args(’--foo 2’.split())
Namespace(foo=’2’)
>>> parser.parse_args(’’.split())
Namespace(foo=42)

For positional arguments with nargs =’?’ or ’*’, the default value is used when no command-line arg was
present:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’foo’, nargs=’?’, default=42)
>>> parser.parse_args(’a’.split())
Namespace(foo=’a’)
>>> parser.parse_args(’’.split())
Namespace(foo=42)

Providing default=argparse.SUPPRESS causes no attribute to be added if the command-line argument
was not present.:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, default=argparse.SUPPRESS)
>>> parser.parse_args([])
Namespace()
>>> parser.parse_args([’--foo’, ’1’])
Namespace(foo=’1’)

type

By default, ArgumentParser objects read command-line args in as simple strings. However, quite often the
command-line string should instead be interpreted as another type, like a float or int. The type keyword
argument of add_argument() allows any necessary type-checking and type-conversions to be performed.
Common built-in types and functions can be used directly as the value of the type argument:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’foo’, type=int)
>>> parser.add_argument(’bar’, type=open)

400 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> parser.parse_args(’2 temp.txt’.split())
Namespace(bar=<_io.TextIOWrapper name=’temp.txt’ encoding=’UTF-8’>, foo=2)

To ease the use of various types of files, the argparse module provides the factory FileType which takes the mode=
and bufsize= arguments of the open() function. For example, FileType(’w’) can be used to create a
writable file:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’bar’, type=argparse.FileType(’w’))
>>> parser.parse_args([’out.txt’])
Namespace(bar=<_io.TextIOWrapper name=’out.txt’ encoding=’UTF-8’>)

type= can take any callable that takes a single string argument and returns the type-converted value:

>>> def perfect_square(string):
... value = int(string)
... sqrt = math.sqrt(value)
... if sqrt != int(sqrt):
... msg = "%r is not a perfect square" % string
... raise argparse.ArgumentTypeError(msg)
... return value
...
>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’foo’, type=perfect_square)
>>> parser.parse_args(’9’.split())
Namespace(foo=9)
>>> parser.parse_args(’7’.split())
usage: PROG [-h] foo
PROG: error: argument foo: ’7’ is not a perfect square

The choices keyword argument may be more convenient for type checkers that simply check against a range of
values:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’foo’, type=int, choices=xrange(5, 10))
>>> parser.parse_args(’7’.split())
Namespace(foo=7)
>>> parser.parse_args(’11’.split())
usage: PROG [-h] {5,6,7,8,9}
PROG: error: argument foo: invalid choice: 11 (choose from 5, 6, 7, 8, 9)

See the choices section for more details.

choices

Some command-line args should be selected from a restricted set of values. These can be handled by passing a
container object as the choices keyword argument to add_argument(). When the command-line is parsed,
arg values will be checked, and an error message will be displayed if the arg was not one of the acceptable values:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’foo’, choices=’abc’)
>>> parser.parse_args(’c’.split())
Namespace(foo=’c’)
>>> parser.parse_args(’X’.split())
usage: PROG [-h] {a,b,c}
PROG: error: argument foo: invalid choice: ’X’ (choose from ’a’, ’b’, ’c’)

Note that inclusion in the choices container is checked after any type conversions have been performed, so the
type of the objects in the choices container should match the type specified:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’foo’, type=complex, choices=[1, 1j])

15.4. argparse — Parser for command line options, arguments and sub-commands 401

The Python Library Reference, Release 3.2

>>> parser.parse_args(’1j’.split())
Namespace(foo=1j)
>>> parser.parse_args(’-- -4’.split())
usage: PROG [-h] {1,1j}
PROG: error: argument foo: invalid choice: (-4+0j) (choose from 1, 1j)

Any object that supports the in operator can be passed as the choices value, so dict objects, set objects,
custom containers, etc. are all supported.

required

In general, the argparse module assumes that flags like -f and --bar indicate optional arguments, which can
always be omitted at the command-line. To make an option required, True can be specified for the required=
keyword argument to add_argument():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, required=True)
>>> parser.parse_args([’--foo’, ’BAR’])
Namespace(foo=’BAR’)
>>> parser.parse_args([])
usage: argparse.py [-h] [--foo FOO]
argparse.py: error: option --foo is required

As the example shows, if an option is marked as required, parse_args() will report an error if that option
is not present at the command line.

Note: Required options are generally considered bad form because users expect options to be optional, and thus
they should be avoided when possible.

help

The help value is a string containing a brief description of the argument. When a user requests help (usually by
using -h or --help at the command-line), these help descriptions will be displayed with each argument:

>>> parser = argparse.ArgumentParser(prog=’frobble’)
>>> parser.add_argument(’--foo’, action=’store_true’,
... help=’foo the bars before frobbling’)
>>> parser.add_argument(’bar’, nargs=’+’,
... help=’one of the bars to be frobbled’)
>>> parser.parse_args(’-h’.split())
usage: frobble [-h] [--foo] bar [bar ...]

positional arguments:
bar one of the bars to be frobbled

optional arguments:
-h, --help show this help message and exit
--foo foo the bars before frobbling

The help strings can include various format specifiers to avoid repetition of things like the program name or the
argument default. The available specifiers include the program name, %(prog)s and most keyword arguments
to add_argument(), e.g. %(default)s, %(type)s, etc.:

>>> parser = argparse.ArgumentParser(prog=’frobble’)
>>> parser.add_argument(’bar’, nargs=’?’, type=int, default=42,
... help=’the bar to %(prog)s (default: %(default)s)’)
>>> parser.print_help()
usage: frobble [-h] [bar]

402 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

positional arguments:
bar the bar to frobble (default: 42)

optional arguments:
-h, --help show this help message and exit

metavar

When ArgumentParser generates help messages, it need some way to refer to each expected argument. By
default, ArgumentParser objects use the dest value as the “name” of each object. By default, for positional argu-
ment actions, the dest value is used directly, and for optional argument actions, the dest value is uppercased. So,
a single positional argument with dest=’bar’ will that argument will be referred to as bar. A single optional
argument --foo that should be followed by a single command-line arg will be referred to as FOO. An example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’)
>>> parser.add_argument(’bar’)
>>> parser.parse_args(’X --foo Y’.split())
Namespace(bar=’X’, foo=’Y’)
>>> parser.print_help()
usage: [-h] [--foo FOO] bar

positional arguments:
bar

optional arguments:
-h, --help show this help message and exit
--foo FOO

An alternative name can be specified with metavar:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, metavar=’YYY’)
>>> parser.add_argument(’bar’, metavar=’XXX’)
>>> parser.parse_args(’X --foo Y’.split())
Namespace(bar=’X’, foo=’Y’)
>>> parser.print_help()
usage: [-h] [--foo YYY] XXX

positional arguments:
XXX

optional arguments:
-h, --help show this help message and exit
--foo YYY

Note that metavar only changes the displayed name - the name of the attribute on the parse_args() object
is still determined by the dest value.

Different values of nargs may cause the metavar to be used multiple times. Providing a tuple to metavar
specifies a different display for each of the arguments:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-x’, nargs=2)
>>> parser.add_argument(’--foo’, nargs=2, metavar=(’bar’, ’baz’))
>>> parser.print_help()
usage: PROG [-h] [-x X X] [--foo bar baz]

optional arguments:
-h, --help show this help message and exit

15.4. argparse — Parser for command line options, arguments and sub-commands 403

The Python Library Reference, Release 3.2

-x X X
--foo bar baz

dest

Most ArgumentParser actions add some value as an attribute of the object returned by parse_args().
The name of this attribute is determined by the dest keyword argument of add_argument(). For positional
argument actions, dest is normally supplied as the first argument to add_argument():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’bar’)
>>> parser.parse_args(’XXX’.split())
Namespace(bar=’XXX’)

For optional argument actions, the value of dest is normally inferred from the option strings.
ArgumentParser generates the value of dest by taking the first long option string and stripping away the
initial ’--’ string. If no long option strings were supplied, dest will be derived from the first short option string
by stripping the initial ’-’ character. Any internal ’-’ characters will be converted to ’_’ characters to make
sure the string is a valid attribute name. The examples below illustrate this behavior:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’-f’, ’--foo-bar’, ’--foo’)
>>> parser.add_argument(’-x’, ’-y’)
>>> parser.parse_args(’-f 1 -x 2’.split())
Namespace(foo_bar=’1’, x=’2’)
>>> parser.parse_args(’--foo 1 -y 2’.split())
Namespace(foo_bar=’1’, x=’2’)

dest allows a custom attribute name to be provided:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, dest=’bar’)
>>> parser.parse_args(’--foo XXX’.split())
Namespace(bar=’XXX’)

15.4.4 The parse_args() method

ArgumentParser.parse_args(args=None, namespace=None)
Convert argument strings to objects and assign them as attributes of the namespace. Return the populated
namespace.

Previous calls to add_argument() determine exactly what objects are created and how they are assigned.
See the documentation for add_argument() for details.

By default, the arg strings are taken from sys.argv, and a new empty Namespace object is created for
the attributes.

Option value syntax

The parse_args() method supports several ways of specifying the value of an option (if it takes one). In the
simplest case, the option and its value are passed as two separate arguments:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-x’)
>>> parser.add_argument(’--foo’)
>>> parser.parse_args(’-x X’.split())
Namespace(foo=None, x=’X’)
>>> parser.parse_args(’--foo FOO’.split())
Namespace(foo=’FOO’, x=None)

404 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

For long options (options with names longer than a single character), the option and value can also be passed as a
single command line argument, using = to separate them:

>>> parser.parse_args(’--foo=FOO’.split())
Namespace(foo=’FOO’, x=None)

For short options (options only one character long), the option and its value can be concatenated:

>>> parser.parse_args(’-xX’.split())
Namespace(foo=None, x=’X’)

Several short options can be joined together, using only a single - prefix, as long as only the last option (or none
of them) requires a value:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-x’, action=’store_true’)
>>> parser.add_argument(’-y’, action=’store_true’)
>>> parser.add_argument(’-z’)
>>> parser.parse_args(’-xyzZ’.split())
Namespace(x=True, y=True, z=’Z’)

Invalid arguments

While parsing the command-line, parse_args checks for a variety of errors, including ambiguous options,
invalid types, invalid options, wrong number of positional arguments, etc. When it encounters such an error, it
exits and prints the error along with a usage message:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’--foo’, type=int)
>>> parser.add_argument(’bar’, nargs=’?’)

>>> # invalid type
>>> parser.parse_args([’--foo’, ’spam’])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: argument --foo: invalid int value: ’spam’

>>> # invalid option
>>> parser.parse_args([’--bar’])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: no such option: --bar

>>> # wrong number of arguments
>>> parser.parse_args([’spam’, ’badger’])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: extra arguments found: badger

Arguments containing "-"

The parse_args method attempts to give errors whenever the user has clearly made a mistake, but some
situations are inherently ambiguous. For example, the command-line arg ’-1’ could either be an attempt to
specify an option or an attempt to provide a positional argument. The parse_args method is cautious here:
positional arguments may only begin with ’-’ if they look like negative numbers and there are no options in the
parser that look like negative numbers:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-x’)
>>> parser.add_argument(’foo’, nargs=’?’)

>>> # no negative number options, so -1 is a positional argument
>>> parser.parse_args([’-x’, ’-1’])

15.4. argparse — Parser for command line options, arguments and sub-commands 405

The Python Library Reference, Release 3.2

Namespace(foo=None, x=’-1’)

>>> # no negative number options, so -1 and -5 are positional arguments
>>> parser.parse_args([’-x’, ’-1’, ’-5’])
Namespace(foo=’-5’, x=’-1’)

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-1’, dest=’one’)
>>> parser.add_argument(’foo’, nargs=’?’)

>>> # negative number options present, so -1 is an option
>>> parser.parse_args([’-1’, ’X’])
Namespace(foo=None, one=’X’)

>>> # negative number options present, so -2 is an option
>>> parser.parse_args([’-2’])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: no such option: -2

>>> # negative number options present, so both -1s are options
>>> parser.parse_args([’-1’, ’-1’])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: argument -1: expected one argument

If you have positional arguments that must begin with ’-’ and don’t look like negative numbers, you can insert
the pseudo-argument ’--’ which tells parse_args that everything after that is a positional argument:

>>> parser.parse_args([’--’, ’-f’])
Namespace(foo=’-f’, one=None)

Argument abbreviations

The parse_args() method allows long options to be abbreviated if the abbreviation is unambiguous:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’-bacon’)
>>> parser.add_argument(’-badger’)
>>> parser.parse_args(’-bac MMM’.split())
Namespace(bacon=’MMM’, badger=None)
>>> parser.parse_args(’-bad WOOD’.split())
Namespace(bacon=None, badger=’WOOD’)
>>> parser.parse_args(’-ba BA’.split())
usage: PROG [-h] [-bacon BACON] [-badger BADGER]
PROG: error: ambiguous option: -ba could match -badger, -bacon

An error is produced for arguments that could produce more than one options.

Beyond sys.argv

Sometimes it may be useful to have an ArgumentParser parse args other than those of sys.argv. This can be
accomplished by passing a list of strings to parse_args. This is useful for testing at the interactive prompt:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(
... ’integers’, metavar=’int’, type=int, choices=xrange(10),
... nargs=’+’, help=’an integer in the range 0..9’)
>>> parser.add_argument(
... ’--sum’, dest=’accumulate’, action=’store_const’, const=sum,
... default=max, help=’sum the integers (default: find the max)’)

406 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> parser.parse_args([’1’, ’2’, ’3’, ’4’])
Namespace(accumulate=<built-in function max>, integers=[1, 2, 3, 4])
>>> parser.parse_args(’1 2 3 4 --sum’.split())
Namespace(accumulate=<built-in function sum>, integers=[1, 2, 3, 4])

Custom namespaces

It may also be useful to have an ArgumentParser assign attributes to an already existing object, rather than the
newly-created Namespace object that is normally used. This can be achieved by specifying the namespace=
keyword argument:

>>> class C:
... pass
...
>>> c = C()
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’)
>>> parser.parse_args(args=[’--foo’, ’BAR’], namespace=c)
>>> c.foo
’BAR’

15.4.5 Other utilities

Sub-commands

ArgumentParser.add_subparsers()
Many programs split up their functionality into a number of sub-commands, for example, the svn pro-
gram can invoke sub-commands like svn checkout, svn update, and svn commit. Splitting up
functionality this way can be a particularly good idea when a program performs several different func-
tions which require different kinds of command-line arguments. ArgumentParser supports the creation
of such sub-commands with the add_subparsers() method. The add_subparsers() method is
normally called with no arguments and returns an special action object. This object has a single method,
add_parser, which takes a command name and any ArgumentParser constructor arguments, and
returns an ArgumentParser object that can be modified as usual.

Some example usage:

>>> # create the top-level parser
>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> parser.add_argument(’--foo’, action=’store_true’, help=’foo help’)
>>> subparsers = parser.add_subparsers(help=’sub-command help’)
>>>
>>> # create the parser for the "a" command
>>> parser_a = subparsers.add_parser(’a’, help=’a help’)
>>> parser_a.add_argument(’bar’, type=int, help=’bar help’)
>>>
>>> # create the parser for the "b" command
>>> parser_b = subparsers.add_parser(’b’, help=’b help’)
>>> parser_b.add_argument(’--baz’, choices=’XYZ’, help=’baz help’)
>>>
>>> # parse some arg lists
>>> parser.parse_args([’a’, ’12’])
Namespace(bar=12, foo=False)
>>> parser.parse_args([’--foo’, ’b’, ’--baz’, ’Z’])
Namespace(baz=’Z’, foo=True)

15.4. argparse — Parser for command line options, arguments and sub-commands 407

The Python Library Reference, Release 3.2

Note that the object returned by parse_args() will only contain attributes for the main parser and the
subparser that was selected by the command line (and not any other subparsers). So in the example above,
when the "a" command is specified, only the foo and bar attributes are present, and when the "b"
command is specified, only the foo and baz attributes are present.

Similarly, when a help message is requested from a subparser, only the help for that particular parser will
be printed. The help message will not include parent parser or sibling parser messages. (A help message
for each subparser command, however, can be given by supplying the help= argument to add_parser
as above.)

>>> parser.parse_args([’--help’])
usage: PROG [-h] [--foo] {a,b} ...

positional arguments:
{a,b} sub-command help

a a help
b b help

optional arguments:
-h, --help show this help message and exit
--foo foo help

>>> parser.parse_args([’a’, ’--help’])
usage: PROG a [-h] bar

positional arguments:
bar bar help

optional arguments:
-h, --help show this help message and exit

>>> parser.parse_args([’b’, ’--help’])
usage: PROG b [-h] [--baz {X,Y,Z}]

optional arguments:
-h, --help show this help message and exit
--baz {X,Y,Z} baz help

The add_subparsers() method also supports title and description keyword arguments. When
either is present, the subparser’s commands will appear in their own group in the help output. For example:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(title=’subcommands’,
... description=’valid subcommands’,
... help=’additional help’)
>>> subparsers.add_parser(’foo’)
>>> subparsers.add_parser(’bar’)
>>> parser.parse_args([’-h’])
usage: [-h] {foo,bar} ...

optional arguments:
-h, --help show this help message and exit

subcommands:
valid subcommands

{foo,bar} additional help

Furthermore, add_parser supports an additional aliases argument, which allows multiple strings to

408 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

refer to the same subparser. This example, like svn, aliases co as a shorthand for checkout:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers()
>>> checkout = subparsers.add_parser(’checkout’, aliases=[’co’])
>>> checkout.add_argument(’foo’)
>>> parser.parse_args([’co’, ’bar’])
Namespace(foo=’bar’)

One particularly effective way of handling sub-commands is to combine the use of the
add_subparsers() method with calls to set_defaults() so that each subparser knows which
Python function it should execute. For example:

>>> # sub-command functions
>>> def foo(args):
... print(args.x * args.y)
...
>>> def bar(args):
... print(’((%s))’ % args.z)
...
>>> # create the top-level parser
>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers()
>>>
>>> # create the parser for the "foo" command
>>> parser_foo = subparsers.add_parser(’foo’)
>>> parser_foo.add_argument(’-x’, type=int, default=1)
>>> parser_foo.add_argument(’y’, type=float)
>>> parser_foo.set_defaults(func=foo)
>>>
>>> # create the parser for the "bar" command
>>> parser_bar = subparsers.add_parser(’bar’)
>>> parser_bar.add_argument(’z’)
>>> parser_bar.set_defaults(func=bar)
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args(’foo 1 -x 2’.split())
>>> args.func(args)
2.0
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args(’bar XYZYX’.split())
>>> args.func(args)
((XYZYX))

This way, you can let parse_args() do the job of calling the appropriate function after argument parsing
is complete. Associating functions with actions like this is typically the easiest way to handle the different
actions for each of your subparsers. However, if it is necessary to check the name of the subparser that was
invoked, the dest keyword argument to the add_subparsers() call will work:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(dest=’subparser_name’)
>>> subparser1 = subparsers.add_parser(’1’)
>>> subparser1.add_argument(’-x’)
>>> subparser2 = subparsers.add_parser(’2’)
>>> subparser2.add_argument(’y’)
>>> parser.parse_args([’2’, ’frobble’])
Namespace(subparser_name=’2’, y=’frobble’)

15.4. argparse — Parser for command line options, arguments and sub-commands 409

The Python Library Reference, Release 3.2

FileType objects

class argparse.FileType(mode=’r’, bufsize=None)
The FileType factory creates objects that can be passed to the type argument of
ArgumentParser.add_argument(). Arguments that have FileType objects as their type
will open command-line args as files with the requested modes and buffer sizes:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--output’, type=argparse.FileType(’wb’, 0))
>>> parser.parse_args([’--output’, ’out’])
Namespace(output=<_io.BufferedWriter name=’out’>)

FileType objects understand the pseudo-argument ’-’ and automatically convert this into sys.stdin for
readable FileType objects and sys.stdout for writable FileType objects:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’infile’, type=argparse.FileType(’r’))
>>> parser.parse_args([’-’])
Namespace(infile=<_io.TextIOWrapper name=’<stdin>’ encoding=’UTF-8’>)

Argument groups

ArgumentParser.add_argument_group(title=None, description=None)
By default, ArgumentParser groups command-line arguments into “positional arguments” and “op-
tional arguments” when displaying help messages. When there is a better conceptual grouping of arguments
than this default one, appropriate groups can be created using the add_argument_group() method:

>>> parser = argparse.ArgumentParser(prog=’PROG’, add_help=False)
>>> group = parser.add_argument_group(’group’)
>>> group.add_argument(’--foo’, help=’foo help’)
>>> group.add_argument(’bar’, help=’bar help’)
>>> parser.print_help()
usage: PROG [--foo FOO] bar

group:
bar bar help
--foo FOO foo help

The add_argument_group() method returns an argument group object which has an
add_argument() method just like a regular ArgumentParser. When an argument is added to
the group, the parser treats it just like a normal argument, but displays the argument in a separate group for
help messages. The add_argument_group() method accepts title and description arguments which
can be used to customize this display:

>>> parser = argparse.ArgumentParser(prog=’PROG’, add_help=False)
>>> group1 = parser.add_argument_group(’group1’, ’group1 description’)
>>> group1.add_argument(’foo’, help=’foo help’)
>>> group2 = parser.add_argument_group(’group2’, ’group2 description’)
>>> group2.add_argument(’--bar’, help=’bar help’)
>>> parser.print_help()
usage: PROG [--bar BAR] foo

group1:
group1 description

foo foo help

410 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

group2:
group2 description

--bar BAR bar help

Note that any arguments not your user defined groups will end up back in the usual “positional arguments”
and “optional arguments” sections.

Mutual exclusion

argparse.add_mutually_exclusive_group(required=False)
Create a mutually exclusive group. argparse will make sure that only one of the arguments in the mutually
exclusive group was present on the command line:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> group = parser.add_mutually_exclusive_group()
>>> group.add_argument(’--foo’, action=’store_true’)
>>> group.add_argument(’--bar’, action=’store_false’)
>>> parser.parse_args([’--foo’])
Namespace(bar=True, foo=True)
>>> parser.parse_args([’--bar’])
Namespace(bar=False, foo=False)
>>> parser.parse_args([’--foo’, ’--bar’])
usage: PROG [-h] [--foo | --bar]
PROG: error: argument --bar: not allowed with argument --foo

The add_mutually_exclusive_group() method also accepts a required argument, to indicate that
at least one of the mutually exclusive arguments is required:

>>> parser = argparse.ArgumentParser(prog=’PROG’)
>>> group = parser.add_mutually_exclusive_group(required=True)
>>> group.add_argument(’--foo’, action=’store_true’)
>>> group.add_argument(’--bar’, action=’store_false’)
>>> parser.parse_args([])
usage: PROG [-h] (--foo | --bar)
PROG: error: one of the arguments --foo --bar is required

Note that currently mutually exclusive argument groups do not support the title and description arguments
of add_argument_group().

Parser defaults

ArgumentParser.set_defaults(**kwargs)
Most of the time, the attributes of the object returned by parse_args() will be fully determined by
inspecting the command-line args and the argument actions. ArgumentParser.set_defaults()
allows some additional attributes that are determined without any inspection of the command-line to be
added:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’foo’, type=int)
>>> parser.set_defaults(bar=42, baz=’badger’)
>>> parser.parse_args([’736’])
Namespace(bar=42, baz=’badger’, foo=736)

Note that parser-level defaults always override argument-level defaults:

15.4. argparse — Parser for command line options, arguments and sub-commands 411

The Python Library Reference, Release 3.2

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, default=’bar’)
>>> parser.set_defaults(foo=’spam’)
>>> parser.parse_args([])
Namespace(foo=’spam’)

Parser-level defaults can be particularly useful when working with multiple parsers. See the
add_subparsers() method for an example of this type.

ArgumentParser.get_default(dest)
Get the default value for a namespace attribute, as set by either add_argument() or by
set_defaults():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, default=’badger’)
>>> parser.get_default(’foo’)
’badger’

Printing help

In most typical applications, parse_args() will take care of formatting and printing any usage or error mes-
sages. However, several formatting methods are available:

ArgumentParser.print_usage(file=None)
Print a brief description of how the ArgumentParser should be invoked on the command line. If file is
None, sys.stdout is assumed.

ArgumentParser.print_help(file=None)
Print a help message, including the program usage and information about the arguments registered with the
ArgumentParser. If file is None, sys.stdout is assumed.

There are also variants of these methods that simply return a string instead of printing it:

ArgumentParser.format_usage()
Return a string containing a brief description of how the ArgumentParser should be invoked on the
command line.

ArgumentParser.format_help()
Return a string containing a help message, including the program usage and information about the arguments
registered with the ArgumentParser.

Partial parsing

ArgumentParser.parse_known_args(args=None, namespace=None)

Sometimes a script may only parse a few of the command line arguments, passing the remaining arguments on to
another script or program. In these cases, the parse_known_args()method can be useful. It works much like
parse_args() except that it does not produce an error when extra arguments are present. Instead, it returns a
two item tuple containing the populated namespace and the list of remaining argument strings.

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(’--foo’, action=’store_true’)
>>> parser.add_argument(’bar’)
>>> parser.parse_known_args([’--foo’, ’--badger’, ’BAR’, ’spam’])
(Namespace(bar=’BAR’, foo=True), [’--badger’, ’spam’])

Customizing file parsing

ArgumentParser.convert_arg_line_to_args(arg_line)
Arguments that are read from a file (see the fromfile_prefix_chars keyword argument to the

412 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

ArgumentParser constructor) are read one argument per line. convert_arg_line_to_args()
can be overriden for fancier reading.

This method takes a single argument arg_line which is a string read from the argument file. It returns a list
of arguments parsed from this string. The method is called once per line read from the argument file, in
order.

A useful override of this method is one that treats each space-separated word as an argument:

def convert_arg_line_to_args(self, arg_line):
for arg in arg_line.split():

if not arg.strip():
continue

yield arg

Exiting methods

ArgumentParser.exit(status=0, message=None)
This method terminates the program, exiting with the specified status and, if given, it prints a message
before that.

ArgumentParser.error(message)
This method prints a usage message including the message to the standard output and terminates the program
with a status code of 2.

15.4.6 Upgrading optparse code

Originally, the argparse module had attempted to maintain compatibility with optparse. However, optparse was
difficult to extend transparently, particularly with the changes required to support the new nargs= specifiers and
better usage messages. When most everything in optparse had either been copy-pasted over or monkey-patched,
it no longer seemed practical to try to maintain the backwards compatibility.

A partial upgrade path from optparse to argparse:

• Replace all add_option() calls with ArgumentParser.add_argument() calls.

• Replace options, args = parser.parse_args() with args = parser.parse_args()
and add additional ArgumentParser.add_argument() calls for the positional arguments.

• Replace callback actions and the callback_* keyword arguments with type or action arguments.

• Replace string names for type keyword arguments with the corresponding type objects (e.g. int, float,
complex, etc).

• Replace optparse.Values with Namespace and optparse.OptionError and
optparse.OptionValueError with ArgumentError.

• Replace strings with implicit arguments such as %default or %prog with the standard python syntax to
use dictionaries to format strings, that is, %(default)s and %(prog)s.

• Replace the OptionParser constructor version argument with a call to
parser.add_argument(’--version’, action=’version’, version=’<the
version>’)

15.5 optparse — Parser for command line options

Source code: Lib/optparse.py

15.5. optparse — Parser for command line options 413

http://svn.python.org/view/python/branches/py3k/Lib/optparse.py?view=markup

The Python Library Reference, Release 3.2

Deprecated since version 2.7: The optparse module is deprecated and will not be developed further; develop-
ment will continue with the argparse module. optparse is a more convenient, flexible, and powerful library
for parsing command-line options than the old getopt module. optparse uses a more declarative style of
command-line parsing: you create an instance of OptionParser, populate it with options, and parse the com-
mand line. optparse allows users to specify options in the conventional GNU/POSIX syntax, and additionally
generates usage and help messages for you.

Here’s an example of using optparse in a simple script:

from optparse import OptionParser
[...]
parser = OptionParser()
parser.add_option("-f", "--file", dest="filename",

help="write report to FILE", metavar="FILE")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose", default=True,
help="don’t print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing” on the command-line, for example:

<yourscript> --file=outfile -q

As it parses the command line, optparse sets attributes of the options object returned by parse_args()
based on user-supplied command-line values. When parse_args() returns from parsing this command line,
options.filename will be "outfile" and options.verbose will be False. optparse supports
both long and short options, allows short options to be merged together, and allows options to be associated with
their arguments in a variety of ways. Thus, the following command lines are all equivalent to the above example:

<yourscript> -f outfile --quiet
<yourscript> --quiet --file outfile
<yourscript> -q -foutfile
<yourscript> -qfoutfile

Additionally, users can run one of

<yourscript> -h
<yourscript> --help

and optparse will print out a brief summary of your script’s options:

Usage: <yourscript> [options]

Options:
-h, --help show this help message and exit
-f FILE, --file=FILE write report to FILE
-q, --quiet don’t print status messages to stdout

where the value of yourscript is determined at runtime (normally from sys.argv[0]).

15.5.1 Background

optparse was explicitly designed to encourage the creation of programs with straightforward, conventional
command-line interfaces. To that end, it supports only the most common command-line syntax and semantics
conventionally used under Unix. If you are unfamiliar with these conventions, read this section to acquaint yourself
with them.

Terminology

argument a string entered on the command-line, and passed by the shell to execl() or execv(). In Python,
arguments are elements of sys.argv[1:] (sys.argv[0] is the name of the program being executed).

414 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Unix shells also use the term “word”.

It is occasionally desirable to substitute an argument list other than sys.argv[1:], so you should
read “argument” as “an element of sys.argv[1:], or of some other list provided as a substitute for
sys.argv[1:]”.

option an argument used to supply extra information to guide or customize the execution of a program. There are
many different syntaxes for options; the traditional Unix syntax is a hyphen (“-”) followed by a single letter,
e.g. -x or -F. Also, traditional Unix syntax allows multiple options to be merged into a single argument,
e.g. -x -F is equivalent to -xF. The GNU project introduced -- followed by a series of hyphen-separated
words, e.g. --file or --dry-run. These are the only two option syntaxes provided by optparse.

Some other option syntaxes that the world has seen include:

• a hyphen followed by a few letters, e.g. -pf (this is not the same as multiple options merged into a
single argument)

• a hyphen followed by a whole word, e.g. -file (this is technically equivalent to the previous syntax,
but they aren’t usually seen in the same program)

• a plus sign followed by a single letter, or a few letters, or a word, e.g. +f, +rgb

• a slash followed by a letter, or a few letters, or a word, e.g. /f, /file

These option syntaxes are not supported by optparse, and they never will be. This is deliberate: the first
three are non-standard on any environment, and the last only makes sense if you’re exclusively targeting
VMS, MS-DOS, and/or Windows.

option argument an argument that follows an option, is closely associated with that option, and is consumed
from the argument list when that option is. With optparse, option arguments may either be in a separate
argument from their option:

-f foo
--file foo

or included in the same argument:

-ffoo
--file=foo

Typically, a given option either takes an argument or it doesn’t. Lots of people want an “optional option
arguments” feature, meaning that some options will take an argument if they see it, and won’t if they don’t.
This is somewhat controversial, because it makes parsing ambiguous: if -a takes an optional argument and
-b is another option entirely, how do we interpret -ab? Because of this ambiguity, optparse does not
support this feature.

positional argument something leftover in the argument list after options have been parsed, i.e. after options and
their arguments have been parsed and removed from the argument list.

required option an option that must be supplied on the command-line; note that the phrase “required option”
is self-contradictory in English. optparse doesn’t prevent you from implementing required options, but
doesn’t give you much help at it either.

For example, consider this hypothetical command-line:

prog -v --report /tmp/report.txt foo bar

-v and --report are both options. Assuming that --report takes one argument, /tmp/report.txt is
an option argument. foo and bar are positional arguments.

What are options for?

Options are used to provide extra information to tune or customize the execution of a program. In case it wasn’t
clear, options are usually optional. A program should be able to run just fine with no options whatsoever. (Pick a
random program from the Unix or GNU toolsets. Can it run without any options at all and still make sense? The

15.5. optparse — Parser for command line options 415

The Python Library Reference, Release 3.2

main exceptions are find, tar, and dd—all of which are mutant oddballs that have been rightly criticized for
their non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it. If it’s required, then it’s not
optional! If there is a piece of information that your program absolutely requires in order to run successfully,
that’s what positional arguments are for.

As an example of good command-line interface design, consider the humble cp utility, for copying files. It doesn’t
make much sense to try to copy files without supplying a destination and at least one source. Hence, cp fails if
you run it with no arguments. However, it has a flexible, useful syntax that does not require any options at all:

cp SOURCE DEST
cp SOURCE ... DEST-DIR

You can get pretty far with just that. Most cp implementations provide a bunch of options to tweak exactly
how the files are copied: you can preserve mode and modification time, avoid following symlinks, ask before
clobbering existing files, etc. But none of this distracts from the core mission of cp, which is to copy either one
file to another, or several files to another directory.

What are positional arguments for?

Positional arguments are for those pieces of information that your program absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If your program requires 17 distinct
pieces of information in order to run successfully, it doesn’t much matter how you get that information from the
user—most people will give up and walk away before they successfully run the program. This applies whether the
user interface is a command-line, a configuration file, or a GUI: if you make that many demands on your users,
most of them will simply give up.

In short, try to minimize the amount of information that users are absolutely required to supply—use sensible
defaults whenever possible. Of course, you also want to make your programs reasonably flexible. That’s what
options are for. Again, it doesn’t matter if they are entries in a config file, widgets in the “Preferences” dialog of
a GUI, or command-line options—the more options you implement, the more flexible your program is, and the
more complicated its implementation becomes. Too much flexibility has drawbacks as well, of course; too many
options can overwhelm users and make your code much harder to maintain.

15.5.2 Tutorial

While optparse is quite flexible and powerful, it’s also straightforward to use in most cases. This section covers
the code patterns that are common to any optparse-based program.

First, you need to import the OptionParser class; then, early in the main program, create an OptionParser instance:

from optparse import OptionParser
[...]
parser = OptionParser()

Then you can start defining options. The basic syntax is:

parser.add_option(opt_str, ...,
attr=value, ...)

Each option has one or more option strings, such as -f or --file, and several option attributes that tell
optparse what to expect and what to do when it encounters that option on the command line.

Typically, each option will have one short option string and one long option string, e.g.:

parser.add_option("-f", "--file", ...)

You’re free to define as many short option strings and as many long option strings as you like (including zero), as
long as there is at least one option string overall.

416 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

The option strings passed to add_option() are effectively labels for the option defined by that call. For brevity,
we will frequently refer to encountering an option on the command line; in reality, optparse encounters option
strings and looks up options from them.

Once all of your options are defined, instruct optparse to parse your program’s command line:

(options, args) = parser.parse_args()

(If you like, you can pass a custom argument list to parse_args(), but that’s rarely necessary: by default it
uses sys.argv[1:].)

parse_args() returns two values:

• options, an object containing values for all of your options—e.g. if --file takes a single string argu-
ment, then options.file will be the filename supplied by the user, or None if the user did not supply
that option

• args, the list of positional arguments leftover after parsing options

This tutorial section only covers the four most important option attributes: action, type, dest (destination),
and help. Of these, action is the most fundamental.

Understanding option actions

Actions tell optparse what to do when it encounters an option on the command line. There is a fixed set
of actions hard-coded into optparse; adding new actions is an advanced topic covered in section Extending
optparse. Most actions tell optparse to store a value in some variable—for example, take a string from the
command line and store it in an attribute of options.

If you don’t specify an option action, optparse defaults to store.

The store action

The most common option action is store, which tells optparse to take the next argument (or the remainder
of the current argument), ensure that it is of the correct type, and store it to your chosen destination.

For example:

parser.add_option("-f", "--file",
action="store", type="string", dest="filename")

Now let’s make up a fake command line and ask optparse to parse it:

args = ["-f", "foo.txt"]
(options, args) = parser.parse_args(args)

When optparse sees the option string -f, it consumes the next argument, foo.txt, and stores it in
options.filename. So, after this call to parse_args(), options.filename is "foo.txt".

Some other option types supported by optparse are int and float. Here’s an option that expects an integer
argument:

parser.add_option("-n", type="int", dest="num")

Note that this option has no long option string, which is perfectly acceptable. Also, there’s no explicit action, since
the default is store.

Let’s parse another fake command-line. This time, we’ll jam the option argument right up against the option:
since -n42 (one argument) is equivalent to -n 42 (two arguments), the code

(options, args) = parser.parse_args(["-n42"])
print(options.num)

will print 42.

If you don’t specify a type, optparse assumes string. Combined with the fact that the default action is
store, that means our first example can be a lot shorter:

15.5. optparse — Parser for command line options 417

The Python Library Reference, Release 3.2

parser.add_option("-f", "--file", dest="filename")

If you don’t supply a destination, optparse figures out a sensible default from the option strings: if the first
long option string is --foo-bar, then the default destination is foo_bar. If there are no long option strings,
optparse looks at the first short option string: the default destination for -f is f.

optparse also includes the built-in complex type. Adding types is covered in section Extending optparse.

Handling boolean (flag) options

Flag options—set a variable to true or false when a particular option is seen —are quite common. optparse
supports them with two separate actions, store_true and store_false. For example, you might have a
verbose flag that is turned on with -v and off with -q:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly OK. (It just means you have to
be a bit careful when setting default values— see below.)

When optparse encounters -v on the command line, it sets options.verbose to True; when it encounters
-q, options.verbose is set to False.

Other actions

Some other actions supported by optparse are:

"store_const" store a constant value

"append" append this option’s argument to a list

"count" increment a counter by one

"callback" call a specified function

These are covered in section Reference Guide, Reference Guide and section Option Callbacks.

Default values

All of the above examples involve setting some variable (the “destination”) when certain command-line options
are seen. What happens if those options are never seen? Since we didn’t supply any defaults, they are all set to
None. This is usually fine, but sometimes you want more control. optparse lets you supply a default value for
each destination, which is assigned before the command line is parsed.

First, consider the verbose/quiet example. If we want optparse to set verbose to True unless -q is seen,
then we can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)
parser.add_option("-q", action="store_false", dest="verbose")

Since default values apply to the destination rather than to any particular option, and these two options happen to
have the same destination, this is exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value for verbose will be True: the last default value supplied for any particular destination
is the one that counts.

418 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

A clearer way to specify default values is the set_defaults() method of OptionParser, which you can call at
any time before calling parse_args():

parser.set_defaults(verbose=True)
parser.add_option(...)
(options, args) = parser.parse_args()

As before, the last value specified for a given option destination is the one that counts. For clarity, try to use one
method or the other of setting default values, not both.

Generating help

optparse‘s ability to generate help and usage text automatically is useful for creating user-friendly command-
line interfaces. All you have to do is supply a help value for each option, and optionally a short usage message
for your whole program. Here’s an OptionParser populated with user-friendly (documented) options:

usage = "usage: %prog [options] arg1 arg2"
parser = OptionParser(usage=usage)
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose", default=True,
help="make lots of noise [default]")

parser.add_option("-q", "--quiet",
action="store_false", dest="verbose",
help="be vewwy quiet (I’m hunting wabbits)")

parser.add_option("-f", "--filename",
metavar="FILE", help="write output to FILE")

parser.add_option("-m", "--mode",
default="intermediate",
help="interaction mode: novice, intermediate, "

"or expert [default: %default]")

If optparse encounters either -h or --help on the command-line, or if you just call
parser.print_help(), it prints the following to standard output:

Usage: <yourscript> [options] arg1 arg2

Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I’m hunting wabbits)
-f FILE, --filename=FILE

write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or

expert [default: intermediate]

(If the help output is triggered by a help option, optparse exits after printing the help text.)

There’s a lot going on here to help optparse generate the best possible help message:

• the script defines its own usage message:

usage = "usage: %prog [options] arg1 arg2"

optparse expands %prog in the usage string to the name of the current program, i.e.
os.path.basename(sys.argv[0]). The expanded string is then printed before the detailed option
help.

If you don’t supply a usage string, optparse uses a bland but sensible default: "Usage: %prog
[options]", which is fine if your script doesn’t take any positional arguments.

• every option defines a help string, and doesn’t worry about line-wrapping— optparse takes care of
wrapping lines and making the help output look good.

15.5. optparse — Parser for command line options 419

The Python Library Reference, Release 3.2

• options that take a value indicate this fact in their automatically-generated help message, e.g. for the “mode”
option:

-m MODE, --mode=MODE

Here, “MODE” is called the meta-variable: it stands for the argument that the user is expected to supply to
-m/--mode. By default, optparse converts the destination variable name to uppercase and uses that for
the meta-variable. Sometimes, that’s not what you want—for example, the --filename option explicitly
sets metavar="FILE", resulting in this automatically-generated option description:

-f FILE, --filename=FILE

This is important for more than just saving space, though: the manually written help text uses the meta-
variable FILE to clue the user in that there’s a connection between the semi-formal syntax -f FILE and
the informal semantic description “write output to FILE”. This is a simple but effective way to make your
help text a lot clearer and more useful for end users.

• options that have a default value can include %default in the help string—optparse will replace it
with str() of the option’s default value. If an option has no default value (or the default value is None),
%default expands to none.

Grouping Options

When dealing with many options, it is convenient to group these options for better help output. An
OptionParser can contain several option groups, each of which can contain several options.

An option group is obtained using the class OptionGroup:

class optparse.OptionGroup(parser, title, description=None)
where

•parser is the OptionParser instance the group will be insterted in to

•title is the group title

•description, optional, is a long description of the group

OptionGroup inherits from OptionContainer (like OptionParser) and so the add_option()
method can be used to add an option to the group.

Once all the options are declared, using the OptionParser method add_option_group() the group is
added to the previously defined parser.

Continuing with the parser defined in the previous section, adding an OptionGroup to a parser is easy:

group = OptionGroup(parser, "Dangerous Options",
"Caution: use these options at your own risk. "
"It is believed that some of them bite.")

group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

This would result in the following help output:

Usage: <yourscript> [options] arg1 arg2

Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I’m hunting wabbits)
-f FILE, --filename=FILE

write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or

expert [default: intermediate]

Dangerous Options:

420 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Caution: use these options at your own risk. It is believed that some
of them bite.

-g Group option.

A bit more complete example might invole using more than one group: still extendind the previous example:

group = OptionGroup(parser, "Dangerous Options",
"Caution: use these options at your own risk. "
"It is believed that some of them bite.")

group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

group = OptionGroup(parser, "Debug Options")
group.add_option("-d", "--debug", action="store_true",

help="Print debug information")
group.add_option("-s", "--sql", action="store_true",

help="Print all SQL statements executed")
group.add_option("-e", action="store_true", help="Print every action done")
parser.add_option_group(group)

that results in the following output:

Usage: <yourscript> [options] arg1 arg2

Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I’m hunting wabbits)
-f FILE, --filename=FILE

write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or expert

[default: intermediate]

Dangerous Options:
Caution: use these options at your own risk. It is believed that some
of them bite.

-g Group option.

Debug Options:
-d, --debug Print debug information
-s, --sql Print all SQL statements executed
-e Print every action done

Another interesting method, in particular when working programmatically with option groups is:

OptionParser.get_option_group(opt_str)
Return, if defined, the OptionGroup that has the title or the long description equals to opt_str

Printing a version string

Similar to the brief usage string, optparse can also print a version string for your program. You have to supply
the string as the version argument to OptionParser:

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

%prog is expanded just like it is in usage. Apart from that, version can contain anything you like. When you
supply it, optparse automatically adds a --version option to your parser. If it encounters this option on the
command line, it expands your version string (by replacing %prog), prints it to stdout, and exits.

For example, if your script is called /usr/bin/foo:

15.5. optparse — Parser for command line options 421

The Python Library Reference, Release 3.2

$ /usr/bin/foo --version
foo 1.0

The following two methods can be used to print and get the version string:

OptionParser.print_version(file=None)
Print the version message for the current program (self.version) to file (default stdout). As with
print_usage(), any occurrence of %prog in self.version is replaced with the name of the current
program. Does nothing if self.version is empty or undefined.

OptionParser.get_version()
Same as print_version() but returns the version string instead of printing it.

How optparse handles errors

There are two broad classes of errors that optparse has to worry about: programmer errors and user errors.
Programmer errors are usually erroneous calls to OptionParser.add_option(), e.g. invalid option strings,
unknown option attributes, missing option attributes, etc. These are dealt with in the usual way: raise an exception
(either optparse.OptionError or TypeError) and let the program crash.

Handling user errors is much more important, since they are guaranteed to happen no matter how stable your
code is. optparse can automatically detect some user errors, such as bad option arguments (passing -n 4x
where -n takes an integer argument), missing arguments (-n at the end of the command line, where -n takes
an argument of any type). Also, you can call OptionParser.error() to signal an application-defined error
condition:

(options, args) = parser.parse_args()
[...]
if options.a and options.b:

parser.error("options -a and -b are mutually exclusive")

In either case, optparse handles the error the same way: it prints the program’s usage message and an error
message to standard error and exits with error status 2.

Consider the first example above, where the user passes 4x to an option that takes an integer:

$ /usr/bin/foo -n 4x
Usage: foo [options]

foo: error: option -n: invalid integer value: ’4x’

Or, where the user fails to pass a value at all:

$ /usr/bin/foo -n
Usage: foo [options]

foo: error: -n option requires an argument

optparse-generated error messages take care always to mention the option involved in the error; be sure to do
the same when calling OptionParser.error() from your application code.

If optparse‘s default error-handling behaviour does not suit your needs, you’ll need to subclass OptionParser
and override its exit() and/or error() methods.

Putting it all together

Here’s what optparse-based scripts usually look like:

from optparse import OptionParser
[...]
def main():

usage = "usage: %prog [options] arg"
parser = OptionParser(usage)

422 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

parser.add_option("-f", "--file", dest="filename",
help="read data from FILENAME")

parser.add_option("-v", "--verbose",
action="store_true", dest="verbose")

parser.add_option("-q", "--quiet",
action="store_false", dest="verbose")

[...]
(options, args) = parser.parse_args()
if len(args) != 1:

parser.error("incorrect number of arguments")
if options.verbose:

print("reading %s..." % options.filename)
[...]

if __name__ == "__main__":
main()

15.5.3 Reference Guide

Creating the parser

The first step in using optparse is to create an OptionParser instance.

class optparse.OptionParser(...)
The OptionParser constructor has no required arguments, but a number of optional keyword arguments. You
should always pass them as keyword arguments, i.e. do not rely on the order in which the arguments are
declared.

usage (default: "%prog [options]") The usage summary to print when your program is run in-
correctly or with a help option. When optparse prints the usage string, it expands %prog to
os.path.basename(sys.argv[0]) (or to prog if you passed that keyword argument). To
suppress a usage message, pass the special value optparse.SUPPRESS_USAGE.

option_list (default: []) A list of Option objects to populate the parser with. The options in
option_list are added after any options in standard_option_list (a class attribute that
may be set by OptionParser subclasses), but before any version or help options. Deprecated; use
add_option() after creating the parser instead.

option_class (default: optparse.Option) Class to use when adding options to the parser in
add_option().

version (default: None) A version string to print when the user supplies a version option. If you supply
a true value for version, optparse automatically adds a version option with the single option
string --version. The substring %prog is expanded the same as for usage.

conflict_handler (default: "error") Specifies what to do when options with conflicting option
strings are added to the parser; see section Conflicts between options.

description (default: None) A paragraph of text giving a brief overview of your program.
optparse reformats this paragraph to fit the current terminal width and prints it when the user
requests help (after usage, but before the list of options).

formatter (default: a new IndentedHelpFormatter) An instance of optparse.HelpFormatter
that will be used for printing help text. optparse provides two concrete classes for this purpose:
IndentedHelpFormatter and TitledHelpFormatter.

add_help_option (default: True) If true, optparse will add a help option (with option strings -h
and --help) to the parser.

prog The string to use when expanding %prog in usage and version instead of
os.path.basename(sys.argv[0]).

epilog (default: None) A paragraph of help text to print after the option help.

15.5. optparse — Parser for command line options 423

The Python Library Reference, Release 3.2

Populating the parser

There are several ways to populate the parser with options. The preferred way is by using
OptionParser.add_option(), as shown in section Tutorial. add_option() can be called in one of
two ways:

• pass it an Option instance (as returned by make_option())

• pass it any combination of positional and keyword arguments that are acceptable to make_option() (i.e.,
to the Option constructor), and it will create the Option instance for you

The other alternative is to pass a list of pre-constructed Option instances to the OptionParser constructor, as in:

option_list = [
make_option("-f", "--filename",

action="store", type="string", dest="filename"),
make_option("-q", "--quiet",

action="store_false", dest="verbose"),
]

parser = OptionParser(option_list=option_list)

(make_option() is a factory function for creating Option instances; currently it is an alias for the Option
constructor. A future version of optparse may split Option into several classes, and make_option() will
pick the right class to instantiate. Do not instantiate Option directly.)

Defining options

Each Option instance represents a set of synonymous command-line option strings, e.g. -f and --file. You
can specify any number of short or long option strings, but you must specify at least one overall option string.

The canonical way to create an Option instance is with the add_option() method of OptionParser.

OptionParser.add_option(opt_str[, ...], attr=value, ...)
To define an option with only a short option string:

parser.add_option("-f", attr=value, ...)

And to define an option with only a long option string:

parser.add_option("--foo", attr=value, ...)

The keyword arguments define attributes of the new Option object. The most important option attribute is
action, and it largely determines which other attributes are relevant or required. If you pass irrelevant
option attributes, or fail to pass required ones, optparse raises an OptionError exception explaining
your mistake.

An option’s action determines what optparse does when it encounters this option on the command-line.
The standard option actions hard-coded into optparse are:

"store" store this option’s argument (default)

"store_const" store a constant value

"store_true" store a true value

"store_false" store a false value

"append" append this option’s argument to a list

"append_const" append a constant value to a list

"count" increment a counter by one

"callback" call a specified function

"help" print a usage message including all options and the documentation for them

424 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

(If you don’t supply an action, the default is "store". For this action, you may also supply type and
dest option attributes; see Standard option actions.)

As you can see, most actions involve storing or updating a value somewhere. optparse always creates a special
object for this, conventionally called options (it happens to be an instance of optparse.Values). Option
arguments (and various other values) are stored as attributes of this object, according to the dest (destination)
option attribute.

For example, when you call

parser.parse_args()

one of the first things optparse does is create the options object:

options = Values()

If one of the options in this parser is defined with

parser.add_option("-f", "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

-ffoo
-f foo
--file=foo
--file foo

then optparse, on seeing this option, will do the equivalent of

options.filename = "foo"

The type and dest option attributes are almost as important as action, but action is the only one that
makes sense for all options.

Option attributes

The following option attributes may be passed as keyword arguments to OptionParser.add_option(). If
you pass an option attribute that is not relevant to a particular option, or fail to pass a required option attribute,
optparse raises OptionError.

Option.action
(default: "store")

Determines optparse‘s behaviour when this option is seen on the command line; the available options
are documented here.

Option.type
(default: "string")

The argument type expected by this option (e.g., "string" or "int"); the available option types are
documented here.

Option.dest
(default: derived from option strings)

If the option’s action implies writing or modifying a value somewhere, this tells optparse where to write
it: dest names an attribute of the options object that optparse builds as it parses the command line.

Option.default
The value to use for this option’s destination if the option is not seen on the command line. See also
OptionParser.set_defaults().

Option.nargs
(default: 1)

How many arguments of type type should be consumed when this option is seen. If > 1, optparse will
store a tuple of values to dest.

15.5. optparse — Parser for command line options 425

The Python Library Reference, Release 3.2

Option.const
For actions that store a constant value, the constant value to store.

Option.choices
For options of type "choice", the list of strings the user may choose from.

Option.callback
For options with action "callback", the callable to call when this option is seen. See section Option
Callbacks for detail on the arguments passed to the callable.

Option.callback_args
Option.callback_kwargs

Additional positional and keyword arguments to pass to callback after the four standard callback argu-
ments.

Option.help
Help text to print for this option when listing all available options after the user supplies a help option
(such as --help). If no help text is supplied, the option will be listed without help text. To hide this
option, use the special value optparse.SUPPRESS_HELP.

Option.metavar
(default: derived from option strings)

Stand-in for the option argument(s) to use when printing help text. See section Tutorial for an example.

Standard option actions

The various option actions all have slightly different requirements and effects. Most actions have several relevant
option attributes which you may specify to guide optparse‘s behaviour; a few have required attributes, which
you must specify for any option using that action.

• "store" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is converted to a value according to type and stored
in dest. If nargs > 1, multiple arguments will be consumed from the command line; all will be converted
according to type and stored to dest as a tuple. See the Standard option types section.

If choices is supplied (a list or tuple of strings), the type defaults to "choice".

If type is not supplied, it defaults to "string".

If dest is not supplied, optparse derives a destination from the first long option string (e.g.,
--foo-bar implies foo_bar). If there are no long option strings, optparse derives a destination
from the first short option string (e.g., -f implies f).

Example:

parser.add_option("-f")
parser.add_option("-p", type="float", nargs=3, dest="point")

As it parses the command line

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set

options.f = "foo.txt"
options.point = (1.0, -3.5, 4.0)
options.f = "bar.txt"

• "store_const" [required: const; relevant: dest]

The value const is stored in dest.

Example:

426 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

parser.add_option("-q", "--quiet",
action="store_const", const=0, dest="verbose")

parser.add_option("-v", "--verbose",
action="store_const", const=1, dest="verbose")

parser.add_option("--noisy",
action="store_const", const=2, dest="verbose")

If --noisy is seen, optparse will set

options.verbose = 2

• "store_true" [relevant: dest]

A special case of "store_const" that stores a true value to dest.

• "store_false" [relevant: dest]

Like "store_true", but stores a false value.

Example:

parser.add_option("--clobber", action="store_true", dest="clobber")
parser.add_option("--no-clobber", action="store_false", dest="clobber")

• "append" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is appended to the list in dest. If no default value
for dest is supplied, an empty list is automatically created when optparse first encounters this option
on the command-line. If nargs > 1, multiple arguments are consumed, and a tuple of length nargs is
appended to dest.

The defaults for type and dest are the same as for the "store" action.

Example:

parser.add_option("-t", "--tracks", action="append", type="int")

If -t3 is seen on the command-line, optparse does the equivalent of:

options.tracks = []
options.tracks.append(int("3"))

If, a little later on, --tracks=4 is seen, it does:

options.tracks.append(int("4"))

• "append_const" [required: const; relevant: dest]

Like "store_const", but the value const is appended to dest; as with "append", dest defaults
to None, and an empty list is automatically created the first time the option is encountered.

• "count" [relevant: dest]

Increment the integer stored at dest. If no default value is supplied, dest is set to zero before being
incremented the first time.

Example:

parser.add_option("-v", action="count", dest="verbosity")

The first time -v is seen on the command line, optparse does the equivalent of:

options.verbosity = 0
options.verbosity += 1

Every subsequent occurrence of -v results in

options.verbosity += 1

• "callback" [required: callback; relevant: type, nargs, callback_args,
callback_kwargs]

Call the function specified by callback, which is called as

15.5. optparse — Parser for command line options 427

The Python Library Reference, Release 3.2

func(option, opt_str, value, parser, *args, **kwargs)

See section Option Callbacks for more detail.

• "help"

Prints a complete help message for all the options in the current option parser. The help message is con-
structed from the usage string passed to OptionParser’s constructor and the help string passed to every
option.

If no help string is supplied for an option, it will still be listed in the help message. To omit an option
entirely, use the special value optparse.SUPPRESS_HELP.

optparse automatically adds a help option to all OptionParsers, so you do not normally need to create
one.

Example:

from optparse import OptionParser, SUPPRESS_HELP

usually, a help option is added automatically, but that can
be suppressed using the add_help_option argument
parser = OptionParser(add_help_option=False)

parser.add_option("-h", "--help", action="help")
parser.add_option("-v", action="store_true", dest="verbose",

help="Be moderately verbose")
parser.add_option("--file", dest="filename",

help="Input file to read data from")
parser.add_option("--secret", help=SUPPRESS_HELP)

If optparse sees either -h or --help on the command line, it will print something like the following
help message to stdout (assuming sys.argv[0] is "foo.py"):

Usage: foo.py [options]

Options:
-h, --help Show this help message and exit
-v Be moderately verbose
--file=FILENAME Input file to read data from

After printing the help message, optparse terminates your process with sys.exit(0).

• "version"

Prints the version number supplied to the OptionParser to stdout and exits. The version number is actually
formatted and printed by the print_version() method of OptionParser. Generally only relevant if the
version argument is supplied to the OptionParser constructor. As with help options, you will rarely
create version options, since optparse automatically adds them when needed.

Standard option types

optparse has five built-in option types: "string", "int", "choice", "float" and "complex". If you
need to add new option types, see section Extending optparse.

Arguments to string options are not checked or converted in any way: the text on the command line is stored in
the destination (or passed to the callback) as-is.

Integer arguments (type "int") are parsed as follows:

• if the number starts with 0x, it is parsed as a hexadecimal number

• if the number starts with 0, it is parsed as an octal number

• if the number starts with 0b, it is parsed as a binary number

428 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

• otherwise, the number is parsed as a decimal number

The conversion is done by calling int() with the appropriate base (2, 8, 10, or 16). If this fails, so will
optparse, although with a more useful error message.

"float" and "complex" option arguments are converted directly with float() and complex(), with
similar error-handling.

"choice" options are a subtype of "string" options. The choices option attribute (a sequence of strings)
defines the set of allowed option arguments. optparse.check_choice() compares user-supplied option
arguments against this master list and raises OptionValueError if an invalid string is given.

Parsing arguments

The whole point of creating and populating an OptionParser is to call its parse_args() method:

(options, args) = parser.parse_args(args=None, values=None)

where the input parameters are

args the list of arguments to process (default: sys.argv[1:])

values a optparse.Values object to store option arguments in (default: a new instance of Values) – if
you give an existing object, the option defaults will not be initialized on it

and the return values are

options the same object that was passed in as values, or the optparse.Values instance created by optparse

args the leftover positional arguments after all options have been processed

The most common usage is to supply neither keyword argument. If you supply values, it will be modified with
repeated setattr() calls (roughly one for every option argument stored to an option destination) and returned
by parse_args().

If parse_args() encounters any errors in the argument list, it calls the OptionParser’s error() method
with an appropriate end-user error message. This ultimately terminates your process with an exit status of 2 (the
traditional Unix exit status for command-line errors).

Querying and manipulating your option parser

The default behavior of the option parser can be customized slightly, and you can also poke around your option
parser and see what’s there. OptionParser provides several methods to help you out:

OptionParser.disable_interspersed_args()
Set parsing to stop on the first non-option. For example, if -a and -b are both simple options that take no
arguments, optparse normally accepts this syntax:

prog -a arg1 -b arg2

and treats it as equivalent to

prog -a -b arg1 arg2

To disable this feature, call disable_interspersed_args(). This restores traditional Unix syntax,
where option parsing stops with the first non-option argument.

Use this if you have a command processor which runs another command which has options of its own and
you want to make sure these options don’t get confused. For example, each command might have a different
set of options.

OptionParser.enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments.
This is the default behavior.

15.5. optparse — Parser for command line options 429

The Python Library Reference, Release 3.2

OptionParser.get_option(opt_str)
Returns the Option instance with the option string opt_str, or None if no options have that option string.

OptionParser.has_option(opt_str)
Return true if the OptionParser has an option with option string opt_str (e.g., -q or --verbose).

OptionParser.remove_option(opt_str)
If the OptionParser has an option corresponding to opt_str, that option is removed. If that option
provided any other option strings, all of those option strings become invalid. If opt_str does not occur in
any option belonging to this OptionParser, raises ValueError.

Conflicts between options

If you’re not careful, it’s easy to define options with conflicting option strings:

parser.add_option("-n", "--dry-run", ...)
[...]
parser.add_option("-n", "--noisy", ...)

(This is particularly true if you’ve defined your own OptionParser subclass with some standard options.)

Every time you add an option, optparse checks for conflicts with existing options. If it finds any, it invokes the
current conflict-handling mechanism. You can set the conflict-handling mechanism either in the constructor:

parser = OptionParser(..., conflict_handler=handler)

or with a separate call:

parser.set_conflict_handler(handler)

The available conflict handlers are:

"error" (default) assume option conflicts are a programming error and raise
OptionConflictError

"resolve" resolve option conflicts intelligently (see below)

As an example, let’s define an OptionParser that resolves conflicts intelligently and add conflicting options to
it:

parser = OptionParser(conflict_handler="resolve")
parser.add_option("-n", "--dry-run", ..., help="do no harm")
parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously-added option is already using the -n option string. Since
conflict_handler is "resolve", it resolves the situation by removing -n from the earlier option’s list of
option strings. Now --dry-run is the only way for the user to activate that option. If the user asks for help, the
help message will reflect that:

Options:
--dry-run do no harm
[...]
-n, --noisy be noisy

It’s possible to whittle away the option strings for a previously-added option until there are none left, and the
user has no way of invoking that option from the command-line. In that case, optparse removes that option
completely, so it doesn’t show up in help text or anywhere else. Carrying on with our existing OptionParser:

parser.add_option("--dry-run", ..., help="new dry-run option")

At this point, the original -n/--dry-run option is no longer accessible, so optparse removes it, leaving this
help text:

Options:
[...]
-n, --noisy be noisy
--dry-run new dry-run option

430 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Cleanup

OptionParser instances have several cyclic references. This should not be a problem for Python’s garbage collector,
but you may wish to break the cyclic references explicitly by calling destroy() on your OptionParser once you
are done with it. This is particularly useful in long-running applications where large object graphs are reachable
from your OptionParser.

Other methods

OptionParser supports several other public methods:

OptionParser.set_usage(usage)
Set the usage string according to the rules described above for the usage constructor keyword argument.
Passing None sets the default usage string; use optparse.SUPPRESS_USAGE to suppress a usage mes-
sage.

OptionParser.print_usage(file=None)
Print the usage message for the current program (self.usage) to file (default stdout). Any occurrence
of the string %prog in self.usage is replaced with the name of the current program. Does nothing if
self.usage is empty or not defined.

OptionParser.get_usage()
Same as print_usage() but returns the usage string instead of printing it.

OptionParser.set_defaults(dest=value, ...)
Set default values for several option destinations at once. Using set_defaults() is the preferred way to
set default values for options, since multiple options can share the same destination. For example, if several
“mode” options all set the same destination, any one of them can set the default, and the last one wins:

parser.add_option("--advanced", action="store_const",
dest="mode", const="advanced",
default="novice") # overridden below

parser.add_option("--novice", action="store_const",
dest="mode", const="novice",
default="advanced") # overrides above setting

To avoid this confusion, use set_defaults():

parser.set_defaults(mode="advanced")
parser.add_option("--advanced", action="store_const",

dest="mode", const="advanced")
parser.add_option("--novice", action="store_const",

dest="mode", const="novice")

15.5.4 Option Callbacks

When optparse‘s built-in actions and types aren’t quite enough for your needs, you have two choices: extend
optparse or define a callback option. Extending optparse is more general, but overkill for a lot of simple
cases. Quite often a simple callback is all you need.

There are two steps to defining a callback option:

• define the option itself using the "callback" action

• write the callback; this is a function (or method) that takes at least four arguments, as described below

15.5. optparse — Parser for command line options 431

The Python Library Reference, Release 3.2

Defining a callback option

As always, the easiest way to define a callback option is by using the OptionParser.add_option()
method. Apart from action, the only option attribute you must specify is callback, the function to call:

parser.add_option("-c", action="callback", callback=my_callback)

callback is a function (or other callable object), so you must have already defined my_callback() when
you create this callback option. In this simple case, optparse doesn’t even know if -c takes any arguments,
which usually means that the option takes no arguments—the mere presence of -c on the command-line is all it
needs to know. In some circumstances, though, you might want your callback to consume an arbitrary number of
command-line arguments. This is where writing callbacks gets tricky; it’s covered later in this section.

optparse always passes four particular arguments to your callback, and it will only pass additional arguments
if you specify them via callback_args and callback_kwargs. Thus, the minimal callback function
signature is:

def my_callback(option, opt, value, parser):

The four arguments to a callback are described below.

There are several other option attributes that you can supply when you define a callback option:

type has its usual meaning: as with the "store" or "append" actions, it instructs optparse to con-
sume one argument and convert it to type. Rather than storing the converted value(s) anywhere, though,
optparse passes it to your callback function.

nargs also has its usual meaning: if it is supplied and > 1, optparse will consume nargs arguments, each
of which must be convertible to type. It then passes a tuple of converted values to your callback.

callback_args a tuple of extra positional arguments to pass to the callback

callback_kwargs a dictionary of extra keyword arguments to pass to the callback

How callbacks are called

All callbacks are called as follows:

func(option, opt_str, value, parser, *args, **kwargs)

where

option is the Option instance that’s calling the callback

opt_str is the option string seen on the command-line that’s triggering the callback. (If an abbreviated long
option was used, opt_str will be the full, canonical option string—e.g. if the user puts --foo on the
command-line as an abbreviation for --foobar, then opt_str will be "--foobar".)

value is the argument to this option seen on the command-line. optparse will only expect an argument if
type is set; the type of value will be the type implied by the option’s type. If type for this option is
None (no argument expected), then value will be None. If nargs > 1, value will be a tuple of values
of the appropriate type.

parser is the OptionParser instance driving the whole thing, mainly useful because you can access some other
interesting data through its instance attributes:

parser.largs the current list of leftover arguments, ie. arguments that have been consumed but are
neither options nor option arguments. Feel free to modify parser.largs, e.g. by adding more
arguments to it. (This list will become args, the second return value of parse_args().)

parser.rargs the current list of remaining arguments, ie. with opt_str and value (if applicable)
removed, and only the arguments following them still there. Feel free to modify parser.rargs,
e.g. by consuming more arguments.

parser.values the object where option values are by default stored (an instance of opt-
parse.OptionValues). This lets callbacks use the same mechanism as the rest of optparse for storing

432 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

option values; you don’t need to mess around with globals or closures. You can also access or modify
the value(s) of any options already encountered on the command-line.

args is a tuple of arbitrary positional arguments supplied via the callback_args option attribute.

kwargs is a dictionary of arbitrary keyword arguments supplied via callback_kwargs.

Raising errors in a callback

The callback function should raise OptionValueError if there are any problems with the option or its argu-
ment(s). optparse catches this and terminates the program, printing the error message you supply to stderr.
Your message should be clear, concise, accurate, and mention the option at fault. Otherwise, the user will have a
hard time figuring out what he did wrong.

Callback example 1: trivial callback

Here’s an example of a callback option that takes no arguments, and simply records that the option was seen:

def record_foo_seen(option, opt_str, value, parser):
parser.values.saw_foo = True

parser.add_option("--foo", action="callback", callback=record_foo_seen)

Of course, you could do that with the "store_true" action.

Callback example 2: check option order

Here’s a slightly more interesting example: record the fact that -a is seen, but blow up if it comes after -b in the
command-line.

def check_order(option, opt_str, value, parser):
if parser.values.b:

raise OptionValueError("can’t use -a after -b")
parser.values.a = 1

[...]
parser.add_option("-a", action="callback", callback=check_order)
parser.add_option("-b", action="store_true", dest="b")

Callback example 3: check option order (generalized)

If you want to re-use this callback for several similar options (set a flag, but blow up if -b has already been seen),
it needs a bit of work: the error message and the flag that it sets must be generalized.

def check_order(option, opt_str, value, parser):
if parser.values.b:

raise OptionValueError("can’t use %s after -b" % opt_str)
setattr(parser.values, option.dest, 1)

[...]
parser.add_option("-a", action="callback", callback=check_order, dest=’a’)
parser.add_option("-b", action="store_true", dest="b")
parser.add_option("-c", action="callback", callback=check_order, dest=’c’)

Callback example 4: check arbitrary condition

Of course, you could put any condition in there—you’re not limited to checking the values of already-defined
options. For example, if you have options that should not be called when the moon is full, all you have to do is
this:

15.5. optparse — Parser for command line options 433

The Python Library Reference, Release 3.2

def check_moon(option, opt_str, value, parser):
if is_moon_full():

raise OptionValueError("%s option invalid when moon is full"
% opt_str)

setattr(parser.values, option.dest, 1)
[...]
parser.add_option("--foo",

action="callback", callback=check_moon, dest="foo")

(The definition of is_moon_full() is left as an exercise for the reader.)

Callback example 5: fixed arguments

Things get slightly more interesting when you define callback options that take a fixed number of arguments.
Specifying that a callback option takes arguments is similar to defining a "store" or "append" option: if
you define type, then the option takes one argument that must be convertible to that type; if you further define
nargs, then the option takes nargs arguments.

Here’s an example that just emulates the standard "store" action:

def store_value(option, opt_str, value, parser):
setattr(parser.values, option.dest, value)

[...]
parser.add_option("--foo",

action="callback", callback=store_value,
type="int", nargs=3, dest="foo")

Note that optparse takes care of consuming 3 arguments and converting them to integers for you; all you have
to do is store them. (Or whatever; obviously you don’t need a callback for this example.)

Callback example 6: variable arguments

Things get hairy when you want an option to take a variable number of arguments. For this case, you must write
a callback, as optparse doesn’t provide any built-in capabilities for it. And you have to deal with certain
intricacies of conventional Unix command-line parsing that optparse normally handles for you. In particular,
callbacks should implement the conventional rules for bare -- and - arguments:

• either -- or - can be option arguments

• bare -- (if not the argument to some option): halt command-line processing and discard the --

• bare - (if not the argument to some option): halt command-line processing but keep the - (append it to
parser.largs)

If you want an option that takes a variable number of arguments, there are several subtle, tricky issues to worry
about. The exact implementation you choose will be based on which trade-offs you’re willing to make for your
application (which is why optparse doesn’t support this sort of thing directly).

Nevertheless, here’s a stab at a callback for an option with variable arguments:

def vararg_callback(option, opt_str, value, parser):
assert value is None
value = []

def floatable(str):
try:

float(str)
return True

except ValueError:
return False

for arg in parser.rargs:

434 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

stop on --foo like options
if arg[:2] == "--" and len(arg) > 2:

break
stop on -a, but not on -3 or -3.0
if arg[:1] == "-" and len(arg) > 1 and not floatable(arg):

break
value.append(arg)

del parser.rargs[:len(value)]
setattr(parser.values, option.dest, value)

[...]
parser.add_option("-c", "--callback", dest="vararg_attr",

action="callback", callback=vararg_callback)

15.5.5 Extending optparse

Since the two major controlling factors in how optparse interprets command-line options are the action and
type of each option, the most likely direction of extension is to add new actions and new types.

Adding new types

To add new types, you need to define your own subclass of optparse‘s Option class. This class has a couple
of attributes that define optparse‘s types: TYPES and TYPE_CHECKER.

Option.TYPES
A tuple of type names; in your subclass, simply define a new tuple TYPES that builds on the standard one.

Option.TYPE_CHECKER
A dictionary mapping type names to type-checking functions. A type-checking function has the following
signature:

def check_mytype(option, opt, value)

where option is an Option instance, opt is an option string (e.g., -f), and value is the string from the
command line that must be checked and converted to your desired type. check_mytype() should return
an object of the hypothetical type mytype. The value returned by a type-checking function will wind up in
the OptionValues instance returned by OptionParser.parse_args(), or be passed to a callback as
the value parameter.

Your type-checking function should raise OptionValueError if it encounters any problems.
OptionValueError takes a single string argument, which is passed as-is to OptionParser‘s
error() method, which in turn prepends the program name and the string "error:" and prints ev-
erything to stderr before terminating the process.

Here’s a silly example that demonstrates adding a "complex" option type to parse Python-style complex num-
bers on the command line. (This is even sillier than it used to be, because optparse 1.3 added built-in support
for complex numbers, but never mind.)

First, the necessary imports:

from copy import copy
from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (in the TYPE_CHECKER class attribute of
your Option subclass):

def check_complex(option, opt, value):
try:

return complex(value)
except ValueError:

15.5. optparse — Parser for command line options 435

The Python Library Reference, Release 3.2

raise OptionValueError(
"option %s: invalid complex value: %r" % (opt, value))

Finally, the Option subclass:

class MyOption (Option):
TYPES = Option.TYPES + ("complex",)
TYPE_CHECKER = copy(Option.TYPE_CHECKER)
TYPE_CHECKER["complex"] = check_complex

(If we didn’t make a copy() of Option.TYPE_CHECKER, we would end up modifying the TYPE_CHECKER
attribute of optparse‘s Option class. This being Python, nothing stops you from doing that except good manners
and common sense.)

That’s it! Now you can write a script that uses the new option type just like any other optparse-based script,
except you have to instruct your OptionParser to use MyOption instead of Option:

parser = OptionParser(option_class=MyOption)
parser.add_option("-c", type="complex")

Alternately, you can build your own option list and pass it to OptionParser; if you don’t use add_option() in
the above way, you don’t need to tell OptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]
parser = OptionParser(option_list=option_list)

Adding new actions

Adding new actions is a bit trickier, because you have to understand that optparse has a couple of classifications
for actions:

“store” actions actions that result in optparse storing a value to an attribute of the current OptionValues
instance; these options require a dest attribute to be supplied to the Option constructor.

“typed” actions actions that take a value from the command line and expect it to be of a certain type; or rather,
a string that can be converted to a certain type. These options require a type attribute to the Option
constructor.

These are overlapping sets: some default “store” actions are "store", "store_const", "append", and
"count", while the default “typed” actions are "store", "append", and "callback".

When you add an action, you need to categorize it by listing it in at least one of the following class attributes of
Option (all are lists of strings):

Option.ACTIONS
All actions must be listed in ACTIONS.

Option.STORE_ACTIONS
“store” actions are additionally listed here.

Option.TYPED_ACTIONS
“typed” actions are additionally listed here.

Option.ALWAYS_TYPED_ACTIONS
Actions that always take a type (i.e. whose options always take a value) are additionally listed here. The
only effect of this is that optparse assigns the default type, "string", to options with no explicit type
whose action is listed in ALWAYS_TYPED_ACTIONS.

In order to actually implement your new action, you must override Option’s take_action() method and add
a case that recognizes your action.

For example, let’s add an "extend" action. This is similar to the standard "append" action, but instead of
taking a single value from the command-line and appending it to an existing list, "extend" will take multiple
values in a single comma-delimited string, and extend an existing list with them. That is, if --names is an
"extend" option of type "string", the command line

436 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

--names=foo,bar --names blah --names ding,dong

would result in a list

["foo", "bar", "blah", "ding", "dong"]

Again we define a subclass of Option:

class MyOption(Option):

ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)

def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":

lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)

else:
Option.take_action(

self, action, dest, opt, value, values, parser)

Features of note:

• "extend" both expects a value on the command-line and stores that value somewhere, so it goes in both
STORE_ACTIONS and TYPED_ACTIONS.

• to ensure that optparse assigns the default type of "string" to "extend" actions, we put the
"extend" action in ALWAYS_TYPED_ACTIONS as well.

• MyOption.take_action() implements just this one new action, and passes control back to
Option.take_action() for the standard optparse actions.

• values is an instance of the optparse_parser.Values class, which provides the very useful
ensure_value() method. ensure_value() is essentially getattr() with a safety valve; it is
called as

values.ensure_value(attr, value)

If the attr attribute of values doesn’t exist or is None, then ensure_value() first sets it to value, and
then returns ‘value. This is very handy for actions like "extend", "append", and "count", all of
which accumulate data in a variable and expect that variable to be of a certain type (a list for the first two, an
integer for the latter). Using ensure_value() means that scripts using your action don’t have to worry
about setting a default value for the option destinations in question; they can just leave the default as None
and ensure_value() will take care of getting it right when it’s needed.

15.6 getopt — C-style parser for command line options

Source code: Lib/getopt.py

Note: The getopt module is a parser for command line options whose API is designed to be familiar to users
of the C getopt() function. Users who are unfamiliar with the C getopt() function or who would like to
write less code and get better help and error messages should consider using the argparse module instead.

This module helps scripts to parse the command line arguments in sys.argv. It supports the same conventions
as the Unix getopt() function (including the special meanings of arguments of the form ‘-‘ and ‘--‘). Long
options similar to those supported by GNU software may be used as well via an optional third argument.

A more convenient, flexible, and powerful alternative is the optparse module.

This module provides two functions and an exception:

15.6. getopt — C-style parser for command line options 437

http://svn.python.org/view/python/branches/py3k/Lib/getopt.py?view=markup

The Python Library Reference, Release 3.2

getopt.getopt(args, shortopts, longopts=[])
Parses command line options and parameter list. args is the argument list to be parsed, without the leading
reference to the running program. Typically, this means sys.argv[1:]. shortopts is the string of option
letters that the script wants to recognize, with options that require an argument followed by a colon (’:’;
i.e., the same format that Unix getopt() uses).

Note: Unlike GNU getopt(), after a non-option argument, all further arguments are considered also
non-options. This is similar to the way non-GNU Unix systems work.

longopts, if specified, must be a list of strings with the names of the long options which should be supported.
The leading ’--’ characters should not be included in the option name. Long options which require an
argument should be followed by an equal sign (’=’). Optional arguments are not supported. To accept only
long options, shortopts should be an empty string. Long options on the command line can be recognized
so long as they provide a prefix of the option name that matches exactly one of the accepted options. For
example, if longopts is [’foo’, ’frob’], the option --fo will match as --foo, but --f will not
match uniquely, so GetoptError will be raised.

The return value consists of two elements: the first is a list of (option, value) pairs; the second is
the list of program arguments left after the option list was stripped (this is a trailing slice of args). Each
option-and-value pair returned has the option as its first element, prefixed with a hyphen for short options
(e.g., ’-x’) or two hyphens for long options (e.g., ’--long-option’), and the option argument as its
second element, or an empty string if the option has no argument. The options occur in the list in the same
order in which they were found, thus allowing multiple occurrences. Long and short options may be mixed.

getopt.gnu_getopt(args, shortopts, longopts=[])
This function works like getopt(), except that GNU style scanning mode is used by default. This means
that option and non-option arguments may be intermixed. The getopt() function stops processing op-
tions as soon as a non-option argument is encountered.

If the first character of the option string is ’+’, or if the environment variable POSIXLY_CORRECT is set,
then option processing stops as soon as a non-option argument is encountered.

exception getopt.GetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring an
argument is given none. The argument to the exception is a string indicating the cause of the error. For
long options, an argument given to an option which does not require one will also cause this exception to be
raised. The attributes msg and opt give the error message and related option; if there is no specific option
to which the exception relates, opt is an empty string.

exception getopt.error
Alias for GetoptError; for backward compatibility.

An example using only Unix style options:

>>> import getopt
>>> args = ’-a -b -cfoo -d bar a1 a2’.split()
>>> args
[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’abc:d:’)
>>> optlist
[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]
>>> args
[’a1’, ’a2’]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’
>>> args = s.split()
>>> args
[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’x’, [
... ’condition=’, ’output-file=’, ’testing’])

438 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> optlist
[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’, ’’)]
>>> args
[’a1’, ’a2’]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], "ho:v", ["help", "output="])
except getopt.GetoptError as err:

print help information and exit:
print(err) # will print something like "option -a not recognized"
usage()
sys.exit(2)

output = None
verbose = False
for o, a in opts:

if o == "-v":
verbose = True

elif o in ("-h", "--help"):
usage()
sys.exit()

elif o in ("-o", "--output"):
output = a

else:
assert False, "unhandled option"

...

if __name__ == "__main__":
main()

Note that an equivalent command line interface could be produced with less code and more informative help and
error messages by using the argparse module:

import argparse

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()
parser.add_argument(’-o’, ’--output’)
parser.add_argument(’-v’, dest=’verbose’, action=’store_true’)
args = parser.parse_args()
... do something with args.output ...
... do something with args.verbose ..

See Also:

Module argparse Alternative command line option and argument parsing library.

15.7 logging — Logging facility for Python

15.7. logging — Logging facility for Python 439

The Python Library Reference, Release 3.2

Important

This page contains the API reference information. For tutorial information and discussion of more advanced
topics, see

• Basic Tutorial
• Advanced Tutorial
• Logging Cookbook

This module defines functions and classes which implement a flexible event logging system for applications and
libraries.

The key benefit of having the logging API provided by a standard library module is that all Python modules can
participate in logging, so your application log can include your own messages integrated with messages from
third-party modules.

The module provides a lot of functionality and flexibility. If you are unfamiliar with logging, the best way to get
to grips with it is to see the tutorials (see the links on the right).

The basic classes defined by the module, together with their functions, are listed below.

• Loggers expose the interface that application code directly uses.

• Handlers send the log records (created by loggers) to the appropriate destination.

• Filters provide a finer grained facility for determining which log records to output.

• Formatters specify the layout of log records in the final output.

15.7.1 Logger Objects

Loggers have the following attributes and methods. Note that Loggers are never instantiated directly, but always
through the module-level function logging.getLogger(name).

class logging.Logger

Logger.propagate
If this evaluates to false, logging messages are not passed by this logger or by its child loggers to the handlers
of higher level (ancestor) loggers. The constructor sets this attribute to 1.

Logger.setLevel(lvl)
Sets the threshold for this logger to lvl. Logging messages which are less severe than lvl will be ignored.
When a logger is created, the level is set to NOTSET (which causes all messages to be processed when the
logger is the root logger, or delegation to the parent when the logger is a non-root logger). Note that the root
logger is created with level WARNING.

The term ‘delegation to the parent’ means that if a logger has a level of NOTSET, its chain of ancestor
loggers is traversed until either an ancestor with a level other than NOTSET is found, or the root is reached.

If an ancestor is found with a level other than NOTSET, then that ancestor’s level is treated as the effective
level of the logger where the ancestor search began, and is used to determine how a logging event is handled.

If the root is reached, and it has a level of NOTSET, then all messages will be processed. Otherwise, the
root’s level will be used as the effective level.

Logger.isEnabledFor(lvl)
Indicates if a message of severity lvl would be processed by this logger. This method checks first the
module-level level set by logging.disable(lvl) and then the logger’s effective level as determined
by getEffectiveLevel().

Logger.getEffectiveLevel()
Indicates the effective level for this logger. If a value other than NOTSET has been set using setLevel(),
it is returned. Otherwise, the hierarchy is traversed towards the root until a value other than NOTSET is
found, and that value is returned.

440 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Logger.getChild(suffix)
Returns a logger which is a descendant to this logger, as determined by the suffix. Thus,
logging.getLogger(’abc’).getChild(’def.ghi’) would return the same logger as would
be returned by logging.getLogger(’abc.def.ghi’). This is a convenience method, useful when
the parent logger is named using e.g. __name__ rather than a literal string. New in version 3.2.

Logger.debug(msg, *args, **kwargs)
Logs a message with level DEBUG on this logger. The msg is the message format string, and the args are
the arguments which are merged into msg using the string formatting operator. (Note that this means that
you can use keywords in the format string, together with a single dictionary argument.)

There are three keyword arguments in kwargs which are inspected: exc_info which, if it does not evaluate as
false, causes exception information to be added to the logging message. If an exception tuple (in the format
returned by sys.exc_info()) is provided, it is used; otherwise, sys.exc_info() is called to get the
exception information.

The second optional keyword argument is stack_info, which defaults to False. If specified as True, stack
information is added to the logging message, including the actual logging call. Note that this is not the
same stack information as that displayed through specifying exc_info: The former is stack frames from the
bottom of the stack up to the logging call in the current thread, whereas the latter is information about stack
frames which have been unwound, following an exception, while searching for exception handlers.

You can specify stack_info independently of exc_info, e.g. to just show how you got to a certain point in
your code, even when no exceptions were raised. The stack frames are printed following a header line which
says:

Stack (most recent call last):

This mimics the Traceback (most recent call last): which is used when displaying exception frames.

The third keyword argument is extra which can be used to pass a dictionary which is used to populate
the __dict__ of the LogRecord created for the logging event with user-defined attributes. These custom
attributes can then be used as you like. For example, they could be incorporated into logged messages. For
example:

FORMAT = ’%(asctime)-15s %(clientip)s %(user)-8s %(message)s’
logging.basicConfig(format=FORMAT)
d = { ’clientip’ : ’192.168.0.1’, ’user’ : ’fbloggs’ }
logger = logging.getLogger(’tcpserver’)
logger.warning(’Protocol problem: %s’, ’connection reset’, extra=d)

would print something like

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used by the logging system. (See
the Formatter documentation for more information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise some care. In the above
example, for instance, the Formatter has been set up with a format string which expects ‘clientip’ and
‘user’ in the attribute dictionary of the LogRecord. If these are missing, the message will not be logged
because a string formatting exception will occur. So in this case, you always need to pass the extra dictionary
with these keys.

While this might be annoying, this feature is intended for use in specialized circumstances, such as multi-
threaded servers where the same code executes in many contexts, and interesting conditions which arise
are dependent on this context (such as remote client IP address and authenticated user name, in the above
example). In such circumstances, it is likely that specialized Formatters would be used with particular
Handlers. New in version 3.2: The stack_info parameter was added.

Logger.info(msg, *args, **kwargs)
Logs a message with level INFO on this logger. The arguments are interpreted as for debug().

15.7. logging — Logging facility for Python 441

The Python Library Reference, Release 3.2

Logger.warning(msg, *args, **kwargs)
Logs a message with level WARNING on this logger. The arguments are interpreted as for debug().

Logger.error(msg, *args, **kwargs)
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug().

Logger.critical(msg, *args, **kwargs)
Logs a message with level CRITICAL on this logger. The arguments are interpreted as for debug().

Logger.log(lvl, msg, *args, **kwargs)
Logs a message with integer level lvl on this logger. The other arguments are interpreted as for debug().

Logger.exception(msg, *args)
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug(). Exception
info is added to the logging message. This method should only be called from an exception handler.

Logger.addFilter(filt)
Adds the specified filter filt to this logger.

Logger.removeFilter(filt)
Removes the specified filter filt from this logger.

Logger.filter(record)
Applies this logger’s filters to the record and returns a true value if the record is to be processed.

Logger.addHandler(hdlr)
Adds the specified handler hdlr to this logger.

Logger.removeHandler(hdlr)
Removes the specified handler hdlr from this logger.

Logger.findCaller(stack_info=False)
Finds the caller’s source filename and line number. Returns the filename, line number, function name and
stack information as a 4-element tuple. The stack information is returned as None unless stack_info is True.

Logger.handle(record)
Handles a record by passing it to all handlers associated with this logger and its ancestors (until a false value
of propagate is found). This method is used for unpickled records received from a socket, as well as those
created locally. Logger-level filtering is applied using filter().

Logger.makeRecord(name, lvl, fn, lno, msg, args, exc_info, func=None, extra=None, sinfo=None)
This is a factory method which can be overridden in subclasses to create specialized LogRecord instances.

Logger.hasHandlers()
Checks to see if this logger has any handlers configured. This is done by looking for handlers in this logger
and its parents in the logger hierarchy. Returns True if a handler was found, else False. The method stops
searching up the hierarchy whenever a logger with the ‘propagate’ attribute set to False is found - that will
be the last logger which is checked for the existence of handlers. New in version 3.2.

15.7.2 Handler Objects

Handlers have the following attributes and methods. Note that Handler is never instantiated directly; this
class acts as a base for more useful subclasses. However, the __init__() method in subclasses needs to
call Handler.__init__().

Handler.__init__(level=NOTSET)
Initializes the Handler instance by setting its level, setting the list of filters to the empty list and creating
a lock (using createLock()) for serializing access to an I/O mechanism.

Handler.createLock()
Initializes a thread lock which can be used to serialize access to underlying I/O functionality which may not
be threadsafe.

Handler.acquire()
Acquires the thread lock created with createLock().

442 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Handler.release()
Releases the thread lock acquired with acquire().

Handler.setLevel(lvl)
Sets the threshold for this handler to lvl. Logging messages which are less severe than lvl will be ignored.
When a handler is created, the level is set to NOTSET (which causes all messages to be processed).

Handler.setFormatter(form)
Sets the Formatter for this handler to form.

Handler.addFilter(filt)
Adds the specified filter filt to this handler.

Handler.removeFilter(filt)
Removes the specified filter filt from this handler.

Handler.filter(record)
Applies this handler’s filters to the record and returns a true value if the record is to be processed.

Handler.flush()
Ensure all logging output has been flushed. This version does nothing and is intended to be implemented
by subclasses.

Handler.close()
Tidy up any resources used by the handler. This version does no output but removes the handler from an
internal list of handlers which is closed when shutdown() is called. Subclasses should ensure that this
gets called from overridden close() methods.

Handler.handle(record)
Conditionally emits the specified logging record, depending on filters which may have been added to the
handler. Wraps the actual emission of the record with acquisition/release of the I/O thread lock.

Handler.handleError(record)
This method should be called from handlers when an exception is encountered during an emit() call. By
default it does nothing, which means that exceptions get silently ignored. This is what is mostly wanted for
a logging system - most users will not care about errors in the logging system, they are more interested in
application errors. You could, however, replace this with a custom handler if you wish. The specified record
is the one which was being processed when the exception occurred.

Handler.format(record)
Do formatting for a record - if a formatter is set, use it. Otherwise, use the default formatter for the module.

Handler.emit(record)
Do whatever it takes to actually log the specified logging record. This version is intended to be implemented
by subclasses and so raises a NotImplementedError.

For a list of handlers included as standard, see logging.handlers.

15.7.3 Formatter Objects

Formatter objects have the following attributes and methods. They are responsible for converting a
LogRecord to (usually) a string which can be interpreted by either a human or an external system. The base
Formatter allows a formatting string to be specified. If none is supplied, the default value of ’%(message)s’
is used.

A Formatter can be initialized with a format string which makes use of knowledge of the LogRecord attributes
- such as the default value mentioned above making use of the fact that the user’s message and arguments are pre-
formatted into a LogRecord‘s message attribute. This format string contains standard Python %-style mapping
keys. See section Old String Formatting Operations for more information on string formatting.

The useful mapping keys in a LogRecord are given in the section on LogRecord attributes.

class logging.Formatter(fmt=None, datefmt=None)
Returns a new instance of the Formatter class. The instance is initialized with a format string for the

15.7. logging — Logging facility for Python 443

The Python Library Reference, Release 3.2

message as a whole, as well as a format string for the date/time portion of a message. If no fmt is specified,
’%(message)s’ is used. If no datefmt is specified, the ISO8601 date format is used.

format(record)
The record’s attribute dictionary is used as the operand to a string formatting operation. Returns
the resulting string. Before formatting the dictionary, a couple of preparatory steps are carried out.
The message attribute of the record is computed using msg % args. If the formatting string contains
’(asctime)’, formatTime() is called to format the event time. If there is exception infor-
mation, it is formatted using formatException() and appended to the message. Note that the
formatted exception information is cached in attribute exc_text. This is useful because the exception
information can be pickled and sent across the wire, but you should be careful if you have more than
one Formatter subclass which customizes the formatting of exception information. In this case,
you will have to clear the cached value after a formatter has done its formatting, so that the next
formatter to handle the event doesn’t use the cached value but recalculates it afresh.

If stack information is available, it’s appended after the exception information, using
formatStack() to transform it if necessary.

formatTime(record, datefmt=None)
This method should be called from format() by a formatter which wants to make use of a formatted
time. This method can be overridden in formatters to provide for any specific requirement, but the
basic behavior is as follows: if datefmt (a string) is specified, it is used with time.strftime() to
format the creation time of the record. Otherwise, the ISO8601 format is used. The resulting string is
returned.

formatException(exc_info)
Formats the specified exception information (a standard exception tuple as re-
turned by sys.exc_info()) as a string. This default implementation just uses
traceback.print_exception(). The resulting string is returned.

formatStack(stack_info)
Formats the specified stack information (a string as returned by traceback.print_stack(), but
with the last newline removed) as a string. This default implementation just returns the input value.

15.7.4 Filter Objects

Filters can be used by Handlers and Loggers for more sophisticated filtering than is provided by levels.
The base filter class only allows events which are below a certain point in the logger hierarchy. For example, a
filter initialized with ‘A.B’ will allow events logged by loggers ‘A.B’, ‘A.B.C’, ‘A.B.C.D’, ‘A.B.D’ etc. but not
‘A.BB’, ‘B.A.B’ etc. If initialized with the empty string, all events are passed.

class logging.Filter(name=’‘)
Returns an instance of the Filter class. If name is specified, it names a logger which, together with its
children, will have its events allowed through the filter. If name is the empty string, allows every event.

filter(record)
Is the specified record to be logged? Returns zero for no, nonzero for yes. If deemed appropriate, the
record may be modified in-place by this method.

Note that filters attached to handlers are consulted whenever an event is emitted by the handler, whereas filters
attached to loggers are consulted whenever an event is logged to the handler (using debug(), info(), etc.)
This means that events which have been generated by descendant loggers will not be filtered by a logger’s filter
setting, unless the filter has also been applied to those descendant loggers.

You don’t actually need to subclass Filter: you can pass any instance which has a filter method with the
same semantics. Changed in version 3.2: You don’t need to create specialized Filter classes, or use other
classes with a filter method: you can use a function (or other callable) as a filter. The filtering logic will check
to see if the filter object has a filter attribute: if it does, it’s assumed to be a Filter and its filter()
method is called. Otherwise, it’s assumed to be a callable and called with the record as the single parameter. The
returned value should conform to that returned by filter(). Although filters are used primarily to filter records
based on more sophisticated criteria than levels, they get to see every record which is processed by the handler
or logger they’re attached to: this can be useful if you want to do things like counting how many records were

444 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

processed by a particular logger or handler, or adding, changing or removing attributes in the LogRecord being
processed. Obviously changing the LogRecord needs to be done with some care, but it does allow the injection of
contextual information into logs (see filters-contextual).

15.7.5 LogRecord Objects

LogRecord instances are created automatically by the Logger every time something is logged, and can be
created manually via makeLogRecord() (for example, from a pickled event received over the wire).

class logging.LogRecord(name, level, pathname, lineno, msg, args, exc_info, func=None,
sinfo=None)

Contains all the information pertinent to the event being logged.

The primary information is passed in msg and args, which are combined using msg % args to create
the message field of the record.

Parameters

• name – The name of the logger used to log the event represented by this LogRecord.

• level – The numeric level of the logging event (one of DEBUG, INFO etc.)

• pathname – The full pathname of the source file where the logging call was made.

• lineno – The line number in the source file where the logging call was made.

• msg – The event description message, possibly a format string with placeholders for
variable data.

• args – Variable data to merge into the msg argument to obtain the event description.

• exc_info – An exception tuple with the current exception information, or None if no
exception information is available.

• func – The name of the function or method from which the logging call was invoked.

• sinfo – A text string representing stack information from the base of the stack in the
current thread, up to the logging call.

getMessage()
Returns the message for this LogRecord instance after merging any user-supplied arguments with
the message. If the user-supplied message argument to the logging call is not a string, str() is called
on it to convert it to a string. This allows use of user-defined classes as messages, whose __str__
method can return the actual format string to be used.

Changed in version 3.2: The creation of a LogRecord has been made more configurable by providing a
factory which is used to create the record. The factory can be set using getLogRecordFactory() and
setLogRecordFactory() (see this for the factory’s signature). This functionality can be used to inject
your own values into a LogRecord at creation time. You can use the following pattern:

old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):
record = old_factory(*args, **kwargs)
record.custom_attribute = 0xdecafbad
return record

logging.setLogRecordFactory(record_factory)

With this pattern, multiple factories could be chained, and as long as they don’t overwrite each other’s
attributes or unintentionally overwrite the standard attributes listed above, there should be no surprises.

15.7. logging — Logging facility for Python 445

The Python Library Reference, Release 3.2

15.7.6 LogRecord attributes

The LogRecord has a number of attributes, most of which are derived from the parameters to the constructor.
(Note that the names do not always correspond exactly between the LogRecord constructor parameters and the
LogRecord attributes.) These attributes can be used to merge data from the record into the format string. The
following table lists (in alphabetical order) the attribute names, their meanings and the corresponding placeholder
in a %-style format string.

If you are using {}-formatting (str.format()), you can use {attrname} as the placeholder in the format
string. If you are using $-formatting (string.Template), use the form ${attrname}. In both cases, of
course, replace attrname with the actual attribute name you want to use.

In the case of {}-formatting, you can specify formatting flags by placing them after the attribute name, separated
from it with a colon. For example: a placeholder of {msecs:03d} would format a millisecond value of 4 as
004. Refer to the str.format() documentation for full details on the options available to you.

446 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

At-
tribute
name

Format Description

args You shouldn’t need
to format this
yourself.

The tuple of arguments merged into msg to produce message.

asctime %(asctime)s Human-readable time when the LogRecord was created. By default this is
of the form ‘2003-07-08 16:49:45,896’ (the numbers after the comma are
millisecond portion of the time).

created %(created)f Time when the LogRecord was created (as returned by time.time()).
exc_info You shouldn’t need

to format this
yourself.

Exception tuple (à la sys.exc_info) or, if no exception has occurred,
None.

file-
name

%(filename)s Filename portion of pathname.

func-
Name

%(funcName)s Name of function containing the logging call.

level-
name

%(levelname)s Text logging level for the message (’DEBUG’, ’INFO’, ’WARNING’,
’ERROR’, ’CRITICAL’).

levelno %(levelno)s Numeric logging level for the message (DEBUG, INFO, WARNING, ERROR,
CRITICAL).

lineno %(lineno)d Source line number where the logging call was issued (if available).
module %(module)s Module (name portion of filename).
msecs %(msecs)d Millisecond portion of the time when the LogRecord was created.
mes-
sage

%(message)s The logged message, computed as msg % args. This is set when
Formatter.format() is invoked.

msg You shouldn’t need
to format this
yourself.

The format string passed in the original logging call. Merged with args to
produce message, or an arbitrary object (see arbitrary-object-messages).

name %(name)s Name of the logger used to log the call.
path-
name

%(pathname)s Full pathname of the source file where the logging call was issued (if
available).

process %(process)d Process ID (if available).
pro-
cess-
Name

%(processName)sProcess name (if available).

rela-
tive-
Created

%(relativeCreated)dTime in milliseconds when the LogRecord was created, relative to the time
the logging module was loaded.

stack_info You shouldn’t need
to format this
yourself.

Stack frame information (where available) from the bottom of the stack in
the current thread, up to and including the stack frame of the logging call
which resulted in the creation of this record.

thread %(thread)d Thread ID (if available).
thread-
Name

%(threadName)s Thread name (if available).

15.7.7 LoggerAdapter Objects

LoggerAdapter instances are used to conveniently pass contextual information into logging calls. For a usage
example , see the section on adding contextual information to your logging output.

class logging.LoggerAdapter(logger, extra)
Returns an instance of LoggerAdapter initialized with an underlying Logger instance and a dict-like
object.

process(msg, kwargs)
Modifies the message and/or keyword arguments passed to a logging call in order to insert contextual
information. This implementation takes the object passed as extra to the constructor and adds it to

15.7. logging — Logging facility for Python 447

The Python Library Reference, Release 3.2

kwargs using key ‘extra’. The return value is a (msg, kwargs) tuple which has the (possibly modified)
versions of the arguments passed in.

In addition to the above, LoggerAdapter supports the following methods of Logger, i.e.
debug(), info(), warning(), error(), exception(), critical(), log(), isEnabledFor(),
getEffectiveLevel(), setLevel(), hasHandlers(). These methods have the same signatures as
their counterparts in Logger, so you can use the two types of instances interchangeably. Changed in version 3.2:
The isEnabledFor(), getEffectiveLevel(), setLevel() and hasHandlers() methods were
added to LoggerAdapter. These methods delegate to the underlying logger.

15.7.8 Thread Safety

The logging module is intended to be thread-safe without any special work needing to be done by its clients. It
achieves this though using threading locks; there is one lock to serialize access to the module’s shared data, and
each handler also creates a lock to serialize access to its underlying I/O.

If you are implementing asynchronous signal handlers using the signal module, you may not be able to use
logging from within such handlers. This is because lock implementations in the threading module are not
always re-entrant, and so cannot be invoked from such signal handlers.

15.7.9 Module-Level Functions

In addition to the classes described above, there are a number of module- level functions.

logging.getLogger(name=None)
Return a logger with the specified name or, if name is None, return a logger which is the root logger of the
hierarchy. If specified, the name is typically a dot-separated hierarchical name like ‘a’, ‘a.b’ or ‘a.b.c.d’.
Choice of these names is entirely up to the developer who is using logging.

All calls to this function with a given name return the same logger instance. This means that logger instances
never need to be passed between different parts of an application.

logging.getLoggerClass()
Return either the standard Logger class, or the last class passed to setLoggerClass(). This function
may be called from within a new class definition, to ensure that installing a customised Logger class will
not undo customisations already applied by other code. For example:

class MyLogger(logging.getLoggerClass()):
... override behaviour here

logging.getLogRecordFactory()
Return a callable which is used to create a LogRecord. New in version 3.2: This function has been
provided, along with setLogRecordFactory(), to allow developers more control over how the
LogRecord representing a logging event is constructed. See setLogRecordFactory() for more
information about the how the factory is called.

logging.debug(msg, *args, **kwargs)
Logs a message with level DEBUG on the root logger. The msg is the message format string, and the args
are the arguments which are merged into msg using the string formatting operator. (Note that this means
that you can use keywords in the format string, together with a single dictionary argument.)

There are three keyword arguments in kwargs which are inspected: exc_info which, if it does not evaluate as
false, causes exception information to be added to the logging message. If an exception tuple (in the format
returned by sys.exc_info()) is provided, it is used; otherwise, sys.exc_info() is called to get the
exception information.

The second optional keyword argument is stack_info, which defaults to False. If specified as True, stack
information is added to the logging message, including the actual logging call. Note that this is not the
same stack information as that displayed through specifying exc_info: The former is stack frames from the

448 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

bottom of the stack up to the logging call in the current thread, whereas the latter is information about stack
frames which have been unwound, following an exception, while searching for exception handlers.

You can specify stack_info independently of exc_info, e.g. to just show how you got to a certain point in
your code, even when no exceptions were raised. The stack frames are printed following a header line which
says:

Stack (most recent call last):

This mimics the Traceback (most recent call last): which is used when displaying exception frames.

The third optional keyword argument is extra which can be used to pass a dictionary which is used to popu-
late the __dict__ of the LogRecord created for the logging event with user-defined attributes. These custom
attributes can then be used as you like. For example, they could be incorporated into logged messages. For
example:

FORMAT = ’%(asctime)-15s %(clientip)s %(user)-8s %(message)s’
logging.basicConfig(format=FORMAT)
d = {’clientip’: ’192.168.0.1’, ’user’: ’fbloggs’}
logging.warning(’Protocol problem: %s’, ’connection reset’, extra=d)

would print something like:

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used by the logging system. (See
the Formatter documentation for more information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise some care. In the above
example, for instance, the Formatter has been set up with a format string which expects ‘clientip’ and
‘user’ in the attribute dictionary of the LogRecord. If these are missing, the message will not be logged
because a string formatting exception will occur. So in this case, you always need to pass the extra dictionary
with these keys.

While this might be annoying, this feature is intended for use in specialized circumstances, such as multi-
threaded servers where the same code executes in many contexts, and interesting conditions which arise
are dependent on this context (such as remote client IP address and authenticated user name, in the above
example). In such circumstances, it is likely that specialized Formatters would be used with particular
Handlers. New in version 3.2: The stack_info parameter was added.

logging.info(msg, *args, **kwargs)
Logs a message with level INFO on the root logger. The arguments are interpreted as for debug().

logging.warning(msg, *args, **kwargs)
Logs a message with level WARNING on the root logger. The arguments are interpreted as for debug().

logging.error(msg, *args, **kwargs)
Logs a message with level ERROR on the root logger. The arguments are interpreted as for debug().

logging.critical(msg, *args, **kwargs)
Logs a message with level CRITICAL on the root logger. The arguments are interpreted as for debug().

logging.exception(msg, *args)
Logs a message with level ERROR on the root logger. The arguments are interpreted as for debug().
Exception info is added to the logging message. This function should only be called from an exception
handler.

logging.log(level, msg, *args, **kwargs)
Logs a message with level level on the root logger. The other arguments are interpreted as for debug().

PLEASE NOTE: The above module-level functions which delegate to the root logger should not be used in
threads, in versions of Python earlier than 2.7.1 and 3.2, unless at least one handler has been added to the
root logger before the threads are started. These convenience functions call basicConfig() to ensure
that at least one handler is available; in earlier versions of Python, this can (under rare circumstances) lead

15.7. logging — Logging facility for Python 449

The Python Library Reference, Release 3.2

to handlers being added multiple times to the root logger, which can in turn lead to multiple messages for
the same event.

logging.disable(lvl)
Provides an overriding level lvl for all loggers which takes precedence over the logger’s own level. When
the need arises to temporarily throttle logging output down across the whole application, this function can
be useful. Its effect is to disable all logging calls of severity lvl and below, so that if you call it with a value
of INFO, then all INFO and DEBUG events would be discarded, whereas those of severity WARNING and
above would be processed according to the logger’s effective level.

logging.addLevelName(lvl, levelName)
Associates level lvl with text levelName in an internal dictionary, which is used to map numeric levels to
a textual representation, for example when a Formatter formats a message. This function can also be
used to define your own levels. The only constraints are that all levels used must be registered using this
function, levels should be positive integers and they should increase in increasing order of severity.

NOTE: If you are thinking of defining your own levels, please see the section on custom-levels.

logging.getLevelName(lvl)
Returns the textual representation of logging level lvl. If the level is one of the predefined levels CRITICAL,
ERROR, WARNING, INFO or DEBUG then you get the corresponding string. If you have associated levels
with names using addLevelName() then the name you have associated with lvl is returned. If a numeric
value corresponding to one of the defined levels is passed in, the corresponding string representation is
returned. Otherwise, the string ‘Level %s’ % lvl is returned.

logging.makeLogRecord(attrdict)
Creates and returns a new LogRecord instance whose attributes are defined by attrdict. This function is
useful for taking a pickled LogRecord attribute dictionary, sent over a socket, and reconstituting it as a
LogRecord instance at the receiving end.

logging.basicConfig(**kwargs)
Does basic configuration for the logging system by creating a StreamHandler with a default
Formatter and adding it to the root logger. The functions debug(), info(), warning(), error()
and critical() will call basicConfig() automatically if no handlers are defined for the root logger.

This function does nothing if the root logger already has handlers configured for it.

PLEASE NOTE: This function should be called from the main thread before other threads are started. In
versions of Python prior to 2.7.1 and 3.2, if this function is called from multiple threads, it is possible (in
rare circumstances) that a handler will be added to the root logger more than once, leading to unexpected
results such as messages being duplicated in the log.

The following keyword arguments are supported.

For-
mat

Description

filenameSpecifies that a FileHandler be created, using the specified filename, rather than a
StreamHandler.

filemodeSpecifies the mode to open the file, if filename is specified (if filemode is unspecified, it
defaults to ‘a’).

format Use the specified format string for the handler.
datefmtUse the specified date/time format.
style If format is specified, use this style for the format string. One of ‘%’, ‘{‘ or ‘$’ for

%-formatting, str.format() or string.Template respectively, and defaulting to ‘%’
if not specified.

level Set the root logger level to the specified level.
stream Use the specified stream to initialize the StreamHandler. Note that this argument is

incompatible with ‘filename’ - if both are present, ‘stream’ is ignored.

Changed in version 3.2: The style argument was added.

logging.shutdown()
Informs the logging system to perform an orderly shutdown by flushing and closing all handlers. This
should be called at application exit and no further use of the logging system should be made after this call.

450 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

logging.setLoggerClass(klass)
Tells the logging system to use the class klass when instantiating a logger. The class should de-
fine __init__() such that only a name argument is required, and the __init__() should call
Logger.__init__(). This function is typically called before any loggers are instantiated by appli-
cations which need to use custom logger behavior.

logging.setLogRecordFactory(factory)
Set a callable which is used to create a LogRecord.

Parameters factory – The factory callable to be used to instantiate a log record.

New in version 3.2: This function has been provided, along with getLogRecordFactory(), to allow
developers more control over how the LogRecord representing a logging event is constructed. The factory
has the following signature:

factory(name, level, fn, lno, msg, args, exc_info, func=None,
sinfo=None, **kwargs)

name The logger name.

level The logging level (numeric).

fn The full pathname of the file where the logging call was made.

lno The line number in the file where the logging call was made.

msg The logging message.

args The arguments for the logging message.

exc_info An exception tuple, or None.

func The name of the function or method which invoked the logging call.

sinfo A stack traceback such as is provided by traceback.print_stack(),
showing the call hierarchy.

kwargs Additional keyword arguments.

15.7.10 Integration with the warnings module

The captureWarnings() function can be used to integrate logging with the warnings module.

logging.captureWarnings(capture)
This function is used to turn the capture of warnings by logging on and off.

If capture is True, warnings issued by the warnings module will be redirected to the logging system.
Specifically, a warning will be formatted using warnings.formatwarning() and the resulting string
logged to a logger named ‘py.warnings’ with a severity of WARNING.

If capture is False, the redirection of warnings to the logging system will stop, and warnings will be
redirected to their original destinations (i.e. those in effect before captureWarnings(True) was called).

See Also:

Module logging.config Configuration API for the logging module.

Module logging.handlers Useful handlers included with the logging module.

PEP 282 - A Logging System The proposal which described this feature for inclusion in the Python standard
library.

Original Python logging package This is the original source for the logging package. The version of the
package available from this site is suitable for use with Python 1.5.2, 2.1.x and 2.2.x, which do not include
the logging package in the standard library.

15.7. logging — Logging facility for Python 451

http://www.python.org/dev/peps/pep-0282
http://www.red-dove.com/python_logging.html

The Python Library Reference, Release 3.2

15.8 logging.config — Logging configuration

Important

This page contains only reference information. For tutorials, please see
• Basic Tutorial
• Advanced Tutorial
• Logging Cookbook

This section describes the API for configuring the logging module.

15.8.1 Configuration functions

The following functions configure the logging module. They are located in the logging.config module.
Their use is optional — you can configure the logging module using these functions or by making calls to
the main API (defined in logging itself) and defining handlers which are declared either in logging or
logging.handlers.

logging.config.dictConfig(config)

Takes the logging configuration from a dictionary. The contents of this dictionary are described
in Configuration dictionary schema below.

If an error is encountered during configuration, this function will raise a ValueError,
TypeError, AttributeError or ImportErrorwith a suitably descriptive message. The
following is a (possibly incomplete) list of conditions which will raise an error:

•A level which is not a string or which is a string not corresponding to an actual logging
level.

•A propagate value which is not a boolean.

•An id which does not have a corresponding destination.

•A non-existent handler id found during an incremental call.

•An invalid logger name.

•Inability to resolve to an internal or external object.

Parsing is performed by the DictConfigurator class, whose constructor is passed
the dictionary used for configuration, and has a configure() method. The
logging.config module has a callable attribute dictConfigClass which is initially set
to DictConfigurator. You can replace the value of dictConfigClass with a suitable
implementation of your own.

dictConfig() calls dictConfigClass passing the specified dictionary, and then calls the
configure() method on the returned object to put the configuration into effect:

def dictConfig(config):
dictConfigClass(config).configure()

For example, a subclass of DictConfigurator could call
DictConfigurator.__init__() in its own __init__(), then set up custom
prefixes which would be usable in the subsequent configure() call. dictConfigClass
would be bound to this new subclass, and then dictConfig() could be called exactly as in
the default, uncustomized state.

New in version 3.2.

452 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

logging.config.fileConfig(fname[, defaults])
Reads the logging configuration from a configparser-format file named fname. This function can be
called several times from an application, allowing an end user to select from various pre-canned configu-
rations (if the developer provides a mechanism to present the choices and load the chosen configuration).
Defaults to be passed to the ConfigParser can be specified in the defaults argument.

logging.config.listen(port=DEFAULT_LOGGING_CONFIG_PORT)
Starts up a socket server on the specified port, and listens for new configurations. If no port is speci-
fied, the module’s default DEFAULT_LOGGING_CONFIG_PORT is used. Logging configurations will be
sent as a file suitable for processing by fileConfig(). Returns a Thread instance on which you can
call start() to start the server, and which you can join() when appropriate. To stop the server, call
stopListening().

To send a configuration to the socket, read in the configuration file and send it to the socket as a string of
bytes preceded by a four-byte length string packed in binary using struct.pack(’>L’, n).

logging.config.stopListening()
Stops the listening server which was created with a call to listen(). This is typically called before
calling join() on the return value from listen().

15.8.2 Configuration dictionary schema

Describing a logging configuration requires listing the various objects to create and the connections between them;
for example, you may create a handler named ‘console’ and then say that the logger named ‘startup’ will send
its messages to the ‘console’ handler. These objects aren’t limited to those provided by the logging module
because you might write your own formatter or handler class. The parameters to these classes may also need to
include external objects such as sys.stderr. The syntax for describing these objects and connections is defined
in Object connections below.

Dictionary Schema Details

The dictionary passed to dictConfig() must contain the following keys:

• version - to be set to an integer value representing the schema version. The only valid value at present is 1,
but having this key allows the schema to evolve while still preserving backwards compatibility.

All other keys are optional, but if present they will be interpreted as described below. In all cases below where
a ‘configuring dict’ is mentioned, it will be checked for the special ’()’ key to see if a custom instantiation is
required. If so, the mechanism described in User-defined objects below is used to create an instance; otherwise,
the context is used to determine what to instantiate.

• formatters - the corresponding value will be a dict in which each key is a formatter id and each value is a
dict describing how to configure the corresponding Formatter instance.

The configuring dict is searched for keys format and datefmt (with defaults of None) and these are
used to construct a logging.Formatter instance.

• filters - the corresponding value will be a dict in which each key is a filter id and each value is a dict
describing how to configure the corresponding Filter instance.

The configuring dict is searched for the key name (defaulting to the empty string) and this is used to
construct a logging.Filter instance.

• handlers - the corresponding value will be a dict in which each key is a handler id and each value is a dict
describing how to configure the corresponding Handler instance.

The configuring dict is searched for the following keys:

– class (mandatory). This is the fully qualified name of the handler class.

– level (optional). The level of the handler.

– formatter (optional). The id of the formatter for this handler.

15.8. logging.config — Logging configuration 453

The Python Library Reference, Release 3.2

– filters (optional). A list of ids of the filters for this handler.

All other keys are passed through as keyword arguments to the handler’s constructor. For example, given
the snippet:

handlers:
console:

class : logging.StreamHandler
formatter: brief
level : INFO
filters: [allow_foo]
stream : ext://sys.stdout

file:
class : logging.handlers.RotatingFileHandler
formatter: precise
filename: logconfig.log
maxBytes: 1024
backupCount: 3

the handler with id console is instantiated as a logging.StreamHandler, us-
ing sys.stdout as the underlying stream. The handler with id file is instanti-
ated as a logging.handlers.RotatingFileHandler with the keyword arguments
filename=’logconfig.log’, maxBytes=1024, backupCount=3.

• loggers - the corresponding value will be a dict in which each key is a logger name and each value is a dict
describing how to configure the corresponding Logger instance.

The configuring dict is searched for the following keys:

– level (optional). The level of the logger.

– propagate (optional). The propagation setting of the logger.

– filters (optional). A list of ids of the filters for this logger.

– handlers (optional). A list of ids of the handlers for this logger.

The specified loggers will be configured according to the level, propagation, filters and handlers specified.

• root - this will be the configuration for the root logger. Processing of the configuration will be as for any
logger, except that the propagate setting will not be applicable.

• incremental - whether the configuration is to be interpreted as incremental to the existing configuration. This
value defaults to False, which means that the specified configuration replaces the existing configuration
with the same semantics as used by the existing fileConfig() API.

If the specified value is True, the configuration is processed as described in the section on Incremental
Configuration.

• disable_existing_loggers - whether any existing loggers are to be disabled. This setting mirrors the parame-
ter of the same name in fileConfig(). If absent, this parameter defaults to True. This value is ignored
if incremental is True.

Incremental Configuration

It is difficult to provide complete flexibility for incremental configuration. For example, because objects such as
filters and formatters are anonymous, once a configuration is set up, it is not possible to refer to such anonymous
objects when augmenting a configuration.

Furthermore, there is not a compelling case for arbitrarily altering the object graph of loggers, handlers, filters,
formatters at run-time, once a configuration is set up; the verbosity of loggers and handlers can be controlled just
by setting levels (and, in the case of loggers, propagation flags). Changing the object graph arbitrarily in a safe way
is problematic in a multi-threaded environment; while not impossible, the benefits are not worth the complexity it
adds to the implementation.

454 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Thus, when the incremental key of a configuration dict is present and is True, the system will completely
ignore any formatters and filters entries, and process only the level settings in the handlers entries,
and the level and propagate settings in the loggers and root entries.

Using a value in the configuration dict lets configurations to be sent over the wire as pickled dicts to a socket
listener. Thus, the logging verbosity of a long-running application can be altered over time with no need to stop
and restart the application.

Object connections

The schema describes a set of logging objects - loggers, handlers, formatters, filters - which are connected to each
other in an object graph. Thus, the schema needs to represent connections between the objects. For example, say
that, once configured, a particular logger has attached to it a particular handler. For the purposes of this discussion,
we can say that the logger represents the source, and the handler the destination, of a connection between the two.
Of course in the configured objects this is represented by the logger holding a reference to the handler. In the
configuration dict, this is done by giving each destination object an id which identifies it unambiguously, and then
using the id in the source object’s configuration to indicate that a connection exists between the source and the
destination object with that id.

So, for example, consider the following YAML snippet:

formatters:
brief:

configuration for formatter with id ’brief’ goes here
precise:

configuration for formatter with id ’precise’ goes here
handlers:

h1: #This is an id
configuration of handler with id ’h1’ goes here
formatter: brief

h2: #This is another id
configuration of handler with id ’h2’ goes here
formatter: precise

loggers:
foo.bar.baz:

other configuration for logger ’foo.bar.baz’
handlers: [h1, h2]

(Note: YAML used here because it’s a little more readable than the equivalent Python source form for the dictio-
nary.)

The ids for loggers are the logger names which would be used programmatically to obtain a reference to those log-
gers, e.g. foo.bar.baz. The ids for Formatters and Filters can be any string value (such as brief, precise
above) and they are transient, in that they are only meaningful for processing the configuration dictionary and used
to determine connections between objects, and are not persisted anywhere when the configuration call is complete.

The above snippet indicates that logger named foo.bar.baz should have two handlers attached to it, which are
described by the handler ids h1 and h2. The formatter for h1 is that described by id brief, and the formatter
for h2 is that described by id precise.

User-defined objects

The schema supports user-defined objects for handlers, filters and formatters. (Loggers do not need to have
different types for different instances, so there is no support in this configuration schema for user-defined logger
classes.)

Objects to be configured are described by dictionaries which detail their configuration. In some places, the logging
system will be able to infer from the context how an object is to be instantiated, but when a user-defined object
is to be instantiated, the system will not know how to do this. In order to provide complete flexibility for user-
defined object instantiation, the user needs to provide a ‘factory’ - a callable which is called with a configuration

15.8. logging.config — Logging configuration 455

The Python Library Reference, Release 3.2

dictionary and which returns the instantiated object. This is signalled by an absolute import path to the factory
being made available under the special key ’()’. Here’s a concrete example:

formatters:
brief:

format: ’%(message)s’
default:

format: ’%(asctime)s %(levelname)-8s %(name)-15s %(message)s’
datefmt: ’%Y-%m-%d %H:%M:%S’

custom:
(): my.package.customFormatterFactory
bar: baz
spam: 99.9
answer: 42

The above YAML snippet defines three formatters. The first, with id brief, is a standard
logging.Formatter instance with the specified format string. The second, with id default, has a longer
format and also defines the time format explicitly, and will result in a logging.Formatter initialized with
those two format strings. Shown in Python source form, the brief and default formatters have configuration
sub-dictionaries:

{
’format’ : ’%(message)s’

}

and:

{
’format’ : ’%(asctime)s %(levelname)-8s %(name)-15s %(message)s’,
’datefmt’ : ’%Y-%m-%d %H:%M:%S’

}

respectively, and as these dictionaries do not contain the special key ’()’, the instantiation is inferred from the
context: as a result, standard logging.Formatter instances are created. The configuration sub-dictionary for
the third formatter, with id custom, is:

{
’()’ : ’my.package.customFormatterFactory’,
’bar’ : ’baz’,
’spam’ : 99.9,
’answer’ : 42

}

and this contains the special key ’()’, which means that user-defined instantiation is wanted. In this case, the
specified factory callable will be used. If it is an actual callable it will be used directly - otherwise, if you specify a
string (as in the example) the actual callable will be located using normal import mechanisms. The callable will be
called with the remaining items in the configuration sub-dictionary as keyword arguments. In the above example,
the formatter with id custom will be assumed to be returned by the call:

my.package.customFormatterFactory(bar=’baz’, spam=99.9, answer=42)

The key ’()’ has been used as the special key because it is not a valid keyword parameter name, and so will not
clash with the names of the keyword arguments used in the call. The ’()’ also serves as a mnemonic that the
corresponding value is a callable.

Access to external objects

There are times where a configuration needs to refer to objects external to the configuration, for example
sys.stderr. If the configuration dict is constructed using Python code, this is straightforward, but a prob-
lem arises when the configuration is provided via a text file (e.g. JSON, YAML). In a text file, there is no standard
way to distinguish sys.stderr from the literal string ’sys.stderr’. To facilitate this distinction, the con-
figuration system looks for certain special prefixes in string values and treat them specially. For example, if the

456 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

literal string ’ext://sys.stderr’ is provided as a value in the configuration, then the ext:// will be
stripped off and the remainder of the value processed using normal import mechanisms.

The handling of such prefixes is done in a way analogous to protocol handling: there is a generic mechanism
to look for prefixes which match the regular expression ^(?P<prefix>[a-z]+)://(?P<suffix>.*)$
whereby, if the prefix is recognised, the suffix is processed in a prefix-dependent manner and the result of
the processing replaces the string value. If the prefix is not recognised, then the string value will be left as-is.

Access to internal objects

As well as external objects, there is sometimes also a need to refer to objects in the configuration. This will
be done implicitly by the configuration system for things that it knows about. For example, the string value
’DEBUG’ for a level in a logger or handler will automatically be converted to the value logging.DEBUG,
and the handlers, filters and formatter entries will take an object id and resolve to the appropriate
destination object.

However, a more generic mechanism is needed for user-defined objects which are not known to the logging
module. For example, consider logging.handlers.MemoryHandler, which takes a target argument
which is another handler to delegate to. Since the system already knows about this class, then in the configuration,
the given target just needs to be the object id of the relevant target handler, and the system will resolve to
the handler from the id. If, however, a user defines a my.package.MyHandler which has an alternate
handler, the configuration system would not know that the alternate referred to a handler. To cater for this, a
generic resolution system allows the user to specify:

handlers:
file:

configuration of file handler goes here

custom:
(): my.package.MyHandler
alternate: cfg://handlers.file

The literal string ’cfg://handlers.file’will be resolved in an analogous way to strings with the ext://
prefix, but looking in the configuration itself rather than the import namespace. The mechanism allows access by
dot or by index, in a similar way to that provided by str.format. Thus, given the following snippet:

handlers:
email:

class: logging.handlers.SMTPHandler
mailhost: localhost
fromaddr: my_app@domain.tld
toaddrs:

- support_team@domain.tld
- dev_team@domain.tld

subject: Houston, we have a problem.

in the configuration, the string ’cfg://handlers’ would resolve to the dict with key handlers,
the string ’cfg://handlers.email would resolve to the dict with key email in the handlers
dict, and so on. The string ’cfg://handlers.email.toaddrs[1] would resolve to
’dev_team.domain.tld’ and the string ’cfg://handlers.email.toaddrs[0]’ would re-
solve to the value ’support_team@domain.tld’. The subject value could be accessed using either
’cfg://handlers.email.subject’ or, equivalently, ’cfg://handlers.email[subject]’.
The latter form only needs to be used if the key contains spaces or non-alphanumeric characters. If an index value
consists only of decimal digits, access will be attempted using the corresponding integer value, falling back to the
string value if needed.

Given a string cfg://handlers.myhandler.mykey.123, this will resolve to
config_dict[’handlers’][’myhandler’][’mykey’][’123’]. If the string is speci-
fied as cfg://handlers.myhandler.mykey[123], the system will attempt to retrieve the
value from config_dict[’handlers’][’myhandler’][’mykey’][123], and fall back to
config_dict[’handlers’][’myhandler’][’mykey’][’123’] if that fails.

15.8. logging.config — Logging configuration 457

The Python Library Reference, Release 3.2

15.8.3 Configuration file format

The configuration file format understood by fileConfig() is based on configparser functionality. The
file must contain sections called [loggers], [handlers] and [formatters] which identify by name
the entities of each type which are defined in the file. For each such entity, there is a separate section which
identifies how that entity is configured. Thus, for a logger named log01 in the [loggers] section, the rel-
evant configuration details are held in a section [logger_log01]. Similarly, a handler called hand01 in
the [handlers] section will have its configuration held in a section called [handler_hand01], while
a formatter called form01 in the [formatters] section will have its configuration specified in a sec-
tion called [formatter_form01]. The root logger configuration must be specified in a section called
[logger_root].

Examples of these sections in the file are given below.

[loggers]
keys=root,log02,log03,log04,log05,log06,log07

[handlers]
keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07,hand08,hand09

[formatters]
keys=form01,form02,form03,form04,form05,form06,form07,form08,form09

The root logger must specify a level and a list of handlers. An example of a root logger section is given below.

[logger_root]
level=NOTSET
handlers=hand01

The level entry can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL or NOTSET. For the root
logger only, NOTSET means that all messages will be logged. Level values are eval()uated in the context of
the logging package’s namespace.

The handlers entry is a comma-separated list of handler names, which must appear in the [handlers] sec-
tion. These names must appear in the [handlers] section and have corresponding sections in the configuration
file.

For loggers other than the root logger, some additional information is required. This is illustrated by the following
example.

[logger_parser]
level=DEBUG
handlers=hand01
propagate=1
qualname=compiler.parser

The level and handlers entries are interpreted as for the root logger, except that if a non-root logger’s level
is specified as NOTSET, the system consults loggers higher up the hierarchy to determine the effective level of
the logger. The propagate entry is set to 1 to indicate that messages must propagate to handlers higher up the
logger hierarchy from this logger, or 0 to indicate that messages are not propagated to handlers up the hierarchy.
The qualname entry is the hierarchical channel name of the logger, that is to say the name used by the application
to get the logger.

Sections which specify handler configuration are exemplified by the following.

[handler_hand01]
class=StreamHandler
level=NOTSET
formatter=form01
args=(sys.stdout,)

The class entry indicates the handler’s class (as determined by eval() in the logging package’s namespace).
The level is interpreted as for loggers, and NOTSET is taken to mean ‘log everything’.

458 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

The formatter entry indicates the key name of the formatter for this handler. If blank, a default formatter
(logging._defaultFormatter) is used. If a name is specified, it must appear in the [formatters]
section and have a corresponding section in the configuration file.

The args entry, when eval()uated in the context of the logging package’s namespace, is the list of arguments
to the constructor for the handler class. Refer to the constructors for the relevant handlers, or to the examples
below, to see how typical entries are constructed.

[handler_hand02]
class=FileHandler
level=DEBUG
formatter=form02
args=(’python.log’, ’w’)

[handler_hand03]
class=handlers.SocketHandler
level=INFO
formatter=form03
args=(’localhost’, handlers.DEFAULT_TCP_LOGGING_PORT)

[handler_hand04]
class=handlers.DatagramHandler
level=WARN
formatter=form04
args=(’localhost’, handlers.DEFAULT_UDP_LOGGING_PORT)

[handler_hand05]
class=handlers.SysLogHandler
level=ERROR
formatter=form05
args=((’localhost’, handlers.SYSLOG_UDP_PORT), handlers.SysLogHandler.LOG_USER)

[handler_hand06]
class=handlers.NTEventLogHandler
level=CRITICAL
formatter=form06
args=(’Python Application’, ’’, ’Application’)

[handler_hand07]
class=handlers.SMTPHandler
level=WARN
formatter=form07
args=(’localhost’, ’from@abc’, [’user1@abc’, ’user2@xyz’], ’Logger Subject’)

[handler_hand08]
class=handlers.MemoryHandler
level=NOTSET
formatter=form08
target=
args=(10, ERROR)

[handler_hand09]
class=handlers.HTTPHandler
level=NOTSET
formatter=form09
args=(’localhost:9022’, ’/log’, ’GET’)

Sections which specify formatter configuration are typified by the following.

[formatter_form01]

15.8. logging.config — Logging configuration 459

The Python Library Reference, Release 3.2

format=F1 %(asctime)s %(levelname)s %(message)s
datefmt=
class=logging.Formatter

The format entry is the overall format string, and the datefmt entry is the strftime()-compatible date/time
format string. If empty, the package substitutes ISO8601 format date/times, which is almost equivalent to speci-
fying the date format string ’%Y-%m-%d %H:%M:%S’. The ISO8601 format also specifies milliseconds, which
are appended to the result of using the above format string, with a comma separator. An example time in ISO8601
format is 2003-01-23 00:29:50,411.

The class entry is optional. It indicates the name of the formatter’s class (as a dotted module and class name.)
This option is useful for instantiating a Formatter subclass. Subclasses of Formatter can present exception
tracebacks in an expanded or condensed format.

See Also:

Module logging API reference for the logging module.

Module logging.handlers Useful handlers included with the logging module.

15.9 logging.handlers — Logging handlers

Important

This page contains only reference information. For tutorials, please see
• Basic Tutorial
• Advanced Tutorial
• Logging Cookbook

The following useful handlers are provided in the package. Note that three of the handlers (StreamHandler,
FileHandler and NullHandler) are actually defined in the logging module itself, but have been docu-
mented here along with the other handlers.

15.9.1 StreamHandler

The StreamHandler class, located in the core logging package, sends logging output to streams such
as sys.stdout, sys.stderr or any file-like object (or, more precisely, any object which supports write() and
flush() methods).

class logging.StreamHandler(stream=None)
Returns a new instance of the StreamHandler class. If stream is specified, the instance will use it for
logging output; otherwise, sys.stderr will be used.

emit(record)
If a formatter is specified, it is used to format the record. The record is then written
to the stream with a terminator. If exception information is present, it is formatted using
traceback.print_exception() and appended to the stream.

flush()
Flushes the stream by calling its flush() method. Note that the close() method is inherited from
Handler and so does no output, so an explicit flush() call may be needed at times.

Changed in version 3.2: The StreamHandler class now has a terminator attribute, default value ’\n’,
which is used as the terminator when writing a formatted record to a stream. If you don’t want this newline
termination, you can set the handler instance’s terminator attribute to the empty string. In earlier versions, the
terminator was hardcoded as ’\n’.

460 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

15.9.2 FileHandler

The FileHandler class, located in the core logging package, sends logging output to a disk file. It inherits
the output functionality from StreamHandler.

class logging.FileHandler(filename, mode=’a’, encoding=None, delay=False)
Returns a new instance of the FileHandler class. The specified file is opened and used as the stream for
logging. If mode is not specified, ’a’ is used. If encoding is not None, it is used to open the file with that
encoding. If delay is true, then file opening is deferred until the first call to emit(). By default, the file
grows indefinitely.

close()
Closes the file.

emit(record)
Outputs the record to the file.

15.9.3 NullHandler

New in version 3.1. The NullHandler class, located in the core logging package, does not do any formatting
or output. It is essentially a ‘no-op’ handler for use by library developers.

class logging.NullHandler
Returns a new instance of the NullHandler class.

emit(record)
This method does nothing.

handle(record)
This method does nothing.

createLock()
This method returns None for the lock, since there is no underlying I/O to which access needs to be
serialized.

See library-config for more information on how to use NullHandler.

15.9.4 WatchedFileHandler

The WatchedFileHandler class, located in the logging.handlers module, is a FileHandler which
watches the file it is logging to. If the file changes, it is closed and reopened using the file name.

A file change can happen because of usage of programs such as newsyslog and logrotate which perform log file
rotation. This handler, intended for use under Unix/Linux, watches the file to see if it has changed since the last
emit. (A file is deemed to have changed if its device or inode have changed.) If the file has changed, the old file
stream is closed, and the file opened to get a new stream.

This handler is not appropriate for use under Windows, because under Windows open log files cannot be moved or
renamed - logging opens the files with exclusive locks - and so there is no need for such a handler. Furthermore,
ST_INO is not supported under Windows; stat() always returns zero for this value.

class logging.handlers.WatchedFileHandler(filename[, mode[, encoding[, delay]]])
Returns a new instance of the WatchedFileHandler class. The specified file is opened and used as the
stream for logging. If mode is not specified, ’a’ is used. If encoding is not None, it is used to open the file
with that encoding. If delay is true, then file opening is deferred until the first call to emit(). By default,
the file grows indefinitely.

emit(record)
Outputs the record to the file, but first checks to see if the file has changed. If it has, the existing stream
is flushed and closed and the file opened again, before outputting the record to the file.

15.9. logging.handlers — Logging handlers 461

The Python Library Reference, Release 3.2

15.9.5 RotatingFileHandler

The RotatingFileHandler class, located in the logging.handlers module, supports rotation of disk
log files.

class logging.handlers.RotatingFileHandler(filename, mode=’a’, maxBytes=0, backup-
Count=0, encoding=None, delay=0)

Returns a new instance of the RotatingFileHandler class. The specified file is opened and used as
the stream for logging. If mode is not specified, ’a’ is used. If encoding is not None, it is used to open
the file with that encoding. If delay is true, then file opening is deferred until the first call to emit(). By
default, the file grows indefinitely.

You can use the maxBytes and backupCount values to allow the file to rollover at a predetermined size.
When the size is about to be exceeded, the file is closed and a new file is silently opened for output. Rollover
occurs whenever the current log file is nearly maxBytes in length; if maxBytes is zero, rollover never occurs.
If backupCount is non-zero, the system will save old log files by appending the extensions ‘.1’, ‘.2’ etc.,
to the filename. For example, with a backupCount of 5 and a base file name of app.log, you would get
app.log, app.log.1, app.log.2, up to app.log.5. The file being written to is always app.log.
When this file is filled, it is closed and renamed to app.log.1, and if files app.log.1, app.log.2,
etc. exist, then they are renamed to app.log.2, app.log.3 etc. respectively.

doRollover()
Does a rollover, as described above.

emit(record)
Outputs the record to the file, catering for rollover as described previously.

15.9.6 TimedRotatingFileHandler

The TimedRotatingFileHandler class, located in the logging.handlers module, supports rotation
of disk log files at certain timed intervals.

class logging.handlers.TimedRotatingFileHandler(filename, when=’h’, interval=1,
backupCount=0, encoding=None,
delay=False, utc=False)

Returns a new instance of the TimedRotatingFileHandler class. The specified file is opened and
used as the stream for logging. On rotating it also sets the filename suffix. Rotating happens based on the
product of when and interval.

You can use the when to specify the type of interval. The list of possible values is below. Note that they are
not case sensitive.

Value Type of interval
’S’ Seconds
’M’ Minutes
’H’ Hours
’D’ Days
’W’ Week day (0=Monday)
’midnight’ Roll over at midnight

The system will save old log files by appending extensions to the filename. The extensions are date-and-
time based, using the strftime format %Y-%m-%d_%H-%M-%S or a leading portion thereof, depending on
the rollover interval.

When computing the next rollover time for the first time (when the handler is created), the last modification
time of an existing log file, or else the current time, is used to compute when the next rotation will occur.

If the utc argument is true, times in UTC will be used; otherwise local time is used.

If backupCount is nonzero, at most backupCount files will be kept, and if more would be created when
rollover occurs, the oldest one is deleted. The deletion logic uses the interval to determine which files to
delete, so changing the interval may leave old files lying around.

If delay is true, then file opening is deferred until the first call to emit().

462 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

doRollover()
Does a rollover, as described above.

emit(record)
Outputs the record to the file, catering for rollover as described above.

15.9.7 SocketHandler

The SocketHandler class, located in the logging.handlers module, sends logging output to a network
socket. The base class uses a TCP socket.

class logging.handlers.SocketHandler(host, port)
Returns a new instance of the SocketHandler class intended to communicate with a remote machine
whose address is given by host and port.

close()
Closes the socket.

emit()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is an error
with the socket, silently drops the packet. If the connection was previously lost, re-establishes the con-
nection. To unpickle the record at the receiving end into a LogRecord, use the makeLogRecord()
function.

handleError()
Handles an error which has occurred during emit(). The most likely cause is a lost connection.
Closes the socket so that we can retry on the next event.

makeSocket()
This is a factory method which allows subclasses to define the precise type of socket they want. The
default implementation creates a TCP socket (socket.SOCK_STREAM).

makePickle(record)
Pickles the record’s attribute dictionary in binary format with a length prefix, and returns it ready for
transmission across the socket.

Note that pickles aren’t completely secure. If you are concerned about security, you may want to
override this method to implement a more secure mechanism. For example, you can sign pickles
using HMAC and then verify them on the receiving end, or alternatively you can disable unpickling of
global objects on the receiving end.

send(packet)
Send a pickled string packet to the socket. This function allows for partial sends which can happen
when the network is busy.

createSocket()
Tries to create a socket; on failure, uses an exponential back-off algorithm. On intial failure, the
handler will drop the message it was trying to send. When subsequent messages are handled by the
same instance, it will not try connecting until some time has passed. The default parameters are such
that the initial delay is one second, and if after that delay the connection still can’t be made, the handler
will double the delay each time up to a maximum of 30 seconds.

This behaviour is controlled by the following handler attributes:

•retryStart (initial delay, defaulting to 1.0 seconds).

•retryFactor (multiplier, defaulting to 2.0).

•retryMax (maximum delay, defaulting to 30.0 seconds).

This means that if the remote listener starts up after the handler has been used, you could lose messages
(since the handler won’t even attempt a connection until the delay has elapsed, but just silently drop
messages during the delay period).

15.9. logging.handlers — Logging handlers 463

The Python Library Reference, Release 3.2

15.9.8 DatagramHandler

The DatagramHandler class, located in the logging.handlersmodule, inherits from SocketHandler
to support sending logging messages over UDP sockets.

class logging.handlers.DatagramHandler(host, port)
Returns a new instance of the DatagramHandler class intended to communicate with a remote machine
whose address is given by host and port.

emit()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is an
error with the socket, silently drops the packet. To unpickle the record at the receiving end into a
LogRecord, use the makeLogRecord() function.

makeSocket()
The factory method of SocketHandler is here overridden to create a UDP socket
(socket.SOCK_DGRAM).

send(s)
Send a pickled string to a socket.

15.9.9 SysLogHandler

The SysLogHandler class, located in the logging.handlers module, supports sending logging messages
to a remote or local Unix syslog.

class logging.handlers.SysLogHandler(address=(‘localhost’, SYSLOG_UDP_PORT), facil-
ity=LOG_USER, socktype=socket.SOCK_DGRAM)

Returns a new instance of the SysLogHandler class intended to communicate with a remote Unix ma-
chine whose address is given by address in the form of a (host, port) tuple. If address is not speci-
fied, (’localhost’, 514) is used. The address is used to open a socket. An alternative to providing
a (host, port) tuple is providing an address as a string, for example ‘/dev/log’. In this case, a Unix
domain socket is used to send the message to the syslog. If facility is not specified, LOG_USER is used. The
type of socket opened depends on the socktype argument, which defaults to socket.SOCK_DGRAM and
thus opens a UDP socket. To open a TCP socket (for use with the newer syslog daemons such as rsyslog),
specify a value of socket.SOCK_STREAM.

Note that if your server is not listening on UDP port 514, SysLogHandler may appear not to work. In
that case, check what address you should be using for a domain socket - it’s system dependent. For example,
on Linux it’s usually ‘/dev/log’ but on OS/X it’s ‘/var/run/syslog’. You’ll need to check your platform and
use the appropriate address (you may need to do this check at runtime if your application needs to run on
several platforms). On Windows, you pretty much have to use the UDP option. Changed in version 3.2:
socktype was added.

close()
Closes the socket to the remote host.

emit(record)
The record is formatted, and then sent to the syslog server. If exception information is present, it is not
sent to the server.

encodePriority(facility, priority)
Encodes the facility and priority into an integer. You can pass in strings or integers - if strings are
passed, internal mapping dictionaries are used to convert them to integers.

The symbolic LOG_ values are defined in SysLogHandler and mirror the values defined in the
sys/syslog.h header file.

Priorities

464 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Name (string) Symbolic value
alert LOG_ALERT
crit or critical LOG_CRIT
debug LOG_DEBUG
emerg or panic LOG_EMERG
err or error LOG_ERR
info LOG_INFO
notice LOG_NOTICE
warn or warning LOG_WARNING

Facilities
Name (string) Symbolic value
auth LOG_AUTH
authpriv LOG_AUTHPRIV
cron LOG_CRON
daemon LOG_DAEMON
ftp LOG_FTP
kern LOG_KERN
lpr LOG_LPR
mail LOG_MAIL
news LOG_NEWS
syslog LOG_SYSLOG
user LOG_USER
uucp LOG_UUCP
local0 LOG_LOCAL0
local1 LOG_LOCAL1
local2 LOG_LOCAL2
local3 LOG_LOCAL3
local4 LOG_LOCAL4
local5 LOG_LOCAL5
local6 LOG_LOCAL6
local7 LOG_LOCAL7

mapPriority(levelname)
Maps a logging level name to a syslog priority name. You may need to override this if you are using
custom levels, or if the default algorithm is not suitable for your needs. The default algorithm maps
DEBUG, INFO, WARNING, ERROR and CRITICAL to the equivalent syslog names, and all other level
names to ‘warning’.

15.9.10 NTEventLogHandler

The NTEventLogHandler class, located in the logging.handlers module, supports sending logging
messages to a local Windows NT, Windows 2000 or Windows XP event log. Before you can use it, you need
Mark Hammond’s Win32 extensions for Python installed.

class logging.handlers.NTEventLogHandler(appname, dllname=None, log-
type=’Application’)

Returns a new instance of the NTEventLogHandler class. The appname is used to define the application
name as it appears in the event log. An appropriate registry entry is created using this name. The dllname
should give the fully qualified pathname of a .dll or .exe which contains message definitions to hold in
the log (if not specified, ’win32service.pyd’ is used - this is installed with the Win32 extensions
and contains some basic placeholder message definitions. Note that use of these placeholders will make
your event logs big, as the entire message source is held in the log. If you want slimmer logs, you have
to pass in the name of your own .dll or .exe which contains the message definitions you want to use in
the event log). The logtype is one of ’Application’, ’System’ or ’Security’, and defaults to
’Application’.

close()
At this point, you can remove the application name from the registry as a source of event log entries.

15.9. logging.handlers — Logging handlers 465

The Python Library Reference, Release 3.2

However, if you do this, you will not be able to see the events as you intended in the Event Log Viewer
- it needs to be able to access the registry to get the .dll name. The current version does not do this.

emit(record)
Determines the message ID, event category and event type, and then logs the message in the NT event
log.

getEventCategory(record)
Returns the event category for the record. Override this if you want to specify your own categories.
This version returns 0.

getEventType(record)
Returns the event type for the record. Override this if you want to specify your own types. This
version does a mapping using the handler’s typemap attribute, which is set up in __init__() to a
dictionary which contains mappings for DEBUG, INFO, WARNING, ERROR and CRITICAL. If you
are using your own levels, you will either need to override this method or place a suitable dictionary
in the handler’s typemap attribute.

getMessageID(record)
Returns the message ID for the record. If you are using your own messages, you could do this by
having the msg passed to the logger being an ID rather than a format string. Then, in here, you could
use a dictionary lookup to get the message ID. This version returns 1, which is the base message ID in
win32service.pyd.

15.9.11 SMTPHandler

The SMTPHandler class, located in the logging.handlers module, supports sending logging messages to
an email address via SMTP.

class logging.handlers.SMTPHandler(mailhost, fromaddr, toaddrs, subject, credentials=None)
Returns a new instance of the SMTPHandler class. The instance is initialized with the from and to ad-
dresses and subject line of the email. The toaddrs should be a list of strings. To specify a non-standard
SMTP port, use the (host, port) tuple format for the mailhost argument. If you use a string, the standard
SMTP port is used. If your SMTP server requires authentication, you can specify a (username, password)
tuple for the credentials argument.

emit(record)
Formats the record and sends it to the specified addressees.

getSubject(record)
If you want to specify a subject line which is record-dependent, override this method.

15.9.12 MemoryHandler

The MemoryHandler class, located in the logging.handlers module, supports buffering of logging
records in memory, periodically flushing them to a target handler. Flushing occurs whenever the buffer is full, or
when an event of a certain severity or greater is seen.

MemoryHandler is a subclass of the more general BufferingHandler, which is an abstract class. This
buffers logging records in memory. Whenever each record is added to the buffer, a check is made by calling
shouldFlush() to see if the buffer should be flushed. If it should, then flush() is expected to do the
needful.

class logging.handlers.BufferingHandler(capacity)
Initializes the handler with a buffer of the specified capacity.

emit(record)
Appends the record to the buffer. If shouldFlush() returns true, calls flush() to process the
buffer.

466 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

flush()
You can override this to implement custom flushing behavior. This version just zaps the buffer to
empty.

shouldFlush(record)
Returns true if the buffer is up to capacity. This method can be overridden to implement custom
flushing strategies.

class logging.handlers.MemoryHandler(capacity, flushLevel=ERROR, target=None)
Returns a new instance of the MemoryHandler class. The instance is initialized with a buffer size of
capacity. If flushLevel is not specified, ERROR is used. If no target is specified, the target will need to be
set using setTarget() before this handler does anything useful.

close()
Calls flush(), sets the target to None and clears the buffer.

flush()
For a MemoryHandler, flushing means just sending the buffered records to the target, if there is
one. The buffer is also cleared when this happens. Override if you want different behavior.

setTarget(target)
Sets the target handler for this handler.

shouldFlush(record)
Checks for buffer full or a record at the flushLevel or higher.

15.9.13 HTTPHandler

The HTTPHandler class, located in the logging.handlers module, supports sending logging messages to
a Web server, using either GET or POST semantics.

class logging.handlers.HTTPHandler(host, url, method=’GET’, secure=False, creden-
tials=None)

Returns a new instance of the HTTPHandler class. The host can be of the form host:port, should
you need to use a specific port number. If no method is specified, GET is used. If secure is True, an
HTTPS connection will be used. If credentials is specified, it should be a 2-tuple consisting of userid
and password, which will be placed in an HTTP ‘Authorization’ header using Basic authentication. If you
specify credentials, you should also specify secure=True so that your userid and password are not passed in
cleartext across the wire.

emit(record)
Sends the record to the Web server as a percent-encoded dictionary.

15.9.14 QueueHandler

New in version 3.2. The QueueHandler class, located in the logging.handlers module, supports sending
logging messages to a queue, such as those implemented in the queue or multiprocessing modules.

Along with the QueueListener class, QueueHandler can be used to let handlers do their work on a separate
thread from the one which does the logging. This is important in Web applications and also other service applica-
tions where threads servicing clients need to respond as quickly as possible, while any potentially slow operations
(such as sending an email via SMTPHandler) are done on a separate thread.

class logging.handlers.QueueHandler(queue)
Returns a new instance of the QueueHandler class. The instance is initialized with the queue to send
messages to. The queue can be any queue- like object; it’s used as-is by the enqueue() method, which
needs to know how to send messages to it.

emit(record)
Enqueues the result of preparing the LogRecord.

15.9. logging.handlers — Logging handlers 467

The Python Library Reference, Release 3.2

prepare(record)
Prepares a record for queuing. The object returned by this method is enqueued.

The base implementation formats the record to merge the message and arguments, and removes un-
pickleable items from the record in-place.

You might want to override this method if you want to convert the record to a dict or JSON string, or
send a modified copy of the record while leaving the original intact.

enqueue(record)
Enqueues the record on the queue using put_nowait(); you may want to override this if you want
to use blocking behaviour, or a timeout, or a customised queue implementation.

15.9.15 QueueListener

New in version 3.2. The QueueListener class, located in the logging.handlersmodule, supports receiv-
ing logging messages from a queue, such as those implemented in the queue or multiprocessing modules.
The messages are received from a queue in an internal thread and passed, on the same thread, to one or more
handlers for processing. While QueueListener is not itself a handler, it is documented here because it works
hand-in-hand with QueueHandler.

Along with the QueueHandler class, QueueListener can be used to let handlers do their work on a separate
thread from the one which does the logging. This is important in Web applications and also other service applica-
tions where threads servicing clients need to respond as quickly as possible, while any potentially slow operations
(such as sending an email via SMTPHandler) are done on a separate thread.

class logging.handlers.QueueListener(queue, *handlers)
Returns a new instance of the QueueListener class. The instance is initialized with the queue to send
messages to and a list of handlers which will handle entries placed on the queue. The queue can be any
queue- like object; it’s passed as-is to the dequeue() method, which needs to know how to get messages
from it.

dequeue(block)
Dequeues a record and return it, optionally blocking.

The base implementation uses get(). You may want to override this method if you want to use
timeouts or work with custom queue implementations.

prepare(record)
Prepare a record for handling.

This implementation just returns the passed-in record. You may want to override this method if you
need to do any custom marshalling or manipulation of the record before passing it to the handlers.

handle(record)
Handle a record.

This just loops through the handlers offering them the record to handle. The actual object passed to
the handlers is that which is returned from prepare().

start()
Starts the listener.

This starts up a background thread to monitor the queue for LogRecords to process.

stop()
Stops the listener.

This asks the thread to terminate, and then waits for it to do so. Note that if you don’t call this before
your application exits, there may be some records still left on the queue, which won’t be processed.

See Also:

Module logging API reference for the logging module.

Module logging.config Configuration API for the logging module.

468 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

15.10 getpass — Portable password input

The getpass module provides two functions:

getpass.getpass(prompt=’Password: ‘, stream=None)
Prompt the user for a password without echoing. The user is prompted using the string prompt, which
defaults to ’Password: ’. On Unix, the prompt is written to the file-like object stream. stream defaults
to the controlling terminal (/dev/tty) or if that is unavailable to sys.stderr (this argument is ignored
on Windows).

If echo free input is unavailable getpass() falls back to printing a warning message to stream and reading
from sys.stdin and issuing a GetPassWarning.

Availability: Macintosh, Unix, Windows.

Note: If you call getpass from within IDLE, the input may be done in the terminal you launched IDLE
from rather than the idle window itself.

exception getpass.GetPassWarning
A UserWarning subclass issued when password input may be echoed.

getpass.getuser()
Return the “login name” of the user. Availability: Unix, Windows.

This function checks the environment variables LOGNAME,

USER, LNAME and USERNAME, in order, and returns the value of the first one which is set to a non-empty
string. If none are set, the login name from the password database is returned on systems which support the
pwd module, otherwise, an exception is raised.

15.11 curses — Terminal handling for character-cell displays

Platforms: Unix

The curses module provides an interface to the curses library, the de-facto standard for portable advanced
terminal handling.

While curses is most widely used in the Unix environment, versions are available for DOS, OS/2, and possibly
other systems as well. This extension module is designed to match the API of ncurses, an open-source curses
library hosted on Linux and the BSD variants of Unix.

Note: Since version 5.4, the ncurses library decides how to interpret non-ASCII data using the nl_langinfo
function. That means that you have to call locale.setlocale() in the application and encode Unicode
strings using one of the system’s available encodings. This example uses the system’s default encoding:

import locale
locale.setlocale(locale.LC_ALL, ’’)
code = locale.getpreferredencoding()

Then use code as the encoding for str.encode() calls.

See Also:

Module curses.ascii Utilities for working with ASCII characters, regardless of your locale settings.

Module curses.panel A panel stack extension that adds depth to curses windows.

Module curses.textpad Editable text widget for curses supporting Emacs-like bindings.

Module curses.wrapper Convenience function to ensure proper terminal setup and resetting on application
entry and exit.

15.10. getpass — Portable password input 469

The Python Library Reference, Release 3.2

curses-howto Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond.

The Tools/demo/ directory in the Python source distribution contains some example programs using the curses
bindings provided by this module.

15.11.1 Functions

The module curses defines the following exception:

exception curses.error
Exception raised when a curses library function returns an error.

Note: Whenever x or y arguments to a function or a method are optional, they default to the current cursor
location. Whenever attr is optional, it defaults to A_NORMAL.

The module curses defines the following functions:

curses.baudrate()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a
fixed high value. Included for historical reasons; in former times, it was used to write output loops for time
delays and occasionally to change interfaces depending on the line speed.

curses.beep()
Emit a short attention sound.

curses.can_change_color()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

curses.cbreak()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off
and characters are available to be read one by one. However, unlike raw mode, special characters (interrupt,
quit, suspend, and flow control) retain their effects on the tty driver and calling program. Calling first raw()
then cbreak() leaves the terminal in cbreak mode.

curses.color_content(color_number)
Returns the intensity of the red, green, and blue (RGB) components in the color color_number, which must
be between 0 and COLORS. A 3-tuple is returned, containing the R,G,B values for the given color, which
will be between 0 (no component) and 1000 (maximum amount of component).

curses.color_pair(color_number)
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A_STANDOUT, A_REVERSE, and the other A_* attributes. pair_number() is the counterpart to
this function.

curses.curs_set(visibility)
Sets the cursor state. visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

curses.def_prog_mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls to
reset_prog_mode() will restore this mode.

curses.def_shell_mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using
curses. (Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent
calls to reset_shell_mode() will restore this mode.

curses.delay_output(ms)
Inserts an ms millisecond pause in output.

470 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

curses.doupdate()
Update the physical screen. The curses library keeps two data structures, one representing the current
physical screen contents and a virtual screen representing the desired next state. The doupdate() ground
updates the physical screen to match the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write operations such as addstr()
have been performed on a window. The normal refresh() call is simply noutrefresh() followed
by doupdate(); if you have to update multiple windows, you can speed performance and perhaps reduce
screen flicker by issuing noutrefresh() calls on all windows, followed by a single doupdate().

curses.echo()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

curses.endwin()
De-initialize the library, and return terminal to normal status.

curses.erasechar()
Returns the user’s current erase character. Under Unix operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

curses.filter()
The filter() routine, if used, must be called before initscr() is called. The effect is that, during
those calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the
home string is set to the value of cr. The effect is that the cursor is confined to the current line, and so are
screen updates. This may be used for enabling character-at-a-time line editing without touching the rest of
the screen.

curses.flash()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal produced by beep().

curses.flushinp()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet
been processed by the program.

curses.getmouse()
After getch() returns KEY_MOUSE to signal a mouse event, this method should be call to retrieve
the queued mouse event, represented as a 5-tuple (id, x, y, z, bstate). id is an ID value
used to distinguish multiple devices, and x, y, z are the event’s coordinates. (z is currently unused.).
bstate is an integer value whose bits will be set to indicate the type of event, and will be the bit-
wise OR of one or more of the following constants, where n is the button number from 1 to 4:
BUTTONn_PRESSED, BUTTONn_RELEASED, BUTTONn_CLICKED, BUTTONn_DOUBLE_CLICKED,
BUTTONn_TRIPLE_CLICKED, BUTTON_SHIFT, BUTTON_CTRL, BUTTON_ALT.

curses.getsyx()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1
is returned.

curses.getwin(file)
Reads window related data stored in the file by an earlier putwin() call. The routine then creates and
initializes a new window using that data, returning the new window object.

curses.has_colors()
Returns true if the terminal can display colors; otherwise, it returns false.

curses.has_ic()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for
historical reasons only, as all modern software terminal emulators have such capabilities.

curses.has_il()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling
regions. This function is included for historical reasons only, as all modern software terminal emulators
have such capabilities.

15.11. curses — Terminal handling for character-cell displays 471

The Python Library Reference, Release 3.2

curses.has_key(ch)
Takes a key value ch, and returns true if the current terminal type recognizes a key with that value.

curses.halfdelay(tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immedi-
ately available to the program. However, after blocking for tenths tenths of seconds, an exception is raised
if nothing has been typed. The value of tenths must be a number between 1 and 255. Use nocbreak() to
leave half-delay mode.

curses.init_color(color_number, r, g, b)
Changes the definition of a color, taking the number of the color to be changed followed by three RGB
values (for the amounts of red, green, and blue components). The value of color_number must be between
0 and COLORS. Each of r, g, b, must be a value between 0 and 1000. When init_color() is used, all
occurrences of that color on the screen immediately change to the new definition. This function is a no-op
on most terminals; it is active only if can_change_color() returns 1.

curses.init_pair(pair_number, fg, bg)
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The value of pair_number must be between
1 and COLOR_PAIRS - 1 (the 0 color pair is wired to white on black and cannot be changed). The value
of fg and bg arguments must be between 0 and COLORS. If the color-pair was previously initialized, the
screen is refreshed and all occurrences of that color-pair are changed to the new definition.

curses.initscr()
Initialize the library. Returns a WindowObject which represents the whole screen.

Note: If there is an error opening the terminal, the underlying curses library may cause the interpreter to
exit.

curses.isendwin()
Returns true if endwin() has been called (that is, the curses library has been deinitialized).

curses.keyname(k)
Return the name of the key numbered k. The name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed
by the corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string
consisting of the prefix ‘M-‘ followed by the name of the corresponding ASCII character.

curses.killchar()
Returns the user’s current line kill character. Under Unix operating systems this is a property of the control-
ling tty of the curses program, and is not set by the curses library itself.

curses.longname()
Returns a string containing the terminfo long name field describing the current terminal. The maximum
length of a verbose description is 128 characters. It is defined only after the call to initscr().

curses.meta(yes)
If yes is 1, allow 8-bit characters to be input. If yes is 0, allow only 7-bit chars.

curses.mouseinterval(interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them
to be recognized as a click, and returns the previous interval value. The default value is 200 msec, or one
fifth of a second.

curses.mousemask(mousemask)
Sets the mouse events to be reported, and returns a tuple (availmask, oldmask). availmask indicates
which of the specified mouse events can be reported; on complete failure it returns 0. oldmask is the previous
value of the given window’s mouse event mask. If this function is never called, no mouse events are ever
reported.

curses.napms(ms)
Sleep for ms milliseconds.

472 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

curses.newpad(nlines, ncols)
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad
is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated
with a particular part of the screen. Pads can be used when a large window is needed, and only a part of the
window will be on the screen at one time. Automatic refreshes of pads (such as from scrolling or echoing
of input) do not occur. The refresh() and noutrefresh() methods of a pad require 6 arguments to
specify the part of the pad to be displayed and the location on the screen to be used for the display. The
arguments are pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper
left corner of the pad region to be displayed and the s arguments define a clipping box on the screen within
which the pad region is to be displayed.

curses.newwin([nlines, ncols], begin_y, begin_x)
Return a new window, whose left-upper corner is at (begin_y, begin_x), and whose height/width is
nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the screen.

curses.nl()
Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

curses.nocbreak()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

curses.noecho()
Leave echo mode. Echoing of input characters is turned off.

curses.nonl()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation
of newline into newline/return on output (but this does not change the behavior of addch(’\n’), which
always does the equivalent of return and line feed on the virtual screen). With translation off, curses can
sometimes speed up vertical motion a little; also, it will be able to detect the return key on input.

curses.noqiflush()
When the noqiflush routine is used, normal flush of input and output queues associated with the INTR,
QUIT and SUSP characters will not be done. You may want to call noqiflush() in a signal handler if
you want output to continue as though the interrupt had not occurred, after the handler exits.

curses.noraw()
Leave raw mode. Return to normal “cooked” mode with line buffering.

curses.pair_content(pair_number)
Returns a tuple (fg, bg) containing the colors for the requested color pair. The value of pair_number
must be between 1 and COLOR_PAIRS - 1.

curses.pair_number(attr)
Returns the number of the color-pair set by the attribute value attr. color_pair() is the counterpart to
this function.

curses.putp(string)
Equivalent to tputs(str, 1, putchar); emits the value of a specified terminfo capability for the
current terminal. Note that the output of putp always goes to standard output.

curses.qiflush([flag])
If flag is false, the effect is the same as calling noqiflush(). If flag is true, or no argument is provided,
the queues will be flushed when these control characters are read.

curses.raw()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow
control keys are turned off; characters are presented to curses input functions one by one.

curses.reset_prog_mode()
Restores the terminal to “program” mode, as previously saved by def_prog_mode().

15.11. curses — Terminal handling for character-cell displays 473

The Python Library Reference, Release 3.2

curses.reset_shell_mode()
Restores the terminal to “shell” mode, as previously saved by def_shell_mode().

curses.setsyx(y, x)
Sets the virtual screen cursor to y, x. If y and x are both -1, then leaveok is set.

curses.setupterm([termstr, fd])
Initializes the terminal. termstr is a string giving the terminal name; if omitted, the value of the TERM
environment variable will be used. fd is the file descriptor to which any initialization sequences will be sent;
if not supplied, the file descriptor for sys.stdout will be used.

curses.start_color()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is
called. It is good practice to call this routine right after initscr().

start_color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white),
and two global variables in the curses module, COLORS and COLOR_PAIRS, containing the maximum
number of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the
values they had when the terminal was just turned on.

curses.termattrs()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a
curses program needs complete control over the appearance of the screen.

curses.termname()
Returns the value of the environment variable TERM, truncated to 14 characters.

curses.tigetflag(capname)
Returns the value of the Boolean capability corresponding to the terminfo capability name capname. The
value -1 is returned if capname is not a Boolean capability, or 0 if it is canceled or absent from the terminal
description.

curses.tigetnum(capname)
Returns the value of the numeric capability corresponding to the terminfo capability name capname. The
value -2 is returned if capname is not a numeric capability, or -1 if it is canceled or absent from the
terminal description.

curses.tigetstr(capname)
Returns the value of the string capability corresponding to the terminfo capability name capname. None is
returned if capname is not a string capability, or is canceled or absent from the terminal description.

curses.tparm(str[, ...])
Instantiates the string str with the supplied parameters, where str should be a parameterized string obtained
from the terminfo database. E.g. tparm(tigetstr("cup"), 5, 3) could result in ’\033[6;4H’,
the exact result depending on terminal type.

curses.typeahead(fd)
Specifies that the file descriptor fd be used for typeahead checking. If fd is -1, then no typeahead checking
is done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating
the screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or
doupdate is called again, allowing faster response to commands typed in advance. This function allows
specifying a different file descriptor for typeahead checking.

curses.unctrl(ch)
Returns a string which is a printable representation of the character ch. Control characters are displayed as
a caret followed by the character, for example as ^C. Printing characters are left as they are.

curses.ungetch(ch)
Push ch so the next getch() will return it.

Note: Only one ch can be pushed before getch() is called.

474 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

curses.ungetmouse(id, x, y, z, bstate)
Push a KEY_MOUSE event onto the input queue, associating the given state data with it.

curses.use_env(flag)
If used, this function should be called before initscr() or newterm are called. When flag is false, the
values of lines and columns specified in the terminfo database will be used, even if environment variables
LINES and COLUMNS (used by default) are set, or if curses is running in a window (in which case default
behavior would be to use the window size if

LINES and COLUMNS are not set).

curses.use_default_colors()
Allow use of default values for colors on terminals supporting this feature. Use this to support transparency
in your application. The default color is assigned to the color number -1. After calling this function,
init_pair(x, curses.COLOR_RED, -1) initializes, for instance, color pair x to a red foreground
color on the default background.

15.11.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods:

window.addch([y, x], ch[, attr])

Note: A character means a C character (an ASCII code), rather then a Python character (a string of length
1). (This note is true whenever the documentation mentions a character.) The built-in ord() is handy for
conveying strings to codes.

Paint character ch at (y, x) with attributes attr, overwriting any character previously painter at that loca-
tion. By default, the character position and attributes are the current settings for the window object.

window.addnstr([y, x], str, n[, attr])
Paint at most n characters of the string str at (y, x) with attributes attr, overwriting anything previously
on the display.

window.addstr([y, x], str[, attr])
Paint the string str at (y, x) with attributes attr, overwriting anything previously on the display.

window.attroff(attr)
Remove attribute attr from the “background” set applied to all writes to the current window.

window.attron(attr)
Add attribute attr from the “background” set applied to all writes to the current window.

window.attrset(attr)
Set the “background” set of attributes to attr. This set is initially 0 (no attributes).

window.bkgd(ch[, attr])
Sets the background property of the window to the character ch, with attributes attr. The change is then
applied to every character position in that window:

•The attribute of every character in the window is changed to the new background attribute.

•Wherever the former background character appears, it is changed to the new background character.

window.bkgdset(ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of
attributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that
are written into the window. Both the character and attribute parts of the background are combined with
the blank characters. The background becomes a property of the character and moves with the character
through any scrolling and insert/delete line/character operations.

15.11. curses — Terminal handling for character-cell displays 475

The Python Library Reference, Release 3.2

window.border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details. The characters can be specified as integers or as
one-character strings.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters can not be used. The defaults are listed in this table:

Parameter Description Default value
ls Left side ACS_VLINE
rs Right side ACS_VLINE
ts Top ACS_HLINE
bs Bottom ACS_HLINE
tl Upper-left corner ACS_ULCORNER
tr Upper-right corner ACS_URCORNER
bl Bottom-left corner ACS_LLCORNER
br Bottom-right corner ACS_LRCORNER

window.box([vertch, horch])
Similar to border(), but both ls and rs are vertch and both ts and bs are horch. The default corner
characters are always used by this function.

window.chgat([y, x,] [num,] attr)
Sets the attributes of num characters at the current cursor position, or at position (y, x) if supplied. If no
value of num is given or num = -1, the attribute will be set on all the characters to the end of the line. This
function does not move the cursor. The changed line will be touched using the touchline() method so
that the contents will be redisplayed by the next window refresh.

window.clear()
Like erase(), but also causes the whole window to be repainted upon next call to refresh().

window.clearok(yes)
If yes is 1, the next call to refresh() will clear the window completely.

window.clrtobot()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent
of clrtoeol() is performed.

window.clrtoeol()
Erase from cursor to the end of the line.

window.cursyncup()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position
of the window.

window.delch([y, x])
Delete any character at (y, x).

window.deleteln()
Delete the line under the cursor. All following lines are moved up by 1 line.

window.derwin([nlines, ncols], begin_y, begin_x)
An abbreviation for “derive window”, derwin() is the same as calling subwin(), except that begin_y
and begin_x are relative to the origin of the window, rather than relative to the entire screen. Returns a
window object for the derived window.

window.echochar(ch[, attr])
Add character ch with attribute attr, and immediately call refresh() on the window.

window.enclose(y, x)
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location
of a mouse event.

476 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

window.erase()
Clear the window.

window.getbegyx()
Return a tuple (y, x) of co-ordinates of upper-left corner.

window.getch([y, x])
Get a character. Note that the integer returned does not have to be in ASCII range: function keys, keypad
keys and so on return numbers higher than 256. In no-delay mode, -1 is returned if there is no input, else
getch() waits until a key is pressed.

window.getkey([y, x])
Get a character, returning a string instead of an integer, as getch() does. Function keys, keypad keys and
so on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is
no input.

window.getmaxyx()
Return a tuple (y, x) of the height and width of the window.

window.getparyx()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y
and x. Returns -1,-1 if this window has no parent.

window.getstr([y, x])
Read a string from the user, with primitive line editing capacity.

window.getyx()
Return a tuple (y, x) of current cursor position relative to the window’s upper-left corner.

window.hline([y, x], ch, n)
Display a horizontal line starting at (y, x) with length n consisting of the character ch.

window.idcok(flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the terminal;
if flag is true, use of character insertion and deletion is enabled. When curses is first initialized, use of
character insert/delete is enabled by default.

window.idlok(yes)
If called with yes equal to 1, curses will try and use hardware line editing facilities. Otherwise, line
insertion/deletion are disabled.

window.immedok(flag)
If flag is true, any change in the window image automatically causes the window to be refreshed; you
no longer have to call refresh() yourself. However, it may degrade performance considerably, due to
repeated calls to wrefresh. This option is disabled by default.

window.inch([y, x])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and
upper bits are the attributes.

window.insch([y, x], ch[, attr])
Paint character ch at (y, x) with attributes attr, moving the line from position x right by one character.

window.insdelln(nlines)
Inserts nlines lines into the specified window above the current line. The nlines bottom lines are lost. For
negative nlines, delete nlines lines starting with the one under the cursor, and move the remaining lines up.
The bottom nlines lines are cleared. The current cursor position remains the same.

window.insertln()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

window.insnstr([y, x], str, n[, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up
to n characters. If n is zero or negative, the entire string is inserted. All characters to the right of the cursor
are shifted right, with the rightmost characters on the line being lost. The cursor position does not change
(after moving to y, x, if specified).

15.11. curses — Terminal handling for character-cell displays 477

The Python Library Reference, Release 3.2

window.insstr([y, x], str[, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the rightmost characters on the line being lost.
The cursor position does not change (after moving to y, x, if specified).

window.instr([y, x] [, n])
Returns a string of characters, extracted from the window starting at the current cursor position, or at y, x if
specified. Attributes are stripped from the characters. If n is specified, instr() returns return a string at
most n characters long (exclusive of the trailing NUL).

window.is_linetouched(line)
Returns true if the specified line was modified since the last call to refresh(); otherwise returns false.
Raises a curses.error exception if line is not valid for the given window.

window.is_wintouched()
Returns true if the specified window was modified since the last call to refresh(); otherwise returns
false.

window.keypad(yes)
If yes is 1, escape sequences generated by some keys (keypad, function keys) will be interpreted by curses.
If yes is 0, escape sequences will be left as is in the input stream.

window.leaveok(yes)
If yes is 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

window.move(new_y, new_x)
Move cursor to (new_y, new_x).

window.mvderwin(y, x)
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the
screen.

window.mvwin(new_y, new_x)
Move the window so its upper-left corner is at (new_y, new_x).

window.nodelay(yes)
If yes is 1, getch() will be non-blocking.

window.notimeout(yes)
If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

window.noutrefresh()
Mark for refresh but wait. This function updates the data structure representing the desired state of the
window, but does not force an update of the physical screen. To accomplish that, call doupdate().

window.overlay(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overlay the window on top of destwin. The windows need not be the same size, only the overlapping
region is copied. This copy is non-destructive, which means that the current background character does not
overwrite the old contents of destwin.

To get fine-grained control over the copied region, the second form of overlay() can be used. sminrow
and smincol are the upper-left coordinates of the source window, and the other variables mark a rectangle in
the destination window.

window.overwrite(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overwrite the window on top of destwin. The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents of destwin.

478 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

To get fine-grained control over the copied region, the second form of overwrite() can be used. sminrow
and smincol are the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

window.putwin(file)
Writes all data associated with the window into the provided file object. This information can be later
retrieved using the getwin() function.

window.redrawln(beg, num)
Indicates that the num screen lines, starting at line beg, are corrupted and should be completely redrawn on
the next refresh() call.

window.redrawwin()
Touches the entire window, causing it to be completely redrawn on the next refresh() call.

window.refresh([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created with newpad(). The
additional parameters are needed to indicate what part of the pad and screen are involved. pminrow and
pmincol specify the upper left-hand corner of the rectangle to be displayed in the pad. sminrow, smincol,
smaxrow, and smaxcol specify the edges of the rectangle to be displayed on the screen. The lower right-
hand corner of the rectangle to be displayed in the pad is calculated from the screen coordinates, since
the rectangles must be the same size. Both rectangles must be entirely contained within their respective
structures. Negative values of pminrow, pmincol, sminrow, or smincol are treated as if they were zero.

window.scroll([lines=1])
Scroll the screen or scrolling region upward by lines lines.

window.scrollok(flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling
region, either as a result of a newline action on the bottom line, or typing the last character of the last line.
If flag is false, the cursor is left on the bottom line. If flag is true, the window is scrolled up one line. Note
that in order to get the physical scrolling effect on the terminal, it is also necessary to call idlok().

window.setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this region.

window.standend()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

window.standout()
Turn on attribute A_STANDOUT.

window.subpad([nlines, ncols], begin_y, begin_x)
Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

window.subwin([nlines, ncols], begin_y, begin_x)
Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the window.

window.syncdown()
Touches each location in the window that has been touched in any of its ancestor windows. This routine is
called by refresh(), so it should almost never be necessary to call it manually.

window.syncok(flag)
If called with flag set to true, then syncup() is called automatically whenever there is a change in the
window.

window.syncup()
Touches all locations in ancestors of the window that have been changed in the window.

window.timeout(delay)
Sets blocking or non-blocking read behavior for the window. If delay is negative, blocking read is used

15.11. curses — Terminal handling for character-cell displays 479

The Python Library Reference, Release 3.2

(which will wait indefinitely for input). If delay is zero, then non-blocking read is used, and -1 will be
returned by getch() if no input is waiting. If delay is positive, then getch() will block for delay
milliseconds, and return -1 if there is still no input at the end of that time.

window.touchline(start, count[, changed])
Pretend count lines have been changed, starting with line start. If changed is supplied, it specifies whether
the affected lines are marked as having been changed (changed=1) or unchanged (changed=0).

window.touchwin()
Pretend the whole window has been changed, for purposes of drawing optimizations.

window.untouchwin()
Marks all lines in the window as unchanged since the last call to refresh().

window.vline([y, x], ch, n)
Display a vertical line starting at (y, x) with length n consisting of the character ch.

15.11.3 Constants

The curses module defines the following data members:

curses.ERR
Some curses routines that return an integer, such as getch(), return ERR upon failure.

curses.OK
Some curses routines that return an integer, such as napms(), return OK upon success.

curses.version
A string representing the current version of the module. Also available as __version__.

Several constants are available to specify character cell attributes:

Attribute Meaning
A_ALTCHARSET Alternate character set mode.
A_BLINK Blink mode.
A_BOLD Bold mode.
A_DIM Dim mode.
A_NORMAL Normal attribute.
A_STANDOUT Standout mode.
A_UNDERLINE Underline mode.

Keys are referred to by integer constants with names starting with KEY_. The exact keycaps available are system
dependent.

Key constant Key
KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow
KEY_UP Up-arrow
KEY_LEFT Left-arrow
KEY_RIGHT Right-arrow
KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACE Backspace (unreliable)
KEY_F0 Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function key n
KEY_DL Delete line
KEY_IL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen

Continued on next page

480 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Table 15.1 – continued from previous page
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send (unreliable)
KEY_SRESET Soft (partial) reset (unreliable)
KEY_RESET Reset or hard reset (unreliable)
KEY_PRINT Print
KEY_LL Home down or bottom (lower left)
KEY_A1 Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_BTAB Back tab
KEY_BEG Beg (beginning)
KEY_CANCEL Cancel
KEY_CLOSE Close
KEY_COMMAND Cmd (command)
KEY_COPY Copy
KEY_CREATE Create
KEY_END End
KEY_EXIT Exit
KEY_FIND Find
KEY_HELP Help
KEY_MARK Mark
KEY_MESSAGE Message
KEY_MOVE Move
KEY_NEXT Next
KEY_OPEN Open
KEY_OPTIONS Options
KEY_PREVIOUS Prev (previous)
KEY_REDO Redo
KEY_REFERENCE Ref (reference)
KEY_REFRESH Refresh
KEY_REPLACE Replace
KEY_RESTART Restart
KEY_RESUME Resume
KEY_SAVE Save
KEY_SBEG Shifted Beg (beginning)
KEY_SCANCEL Shifted Cancel
KEY_SCOMMAND Shifted Command
KEY_SCOPY Shifted Copy
KEY_SCREATE Shifted Create
KEY_SDC Shifted Delete char
KEY_SDL Shifted Delete line
KEY_SELECT Select
KEY_SEND Shifted End
KEY_SEOL Shifted Clear line
KEY_SEXIT Shifted Dxit
KEY_SFIND Shifted Find

Continued on next page

15.11. curses — Terminal handling for character-cell displays 481

The Python Library Reference, Release 3.2

Table 15.1 – continued from previous page
KEY_SHELP Shifted Help
KEY_SHOME Shifted Home
KEY_SIC Shifted Input
KEY_SLEFT Shifted Left arrow
KEY_SMESSAGE Shifted Message
KEY_SMOVE Shifted Move
KEY_SNEXT Shifted Next
KEY_SOPTIONS Shifted Options
KEY_SPREVIOUS Shifted Prev
KEY_SPRINT Shifted Print
KEY_SREDO Shifted Redo
KEY_SREPLACE Shifted Replace
KEY_SRIGHT Shifted Right arrow
KEY_SRSUME Shifted Resume
KEY_SSAVE Shifted Save
KEY_SSUSPEND Shifted Suspend
KEY_SUNDO Shifted Undo
KEY_SUSPEND Suspend
KEY_UNDO Undo
KEY_MOUSE Mouse event has occurred
KEY_RESIZE Terminal resize event
KEY_MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function
keys (KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mapped to KEY_UP, KEY_DOWN,
KEY_LEFT and KEY_RIGHT in the obvious way. If your machine has a PC keyboard, it is safe to expect arrow
keys and twelve function keys (older PC keyboards may have only ten function keys); also, the following keypad
mappings are standard:

Keycap Constant
Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY_NPAGE
Page Down KEY_PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal,
and will generally be available on software emulations such as X terminals. When there is no graphic available,
curses falls back on a crude printable ASCII approximation.

Note: These are available only after initscr() has been called.

ACS code Meaning
ACS_BBSS alternate name for upper right corner
ACS_BLOCK solid square block
ACS_BOARD board of squares
ACS_BSBS alternate name for horizontal line
ACS_BSSB alternate name for upper left corner
ACS_BSSS alternate name for top tee
ACS_BTEE bottom tee
ACS_BULLET bullet
ACS_CKBOARD checker board (stipple)
ACS_DARROW arrow pointing down
ACS_DEGREE degree symbol
ACS_DIAMOND diamond

Continued on next page

482 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Table 15.2 – continued from previous page
ACS_GEQUAL greater-than-or-equal-to
ACS_HLINE horizontal line
ACS_LANTERN lantern symbol
ACS_LARROW left arrow
ACS_LEQUAL less-than-or-equal-to
ACS_LLCORNER lower left-hand corner
ACS_LRCORNER lower right-hand corner
ACS_LTEE left tee
ACS_NEQUAL not-equal sign
ACS_PI letter pi
ACS_PLMINUS plus-or-minus sign
ACS_PLUS big plus sign
ACS_RARROW right arrow
ACS_RTEE right tee
ACS_S1 scan line 1
ACS_S3 scan line 3
ACS_S7 scan line 7
ACS_S9 scan line 9
ACS_SBBS alternate name for lower right corner
ACS_SBSB alternate name for vertical line
ACS_SBSS alternate name for right tee
ACS_SSBB alternate name for lower left corner
ACS_SSBS alternate name for bottom tee
ACS_SSSB alternate name for left tee
ACS_SSSS alternate name for crossover or big plus
ACS_STERLING pound sterling
ACS_TTEE top tee
ACS_UARROW up arrow
ACS_ULCORNER upper left corner
ACS_URCORNER upper right corner
ACS_VLINE vertical line

The following table lists the predefined colors:

Constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_CYAN Cyan (light greenish blue)
COLOR_GREEN Green
COLOR_MAGENTA Magenta (purplish red)
COLOR_RED Red
COLOR_WHITE White
COLOR_YELLOW Yellow

15.12 curses.textpad — Text input widget for curses programs

The curses.textpad module provides a Textbox class that handles elementary text editing in a curses
window, supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit
6.x, FrameMaker, and many other programs). The module also provides a rectangle-drawing function useful for
framing text boxes or for other purposes.

The module curses.textpad defines the following function:

curses.textpad.rectangle(win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates
relative to that window. The second and third arguments are the y and x coordinates of the upper left hand

15.12. curses.textpad — Text input widget for curses programs 483

The Python Library Reference, Release 3.2

corner of the rectangle to be drawn; the fourth and fifth arguments are the y and x coordinates of the lower
right hand corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that
make this possible (including xterm and most other software terminal emulators). Otherwise it will be
drawn with ASCII dashes, vertical bars, and plus signs.

15.12.1 Textbox objects

You can instantiate a Textbox object as follows:

class curses.textpad.Textbox(win)
Return a textbox widget object. The win argument should be a curses WindowObject in which the
textbox is to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of
the containing window, with coordinates (0, 0). The instance’s stripspaces flag is initially on.

Textbox objects have the following methods:

edit([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination
keystrokes is entered. If validator is supplied, it must be a function. It will be called for each keystroke
entered with the keystroke as a parameter; command dispatch is done on the result. This method
returns the window contents as a string; whether blanks in the window are included is affected by the
stripspaces member.

do_command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action
Control-A Go to left edge of window.
Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.
Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.
Control-H Delete character backward.
Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.
Control-N Cursor down; move down one line.
Control-O Insert a blank line at cursor location.
Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The
following synonyms are supported where possible:

Constant Keystroke
KEY_LEFT Control-B
KEY_RIGHT Control-F
KEY_UP Control-P
KEY_DOWN Control-N
KEY_BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and move right (with line
wrapping).

gather()
This method returns the window contents as a string; whether blanks in the window are included is
affected by the stripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on,
trailing blanks on each line are ignored; any cursor motion that would land the cursor on a trailing

484 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

blank goes to the end of that line instead, and trailing blanks are stripped when the window contents
are gathered.

15.13 curses.wrapper — Terminal handler for curses programs

This module supplies one function, wrapper(), which runs another function which should be the rest of your
curses-using application. If the application raises an exception, wrapper() will restore the terminal to a sane
state before re-raising the exception and generating a traceback.

curses.wrapper.wrapper(func, ...)
Wrapper function that initializes curses and calls another function, func, restoring normal keyboard/screen
behavior on error. The callable object func is then passed the main window ‘stdscr’ as its first argument,
followed by any other arguments passed to wrapper().

Before calling the hook function, wrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores
cooked mode, turns on echo, and disables the terminal keypad.

15.14 curses.ascii — Utilities for ASCII characters

The curses.ascii module supplies name constants for ASCII characters and functions to test membership in
various ASCII character classes. The constants supplied are names for control characters as follows:

Name Meaning
NUL
SOH Start of heading, console interrupt
STX Start of text
ETX End of text
EOT End of transmission
ENQ Enquiry, goes with ACK flow control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias for TAB: “Horizontal tab”
LF Line feed
NL Alias for LF: “New line”
VT Vertical tab
FF Form feed
CR Carriage return
SO Shift-out, begin alternate character set
SI Shift-in, resume default character set
DLE Data-link escape
DC1 XON, for flow control
DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control
DC4 Device control 4
NAK Negative acknowledgement
SYN Synchronous idle
ETB End transmission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
FS File separator

Continued on next page

15.13. curses.wrapper — Terminal handler for curses programs 485

The Python Library Reference, Release 3.2

Table 15.3 – continued from previous page
GS Group separator
RS Record separator, block-mode terminator
US Unit separator
SP Space
DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter
conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

curses.ascii.isalnum(c)
Checks for an ASCII alphanumeric character; it is equivalent to isalpha(c) or isdigit(c).

curses.ascii.isalpha(c)
Checks for an ASCII alphabetic character; it is equivalent to isupper(c) or islower(c).

curses.ascii.isascii(c)
Checks for a character value that fits in the 7-bit ASCII set.

curses.ascii.isblank(c)
Checks for an ASCII whitespace character.

curses.ascii.iscntrl(c)
Checks for an ASCII control character (in the range 0x00 to 0x1f).

curses.ascii.isdigit(c)
Checks for an ASCII decimal digit, ’0’ through ’9’. This is equivalent to c in string.digits.

curses.ascii.isgraph(c)
Checks for ASCII any printable character except space.

curses.ascii.islower(c)
Checks for an ASCII lower-case character.

curses.ascii.isprint(c)
Checks for any ASCII printable character including space.

curses.ascii.ispunct(c)
Checks for any printable ASCII character which is not a space or an alphanumeric character.

curses.ascii.isspace(c)
Checks for ASCII white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.

curses.ascii.isupper(c)
Checks for an ASCII uppercase letter.

curses.ascii.isxdigit(c)
Checks for an ASCII hexadecimal digit. This is equivalent to c in string.hexdigits.

curses.ascii.isctrl(c)
Checks for an ASCII control character (ordinal values 0 to 31).

curses.ascii.ismeta(c)
Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the
built-in function ord().

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they
do not actually know anything about the host machine’s character encoding. For functions that know about the
character encoding (and handle internationalization properly) see the string module.

The following two functions take either a single-character string or integer byte value; they return a value of the
same type.

486 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

curses.ascii.ascii(c)
Return the ASCII value corresponding to the low 7 bits of c.

curses.ascii.ctrl(c)
Return the control character corresponding to the given character (the character bit value is bitwise-anded
with 0x1f).

curses.ascii.alt(c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

curses.ascii.unctrl(c)
Return a string representation of the ASCII character c. If c is printable, this string is the character itself.
If the character is a control character (0x00-0x1f) the string consists of a caret (’^’) followed by the
corresponding uppercase letter. If the character is an ASCII delete (0x7f) the string is ’^?’. If the character
has its meta bit (0x80) set, the meta bit is stripped, the preceding rules applied, and ’!’ prepended to the
result.

curses.ascii.controlnames
A 33-element string array that contains the ASCII mnemonics for the thirty-two ASCII control characters
from 0 (NUL) to 0x1f (US), in order, plus the mnemonic SP for the space character.

15.15 curses.panel — A panel stack extension for curses

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the
visible portions of each window will be displayed. Panels can be added, moved up or down in the stack, and
removed.

15.15.1 Functions

The module curses.panel defines the following functions:

curses.panel.bottom_panel()
Returns the bottom panel in the panel stack.

curses.panel.new_panel(win)
Returns a panel object, associating it with the given window win. Be aware that you need to keep the
returned panel object referenced explicitly. If you don’t, the panel object is garbage collected and removed
from the panel stack.

curses.panel.top_panel()
Returns the top panel in the panel stack.

curses.panel.update_panels()
Updates the virtual screen after changes in the panel stack. This does not call curses.doupdate(), so
you’ll have to do this yourself.

15.15.2 Panel Objects

Panel objects, as returned by new_panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window’s
depth in the panel stack.

Panel objects have the following methods:

Panel.above()
Returns the panel above the current panel.

15.15. curses.panel — A panel stack extension for curses 487

The Python Library Reference, Release 3.2

Panel.below()
Returns the panel below the current panel.

Panel.bottom()
Push the panel to the bottom of the stack.

Panel.hidden()
Returns true if the panel is hidden (not visible), false otherwise.

Panel.hide()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

Panel.move(y, x)
Move the panel to the screen coordinates (y, x).

Panel.replace(win)
Change the window associated with the panel to the window win.

Panel.set_userptr(obj)
Set the panel’s user pointer to obj. This is used to associate an arbitrary piece of data with the panel, and
can be any Python object.

Panel.show()
Display the panel (which might have been hidden).

Panel.top()
Push panel to the top of the stack.

Panel.userptr()
Returns the user pointer for the panel. This might be any Python object.

Panel.window()
Returns the window object associated with the panel.

15.16 platform — Access to underlying platform’s identifying
data

Source code: Lib/platform.py

Note: Specific platforms listed alphabetically, with Linux included in the Unix section.

15.16.1 Cross Platform

platform.architecture(executable=sys.executable, bits=’‘, linkage=’‘)
Queries the given executable (defaults to the Python interpreter binary) for various architecture information.

Returns a tuple (bits, linkage) which contain information about the bit architecture and the linkage
format used for the executable. Both values are returned as strings.

Values that cannot be determined are returned as given by the parameter presets. If bits is given as ”, the
sizeof(pointer)() (or sizeof(long)() on Python version < 1.5.2) is used as indicator for the
supported pointer size.

The function relies on the system’s file command to do the actual work. This is available on most if
not all Unix platforms and some non-Unix platforms and then only if the executable points to the Python
interpreter. Reasonable defaults are used when the above needs are not met.

Note: On Mac OS X (and perhaps other platforms), executable files may be universal files containing
multiple architectures.

488 Chapter 15. Generic Operating System Services

http://svn.python.org/view/python/branches/py3k/Lib/platform.py?view=markup

The Python Library Reference, Release 3.2

To get at the “64-bitness” of the current interpreter, it is more reliable to query the sys.maxsize attribute:

is_64bits = sys.maxsize > 2**32

platform.machine()
Returns the machine type, e.g. ’i386’. An empty string is returned if the value cannot be determined.

platform.node()
Returns the computer’s network name (may not be fully qualified!). An empty string is returned if the value
cannot be determined.

platform.platform(aliased=0, terse=0)
Returns a single string identifying the underlying platform with as much useful information as possible.

The output is intended to be human readable rather than machine parseable. It may look different on
different platforms and this is intended.

If aliased is true, the function will use aliases for various platforms that report system names which dif-
fer from their common names, for example SunOS will be reported as Solaris. The system_alias()
function is used to implement this.

Setting terse to true causes the function to return only the absolute minimum information needed to identify
the platform.

platform.processor()
Returns the (real) processor name, e.g. ’amdk6’.

An empty string is returned if the value cannot be determined. Note that many platforms do not provide this
information or simply return the same value as for machine(). NetBSD does this.

platform.python_build()
Returns a tuple (buildno, builddate) stating the Python build number and date as strings.

platform.python_compiler()
Returns a string identifying the compiler used for compiling Python.

platform.python_branch()
Returns a string identifying the Python implementation SCM branch.

platform.python_implementation()
Returns a string identifying the Python implementation. Possible return values are: ‘CPython’, ‘Iron-
Python’, ‘Jython’.

platform.python_revision()
Returns a string identifying the Python implementation SCM revision.

platform.python_version()
Returns the Python version as string ’major.minor.patchlevel’

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it de-
faults to 0).

platform.python_version_tuple()
Returns the Python version as tuple (major, minor, patchlevel) of strings.

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it de-
faults to ’0’).

platform.release()
Returns the system’s release, e.g. ’2.2.0’ or ’NT’ An empty string is returned if the value cannot be
determined.

platform.system()
Returns the system/OS name, e.g. ’Linux’, ’Windows’, or ’Java’. An empty string is returned if the
value cannot be determined.

15.16. platform — Access to underlying platform’s identifying data 489

The Python Library Reference, Release 3.2

platform.system_alias(system, release, version)
Returns (system, release, version) aliased to common marketing names used for some systems.
It also does some reordering of the information in some cases where it would otherwise cause confusion.

platform.version()
Returns the system’s release version, e.g. ’#3 on degas’. An empty string is returned if the value
cannot be determined.

platform.uname()
Fairly portable uname interface. Returns a tuple of strings (system, node, release, version,
machine, processor) identifying the underlying platform.

Note that unlike the os.uname() function this also returns possible processor information as additional
tuple entry.

Entries which cannot be determined are set to ”.

15.16.2 Java Platform

platform.java_ver(release=’‘, vendor=’‘, vminfo=(‘’, ‘’, ‘’), osinfo=(‘’, ‘’, ‘’))
Version interface for Jython.

Returns a tuple (release, vendor, vminfo, osinfo) with vminfo being a tuple (vm_name,
vm_release, vm_vendor) and osinfo being a tuple (os_name, os_version, os_arch).
Values which cannot be determined are set to the defaults given as parameters (which all default to ”).

15.16.3 Windows Platform

platform.win32_ver(release=’‘, version=’‘, csd=’‘, ptype=’‘)
Get additional version information from the Windows Registry and return a tuple (version, csd,
ptype) referring to version number, CSD level and OS type (multi/single processor).

As a hint: ptype is ’Uniprocessor Free’ on single processor NT machines and ’Multiprocessor
Free’ on multi processor machines. The ‘Free’ refers to the OS version being free of debugging code.
It could also state ‘Checked’ which means the OS version uses debugging code, i.e. code that checks
arguments, ranges, etc.

Note: This function works best with Mark Hammond’s win32all package installed, but also on Python
2.3 and later (support for this was added in Python 2.6). It obviously only runs on Win32 compatible
platforms.

Win95/98 specific

platform.popen(cmd, mode=’r’, bufsize=None)
Portable popen() interface. Find a working popen implementation preferring win32pipe.popen().
On Windows NT, win32pipe.popen() should work; on Windows 9x it hangs due to bugs in the MS C
library.

15.16.4 Mac OS Platform

platform.mac_ver(release=’‘, versioninfo=(‘’, ‘’, ‘’), machine=’‘)
Get Mac OS version information and return it as tuple (release, versioninfo, machine) with
versioninfo being a tuple (version, dev_stage, non_release_version).

Entries which cannot be determined are set to ”. All tuple entries are strings.

Documentation for the underlying gestalt() API is available online at http://www.rgaros.nl/gestalt/.

490 Chapter 15. Generic Operating System Services

http://www.rgaros.nl/gestalt/

The Python Library Reference, Release 3.2

15.16.5 Unix Platforms

platform.dist(distname=’‘, version=’‘, id=’‘, supported_dists=(‘SuSE’, ‘debian’, ‘redhat’, ‘man-
drake’, ...))

This is another name for linux_distribution().

platform.linux_distribution(distname=’‘, version=’‘, id=’‘, supported_dists=(‘SuSE’, ‘de-
bian’, ‘redhat’, ‘mandrake’, ...), full_distribution_name=1)

Tries to determine the name of the Linux OS distribution name.

supported_dists may be given to define the set of Linux distributions to look for. It defaults to a list
of currently supported Linux distributions identified by their release file name.

If full_distribution_name is true (default), the full distribution read from the OS is returned. Oth-
erwise the short name taken from supported_dists is used.

Returns a tuple (distname,version,id) which defaults to the args given as parameters. id is the
item in parentheses after the version number. It is usually the version codename.

platform.libc_ver(executable=sys.executable, lib=’‘, version=’‘, chunksize=2048)
Tries to determine the libc version against which the file executable (defaults to the Python interpreter) is
linked. Returns a tuple of strings (lib, version) which default to the given parameters in case the
lookup fails.

Note that this function has intimate knowledge of how different libc versions add symbols to the executable
is probably only usable for executables compiled using gcc.

The file is read and scanned in chunks of chunksize bytes.

15.17 errno — Standard errno system symbols

This module makes available standard errno system symbols. The value of each symbol is the corresponding
integer value. The names and descriptions are borrowed from linux/include/errno.h, which should be
pretty all-inclusive.

errno.errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For
instance, errno.errorcode[errno.EPERM] maps to ’EPERM’.

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific
list of defined symbols is available as errno.errorcode.keys(). Symbols available can include:

errno.EPERM
Operation not permitted

errno.ENOENT
No such file or directory

errno.ESRCH
No such process

errno.EINTR
Interrupted system call

errno.EIO
I/O error

errno.ENXIO
No such device or address

errno.E2BIG
Arg list too long

15.17. errno — Standard errno system symbols 491

The Python Library Reference, Release 3.2

errno.ENOEXEC
Exec format error

errno.EBADF
Bad file number

errno.ECHILD
No child processes

errno.EAGAIN
Try again

errno.ENOMEM
Out of memory

errno.EACCES
Permission denied

errno.EFAULT
Bad address

errno.ENOTBLK
Block device required

errno.EBUSY
Device or resource busy

errno.EEXIST
File exists

errno.EXDEV
Cross-device link

errno.ENODEV
No such device

errno.ENOTDIR
Not a directory

errno.EISDIR
Is a directory

errno.EINVAL
Invalid argument

errno.ENFILE
File table overflow

errno.EMFILE
Too many open files

errno.ENOTTY
Not a typewriter

errno.ETXTBSY
Text file busy

errno.EFBIG
File too large

errno.ENOSPC
No space left on device

errno.ESPIPE
Illegal seek

errno.EROFS
Read-only file system

492 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

errno.EMLINK
Too many links

errno.EPIPE
Broken pipe

errno.EDOM
Math argument out of domain of func

errno.ERANGE
Math result not representable

errno.EDEADLK
Resource deadlock would occur

errno.ENAMETOOLONG
File name too long

errno.ENOLCK
No record locks available

errno.ENOSYS
Function not implemented

errno.ENOTEMPTY
Directory not empty

errno.ELOOP
Too many symbolic links encountered

errno.EWOULDBLOCK
Operation would block

errno.ENOMSG
No message of desired type

errno.EIDRM
Identifier removed

errno.ECHRNG
Channel number out of range

errno.EL2NSYNC
Level 2 not synchronized

errno.EL3HLT
Level 3 halted

errno.EL3RST
Level 3 reset

errno.ELNRNG
Link number out of range

errno.EUNATCH
Protocol driver not attached

errno.ENOCSI
No CSI structure available

errno.EL2HLT
Level 2 halted

errno.EBADE
Invalid exchange

errno.EBADR
Invalid request descriptor

15.17. errno — Standard errno system symbols 493

The Python Library Reference, Release 3.2

errno.EXFULL
Exchange full

errno.ENOANO
No anode

errno.EBADRQC
Invalid request code

errno.EBADSLT
Invalid slot

errno.EDEADLOCK
File locking deadlock error

errno.EBFONT
Bad font file format

errno.ENOSTR
Device not a stream

errno.ENODATA
No data available

errno.ETIME
Timer expired

errno.ENOSR
Out of streams resources

errno.ENONET
Machine is not on the network

errno.ENOPKG
Package not installed

errno.EREMOTE
Object is remote

errno.ENOLINK
Link has been severed

errno.EADV
Advertise error

errno.ESRMNT
Srmount error

errno.ECOMM
Communication error on send

errno.EPROTO
Protocol error

errno.EMULTIHOP
Multihop attempted

errno.EDOTDOT
RFS specific error

errno.EBADMSG
Not a data message

errno.EOVERFLOW
Value too large for defined data type

errno.ENOTUNIQ
Name not unique on network

494 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

errno.EBADFD
File descriptor in bad state

errno.EREMCHG
Remote address changed

errno.ELIBACC
Can not access a needed shared library

errno.ELIBBAD
Accessing a corrupted shared library

errno.ELIBSCN
.lib section in a.out corrupted

errno.ELIBMAX
Attempting to link in too many shared libraries

errno.ELIBEXEC
Cannot exec a shared library directly

errno.EILSEQ
Illegal byte sequence

errno.ERESTART
Interrupted system call should be restarted

errno.ESTRPIPE
Streams pipe error

errno.EUSERS
Too many users

errno.ENOTSOCK
Socket operation on non-socket

errno.EDESTADDRREQ
Destination address required

errno.EMSGSIZE
Message too long

errno.EPROTOTYPE
Protocol wrong type for socket

errno.ENOPROTOOPT
Protocol not available

errno.EPROTONOSUPPORT
Protocol not supported

errno.ESOCKTNOSUPPORT
Socket type not supported

errno.EOPNOTSUPP
Operation not supported on transport endpoint

errno.EPFNOSUPPORT
Protocol family not supported

errno.EAFNOSUPPORT
Address family not supported by protocol

errno.EADDRINUSE
Address already in use

errno.EADDRNOTAVAIL
Cannot assign requested address

15.17. errno — Standard errno system symbols 495

The Python Library Reference, Release 3.2

errno.ENETDOWN
Network is down

errno.ENETUNREACH
Network is unreachable

errno.ENETRESET
Network dropped connection because of reset

errno.ECONNABORTED
Software caused connection abort

errno.ECONNRESET
Connection reset by peer

errno.ENOBUFS
No buffer space available

errno.EISCONN
Transport endpoint is already connected

errno.ENOTCONN
Transport endpoint is not connected

errno.ESHUTDOWN
Cannot send after transport endpoint shutdown

errno.ETOOMANYREFS
Too many references: cannot splice

errno.ETIMEDOUT
Connection timed out

errno.ECONNREFUSED
Connection refused

errno.EHOSTDOWN
Host is down

errno.EHOSTUNREACH
No route to host

errno.EALREADY
Operation already in progress

errno.EINPROGRESS
Operation now in progress

errno.ESTALE
Stale NFS file handle

errno.EUCLEAN
Structure needs cleaning

errno.ENOTNAM
Not a XENIX named type file

errno.ENAVAIL
No XENIX semaphores available

errno.EISNAM
Is a named type file

errno.EREMOTEIO
Remote I/O error

errno.EDQUOT
Quota exceeded

496 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

15.18 ctypes — A foreign function library for Python

ctypes is a foreign function library for Python. It provides C compatible data types, and allows calling functions
in DLLs or shared libraries. It can be used to wrap these libraries in pure Python.

15.18.1 ctypes tutorial

Note: The code samples in this tutorial use doctest to make sure that they actually work. Since some code
samples behave differently under Linux, Windows, or Mac OS X, they contain doctest directives in comments.

Note: Some code samples reference the ctypes c_int type. This type is an alias for the c_long type on 32-bit
systems. So, you should not be confused if c_long is printed if you would expect c_int — they are actually
the same type.

Loading dynamic link libraries

ctypes exports the cdll, and on Windows windll and oledll objects, for loading dynamic link libraries.

You load libraries by accessing them as attributes of these objects. cdll loads libraries which export functions
using the standard cdecl calling convention, while windll libraries call functions using the stdcall calling
convention. oledll also uses the stdcall calling convention, and assumes the functions return a Windows
HRESULT error code. The error code is used to automatically raise a WindowsError exception when the
function call fails.

Here are some examples for Windows. Note that msvcrt is the MS standard C library containing most standard
C functions, and uses the cdecl calling convention:

>>> from ctypes import *
>>> print(windll.kernel32)
<WinDLL ’kernel32’, handle ... at ...>
>>> print(cdll.msvcrt)
<CDLL ’msvcrt’, handle ... at ...>
>>> libc = cdll.msvcrt
>>>

Windows appends the usual .dll file suffix automatically.

On Linux, it is required to specify the filename including the extension to load a library, so attribute access can not
be used to load libraries. Either the LoadLibrary() method of the dll loaders should be used, or you should
load the library by creating an instance of CDLL by calling the constructor:

>>> cdll.LoadLibrary("libc.so.6")
<CDLL ’libc.so.6’, handle ... at ...>
>>> libc = CDLL("libc.so.6")
>>> libc
<CDLL ’libc.so.6’, handle ... at ...>
>>>

Accessing functions from loaded dlls

Functions are accessed as attributes of dll objects:

>>> from ctypes import *
>>> libc.printf
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.GetModuleHandleA)
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.MyOwnFunction)
Traceback (most recent call last):

15.18. ctypes — A foreign function library for Python 497

The Python Library Reference, Release 3.2

File "<stdin>", line 1, in ?
File "ctypes.py", line 239, in __getattr__

func = _StdcallFuncPtr(name, self)
AttributeError: function ’MyOwnFunction’ not found
>>>

Note that win32 system dlls like kernel32 and user32 often export ANSI as well as UNICODE versions
of a function. The UNICODE version is exported with an W appended to the name, while the ANSI version is
exported with an A appended to the name. The win32 GetModuleHandle function, which returns a module
handle for a given module name, has the following C prototype, and a macro is used to expose one of them as
GetModuleHandle depending on whether UNICODE is defined or not:

/* ANSI version */
HMODULE GetModuleHandleA(LPCSTR lpModuleName);
/* UNICODE version */
HMODULE GetModuleHandleW(LPCWSTR lpModuleName);

windll does not try to select one of them by magic, you must access the version you need by specifying
GetModuleHandleA or GetModuleHandleW explicitly, and then call it with bytes or string objects respec-
tively.

Sometimes, dlls export functions with names which aren’t valid Python identifiers, like "??2@YAPAXI@Z". In
this case you have to use getattr() to retrieve the function:

>>> getattr(cdll.msvcrt, "??2@YAPAXI@Z")
<_FuncPtr object at 0x...>
>>>

On Windows, some dlls export functions not by name but by ordinal. These functions can be accessed by indexing
the dll object with the ordinal number:

>>> cdll.kernel32[1]
<_FuncPtr object at 0x...>
>>> cdll.kernel32[0]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "ctypes.py", line 310, in __getitem__

func = _StdcallFuncPtr(name, self)
AttributeError: function ordinal 0 not found
>>>

Calling functions

You can call these functions like any other Python callable. This example uses the time() function, which
returns system time in seconds since the Unix epoch, and the GetModuleHandleA() function, which returns
a win32 module handle.

This example calls both functions with a NULL pointer (None should be used as the NULL pointer):

>>> print(libc.time(None))
1150640792
>>> print(hex(windll.kernel32.GetModuleHandleA(None)))
0x1d000000
>>>

ctypes tries to protect you from calling functions with the wrong number of arguments or the wrong calling
convention. Unfortunately this only works on Windows. It does this by examining the stack after the function
returns, so although an error is raised the function has been called:

>>> windll.kernel32.GetModuleHandleA()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: Procedure probably called with not enough arguments (4 bytes missing)

498 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> windll.kernel32.GetModuleHandleA(0, 0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

The same exception is raised when you call an stdcall function with the cdecl calling convention, or vice
versa:

>>> cdll.kernel32.GetModuleHandleA(None)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>>

>>> windll.msvcrt.printf(b"spam")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

To find out the correct calling convention you have to look into the C header file or the documentation for the
function you want to call.

On Windows, ctypes uses win32 structured exception handling to prevent crashes from general protection faults
when functions are called with invalid argument values:

>>> windll.kernel32.GetModuleHandleA(32)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
WindowsError: exception: access violation reading 0x00000020
>>>

There are, however, enough ways to crash Python with ctypes, so you should be careful anyway.

None, integers, bytes objects and (unicode) strings are the only native Python objects that can directly be used as
parameters in these function calls. None is passed as a C NULL pointer, bytes objects and strings are passed as
pointer to the memory block that contains their data (char * or wchar_t *). Python integers are passed as
the platforms default C int type, their value is masked to fit into the C type.

Before we move on calling functions with other parameter types, we have to learn more about ctypes data types.

Fundamental data types

ctypes defines a number of primitive C compatible data types :

15.18. ctypes — A foreign function library for Python 499

The Python Library Reference, Release 3.2

ctypes type C type Python type
c_bool _Bool bool (1)
c_char char 1-character bytes object
c_wchar wchar_t 1-character string
c_byte char int
c_ubyte unsigned char int
c_short short int
c_ushort unsigned short int
c_int int int
c_uint unsigned int int
c_long long int
c_ulong unsigned long int
c_longlong __int64 or long long int
c_ulonglong unsigned __int64 or unsigned long long int
c_float float float
c_double double float
c_longdouble long double float
c_char_p char * (NUL terminated) bytes object or None
c_wchar_p wchar_t * (NUL terminated) string or None
c_void_p void * int or None

1. The constructor accepts any object with a truth value.

All these types can be created by calling them with an optional initializer of the correct type and value:

>>> c_int()
c_long(0)
>>> c_wchar_p("Hello, World")
c_wchar_p(’Hello, World’)
>>> c_ushort(-3)
c_ushort(65533)
>>>

Since these types are mutable, their value can also be changed afterwards:

>>> i = c_int(42)
>>> print(i)
c_long(42)
>>> print(i.value)
42
>>> i.value = -99
>>> print(i.value)
-99
>>>

Assigning a new value to instances of the pointer types c_char_p, c_wchar_p, and c_void_p changes the
memory location they point to, not the contents of the memory block (of course not, because Python bytes objects
are immutable):

>>> s = "Hello, World"
>>> c_s = c_wchar_p(s)
>>> print(c_s)
c_wchar_p(’Hello, World’)
>>> c_s.value = "Hi, there"
>>> print(c_s)
c_wchar_p(’Hi, there’)
>>> print(s) # first object is unchanged
Hello, World
>>>

You should be careful, however, not to pass them to functions expecting pointers to mutable memory. If you need
mutable memory blocks, ctypes has a create_string_buffer() function which creates these in various

500 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

ways. The current memory block contents can be accessed (or changed) with the raw property; if you want to
access it as NUL terminated string, use the value property:

>>> from ctypes import *
>>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
>>> print(sizeof(p), repr(p.raw))
3 b’\x00\x00\x00’
>>> p = create_string_buffer(b"Hello") # create a buffer containing a NUL terminated string
>>> print(sizeof(p), repr(p.raw))
6 b’Hello\x00’
>>> print(repr(p.value))
b’Hello’
>>> p = create_string_buffer(b"Hello", 10) # create a 10 byte buffer
>>> print(sizeof(p), repr(p.raw))
10 b’Hello\x00\x00\x00\x00\x00’
>>> p.value = b"Hi"
>>> print(sizeof(p), repr(p.raw))
10 b’Hi\x00lo\x00\x00\x00\x00\x00’
>>>

The create_string_buffer() function replaces the c_buffer() function (which is still available as an
alias), as well as the c_string() function from earlier ctypes releases. To create a mutable memory block
containing unicode characters of the C type wchar_t use the create_unicode_buffer() function.

Calling functions, continued

Note that printf prints to the real standard output channel, not to sys.stdout, so these examples will only work
at the console prompt, not from within IDLE or PythonWin:

>>> printf = libc.printf
>>> printf(b"Hello, %s\n", b"World!")
Hello, World!
14
>>> printf(b"Hello, %S\n", "World!")
Hello, World!
14
>>> printf(b"%d bottles of beer\n", 42)
42 bottles of beer
19
>>> printf(b"%f bottles of beer\n", 42.5)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: Don’t know how to convert parameter 2
>>>

As has been mentioned before, all Python types except integers, strings, and bytes objects have to be wrapped in
their corresponding ctypes type, so that they can be converted to the required C data type:

>>> printf(b"An int %d, a double %f\n", 1234, c_double(3.14))
An int 1234, a double 3.140000
31
>>>

Calling functions with your own custom data types

You can also customize ctypes argument conversion to allow instances of your own classes be used as function
arguments. ctypes looks for an _as_parameter_ attribute and uses this as the function argument. Of course,
it must be one of integer, string, or bytes:

15.18. ctypes — A foreign function library for Python 501

The Python Library Reference, Release 3.2

>>> class Bottles:
... def __init__(self, number):
... self._as_parameter_ = number
...
>>> bottles = Bottles(42)
>>> printf(b"%d bottles of beer\n", bottles)
42 bottles of beer
19
>>>

If you don’t want to store the instance’s data in the _as_parameter_ instance variable, you could define a
property which makes the attribute available on request.

Specifying the required argument types (function prototypes)

It is possible to specify the required argument types of functions exported from DLLs by setting the argtypes
attribute.

argtypes must be a sequence of C data types (the printf function is probably not a good example here,
because it takes a variable number and different types of parameters depending on the format string, on the other
hand this is quite handy to experiment with this feature):

>>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
>>> printf(b"String ’%s’, Int %d, Double %f\n", b"Hi", 10, 2.2)
String ’Hi’, Int 10, Double 2.200000
37
>>>

Specifying a format protects against incompatible argument types (just as a prototype for a C function), and tries
to convert the arguments to valid types:

>>> printf(b"%d %d %d", 1, 2, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: wrong type
>>> printf(b"%s %d %f\n", b"X", 2, 3)
X 2 3.000000
13
>>>

If you have defined your own classes which you pass to function calls, you have to implement a from_param()
class method for them to be able to use them in the argtypes sequence. The from_param() class method
receives the Python object passed to the function call, it should do a typecheck or whatever is needed to make sure
this object is acceptable, and then return the object itself, its _as_parameter_ attribute, or whatever you want
to pass as the C function argument in this case. Again, the result should be an integer, string, bytes, a ctypes
instance, or an object with an _as_parameter_ attribute.

Return types

By default functions are assumed to return the C int type. Other return types can be specified by setting the
restype attribute of the function object.

Here is a more advanced example, it uses the strchr function, which expects a string pointer and a char, and
returns a pointer to a string:

>>> strchr = libc.strchr
>>> strchr(b"abcdef", ord("d"))
8059983
>>> strchr.restype = c_char_p # c_char_p is a pointer to a string
>>> strchr(b"abcdef", ord("d"))
b’def’

502 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> print(strchr(b"abcdef", ord("x")))
None
>>>

If you want to avoid the ord("x") calls above, you can set the argtypes attribute, and the second argument
will be converted from a single character Python bytes object into a C char:

>>> strchr.restype = c_char_p
>>> strchr.argtypes = [c_char_p, c_char]
>>> strchr(b"abcdef", b"d")
’def’
>>> strchr(b"abcdef", b"def")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: one character string expected
>>> print(strchr(b"abcdef", b"x"))
None
>>> strchr(b"abcdef", b"d")
’def’
>>>

You can also use a callable Python object (a function or a class for example) as the restype attribute, if the
foreign function returns an integer. The callable will be called with the integer the C function returns, and the
result of this call will be used as the result of your function call. This is useful to check for error return values and
automatically raise an exception:

>>> GetModuleHandle = windll.kernel32.GetModuleHandleA
>>> def ValidHandle(value):
... if value == 0:
... raise WinError()
... return value
...
>>>
>>> GetModuleHandle.restype = ValidHandle
>>> GetModuleHandle(None)
486539264
>>> GetModuleHandle("something silly")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 3, in ValidHandle

WindowsError: [Errno 126] The specified module could not be found.
>>>

WinError is a function which will call Windows FormatMessage() api to get the string representation of an
error code, and returns an exception. WinError takes an optional error code parameter, if no one is used, it calls
GetLastError() to retrieve it.

Please note that a much more powerful error checking mechanism is available through the errcheck attribute;
see the reference manual for details.

Passing pointers (or: passing parameters by reference)

Sometimes a C api function expects a pointer to a data type as parameter, probably to write into the corresponding
location, or if the data is too large to be passed by value. This is also known as passing parameters by reference.

ctypes exports the byref() function which is used to pass parameters by reference. The same effect can be
achieved with the pointer() function, although pointer() does a lot more work since it constructs a real
pointer object, so it is faster to use byref() if you don’t need the pointer object in Python itself:

>>> i = c_int()
>>> f = c_float()

15.18. ctypes — A foreign function library for Python 503

The Python Library Reference, Release 3.2

>>> s = create_string_buffer(b’\000’ * 32)
>>> print(i.value, f.value, repr(s.value))
0 0.0 b’’
>>> libc.sscanf(b"1 3.14 Hello", b"%d %f %s",
... byref(i), byref(f), s)
3
>>> print(i.value, f.value, repr(s.value))
1 3.1400001049 b’Hello’
>>>

Structures and unions

Structures and unions must derive from the Structure and Union base classes which are defined in the
ctypes module. Each subclass must define a _fields_ attribute. _fields_ must be a list of 2-tuples,
containing a field name and a field type.

The field type must be a ctypes type like c_int, or any other derived ctypes type: structure, union, array,
pointer.

Here is a simple example of a POINT structure, which contains two integers named x and y, and also shows how
to initialize a structure in the constructor:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print(point.x, point.y)
10 20
>>> point = POINT(y=5)
>>> print(point.x, point.y)
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: too many initializers
>>>

You can, however, build much more complicated structures. Structures can itself contain other structures by using
a structure as a field type.

Here is a RECT structure which contains two POINTs named upperleft and lowerright:

>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print(rc.upperleft.x, rc.upperleft.y)
0 5
>>> print(rc.lowerright.x, rc.lowerright.y)
0 0
>>>

Nested structures can also be initialized in the constructor in several ways:

>>> r = RECT(POINT(1, 2), POINT(3, 4))
>>> r = RECT((1, 2), (3, 4))

Field descriptors can be retrieved from the class, they are useful for debugging because they can provide useful
information:

504 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> print(POINT.x)
<Field type=c_long, ofs=0, size=4>
>>> print(POINT.y)
<Field type=c_long, ofs=4, size=4>
>>>

Structure/union alignment and byte order

By default, Structure and Union fields are aligned in the same way the C compiler does it. It is possible to override
this behavior be specifying a _pack_ class attribute in the subclass definition. This must be set to a positive
integer and specifies the maximum alignment for the fields. This is what #pragma pack(n) also does in
MSVC.

ctypes uses the native byte order for Structures and Unions. To build structures with non-native byte order,
you can use one of the BigEndianStructure, LittleEndianStructure, BigEndianUnion, and
LittleEndianUnion base classes. These classes cannot contain pointer fields.

Bit fields in structures and unions

It is possible to create structures and unions containing bit fields. Bit fields are only possible for integer fields, the
bit width is specified as the third item in the _fields_ tuples:

>>> class Int(Structure):
... _fields_ = [("first_16", c_int, 16),
... ("second_16", c_int, 16)]
...
>>> print(Int.first_16)
<Field type=c_long, ofs=0:0, bits=16>
>>> print(Int.second_16)
<Field type=c_long, ofs=0:16, bits=16>
>>>

Arrays

Arrays are sequences, containing a fixed number of instances of the same type.

The recommended way to create array types is by multiplying a data type with a positive integer:

TenPointsArrayType = POINT * 10

Here is an example of an somewhat artificial data type, a structure containing 4 POINTs among other stuff:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class MyStruct(Structure):
... _fields_ = [("a", c_int),
... ("b", c_float),
... ("point_array", POINT * 4)]
>>>
>>> print(len(MyStruct().point_array))
4
>>>

Instances are created in the usual way, by calling the class:

arr = TenPointsArrayType()
for pt in arr:

print(pt.x, pt.y)

15.18. ctypes — A foreign function library for Python 505

The Python Library Reference, Release 3.2

The above code print a series of 0 0 lines, because the array contents is initialized to zeros.

Initializers of the correct type can also be specified:

>>> from ctypes import *
>>> TenIntegers = c_int * 10
>>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> print(ii)
<c_long_Array_10 object at 0x...>
>>> for i in ii: print(i, end=" ")
...
1 2 3 4 5 6 7 8 9 10
>>>

Pointers

Pointer instances are created by calling the pointer() function on a ctypes type:

>>> from ctypes import *
>>> i = c_int(42)
>>> pi = pointer(i)
>>>

Pointer instances have a contents attribute which returns the object to which the pointer points, the i object
above:

>>> pi.contents
c_long(42)
>>>

Note that ctypes does not have OOR (original object return), it constructs a new, equivalent object each time
you retrieve an attribute:

>>> pi.contents is i
False
>>> pi.contents is pi.contents
False
>>>

Assigning another c_int instance to the pointer’s contents attribute would cause the pointer to point to the
memory location where this is stored:

>>> i = c_int(99)
>>> pi.contents = i
>>> pi.contents
c_long(99)
>>>

Pointer instances can also be indexed with integers:

>>> pi[0]
99
>>>

Assigning to an integer index changes the pointed to value:

>>> print(i)
c_long(99)
>>> pi[0] = 22
>>> print(i)
c_long(22)
>>>

506 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

It is also possible to use indexes different from 0, but you must know what you’re doing, just as in C: You can
access or change arbitrary memory locations. Generally you only use this feature if you receive a pointer from a
C function, and you know that the pointer actually points to an array instead of a single item.

Behind the scenes, the pointer() function does more than simply create pointer instances, it has to create
pointer types first. This is done with the POINTER() function, which accepts any ctypes type, and returns a
new type:

>>> PI = POINTER(c_int)
>>> PI
<class ’ctypes.LP_c_long’>
>>> PI(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: expected c_long instead of int
>>> PI(c_int(42))
<ctypes.LP_c_long object at 0x...>
>>>

Calling the pointer type without an argument creates a NULL pointer. NULL pointers have a False boolean value:

>>> null_ptr = POINTER(c_int)()
>>> print(bool(null_ptr))
False
>>>

ctypes checks for NULLwhen dereferencing pointers (but dereferencing invalid non-NULL pointers would crash
Python):

>>> null_ptr[0]
Traceback (most recent call last):

....
ValueError: NULL pointer access
>>>

>>> null_ptr[0] = 1234
Traceback (most recent call last):

....
ValueError: NULL pointer access
>>>

Type conversions

Usually, ctypes does strict type checking. This means, if you have POINTER(c_int) in the argtypes list of
a function or as the type of a member field in a structure definition, only instances of exactly the same type are
accepted. There are some exceptions to this rule, where ctypes accepts other objects. For example, you can pass
compatible array instances instead of pointer types. So, for POINTER(c_int), ctypes accepts an array of c_int:

>>> class Bar(Structure):
... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
...
>>> bar = Bar()
>>> bar.values = (c_int * 3)(1, 2, 3)
>>> bar.count = 3
>>> for i in range(bar.count):
... print(bar.values[i])
...
1
2
3
>>>

15.18. ctypes — A foreign function library for Python 507

The Python Library Reference, Release 3.2

To set a POINTER type field to NULL, you can assign None:

>>> bar.values = None
>>>

Sometimes you have instances of incompatible types. In C, you can cast one type into another type. ctypes
provides a cast() function which can be used in the same way. The Bar structure defined above accepts
POINTER(c_int) pointers or c_int arrays for its values field, but not instances of other types:

>>> bar.values = (c_byte * 4)()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
>>>

For these cases, the cast() function is handy.

The cast() function can be used to cast a ctypes instance into a pointer to a different ctypes data type. cast()
takes two parameters, a ctypes object that is or can be converted to a pointer of some kind, and a ctypes pointer
type. It returns an instance of the second argument, which references the same memory block as the first argument:

>>> a = (c_byte * 4)()
>>> cast(a, POINTER(c_int))
<ctypes.LP_c_long object at ...>
>>>

So, cast() can be used to assign to the values field of Bar the structure:

>>> bar = Bar()
>>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
>>> print(bar.values[0])
0
>>>

Incomplete Types

Incomplete Types are structures, unions or arrays whose members are not yet specified. In C, they are specified by
forward declarations, which are defined later:

struct cell; /* forward declaration */

struct {
char *name;
struct cell *next;

} cell;

The straightforward translation into ctypes code would be this, but it does not work:

>>> class cell(Structure):
... _fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
...
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 2, in cell

NameError: name ’cell’ is not defined
>>>

because the new class cell is not available in the class statement itself. In ctypes, we can define the cell
class and set the _fields_ attribute later, after the class statement:

>>> from ctypes import *
>>> class cell(Structure):
... pass

508 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

...
>>> cell._fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
>>>

Lets try it. We create two instances of cell, and let them point to each other, and finally follow the pointer chain
a few times:

>>> c1 = cell()
>>> c1.name = "foo"
>>> c2 = cell()
>>> c2.name = "bar"
>>> c1.next = pointer(c2)
>>> c2.next = pointer(c1)
>>> p = c1
>>> for i in range(8):
... print(p.name, end=" ")
... p = p.next[0]
...
foo bar foo bar foo bar foo bar
>>>

Callback functions

ctypes allows to create C callable function pointers from Python callables. These are sometimes called callback
functions.

First, you must create a class for the callback function, the class knows the calling convention, the return type, and
the number and types of arguments this function will receive.

The CFUNCTYPE factory function creates types for callback functions using the normal cdecl calling convention,
and, on Windows, the WINFUNCTYPE factory function creates types for callback functions using the stdcall
calling convention.

Both of these factory functions are called with the result type as first argument, and the callback functions expected
argument types as the remaining arguments.

I will present an example here which uses the standard C library’s qsort() function, this is used to sort items
with the help of a callback function. qsort() will be used to sort an array of integers:

>>> IntArray5 = c_int * 5
>>> ia = IntArray5(5, 1, 7, 33, 99)
>>> qsort = libc.qsort
>>> qsort.restype = None
>>>

qsort() must be called with a pointer to the data to sort, the number of items in the data array, the size of one
item, and a pointer to the comparison function, the callback. The callback will then be called with two pointers to
items, and it must return a negative integer if the first item is smaller than the second, a zero if they are equal, and
a positive integer else.

So our callback function receives pointers to integers, and must return an integer. First we create the type for the
callback function:

>>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
>>>

For the first implementation of the callback function, we simply print the arguments we get, and return 0 (incre-
mental development ;-):

>>> def py_cmp_func(a, b):
... print("py_cmp_func", a, b)
... return 0

15.18. ctypes — A foreign function library for Python 509

The Python Library Reference, Release 3.2

...
>>>

Create the C callable callback:

>>> cmp_func = CMPFUNC(py_cmp_func)
>>>

And we’re ready to go:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
>>>

We know how to access the contents of a pointer, so lets redefine our callback:

>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return 0
...
>>> cmp_func = CMPFUNC(py_cmp_func)
>>>

Here is what we get on Windows:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func 7 1
py_cmp_func 33 1
py_cmp_func 99 1
py_cmp_func 5 1
py_cmp_func 7 5
py_cmp_func 33 5
py_cmp_func 99 5
py_cmp_func 7 99
py_cmp_func 33 99
py_cmp_func 7 33
>>>

It is funny to see that on linux the sort function seems to work much more efficiently, it is doing less comparisons:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 5 7
py_cmp_func 1 7
>>>

Ah, we’re nearly done! The last step is to actually compare the two items and return a useful result:

>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return a[0] - b[0]
...
>>>

510 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Final run on Windows:

>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))
py_cmp_func 33 7
py_cmp_func 99 33
py_cmp_func 5 99
py_cmp_func 1 99
py_cmp_func 33 7
py_cmp_func 1 33
py_cmp_func 5 33
py_cmp_func 5 7
py_cmp_func 1 7
py_cmp_func 5 1
>>>

and on Linux:

>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>

It is quite interesting to see that the Windows qsort() function needs more comparisons than the linux version!

As we can easily check, our array is sorted now:

>>> for i in ia: print(i, end=" ")
...
1 5 7 33 99
>>>

Important note for callback functions:

Make sure you keep references to CFUNCTYPE objects as long as they are used from C code. ctypes doesn’t,
and if you don’t, they may be garbage collected, crashing your program when a callback is made.

Accessing values exported from dlls

Some shared libraries not only export functions, they also export variables. An example in the Python library itself
is the Py_OptimizeFlag, an integer set to 0, 1, or 2, depending on the -O or -OO flag given on startup.

ctypes can access values like this with the in_dll() class methods of the type. pythonapi is a predefined
symbol giving access to the Python C api:

>>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
>>> print(opt_flag)
c_long(0)
>>>

If the interpreter would have been started with -O, the sample would have printed c_long(1), or c_long(2)
if -OO would have been specified.

An extended example which also demonstrates the use of pointers accesses the PyImport_FrozenModules
pointer exported by Python.

Quoting the docs for that value:

This pointer is initialized to point to an array of struct _frozen records, terminated by one
whose members are all NULL or zero. When a frozen module is imported, it is searched in this table.
Third-party code could play tricks with this to provide a dynamically created collection of frozen
modules.

15.18. ctypes — A foreign function library for Python 511

The Python Library Reference, Release 3.2

So manipulating this pointer could even prove useful. To restrict the example size, we show only how this table
can be read with ctypes:

>>> from ctypes import *
>>>
>>> class struct_frozen(Structure):
... _fields_ = [("name", c_char_p),
... ("code", POINTER(c_ubyte)),
... ("size", c_int)]
...
>>>

We have defined the struct _frozen data type, so we can get the pointer to the table:

>>> FrozenTable = POINTER(struct_frozen)
>>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
>>>

Since table is a pointer to the array of struct_frozen records, we can iterate over it, but we just have
to make sure that our loop terminates, because pointers have no size. Sooner or later it would probably crash with
an access violation or whatever, so it’s better to break out of the loop when we hit the NULL entry:

>>> for item in table:
... print(item.name, item.size)
... if item.name is None:
... break
...
__hello__ 104
__phello__ -104
__phello__.spam 104
None 0
>>>

The fact that standard Python has a frozen module and a frozen package (indicated by the negative size member)
is not well known, it is only used for testing. Try it out with import __hello__ for example.

Surprises

There are some edges in ctypes where you may be expect something else than what actually happens.

Consider the following example:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class RECT(Structure):
... _fields_ = ("a", POINT), ("b", POINT)
...
>>> p1 = POINT(1, 2)
>>> p2 = POINT(3, 4)
>>> rc = RECT(p1, p2)
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
1 2 3 4
>>> # now swap the two points
>>> rc.a, rc.b = rc.b, rc.a
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
3 4 3 4
>>>

Hm. We certainly expected the last statement to print 3 4 1 2. What happened? Here are the steps of the
rc.a, rc.b = rc.b, rc.a line above:

512 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

>>> temp0, temp1 = rc.b, rc.a
>>> rc.a = temp0
>>> rc.b = temp1
>>>

Note that temp0 and temp1 are objects still using the internal buffer of the rc object above. So executing rc.a
= temp0 copies the buffer contents of temp0 into rc ‘s buffer. This, in turn, changes the contents of temp1.
So, the last assignment rc.b = temp1, doesn’t have the expected effect.

Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays doesn’t copy the sub-object, instead
it retrieves a wrapper object accessing the root-object’s underlying buffer.

Another example that may behave different from what one would expect is this:

>>> s = c_char_p()
>>> s.value = "abc def ghi"
>>> s.value
’abc def ghi’
>>> s.value is s.value
False
>>>

Why is it printing False? ctypes instances are objects containing a memory block plus some descriptors ac-
cessing the contents of the memory. Storing a Python object in the memory block does not store the object itself,
instead the contents of the object is stored. Accessing the contents again constructs a new Python object each
time!

Variable-sized data types

ctypes provides some support for variable-sized arrays and structures.

The resize() function can be used to resize the memory buffer of an existing ctypes object. The function takes
the object as first argument, and the requested size in bytes as the second argument. The memory block cannot
be made smaller than the natural memory block specified by the objects type, a ValueError is raised if this is
tried:

>>> short_array = (c_short * 4)()
>>> print(sizeof(short_array))
8
>>> resize(short_array, 4)
Traceback (most recent call last):

...
ValueError: minimum size is 8
>>> resize(short_array, 32)
>>> sizeof(short_array)
32
>>> sizeof(type(short_array))
8
>>>

This is nice and fine, but how would one access the additional elements contained in this array? Since the type
still only knows about 4 elements, we get errors accessing other elements:

>>> short_array[:]
[0, 0, 0, 0]
>>> short_array[7]
Traceback (most recent call last):

...
IndexError: invalid index
>>>

15.18. ctypes — A foreign function library for Python 513

The Python Library Reference, Release 3.2

Another way to use variable-sized data types with ctypes is to use the dynamic nature of Python, and (re-)define
the data type after the required size is already known, on a case by case basis.

15.18.2 ctypes reference

Finding shared libraries

When programming in a compiled language, shared libraries are accessed when compiling/linking a program, and
when the program is run.

The purpose of the find_library() function is to locate a library in a way similar to what the compiler does
(on platforms with several versions of a shared library the most recent should be loaded), while the ctypes library
loaders act like when a program is run, and call the runtime loader directly.

The ctypes.util module provides a function which can help to determine the library to load.

ctypes.util.find_library(name)
Try to find a library and return a pathname. name is the library name without any prefix like lib, suffix like
.so, .dylib or version number (this is the form used for the posix linker option -l). If no library can be
found, returns None.

The exact functionality is system dependent.

On Linux, find_library() tries to run external programs (/sbin/ldconfig, gcc, and objdump) to find
the library file. It returns the filename of the library file. Here are some examples:

>>> from ctypes.util import find_library
>>> find_library("m")
’libm.so.6’
>>> find_library("c")
’libc.so.6’
>>> find_library("bz2")
’libbz2.so.1.0’
>>>

On OS X, find_library() tries several predefined naming schemes and paths to locate the library, and returns
a full pathname if successful:

>>> from ctypes.util import find_library
>>> find_library("c")
’/usr/lib/libc.dylib’
>>> find_library("m")
’/usr/lib/libm.dylib’
>>> find_library("bz2")
’/usr/lib/libbz2.dylib’
>>> find_library("AGL")
’/System/Library/Frameworks/AGL.framework/AGL’
>>>

On Windows, find_library() searches along the system search path, and returns the full pathname, but since
there is no predefined naming scheme a call like find_library("c") will fail and return None.

If wrapping a shared library with ctypes, it may be better to determine the shared library name at development
type, and hardcode that into the wrapper module instead of using find_library() to locate the library at
runtime.

Loading shared libraries

There are several ways to loaded shared libraries into the Python process. One way is to instantiate one of the
following classes:

514 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

class ctypes.CDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False,
use_last_error=False)

Instances of this class represent loaded shared libraries. Functions in these libraries use the standard C
calling convention, and are assumed to return int.

class ctypes.OleDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False,
use_last_error=False)

Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the
stdcall calling convention, and are assumed to return the windows specific HRESULT code. HRESULT
values contain information specifying whether the function call failed or succeeded, together with additional
error code. If the return value signals a failure, an WindowsError is automatically raised.

class ctypes.WinDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False,
use_last_error=False)

Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the
stdcall calling convention, and are assumed to return int by default.

On Windows CE only the standard calling convention is used, for convenience the WinDLL and OleDLL
use the standard calling convention on this platform.

The Python global interpreter lock is released before calling any function exported by these libraries, and reac-
quired afterwards.

class ctypes.PyDLL(name, mode=DEFAULT_MODE, handle=None)
Instances of this class behave like CDLL instances, except that the Python GIL is not released during the
function call, and after the function execution the Python error flag is checked. If the error flag is set, a
Python exception is raised.

Thus, this is only useful to call Python C api functions directly.

All these classes can be instantiated by calling them with at least one argument, the pathname of the shared
library. If you have an existing handle to an already loaded shared library, it can be passed as the handle named
parameter, otherwise the underlying platforms dlopen or LoadLibrary function is used to load the library
into the process, and to get a handle to it.

The mode parameter can be used to specify how the library is loaded. For details, consult the dlopen(3)
manpage, on Windows, mode is ignored.

The use_errno parameter, when set to True, enables a ctypes mechanism that allows to access the system errno
error number in a safe way. ctypes maintains a thread-local copy of the systems errno variable; if you call
foreign functions created with use_errno=True then the errno value before the function call is swapped
with the ctypes private copy, the same happens immediately after the function call.

The function ctypes.get_errno() returns the value of the ctypes private copy, and the function
ctypes.set_errno() changes the ctypes private copy to a new value and returns the former value.

The use_last_error parameter, when set to True, enables the same mechanism for the Windows error
code which is managed by the GetLastError() and SetLastError() Windows API functions;
ctypes.get_last_error() and ctypes.set_last_error() are used to request and change the
ctypes private copy of the windows error code.

ctypes.RTLD_GLOBAL
Flag to use as mode parameter. On platforms where this flag is not available, it is defined as the integer zero.

ctypes.RTLD_LOCAL
Flag to use as mode parameter. On platforms where this is not available, it is the same as RTLD_GLOBAL.

ctypes.DEFAULT_MODE
The default mode which is used to load shared libraries. On OSX 10.3, this is RTLD_GLOBAL, otherwise
it is the same as RTLD_LOCAL.

Instances of these classes have no public methods, however __getattr__() and __getitem__() have
special behavior: functions exported by the shared library can be accessed as attributes of by index. Please note
that both __getattr__() and __getitem__() cache their result, so calling them repeatedly returns the
same object each time.

15.18. ctypes — A foreign function library for Python 515

The Python Library Reference, Release 3.2

The following public attributes are available, their name starts with an underscore to not clash with exported
function names:

PyDLL._handle
The system handle used to access the library.

PyDLL._name
The name of the library passed in the constructor.

Shared libraries can also be loaded by using one of the prefabricated objects, which are instances of the
LibraryLoader class, either by calling the LoadLibrary() method, or by retrieving the library as attribute
of the loader instance.

class ctypes.LibraryLoader(dlltype)
Class which loads shared libraries. dlltype should be one of the CDLL, PyDLL, WinDLL, or OleDLL types.

__getattr__() has special behavior: It allows to load a shared library by accessing it as attribute of
a library loader instance. The result is cached, so repeated attribute accesses return the same library each
time.

LoadLibrary(name)
Load a shared library into the process and return it. This method always returns a new instance of the
library.

These prefabricated library loaders are available:

ctypes.cdll
Creates CDLL instances.

ctypes.windll
Windows only: Creates WinDLL instances.

ctypes.oledll
Windows only: Creates OleDLL instances.

ctypes.pydll
Creates PyDLL instances.

For accessing the C Python api directly, a ready-to-use Python shared library object is available:

ctypes.pythonapi
An instance of PyDLL that exposes Python C API functions as attributes. Note that all these functions
are assumed to return C int, which is of course not always the truth, so you have to assign the correct
restype attribute to use these functions.

Foreign functions

As explained in the previous section, foreign functions can be accessed as attributes of loaded shared libraries. The
function objects created in this way by default accept any number of arguments, accept any ctypes data instances
as arguments, and return the default result type specified by the library loader. They are instances of a private
class:

class ctypes._FuncPtr
Base class for C callable foreign functions.

Instances of foreign functions are also C compatible data types; they represent C function pointers.

This behavior can be customized by assigning to special attributes of the foreign function object.

restype
Assign a ctypes type to specify the result type of the foreign function. Use None for void, a function
not returning anything.

It is possible to assign a callable Python object that is not a ctypes type, in this case the function is
assumed to return a C int, and the callable will be called with this integer, allowing to do further

516 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

processing or error checking. Using this is deprecated, for more flexible post processing or error
checking use a ctypes data type as restype and assign a callable to the errcheck attribute.

argtypes
Assign a tuple of ctypes types to specify the argument types that the function accepts. Functions using
the stdcall calling convention can only be called with the same number of arguments as the length
of this tuple; functions using the C calling convention accept additional, unspecified arguments as
well.

When a foreign function is called, each actual argument is passed to the from_param() class
method of the items in the argtypes tuple, this method allows to adapt the actual argument to
an object that the foreign function accepts. For example, a c_char_p item in the argtypes tuple
will convert a string passed as argument into a bytes object using ctypes conversion rules.

New: It is now possible to put items in argtypes which are not ctypes types, but each item must have a
from_param() method which returns a value usable as argument (integer, string, ctypes instance).
This allows to define adapters that can adapt custom objects as function parameters.

errcheck
Assign a Python function or another callable to this attribute. The callable will be called with three or
more arguments:

callable(result, func, arguments)
result is what the foreign function returns, as specified by the restype attribute.

func is the foreign function object itself, this allows to reuse the same callable object to check or
post process the results of several functions.

arguments is a tuple containing the parameters originally passed to the function call, this allows
to specialize the behavior on the arguments used.

The object that this function returns will be returned from the foreign function call, but it can also
check the result value and raise an exception if the foreign function call failed.

exception ctypes.ArgumentError
This exception is raised when a foreign function call cannot convert one of the passed arguments.

Function prototypes

Foreign functions can also be created by instantiating function prototypes. Function prototypes are similar to func-
tion prototypes in C; they describe a function (return type, argument types, calling convention) without defining
an implementation. The factory functions must be called with the desired result type and the argument types of
the function.

ctypes.CFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
The returned function prototype creates functions that use the standard C calling convention. The function
will release the GIL during the call. If use_errno is set to True, the ctypes private copy of the system errno
variable is exchanged with the real errno value before and after the call; use_last_error does the same for
the Windows error code.

ctypes.WINFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
Windows only: The returned function prototype creates functions that use the stdcall calling convention,
except on Windows CE where WINFUNCTYPE() is the same as CFUNCTYPE(). The function will release
the GIL during the call. use_errno and use_last_error have the same meaning as above.

ctypes.PYFUNCTYPE(restype, *argtypes)
The returned function prototype creates functions that use the Python calling convention. The function will
not release the GIL during the call.

Function prototypes created by these factory functions can be instantiated in different ways, depending on the type
and number of the parameters in the call:

prototype(address)
Returns a foreign function at the specified address which must be an integer.

15.18. ctypes — A foreign function library for Python 517

The Python Library Reference, Release 3.2

prototype(callable)
Create a C callable function (a callback function) from a Python callable.

prototype(func_spec[, paramflags])
Returns a foreign function exported by a shared library. func_spec must be a 2-tuple
(name_or_ordinal, library). The first item is the name of the exported function as
string, or the ordinal of the exported function as small integer. The second item is the shared
library instance.

prototype(vtbl_index, name[, paramflags[, iid]])
Returns a foreign function that will call a COM method. vtbl_index is the index into the virtual
function table, a small non-negative integer. name is name of the COM method. iid is an
optional pointer to the interface identifier which is used in extended error reporting.

COM methods use a special calling convention: They require a pointer to the COM interface as
first argument, in addition to those parameters that are specified in the argtypes tuple.

The optional paramflags parameter creates foreign function wrappers with much more functionality
than the features described above.

paramflags must be a tuple of the same length as argtypes.

Each item in this tuple contains further information about a parameter, it must be a tuple containing
one, two, or three items.

The first item is an integer containing a combination of direction flags for the parameter:

1 Specifies an input parameter to the function.

2 Output parameter. The foreign function fills in a value.

4 Input parameter which defaults to the integer zero.

The optional second item is the parameter name as string. If this is specified, the foreign function can
be called with named parameters.

The optional third item is the default value for this parameter.

This example demonstrates how to wrap the Windows MessageBoxA function so that it supports default param-
eters and named arguments. The C declaration from the windows header file is this:

WINUSERAPI int WINAPI
MessageBoxA(

HWND hWnd ,
LPCSTR lpText,
LPCSTR lpCaption,
UINT uType);

Here is the wrapping with ctypes:

>>> from ctypes import c_int, WINFUNCTYPE, windll
>>> from ctypes.wintypes import HWND, LPCSTR, UINT
>>> prototype = WINFUNCTYPE(c_int, HWND, LPCSTR, LPCSTR, UINT)
>>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", None), (1, "flags", 0)
>>> MessageBox = prototype(("MessageBoxA", windll.user32), paramflags)
>>>

The MessageBox foreign function can now be called in these ways:

>>> MessageBox()
>>> MessageBox(text="Spam, spam, spam")
>>> MessageBox(flags=2, text="foo bar")
>>>

A second example demonstrates output parameters. The win32 GetWindowRect function retrieves the dimen-
sions of a specified window by copying them into RECT structure that the caller has to supply. Here is the C
declaration:

518 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

WINUSERAPI BOOL WINAPI
GetWindowRect(

HWND hWnd,
LPRECT lpRect);

Here is the wrapping with ctypes:

>>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
>>> from ctypes.wintypes import BOOL, HWND, RECT
>>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
>>> paramflags = (1, "hwnd"), (2, "lprect")
>>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
>>>

Functions with output parameters will automatically return the output parameter value if there is a single one, or a
tuple containing the output parameter values when there are more than one, so the GetWindowRect function now
returns a RECT instance, when called.

Output parameters can be combined with the errcheck protocol to do further output processing and error
checking. The win32 GetWindowRect api function returns a BOOL to signal success or failure, so this function
could do the error checking, and raises an exception when the api call failed:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... return args
...
>>> GetWindowRect.errcheck = errcheck
>>>

If the errcheck function returns the argument tuple it receives unchanged, ctypes continues the normal pro-
cessing it does on the output parameters. If you want to return a tuple of window coordinates instead of a RECT
instance, you can retrieve the fields in the function and return them instead, the normal processing will no longer
take place:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... rc = args[1]
... return rc.left, rc.top, rc.bottom, rc.right
...
>>> GetWindowRect.errcheck = errcheck
>>>

Utility functions

ctypes.addressof(obj)
Returns the address of the memory buffer as integer. obj must be an instance of a ctypes type.

ctypes.alignment(obj_or_type)
Returns the alignment requirements of a ctypes type. obj_or_type must be a ctypes type or instance.

ctypes.byref(obj[, offset])
Returns a light-weight pointer to obj, which must be an instance of a ctypes type. offset defaults to zero,
and must be an integer that will be added to the internal pointer value.

byref(obj, offset) corresponds to this C code:

(((char *)&obj) + offset)

The returned object can only be used as a foreign function call parameter. It behaves similar to
pointer(obj), but the construction is a lot faster.

15.18. ctypes — A foreign function library for Python 519

The Python Library Reference, Release 3.2

ctypes.cast(obj, type)
This function is similar to the cast operator in C. It returns a new instance of type which points to the same
memory block as obj. type must be a pointer type, and obj must be an object that can be interpreted as a
pointer.

ctypes.create_string_buffer(init_or_size, size=None)
This function creates a mutable character buffer. The returned object is a ctypes array of c_char.

init_or_size must be an integer which specifies the size of the array, or a bytes object which will be used to
initialize the array items.

If a bytes object is specified as first argument, the buffer is made one item larger than its length so that
the last element in the array is a NUL termination character. An integer can be passed as second argument
which allows to specify the size of the array if the length of the bytes should not be used.

If the first parameter is a string, it is converted into a bytes object according to ctypes conversion rules.

ctypes.create_unicode_buffer(init_or_size, size=None)
This function creates a mutable unicode character buffer. The returned object is a ctypes array of c_wchar.

init_or_size must be an integer which specifies the size of the array, or a string which will be used to initialize
the array items.

If a string is specified as first argument, the buffer is made one item larger than the length of the string so that
the last element in the array is a NUL termination character. An integer can be passed as second argument
which allows to specify the size of the array if the length of the string should not be used.

If the first parameter is a bytes object, it is converted into an unicode string according to ctypes conversion
rules.

ctypes.DllCanUnloadNow()
Windows only: This function is a hook which allows to implement in-process COM servers with ctypes. It
is called from the DllCanUnloadNow function that the _ctypes extension dll exports.

ctypes.DllGetClassObject()
Windows only: This function is a hook which allows to implement in-process COM servers with ctypes. It
is called from the DllGetClassObject function that the _ctypes extension dll exports.

ctypes.util.find_library(name)
Try to find a library and return a pathname. name is the library name without any prefix like lib, suffix
like .so, .dylib or version number (this is the form used for the posix linker option -l). If no library
can be found, returns None.

The exact functionality is system dependent.

ctypes.util.find_msvcrt()
Windows only: return the filename of the VC runtype library used by Python, and by the extension modules.
If the name of the library cannot be determined, None is returned.

If you need to free memory, for example, allocated by an extension module with a call to the free(void
*), it is important that you use the function in the same library that allocated the memory.

ctypes.FormatError([code])
Windows only: Returns a textual description of the error code code. If no error code is specified, the last
error code is used by calling the Windows api function GetLastError.

ctypes.GetLastError()
Windows only: Returns the last error code set by Windows in the calling thread. This function calls the
Windows GetLastError() function directly, it does not return the ctypes-private copy of the error code.

ctypes.get_errno()
Returns the current value of the ctypes-private copy of the system errno variable in the calling thread.

ctypes.get_last_error()
Windows only: returns the current value of the ctypes-private copy of the system LastError variable in
the calling thread.

520 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

ctypes.memmove(dst, src, count)
Same as the standard C memmove library function: copies count bytes from src to dst. dst and src must be
integers or ctypes instances that can be converted to pointers.

ctypes.memset(dst, c, count)
Same as the standard C memset library function: fills the memory block at address dst with count bytes of
value c. dst must be an integer specifying an address, or a ctypes instance.

ctypes.POINTER(type)
This factory function creates and returns a new ctypes pointer type. Pointer types are cached an reused
internally, so calling this function repeatedly is cheap. type must be a ctypes type.

ctypes.pointer(obj)
This function creates a new pointer instance, pointing to obj. The returned object is of the type
POINTER(type(obj)).

Note: If you just want to pass a pointer to an object to a foreign function call, you should use byref(obj)
which is much faster.

ctypes.resize(obj, size)
This function resizes the internal memory buffer of obj, which must be an instance of a ctypes type.
It is not possible to make the buffer smaller than the native size of the objects type, as given by
sizeof(type(obj)), but it is possible to enlarge the buffer.

ctypes.set_errno(value)
Set the current value of the ctypes-private copy of the system errno variable in the calling thread to value
and return the previous value.

ctypes.set_last_error(value)
Windows only: set the current value of the ctypes-private copy of the system LastError variable in the
calling thread to value and return the previous value.

ctypes.sizeof(obj_or_type)
Returns the size in bytes of a ctypes type or instance memory buffer. Does the same as the C sizeof()
function.

ctypes.string_at(address, size=-1)
This function returns the C string starting at memory address address as a bytes object. If size is specified,
it is used as size, otherwise the string is assumed to be zero-terminated.

ctypes.WinError(code=None, descr=None)
Windows only: this function is probably the worst-named thing in ctypes. It creates an instance of Win-
dowsError. If code is not specified, GetLastError is called to determine the error code. If descr is not
specified, FormatError() is called to get a textual description of the error.

ctypes.wstring_at(address, size=-1)
This function returns the wide character string starting at memory address address as a string. If size is
specified, it is used as the number of characters of the string, otherwise the string is assumed to be zero-
terminated.

Data types

class ctypes._CData
This non-public class is the common base class of all ctypes data types. Among other things, all ctypes type
instances contain a memory block that hold C compatible data; the address of the memory block is returned
by the addressof() helper function. Another instance variable is exposed as _objects; this contains
other Python objects that need to be kept alive in case the memory block contains pointers.

Common methods of ctypes data types, these are all class methods (to be exact, they are methods of the
metaclass):

from_buffer(source[, offset])
This method returns a ctypes instance that shares the buffer of the source object. The source object
must support the writeable buffer interface. The optional offset parameter specifies an offset into the

15.18. ctypes — A foreign function library for Python 521

The Python Library Reference, Release 3.2

source buffer in bytes; the default is zero. If the source buffer is not large enough a ValueError is
raised.

from_buffer_copy(source[, offset])
This method creates a ctypes instance, copying the buffer from the source object buffer which must be
readable. The optional offset parameter specifies an offset into the source buffer in bytes; the default
is zero. If the source buffer is not large enough a ValueError is raised.

from_address(address)
This method returns a ctypes type instance using the memory specified by address which must be an
integer.

from_param(obj)
This method adapts obj to a ctypes type. It is called with the actual object used in a foreign function
call when the type is present in the foreign function’s argtypes tuple; it must return an object that
can be used as a function call parameter.

All ctypes data types have a default implementation of this classmethod that normally returns obj if
that is an instance of the type. Some types accept other objects as well.

in_dll(library, name)
This method returns a ctypes type instance exported by a shared library. name is the name of the
symbol that exports the data, library is the loaded shared library.

Common instance variables of ctypes data types:

_b_base_
Sometimes ctypes data instances do not own the memory block they contain, instead they share part of
the memory block of a base object. The _b_base_ read-only member is the root ctypes object that
owns the memory block.

_b_needsfree_
This read-only variable is true when the ctypes data instance has allocated the memory block itself,
false otherwise.

_objects
This member is either None or a dictionary containing Python objects that need to be kept alive so
that the memory block contents is kept valid. This object is only exposed for debugging; never modify
the contents of this dictionary.

Fundamental data types

class ctypes._SimpleCData
This non-public class is the base class of all fundamental ctypes data types. It is mentioned here because
it contains the common attributes of the fundamental ctypes data types. _SimpleCData is a subclass
of _CData, so it inherits their methods and attributes. ctypes data types that are not and do not contain
pointers can now be pickled.

Instances have a single attribute:

value
This attribute contains the actual value of the instance. For integer and pointer types, it is an integer,
for character types, it is a single character bytes object or string, for character pointer types it is a
Python bytes object or string.

When the value attribute is retrieved from a ctypes instance, usually a new object is returned each
time. ctypes does not implement original object return, always a new object is constructed. The
same is true for all other ctypes object instances.

Fundamental data types, when returned as foreign function call results, or, for example, by retrieving structure field
members or array items, are transparently converted to native Python types. In other words, if a foreign function
has a restype of c_char_p, you will always receive a Python bytes object, not a c_char_p instance.

522 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

Subclasses of fundamental data types do not inherit this behavior. So, if a foreign functions restype is a subclass
of c_void_p, you will receive an instance of this subclass from the function call. Of course, you can get the
value of the pointer by accessing the value attribute.

These are the fundamental ctypes data types:

class ctypes.c_byte
Represents the C signed char datatype, and interprets the value as small integer. The constructor ac-
cepts an optional integer initializer; no overflow checking is done.

class ctypes.c_char
Represents the C char datatype, and interprets the value as a single character. The constructor accepts an
optional string initializer, the length of the string must be exactly one character.

class ctypes.c_char_p
Represents the C char * datatype when it points to a zero-terminated string. For a general character
pointer that may also point to binary data, POINTER(c_char) must be used. The constructor accepts an
integer address, or a bytes object.

class ctypes.c_double
Represents the C double datatype. The constructor accepts an optional float initializer.

class ctypes.c_longdouble
Represents the C long double datatype. The constructor accepts an optional float initializer. On plat-
forms where sizeof(long double) == sizeof(double) it is an alias to c_double.

class ctypes.c_float
Represents the C float datatype. The constructor accepts an optional float initializer.

class ctypes.c_int
Represents the C signed int datatype. The constructor accepts an optional integer initializer; no
overflow checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias to
c_long.

class ctypes.c_int8
Represents the C 8-bit signed int datatype. Usually an alias for c_byte.

class ctypes.c_int16
Represents the C 16-bit signed int datatype. Usually an alias for c_short.

class ctypes.c_int32
Represents the C 32-bit signed int datatype. Usually an alias for c_int.

class ctypes.c_int64
Represents the C 64-bit signed int datatype. Usually an alias for c_longlong.

class ctypes.c_long
Represents the C signed long datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_longlong
Represents the C signed long long datatype. The constructor accepts an optional integer initializer;
no overflow checking is done.

class ctypes.c_short
Represents the C signed short datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_size_t
Represents the C size_t datatype.

class ctypes.c_ssize_t
Represents the C ssize_t datatype. New in version 3.2.

class ctypes.c_ubyte
Represents the C unsigned char datatype, it interprets the value as small integer. The constructor
accepts an optional integer initializer; no overflow checking is done.

15.18. ctypes — A foreign function library for Python 523

The Python Library Reference, Release 3.2

class ctypes.c_uint
Represents the C unsigned int datatype. The constructor accepts an optional integer initializer; no
overflow checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias for
c_ulong.

class ctypes.c_uint8
Represents the C 8-bit unsigned int datatype. Usually an alias for c_ubyte.

class ctypes.c_uint16
Represents the C 16-bit unsigned int datatype. Usually an alias for c_ushort.

class ctypes.c_uint32
Represents the C 32-bit unsigned int datatype. Usually an alias for c_uint.

class ctypes.c_uint64
Represents the C 64-bit unsigned int datatype. Usually an alias for c_ulonglong.

class ctypes.c_ulong
Represents the C unsigned long datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_ulonglong
Represents the C unsigned long long datatype. The constructor accepts an optional integer initial-
izer; no overflow checking is done.

class ctypes.c_ushort
Represents the C unsigned short datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_void_p
Represents the C void * type. The value is represented as integer. The constructor accepts an optional
integer initializer.

class ctypes.c_wchar
Represents the C wchar_t datatype, and interprets the value as a single character unicode string. The
constructor accepts an optional string initializer, the length of the string must be exactly one character.

class ctypes.c_wchar_p
Represents the C wchar_t * datatype, which must be a pointer to a zero-terminated wide character string.
The constructor accepts an integer address, or a string.

class ctypes.c_bool
Represent the C bool datatype (more accurately, _Bool from C99). Its value can be True or False, and
the constructor accepts any object that has a truth value.

class ctypes.HRESULT
Windows only: Represents a HRESULT value, which contains success or error information for a function
or method call.

class ctypes.py_object
Represents the C PyObject * datatype. Calling this without an argument creates a NULL PyObject *
pointer.

The ctypes.wintypes module provides quite some other Windows specific data types, for example HWND,
WPARAM, or DWORD. Some useful structures like MSG or RECT are also defined.

Structured data types

class ctypes.Union(*args, **kw)
Abstract base class for unions in native byte order.

class ctypes.BigEndianStructure(*args, **kw)
Abstract base class for structures in big endian byte order.

524 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 3.2

class ctypes.LittleEndianStructure(*args, **kw)
Abstract base class for structures in little endian byte order.

Structures with non-native byte order cannot contain pointer type fields, or any other data types containing pointer
type fields.

class ctypes.Structure(*args, **kw)
Abstract base class for structures in native byte order.

Concrete structure and union types must be created by subclassing one of these types, and at least define a
fields class variable. ctypes will create descriptors which allow reading and writing the fields by
direct attribute accesses. These are the

fields
A sequence defining the structure fields. The items must be 2-tuples or 3-tuples. The first item is the
name of the field, the second item specifies the type of the field; it can be any ctypes data type.

For integer type fields like c_int, a third optional item can be given. It must be a small positive
integer defining the bit width of the field.

Field names must be unique within one structure or union. This is not checked, only one field can be
accessed when names are repeated.

It is possible to define the _fields_ class variable after the class statement that defines the Structure
subclass, this allows to create data types that directly or indirectly reference themselves:

class List(Structure):
pass

List._fields_ = [("pnext", POINTER(List)),
...

]

The _fields_ class variable must, however, be defined before the type is first used (an instance is
created, sizeof() is called on it, and so on). Later assignments to the _fields_ class variable
will raise an AttributeError.

Structure and union subclass constructors accept both positional and named arguments. Positional
arguments are used to initialize the fields in the same order as they appear in the _fields_ definition,
named arguments are used to initialize the fields with the corresponding name.

It is possible to defined sub-subclasses of structure types, they inherit the fields of the base class plus
the _fields_ defined in the sub-subclass, if any.

pack
An optional small integer that allows to override the alignment of structure fields in the instance.
pack must already be defined when _fields_ is assigned, otherwise it will have no effect.

anonymous
An optional sequence that lists the names of unnamed (anonymous) fields. _anonymous_ must be
already defined when _fields_ is assigned, otherwise it will have no effect.

The fields listed in this variable must be structure or union type fields. ctypes will create descriptors
in the structure type that allows to access the nested fields directly, without the need to create the
structure or union field.

Here is an example type (Windows):

class _U(Union):
fields = [("lptdesc", POINTER(TYPEDESC)),

("lpadesc", POINTER(ARRAYDESC)),
("hreftype", HREFTYPE)]

class TYPEDESC(Structure):
anonymous = ("u",)

15.18. ctypes — A foreign function library for Python 525

The Python Library Reference, Release 3.2

fields = [("u", _U),
("vt", VARTYPE)]

The TYPEDESC structure describes a COM data type, the vt field specifies which one of the union
fields is valid. Since the u field is defined as anonymous field, it is now possible to access the members
directly off the TYPEDESC instance. td.lptdesc and td.u.lptdesc are equivalent, but the
former is faster since it does not need to create a temporary union instance:

td = TYPEDESC()
td.vt = VT_PTR
td.lptdesc = POINTER(some_type)
td.u.lptdesc = POINTER(some_type)

It is possible to defined sub-subclasses of structures, they inherit the fields of the base class. If the subclass
definition has a separate _fields_ variable, the fields specified in this are appended to the fields of the
base class.

Structure and union constructors accept both positional and keyword arguments. Positional arguments are
used to initialize member fields in the same order as they are appear in _fields_. Keyword arguments
in the constructor are interpreted as attribute assignments, so they will initialize _fields_ with the same
name, or create new attributes for names not present in _fields_.

Arrays and pointers

Not yet written - please see the sections Pointers and section Arrays in the tutorial.

526 Chapter 15. Generic Operating System Services

CHAPTER

SIXTEEN

OPTIONAL OPERATING SYSTEM
SERVICES

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modeled after the Unix or C interfaces but they are available
on some other systems as well (e.g. Windows). Here’s an overview:

16.1 select — Waiting for I/O completion

This module provides access to the select() and poll() functions available in most operating systems,
epoll() available on Linux 2.5+ and kqueue() available on most BSD. Note that on Windows, it only works
for sockets; on other operating systems, it also works for other file types (in particular, on Unix, it works on pipes).
It cannot be used on regular files to determine whether a file has grown since it was last read.

The module defines the following:

exception select.error
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error
code from errno and the corresponding string, as would be printed by the C function perror().

select.epoll(sizehint=-1)
(Only supported on Linux 2.5.44 and newer.) Returns an edge polling object, which can be used as Edge or
Level Triggered interface for I/O events; see section Edge and Level Trigger Polling (epoll) Objects below
for the methods supported by epolling objects.

select.poll()
(Not supported by all operating systems.) Returns a polling object, which supports registering and unreg-
istering file descriptors, and then polling them for I/O events; see section Polling Objects below for the
methods supported by polling objects.

select.kqueue()
(Only supported on BSD.) Returns a kernel queue object; see section Kqueue Objects below for the methods
supported by kqueue objects.

select.kevent(ident, filter=KQ_FILTER_READ, flags=KQ_EV_ADD, fflags=0, data=0, udata=0)
(Only supported on BSD.) Returns a kernel event object; see section Kevent Objects below for the methods
supported by kevent objects.

select.select(rlist, wlist, xlist[, timeout])
This is a straightforward interface to the Unix select() system call. The first three arguments are se-
quences of ‘waitable objects’: either integers representing file descriptors or objects with a parameterless
method named fileno() returning such an integer:

•rlist: wait until ready for reading

•wlist: wait until ready for writing

527

The Python Library Reference, Release 3.2

•xlist: wait for an “exceptional condition” (see the manual page for what your system considers such a
condition)

Empty sequences are allowed, but acceptance of three empty sequences is platform-dependent. (It is known
to work on Unix but not on Windows.) The optional timeout argument specifies a time-out as a floating
point number in seconds. When the timeout argument is omitted the function blocks until at least one file
descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Among the acceptable object types in the sequences are Python file objects (e.g. sys.stdin, or objects
returned by open() or os.popen()), socket objects returned by socket.socket(). You may also
define a wrapper class yourself, as long as it has an appropriate fileno() method (that really returns a
file descriptor, not just a random integer).

Note: File objects on Windows are not acceptable, but sockets are. On Windows, the underlying
select() function is provided by the WinSock library, and does not handle file descriptors that don’t
originate from WinSock.

select.PIPE_BUF
The minimum number of bytes which can be written without blocking to a pipe when the pipe has been
reported as ready for writing by select(), poll() or another interface in this module. This doesn’t
apply to other kind of file-like objects such as sockets.

This value is guaranteed by POSIX to be at least 512. Availability: Unix. New in version 3.2.

16.1.1 Edge and Level Trigger Polling (epoll) Objects

http://linux.die.net/man/4/epoll

eventmask

Constant Meaning
EPOLLIN Available for read
EPOLLOUT Available for write
EPOLLPRI Urgent data for read
EPOLLERR Error condition happened on the assoc. fd
EPOLLHUP Hang up happened on the assoc. fd
EPOLLET Set Edge Trigger behavior, the default is Level Trigger behavior
EPOLLONESHOT Set one-shot behavior. After one event is pulled out, the fd is internally disabled
EPOLLRDNORM Equivalent to EPOLLIN
EPOLLRDBAND Priority data band can be read.
EPOLLWRNORM Equivalent to EPOLLOUT
EPOLLWRBAND Priority data may be written.
EPOLLMSG Ignored.

epoll.close()
Close the control file descriptor of the epoll object.

epoll.fileno()
Return the file descriptor number of the control fd.

epoll.fromfd(fd)
Create an epoll object from a given file descriptor.

epoll.register(fd[, eventmask])
Register a fd descriptor with the epoll object.

Note: Registering a file descriptor that’s already registered raises an IOError – contrary to Polling Objects‘s
register.

528 Chapter 16. Optional Operating System Services

http://linux.die.net/man/4/epoll

The Python Library Reference, Release 3.2

epoll.modify(fd, eventmask)
Modify a register file descriptor.

epoll.unregister(fd)
Remove a registered file descriptor from the epoll object.

epoll.poll([timeout=-1[, maxevents=-1]])
Wait for events. timeout in seconds (float)

16.1.2 Polling Objects

The poll() system call, supported on most Unix systems, provides better scalability for network servers that
service many, many clients at the same time. poll() scales better because the system call only requires listing
the file descriptors of interest, while select() builds a bitmap, turns on bits for the fds of interest, and then
afterward the whole bitmap has to be linearly scanned again. select() is O(highest file descriptor), while
poll() is O(number of file descriptors).

poll.register(fd[, eventmask])
Register a file descriptor with the polling object. Future calls to the poll() method will then check
whether the file descriptor has any pending I/O events. fd can be either an integer, or an object with a
fileno() method that returns an integer. File objects implement fileno(), so they can also be used as
the argument.

eventmask is an optional bitmask describing the type of events you want to check for, and can be a combi-
nation of the constants POLLIN, POLLPRI, and POLLOUT, described in the table below. If not specified,
the default value used will check for all 3 types of events.

Constant Meaning
POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as registering
the descriptor exactly once.

poll.modify(fd, eventmask)
Modifies an already registered fd. This has the same effect as register(fd, eventmask). Attempt-
ing to modify a file descriptor that was never registered causes an IOError exception with errno ENOENT
to be raised.

poll.unregister(fd)
Remove a file descriptor being tracked by a polling object. Just like the register() method, fd can be
an integer or an object with a fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes a KeyError exception to be raised.

poll.poll([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list containing (fd, event) 2-
tuples for the descriptors that have events or errors to report. fd is the file descriptor, and event is a bitmask
with bits set for the reported events for that descriptor — POLLIN for waiting input, POLLOUT to indicate
that the descriptor can be written to, and so forth. An empty list indicates that the call timed out and no file
descriptors had any events to report. If timeout is given, it specifies the length of time in milliseconds which
the system will wait for events before returning. If timeout is omitted, negative, or None, the call will block
until there is an event for this poll object.

16.1. select — Waiting for I/O completion 529

The Python Library Reference, Release 3.2

16.1.3 Kqueue Objects

kqueue.close()
Close the control file descriptor of the kqueue object.

kqueue.fileno()
Return the file descriptor number of the control fd.

kqueue.fromfd(fd)
Create a kqueue object from a given file descriptor.

kqueue.control(changelist, max_events[, timeout=None])→ eventlist
Low level interface to kevent

•changelist must be an iterable of kevent object or None

•max_events must be 0 or a positive integer

•timeout in seconds (floats possible)

16.1.4 Kevent Objects

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

kevent.ident
Value used to identify the event. The interpretation depends on the filter but it’s usually the file descriptor.
In the constructor ident can either be an int or an object with a fileno() function. kevent stores the integer
internally.

kevent.filter
Name of the kernel filter.

Constant Meaning
KQ_FILTER_READ Takes a descriptor and returns whenever there is data available to read
KQ_FILTER_WRITE Takes a descriptor and returns whenever there is data available to write
KQ_FILTER_AIO AIO requests
KQ_FILTER_VNODE Returns when one or more of the requested events watched in fflag occurs
KQ_FILTER_PROC Watch for events on a process id
KQ_FILTER_NETDEV Watch for events on a network device [not available on Mac OS X]
KQ_FILTER_SIGNAL Returns whenever the watched signal is delivered to the process
KQ_FILTER_TIMER Establishes an arbitrary timer

kevent.flags
Filter action.

Constant Meaning
KQ_EV_ADD Adds or modifies an event
KQ_EV_DELETE Removes an event from the queue
KQ_EV_ENABLE Permitscontrol() to returns the event
KQ_EV_DISABLE Disablesevent
KQ_EV_ONESHOT Removes event after first occurrence
KQ_EV_CLEAR Reset the state after an event is retrieved
KQ_EV_SYSFLAGS internal event
KQ_EV_FLAG1 internal event
KQ_EV_EOF Filter specific EOF condition
KQ_EV_ERROR See return values

kevent.fflags
Filter specific flags.

KQ_FILTER_READ and KQ_FILTER_WRITE filter flags:

Constant Meaning
KQ_NOTE_LOWAT low water mark of a socket buffer

530 Chapter 16. Optional Operating System Services

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

The Python Library Reference, Release 3.2

KQ_FILTER_VNODE filter flags:

Constant Meaning
KQ_NOTE_DELETE unlink() was called
KQ_NOTE_WRITE a write occurred
KQ_NOTE_EXTEND the file was extended
KQ_NOTE_ATTRIB an attribute was changed
KQ_NOTE_LINK the link count has changed
KQ_NOTE_RENAME the file was renamed
KQ_NOTE_REVOKE access to the file was revoked

KQ_FILTER_PROC filter flags:

Constant Meaning
KQ_NOTE_EXIT the process has exited
KQ_NOTE_FORK the process has called fork()
KQ_NOTE_EXEC the process has executed a new process
KQ_NOTE_PCTRLMASK internal filter flag
KQ_NOTE_PDATAMASK internal filter flag
KQ_NOTE_TRACK follow a process across fork()
KQ_NOTE_CHILD returned on the child process for NOTE_TRACK
KQ_NOTE_TRACKERR unable to attach to a child

KQ_FILTER_NETDEV filter flags (not available on Mac OS X):

Constant Meaning
KQ_NOTE_LINKUP link is up
KQ_NOTE_LINKDOWN link is down
KQ_NOTE_LINKINV link state is invalid

kevent.data
Filter specific data.

kevent.udata
User defined value.

16.2 threading — Thread-based parallelism

Source code: Lib/threading.py

This module constructs higher-level threading interfaces on top of the lower level _thread module. See also the
queue module.

The dummy_threading module is provided for situations where threading cannot be used because
_thread is missing.

Note: While they are not listed below, the camelCase names used for some methods and functions in this
module in the Python 2.x series are still supported by this module.

CPython implementation detail: Due to the Global Interpreter Lock, in CPython only one thread can execute
Python code at once (even though certain performance-oriented libraries might overcome this limitation). If you
want your application to make better of use of the computational resources of multi-core machines, you are advised
to use multiprocessing or concurrent.futures.ProcessPoolExecutor. However, threading is
still an appropriate model if you want to run multiple I/O-bound tasks simultaneously.

This module defines the following functions and objects:

threading.active_count()
Return the number of Thread objects currently alive. The returned count is equal to the length of the list
returned by enumerate().

16.2. threading — Thread-based parallelism 531

http://svn.python.org/view/python/branches/py3k/Lib/threading.py?view=markup

The Python Library Reference, Release 3.2

threading.Condition()
A factory function that returns a new condition variable object. A condition variable allows one or more
threads to wait until they are notified by another thread.

See Condition Objects.

threading.current_thread()
Return the current Thread object, corresponding to the caller’s thread of control. If the caller’s thread of
control was not created through the threading module, a dummy thread object with limited functionality
is returned.

threading.enumerate()
Return a list of all Thread objects currently alive. The list includes daemonic threads, dummy thread
objects created by current_thread(), and the main thread. It excludes terminated threads and threads
that have not yet been started.

threading.Event()
A factory function that returns a new event object. An event manages a flag that can be set to true with the
set() method and reset to false with the clear() method. The wait() method blocks until the flag is
true.

See Event Objects.

class threading.local
A class that represents thread-local data. Thread-local data are data whose values are thread specific. To
manage thread-local data, just create an instance of local (or a subclass) and store attributes on it:

mydata = threading.local()
mydata.x = 1

The instance’s values will be different for separate threads.

For more details and extensive examples, see the documentation string of the _threading_local mod-
ule.

threading.Lock()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent
attempts to acquire it block, until it is released; any thread may release it.

See Lock Objects.

threading.RLock()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread
that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without
blocking; the thread must release it once for each time it has acquired it.

See RLock Objects.

threading.Semaphore(value=1)
A factory function that returns a new semaphore object. A semaphore manages a counter representing
the number of release() calls minus the number of acquire() calls, plus an initial value. The
acquire() method blocks if necessary until it can return without making the counter negative. If not
given, value defaults to 1.

See Semaphore Objects.

threading.BoundedSemaphore(value=1)
A factory function that returns a new bounded semaphore object. A bounded semaphore checks to make
sure its current value doesn’t exceed its initial value. If it does, ValueError is raised. In most situations
semaphores are used to guard resources with limited capacity. If the semaphore is released too many times
it’s a sign of a bug. If not given, value defaults to 1.

class threading.Thread
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

See Thread Objects.

532 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

class threading.Timer
A thread that executes a function after a specified interval has passed.

See Timer Objects.

threading.settrace(func)
Set a trace function for all threads started from the threading module. The func will be passed to
sys.settrace() for each thread, before its run() method is called.

threading.setprofile(func)
Set a profile function for all threads started from the threading module. The func will be passed to
sys.setprofile() for each thread, before its run() method is called.

threading.stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies the
stack size to be used for subsequently created threads, and must be 0 (use platform or configured default)
or a positive integer value of at least 32,768 (32kB). If changing the thread stack size is unsupported, a
ThreadError is raised. If the specified stack size is invalid, a ValueError is raised and the stack
size is unmodified. 32kB is currently the minimum supported stack size value to guarantee sufficient stack
space for the interpreter itself. Note that some platforms may have particular restrictions on values for
the stack size, such as requiring a minimum stack size > 32kB or requiring allocation in multiples of the
system memory page size - platform documentation should be referred to for more information (4kB pages
are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more
specific information). Availability: Windows, systems with POSIX threads.

This module also defines the following constant:

threading.TIMEOUT_MAX
The maximum value allowed for the timeout parameter of blocking functions (Lock.acquire(),
RLock.acquire(), Condition.wait(), etc.). Specifying a timeout greater than this value will
raise an OverflowError. New in version 3.2.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and
condition variables basic behavior of every object, they are separate objects in Python. Python’s Thread class
supports a subset of the behavior of Java’s Thread class; currently, there are no priorities, no thread groups, and
threads cannot be destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread
class, when implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.

16.2.1 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify the
activity: by passing a callable object to the constructor, or by overriding the run() method in a subclass. No
other methods (except for the constructor) should be overridden in a subclass. In other words, only override the
__init__() and run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’s start() method. This invokes
the run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ‘alive’. It stops being alive when its run() method
terminates – either normally, or by raising an unhandled exception. The is_alive() method tests whether the
thread is alive.

Other threads can call a thread’s join() method. This blocks the calling thread until the thread whose join()
method is called is terminated.

A thread has a name. The name can be passed to the constructor, and read or changed through the name attribute.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set
through the daemon property.

16.2. threading — Thread-based parallelism 533

The Python Library Reference, Release 3.2

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to
“alien threads”, which are threads of control started outside the threading module, such as directly from C code.
Dummy thread objects have limited functionality; they are always considered alive and daemonic, and cannot be
join()ed. They are never deleted, since it is impossible to detect the termination of alien threads.

class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})
This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is
called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a
small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread.__init__()) before doing anything else to the thread.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be
invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable ob-
ject passed to the object’s constructor as the target argument, if any, with sequential and keyword
arguments taken from the args and kwargs arguments, respectively.

join(timeout=None)
Wait until the thread terminates. This blocks the calling thread until the thread whose join()method
is called terminates – either normally or through an unhandled exception – or until the optional timeout
occurs.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof). As join() always returns None, you
must call is_alive() after join() to decide whether a timeout happened – if the thread is still
alive, the join() call timed out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause
a deadlock. It is also an error to join() a thread before it has been started and attempts to do so
raises the same exception.

name
A string used for identification purposes only. It has no semantics. Multiple threads may be given the
same name. The initial name is set by the constructor.

getName()
setName()

Old getter/setter API for name; use it directly as a property instead.

534 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

ident
The ‘thread identifier’ of this thread or None if the thread has not been started. This is a nonzero
integer. See the thread.get_ident() function. Thread identifiers may be recycled when a
thread exits and another thread is created. The identifier is available even after the thread has exited.

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method
terminates. The module function enumerate() returns a list of all alive threads.

daemon
A boolean value indicating whether this thread is a daemon thread (True) or not (False). This must
be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited
from the creating thread; the main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are left.

isDaemon()
setDaemon()

Old getter/setter API for daemon; use it directly as a property instead.

16.2.2 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python, it
is currently the lowest level synchronization primitive available, implemented directly by the _thread extension
module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methods, acquire() and release(). When the state is unlocked, acquire() changes the state to locked
and returns immediately. When the state is locked, acquire() blocks until a call to release() in another
thread changes it to unlocked, then the acquire() call resets it to locked and returns. The release() method
should only be called in the locked state; it changes the state to unlocked and returns immediately. If an attempt is
made to release an unlocked lock, a RuntimeError will be raised.

When more than one thread is blocked in acquire() waiting for the state to turn to unlocked, only one thread
proceeds when a release() call resets the state to unlocked; which one of the waiting threads proceeds is not
defined, and may vary across implementations.

All methods are executed atomically.

Lock.acquire(blocking=True, timeout=-1)
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return true.

When invoked with the blocking argument set to true, do the same thing as when called without arguments,
and return true.

When invoked with the blocking argument set to false, do not block. If a call without an argument would
block, return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

When invoked with the floating-point timeout argument set to a positive value, block for at most the number
of seconds specified by timeout and as long as the lock cannot be acquired. A negative timeout argument
specifies an unbounded wait. It is forbidden to specify a timeout when blocking is false.

The return value is True if the lock is acquired successfully, False if not (for example if the timeout
expired). Changed in version 3.2: The timeout parameter is new.Changed in version 3.2: Lock acquires can
now be interrupted by signals on POSIX.

Lock.release()
Release a lock.

16.2. threading — Thread-based parallelism 535

The Python Library Reference, Release 3.2

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the
lock to become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.

There is no return value.

16.2.3 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally,
it uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by
primitive locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

To lock the lock, a thread calls its acquire() method; this returns once the thread owns the lock. To unlock
the lock, a thread calls its release() method. acquire()/release() call pairs may be nested; only the
final release() (the release() of the outermost pair) resets the lock to unlocked and allows another thread
blocked in acquire() to proceed.

RLock.acquire(blocking=True, timeout=-1)
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion level by
one, and return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked.
Once the lock is unlocked (not owned by any thread), then grab ownership, set the recursion level to one,
and return. If more than one thread is blocked waiting until the lock is unlocked, only one at a time will be
able to grab ownership of the lock. There is no return value in this case.

When invoked with the blocking argument set to true, do the same thing as when called without arguments,
and return true.

When invoked with the blocking argument set to false, do not block. If a call without an argument would
block, return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

When invoked with the floating-point timeout argument set to a positive value, block for at most the number
of seconds specified by timeout and as long as the lock cannot be acquired. Return true if the lock has been
acquired, false if the timeout has elapsed. Changed in version 3.2: The timeout parameter is new.

RLock.release()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked,
allow exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock
remains locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. A RuntimeError is raised if this method is
called when the lock is unlocked.

There is no return value.

16.2.4 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. (Passing one in is useful when several condition variables must share the same lock.)

A condition variable has acquire() and release() methods that call the corresponding methods of the
associated lock. It also has a wait() method, and notify() and notify_all() methods. These three must
only be called when the calling thread has acquired the lock, otherwise a RuntimeError is raised.

The wait() method releases the lock, and then blocks until it is awakened by a notify() or notify_all()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is
also possible to specify a timeout.

536 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The
notify_all() method wakes up all threads waiting for the condition variable.

Note: the notify() and notify_all() methods don’t release the lock; this means that the thread or threads
awakened will not return from their wait() call immediately, but only when the thread that called notify()
or notify_all() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some shared
state; threads that are interested in a particular change of state call wait() repeatedly until they see the desired
state, while threads that modify the state call notify() or notify_all() when they change the state in such
a way that it could possibly be a desired state for one of the waiters. For example, the following code is a generic
producer-consumer situation with unlimited buffer capacity:

Consume one item
cv.acquire()
while not an_item_is_available():

cv.wait()
get_an_available_item()
cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()

To choose between notify() and notify_all(), consider whether one state change can be interesting for
only one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer
only needs to wake up one consumer thread.

Note: Condition variables can be, depending on the implementation, subject to both spurious wakeups (when
wait() returns without a notify() call) and stolen wakeups (when another thread acquires the lock before
the awoken thread.) For this reason, it is always necessary to verify the state the thread is waiting for when
wait() returns and optionally repeat the call as often as necessary.

class threading.Condition(lock=None)
If the lock argument is given and not None, it must be a Lock or RLock object, and it is used as the
underlying lock. Otherwise, a new RLock object is created and used as the underlying lock.

acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the
return value is whatever that method returns.

release()
Release the underlying lock. This method calls the corresponding method on the underlying lock;
there is no return value.

wait(timeout=None)
Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this
method is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notify_all() call for the same condition variable in another thread, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

When the underlying lock is an RLock, it is not released using its release() method, since this
may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal
interface of the RLock class is used, which really unlocks it even when it has been recursively acquired
several times. Another internal interface is then used to restore the recursion level when the lock is
reacquired.

16.2. threading — Thread-based parallelism 537

The Python Library Reference, Release 3.2

The return value is True unless a given timeout expired, in which case it is False. Changed in
version 3.2: Previously, the method always returned None.

wait_for(predicate, timeout=None)
Wait until a condition evaluates to True. predicate should be a callable which result will be interpreted
as a boolean value. A timeout may be provided giving the maximum time to wait.

This utility method may call wait() repeatedly until the predicate is satisfied, or until a timeout
occurs. The return value is the last return value of the predicate and will evaluate to False if the
method timed out.

Ignoring the timeout feature, calling this method is roughly equivalent to writing:

while not predicate():
cv.wait()

Therefore, the same rules apply as with wait(): The lock must be held when called and is re-aquired
on return. The predicate is evaluated with the lock held.

Using this method, the consumer example above can be written thus:

with cv:
cv.wait_for(an_item_is_available)
get_an_available_item()

New in version 3.2.

notify()
Wake up a thread waiting on this condition, if any. If the calling thread has not acquired the lock when
this method is called, a RuntimeError is raised.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it is a
no-op if no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it’s not safe to
rely on this behavior. A future, optimized implementation may occasionally wake up more than one
thread.

Note: the awakened thread does not actually return from its wait() call until it can reacquire the
lock. Since notify() does not release the lock, its caller should.

notify_all()
Wake up all threads waiting on this condition. This method acts like notify(), but wakes up all
waiting threads instead of one. If the calling thread has not acquired the lock when this method is
called, a RuntimeError is raised.

16.2.5 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he used P() and V() instead of acquire() and release()).

A semaphore manages an internal counter which is decremented by each acquire() call and incremented by
each release() call. The counter can never go below zero; when acquire() finds that it is zero, it blocks,
waiting until some other thread calls release().

class threading.Semaphore(value=1)
The optional argument gives the initial value for the internal counter; it defaults to 1. If the value given is
less than 0, ValueError is raised.

acquire(blocking=True, timeout=None)
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by
one and return immediately. If it is zero on entry, block, waiting until some other thread has called

538 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

release() to make it larger than zero. This is done with proper interlocking so that if multiple
acquire() calls are blocked, release() will wake exactly one of them up. The implementation
may pick one at random, so the order in which blocked threads are awakened should not be relied on.
Returns true (or blocks indefinitely).

When invoked with blocking set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

When invoked with a timeout other than None, it will block for at most timeout seconds. If acquire
does not complete successfully in that interval, return false. Return true otherwise. Changed in version
3.2: The timeout parameter is new.

release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another
thread is waiting for it to become larger than zero again, wake up that thread.

Semaphore Example

Semaphores are often used to guard resources with limited capacity, for example, a database server. In any
situation where the size of the resource is fixed, you should use a bounded semaphore. Before spawning any
worker threads, your main thread would initialize the semaphore:

maxconnections = 5
...
pool_sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore’s acquire and release methods when they need to connect to the
server:

pool_sema.acquire()
conn = connectdb()
... use connection ...
conn.close()
pool_sema.release()

The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to be
released more than it’s acquired will go undetected.

16.2.6 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and other
threads wait for it.

An event object manages an internal flag that can be set to true with the set() method and reset to false with the
clear() method. The wait() method blocks until the flag is true.

class threading.Event
The internal flag is initially false.

is_set()
Return true if and only if the internal flag is true.

set()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that call
wait() once the flag is true will not block at all.

clear()
Reset the internal flag to false. Subsequently, threads calling wait()will block until set() is called
to set the internal flag to true again.

16.2. threading — Thread-based parallelism 539

The Python Library Reference, Release 3.2

wait(timeout=None)
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise,
block until another thread calls set() to set the flag to true, or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

This method returns the internal flag on exit, so it will always return True except if a timeout is given
and the operation times out. Changed in version 3.1: Previously, the method always returned None.

16.2.7 Timer Objects

This class represents an action that should be run only after a certain amount of time has passed — a timer. Timer
is a subclass of Thread and as such also functions as an example of creating custom threads.

Timers are started, as with threads, by calling their start() method. The timer can be stopped (before its action
has begun) by calling the cancel() method. The interval the timer will wait before executing its action may not
be exactly the same as the interval specified by the user.

For example:

def hello():
print("hello, world")

t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed

class threading.Timer(interval, function, args=[], kwargs={})
Create a timer that will run function with arguments args and keyword arguments kwargs, after interval
seconds have passed.

cancel()
Stop the timer, and cancel the execution of the timer’s action. This will only work if the timer is still
in its waiting stage.

16.2.8 Barrier Objects

New in version 3.2. This class provides a simple synchronization primitive for use by a fixed number of threads
that need to wait for each other. Each of the threads tries to pass the barrier by calling the wait() method and
will block until all of the threads have made the call. At this points, the threads are released simultanously.

The barrier can be reused any number of times for the same number of threads.

As an example, here is a simple way to synchronize a client and server thread:

b = Barrier(2, timeout=5)

def server():
start_server()
b.wait()
while True:

connection = accept_connection()
process_server_connection(connection)

def client():
b.wait()
while True:

connection = make_connection()
process_client_connection(connection)

class threading.Barrier(parties, action=None, timeout=None)
Create a barrier object for parties number of threads. An action, when provided, is a callable to be called

540 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

by one of the threads when they are released. timeout is the default timeout value if none is specified for the
wait() method.

wait(timeout=None)
Pass the barrier. When all the threads party to the barrier have called this function, they are all released
simultaneously. If a timeout is provided, is is used in preference to any that was supplied to the class
constructor.

The return value is an integer in the range 0 to parties – 1, different for each thread. This can be used
to select a thread to do some special housekeeping, e.g.:

i = barrier.wait()
if i == 0:

Only one thread needs to print this
print("passed the barrier")

If an action was provided to the constructor, one of the threads will have called it prior to being
released. Should this call raise an error, the barrier is put into the broken state.

If the call times out, the barrier is put into the broken state.

This method may raise a BrokenBarrierError exception if the barrier is broken or reset while a
thread is waiting.

reset()
Return the barrier to the default, empty state. Any threads waiting on it will receive the
BrokenBarrierError exception.

Note that using this function may can require some external synchronization if there are other threads
whose state is unknown. If a barrier is broken it may be better to just leave it and create a new one.

abort()
Put the barrier into a broken state. This causes any active or future calls to wait() to fail with the
BrokenBarrierError. Use this for example if one of the needs to abort, to avoid deadlocking the
application.

It may be preferable to simply create the barrier with a sensible timeout value to automatically guard
against one of the threads going awry.

parties
The number of threads required to pass the barrier.

n_waiting
The number of threads currently waiting in the barrier.

broken
A boolean that is True if the barrier is in the broken state.

exception threading.BrokenBarrierError
This exception, a subclass of RuntimeError, is raised when the Barrier object is reset or broken.

16.2.9 Using locks, conditions, and semaphores in the with statement

All of the objects provided by this module that have acquire() and release() methods can be used as
context managers for a with statement. The acquire() method will be called when the block is entered, and
release() will be called when the block is exited.

Currently, Lock, RLock, Condition, Semaphore, and BoundedSemaphore objects may be used as with
statement context managers. For example:

import threading

some_rlock = threading.RLock()

16.2. threading — Thread-based parallelism 541

The Python Library Reference, Release 3.2

with some_rlock:
print("some_rlock is locked while this executes")

16.2.10 Importing in threaded code

While the import machinery is thread-safe, there are two key restrictions on threaded imports due to inherent
limitations in the way that thread-safety is provided:

• Firstly, other than in the main module, an import should not have the side effect of spawning a new thread
and then waiting for that thread in any way. Failing to abide by this restriction can lead to a deadlock if the
spawned thread directly or indirectly attempts to import a module.

• Secondly, all import attempts must be completed before the interpreter starts shutting itself down. This can
be most easily achieved by only performing imports from non-daemon threads created through the threading
module. Daemon threads and threads created directly with the thread module will require some other form
of synchronization to ensure they do not attempt imports after system shutdown has commenced. Failure to
abide by this restriction will lead to intermittent exceptions and crashes during interpreter shutdown (as the
late imports attempt to access machinery which is no longer in a valid state).

16.3 multiprocessing — Process-based parallelism

16.3.1 Introduction

multiprocessing is a package that supports spawning processes using an API similar to the threading
module. The multiprocessing package offers both local and remote concurrency, effectively side-stepping
the Global Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing
module allows the programmer to fully leverage multiple processors on a given machine. It runs on both Unix and
Windows.

Note: Some of this package’s functionality requires a functioning shared semaphore implementation on the
host operating system. Without one, the multiprocessing.synchronize module will be disabled, and
attempts to import it will result in an ImportError. See issue 3770 for additional information.

Note: Functionality within this package requires that the __main__ method be importable by the children. This
is covered in Programming guidelines however it is worth pointing out here. This means that some examples, such
as the multiprocessing.Pool examples will not work in the interactive interpreter. For example:

>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
... return x*x
...
>>> p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
AttributeError: ’module’ object has no attribute ’f’
AttributeError: ’module’ object has no attribute ’f’
AttributeError: ’module’ object has no attribute ’f’

(If you try this it will actually output three full tracebacks interleaved in a semi-random fashion, and then you may
have to stop the master process somehow.)

542 Chapter 16. Optional Operating System Services

http://bugs.python.org/issue3770

The Python Library Reference, Release 3.2

The Process class

In multiprocessing, processes are spawned by creating a Process object and then calling its start()
method. Process follows the API of threading.Thread. A trivial example of a multiprocess program is

from multiprocessing import Process

def f(name):
print(’hello’, name)

if __name__ == ’__main__’:
p = Process(target=f, args=(’bob’,))
p.start()
p.join()

To show the individual process IDs involved, here is an expanded example:

from multiprocessing import Process
import os

def info(title):
print(title)
print(’module name:’, __name__)
print(’parent process:’, os.getppid())
print(’process id:’, os.getpid())

def f(name):
info(’function f’)
print(’hello’, name)

if __name__ == ’__main__’:
info(’main line’)
p = Process(target=f, args=(’bob’,))
p.start()
p.join()

For an explanation of why (on Windows) the if __name__ == ’__main__’ part is necessary, see Program-
ming guidelines.

Exchanging objects between processes

multiprocessing supports two types of communication channel between processes:

Queues

The Queue class is a near clone of queue.Queue. For example:

from multiprocessing import Process, Queue

def f(q):
q.put([42, None, ’hello’])

if __name__ == ’__main__’:
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print(q.get()) # prints "[42, None, ’hello’]"
p.join()

Queues are thread and process safe, but note that they must never be instantiated as a side effect of
importing a module: this can lead to a deadlock! (see Importing in threaded code)

16.3. multiprocessing — Process-based parallelism 543

The Python Library Reference, Release 3.2

Pipes

The Pipe() function returns a pair of connection objects connected by a pipe which by default is
duplex (two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, ’hello’])
conn.close()

if __name__ == ’__main__’:
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv()) # prints "[42, None, ’hello’]"
p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection
object has send() and recv() methods (among others). Note that data in a pipe may become
corrupted if two processes (or threads) try to read from or write to the same end of the pipe at the
same time. Of course there is no risk of corruption from processes using different ends of the pipe at
the same time.

Synchronization between processes

multiprocessing contains equivalents of all the synchronization primitives from threading. For instance
one can use a lock to ensure that only one process prints to standard output at a time:

from multiprocessing import Process, Lock

def f(l, i):
l.acquire()
print(’hello world’, i)
l.release()

if __name__ == ’__main__’:
lock = Lock()

for num in range(10):
Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all mixed up.

Sharing state between processes

As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as
possible. This is particularly true when using multiple processes.

However, if you really do need to use some shared data then multiprocessing provides a couple of ways of
doing so.

Shared memory

Data can be stored in a shared memory map using Value or Array. For example, the following
code

from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927

544 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

for i in range(len(a)):
a[i] = -a[i]

if __name__ == ’__main__’:
num = Value(’d’, 0.0)
arr = Array(’i’, range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print(num.value)
print(arr[:])

will print

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The ’d’ and ’i’ arguments used when creating num and arr are typecodes of the kind used by
the array module: ’d’ indicates a double precision float and ’i’ indicates a signed integer. These
shared objects will be process and thread-safe.

For more flexibility in using shared memory one can use the
multiprocessing.sharedctypes module which supports the creation of arbitrary ctypes
objects allocated from shared memory.

Server process

A manager object returned by Manager() controls a server process which holds Python objects and
allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock,
Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array. For
example,

from multiprocessing import Process, Manager

def f(d, l):
d[1] = ’1’
d[’2’] = 2
d[0.25] = None
l.reverse()

if __name__ == ’__main__’:
manager = Manager()

d = manager.dict()
l = manager.list(range(10))

p = Process(target=f, args=(d, l))
p.start()
p.join()

print(d)
print(l)

will print

{0.25: None, 1: ’1’, ’2’: 2}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process managers are more flexible than using shared memory objects because they can be
made to support arbitrary object types. Also, a single manager can be shared by processes on different

16.3. multiprocessing — Process-based parallelism 545

The Python Library Reference, Release 3.2

computers over a network. They are, however, slower than using shared memory.

Using a pool of workers

The Pool class represents a pool of worker processes. It has methods which allows tasks to be offloaded to the
worker processes in a few different ways.

For example:

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == ’__main__’:
pool = Pool(processes=4) # start 4 worker processes
result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow
print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"

16.3.2 Reference

The multiprocessing package mostly replicates the API of the threading module.

Process and exceptions

class multiprocessing.Process([group[, target[, name[, args[, kwargs]]]]])
Process objects represent activity that is run in a separate process. The Process class has equivalents of
all the methods of threading.Thread.

The constructor should always be called with keyword arguments. group should always be None; it exists
solely for compatibility with threading.Thread. target is the callable object to be invoked by the
run() method. It defaults to None, meaning nothing is called. name is the process name. By default, a
unique name is constructed of the form ‘Process-N1:N2:...:Nk‘ where N1,N2,...,Nk is a sequence of integers
whose length is determined by the generation of the process. args is the argument tuple for the target
invocation. kwargs is a dictionary of keyword arguments for the target invocation. By default, no arguments
are passed to target.

If a subclass overrides the constructor, it must make sure it invokes the base class constructor
(Process.__init__()) before doing anything else to the process.

run()
Method representing the process’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

start()
Start the process’s activity.

This must be called at most once per process object. It arranges for the object’s run() method to be
invoked in a separate process.

join([timeout])
Block the calling thread until the process whose join() method is called terminates or until the
optional timeout occurs.

If timeout is None then there is no timeout.

A process can be joined many times.

546 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

A process cannot join itself because this would cause a deadlock. It is an error to attempt to join a
process before it has been started.

name
The process’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple processes
may be given the same name. The initial name is set by the constructor.

is_alive()
Return whether the process is alive.

Roughly, a process object is alive from the moment the start() method returns until the child
process terminates.

daemon
The process’s daemon flag, a Boolean value. This must be set before start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child processes.

Note that a daemonic process is not allowed to create child processes. Otherwise a daemonic process
would leave its children orphaned if it gets terminated when its parent process exits. Additionally,
these are not Unix daemons or services, they are normal processes that will be terminated (and not
joined) if non-daemonic processes have exited.

In addition to the Threading.Thread API, Process objects also support the following attributes and
methods:

pid
Return the process ID. Before the process is spawned, this will be None.

exitcode
The child’s exit code. This will be None if the process has not yet terminated. A negative value -N
indicates that the child was terminated by signal N.

authkey
The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a random string using
os.random().

When a Process object is created, it will inherit the authentication key of its parent process, although
this may be changed by setting authkey to another byte string.

See Authentication keys.

terminate()
Terminate the process. On Unix this is done using the SIGTERM signal; on Windows
TerminateProcess() is used. Note that exit handlers and finally clauses, etc., will not be ex-
ecuted.

Note that descendant processes of the process will not be terminated – they will simply become or-
phaned.

Warning: If this method is used when the associated process is using a pipe or queue then the
pipe or queue is liable to become corrupted and may become unusable by other process. Similarly,
if the process has acquired a lock or semaphore etc. then terminating it is liable to cause other
processes to deadlock.

Note that the start(), join(), is_alive(), terminate() and exit_codemethods should only
be called by the process that created the process object.

Example usage of some of the methods of Process:

16.3. multiprocessing — Process-based parallelism 547

The Python Library Reference, Release 3.2

>>> import multiprocessing, time, signal
>>> p = multiprocessing.Process(target=time.sleep, args=(1000,))
>>> print(p, p.is_alive())
<Process(Process-1, initial)> False
>>> p.start()
>>> print(p, p.is_alive())
<Process(Process-1, started)> True
>>> p.terminate()
>>> time.sleep(0.1)
>>> print(p, p.is_alive())
<Process(Process-1, stopped[SIGTERM])> False
>>> p.exitcode == -signal.SIGTERM
True

exception multiprocessing.BufferTooShort
Exception raised by Connection.recv_bytes_into() when the supplied buffer object is too small
for the message read.

If e is an instance of BufferTooShort then e.args[0] will give the message as a byte string.

Pipes and Queues

When using multiple processes, one generally uses message passing for communication between processes and
avoids having to use any synchronization primitives like locks.

For passing messages one can use Pipe() (for a connection between two processes) or a queue (which allows
multiple producers and consumers).

The Queue and JoinableQueue types are multi-producer, multi-consumer FIFO queues modelled on the
queue.Queue class in the standard library. They differ in that Queue lacks the task_done() and join()
methods introduced into Python 2.5’s queue.Queue class.

If you use JoinableQueue then you must call JoinableQueue.task_done() for each task removed
from the queue or else the semaphore used to count the number of unfinished tasks may eventually overflow
raising an exception.

Note that one can also create a shared queue by using a manager object – see Managers.

Note: multiprocessing uses the usual queue.Empty and queue.Full exceptions to signal a timeout.
They are not available in the multiprocessing namespace so you need to import them from queue.

Warning: If a process is killed using Process.terminate() or os.kill() while it is trying to use a
Queue, then the data in the queue is likely to become corrupted. This may cause any other processes to get an
exception when it tries to use the queue later on.

Warning: As mentioned above, if a child process has put items on a queue (and it has not used
JoinableQueue.cancel_join_thread()), then that process will not terminate until all buffered
items have been flushed to the pipe.
This means that if you try joining that process you may get a deadlock unless you are sure that all items which
have been put on the queue have been consumed. Similarly, if the child process is non-daemonic then the
parent process may hang on exit when it tries to join all its non-daemonic children.
Note that a queue created using a manager does not have this issue. See Programming guidelines.

For an example of the usage of queues for interprocess communication see Examples.

multiprocessing.Pipe([duplex])
Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.

548 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is unidirec-
tional: conn1 can only be used for receiving messages and conn2 can only be used for sending messages.

class multiprocessing.Queue([maxsize])
Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first
puts an item on the queue a feeder thread is started which transfers objects from a buffer into the pipe.

The usual queue.Empty and queue.Full exceptions from the standard library’s Queue module are
raised to signal timeouts.

Queue implements all the methods of queue.Queue except for task_done() and join().

qsize()
Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this
number is not reliable.

Note that this may raise NotImplementedError on Unix platforms like Mac OS X where
sem_getvalue() is not implemented.

empty()
Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing
semantics, this is not reliable.

full()
Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing se-
mantics, this is not reliable.

put(item[, block[, timeout]])
Put item into the queue. If the optional argument block is True (the default) and timeout is None (the
default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at
most timeout seconds and raises the queue.Full exception if no free slot was available within that
time. Otherwise (block is False), put an item on the queue if a free slot is immediately available,
else raise the queue.Full exception (timeout is ignored in that case).

put_nowait(item)
Equivalent to put(item, False).

get([block[, timeout]])
Remove and return an item from the queue. If optional args block is True (the default) and timeout
is None (the default), block if necessary until an item is available. If timeout is a positive number,
it blocks at most timeout seconds and raises the queue.Empty exception if no item was available
within that time. Otherwise (block is False), return an item if one is immediately available, else
raise the queue.Empty exception (timeout is ignored in that case).

get_nowait()
get_no_wait()

Equivalent to get(False).

multiprocessing.Queue has a few additional methods not found in queue.Queue. These methods
are usually unnecessary for most code:

close()
Indicate that no more data will be put on this queue by the current process. The background thread
will quit once it has flushed all buffered data to the pipe. This is called automatically when the queue
is garbage collected.

join_thread()
Join the background thread. This can only be used after close() has been called. It blocks until the
background thread exits, ensuring that all data in the buffer has been flushed to the pipe.

By default if a process is not the creator of the queue then on exit it will attempt to join the queue’s
background thread. The process can call cancel_join_thread() to make join_thread()
do nothing.

16.3. multiprocessing — Process-based parallelism 549

The Python Library Reference, Release 3.2

cancel_join_thread()
Prevent join_thread() from blocking. In particular, this prevents the background thread from
being joined automatically when the process exits – see join_thread().

class multiprocessing.JoinableQueue([maxsize])
JoinableQueue, a Queue subclass, is a queue which additionally has task_done() and join()
methods.

task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get()
used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the
task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

join()
Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done() to indicate that the item was retrieved and all work
on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

Miscellaneous

multiprocessing.active_children()
Return list of all live children of the current process.

Calling this has the side affect of “joining” any processes which have already finished.

multiprocessing.cpu_count()
Return the number of CPUs in the system. May raise NotImplementedError.

multiprocessing.current_process()
Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

multiprocessing.freeze_support()
Add support for when a program which uses multiprocessing has been frozen to produce a Windows
executable. (Has been tested with py2exe, PyInstaller and cx_Freeze.)

One needs to call this function straight after the if __name__ == ’__main__’ line of the main mod-
ule. For example:

from multiprocessing import Process, freeze_support

def f():
print(’hello world!’)

if __name__ == ’__main__’:
freeze_support()
Process(target=f).start()

If the freeze_support() line is omitted then trying to run the frozen executable will raise
RuntimeError.

If the module is being run normally by the Python interpreter then freeze_support() has no effect.

multiprocessing.set_executable()
Sets the path of the Python interpreter to use when starting a child process. (By default sys.executable
is used). Embedders will probably need to do some thing like

550 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

setExecutable(os.path.join(sys.exec_prefix, ’pythonw.exe’))

before they can create child processes. (Windows only)

Note: multiprocessing contains no analogues of threading.active_count(),
threading.enumerate(), threading.settrace(), threading.setprofile(),
threading.Timer, or threading.local.

Connection Objects

Connection objects allow the sending and receiving of picklable objects or strings. They can be thought of as
message oriented connected sockets.

Connection objects usually created using Pipe() – see also Listeners and Clients.

class multiprocessing.Connection

send(obj)
Send an object to the other end of the connection which should be read using recv().

The object must be picklable. Very large pickles (approximately 32 MB+, though it depends on the
OS) may raise a ValueError exception.

recv()
Return an object sent from the other end of the connection using send(). Raises EOFError if there
is nothing left to receive and the other end was closed.

fileno()
Returns the file descriptor or handle used by the connection.

close()
Close the connection.

This is called automatically when the connection is garbage collected.

poll([timeout])
Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If timeout is a number then this specifies the
maximum time in seconds to block. If timeout is None then an infinite timeout is used.

send_bytes(buffer[, offset[, size]])
Send byte data from an object supporting the buffer interface as a complete message.

If offset is given then data is read from that position in buffer. If size is given then that many bytes will
be read from buffer. Very large buffers (approximately 32 MB+, though it depends on the OS) may
raise a ValueError exception

recv_bytes([maxlength])
Return a complete message of byte data sent from the other end of the connection as a string. Raises
EOFError if there is nothing left to receive and the other end has closed.

If maxlength is specified and the message is longer than maxlength then IOError is raised and the
connection will no longer be readable.

recv_bytes_into(buffer[, offset])
Read into buffer a complete message of byte data sent from the other end of the connection and return
the number of bytes in the message. Raises EOFError if there is nothing left to receive and the other
end was closed.

buffer must be an object satisfying the writable buffer interface. If offset is given then the message will
be written into the buffer from that position. Offset must be a non-negative integer less than the length
of buffer (in bytes).

16.3. multiprocessing — Process-based parallelism 551

The Python Library Reference, Release 3.2

If the buffer is too short then a BufferTooShort exception is raised and the complete message is
available as e.args[0] where e is the exception instance.

For example:

>>> from multiprocessing import Pipe
>>> a, b = Pipe()
>>> a.send([1, ’hello’, None])
>>> b.recv()
[1, ’hello’, None]
>>> b.send_bytes(b’thank you’)
>>> a.recv_bytes()
b’thank you’
>>> import array
>>> arr1 = array.array(’i’, range(5))
>>> arr2 = array.array(’i’, [0] * 10)
>>> a.send_bytes(arr1)
>>> count = b.recv_bytes_into(arr2)
>>> assert count == len(arr1) * arr1.itemsize
>>> arr2
array(’i’, [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])

Warning: The Connection.recv() method automatically unpickles the data it receives, which can be a
security risk unless you can trust the process which sent the message.
Therefore, unless the connection object was produced using Pipe() you should only use the recv() and
send() methods after performing some sort of authentication. See Authentication keys.

Warning: If a process is killed while it is trying to read or write to a pipe then the data in the pipe is likely to
become corrupted, because it may become impossible to be sure where the message boundaries lie.

Synchronization primitives

Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multithreaded
program. See the documentation for threading module.

Note that one can also create synchronization primitives by using a manager object – see Managers.

class multiprocessing.BoundedSemaphore([value])
A bounded semaphore object: a clone of threading.BoundedSemaphore.

(On Mac OS X, this is indistinguishable from Semaphore because sem_getvalue() is not imple-
mented on that platform).

class multiprocessing.Condition([lock])
A condition variable: a clone of threading.Condition.

If lock is specified then it should be a Lock or RLock object from multiprocessing.

class multiprocessing.Event
A clone of threading.Event. This method returns the state of the internal semaphore on exit, so it
will always return True except if a timeout is given and the operation times out. Changed in version 3.1:
Previously, the method always returned None.

class multiprocessing.Lock
A non-recursive lock object: a clone of threading.Lock.

class multiprocessing.RLock
A recursive lock object: a clone of threading.RLock.

class multiprocessing.Semaphore([value])
A bounded semaphore object: a clone of threading.Semaphore.

552 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

Note: The acquire() method of BoundedSemaphore, Lock, RLock and Semaphore has a time-
out parameter not supported by the equivalents in threading. The signature is acquire(block=True,
timeout=None) with keyword parameters being acceptable. If block is True and timeout is not None then it
specifies a timeout in seconds. If block is False then timeout is ignored.

On Mac OS X, sem_timedwait is unsupported, so calling acquire() with a timeout will emulate that
function’s behavior using a sleeping loop.

Note: If the SIGINT signal generated by Ctrl-C arrives while the main thread is blocked
by a call to BoundedSemaphore.acquire(), Lock.acquire(), RLock.acquire(),
Semaphore.acquire(), Condition.acquire() or Condition.wait() then the call will be
immediately interrupted and KeyboardInterrupt will be raised.

This differs from the behaviour of threadingwhere SIGINT will be ignored while the equivalent blocking calls
are in progress.

Shared ctypes Objects

It is possible to create shared objects using shared memory which can be inherited by child processes.

multiprocessing.Value(typecode_or_type, *args[, lock])
Return a ctypes object allocated from shared memory. By default the return value is actually a synchro-
nized wrapper for the object.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character
typecode of the kind used by the array module. *args is passed on to the constructor for the type.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock
is a Lock or RLock object then that will be used to synchronize access to the value. If lock is False
then access to the returned object will not be automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.Array(typecode_or_type, size_or_initializer, *, lock=True)
Return a ctypes array allocated from shared memory. By default the return value is actually a synchronized
wrapper for the array.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a
one character typecode of the kind used by the array module. If size_or_initializer is an integer, then it
determines the length of the array, and the array will be initially zeroed. Otherwise, size_or_initializer is a
sequence which is used to initialize the array and whose length determines the length of the array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock
is a Lock or RLock object then that will be used to synchronize access to the value. If lock is False
then access to the returned object will not be automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword only argument.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and
retrieve strings.

The multiprocessing.sharedctypes module

The multiprocessing.sharedctypes module provides functions for allocating ctypes objects from
shared memory which can be inherited by child processes.

16.3. multiprocessing — Process-based parallelism 553

The Python Library Reference, Release 3.2

Note: Although it is possible to store a pointer in shared memory remember that this will refer to a location in
the address space of a specific process. However, the pointer is quite likely to be invalid in the context of a second
process and trying to dereference the pointer from the second process may cause a crash.

multiprocessing.sharedctypes.RawArray(typecode_or_type, size_or_initializer)
Return a ctypes array allocated from shared memory.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a
one character typecode of the kind used by the array module. If size_or_initializer is an integer then it
determines the length of the array, and the array will be initially zeroed. Otherwise size_or_initializer is a
sequence which is used to initialize the array and whose length determines the length of the array.

Note that setting and getting an element is potentially non-atomic – use Array() instead to make sure that
access is automatically synchronized using a lock.

multiprocessing.sharedctypes.RawValue(typecode_or_type, *args)
Return a ctypes object allocated from shared memory.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character
typecode of the kind used by the array module. *args is passed on to the constructor for the type.

Note that setting and getting the value is potentially non-atomic – use Value() instead to make sure that
access is automatically synchronized using a lock.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store
and retrieve strings – see documentation for ctypes.

multiprocessing.sharedctypes.Array(typecode_or_type, size_or_initializer, *args[, lock])
The same as RawArray() except that depending on the value of lock a process-safe synchronization
wrapper may be returned instead of a raw ctypes array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock
is a Lock or RLock object then that will be used to synchronize access to the value. If lock is False
then access to the returned object will not be automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.Value(typecode_or_type, *args[, lock])
The same as RawValue() except that depending on the value of lock a process-safe synchronization
wrapper may be returned instead of a raw ctypes object.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock
is a Lock or RLock object then that will be used to synchronize access to the value. If lock is False
then access to the returned object will not be automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.copy(obj)
Return a ctypes object allocated from shared memory which is a copy of the ctypes object obj.

multiprocessing.sharedctypes.synchronized(obj[, lock])
Return a process-safe wrapper object for a ctypes object which uses lock to synchronize access. If lock is
None (the default) then a multiprocessing.RLock object is created automatically.

A synchronized wrapper will have two methods in addition to those of the object it wraps: get_obj()
returns the wrapped object and get_lock() returns the lock object used for synchronization.

Note that accessing the ctypes object through the wrapper can be a lot slower than accessing the raw ctypes
object.

The table below compares the syntax for creating shared ctypes objects from shared memory with the normal
ctypes syntax. (In the table MyStruct is some subclass of ctypes.Structure.)

554 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

ctypes sharedctypes using type sharedctypes using typecode
c_double(2.4) RawValue(c_double, 2.4) RawValue(‘d’, 2.4)
MyStruct(4, 6) RawValue(MyStruct, 4, 6)
(c_short * 7)() RawArray(c_short, 7) RawArray(‘h’, 7)
(c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray(‘i’, (9, 2, 8))

Below is an example where a number of ctypes objects are modified by a child process:

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

class Point(Structure):
fields = [(’x’, c_double), (’y’, c_double)]

def modify(n, x, s, A):
n.value **= 2
x.value **= 2
s.value = s.value.upper()
for a in A:

a.x **= 2
a.y **= 2

if __name__ == ’__main__’:
lock = Lock()

n = Value(’i’, 7)
x = Value(c_double, 1.0/3.0, lock=False)
s = Array(’c’, ’hello world’, lock=lock)
A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

p = Process(target=modify, args=(n, x, s, A))
p.start()
p.join()

print(n.value)
print(x.value)
print(s.value)
print([(a.x, a.y) for a in A])

The results printed are

49
0.1111111111111111
HELLO WORLD
[(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]

Managers

Managers provide a way to create data which can be shared between different processes. A manager object
controls a server process which manages shared objects. Other processes can access the shared objects by using
proxies.

multiprocessing.Manager()
Returns a started SyncManager object which can be used for sharing objects between processes. The
returned manager object corresponds to a spawned child process and has methods which will create shared
objects and return corresponding proxies.

Manager processes will be shutdown as soon as they are garbage collected or their parent process exits. The
manager classes are defined in the multiprocessing.managers module:

16.3. multiprocessing — Process-based parallelism 555

The Python Library Reference, Release 3.2

class multiprocessing.managers.BaseManager([address[, authkey]])
Create a BaseManager object.

Once created one should call start() or get_server().serve_forever() to ensure that the
manager object refers to a started manager process.

address is the address on which the manager process listens for new connections. If address is None then
an arbitrary one is chosen.

authkey is the authentication key which will be used to check the validity of incoming connections to the
server process. If authkey is None then current_process().authkey. Otherwise authkey is used
and it must be a string.

start([initializer[, initargs]])
Start a subprocess to start the manager. If initializer is not None then the subprocess will call
initializer(*initargs) when it starts.

get_server()
Returns a Server object which represents the actual server under the control of the Manager. The
Server object supports the serve_forever() method:

>>> from multiprocessing.managers import BaseManager
>>> manager = BaseManager(address=(’’, 50000), authkey=’abc’)
>>> server = manager.get_server()
>>> server.serve_forever()

Server additionally has an address attribute.

connect()
Connect a local manager object to a remote manager process:

>>> from multiprocessing.managers import BaseManager
>>> m = BaseManager(address=(’127.0.0.1’, 5000), authkey=’abc’)
>>> m.connect()

shutdown()
Stop the process used by the manager. This is only available if start() has been used to start the
server process.

This can be called multiple times.

register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])
A classmethod which can be used for registering a type or callable with the manager class.

typeid is a “type identifier” which is used to identify a particular type of shared object. This must be a
string.

callable is a callable used for creating objects for this type identifier. If a manager instance will be
created using the from_address() classmethod or if the create_method argument is False then
this can be left as None.

proxytype is a subclass of BaseProxy which is used to create proxies for shared objects with this
typeid. If None then a proxy class is created automatically.

exposed is used to specify a sequence of method names which proxies for this typeid should
be allowed to access using BaseProxy._callMethod(). (If exposed is None then
proxytype._exposed_ is used instead if it exists.) In the case where no exposed list is speci-
fied, all “public methods” of the shared object will be accessible. (Here a “public method” means any
attribute which has a __call__() method and whose name does not begin with ’_’.)

method_to_typeid is a mapping used to specify the return type of those exposed methods which
should return a proxy. It maps method names to typeid strings. (If method_to_typeid is None then
proxytype._method_to_typeid_ is used instead if it exists.) If a method’s name is not a key
of this mapping or if the mapping is None then the object returned by the method will be copied by
value.

556 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

create_method determines whether a method should be created with name typeid which can be used
to tell the server process to create a new shared object and return a proxy for it. By default it is True.

BaseManager instances also have one read-only property:

address
The address used by the manager.

class multiprocessing.managers.SyncManager
A subclass of BaseManager which can be used for the synchronization of processes. Objects of this type
are returned by multiprocessing.Manager().

It also supports creation of shared lists and dictionaries.

BoundedSemaphore([value])
Create a shared threading.BoundedSemaphore object and return a proxy for it.

Condition([lock])
Create a shared threading.Condition object and return a proxy for it.

If lock is supplied then it should be a proxy for a threading.Lock or threading.RLock object.

Event()
Create a shared threading.Event object and return a proxy for it.

Lock()
Create a shared threading.Lock object and return a proxy for it.

Namespace()
Create a shared Namespace object and return a proxy for it.

Queue([maxsize])
Create a shared queue.Queue object and return a proxy for it.

RLock()
Create a shared threading.RLock object and return a proxy for it.

Semaphore([value])
Create a shared threading.Semaphore object and return a proxy for it.

Array(typecode, sequence)
Create an array and return a proxy for it.

Value(typecode, value)
Create an object with a writable value attribute and return a proxy for it.

dict()
dict(mapping)
dict(sequence)

Create a shared dict object and return a proxy for it.

list()
list(sequence)

Create a shared list object and return a proxy for it.

Note: Modifications to mutable values or items in dict and list proxies will not be propagated through the
manager, because the proxy has no way of knowing when its values or items are modified. To modify such
an item, you can re-assign the modified object to the container proxy:

create a list proxy and append a mutable object (a dictionary)
lproxy = manager.list()
lproxy.append({})
now mutate the dictionary
d = lproxy[0]
d[’a’] = 1
d[’b’] = 2

16.3. multiprocessing — Process-based parallelism 557

The Python Library Reference, Release 3.2

at this point, the changes to d are not yet synced, but by
reassigning the dictionary, the proxy is notified of the change
lproxy[0] = d

Namespace objects

A namespace object has no public methods, but does have writable attributes. Its representation shows the values
of its attributes.

However, when using a proxy for a namespace object, an attribute beginning with ’_’ will be an attribute of the
proxy and not an attribute of the referent:

>>> manager = multiprocessing.Manager()
>>> Global = manager.Namespace()
>>> Global.x = 10
>>> Global.y = ’hello’
>>> Global._z = 12.3 # this is an attribute of the proxy
>>> print(Global)
Namespace(x=10, y=’hello’)

Customized managers

To create one’s own manager, one creates a subclass of BaseManager and use the register() classmethod
to register new types or callables with the manager class. For example:

from multiprocessing.managers import BaseManager

class MathsClass:
def add(self, x, y):

return x + y
def mul(self, x, y):

return x * y

class MyManager(BaseManager):
pass

MyManager.register(’Maths’, MathsClass)

if __name__ == ’__main__’:
manager = MyManager()
manager.start()
maths = manager.Maths()
print(maths.add(4, 3)) # prints 7
print(maths.mul(7, 8)) # prints 56

Using a remote manager

It is possible to run a manager server on one machine and have clients use it from other machines (assuming that
the firewalls involved allow it).

Running the following commands creates a server for a single shared queue which remote clients can access:

>>> from multiprocessing.managers import BaseManager
>>> import queue
>>> queue = queue.Queue()
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register(’get_queue’, callable=lambda:queue)

558 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

>>> m = QueueManager(address=(’’, 50000), authkey=’abracadabra’)
>>> s = m.get_server()
>>> s.serve_forever()

One client can access the server as follows:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register(’get_queue’)
>>> m = QueueManager(address=(’foo.bar.org’, 50000), authkey=’abracadabra’)
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.put(’hello’)

Another client can also use it:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register(’get_queue’)
>>> m = QueueManager(address=(’foo.bar.org’, 50000), authkey=’abracadabra’)
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.get()
’hello’

Local processes can also access that queue, using the code from above on the client to access it remotely:

>>> from multiprocessing import Process, Queue
>>> from multiprocessing.managers import BaseManager
>>> class Worker(Process):
... def __init__(self, q):
... self.q = q
... super(Worker, self).__init__()
... def run(self):
... self.q.put(’local hello’)
...
>>> queue = Queue()
>>> w = Worker(queue)
>>> w.start()
>>> class QueueManager(BaseManager): pass
...
>>> QueueManager.register(’get_queue’, callable=lambda: queue)
>>> m = QueueManager(address=(’’, 50000), authkey=’abracadabra’)
>>> s = m.get_server()
>>> s.serve_forever()

Proxy Objects

A proxy is an object which refers to a shared object which lives (presumably) in a different process. The shared
object is said to be the referent of the proxy. Multiple proxy objects may have the same referent.

A proxy object has methods which invoke corresponding methods of its referent (although not every method of
the referent will necessarily be available through the proxy). A proxy can usually be used in most of the same
ways that its referent can:

>>> from multiprocessing import Manager
>>> manager = Manager()
>>> l = manager.list([i*i for i in range(10)])
>>> print(l)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print(repr(l))

16.3. multiprocessing — Process-based parallelism 559

The Python Library Reference, Release 3.2

<ListProxy object, typeid ’list’ at 0x...>
>>> l[4]
16
>>> l[2:5]
[4, 9, 16]

Notice that applying str() to a proxy will return the representation of the referent, whereas applying repr()
will return the representation of the proxy.

An important feature of proxy objects is that they are picklable so they can be passed between processes. Note,
however, that if a proxy is sent to the corresponding manager’s process then unpickling it will produce the referent
itself. This means, for example, that one shared object can contain a second:

>>> a = manager.list()
>>> b = manager.list()
>>> a.append(b) # referent of a now contains referent of b
>>> print(a, b)
[[]] []
>>> b.append(’hello’)
>>> print(a, b)
[[’hello’]] [’hello’]

Note: The proxy types in multiprocessing do nothing to support comparisons by value. So, for instance,
we have:

>>> manager.list([1,2,3]) == [1,2,3]
False

One should just use a copy of the referent instead when making comparisons.

class multiprocessing.managers.BaseProxy
Proxy objects are instances of subclasses of BaseProxy.

_callmethod(methodname[, args[, kwds]])
Call and return the result of a method of the proxy’s referent.

If proxy is a proxy whose referent is obj then the expression

proxy._callmethod(methodname, args, kwds)

will evaluate the expression

getattr(obj, methodname)(*args, **kwds)

in the manager’s process.

The returned value will be a copy of the result of the call or a proxy to a new shared object – see
documentation for the method_to_typeid argument of BaseManager.register().

If an exception is raised by the call, then then is re-raised by _callmethod(). If some other
exception is raised in the manager’s process then this is converted into a RemoteError exception
and is raised by _callmethod().

Note in particular that an exception will be raised if methodname has not been exposed

An example of the usage of _callmethod():

>>> l = manager.list(range(10))
>>> l._callmethod(’__len__’)
10
>>> l._callmethod(’__getslice__’, (2, 7)) # equiv to ‘l[2:7]‘
[2, 3, 4, 5, 6]
>>> l._callmethod(’__getitem__’, (20,)) # equiv to ‘l[20]‘

560 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

Traceback (most recent call last):
...
IndexError: list index out of range

_getvalue()
Return a copy of the referent.

If the referent is unpicklable then this will raise an exception.

__repr__()
Return a representation of the proxy object.

__str__()
Return the representation of the referent.

Cleanup

A proxy object uses a weakref callback so that when it gets garbage collected it deregisters itself from the manager
which owns its referent.

A shared object gets deleted from the manager process when there are no longer any proxies referring to it.

Process Pools

One can create a pool of processes which will carry out tasks submitted to it with the Pool class.

class multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])
A process pool object which controls a pool of worker processes to which jobs can be submitted. It supports
asynchronous results with timeouts and callbacks and has a parallel map implementation.

processes is the number of worker processes to use. If processes is None then the number re-
turned by cpu_count() is used. If initializer is not None then each worker process will call
initializer(*initargs) when it starts. New in version 3.2: maxtasksperchild is the number of
tasks a worker process can complete before it will exit and be replaced with a fresh worker process, to
enable unused resources to be freed. The default maxtasksperchild is None, which means worker processes
will live as long as the pool.

Note: Worker processes within a Pool typically live for the complete duration of the Pool’s work queue. A
frequent pattern found in other systems (such as Apache, mod_wsgi, etc) to free resources held by workers
is to allow a worker within a pool to complete only a set amount of work before being exiting, being cleaned
up and a new process spawned to replace the old one. The maxtasksperchild argument to the Pool exposes
this ability to the end user.

apply(func[, args[, kwds]])
Call func with arguments args and keyword arguments kwds. It blocks till the result is ready. Given
this blocks, apply_async() is better suited for performing work in parallel. Additionally, the
passed in function is only executed in one of the workers of the pool.

apply_async(func[, args[, kwds[, callback[, error_callback]]]])
A variant of the apply() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it, that is unless the call failed, in which case the error_callback
is applied instead

If error_callback is specified then it should be a callable which accepts a single argument. If the target
function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will get
blocked.

16.3. multiprocessing — Process-based parallelism 561

The Python Library Reference, Release 3.2

map(func, iterable[, chunksize])
A parallel equivalent of the map() built-in function (it supports only one iterable argument though).
It blocks till the result is ready.

This method chops the iterable into a number of chunks which it submits to the process pool as separate
tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive
integer.

map_async(func, iterable[, chunksize[, callback]])
A variant of the map() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it, that is unless the call failed, in which case the error_callback
is applied instead

If error_callback is specified then it should be a callable which accepts a single argument. If the target
function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will get
blocked.

imap(func, iterable[, chunksize])
A lazier version of map().

The chunksize argument is the same as the one used by the map() method. For very long iterables
using a large value for chunksize can make make the job complete much faster than using the default
value of 1.

Also if chunksize is 1 then the next() method of the iterator returned by the imap() method has an
optional timeout parameter: next(timeout) will raise multiprocessing.TimeoutError
if the result cannot be returned within timeout seconds.

imap_unordered(func, iterable[, chunksize])
The same as imap() except that the ordering of the results from the returned iterator should be
considered arbitrary. (Only when there is only one worker process is the order guaranteed to be
“correct”.)

close()
Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed the
worker processes will exit.

terminate()
Stops the worker processes immediately without completing outstanding work. When the pool object
is garbage collected terminate() will be called immediately.

join()
Wait for the worker processes to exit. One must call close() or terminate() before using
join().

class multiprocessing.pool.AsyncResult
The class of the result returned by Pool.apply_async() and Pool.map_async().

get([timeout])
Return the result when it arrives. If timeout is not None and the result does not arrive within timeout
seconds then multiprocessing.TimeoutError is raised. If the remote call raised an exception
then that exception will be reraised by get().

wait([timeout])
Wait until the result is available or until timeout seconds pass.

ready()
Return whether the call has completed.

successful()
Return whether the call completed without raising an exception. Will raise AssertionError if the
result is not ready.

562 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

The following example demonstrates the use of a pool:

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == ’__main__’:
pool = Pool(processes=4) # start 4 worker processes

result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously
print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow

print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"

it = pool.imap(f, range(10))
print(next(it)) # prints "0"
print(next(it)) # prints "1"
print(it.next(timeout=1)) # prints "4" unless your computer is *very* slow

import time
result = pool.apply_async(time.sleep, (10,))
print(result.get(timeout=1)) # raises TimeoutError

Listeners and Clients

Usually message passing between processes is done using queues or by using Connection objects returned by
Pipe().

However, the multiprocessing.connection module allows some extra flexibility. It basically gives a
high level message oriented API for dealing with sockets or Windows named pipes, and also has support for
digest authentication using the hmac module.

multiprocessing.connection.deliver_challenge(connection, authkey)
Send a randomly generated message to the other end of the connection and wait for a reply.

If the reply matches the digest of the message using authkey as the key then a welcome message is sent to
the other end of the connection. Otherwise AuthenticationError is raised.

multiprocessing.connection.answerChallenge(connection, authkey)
Receive a message, calculate the digest of the message using authkey as the key, and then send the digest
back.

If a welcome message is not received, then AuthenticationError is raised.

multiprocessing.connection.Client(address[, family[, authenticate[, authkey]]])
Attempt to set up a connection to the listener which is using address address, returning a Connection.

The type of the connection is determined by family argument, but this can generally be omitted since it can
usually be inferred from the format of address. (See Address Formats)

If authenticate is True or authkey is a string then digest authentication is used. The key used for authenti-
cation will be either authkey or current_process().authkey) if authkey is None. If authentication
fails then AuthenticationError is raised. See Authentication keys.

class multiprocessing.connection.Listener([address[, family[, backlog[, authenticate[,
authkey]]]]])

A wrapper for a bound socket or Windows named pipe which is ‘listening’ for connections.

address is the address to be used by the bound socket or named pipe of the listener object.

Note: If an address of ‘0.0.0.0’ is used, the address will not be a connectable end point on Windows. If
you require a connectable end-point, you should use ‘127.0.0.1’.

16.3. multiprocessing — Process-based parallelism 563

The Python Library Reference, Release 3.2

family is the type of socket (or named pipe) to use. This can be one of the strings ’AF_INET’ (for a TCP
socket), ’AF_UNIX’ (for a Unix domain socket) or ’AF_PIPE’ (for a Windows named pipe). Of these
only the first is guaranteed to be available. If family is None then the family is inferred from the format of
address. If address is also None then a default is chosen. This default is the family which is assumed to
be the fastest available. See Address Formats. Note that if family is ’AF_UNIX’ and address is None then
the socket will be created in a private temporary directory created using tempfile.mkstemp().

If the listener object uses a socket then backlog (1 by default) is passed to the listen() method of the
socket once it has been bound.

If authenticate is True (False by default) or authkey is not None then digest authentication is used.

If authkey is a string then it will be used as the authentication key; otherwise it must be None.

If authkey is None and authenticate is True then current_process().authkey is used as the au-
thentication key. If authkey is None and authenticate is False then no authentication is done. If authenti-
cation fails then AuthenticationError is raised. See Authentication keys.

accept()
Accept a connection on the bound socket or named pipe of the listener object and return a
Connection object. If authentication is attempted and fails, then AuthenticationError is
raised.

close()
Close the bound socket or named pipe of the listener object. This is called automatically when the
listener is garbage collected. However it is advisable to call it explicitly.

Listener objects have the following read-only properties:

address
The address which is being used by the Listener object.

last_accepted
The address from which the last accepted connection came. If this is unavailable then it is None.

The module defines two exceptions:

exception multiprocessing.connection.AuthenticationError
Exception raised when there is an authentication error.

Examples

The following server code creates a listener which uses ’secret password’ as an authentication key. It then
waits for a connection and sends some data to the client:

from multiprocessing.connection import Listener
from array import array

address = (’localhost’, 6000) # family is deduced to be ’AF_INET’
listener = Listener(address, authkey=b’secret password’)

conn = listener.accept()
print(’connection accepted from’, listener.last_accepted)

conn.send([2.25, None, ’junk’, float])

conn.send_bytes(b’hello’)

conn.send_bytes(array(’i’, [42, 1729]))

conn.close()
listener.close()

The following code connects to the server and receives some data from the server:

564 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

from multiprocessing.connection import Client
from array import array

address = (’localhost’, 6000)
conn = Client(address, authkey=b’secret password’)

print(conn.recv()) # => [2.25, None, ’junk’, float]

print(conn.recv_bytes()) # => ’hello’

arr = array(’i’, [0, 0, 0, 0, 0])
print(conn.recv_bytes_into(arr)) # => 8
print(arr) # => array(’i’, [42, 1729, 0, 0, 0])

conn.close()

Address Formats

• An ’AF_INET’ address is a tuple of the form (hostname, port) where hostname is a string and port
is an integer.

• An ’AF_UNIX’ address is a string representing a filename on the filesystem.

• An ’AF_PIPE’ address is a string of the form ‘r’\\.\pipe\PipeName’’. To use Client() to
connect to a named pipe on a remote computer called ServerName one should use an address of the
form ‘r’\\ServerName\pipe\PipeName’’ instead.

Note that any string beginning with two backslashes is assumed by default to be an ’AF_PIPE’ address rather
than an ’AF_UNIX’ address.

Authentication keys

When one uses Connection.recv(), the data received is automatically unpickled. Unfortunately unpickling
data from an untrusted source is a security risk. Therefore Listener and Client() use the hmac module to
provide digest authentication.

An authentication key is a string which can be thought of as a password: once a connection is established both
ends will demand proof that the other knows the authentication key. (Demonstrating that both ends are using the
same key does not involve sending the key over the connection.)

If authentication is requested but do authentication key is specified then the return value of
current_process().authkey is used (see Process). This value will automatically inherited by any
Process object that the current process creates. This means that (by default) all processes of a multi-process
program will share a single authentication key which can be used when setting up connections between them-
selves.

Suitable authentication keys can also be generated by using os.urandom().

Logging

Some support for logging is available. Note, however, that the logging package does not use process shared
locks so it is possible (depending on the handler type) for messages from different processes to get mixed up.

multiprocessing.get_logger()
Returns the logger used by multiprocessing. If necessary, a new one will be created.

When first created the logger has level logging.NOTSET and no default handler. Messages sent to this
logger will not by default propagate to the root logger.

16.3. multiprocessing — Process-based parallelism 565

The Python Library Reference, Release 3.2

Note that on Windows child processes will only inherit the level of the parent process’s logger – any other
customization of the logger will not be inherited.

multiprocessing.log_to_stderr()
This function performs a call to get_logger() but in addition to returning the logger cre-
ated by get_logger, it adds a handler which sends output to sys.stderr using format
’[%(levelname)s/%(processName)s] %(message)s’.

Below is an example session with logging turned on:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(logging.INFO)
>>> logger.warning(’doomed’)
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at ’/.../listener-...’
>>> del m
[INFO/MainProcess] sending shutdown message to manager
[INFO/SyncManager-...] manager exiting with exitcode 0

In addition to having these two logging functions, the multiprocessing also exposes two additional logging level
attributes. These are SUBWARNING and SUBDEBUG. The table below illustrates where theses fit in the normal
level hierarchy.

Level Numeric value
SUBWARNING 25
SUBDEBUG 5

For a full table of logging levels, see the logging module.

These additional logging levels are used primarily for certain debug messages within the multiprocessing module.
Below is the same example as above, except with SUBDEBUG enabled:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(multiprocessing.SUBDEBUG)
>>> logger.warning(’doomed’)
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at ’/.../pymp-djGBXN/listener-...’
>>> del m
[SUBDEBUG/MainProcess] finalizer calling ...
[INFO/MainProcess] sending shutdown message to manager
[DEBUG/SyncManager-...] manager received shutdown message
[SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...
[SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...
[SUBDEBUG/SyncManager-...] calling <Finalize object, dead>
[SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...
[INFO/SyncManager-...] manager exiting with exitcode 0

The multiprocessing.dummy module

multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around
the threading module.

566 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

16.3.3 Programming guidelines

There are certain guidelines and idioms which should be adhered to when using multiprocessing.

All platforms

Avoid shared state

As far as possible one should try to avoid shifting large amounts of data between processes.

It is probably best to stick to using queues or pipes for communication between processes rather than
using the lower level synchronization primitives from the threading module.

Picklability

Ensure that the arguments to the methods of proxies are picklable.

Thread safety of proxies

Do not use a proxy object from more than one thread unless you protect it with a lock.

(There is never a problem with different processes using the same proxy.)

Joining zombie processes

On Unix when a process finishes but has not been joined it becomes a zombie. There should never
be very many because each time a new process starts (or active_children() is called) all com-
pleted processes which have not yet been joined will be joined. Also calling a finished process’s
Process.is_alive() will join the process. Even so it is probably good practice to explicitly
join all the processes that you start.

Better to inherit than pickle/unpickle

On Windows many types from multiprocessing need to be picklable so that child processes can
use them. However, one should generally avoid sending shared objects to other processes using pipes
or queues. Instead you should arrange the program so that a process which need access to a shared
resource created elsewhere can inherit it from an ancestor process.

Avoid terminating processes

Using the Process.terminate()method to stop a process is liable to cause any shared resources
(such as locks, semaphores, pipes and queues) currently being used by the process to become broken
or unavailable to other processes.

Therefore it is probably best to only consider using Process.terminate() on processes which
never use any shared resources.

Joining processes that use queues

Bear in mind that a process that has put items in a queue will wait before terminating until all the
buffered items are fed by the “feeder” thread to the underlying pipe. (The child process can call the
Queue.cancel_join_thread() method of the queue to avoid this behaviour.)

This means that whenever you use a queue you need to make sure that all items which have been put
on the queue will eventually be removed before the process is joined. Otherwise you cannot be sure
that processes which have put items on the queue will terminate. Remember also that non-daemonic
processes will be automatically be joined.

An example which will deadlock is the following:

from multiprocessing import Process, Queue

def f(q):
q.put(’X’ * 1000000)

if __name__ == ’__main__’:
queue = Queue()

16.3. multiprocessing — Process-based parallelism 567

The Python Library Reference, Release 3.2

p = Process(target=f, args=(queue,))
p.start()
p.join() # this deadlocks
obj = queue.get()

A fix here would be to swap the last two lines round (or simply remove the p.join() line).

Explicitly pass resources to child processes

On Unix a child process can make use of a shared resource created in a parent process using a global
resource. However, it is better to pass the object as an argument to the constructor for the child
process.

Apart from making the code (potentially) compatible with Windows this also ensures that as long as
the child process is still alive the object will not be garbage collected in the parent process. This might
be important if some resource is freed when the object is garbage collected in the parent process.

So for instance

from multiprocessing import Process, Lock

def f():
... do something using "lock" ...

if __name__ == ’__main__’:
lock = Lock()
for i in range(10):

Process(target=f).start()

should be rewritten as

from multiprocessing import Process, Lock

def f(l):
... do something using "l" ...

if __name__ == ’__main__’:
lock = Lock()
for i in range(10):

Process(target=f, args=(lock,)).start()

Beware replacing sys.stdin with a “file like object”

multiprocessing originally unconditionally called:

os.close(sys.stdin.fileno())

in the multiprocessing.Process._bootstrap() method — this resulted in issues with
processes-in-processes. This has been changed to:

sys.stdin.close()
sys.stdin = open(os.devnull)

Which solves the fundamental issue of processes colliding with each other resulting in a bad file
descriptor error, but introduces a potential danger to applications which replace sys.stdin() with
a “file-like object” with output buffering. This danger is that if multiple processes call close() on
this file-like object, it could result in the same data being flushed to the object multiple times, resulting
in corruption.

If you write a file-like object and implement your own caching, you can make it fork-safe by storing
the pid whenever you append to the cache, and discarding the cache when the pid changes. For
example:

@property
def cache(self):

pid = os.getpid()

568 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

if pid != self._pid:
self._pid = pid
self._cache = []

return self._cache

For more information, see issue 5155, issue 5313 and issue 5331

Windows

Since Windows lacks os.fork() it has a few extra restrictions:

More picklability

Ensure that all arguments to Process.__init__() are picklable. This means, in particular, that
bound or unbound methods cannot be used directly as the target argument on Windows — just
define a function and use that instead.

Also, if you subclass Process then make sure that instances will be picklable when the
Process.start() method is called.

Global variables

Bear in mind that if code run in a child process tries to access a global variable, then the value it sees
(if any) may not be the same as the value in the parent process at the time that Process.start()
was called.

However, global variables which are just module level constants cause no problems.

Safe importing of main module

Make sure that the main module can be safely imported by a new Python interpreter without causing
unintended side effects (such a starting a new process).

For example, under Windows running the following module would fail with a RuntimeError:

from multiprocessing import Process

def foo():
print(’hello’)

p = Process(target=foo)
p.start()

Instead one should protect the “entry point” of the program by using if __name__ ==
’__main__’: as follows:

from multiprocessing import Process, freeze_support

def foo():
print(’hello’)

if __name__ == ’__main__’:
freeze_support()
p = Process(target=foo)
p.start()

(The freeze_support() line can be omitted if the program will be run normally instead of
frozen.)

This allows the newly spawned Python interpreter to safely import the module and then run the mod-
ule’s foo() function.

Similar restrictions apply if a pool or manager is created in the main module.

16.3. multiprocessing — Process-based parallelism 569

http://bugs.python.org/issue5155
http://bugs.python.org/issue5313
http://bugs.python.org/issue5331

The Python Library Reference, Release 3.2

16.3.4 Examples

Demonstration of how to create and use customized managers and proxies:

#
This module shows how to use arbitrary callables with a subclass of
‘BaseManager‘.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy
import operator

##

class Foo:
def f(self):

print(’you called Foo.f()’)
def g(self):

print(’you called Foo.g()’)
def _h(self):

print(’you called Foo._h()’)

A simple generator function
def baz():

for i in range(10):
yield i*i

Proxy type for generator objects
class GeneratorProxy(BaseProxy):

exposed = (’next’, ’__next__’)
def __iter__(self):

return self
def __next__(self):

return self._callmethod(’next’)
def __next__(self):

return self._callmethod(’__next__’)

Function to return the operator module
def get_operator_module():

return operator

##

class MyManager(BaseManager):
pass

register the Foo class; make ‘f()‘ and ‘g()‘ accessible via proxy
MyManager.register(’Foo1’, Foo)

register the Foo class; make ‘g()‘ and ‘_h()‘ accessible via proxy
MyManager.register(’Foo2’, Foo, exposed=(’g’, ’_h’))

register the generator function baz; use ‘GeneratorProxy‘ to make proxies
MyManager.register(’baz’, baz, proxytype=GeneratorProxy)

570 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

register get_operator_module(); make public functions accessible via proxy
MyManager.register(’operator’, get_operator_module)

##

def test():
manager = MyManager()
manager.start()

print(’-’ * 20)

f1 = manager.Foo1()
f1.f()
f1.g()
assert not hasattr(f1, ’_h’)
assert sorted(f1._exposed_) == sorted([’f’, ’g’])

print(’-’ * 20)

f2 = manager.Foo2()
f2.g()
f2._h()
assert not hasattr(f2, ’f’)
assert sorted(f2._exposed_) == sorted([’g’, ’_h’])

print(’-’ * 20)

it = manager.baz()
for i in it:

print(’<%d>’ % i, end=’ ’)
print()

print(’-’ * 20)

op = manager.operator()
print(’op.add(23, 45) =’, op.add(23, 45))
print(’op.pow(2, 94) =’, op.pow(2, 94))
print(’op.getslice(range(10), 2, 6) =’, op.getslice(list(range(10)), 2, 6))
print(’op.repeat(range(5), 3) =’, op.repeat(list(range(5)), 3))
print(’op._exposed_ =’, op._exposed_)

##

if __name__ == ’__main__’:
freeze_support()
test()

Using Pool:

#
A test of ‘multiprocessing.Pool‘ class
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import multiprocessing
import time
import random

16.3. multiprocessing — Process-based parallelism 571

The Python Library Reference, Release 3.2

import sys

#
Functions used by test code
#

def calculate(func, args):
result = func(*args)
return ’%s says that %s%s = %s’ % (

multiprocessing.current_process().name,
func.__name__, args, result
)

def calculatestar(args):
return calculate(*args)

def mul(a, b):
time.sleep(0.5*random.random())
return a * b

def plus(a, b):
time.sleep(0.5*random.random())
return a + b

def f(x):
return 1.0 / (x-5.0)

def pow3(x):
return x**3

def noop(x):
pass

#
Test code
#

def test():
print(’cpu_count() = %d\n’ % multiprocessing.cpu_count())

#
Create pool
#

PROCESSES = 4
print(’Creating pool with %d processes\n’ % PROCESSES)
pool = multiprocessing.Pool(PROCESSES)
print(’pool = %s’ % pool)
print()

#
Tests
#

TASKS = [(mul, (i, 7)) for i in range(10)] + \
[(plus, (i, 8)) for i in range(10)]

results = [pool.apply_async(calculate, t) for t in TASKS]

572 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

imap_it = pool.imap(calculatestar, TASKS)
imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)

print(’Ordered results using pool.apply_async():’)
for r in results:

print(’\t’, r.get())
print()

print(’Ordered results using pool.imap():’)
for x in imap_it:

print(’\t’, x)
print()

print(’Unordered results using pool.imap_unordered():’)
for x in imap_unordered_it:

print(’\t’, x)
print()

print(’Ordered results using pool.map() --- will block till complete:’)
for x in pool.map(calculatestar, TASKS):

print(’\t’, x)
print()

#
Simple benchmarks
#

N = 100000
print(’def pow3(x): return x**3’)

t = time.time()
A = list(map(pow3, range(N)))
print(’\tmap(pow3, range(%d)):\n\t\t%s seconds’ % \

(N, time.time() - t))

t = time.time()
B = pool.map(pow3, range(N))
print(’\tpool.map(pow3, range(%d)):\n\t\t%s seconds’ % \

(N, time.time() - t))

t = time.time()
C = list(pool.imap(pow3, range(N), chunksize=N//8))
print(’\tlist(pool.imap(pow3, range(%d), chunksize=%d)):\n\t\t%s’ \

’ seconds’ % (N, N//8, time.time() - t))

assert A == B == C, (len(A), len(B), len(C))
print()

L = [None] * 1000000
print(’def noop(x): pass’)
print(’L = [None] * 1000000’)

t = time.time()
A = list(map(noop, L))
print(’\tmap(noop, L):\n\t\t%s seconds’ % \

(time.time() - t))

t = time.time()

16.3. multiprocessing — Process-based parallelism 573

The Python Library Reference, Release 3.2

B = pool.map(noop, L)
print(’\tpool.map(noop, L):\n\t\t%s seconds’ % \

(time.time() - t))

t = time.time()
C = list(pool.imap(noop, L, chunksize=len(L)//8))
print(’\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds’ % \

(len(L)//8, time.time() - t))

assert A == B == C, (len(A), len(B), len(C))
print()

del A, B, C, L

#
Test error handling
#

print(’Testing error handling:’)

try:
print(pool.apply(f, (5,)))

except ZeroDivisionError:
print(’\tGot ZeroDivisionError as expected from pool.apply()’)

else:
raise AssertionError(’expected ZeroDivisionError’)

try:
print(pool.map(f, list(range(10))))

except ZeroDivisionError:
print(’\tGot ZeroDivisionError as expected from pool.map()’)

else:
raise AssertionError(’expected ZeroDivisionError’)

try:
print(list(pool.imap(f, list(range(10)))))

except ZeroDivisionError:
print(’\tGot ZeroDivisionError as expected from list(pool.imap())’)

else:
raise AssertionError(’expected ZeroDivisionError’)

it = pool.imap(f, list(range(10)))
for i in range(10):

try:
x = next(it)

except ZeroDivisionError:
if i == 5:

pass
except StopIteration:

break
else:

if i == 5:
raise AssertionError(’expected ZeroDivisionError’)

assert i == 9
print(’\tGot ZeroDivisionError as expected from IMapIterator.next()’)
print()

574 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

#
Testing timeouts
#

print(’Testing ApplyResult.get() with timeout:’, end=’ ’)
res = pool.apply_async(calculate, TASKS[0])
while 1:

sys.stdout.flush()
try:

sys.stdout.write(’\n\t%s’ % res.get(0.02))
break

except multiprocessing.TimeoutError:
sys.stdout.write(’.’)

print()
print()

print(’Testing IMapIterator.next() with timeout:’, end=’ ’)
it = pool.imap(calculatestar, TASKS)
while 1:

sys.stdout.flush()
try:

sys.stdout.write(’\n\t%s’ % it.next(0.02))
except StopIteration:

break
except multiprocessing.TimeoutError:

sys.stdout.write(’.’)
print()
print()

#
Testing callback
#

print(’Testing callback:’)

A = []
B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

r = pool.apply_async(mul, (7, 8), callback=A.append)
r.wait()

r = pool.map_async(pow3, list(range(10)), callback=A.extend)
r.wait()

if A == B:
print(’\tcallbacks succeeded\n’)

else:
print(’\t*** callbacks failed\n\t\t%s != %s\n’ % (A, B))

#
Check there are no outstanding tasks
#

assert not pool._cache, ’cache = %r’ % pool._cache

#
Check close() methods
#

16.3. multiprocessing — Process-based parallelism 575

The Python Library Reference, Release 3.2

print(’Testing close():’)

for worker in pool._pool:
assert worker.is_alive()

result = pool.apply_async(time.sleep, [0.5])
pool.close()
pool.join()

assert result.get() is None

for worker in pool._pool:
assert not worker.is_alive()

print(’\tclose() succeeded\n’)

#
Check terminate() method
#

print(’Testing terminate():’)

pool = multiprocessing.Pool(2)
DELTA = 0.1
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
pool.terminate()
pool.join()

for worker in pool._pool:
assert not worker.is_alive()

print(’\tterminate() succeeded\n’)

#
Check garbage collection
#

print(’Testing garbage collection:’)

pool = multiprocessing.Pool(2)
DELTA = 0.1
processes = pool._pool
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]

results = pool = None

time.sleep(DELTA * 2)

for worker in processes:
assert not worker.is_alive()

print(’\tgarbage collection succeeded\n’)

if __name__ == ’__main__’:

576 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

multiprocessing.freeze_support()

assert len(sys.argv) in (1, 2)

if len(sys.argv) == 1 or sys.argv[1] == ’processes’:
print(’ Using processes ’.center(79, ’-’))

elif sys.argv[1] == ’threads’:
print(’ Using threads ’.center(79, ’-’))
import multiprocessing.dummy as multiprocessing

else:
print(’Usage:\n\t%s [processes | threads]’ % sys.argv[0])
raise SystemExit(2)

test()

Synchronization types like locks, conditions and queues:

#
A test file for the ‘multiprocessing‘ package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time, sys, random
from queue import Empty

import multiprocessing # may get overwritten

TEST_VALUE

def value_func(running, mutex):
random.seed()
time.sleep(random.random()*4)

mutex.acquire()
print(’\n\t\t\t’ + str(multiprocessing.current_process()) + ’ has finished’)
running.value -= 1
mutex.release()

def test_value():
TASKS = 10
running = multiprocessing.Value(’i’, TASKS)
mutex = multiprocessing.Lock()

for i in range(TASKS):
p = multiprocessing.Process(target=value_func, args=(running, mutex))
p.start()

while running.value > 0:
time.sleep(0.08)
mutex.acquire()
print(running.value, end=’ ’)
sys.stdout.flush()
mutex.release()

print()
print(’No more running processes’)

16.3. multiprocessing — Process-based parallelism 577

The Python Library Reference, Release 3.2

TEST_QUEUE

def queue_func(queue):
for i in range(30):

time.sleep(0.5 * random.random())
queue.put(i*i)

queue.put(’STOP’)

def test_queue():
q = multiprocessing.Queue()

p = multiprocessing.Process(target=queue_func, args=(q,))
p.start()

o = None
while o != ’STOP’:

try:
o = q.get(timeout=0.3)
print(o, end=’ ’)
sys.stdout.flush()

except Empty:
print(’TIMEOUT’)

print()

TEST_CONDITION

def condition_func(cond):
cond.acquire()
print(’\t’ + str(cond))
time.sleep(2)
print(’\tchild is notifying’)
print(’\t’ + str(cond))
cond.notify()
cond.release()

def test_condition():
cond = multiprocessing.Condition()

p = multiprocessing.Process(target=condition_func, args=(cond,))
print(cond)

cond.acquire()
print(cond)
cond.acquire()
print(cond)

p.start()

print(’main is waiting’)
cond.wait()
print(’main has woken up’)

print(cond)
cond.release()

578 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

print(cond)
cond.release()

p.join()
print(cond)

TEST_SEMAPHORE

def semaphore_func(sema, mutex, running):
sema.acquire()

mutex.acquire()
running.value += 1
print(running.value, ’tasks are running’)
mutex.release()

random.seed()
time.sleep(random.random()*2)

mutex.acquire()
running.value -= 1
print(’%s has finished’ % multiprocessing.current_process())
mutex.release()

sema.release()

def test_semaphore():
sema = multiprocessing.Semaphore(3)
mutex = multiprocessing.RLock()
running = multiprocessing.Value(’i’, 0)

processes = [
multiprocessing.Process(target=semaphore_func,

args=(sema, mutex, running))
for i in range(10)
]

for p in processes:
p.start()

for p in processes:
p.join()

TEST_JOIN_TIMEOUT

def join_timeout_func():
print(’\tchild sleeping’)
time.sleep(5.5)
print(’\n\tchild terminating’)

def test_join_timeout():
p = multiprocessing.Process(target=join_timeout_func)
p.start()

print(’waiting for process to finish’)

16.3. multiprocessing — Process-based parallelism 579

The Python Library Reference, Release 3.2

while 1:
p.join(timeout=1)
if not p.is_alive():

break
print(’.’, end=’ ’)
sys.stdout.flush()

TEST_EVENT

def event_func(event):
print(’\t%r is waiting’ % multiprocessing.current_process())
event.wait()
print(’\t%r has woken up’ % multiprocessing.current_process())

def test_event():
event = multiprocessing.Event()

processes = [multiprocessing.Process(target=event_func, args=(event,))
for i in range(5)]

for p in processes:
p.start()

print(’main is sleeping’)
time.sleep(2)

print(’main is setting event’)
event.set()

for p in processes:
p.join()

TEST_SHAREDVALUES

def sharedvalues_func(values, arrays, shared_values, shared_arrays):
for i in range(len(values)):

v = values[i][1]
sv = shared_values[i].value
assert v == sv

for i in range(len(values)):
a = arrays[i][1]
sa = list(shared_arrays[i][:])
assert a == sa

print(’Tests passed’)

def test_sharedvalues():
values = [

(’i’, 10),
(’h’, -2),
(’d’, 1.25)
]

arrays = [
(’i’, list(range(100))),
(’d’, [0.25 * i for i in range(100)]),

580 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

(’H’, list(range(1000)))
]

shared_values = [multiprocessing.Value(id, v) for id, v in values]
shared_arrays = [multiprocessing.Array(id, a) for id, a in arrays]

p = multiprocessing.Process(
target=sharedvalues_func,
args=(values, arrays, shared_values, shared_arrays)
)

p.start()
p.join()

assert p.exitcode == 0

####

def test(namespace=multiprocessing):
global multiprocessing

multiprocessing = namespace

for func in [test_value, test_queue, test_condition,
test_semaphore, test_join_timeout, test_event,
test_sharedvalues]:

print(’\n\t######## %s\n’ % func.__name__)
func()

ignore = multiprocessing.active_children() # cleanup any old processes
if hasattr(multiprocessing, ’_debug_info’):

info = multiprocessing._debug_info()
if info:

print(info)
raise ValueError(’there should be no positive refcounts left’)

if __name__ == ’__main__’:
multiprocessing.freeze_support()

assert len(sys.argv) in (1, 2)

if len(sys.argv) == 1 or sys.argv[1] == ’processes’:
print(’ Using processes ’.center(79, ’-’))
namespace = multiprocessing

elif sys.argv[1] == ’manager’:
print(’ Using processes and a manager ’.center(79, ’-’))
namespace = multiprocessing.Manager()
namespace.Process = multiprocessing.Process
namespace.current_process = multiprocessing.current_process
namespace.active_children = multiprocessing.active_children

elif sys.argv[1] == ’threads’:
print(’ Using threads ’.center(79, ’-’))
import multiprocessing.dummy as namespace

else:
print(’Usage:\n\t%s [processes | manager | threads]’ % sys.argv[0])
raise SystemExit(2)

16.3. multiprocessing — Process-based parallelism 581

The Python Library Reference, Release 3.2

test(namespace)

An example showing how to use queues to feed tasks to a collection of worker process and collect the results:

#
Simple example which uses a pool of workers to carry out some tasks.
#
Notice that the results will probably not come out of the output
queue in the same in the same order as the corresponding tasks were
put on the input queue. If it is important to get the results back
in the original order then consider using ‘Pool.map()‘ or
‘Pool.imap()‘ (which will save on the amount of code needed anyway).
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time
import random

from multiprocessing import Process, Queue, current_process, freeze_support

#
Function run by worker processes
#

def worker(input, output):
for func, args in iter(input.get, ’STOP’):

result = calculate(func, args)
output.put(result)

#
Function used to calculate result
#

def calculate(func, args):
result = func(*args)
return ’%s says that %s%s = %s’ % \

(current_process().name, func.__name__, args, result)

#
Functions referenced by tasks
#

def mul(a, b):
time.sleep(0.5*random.random())
return a * b

def plus(a, b):
time.sleep(0.5*random.random())
return a + b

#
#
#

def test():
NUMBER_OF_PROCESSES = 4

582 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

TASKS1 = [(mul, (i, 7)) for i in range(20)]
TASKS2 = [(plus, (i, 8)) for i in range(10)]

Create queues
task_queue = Queue()
done_queue = Queue()

Submit tasks
for task in TASKS1:

task_queue.put(task)

Start worker processes
for i in range(NUMBER_OF_PROCESSES):

Process(target=worker, args=(task_queue, done_queue)).start()

Get and print results
print(’Unordered results:’)
for i in range(len(TASKS1)):

print(’\t’, done_queue.get())

Add more tasks using ‘put()‘
for task in TASKS2:

task_queue.put(task)

Get and print some more results
for i in range(len(TASKS2)):

print(’\t’, done_queue.get())

Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):

task_queue.put(’STOP’)

if __name__ == ’__main__’:
freeze_support()
test()

An example of how a pool of worker processes can each run a SimpleHTTPRequestHandler instance while
sharing a single listening socket.

#
Example where a pool of http servers share a single listening socket
#
On Windows this module depends on the ability to pickle a socket
object so that the worker processes can inherit a copy of the server
object. (We import ‘multiprocessing.reduction‘ to enable this pickling.)
#
Not sure if we should synchronize access to ‘socket.accept()‘ method by
using a process-shared lock -- does not seem to be necessary.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import os
import sys

from multiprocessing import Process, current_process, freeze_support
from http.server import HTTPServer

16.3. multiprocessing — Process-based parallelism 583

The Python Library Reference, Release 3.2

from http.server import SimpleHTTPRequestHandler

if sys.platform == ’win32’:
import multiprocessing.reduction # make sockets pickable/inheritable

def note(format, *args):
sys.stderr.write(’[%s]\t%s\n’ % (current_process().name, format%args))

class RequestHandler(SimpleHTTPRequestHandler):
we override log_message() to show which process is handling the request
def log_message(self, format, *args):

note(format, *args)

def serve_forever(server):
note(’starting server’)
try:

server.serve_forever()
except KeyboardInterrupt:

pass

def runpool(address, number_of_processes):
create a single server object -- children will each inherit a copy
server = HTTPServer(address, RequestHandler)

create child processes to act as workers
for i in range(number_of_processes-1):

Process(target=serve_forever, args=(server,)).start()

main process also acts as a worker
serve_forever(server)

def test():
DIR = os.path.join(os.path.dirname(__file__), ’..’)
ADDRESS = (’localhost’, 8000)
NUMBER_OF_PROCESSES = 4

print(’Serving at http://%s:%d using %d worker processes’ % \
(ADDRESS[0], ADDRESS[1], NUMBER_OF_PROCESSES))

print(’To exit press Ctrl-’ + [’C’, ’Break’][sys.platform==’win32’])

os.chdir(DIR)
runpool(ADDRESS, NUMBER_OF_PROCESSES)

if __name__ == ’__main__’:
freeze_support()
test()

Some simple benchmarks comparing multiprocessing with threading:

#
Simple benchmarks for the multiprocessing package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.

584 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

#

import time, sys, multiprocessing, threading, queue, gc

if sys.platform == ’win32’:
_timer = time.clock

else:
_timer = time.time

delta = 1

TEST_QUEUESPEED

def queuespeed_func(q, c, iterations):
a = ’0’ * 256
c.acquire()
c.notify()
c.release()

for i in range(iterations):
q.put(a)

q.put(’STOP’)

def test_queuespeed(Process, q, c):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

p = Process(target=queuespeed_func, args=(q, c, iterations))
c.acquire()
p.start()
c.wait()
c.release()

result = None
t = _timer()

while result != ’STOP’:
result = q.get()

elapsed = _timer() - t

p.join()

print(iterations, ’objects passed through the queue in’, elapsed, ’seconds’)
print(’average number/sec:’, iterations/elapsed)

TEST_PIPESPEED

def pipe_func(c, cond, iterations):
a = ’0’ * 256
cond.acquire()
cond.notify()

16.3. multiprocessing — Process-based parallelism 585

The Python Library Reference, Release 3.2

cond.release()

for i in range(iterations):
c.send(a)

c.send(’STOP’)

def test_pipespeed():
c, d = multiprocessing.Pipe()
cond = multiprocessing.Condition()
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

p = multiprocessing.Process(target=pipe_func,
args=(d, cond, iterations))

cond.acquire()
p.start()
cond.wait()
cond.release()

result = None
t = _timer()

while result != ’STOP’:
result = c.recv()

elapsed = _timer() - t
p.join()

print(iterations, ’objects passed through connection in’,elapsed,’seconds’)
print(’average number/sec:’, iterations/elapsed)

TEST_SEQSPEED

def test_seqspeed(seq):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

t = _timer()

for i in range(iterations):
a = seq[5]

elapsed = _timer()-t

print(iterations, ’iterations in’, elapsed, ’seconds’)
print(’average number/sec:’, iterations/elapsed)

TEST_LOCK

586 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

def test_lockspeed(l):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

t = _timer()

for i in range(iterations):
l.acquire()
l.release()

elapsed = _timer()-t

print(iterations, ’iterations in’, elapsed, ’seconds’)
print(’average number/sec:’, iterations/elapsed)

TEST_CONDITION

def conditionspeed_func(c, N):
c.acquire()
c.notify()

for i in range(N):
c.wait()
c.notify()

c.release()

def test_conditionspeed(Process, c):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

c.acquire()
p = Process(target=conditionspeed_func, args=(c, iterations))
p.start()

c.wait()

t = _timer()

for i in range(iterations):
c.notify()
c.wait()

elapsed = _timer()-t

c.release()
p.join()

print(iterations * 2, ’waits in’, elapsed, ’seconds’)
print(’average number/sec:’, iterations * 2 / elapsed)

16.3. multiprocessing — Process-based parallelism 587

The Python Library Reference, Release 3.2

####

def test():
manager = multiprocessing.Manager()

gc.disable()

print(’\n\t######## testing Queue.Queue\n’)
test_queuespeed(threading.Thread, queue.Queue(),

threading.Condition())
print(’\n\t######## testing multiprocessing.Queue\n’)
test_queuespeed(multiprocessing.Process, multiprocessing.Queue(),

multiprocessing.Condition())
print(’\n\t######## testing Queue managed by server process\n’)
test_queuespeed(multiprocessing.Process, manager.Queue(),

manager.Condition())
print(’\n\t######## testing multiprocessing.Pipe\n’)
test_pipespeed()

print()

print(’\n\t######## testing list\n’)
test_seqspeed(list(range(10)))
print(’\n\t######## testing list managed by server process\n’)
test_seqspeed(manager.list(list(range(10))))
print(’\n\t######## testing Array("i", ..., lock=False)\n’)
test_seqspeed(multiprocessing.Array(’i’, list(range(10)), lock=False))
print(’\n\t######## testing Array("i", ..., lock=True)\n’)
test_seqspeed(multiprocessing.Array(’i’, list(range(10)), lock=True))

print()

print(’\n\t######## testing threading.Lock\n’)
test_lockspeed(threading.Lock())
print(’\n\t######## testing threading.RLock\n’)
test_lockspeed(threading.RLock())
print(’\n\t######## testing multiprocessing.Lock\n’)
test_lockspeed(multiprocessing.Lock())
print(’\n\t######## testing multiprocessing.RLock\n’)
test_lockspeed(multiprocessing.RLock())
print(’\n\t######## testing lock managed by server process\n’)
test_lockspeed(manager.Lock())
print(’\n\t######## testing rlock managed by server process\n’)
test_lockspeed(manager.RLock())

print()

print(’\n\t######## testing threading.Condition\n’)
test_conditionspeed(threading.Thread, threading.Condition())
print(’\n\t######## testing multiprocessing.Condition\n’)
test_conditionspeed(multiprocessing.Process, multiprocessing.Condition())
print(’\n\t######## testing condition managed by a server process\n’)
test_conditionspeed(multiprocessing.Process, manager.Condition())

gc.enable()

if __name__ == ’__main__’:
multiprocessing.freeze_support()

588 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

test()

16.4 concurrent.futures — Launching parallel tasks

Source code: Lib/concurrent/futures/thread.py and Lib/concurrent/futures/process.py New in version 3.2.

The concurrent.futures module provides a high-level interface for asynchronously executing callables.

The asynchronous execution can be be performed with threads, using ThreadPoolExecutor, or separate
processes, using ProcessPoolExecutor. Both implement the same interface, which is defined by the abstract
Executor class.

16.4.1 Executor Objects

class concurrent.futures.Executor
An abstract class that provides methods to execute calls asynchronously. It should not be used directly, but
through its concrete subclasses.

submit(fn, *args, **kwargs)
Schedules the callable, fn, to be executed as fn(*args **kwargs) and returns a
Future object representing the execution of the callable.

with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(pow, 323, 1235)
print(future.result())

map(func, *iterables, timeout=None)
Equivalent to map(func, *iterables) except func is executed asynchronously
and several calls to func may be made concurrently. The returned iterator raises a
TimeoutError if __next__() is called and the result isn’t available after timeout sec-
onds from the original call to Executor.map(). timeout can be an int or a float. If
timeout is not specified or None, there is no limit to the wait time. If a call raises an excep-
tion, then that exception will be raised when its value is retrieved from the iterator.

shutdown(wait=True)
Signal the executor that it should free any resources that it is using when the currently pend-
ing futures are done executing. Calls to Executor.submit() and Executor.map()
made after shutdown will raise RuntimeError.

If wait is True then this method will not return until all the pending futures are done ex-
ecuting and the resources associated with the executor have been freed. If wait is False
then this method will return immediately and the resources associated with the executor will
be freed when all pending futures are done executing. Regardless of the value of wait, the
entire Python program will not exit until all pending futures are done executing.

You can avoid having to call this method explicitly if you use the with statement, which
will shutdown the Executor (waiting as if Executor.shutdown() were called with
wait set to True):

import shutil
with ThreadPoolExecutor(max_workers=4) as e:

e.submit(shutil.copy, ’src1.txt’, ’dest1.txt’)
e.submit(shutil.copy, ’src2.txt’, ’dest2.txt’)
e.submit(shutil.copy, ’src3.txt’, ’dest3.txt’)
e.submit(shutil.copy, ’src3.txt’, ’dest4.txt’)

16.4. concurrent.futures — Launching parallel tasks 589

http://svn.python.org/view/python/branches/py3k/Lib/concurrent/futures/thread.py?view=markup
http://svn.python.org/view/python/branches/py3k/Lib/concurrent/futures/process.py?view=markup

The Python Library Reference, Release 3.2

16.4.2 ThreadPoolExecutor

ThreadPoolExecutor is a Executor subclass that uses a pool of threads to execute calls asynchronously.

Deadlocks can occur when the callable associated with a Future waits on the results of another Future. For
example:

import time
def wait_on_b():

time.sleep(5)
print(b.result()) # b will never complete because it is waiting on a.
return 5

def wait_on_a():
time.sleep(5)
print(a.result()) # a will never complete because it is waiting on b.
return 6

executor = ThreadPoolExecutor(max_workers=2)
a = executor.submit(wait_on_b)
b = executor.submit(wait_on_a)

And:

def wait_on_future():
f = executor.submit(pow, 5, 2)
This will never complete because there is only one worker thread and
it is executing this function.
print(f.result())

executor = ThreadPoolExecutor(max_workers=1)
executor.submit(wait_on_future)

class concurrent.futures.ThreadPoolExecutor(max_workers)
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

ThreadPoolExecutor Example

import concurrent.futures
import urllib.request

URLS = [’http://www.foxnews.com/’,
’http://www.cnn.com/’,
’http://europe.wsj.com/’,
’http://www.bbc.co.uk/’,
’http://some-made-up-domain.com/’]

def load_url(url, timeout):
return urllib.request.urlopen(url, timeout=timeout).read()

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
future_to_url = dict((executor.submit(load_url, url, 60), url)

for url in URLS)

for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
if future.exception() is not None:

print(’%r generated an exception: %s’ % (url,
future.exception()))

590 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

else:
print(’%r page is %d bytes’ % (url, len(future.result())))

16.4.3 ProcessPoolExecutor

The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls
asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step
the Global Interpreter Lock but also means that only picklable objects can be executed and returned.

Calling Executor or Future methods from a callable submitted to a ProcessPoolExecutor will result
in deadlock.

class concurrent.futures.ProcessPoolExecutor(max_workers=None)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes.
If max_workers is None or not given, it will default to the number of processors on the machine.

ProcessPoolExecutor Example

import concurrent.futures
import math

PRIMES = [
112272535095293,
112582705942171,
112272535095293,
115280095190773,
115797848077099,
1099726899285419]

def is_prime(n):
if n % 2 == 0:

return False

sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):

if n % i == 0:
return False

return True

def main():
with concurrent.futures.ProcessPoolExecutor() as executor:

for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
print(’%d is prime: %s’ % (number, prime))

if __name__ == ’__main__’:
main()

16.4.4 Future Objects

The Future class encapsulates the asynchronous execution of a callable. Future instances are created by
Executor.submit().

class concurrent.futures.Future
Encapsulates the asynchronous execution of a callable. Future instances are created by
Executor.submit() and should not be created directly except for testing.

cancel()
Attempt to cancel the call. If the call is currently being executed and cannot be cancelled

16.4. concurrent.futures — Launching parallel tasks 591

The Python Library Reference, Release 3.2

then the method will return False, otherwise the call will be cancelled and the method will
return True.

cancelled()
Return True if the call was successfully cancelled.

running()
Return True if the call is currently being executed and cannot be cancelled.

done()
Return True if the call was successfully cancelled or finished running.

result(timeout=None)
Return the value returned by the call. If the call hasn’t yet completed then this method
will wait up to timeout seconds. If the call hasn’t completed in timeout seconds, then a
TimeoutError will be raised. timeout can be an int or float. If timeout is not specified or
None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call raised, this method will raise the same exception.

exception(timeout=None)
Return the exception raised by the call. If the call hasn’t yet completed then this method
will wait up to timeout seconds. If the call hasn’t completed in timeout seconds, then a
TimeoutError will be raised. timeout can be an int or float. If timeout is not specified or
None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call completed without raising, None is returned.

add_done_callback(fn)
Attaches the callable fn to the future. fn will be called, with the future as its only argument,
when the future is cancelled or finishes running.

Added callables are called in the order that they were added and are always called in a thread
belonging to the process that added them. If the callable raises a Exception subclass, it
will be logged and ignored. If the callable raises a BaseException subclass, the behavior
is undefined.

If the future has already completed or been cancelled, fn will be called immediately.

The following Future methods are meant for use in unit tests and Executor implementations.

set_running_or_notify_cancel()
This method should only be called by Executor implementations before executing the
work associated with the Future and by unit tests.

If the method returns False then the Future was cancelled, i.e. Future.cancel()
was called and returned True. Any threads waiting on the Future completing (i.e. through
as_completed() or wait()) will be woken up.

If the method returns True then the Future was not cancelled and has been put in the
running state, i.e. calls to Future.running() will return True.

This method can only be called once and cannot be called after Future.set_result()
or Future.set_exception() have been called.

set_result(result)
Sets the result of the work associated with the Future to result.

This method should only be used by Executor implementations and unit tests.

set_exception(exception)
Sets the result of the work associated with the Future to the Exception exception.

This method should only be used by Executor implementations and unit tests.

592 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

16.4.5 Module Functions

concurrent.futures.wait(fs, timeout=None, return_when=ALL_COMPLETED)
Wait for the Future instances (possibly created by different Executor instances) given by fs to complete.
Returns a named 2-tuple of sets. The first set, named done, contains the futures that completed (finished
or were cancelled) before the wait completed. The second set, named not_done, contains uncompleted
futures.

timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an
int or float. If timeout is not specified or None, there is no limit to the wait time.

return_when indicates when this function should return. It must be one of the following constants:

Constant Description
FIRST_COMPLETEDThe function will return when any future finishes or is cancelled.
FIRST_EXCEPTIONThe function will return when any future finishes by raising an exception. If no future

raises an exception then it is equivalent to ALL_COMPLETED.
ALL_COMPLETEDThe function will return when all futures finish or are cancelled.

concurrent.futures.as_completed(fs, timeout=None)
Returns an iterator over the Future instances (possibly created by different Executor instances) given
by fs that yields futures as they complete (finished or were cancelled). Any futures that completed be-
fore as_completed() is called will be yielded first. The returned iterator raises a TimeoutError
if __next__() is called and the result isn’t available after timeout seconds from the original call to
as_completed(). timeout can be an int or float. If timeout is not specified or None, there is no limit to
the wait time.

See Also:

PEP 3148 – futures - execute computations asynchronously The proposal which described this feature for in-
clusion in the Python standard library.

16.5 mmap — Memory-mapped file support

Memory-mapped file objects behave like both bytearray and like file objects. You can use mmap objects
in most places where bytearray are expected; for example, you can use the re module to search through a
memory-mapped file. You can also change a single byte by doing obj[index] = 97, or change a subsequence
by assigning to a slice: obj[i1:i2] = b’...’. You can also read and write data starting at the current file
position, and seek() through the file to different positions.

A memory-mapped file is created by the mmap constructor, which is different on Unix and on Windows. In either
case you must provide a file descriptor for a file opened for update. If you wish to map an existing Python file
object, use its fileno() method to obtain the correct value for the fileno parameter. Otherwise, you can open
the file using the os.open() function, which returns a file descriptor directly (the file still needs to be closed
when done).

For both the Unix and Windows versions of the constructor, access may be specified as an optional keyword pa-
rameter. access accepts one of three values: ACCESS_READ, ACCESS_WRITE, or ACCESS_COPY to specify
read-only, write-through or copy-on-write memory respectively. access can be used on both Unix and Windows.
If access is not specified, Windows mmap returns a write-through mapping. The initial memory values for all
three access types are taken from the specified file. Assignment to an ACCESS_READ memory map raises a
TypeError exception. Assignment to an ACCESS_WRITE memory map affects both memory and the under-
lying file. Assignment to an ACCESS_COPY memory map affects memory but does not update the underlying
file.

To map anonymous memory, -1 should be passed as the fileno along with the length.

class mmap.mmap(fileno, length, tagname=None, access=ACCESS_DEFAULT[, offset])
(Windows version) Maps length bytes from the file specified by the file handle fileno, and creates a mmap
object. If length is larger than the current size of the file, the file is extended to contain length bytes. If

16.5. mmap — Memory-mapped file support 593

http://www.python.org/dev/peps/pep-3148

The Python Library Reference, Release 3.2

length is 0, the maximum length of the map is the current size of the file, except that if the file is empty
Windows raises an exception (you cannot create an empty mapping on Windows).

tagname, if specified and not None, is a string giving a tag name for the mapping. Windows allows you
to have many different mappings against the same file. If you specify the name of an existing tag, that tag
is opened, otherwise a new tag of this name is created. If this parameter is omitted or None, the mapping
is created without a name. Avoiding the use of the tag parameter will assist in keeping your code portable
between Unix and Windows.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset from
the beginning of the file. offset defaults to 0. offset must be a multiple of the ALLOCATIONGRANULAR-
ITY.

class mmap.mmap(fileno, length, flags=MAP_SHARED, prot=PROT_WRITE|PROT_READ, ac-
cess=ACCESS_DEFAULT[, offset])

(Unix version) Maps length bytes from the file specified by the file descriptor fileno, and returns a mmap
object. If length is 0, the maximum length of the map will be the current size of the file when mmap is
called.

flags specifies the nature of the mapping. MAP_PRIVATE creates a private copy-on-write mapping, so
changes to the contents of the mmap object will be private to this process, and MAP_SHARED creates a
mapping that’s shared with all other processes mapping the same areas of the file. The default value is
MAP_SHARED.

prot, if specified, gives the desired memory protection; the two most useful values are PROT_READ
and PROT_WRITE, to specify that the pages may be read or written. prot defaults to PROT_READ |
PROT_WRITE.

access may be specified in lieu of flags and prot as an optional keyword parameter. It is an error to specify
both flags, prot and access. See the description of access above for information on how to use this parameter.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset from
the beginning of the file. offset defaults to 0. offset must be a multiple of the PAGESIZE or ALLOCATION-
GRANULARITY.

This example shows a simple way of using mmap:

import mmap

write a simple example file
with open("hello.txt", "wb") as f:

f.write(b"Hello Python!\n")

with open("hello.txt", "r+b") as f:
memory-map the file, size 0 means whole file
map = mmap.mmap(f.fileno(), 0)
read content via standard file methods
print(map.readline()) # prints b"Hello Python!\n"
read content via slice notation
print(map[:5]) # prints b"Hello"
update content using slice notation;
note that new content must have same size
map[6:] = b" world!\n"
... and read again using standard file methods
map.seek(0)
print(map.readline()) # prints b"Hello world!\n"
close the map
map.close()

mmap can also be used as a context manager in a with statement.:

import mmap

594 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

with mmap.mmap(-1, 13) as map:
map.write("Hello world!")

New in version 3.2: Context manager support. The next example demonstrates how to create an anonymous
map and exchange data between the parent and child processes:

import mmap
import os

map = mmap.mmap(-1, 13)
map.write(b"Hello world!")

pid = os.fork()

if pid == 0: # In a child process
map.seek(0)
print(map.readline())

map.close()

Memory-mapped file objects support the following methods:

mmap.close()
Close the file. Subsequent calls to other methods of the object will result in an exception being raised.

mmap.closed
True if the file is closed. New in version 3.2.

mmap.find(sub[, start[, end]])
Returns the lowest index in the object where the subsequence sub is found, such that sub is contained
in the range [start, end]. Optional arguments start and end are interpreted as in slice notation. Returns
-1 on failure.

mmap.flush([offset[, size]])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there is no
guarantee that changes are written back before the object is destroyed. If offset and size are specified,
only changes to the given range of bytes will be flushed to disk; otherwise, the whole extent of the
mapping is flushed.

(Windows version) A nonzero value returned indicates success; zero indicates failure.

(Unix version) A zero value is returned to indicate success. An exception is raised when the call
failed.

mmap.move(dest, src, count)
Copy the count bytes starting at offset src to the destination index dest. If the mmap was created with
ACCESS_READ, then calls to move will raise a TypeError exception.

mmap.read(num)
Return a bytes containing up to num bytes starting from the current file position; the file position is
updated to point after the bytes that were returned.

mmap.read_byte()
Returns a byte at the current file position as an integer, and advances the file position by 1.

mmap.readline()
Returns a single line, starting at the current file position and up to the next newline.

mmap.resize(newsize)
Resizes the map and the underlying file, if any. If the mmap was created with ACCESS_READ or
ACCESS_COPY, resizing the map will raise a TypeError exception.

16.5. mmap — Memory-mapped file support 595

The Python Library Reference, Release 3.2

mmap.rfind(sub[, start[, end]])
Returns the highest index in the object where the subsequence sub is found, such that sub is contained
in the range [start, end]. Optional arguments start and end are interpreted as in slice notation. Returns
-1 on failure.

mmap.seek(pos[, whence])
Set the file’s current position. whence argument is optional and defaults to os.SEEK_SET or 0
(absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the current position)
and os.SEEK_END or 2 (seek relative to the file’s end).

mmap.size()
Return the length of the file, which can be larger than the size of the memory-mapped area.

mmap.tell()
Returns the current position of the file pointer.

mmap.write(bytes)
Write the bytes in bytes into memory at the current position of the file pointer; the file position is
updated to point after the bytes that were written. If the mmap was created with ACCESS_READ, then
writing to it will raise a TypeError exception.

mmap.write_byte(byte)
Write the the integer byte into memory at the current position of the file pointer; the file position
is advanced by 1. If the mmap was created with ACCESS_READ, then writing to it will raise a
TypeError exception.

16.6 readline — GNU readline interface

Platforms: Unix

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly or via the rlcompleter module. Settings made
using this module affect the behaviour of both the interpreter’s interactive prompt and the prompts offered by the
built-in input() function.

Note: On MacOS X the readline module can be implemented using the libedit library instead of GNU
readline.

The configuration file for libedit is different from that of GNU readline. If you programmatically load con-
figuration strings you can check for the text “libedit” in readline.__doc__ to differentiate between GNU
readline and libedit.

The readline module defines the following functions:

readline.parse_and_bind(string)
Parse and execute single line of a readline init file.

readline.get_line_buffer()
Return the current contents of the line buffer.

readline.insert_text(string)
Insert text into the command line.

readline.read_init_file([filename])
Parse a readline initialization file. The default filename is the last filename used.

readline.read_history_file([filename])
Load a readline history file. The default filename is ~/.history.

readline.write_history_file([filename])
Save a readline history file. The default filename is ~/.history.

596 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

readline.clear_history()
Clear the current history. (Note: this function is not available if the installed version of GNU readline
doesn’t support it.)

readline.get_history_length()
Return the desired length of the history file. Negative values imply unlimited history file size.

readline.set_history_length(length)
Set the number of lines to save in the history file. write_history_file() uses this value to truncate
the history file when saving. Negative values imply unlimited history file size.

readline.get_current_history_length()
Return the number of lines currently in the history. (This is different from get_history_length(),
which returns the maximum number of lines that will be written to a history file.)

readline.get_history_item(index)
Return the current contents of history item at index.

readline.remove_history_item(pos)
Remove history item specified by its position from the history.

readline.replace_history_item(pos, line)
Replace history item specified by its position with the given line.

readline.redisplay()
Change what’s displayed on the screen to reflect the current contents of the line buffer.

readline.set_startup_hook([function])
Set or remove the startup_hook function. If function is specified, it will be used as the new startup_hook
function; if omitted or None, any hook function already installed is removed. The startup_hook function is
called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook([function])
Set or remove the pre_input_hook function. If function is specified, it will be used as the new
pre_input_hook function; if omitted or None, any hook function already installed is removed. The
pre_input_hook function is called with no arguments after the first prompt has been printed and just be-
fore readline starts reading input characters.

readline.set_completer([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called
as function(text, state), for state in 0, 1, 2, ..., until it returns a non-string value. It should return
the next possible completion starting with text.

readline.get_completer()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type()
Get the type of completion being attempted.

readline.get_begidx()
Get the beginning index of the readline tab-completion scope.

readline.get_endidx()
Get the ending index of the readline tab-completion scope.

readline.set_completer_delims(string)
Set the readline word delimiters for tab-completion.

readline.get_completer_delims()
Get the readline word delimiters for tab-completion.

readline.set_completion_display_matches_hook([function])
Set or remove the completion display function. If function is specified, it will be used as the new com-
pletion display function; if omitted or None, any completion display function already installed is re-
moved. The completion display function is called as function(substitution, [matches],
longest_match_length) once each time matches need to be displayed.

16.6. readline — GNU readline interface 597

The Python Library Reference, Release 3.2

readline.add_history(line)
Append a line to the history buffer, as if it was the last line typed.

See Also:

Module rlcompleter Completion of Python identifiers at the interactive prompt.

16.6.1 Example

The following example demonstrates how to use the readline module’s history reading and writing functions
to automatically load and save a history file named .pyhist from the user’s home directory. The code below
would normally be executed automatically during interactive sessions from the user’s

PYTHONSTARTUP file.

import os
import readline
histfile = os.path.join(os.environ["HOME"], ".pyhist")
try:

readline.read_history_file(histfile)
except IOError:

pass
import atexit
atexit.register(readline.write_history_file, histfile)
del os, histfile

The following example extends the code.InteractiveConsole class to support history save/restore.

import code
import readline
import atexit
import os

class HistoryConsole(code.InteractiveConsole):
def __init__(self, locals=None, filename="<console>",

histfile=os.path.expanduser("~/.console-history")):
code.InteractiveConsole.__init__(self, locals, filename)
self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read_history_file"):

try:
readline.read_history_file(histfile)

except IOError:
pass

atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.write_history_file(histfile)

16.7 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The rlcompleter module defines a completion function suitable for the readline module by completing
valid Python identifiers and keywords.

598 Chapter 16. Optional Operating System Services

http://svn.python.org/view/python/branches/py3k/Lib/rlcompleter.py?view=markup

The Python Library Reference, Release 3.2

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete() method is set as the readline completer.

Example:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> readline. <TAB PRESSED>
readline.__doc__ readline.get_line_buffer(readline.read_init_file(
readline.__file__ readline.insert_text(readline.set_completer(
readline.__name__ readline.parse_and_bind(
>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. A user can add the following
lines to his or her initialization file (identified by the PYTHONSTARTUP environment variable) to get automatic
Tab completion:

try:
import readline

except ImportError:
print("Module readline not available.")

else:
import rlcompleter
readline.parse_and_bind("tab: complete")

On platforms without readline, the Completer class defined by this module can still be used for custom
purposes.

16.7.1 Completer Objects

Completer objects have the following method:

Completer.complete(text, state)
Return the stateth completion for text.

If called for text that doesn’t include a period character (’.’), it will complete from names currently defined
in __main__, builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not
be evaluated, but it can generate calls to __getattr__()) up to the last part, and find matches for the rest
via the dir() function. Any exception raised during the evaluation of the expression is caught, silenced
and None is returned.

16.8 dummy_threading — Drop-in replacement for the threading
module

Source code: Lib/dummy_threading.py

This module provides a duplicate interface to the threading module. It is meant to be imported when the
_thread module is not provided on a platform.

Suggested usage is:

try:
import threading

except ImportError:
import dummy_threading

16.8. dummy_threading — Drop-in replacement for the threading module 599

http://svn.python.org/view/python/branches/py3k/Lib/dummy_threading.py?view=markup

The Python Library Reference, Release 3.2

Be careful to not use this module where deadlock might occur from a thread being created that blocks waiting for
another thread to be created. This often occurs with blocking I/O.

16.9 _thread — Low-level threading API

This module provides low-level primitives for working with multiple threads (also called light-weight processes or
tasks) — multiple threads of control sharing their global data space. For synchronization, simple locks (also called
mutexes or binary semaphores) are provided. The threading module provides an easier to use and higher-level
threading API built on top of this module.

The module is optional. It is supported on Windows, Linux, SGI IRIX, Solaris 2.x, as well as on systems
that have a POSIX thread (a.k.a. “pthread”) implementation. For systems lacking the _thread module, the
_dummy_thread module is available. It duplicates this module’s interface and can be used as a drop-in replace-
ment.

It defines the following constants and functions:

exception _thread.error
Raised on thread-specific errors.

_thread.LockType
This is the type of lock objects.

_thread.start_new_thread(function, args[, kwargs])
Start a new thread and return its identifier. The thread executes the function function with the argument
list args (which must be a tuple). The optional kwargs argument specifies a dictionary of keyword argu-
ments. When the function returns, the thread silently exits. When the function terminates with an unhandled
exception, a stack trace is printed and then the thread exits (but other threads continue to run).

_thread.interrupt_main()
Raise a KeyboardInterrupt exception in the main thread. A subthread can use this function to interrupt
the main thread.

_thread.exit()
Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

_thread.allocate_lock()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

_thread.get_ident()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread
identifiers may be recycled when a thread exits and another thread is created.

_thread.stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies the
stack size to be used for subsequently created threads, and must be 0 (use platform or configured default)
or a positive integer value of at least 32,768 (32kB). If changing the thread stack size is unsupported, a
ThreadError is raised. If the specified stack size is invalid, a ValueError is raised and the stack
size is unmodified. 32kB is currently the minimum supported stack size value to guarantee sufficient stack
space for the interpreter itself. Note that some platforms may have particular restrictions on values for
the stack size, such as requiring a minimum stack size > 32kB or requiring allocation in multiples of the
system memory page size - platform documentation should be referred to for more information (4kB pages
are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more
specific information). Availability: Windows, systems with POSIX threads.

_thread.TIMEOUT_MAX
The maximum value allowed for the timeout parameter of Lock.acquire(). Specifying a timeout
greater than this value will raise an OverflowError. New in version 3.2.

Lock objects have the following methods:

600 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 3.2

lock.acquire(waitflag=1, timeout=-1)
Without any optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence).

If the integer waitflag argument is present, the action depends on its value: if it is zero, the lock is only
acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as above.

If the floating-point timeout argument is present and positive, it specifies the maximum wait time in seconds
before returning. A negative timeout argument specifies an unbounded wait. You cannot specify a timeout
if waitflag is zero.

The return value is True if the lock is acquired successfully, False if not. Changed in version 3.2: The
timeout parameter is new.Changed in version 3.2: Lock acquires can now be interrupted by signals on
POSIX.

lock.release()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

lock.locked()
Return the status of the lock: True if it has been acquired by some thread, False if not.

In addition to these methods, lock objects can also be used via the with statement, e.g.:

import _thread

a_lock = _thread.allocate_lock()

with a_lock:
print("a_lock is locked while this executes")

Caveats:

• Threads interact strangely with interrupts: the KeyboardInterrupt exception will be received by an
arbitrary thread. (When the signal module is available, interrupts always go to the main thread.)

• Calling sys.exit() or raising the SystemExit exception is equivalent to calling _thread.exit().

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep(), file.read(), select.select()) work as expected.)

• It is not possible to interrupt the acquire() method on a lock — the KeyboardInterrupt exception
will happen after the lock has been acquired.

• When the main thread exits, it is system defined whether the other threads survive. On most systems, they
are killed without executing try ... finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except that try ... finally clauses
are honored), and the standard I/O files are not flushed.

16.10 _dummy_thread — Drop-in replacement for the _thread
module

Source code: Lib/_dummy_thread.py

This module provides a duplicate interface to the _thread module. It is meant to be imported when the
_thread module is not provided on a platform.

Suggested usage is:

16.10. _dummy_thread — Drop-in replacement for the _thread module 601

http://svn.python.org/view/python/branches/py3k/Lib/_dummy_thread.py?view=markup

The Python Library Reference, Release 3.2

try:
import _thread

except ImportError:
import dummy_thread as _thread

Be careful to not use this module where deadlock might occur from a thread being created that blocks waiting for
another thread to be created. This often occurs with blocking I/O.

602 Chapter 16. Optional Operating System Services

CHAPTER

SEVENTEEN

INTERPROCESS COMMUNICATION
AND NETWORKING

The modules described in this chapter provide mechanisms for different processes to communicate.

Some modules only work for two processes that are on the same machine, e.g. signal and subprocess. Other
modules support networking protocols that two or more processes can used to communicate across machines.

The list of modules described in this chapter is:

17.1 subprocess — Subprocess management

The subprocess module allows you to spawn new processes, connect to their input/output/error pipes, and
obtain their return codes. This module intends to replace several other, older modules and functions, such as:

os.system
os.spawn*

Information about how the subprocess module can be used to replace these modules and functions can be
found in the following sections.

See Also:

PEP 324 – PEP proposing the subprocess module

17.1.1 Using the subprocess Module

This module defines one class called Popen:

class subprocess.Popen(args, bufsize=0, executable=None, stdin=None, stdout=None,
stderr=None, preexec_fn=None, close_fds=True, shell=False, cwd=None,
env=None, universal_newlines=False, startupinfo=None, creationflags=0,
restore_signals=True, start_new_session=False, pass_fds=())

Arguments are:

args should be a string, or a sequence of program arguments. The program to execute is normally the first
item in the args sequence or the string if a string is given, but can be explicitly set by using the executable
argument. When executable is given, the first item in the args sequence is still treated by most programs as
the command name, which can then be different from the actual executable name. On Unix, it becomes the
display name for the executing program in utilities such as ps.

On Unix, with shell=False (default): In this case, the Popen class uses os.execvp() like behavior to
execute the child program. args should normally be a sequence. If a string is specified for args, it will be
used as the name or path of the program to execute; this will only work if the program is being given no
arguments.

603

http://www.python.org/dev/peps/pep-0324

The Python Library Reference, Release 3.2

Note: shlex.split() can be useful when determining the correct tokenization for args, especially in
complex cases:

>>> import shlex, subprocess
>>> command_line = input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo ’$MONEY’"
>>> args = shlex.split(command_line)
>>> print(args)
[’/bin/vikings’, ’-input’, ’eggs.txt’, ’-output’, ’spam spam.txt’, ’-cmd’, "echo ’$MONEY’"]
>>> p = subprocess.Popen(args) # Success!

Note in particular that options (such as -input) and arguments (such as eggs.txt) that are separated by whites-
pace in the shell go in separate list elements, while arguments that need quoting or backslash escaping when
used in the shell (such as filenames containing spaces or the echo command shown above) are single list
elements.

On Unix, with shell=True: If args is a string, it specifies the command string to execute through the shell.
This means that the string must be formatted exactly as it would be when typed at the shell prompt. This
includes, for example, quoting or backslash escaping filenames with spaces in them. If args is a sequence,
the first item specifies the command string, and any additional items will be treated as additional arguments
to the shell itself. That is to say, Popen does the equivalent of:

Popen([’/bin/sh’, ’-c’, args[0], args[1], ...])

Warning: Executing shell commands that incorporate unsanitized input from an untrusted source
makes a program vulnerable to shell injection, a serious security flaw which can result in arbitrary
command execution. For this reason, the use of shell=True is strongly discouraged in cases where the
command string is constructed from external input:

>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...

shell=False does not suffer from this vulnerability; the above Note may be helpful in getting code using
shell=False to work.

On Windows: the Popen class uses CreateProcess() to execute the child program, which operates on strings.
If args is a sequence, it will be converted to a string using the list2cmdline() method. Please note
that not all MS Windows applications interpret the command line the same way: list2cmdline() is
designed for applications using the same rules as the MS C runtime.

bufsize, if given, has the same meaning as the corresponding argument to the built-in open() function: 0
means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negative bufsize means to use the system default, which usually means fully buffered. The
default value for bufsize is 0 (unbuffered).

Note: If you experience performance issues, it is recommended that you try to enable buffering by setting
bufsize to either -1 or a large enough positive value (such as 4096).

The executable argument specifies the program to execute. It is very seldom needed: Usually, the program
to execute is defined by the args argument. If shell=True, the executable argument specifies which shell
to use. On Unix, the default shell is /bin/sh. On Windows, the default shell is specified by the COMSPEC
environment variable. The only reason you would need to specify shell=True on Windows is where the
command you wish to execute is actually built in to the shell, eg dir, copy. You don’t need shell=True
to run a batch file, nor to run a console-based executable.

604 Chapter 17. Interprocess Communication and Networking

http://en.wikipedia.org/wiki/Shell_injection#Shell_injection

The Python Library Reference, Release 3.2

stdin, stdout and stderr specify the executed programs’ standard input, standard output and standard error
file handles, respectively. Valid values are PIPE, an existing file descriptor (a positive integer), an existing
file object, and None. PIPE indicates that a new pipe to the child should be created. With None, no
redirection will occur; the child’s file handles will be inherited from the parent. Additionally, stderr can be
STDOUT, which indicates that the stderr data from the applications should be captured into the same file
handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the child process just before the child is
executed. (Unix only)

Warning: The preexec_fn parameter is not safe to use in the presence of threads in your application.
The child process could deadlock before exec is called. If you must use it, keep it trivial! Minimize the
number of libraries you call into.

Note: If you need to modify the environment for the child use the env parameter rather than doing it in a
preexec_fn. The start_new_session parameter can take the place of a previously common use of preexec_fn
to call os.setsid() in the child.

If close_fds is true, all file descriptors except 0, 1 and 2 will be closed before the child process is exe-
cuted. (Unix only). The default varies by platform: Always true on Unix. On Windows it is true when
stdin/stdout/stderr are None, false otherwise. On Windows, if close_fds is true then no handles will be
inherited by the child process. Note that on Windows, you cannot set close_fds to true and also redirect the
standard handles by setting stdin, stdout or stderr. Changed in version 3.2: The default for close_fds was
changed from False to what is described above. pass_fds is an optional sequence of file descriptors to
keep open between the parent and child. Providing any pass_fds forces close_fds to be True. (Unix only)
New in version 3.2: The pass_fds parameter was added. If cwd is not None, the child’s current directory
will be changed to cwd before it is executed. Note that this directory is not considered when searching the
executable, so you can’t specify the program’s path relative to cwd.

If restore_signals is True (the default) all signals that Python has set to SIG_IGN are restored to SIG_DFL
in the child process before the exec. Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals.
(Unix only) Changed in version 3.2: restore_signals was added. If start_new_session is True the setsid()
system call will be made in the child process prior to the execution of the subprocess. (Unix only) Changed
in version 3.2: start_new_session was added. If env is not None, it must be a mapping that defines the
environment variables for the new process; these are used instead of the default behavior of inheriting the
current process’ environment.

Note: If specified, env must provide any variables required for the program to execute. On Windows, in
order to run a side-by-side assembly the specified env must include a valid SystemRoot.

If universal_newlines is True, the file objects stdout and stderr are opened as text files, but lines may
be terminated by any of ’\n’, the Unix end-of-line convention, ’\r’, the old Macintosh convention or
’\r\n’, the Windows convention. All of these external representations are seen as ’\n’ by the Python
program.

Note: This feature is only available if Python is built with universal newline support (the default).
Also, the newlines attribute of the file objects stdout, stdin and stderr are not updated by the
communicate() method.

The startupinfo and creationflags, if given, will be passed to the underlying CreateProcess() function. They
can specify things such as appearance of the main window and priority for the new process. (Windows only)

Popen objects are supported as context managers via the with statement, closing any open file descriptors
on exit.

with Popen(["ifconfig"], stdout=PIPE) as proc:
log.write(proc.stdout.read())

17.1. subprocess — Subprocess management 605

http://en.wikipedia.org/wiki/Side-by-Side_Assembly

The Python Library Reference, Release 3.2

Changed in version 3.2: Added context manager support.

subprocess.PIPE
Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that a pipe to
the standard stream should be opened.

subprocess.STDOUT
Special value that can be used as the stderr argument to Popen and indicates that standard error should go
into the same handle as standard output.

Convenience Functions

This module also defines four shortcut functions:

subprocess.call(*popenargs, **kwargs)
Run command with arguments. Wait for command to complete, then return the returncode attribute.

The arguments are the same as for the Popen constructor. Example:

>>> retcode = subprocess.call(["ls", "-l"])

Warning: Like Popen.wait(), this will deadlock when using stdout=PIPE and/or
stderr=PIPE and the child process generates enough output to a pipe such that it blocks waiting
for the OS pipe buffer to accept more data.

subprocess.check_call(*popenargs, **kwargs)
Run command with arguments. Wait for command to complete. If the exit code was zero then return,
otherwise raise CalledProcessError. The CalledProcessError object will have the return code
in the returncode attribute.

The arguments are the same as for the Popen constructor. Example:

>>> subprocess.check_call(["ls", "-l"])
0

Warning: See the warning for call().

subprocess.check_output(*popenargs, **kwargs)
Run command with arguments and return its output as a byte string.

If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object
will have the return code in the returncode attribute and output in the output attribute.

The arguments are the same as for the Popen constructor. Example:

>>> subprocess.check_output(["ls", "-l", "/dev/null"])
b’crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n’

The stdout argument is not allowed as it is used internally. To capture standard error in the result, use
stderr=subprocess.STDOUT:

>>> subprocess.check_output(
... ["/bin/sh", "-c", "ls non_existent_file; exit 0"],
... stderr=subprocess.STDOUT)
b’ls: non_existent_file: No such file or directory\n’

New in version 3.1.

606 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

subprocess.getstatusoutput(cmd)
Return (status, output) of executing cmd in a shell.

Execute the string cmd in a shell with os.popen() and return a 2-tuple (status, output). cmd is
actually run as { cmd ; } 2>&1, so that the returned output will contain output or error messages. A
trailing newline is stripped from the output. The exit status for the command can be interpreted according
to the rules for the C function wait(). Example:

>>> subprocess.getstatusoutput(’ls /bin/ls’)
(0, ’/bin/ls’)
>>> subprocess.getstatusoutput(’cat /bin/junk’)
(256, ’cat: /bin/junk: No such file or directory’)
>>> subprocess.getstatusoutput(’/bin/junk’)
(256, ’sh: /bin/junk: not found’)

Availability: UNIX.

subprocess.getoutput(cmd)
Return output (stdout and stderr) of executing cmd in a shell.

Like getstatusoutput(), except the exit status is ignored and the return value is a string containing
the command’s output. Example:

>>> subprocess.getoutput(’ls /bin/ls’)
’/bin/ls’

Availability: UNIX.

Exceptions

Exceptions raised in the child process, before the new program has started to execute, will be re-raised in the
parent. Additionally, the exception object will have one extra attribute called child_traceback, which is a
string containing traceback information from the child’s point of view.

The most common exception raised is OSError. This occurs, for example, when trying to execute a non-existent
file. Applications should prepare for OSError exceptions.

A ValueError will be raised if Popen is called with invalid arguments.

check_call() will raise CalledProcessError, if the called process returns a non-zero return code.

Security

Unlike some other popen functions, this implementation will never call /bin/sh implicitly. This means that all
characters, including shell metacharacters, can safely be passed to child processes.

17.1.2 Popen Objects

Instances of the Popen class have the following methods:

Popen.poll()
Check if child process has terminated. Set and return returncode attribute.

Popen.wait()
Wait for child process to terminate. Set and return returncode attribute.

Warning: This will deadlock when using stdout=PIPE and/or stderr=PIPE and the child pro-
cess generates enough output to a pipe such that it blocks waiting for the OS pipe buffer to accept more
data. Use communicate() to avoid that.

17.1. subprocess — Subprocess management 607

The Python Library Reference, Release 3.2

Popen.communicate(input=None)
Interact with process: Send data to stdin. Read data from stdout and stderr, until end-of-file is reached. Wait
for process to terminate. The optional input argument should be a byte string to be sent to the child process,
or None, if no data should be sent to the child.

communicate() returns a tuple (stdoutdata, stderrdata).

Note that if you want to send data to the process’s stdin, you need to create the Popen object with
stdin=PIPE. Similarly, to get anything other than None in the result tuple, you need to give
stdout=PIPE and/or stderr=PIPE too.

Note: The data read is buffered in memory, so do not use this method if the data size is large or unlimited.

Popen.send_signal(signal)
Sends the signal signal to the child.

Note: On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a creationflags parameter which includes
CREATE_NEW_PROCESS_GROUP.

Popen.terminate()
Stop the child. On Posix OSs the method sends SIGTERM to the child. On Windows the Win32 API
function TerminateProcess() is called to stop the child.

Popen.kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child. On Windows kill() is an alias
for terminate().

The following attributes are also available:

Warning: Use communicate() rather than .stdin.write, .stdout.read or .stderr.read to
avoid deadlocks due to any of the other OS pipe buffers filling up and blocking the child process.

Popen.stdin
If the stdin argument was PIPE, this attribute is a file object that provides input to the child process. Other-
wise, it is None.

Popen.stdout
If the stdout argument was PIPE, this attribute is a file object that provides output from the child process.
Otherwise, it is None.

Popen.stderr
If the stderr argument was PIPE, this attribute is a file object that provides error output from the child
process. Otherwise, it is None.

Popen.pid
The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID of the spawned shell.

Popen.returncode
The child return code, set by poll() and wait() (and indirectly by communicate()). A None value
indicates that the process hasn’t terminated yet.

A negative value -N indicates that the child was terminated by signal N (Unix only).

17.1.3 Replacing Older Functions with the subprocess Module

In this section, “a ==> b” means that b can be used as a replacement for a.

608 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

Note: All functions in this section fail (more or less) silently if the executed program cannot be found; this
module raises an OSError exception.

In the following examples, we assume that the subprocess module is imported with “from subprocess import *”.

Replacing /bin/sh shell backquote

output=‘mycmd myarg‘
==>
output = Popen(["mycmd", "myarg"], stdout=PIPE).communicate()[0]

Replacing shell pipeline

output=‘dmesg | grep hda‘
==>
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.
output = p2.communicate()[0]

The p1.stdout.close() call after starting the p2 is important in order for p1 to receive a SIGPIPE if p2 exits before
p1.

Replacing os.system()

sts = os.system("mycmd" + " myarg")
==>
p = Popen("mycmd" + " myarg", shell=True)
sts = os.waitpid(p.pid, 0)[1]

Notes:

• Calling the program through the shell is usually not required.

• It’s easier to look at the returncode attribute than the exit status.

A more realistic example would look like this:

try:
retcode = call("mycmd" + " myarg", shell=True)
if retcode < 0:

print("Child was terminated by signal", -retcode, file=sys.stderr)
else:

print("Child returned", retcode, file=sys.stderr)
except OSError as e:

print("Execution failed:", e, file=sys.stderr)

Replacing the os.spawn family

P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])

17.1. subprocess — Subprocess management 609

The Python Library Reference, Release 3.2

Vector example:

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

Replacing os.popen(), os.popen2(), os.popen3()

(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,
child_stdout,
child_stderr) = os.popen3(cmd, mode, bufsize)

==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
child_stdout,
child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

Return code handling translates as follows:

pipe = os.popen(cmd, ’w’)
...
rc = pipe.close()
if rc is not None and rc >> 8:

print("There were some errors")
==>
process = Popen(cmd, ’w’, stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:

print("There were some errors")

Replacing functions from the popen2 module

Note: If the cmd argument to popen2 functions is a string, the command is executed through /bin/sh. If it is a list,
the command is directly executed.

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen(["somestring"], shell=True, bufsize=bufsize,

610 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

popen2.Popen3 and popen2.Popen4 basically work as subprocess.Popen, except that:

• Popen raises an exception if the execution fails.

• the capturestderr argument is replaced with the stderr argument.

• stdin=PIPE and stdout=PIPE must be specified.

• popen2 closes all file descriptors by default, but you have to specify close_fds=True with Popen to
guarantee this behavior on all platforms or past Python versions.

17.2 socket — Low-level networking interface

This module provides access to the BSD socket interface. It is available on all modern Unix systems, Windows,
MacOS, OS/2, and probably additional platforms.

Note: Some behavior may be platform dependent, since calls are made to the operating system socket APIs.

The Python interface is a straightforward transliteration of the Unix system call and library interface for sockets
to Python’s object-oriented style: the socket() function returns a socket object whose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interface: as with read()
and write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length
is implicit on send operations.

See Also:

Module socketserver Classes that simplify writing network servers.

Module ssl A TLS/SSL wrapper for socket objects.

17.2.1 Socket families

Depending on the system and the build options, various socket families are supported by this module.

Socket addresses are represented as follows:

• A single string is used for the AF_UNIX address family.

• A pair (host, port) is used for the AF_INET address family, where host is a string represent-
ing either a hostname in Internet domain notation like ’daring.cwi.nl’ or an IPv4 address like
’100.50.200.5’, and port is an integral port number.

• For AF_INET6 address family, a four-tuple (host, port, flowinfo, scopeid) is used, where
flowinfo and scopeid represent the sin6_flowinfo and sin6_scope_id members in struct
sockaddr_in6 in C. For socket module methods, flowinfo and scopeid can be omitted just for back-
ward compatibility. Note, however, omission of scopeid can cause problems in manipulating scoped IPv6
addresses.

• AF_NETLINK sockets are represented as pairs (pid, groups).

• Linux-only support for TIPC is available using the AF_TIPC address family. TIPC is an open, non-IP
based networked protocol designed for use in clustered computer environments. Addresses are represented

17.2. socket — Low-level networking interface 611

The Python Library Reference, Release 3.2

by a tuple, and the fields depend on the address type. The general tuple form is (addr_type, v1, v2,
v3 [, scope]), where:

– addr_type is one of TIPC_ADDR_NAMESEQ, TIPC_ADDR_NAME, or TIPC_ADDR_ID.

– scope is one of TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, and TIPC_NODE_SCOPE.

– If addr_type is TIPC_ADDR_NAME, then v1 is the server type, v2 is the port identifier, and v3 should
be 0.

If addr_type is TIPC_ADDR_NAMESEQ, then v1 is the server type, v2 is the lower port number, and
v3 is the upper port number.

If addr_type is TIPC_ADDR_ID, then v1 is the node, v2 is the reference, and v3 should be set to 0.

If addr_type is TIPC_ADDR_ID, then v1 is the node, v2 is the reference, and v3 should be set to 0.

• Certain other address families (AF_BLUETOOTH, AF_PACKET) support specific representations.

For IPv4 addresses, two special forms are accepted instead of a host address: the empty string represents
INADDR_ANY, and the string ’<broadcast>’ represents INADDR_BROADCAST. This behavior is not com-
patible with IPv6, therefore, you may want to avoid these if you intend to support IPv6 with your Python programs.

If you use a hostname in the host portion of IPv4/v6 socket address, the program may show a nondeterministic
behavior, as Python uses the first address returned from the DNS resolution. The socket address will be resolved
differently into an actual IPv4/v6 address, depending on the results from DNS resolution and/or the host configu-
ration. For deterministic behavior use a numeric address in host portion.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can
be raised; errors related to socket or address semantics raise socket.error or one of its subclasses.

Non-blocking mode is supported through setblocking(). A generalization of this based on timeouts is sup-
ported through settimeout().

17.2.2 Module contents

The module socket exports the following constants and functions:

exception socket.error
This exception is raised for socket-related errors. The accompanying value is either a string telling what

went wrong or a pair (errno, string) representing an error returned by a system call, similar to the
value accompanying os.error. See the module errno, which contains names for the error codes defined
by the underlying operating system.

exception socket.herror
This exception is raised for address-related errors, i.e. for functions that use h_errno in the C API, including
gethostbyname_ex() and gethostbyaddr().

The accompanying value is a pair (h_errno, string) representing an error returned by a library call.
string represents the description of h_errno, as returned by the hstrerror() C function.

exception socket.gaierror
This exception is raised for address-related errors, for getaddrinfo() and getnameinfo(). The
accompanying value is a pair (error, string) representing an error returned by a library call. string
represents the description of error, as returned by the gai_strerror() C function. The error value will
match one of the EAI_* constants defined in this module.

exception socket.timeout
This exception is raised when a timeout occurs on a socket which has had timeouts enabled via a prior call
to settimeout(). The accompanying value is a string whose value is currently always “timed out”.

socket.AF_UNIX
socket.AF_INET
socket.AF_INET6

These constants represent the address (and protocol) families, used for the first argument to socket(). If

612 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

the AF_UNIX constant is not defined then this protocol is unsupported. More constants may be available
depending on the system.

socket.SOCK_STREAM
socket.SOCK_DGRAM
socket.SOCK_RAW
socket.SOCK_RDM
socket.SOCK_SEQPACKET

These constants represent the socket types, used for the second argument to socket(). More constants
may be available depending on the system. (Only SOCK_STREAM and SOCK_DGRAM appear to be gener-
ally useful.)

socket.SOCK_CLOEXEC
socket.SOCK_NONBLOCK

These two constants, if defined, can be combined with the socket types and allow you to set some flags
atomically (thus avoiding possible race conditions and the need for separate calls).

See Also:

Secure File Descriptor Handling for a more thorough explanation.

Availability: Linux >= 2.6.27. New in version 3.2.

SO_*
socket.SOMAXCONN
MSG_*
SOL_*
IPPROTO_*
IPPORT_*
INADDR_*
IP_*
IPV6_*
EAI_*
AI_*
NI_*
TCP_*

Many constants of these forms, documented in the Unix documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to the setsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the Unix
header files are defined; for a few symbols, default values are provided.

SIO_*
RCVALL_*

Constants for Windows’ WSAIoctl(). The constants are used as arguments to the ioctl() method of
socket objects.

TIPC_*
TIPC related constants, matching the ones exported by the C socket API. See the TIPC documentation for
more information.

socket.has_ipv6
This constant contains a boolean value which indicates if IPv6 is supported on this platform.

socket.create_connection(address[, timeout[, source_address]])
Convenience function. Connect to address (a 2-tuple (host, port)), and return the socket object. Pass-
ing the optional timeout parameter will set the timeout on the socket instance before attempting to connect.
If no timeout is supplied, the global default timeout setting returned by getdefaulttimeout() is used.

If supplied, source_address must be a 2-tuple (host, port) for the socket to bind to as its source address
before connecting. If host or port are ‘’ or 0 respectively the OS default behavior will be used. Changed in
version 3.2: source_address was added.Changed in version 3.2: support for the with statement was added.

socket.getaddrinfo(host, port, family=0, type=0, proto=0, flags=0)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for

17.2. socket — Low-level networking interface 613

http://udrepper.livejournal.com/20407.html

The Python Library Reference, Release 3.2

creating a socket connected to that service. host is a domain name, a string representation of an IPv4/v6
address or None. port is a string service name such as ’http’, a numeric port number or None. By
passing None as the value of host and port, you can pass NULL to the underlying C API.

The family, type and proto arguments can be optionally specified in order to narrow the list of addresses
returned. Passing zero as a value for each of these arguments selects the full range of results. The flags
argument can be one or several of the AI_* constants, and will influence how results are computed and
returned. For example, AI_NUMERICHOST will disable domain name resolution and will raise an error if
host is a domain name.

The function returns a list of 5-tuples with the following structure:

(family, type, proto, canonname, sockaddr)

In these tuples, family, type, proto are all integers and are meant to be passed to the socket() func-
tion. canonname will be a string representing the canonical name of the host if AI_CANONNAME is
part of the flags argument; else canonname will be empty. sockaddr is a tuple describing a socket ad-
dress, whose format depends on the returned family (a (address, port) 2-tuple for AF_INET, a
(address, port, flow info, scope id) 4-tuple for AF_INET6), and is meant to be passed
to the socket.connect() method.

The following example fetches address information for a hypothetical TCP connection to
www.python.org on port 80 (results may differ on your system if IPv6 isn’t enabled):

>>> socket.getaddrinfo("www.python.org", 80, proto=socket.SOL_TCP)
[(2, 1, 6, ’’, (’82.94.164.162’, 80)),
(10, 1, 6, ’’, (’2001:888:2000:d::a2’, 80, 0, 0))]

Changed in version 3.2: parameters can now be passed as single keyword arguments.

socket.getfqdn([name])
Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as the local host.
To find the fully qualified name, the hostname returned by gethostbyaddr() is checked, followed by
aliases for the host, if available. The first name which includes a period is selected. In case no fully qualified
domain name is available, the hostname as returned by gethostname() is returned.

socket.gethostbyname(hostname)
Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as
’100.50.200.5’. If the host name is an IPv4 address itself it is returned unchanged. See
gethostbyname_ex() for a more complete interface. gethostbyname() does not support IPv6
name resolution, and getaddrinfo() should be used instead for IPv4/v6 dual stack support.

socket.gethostbyname_ex(hostname)
Translate a host name to IPv4 address format, extended interface. Return a triple (hostname,
aliaslist, ipaddrlist) where hostname is the primary host name responding to the given
ip_address, aliaslist is a (possibly empty) list of alternative host names for the same address, and ipaddrlist
is a list of IPv4 addresses for the same interface on the same host (often but not always a single address).
gethostbyname_ex() does not support IPv6 name resolution, and getaddrinfo() should be used
instead for IPv4/v6 dual stack support.

socket.gethostname()
Return a string containing the hostname of the machine where the Python interpreter is currently executing.

If you want to know the current machine’s IP address, you may want to use
gethostbyname(gethostname()). This operation assumes that there is a valid address-to-host
mapping for the host, and the assumption does not always hold.

Note: gethostname() doesn’t always return the fully qualified domain name; use getfqdn() (see
above).

socket.gethostbyaddr(ip_address)
Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name
responding to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same
address, and ipaddrlist is a list of IPv4/v6 addresses for the same interface on the same host (most likely

614 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

containing only a single address). To find the fully qualified domain name, use the function getfqdn().
gethostbyaddr() supports both IPv4 and IPv6.

socket.getnameinfo(sockaddr, flags)
Translate a socket address sockaddr into a 2-tuple (host, port). Depending on the settings of flags,
the result can contain a fully-qualified domain name or numeric address representation in host. Similarly,
port can contain a string port name or a numeric port number.

socket.getprotobyname(protocolname)
Translate an Internet protocol name (for example, ’icmp’) to a constant suitable for passing as the (op-
tional) third argument to the socket() function. This is usually only needed for sockets opened in “raw”
mode (SOCK_RAW); for the normal socket modes, the correct protocol is chosen automatically if the proto-
col is omitted or zero.

socket.getservbyname(servicename[, protocolname])
Translate an Internet service name and protocol name to a port number for that service. The optional
protocol name, if given, should be ’tcp’ or ’udp’, otherwise any protocol will match.

socket.getservbyport(port[, protocolname])
Translate an Internet port number and protocol name to a service name for that service. The optional
protocol name, if given, should be ’tcp’ or ’udp’, otherwise any protocol will match.

socket.socket([family[, type[, proto]]])
Create a new socket using the given address family, socket type and protocol number. The address family
should be AF_INET (the default), AF_INET6 or AF_UNIX. The socket type should be SOCK_STREAM
(the default), SOCK_DGRAM or perhaps one of the other SOCK_ constants. The protocol number is usually
zero and may be omitted in that case.

socket.socketpair([family[, type[, proto]]])
Build a pair of connected socket objects using the given address family, socket type, and protocol number.
Address family, socket type, and protocol number are as for the socket() function above. The default
family is AF_UNIX if defined on the platform; otherwise, the default is AF_INET. Availability: Unix.
Changed in version 3.2: The returned socket objects now support the whole socket API, rather than a
subset.

socket.fromfd(fd, family, type[, proto])
Duplicate the file descriptor fd (an integer as returned by a file object’s fileno() method) and build a
socket object from the result. Address family, socket type and protocol number are as for the socket()
function above. The file descriptor should refer to a socket, but this is not checked — subsequent operations
on the object may fail if the file descriptor is invalid. This function is rarely needed, but can be used to get
or set socket options on a socket passed to a program as standard input or output (such as a server started by
the Unix inet daemon). The socket is assumed to be in blocking mode.

socket.ntohl(x)
Convert 32-bit positive integers from network to host byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.ntohs(x)
Convert 16-bit positive integers from network to host byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

socket.htonl(x)
Convert 32-bit positive integers from host to network byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.htons(x)
Convert 16-bit positive integers from host to network byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

socket.inet_aton(ip_string)
Convert an IPv4 address from dotted-quad string format (for example, ‘123.45.67.89’) to 32-bit packed
binary format, as a bytes object four characters in length. This is useful when conversing with a program
that uses the standard C library and needs objects of type struct in_addr, which is the C type for the
32-bit packed binary this function returns.

17.2. socket — Low-level networking interface 615

The Python Library Reference, Release 3.2

inet_aton() also accepts strings with less than three dots; see the Unix manual page inet(3) for
details.

If the IPv4 address string passed to this function is invalid, socket.error will be raised. Note that
exactly what is valid depends on the underlying C implementation of inet_aton().

inet_aton() does not support IPv6, and inet_pton() should be used instead for IPv4/v6 dual stack
support.

socket.inet_ntoa(packed_ip)
Convert a 32-bit packed IPv4 address (a bytes object four characters in length) to its standard dotted-quad
string representation (for example, ‘123.45.67.89’). This is useful when conversing with a program that
uses the standard C library and needs objects of type struct in_addr, which is the C type for the
32-bit packed binary data this function takes as an argument.

If the byte sequence passed to this function is not exactly 4 bytes in length, socket.error will be raised.
inet_ntoa() does not support IPv6, and inet_ntop() should be used instead for IPv4/v6 dual stack
support.

socket.inet_pton(address_family, ip_string)
Convert an IP address from its family-specific string format to a packed, binary format. inet_pton()
is useful when a library or network protocol calls for an object of type struct in_addr (similar to
inet_aton()) or struct in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the IP address string
ip_string is invalid, socket.error will be raised. Note that exactly what is valid depends on both the
value of address_family and the underlying implementation of inet_pton().

Availability: Unix (maybe not all platforms).

socket.inet_ntop(address_family, packed_ip)
Convert a packed IP address (a bytes object of some number of characters) to its standard, family-specific
string representation (for example, ’7.10.0.5’ or ’5aef:2b::8’). inet_ntop() is useful when a
library or network protocol returns an object of type struct in_addr (similar to inet_ntoa()) or
struct in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the string packed_ip is
not the correct length for the specified address family, ValueError will be raised. A socket.error is
raised for errors from the call to inet_ntop().

Availability: Unix (maybe not all platforms).

socket.getdefaulttimeout()
Return the default timeout in floating seconds for new socket objects. A value of None indicates that new
socket objects have no timeout. When the socket module is first imported, the default is None.

socket.setdefaulttimeout(timeout)
Set the default timeout in floating seconds for new socket objects. When the socket module is first imported,
the default is None. See settimeout() for possible values and their respective meanings.

socket.SocketType
This is a Python type object that represents the socket object type. It is the same as type(socket(...)).

17.2.3 Socket Objects

Socket objects have the following methods. Except for makefile() these correspond to Unix system calls
applicable to sockets.

socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return
value is a pair (conn, address) where conn is a new socket object usable to send and receive data on
the connection, and address is the address bound to the socket on the other end of the connection.

616 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

socket.bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends on the
address family — see above.)

socket.close()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more
data (after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

Note: close() releases the resource associated with a connection but does not necessarily close the
connection immediately. If you want to close the connection in a timely fashion, call shutdown() before
close().

socket.connect(address)
Connect to a remote socket at address. (The format of address depends on the address family — see above.)

socket.connect_ex(address)
Like connect(address), but return an error indicator instead of raising an exception for errors returned
by the C-level connect() call (other problems, such as “host not found,” can still raise exceptions). The
error indicator is 0 if the operation succeeded, otherwise the value of the errno variable. This is useful to
support, for example, asynchronous connects.

socket.detach()
Put the socket object into closed state without actually closing the underlying file descriptor. The file
descriptor is returned, and can be reused for other purposes. New in version 3.2.

socket.fileno()
Return the socket’s file descriptor (a small integer). This is useful with select.select().

Under Windows the small integer returned by this method cannot be used where a file descriptor can be
used (such as os.fdopen()). Unix does not have this limitation.

socket.getpeername()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address family —
see above.) On some systems this function is not supported.

socket.getsockname()
Return the socket’s own address. This is useful to find out the port number of an IPv4/v6 socket, for instance.
(The format of the address returned depends on the address family — see above.)

socket.getsockopt(level, optname[, buflen])
Return the value of the given socket option (see the Unix man page getsockopt(2)). The needed
symbolic constants (SO_* etc.) are defined in this module. If buflen is absent, an integer option is assumed
and its integer value is returned by the function. If buflen is present, it specifies the maximum length of
the buffer used to receive the option in, and this buffer is returned as a bytes object. It is up to the caller to
decode the contents of the buffer (see the optional built-in module struct for a way to decode C structures
encoded as byte strings).

socket.gettimeout()
Return the timeout in floating seconds associated with socket operations, or None if no timeout is set. This
reflects the last call to setblocking() or settimeout().

socket.ioctl(control, option)

Platform Windows

The ioctl() method is a limited interface to the WSAIoctl system interface. Please refer to the Win32
documentation for more information.

On other platforms, the generic fcntl.fcntl() and fcntl.ioctl() functions may be used; they
accept a socket object as their first argument.

socket.listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number of queued

17.2. socket — Low-level networking interface 617

http://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx

The Python Library Reference, Release 3.2

connections and should be at least 1; the maximum value is system-dependent (usually 5).

socket.makefile(mode=’r’, buffering=None, *, encoding=None, errors=None, newline=None)
Return a file object associated with the socket. The exact returned type depends on the arguments given to
makefile(). These arguments are interpreted the same way as by the built-in open() function.

Closing the file object won’t close the socket unless there are no remaining references to the socket. The
socket must be in blocking mode; it can have a timeout, but the file object’s internal buffer may end up in a
inconsistent state if a timeout occurs.

Note: On Windows, the file-like object created by makefile() cannot be used where a file object with
a file descriptor is expected, such as the stream arguments of subprocess.Popen().

socket.recv(bufsize[, flags])
Receive data from the socket. The return value is a bytes object representing the data received. The max-
imum amount of data to be received at once is specified by bufsize. See the Unix manual page recv(2)
for the meaning of the optional argument flags; it defaults to zero.

Note: For best match with hardware and network realities, the value of bufsize should be a relatively small
power of 2, for example, 4096.

socket.recvfrom(bufsize[, flags])
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes
object representing the data received and address is the address of the socket sending the data. See the Unix
manual page recv(2) for the meaning of the optional argument flags; it defaults to zero. (The format of
address depends on the address family — see above.)

socket.recvfrom_into(buffer[, nbytes[, flags]])
Receive data from the socket, writing it into buffer instead of creating a new bytestring. The return value is
a pair (nbytes, address) where nbytes is the number of bytes received and address is the address of
the socket sending the data. See the Unix manual page recv(2) for the meaning of the optional argument
flags; it defaults to zero. (The format of address depends on the address family — see above.)

socket.recv_into(buffer[, nbytes[, flags]])
Receive up to nbytes bytes from the socket, storing the data into a buffer rather than creating a new
bytestring. If nbytes is not specified (or 0), receive up to the size available in the given buffer. Returns
the number of bytes received. See the Unix manual page recv(2) for the meaning of the optional argu-
ment flags; it defaults to zero.

socket.send(bytes[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Returns the number of bytes sent. Applications are responsible
for checking that all data has been sent; if only some of the data was transmitted, the application needs to
attempt delivery of the remaining data.

socket.sendall(bytes[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Unlike send(), this method continues to send data from bytes
until either all data has been sent or an error occurs. None is returned on success. On error, an exception is
raised, and there is no way to determine how much data, if any, was successfully sent.

socket.sendto(bytes[, flags], address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified by address. The optional flags argument has the same meaning as for recv() above. Return
the number of bytes sent. (The format of address depends on the address family — see above.)

socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to
blocking mode.

This method is a shorthand for certain settimeout() calls:

618 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

•sock.setblocking(True) is equivalent to sock.settimeout(None)

•sock.setblocking(False) is equivalent to sock.settimeout(0.0)

socket.settimeout(value)
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point
number expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise
a timeout exception if the timeout period value has elapsed before the operation has completed. If zero
is given, the socket is put in non-blocking mode. If None is given, the socket is put in blocking mode.

For further information, please consult the notes on socket timeouts.

socket.setsockopt(level, optname, value)
Set the value of the given socket option (see the Unix manual page setsockopt(2)). The needed

symbolic constants are defined in the socket module (SO_* etc.). The value can be an integer or a bytes
object representing a buffer. In the latter case it is up to the caller to ensure that the bytestring contains the
proper bits (see the optional built-in module struct for a way to encode C structures as bytestrings).

socket.shutdown(how)
Shut down one or both halves of the connection. If how is SHUT_RD, further receives are disallowed.
If how is SHUT_WR, further sends are disallowed. If how is SHUT_RDWR, further sends and receives
are disallowed. Depending on the platform, shutting down one half of the connection can also close the
opposite half (e.g. on Mac OS X, shutdown(SHUT_WR) does not allow further reads on the other end of
the connection).

Note that there are no methods read() or write(); use recv() and send() without flags argument instead.

Socket objects also have these (read-only) attributes that correspond to the values given to the socket constructor.

socket.family
The socket family.

socket.type
The socket type.

socket.proto
The socket protocol.

17.2.4 Notes on socket timeouts

A socket object can be in one of three modes: blocking, non-blocking, or timeout. Sockets are by default always
created in blocking mode, but this can be changed by calling setdefaulttimeout().

• In blocking mode, operations block until complete or the system returns an error (such as connection timed
out).

• In non-blocking mode, operations fail (with an error that is unfortunately system-dependent) if they cannot
be completed immediately: functions from the select can be used to know when and whether a socket is
available for reading or writing.

• In timeout mode, operations fail if they cannot be completed within the timeout specified for the socket (they
raise a timeout exception) or if the system returns an error.

Note: At the operating system level, sockets in timeout mode are internally set in non-blocking mode. Also, the
blocking and timeout modes are shared between file descriptors and socket objects that refer to the same network
endpoint. This implementation detail can have visible consequences if e.g. you decide to use the fileno() of a
socket.

Timeouts and the connect method

The connect() operation is also subject to the timeout setting, and in general it is recommended to call
settimeout() before calling connect() or pass a timeout parameter to create_connection(). How-

17.2. socket — Low-level networking interface 619

The Python Library Reference, Release 3.2

ever, the system network stack may also return a connection timeout error of its own regardless of any Python
socket timeout setting.

Timeouts and the accept method

If getdefaulttimeout() is not None, sockets returned by the accept() method inherit that timeout.
Otherwise, the behaviour depends on settings of the listening socket:

• if the listening socket is in blocking mode or in timeout mode, the socket returned by accept() is in
blocking mode;

• if the listening socket is in non-blocking mode, whether the socket returned by accept() is in blocking
or non-blocking mode is operating system-dependent. If you want to ensure cross-platform behaviour, it is
recommended you manually override this setting.

17.2.5 Example

Here are four minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives
back (servicing only one client), and a client using it. Note that a server must perform the sequence socket(),
bind(), listen(), accept() (possibly repeating the accept() to service more than one client), while a
client only needs the sequence socket(), connect(). Also note that the server does not send()/recv()
on the socket it is listening on but on the new socket returned by accept().

The first two examples support IPv4 only.

Echo server program
import socket

HOST = ’’ # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print(’Connected by’, addr)
while True:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(b’Hello, world’)
data = s.recv(1024)
s.close()
print(’Received’, repr(data))

The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will listen
to the first address family available (it should listen to both instead). On most of IPv6-ready systems, IPv6 will
take precedence and the server may not accept IPv4 traffic. The client side will try to connect to the all addresses
returned as a result of the name resolution, and sends traffic to the first one connected successfully.

Echo server program
import socket

620 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

import sys

HOST = None # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,

socket.SOCK_STREAM, 0, socket.AI_PASSIVE):
af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except socket.error as msg:

s = None
continue

try:
s.bind(sa)
s.listen(1)

except socket.error as msg:
s.close()
s = None
continue

break
if s is None:

print(’could not open socket’)
sys.exit(1)

conn, addr = s.accept()
print(’Connected by’, addr)
while True:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket
import sys

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):

af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except socket.error as msg:

s = None
continue

try:
s.connect(sa)

except socket.error as msg:
s.close()
s = None
continue

break
if s is None:

print(’could not open socket’)
sys.exit(1)

s.send(b’Hello, world’)
data = s.recv(1024)
s.close()

17.2. socket — Low-level networking interface 621

The Python Library Reference, Release 3.2

print(’Received’, repr(data))

The last example shows how to write a very simple network sniffer with raw sockets on Windows. The example
requires administrator privileges to modify the interface:

import socket

the public network interface
HOST = socket.gethostbyname(socket.gethostname())

create a raw socket and bind it to the public interface
s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)
s.bind((HOST, 0))

Include IP headers
s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

receive all packages
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

receive a package
print(s.recvfrom(65565))

disabled promiscuous mode
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

See Also:

For an introduction to socket programming (in C), see the following papers:

• An Introductory 4.3BSD Interprocess Communication Tutorial, by Stuart Sechrest

• An Advanced 4.3BSD Interprocess Communication Tutorial, by Samuel J. Leffler et al,

both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The platform-
specific reference material for the various socket-related system calls are also a valuable source of information on
the details of socket semantics. For Unix, refer to the manual pages; for Windows, see the WinSock (or Winsock
2) specification. For IPv6-ready APIs, readers may want to refer to RFC 3493 titled Basic Socket Interface
Extensions for IPv6.

17.3 ssl — TLS/SSL wrapper for socket objects

Source code: Lib/ssl.py

This module provides access to Transport Layer Security (often known as “Secure Sockets Layer”) encryption and
peer authentication facilities for network sockets, both client-side and server-side. This module uses the OpenSSL
library. It is available on all modern Unix systems, Windows, Mac OS X, and probably additional platforms, as
long as OpenSSL is installed on that platform.

Note: Some behavior may be platform dependent, since calls are made to the operating system socket APIs. The
installed version of OpenSSL may also cause variations in behavior.

This section documents the objects and functions in the ssl module; for more general information about TLS,
SSL, and certificates, the reader is referred to the documents in the “See Also” section at the bottom.

This module provides a class, ssl.SSLSocket, which is derived from the socket.socket type, and pro-
vides a socket-like wrapper that also encrypts and decrypts the data going over the socket with SSL. It supports
additional methods such as getpeercert(), which retrieves the certificate of the other side of the connection,
and cipher(),which retrieves the cipher being used for the secure connection.

622 Chapter 17. Interprocess Communication and Networking

http://tools.ietf.org/html/rfc3493.html
http://svn.python.org/view/python/branches/py3k/Lib/ssl.py?view=markup

The Python Library Reference, Release 3.2

For more sophisticated applications, the ssl.SSLContext class helps manage settings and certificates, which
can then be inherited by SSL sockets created through the SSLContext.wrap_socket() method.

17.3.1 Functions, Constants, and Exceptions

exception ssl.SSLError
Raised to signal an error from the underlying SSL implementation (currently provided by the OpenSSL
library). This signifies some problem in the higher-level encryption and authentication layer that’s superim-
posed on the underlying network connection. This error is a subtype of socket.error, which in turn is a
subtype of IOError. The error code and message of SSLError instances are provided by the OpenSSL
library.

exception ssl.CertificateError
Raised to signal an error with a certificate (such as mismatching hostname). Certificate errors detected by
OpenSSL, though, raise an SSLError.

Socket creation

The following function allows for standalone socket creation. Starting from Python 3.2, it can be more flexible to
use SSLContext.wrap_socket() instead.

ssl.wrap_socket(sock, keyfile=None, certfile=None, server_side=False, cert_reqs=CERT_NONE,
ssl_version={see docs}, ca_certs=None, do_handshake_on_connect=True, sup-
press_ragged_eofs=True, ciphers=None)

Takes an instance sock of socket.socket, and returns an instance of ssl.SSLSocket, a subtype
of socket.socket, which wraps the underlying socket in an SSL context. For client-side sockets, the
context construction is lazy; if the underlying socket isn’t connected yet, the context construction will be
performed after connect() is called on the socket. For server-side sockets, if the socket has no remote
peer, it is assumed to be a listening socket, and the server-side SSL wrapping is automatically performed on
client connections accepted via the accept() method. wrap_socket() may raise SSLError.

The keyfile and certfile parameters specify optional files which contain a certificate to be used to
identify the local side of the connection. See the discussion of Certificates for more information on how the
certificate is stored in the certfile.

The parameter server_side is a boolean which identifies whether server-side or client-side behavior is
desired from this socket.

The parameter cert_reqs specifies whether a certificate is required from the other side of the connection,
and whether it will be validated if provided. It must be one of the three values CERT_NONE (certificates
ignored), CERT_OPTIONAL (not required, but validated if provided), or CERT_REQUIRED (required and
validated). If the value of this parameter is not CERT_NONE, then the ca_certs parameter must point to
a file of CA certificates.

The ca_certs file contains a set of concatenated “certification authority” certificates, which are used to
validate certificates passed from the other end of the connection. See the discussion of Certificates for more
information about how to arrange the certificates in this file.

The parameter ssl_version specifies which version of the SSL protocol to use. Typically, the server
chooses a particular protocol version, and the client must adapt to the server’s choice. Most of the versions
are not interoperable with the other versions. If not specified, for client-side operation, the default SSL ver-
sion is SSLv3; for server-side operation, SSLv23. These version selections provide the most compatibility
with other versions.

Here’s a table showing which versions in a client (down the side) can connect to which versions in a server
(along the top):

17.3. ssl — TLS/SSL wrapper for socket objects 623

The Python Library Reference, Release 3.2

client / server SSLv2 SSLv3 SSLv23 TLSv1
SSLv2 yes no yes no
SSLv3 yes yes yes no
SSLv23 yes no yes no
TLSv1 no no yes yes

Note: Which connections succeed will vary depending on the version of OpenSSL. For instance, in some
older versions of OpenSSL (such as 0.9.7l on OS X 10.4), an SSLv2 client could not connect to an SSLv23
server. Another example: beginning with OpenSSL 1.0.0, an SSLv23 client will not actually attempt
SSLv2 connections unless you explicitly enable SSLv2 ciphers; for example, you might specify "ALL"
or "SSLv2" as the ciphers parameter to enable them.

The ciphers parameter sets the available ciphers for this SSL object. It should be a string in the OpenSSL
cipher list format.

The parameter do_handshake_on_connect specifies whether to do the SSL handshake automatically
after doing a socket.connect(), or whether the application program will call it explicitly, by invok-
ing the SSLSocket.do_handshake() method. Calling SSLSocket.do_handshake() explicitly
gives the program control over the blocking behavior of the socket I/O involved in the handshake.

The parameter suppress_ragged_eofs specifies how the SSLSocket.recv() method should sig-
nal unexpected EOF from the other end of the connection. If specified as True (the default), it returns
a normal EOF (an empty bytes object) in response to unexpected EOF errors raised from the underlying
socket; if False, it will raise the exceptions back to the caller. Changed in version 3.2: New optional
argument ciphers.

Random generation

ssl.RAND_status()
Returns True if the SSL pseudo-random number generator has been seeded with ‘enough’ randomness, and
False otherwise. You can use ssl.RAND_egd() and ssl.RAND_add() to increase the randomness of
the pseudo-random number generator.

ssl.RAND_egd(path)
If you are running an entropy-gathering daemon (EGD) somewhere, and path is the pathname of a socket
connection open to it, this will read 256 bytes of randomness from the socket, and add it to the SSL pseudo-
random number generator to increase the security of generated secret keys. This is typically only necessary
on systems without better sources of randomness.

See http://egd.sourceforge.net/ or http://prngd.sourceforge.net/ for sources of entropy-gathering daemons.

ssl.RAND_add(bytes, entropy)
Mixes the given bytes into the SSL pseudo-random number generator. The parameter entropy (a float)
is a lower bound on the entropy contained in string (so you can always use 0.0). See RFC 1750 for more
information on sources of entropy.

Certificate handling

ssl.match_hostname(cert, hostname)
Verify that cert (in decoded format as returned by SSLSocket.getpeercert()) matches the given
hostname. The rules applied are those for checking the identity of HTTPS servers as outlined in RFC 2818,
except that IP addresses are not currently supported. In addition to HTTPS, this function should be suitable
for checking the identity of servers in various SSL-based protocols such as FTPS, IMAPS, POPS and others.

CertificateError is raised on failure. On success, the function returns nothing:

>>> cert = {’subject’: (((’commonName’, ’example.com’),),)}
>>> ssl.match_hostname(cert, "example.com")
>>> ssl.match_hostname(cert, "example.org")
Traceback (most recent call last):

624 Chapter 17. Interprocess Communication and Networking

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
http://egd.sourceforge.net/
http://prngd.sourceforge.net/
http://tools.ietf.org/html/rfc1750.html
http://tools.ietf.org/html/rfc2818.html

The Python Library Reference, Release 3.2

File "<stdin>", line 1, in <module>
File "/home/py3k/Lib/ssl.py", line 130, in match_hostname

ssl.CertificateError: hostname ’example.org’ doesn’t match ’example.com’

New in version 3.2.

ssl.cert_time_to_seconds(timestring)
Returns a floating-point value containing a normal seconds-after-the-epoch time value, given the time-string
representing the “notBefore” or “notAfter” date from a certificate.

Here’s an example:

>>> import ssl
>>> ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT")
1178694000.0
>>> import time
>>> time.ctime(ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT"))
’Wed May 9 00:00:00 2007’

ssl.get_server_certificate(addr, ssl_version=PROTOCOL_SSLv3, ca_certs=None)
Given the address addr of an SSL-protected server, as a (hostname, port-number) pair, fetches the server’s
certificate, and returns it as a PEM-encoded string. If ssl_version is specified, uses that version of the
SSL protocol to attempt to connect to the server. If ca_certs is specified, it should be a file containing
a list of root certificates, the same format as used for the same parameter in wrap_socket(). The call
will attempt to validate the server certificate against that set of root certificates, and will fail if the validation
attempt fails.

ssl.DER_cert_to_PEM_cert(DER_cert_bytes)
Given a certificate as a DER-encoded blob of bytes, returns a PEM-encoded string version of the same
certificate.

ssl.PEM_cert_to_DER_cert(PEM_cert_string)
Given a certificate as an ASCII PEM string, returns a DER-encoded sequence of bytes for that same certifi-
cate.

Constants

ssl.CERT_NONE
Possible value for SSLContext.verify_mode, or the cert_reqs parameter to wrap_socket().
In this mode (the default), no certificates will be required from the other side of the socket connection. If a
certificate is received from the other end, no attempt to validate it is made.

See the discussion of Security considerations below.

ssl.CERT_OPTIONAL
Possible value for SSLContext.verify_mode, or the cert_reqs parameter to wrap_socket().
In this mode no certificates will be required from the other side of the socket connection; but if they are
provided, validation will be attempted and an SSLError will be raised on failure.

Use of this setting requires a valid set of CA certificates to be passed, either to
SSLContext.load_verify_locations() or as a value of the ca_certs parameter to
wrap_socket().

ssl.CERT_REQUIRED
Possible value for SSLContext.verify_mode, or the cert_reqs parameter to wrap_socket().
In this mode, certificates are required from the other side of the socket connection; an SSLError will be
raised if no certificate is provided, or if its validation fails.

Use of this setting requires a valid set of CA certificates to be passed, either to
SSLContext.load_verify_locations() or as a value of the ca_certs parameter to
wrap_socket().

17.3. ssl — TLS/SSL wrapper for socket objects 625

The Python Library Reference, Release 3.2

ssl.PROTOCOL_SSLv2
Selects SSL version 2 as the channel encryption protocol.

Warning: SSL version 2 is insecure. Its use is highly discouraged.

ssl.PROTOCOL_SSLv23
Selects SSL version 2 or 3 as the channel encryption protocol. This is a setting to use with servers for
maximum compatibility with the other end of an SSL connection, but it may cause the specific ciphers
chosen for the encryption to be of fairly low quality.

ssl.PROTOCOL_SSLv3
Selects SSL version 3 as the channel encryption protocol. For clients, this is the maximally compatible SSL
variant.

ssl.PROTOCOL_TLSv1
Selects TLS version 1 as the channel encryption protocol. This is the most modern version, and probably
the best choice for maximum protection, if both sides can speak it.

ssl.OP_ALL
Enables workarounds for various bugs present in other SSL implementations. This option is set by default.
New in version 3.2.

ssl.OP_NO_SSLv2
Prevents an SSLv2 connection. This option is only applicable in conjunction with PROTOCOL_SSLv23.
It prevents the peers from choosing SSLv2 as the protocol version. New in version 3.2.

ssl.OP_NO_SSLv3
Prevents an SSLv3 connection. This option is only applicable in conjunction with PROTOCOL_SSLv23.
It prevents the peers from choosing SSLv3 as the protocol version. New in version 3.2.

ssl.OP_NO_TLSv1
Prevents a TLSv1 connection. This option is only applicable in conjunction with PROTOCOL_SSLv23. It
prevents the peers from choosing TLSv1 as the protocol version. New in version 3.2.

ssl.HAS_SNI
Whether the OpenSSL library has built-in support for the Server Name Indication extension to the SSLv3
and TLSv1 protocols (as defined in

RFC 4366). When true, you can use the server_hostname argument to SSLContext.wrap_socket().
New in version 3.2.

ssl.OPENSSL_VERSION
The version string of the OpenSSL library loaded by the interpreter:

>>> ssl.OPENSSL_VERSION
’OpenSSL 0.9.8k 25 Mar 2009’

New in version 3.2.

ssl.OPENSSL_VERSION_INFO
A tuple of five integers representing version information about the OpenSSL library:

>>> ssl.OPENSSL_VERSION_INFO
(0, 9, 8, 11, 15)

New in version 3.2.

ssl.OPENSSL_VERSION_NUMBER
The raw version number of the OpenSSL library, as a single integer:

>>> ssl.OPENSSL_VERSION_NUMBER
9470143

626 Chapter 17. Interprocess Communication and Networking

http://tools.ietf.org/html/rfc4366.html

The Python Library Reference, Release 3.2

>>> hex(ssl.OPENSSL_VERSION_NUMBER)
’0x9080bf’

New in version 3.2.

17.3.2 SSL Sockets

SSL sockets provide the following methods of Socket Objects:

• accept()

• bind()

• close()

• connect()

• detach()

• fileno()

• getpeername(), getsockname()

• getsockopt(), setsockopt()

• gettimeout(), settimeout(), setblocking()

• listen()

• makefile()

• recv(), recv_into() (but passing a non-zero flags argument is not allowed)

• send(), sendall() (with the same limitation)

• shutdown()

They also have the following additional methods and attributes:

SSLSocket.do_handshake()
Performs the SSL setup handshake. If the socket is non-blocking, this method may raise SSLError
with the value of the exception instance’s args[0] being either SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, and should be called again until it stops raising those exceptions. Here’s
an example of how to do that:

while True:
try:

sock.do_handshake()
break

except ssl.SSLError as err:
if err.args[0] == ssl.SSL_ERROR_WANT_READ:

select.select([sock], [], [])
elif err.args[0] == ssl.SSL_ERROR_WANT_WRITE:

select.select([], [sock], [])
else:

raise

SSLSocket.getpeercert(binary_form=False)
If there is no certificate for the peer on the other end of the connection, returns None.

If the parameter binary_form is False, and a certificate was received from the peer, this method returns
a dict instance. If the certificate was not validated, the dict is empty. If the certificate was validated, it
returns a dict with the keys subject (the principal for which the certificate was issued), and notAfter
(the time after which the certificate should not be trusted). If a certificate contains an instance of the Subject
Alternative Name extension (see RFC 3280), there will also be a subjectAltName key in the dictionary.

17.3. ssl — TLS/SSL wrapper for socket objects 627

http://tools.ietf.org/html/rfc3280.html

The Python Library Reference, Release 3.2

The “subject” field is a tuple containing the sequence of relative distinguished names (RDNs) given in the
certificate’s data structure for the principal, and each RDN is a sequence of name-value pairs:

{’notAfter’: ’Feb 16 16:54:50 2013 GMT’,
’subject’: (((’countryName’, ’US’),),

((’stateOrProvinceName’, ’Delaware’),),
((’localityName’, ’Wilmington’),),
((’organizationName’, ’Python Software Foundation’),),
((’organizationalUnitName’, ’SSL’),),
((’commonName’, ’somemachine.python.org’),))}

If the binary_form parameter is True, and a certificate was provided, this method returns the DER-
encoded form of the entire certificate as a sequence of bytes, or None if the peer did not provide a cer-
tificate. This return value is independent of validation; if validation was required (CERT_OPTIONAL or
CERT_REQUIRED), it will have been validated, but if CERT_NONE was used to establish the connection,
the certificate, if present, will not have been validated. Changed in version 3.2: The returned dictionary
includes additional items such as issuer and notBefore.

SSLSocket.cipher()
Returns a three-value tuple containing the name of the cipher being used, the version of the SSL protocol
that defines its use, and the number of secret bits being used. If no connection has been established, returns
None.

SSLSocket.unwrap()
Performs the SSL shutdown handshake, which removes the TLS layer from the underlying socket, and
returns the underlying socket object. This can be used to go from encrypted operation over a connection to
unencrypted. The returned socket should always be used for further communication with the other side of
the connection, rather than the original socket.

SSLSocket.context
The SSLContext object this SSL socket is tied to. If the SSL socket was created using the top-level
wrap_socket() function (rather than SSLContext.wrap_socket()), this is a custom context ob-
ject created for this SSL socket. New in version 3.2.

17.3.3 SSL Contexts

New in version 3.2. An SSL context holds various data longer-lived than single SSL connections, such as SSL
configuration options, certificate(s) and private key(s). It also manages a cache of SSL sessions for server-side
sockets, in order to speed up repeated connections from the same clients.

class ssl.SSLContext(protocol)
Create a new SSL context. You must pass protocol which must be one of the PROTOCOL_* constants
defined in this module. PROTOCOL_SSLv23 is recommended for maximum interoperability.

SSLContext objects have the following methods and attributes:

SSLContext.load_cert_chain(certfile, keyfile=None)
Load a private key and the corresponding certificate. The certfile string must be the path to a single file
in PEM format containing the certificate as well as any number of CA certificates needed to establish the
certificate’s authenticity. The keyfile string, if present, must point to a file containing the private key in.
Otherwise the private key will be taken from certfile as well. See the discussion of Certificates for more
information on how the certificate is stored in the certfile.

An SSLError is raised if the private key doesn’t match with the certificate.

SSLContext.load_verify_locations(cafile=None, capath=None)
Load a set of “certification authority” (CA) certificates used to validate other peers’ certificates when
verify_mode is other than CERT_NONE. At least one of cafile or capath must be specified.

The cafile string, if present, is the path to a file of concatenated CA certificates in PEM format. See the
discussion of Certificates for more information about how to arrange the certificates in this file.

628 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

The capath string, if present, is the path to a directory containing several CA certificates in PEM format,
following an OpenSSL specific layout.

SSLContext.set_default_verify_paths()
Load a set of default “certification authority” (CA) certificates from a filesystem path defined when building
the OpenSSL library. Unfortunately, there’s no easy way to know whether this method succeeds: no error
is returned if no certificates are to be found. When the OpenSSL library is provided as part of the operating
system, though, it is likely to be configured properly.

SSLContext.set_ciphers(ciphers)
Set the available ciphers for sockets created with this context. It should be a string in the OpenSSL cipher
list format. If no cipher can be selected (because compile-time options or other configuration forbids use of
all the specified ciphers), an SSLError will be raised.

Note: when connected, the SSLSocket.cipher() method of SSL sockets will give the currently
selected cipher.

SSLContext.wrap_socket(sock, server_side=False, do_handshake_on_connect=True, sup-
press_ragged_eofs=True, server_hostname=None)

Wrap an existing Python socket sock and return an SSLSocket object. The SSL socket is tied to the
context, its settings and certificates. The parameters server_side, do_handshake_on_connect and sup-
press_ragged_eofs have the same meaning as in the top-level wrap_socket() function.

On client connections, the optional parameter server_hostname specifies the hostname of the service which
we are connecting to. This allows a single server to host multiple SSL-based services with distinct certifi-
cates, quite similarly to HTTP virtual hosts. Specifying server_hostname will raise a ValueError if the
OpenSSL library doesn’t have support for it (that is, if HAS_SNI is False). Specifying server_hostname
will also raise a ValueError if server_side is true.

SSLContext.session_stats()
Get statistics about the SSL sessions created or managed by this context. A dictionary is returned which
maps the names of each piece of information to their numeric values. For example, here is the total number
of hits and misses in the session cache since the context was created:

>>> stats = context.session_stats()
>>> stats[’hits’], stats[’misses’]
(0, 0)

SSLContext.options
An integer representing the set of SSL options enabled on this context. The default value is OP_ALL, but
you can specify other options such as OP_NO_SSLv2 by ORing them together.

Note: With versions of OpenSSL older than 0.9.8m, it is only possible to set options, not to clear them.
Attempting to clear an option (by resetting the corresponding bits) will raise a ValueError.

SSLContext.protocol
The protocol version chosen when constructing the context. This attribute is read-only.

SSLContext.verify_mode
Whether to try to verify other peers’ certificates and how to behave if verification fails. This attribute must
be one of CERT_NONE, CERT_OPTIONAL or CERT_REQUIRED.

17.3.4 Certificates

Certificates in general are part of a public-key / private-key system. In this system, each principal, (which may be
a machine, or a person, or an organization) is assigned a unique two-part encryption key. One part of the key is
public, and is called the public key; the other part is kept secret, and is called the private key. The two parts are
related, in that if you encrypt a message with one of the parts, you can decrypt it with the other part, and only with
the other part.

17.3. ssl — TLS/SSL wrapper for socket objects 629

http://www.openssl.org/docs/ssl/SSL_CTX_load_verify_locations.html
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
http://www.openssl.org/docs/ssl/SSL_CTX_sess_number.html

The Python Library Reference, Release 3.2

A certificate contains information about two principals. It contains the name of a subject, and the subject’s public
key. It also contains a statement by a second principal, the issuer, that the subject is who he claims to be, and that
this is indeed the subject’s public key. The issuer’s statement is signed with the issuer’s private key, which only
the issuer knows. However, anyone can verify the issuer’s statement by finding the issuer’s public key, decrypting
the statement with it, and comparing it to the other information in the certificate. The certificate also contains
information about the time period over which it is valid. This is expressed as two fields, called “notBefore” and
“notAfter”.

In the Python use of certificates, a client or server can use a certificate to prove who they are. The other side
of a network connection can also be required to produce a certificate, and that certificate can be validated to the
satisfaction of the client or server that requires such validation. The connection attempt can be set to raise an
exception if the validation fails. Validation is done automatically, by the underlying OpenSSL framework; the
application need not concern itself with its mechanics. But the application does usually need to provide sets of
certificates to allow this process to take place.

Python uses files to contain certificates. They should be formatted as “PEM” (see RFC 1422), which is a base-64
encoded form wrapped with a header line and a footer line:

-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

Certificate chains

The Python files which contain certificates can contain a sequence of certificates, sometimes called a certificate
chain. This chain should start with the specific certificate for the principal who “is” the client or server, and then
the certificate for the issuer of that certificate, and then the certificate for the issuer of that certificate, and so on up
the chain till you get to a certificate which is self-signed, that is, a certificate which has the same subject and issuer,
sometimes called a root certificate. The certificates should just be concatenated together in the certificate file. For
example, suppose we had a three certificate chain, from our server certificate to the certificate of the certification
authority that signed our server certificate, to the root certificate of the agency which issued the certification
authority’s certificate:

-----BEGIN CERTIFICATE-----
... (certificate for your server)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the root certificate for the CA’s issuer)...
-----END CERTIFICATE-----

CA certificates

If you are going to require validation of the other side of the connection’s certificate, you need to provide a
“CA certs” file, filled with the certificate chains for each issuer you are willing to trust. Again, this file just
contains these chains concatenated together. For validation, Python will use the first chain it finds in the file
which matches. Some “standard” root certificates are available from various certification authorities: CACert.org,
Thawte, Verisign, Positive SSL (used by python.org), Equifax and GeoTrust.

In general, if you are using SSL3 or TLS1, you don’t need to put the full chain in your “CA certs” file; you only
need the root certificates, and the remote peer is supposed to furnish the other certificates necessary to chain from
its certificate to a root certificate. See RFC 4158 for more discussion of the way in which certification chains can
be built.

630 Chapter 17. Interprocess Communication and Networking

http://tools.ietf.org/html/rfc1422.html
http://www.cacert.org/index.php?id=3
http://www.thawte.com/roots/
http://www.verisign.com/support/roots.html
http://www.PositiveSSL.com/ssl-certificate-support/cert_installation/UTN-USERFirst-Hardware.crt
http://www.geotrust.com/resources/root_certificates/index.asp
http://tools.ietf.org/html/rfc4158.html

The Python Library Reference, Release 3.2

Combined key and certificate

Often the private key is stored in the same file as the certificate; in this case, only the certfile parameter to
SSLContext.load_cert_chain() and wrap_socket() needs to be passed. If the private key is stored
with the certificate, it should come before the first certificate in the certificate chain:

-----BEGIN RSA PRIVATE KEY-----
... (private key in base64 encoding) ...
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

Self-signed certificates

If you are going to create a server that provides SSL-encrypted connection services, you will need to acquire a
certificate for that service. There are many ways of acquiring appropriate certificates, such as buying one from a
certification authority. Another common practice is to generate a self-signed certificate. The simplest way to do
this is with the OpenSSL package, using something like the following:

% openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout cert.pem
Generating a 1024 bit RSA private key
.......++++++
.............................++++++
writing new private key to ’cert.pem’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:MyState
Locality Name (eg, city) []:Some City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Organization, Inc.
Organizational Unit Name (eg, section) []:My Group
Common Name (eg, YOUR name) []:myserver.mygroup.myorganization.com
Email Address []:ops@myserver.mygroup.myorganization.com
%

The disadvantage of a self-signed certificate is that it is its own root certificate, and no one else will have it in their
cache of known (and trusted) root certificates.

17.3.5 Examples

Testing for SSL support

To test for the presence of SSL support in a Python installation, user code should use the following idiom:

try:
import ssl

except ImportError:
pass

else:
... # do something that requires SSL support

17.3. ssl — TLS/SSL wrapper for socket objects 631

The Python Library Reference, Release 3.2

Client-side operation

This example connects to an SSL server and prints the server’s certificate:

import socket, ssl, pprint

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
require a certificate from the server
ssl_sock = ssl.wrap_socket(s,

ca_certs="/etc/ca_certs_file",
cert_reqs=ssl.CERT_REQUIRED)

ssl_sock.connect((’www.verisign.com’, 443))

pprint.pprint(ssl_sock.getpeercert())
note that closing the SSLSocket will also close the underlying socket
ssl_sock.close()

As of October 6, 2010, the certificate printed by this program looks like this:

{’notAfter’: ’May 25 23:59:59 2012 GMT’,
’subject’: (((’1.3.6.1.4.1.311.60.2.1.3’, ’US’),),

((’1.3.6.1.4.1.311.60.2.1.2’, ’Delaware’),),
((’businessCategory’, ’V1.0, Clause 5.(b)’),),
((’serialNumber’, ’2497886’),),
((’countryName’, ’US’),),
((’postalCode’, ’94043’),),
((’stateOrProvinceName’, ’California’),),
((’localityName’, ’Mountain View’),),
((’streetAddress’, ’487 East Middlefield Road’),),
((’organizationName’, ’VeriSign, Inc.’),),
((’organizationalUnitName’, ’ Production Security Services’),),
((’commonName’, ’www.verisign.com’),))}

This other example first creates an SSL context, instructs it to verify certificates sent by peers, and feeds it a set of
recognized certificate authorities (CA):

>>> context = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
>>> context.verify_mode = ssl.CERT_REQUIRED
>>> context.load_verify_locations("/etc/ssl/certs/ca-bundle.crt")

(it is assumed your operating system places a bundle of all CA certificates in
/etc/ssl/certs/ca-bundle.crt; if not, you’ll get an error and have to adjust the location)

When you use the context to connect to a server, CERT_REQUIRED validates the server certificate: it ensures that
the server certificate was signed with one of the CA certificates, and checks the signature for correctness:

>>> conn = context.wrap_socket(socket.socket(socket.AF_INET))
>>> conn.connect(("linuxfr.org", 443))

You should then fetch the certificate and check its fields for conformity:

>>> cert = conn.getpeercert()
>>> ssl.match_hostname(cert, "linuxfr.org")

Visual inspection shows that the certificate does identify the desired service (that is, the HTTPS host
linuxfr.org):

>>> pprint.pprint(cert)
{’notAfter’: ’Jun 26 21:41:46 2011 GMT’,
’subject’: (((’commonName’, ’linuxfr.org’),),),
’subjectAltName’: ((’DNS’, ’linuxfr.org’), (’othername’, ’<unsupported>’))}

Now that you are assured of its authenticity, you can proceed to talk with the server:

632 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

>>> conn.sendall(b"HEAD / HTTP/1.0\r\nHost: linuxfr.org\r\n\r\n")
>>> pprint.pprint(conn.recv(1024).split(b"\r\n"))
[b’HTTP/1.1 302 Found’,
b’Date: Sun, 16 May 2010 13:43:28 GMT’,
b’Server: Apache/2.2’,
b’Location: https://linuxfr.org/pub/’,
b’Vary: Accept-Encoding’,
b’Connection: close’,
b’Content-Type: text/html; charset=iso-8859-1’,
b’’,
b’’]

See the discussion of Security considerations below.

Server-side operation

For server operation, typically you’ll need to have a server certificate, and private key, each in a file. You’ll first
create a context holding the key and the certificate, so that clients can check your authenticity. Then you’ll open a
socket, bind it to a port, call listen() on it, and start waiting for clients to connect:

import socket, ssl

context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
context.load_cert_chain(certfile="mycertfile", keyfile="mykeyfile")

bindsocket = socket.socket()
bindsocket.bind((’myaddr.mydomain.com’, 10023))
bindsocket.listen(5)

When a client connects, you’ll call accept() on the socket to get the new socket from the other end, and use
the context’s SSLContext.wrap_socket() method to create a server-side SSL socket for the connection:

while True:
newsocket, fromaddr = bindsocket.accept()
connstream = context.wrap_socket(newsocket, server_side=True)
try:

deal_with_client(connstream)
finally:

connstream.shutdown(socket.SHUT_RDWR)
connstream.close()

Then you’ll read data from the connstream and do something with it till you are finished with the client (or the
client is finished with you):

def deal_with_client(connstream):
data = connstream.recv(1024)
empty data means the client is finished with us
while data:

if not do_something(connstream, data):
we’ll assume do_something returns False
when we’re finished with client
break

data = connstream.recv(1024)
finished with client

And go back to listening for new client connections (of course, a real server would probably handle each client
connection in a separate thread, or put the sockets in non-blocking mode and use an event loop).

17.3. ssl — TLS/SSL wrapper for socket objects 633

The Python Library Reference, Release 3.2

17.3.6 Security considerations

Verifying certificates

CERT_NONE is the default. Since it does not authenticate the other peer, it can be insecure, especially in client
mode where most of time you would like to ensure the authenticity of the server you’re talking to. Therefore, when
in client mode, it is highly recommended to use CERT_REQUIRED. However, it is in itself not sufficient; you also
have to check that the server certificate, which can be obtained by calling SSLSocket.getpeercert(),
matches the desired service. For many protocols and applications, the service can be identified by the hostname;
in this case, the match_hostname() function can be used.

In server mode, if you want to authenticate your clients using the SSL layer (rather than using a higher-level au-
thentication mechanism), you’ll also have to specify CERT_REQUIRED and similarly check the client certificate.

Note: In client mode, CERT_OPTIONAL and CERT_REQUIRED are equivalent unless anonymous
ciphers are enabled (they are disabled by default).

Protocol versions

SSL version 2 is considered insecure and is therefore dangerous to use. If you want maximum compatibility
between clients and servers, it is recommended to use PROTOCOL_SSLv23 as the protocol version and then
disable SSLv2 explicitly using the SSLContext.options attribute:

context = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
context.options |= ssl.OP_NO_SSLv2

The SSL context created above will allow SSLv3 and TLSv1 connections, but not SSLv2.

See Also:

Class socket.socket Documentation of underlying socket class

Introducing SSL and Certificates using OpenSSL Frederick J. Hirsch

RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management
Steve Kent

RFC 1750: Randomness Recommendations for Security D. Eastlake et. al.

RFC 3280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile Housley et. al.

RFC 4366: Transport Layer Security (TLS) Extensions Blake-Wilson et. al.

17.4 signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals
and their handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported by all Unix
flavors).

• Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can
only occur between the “atomic” instructions of the Python interpreter. This means that signals arriving
during long calculations implemented purely in C (such as regular expression matches on large bodies of
text) may be delayed for an arbitrary amount of time.

634 Chapter 17. Interprocess Communication and Networking

http://old.pseudonym.org/ssl/wwwj-index.html
http://www.ietf.org/rfc/rfc1422
http://www.ietf.org/rfc/rfc1750
http://www.ietf.org/rfc/rfc3280
http://www.ietf.org/rfc/rfc4366

The Python Library Reference, Release 3.2

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an exception
after the signal handler returns. This is dependent on the underlying Unix system’s semantics regarding
interrupted system calls.

• Because the C signal handler always returns, it makes little sense to catch synchronous errors like SIGFPE
or SIGSEGV.

• Python installs a small number of signal handlers by default: SIGPIPE is ignored (so write errors
on pipes and sockets can be reported as ordinary Python exceptions) and SIGINT is translated into a
KeyboardInterrupt exception. All of these can be overridden.

• Some care must be taken if both signals and threads are used in the same program. The fundamental
thing to remember in using signals and threads simultaneously is: always perform signal() opera-
tions in the main thread of execution. Any thread can perform an alarm(), getsignal(), pause(),
setitimer() or getitimer(); only the main thread can set a new signal handler, and the main thread
will be the only one to receive signals (this is enforced by the Python signal module, even if the underly-
ing thread implementation supports sending signals to individual threads). This means that signals can’t be
used as a means of inter-thread communication. Use locks instead.

The variables defined in the signal module are:

signal.SIG_DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action for SIGQUIT is to dump core and exit, while the default
action for SIGCHLD is to simply ignore it.

signal.SIG_IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP; the variable names are identical to the names used in C programs, as found in
<signal.h>. The Unix man page for ‘signal()‘ lists the existing signals (on some systems this is
signal(2), on others the list is in signal(7)). Note that not all systems define the same set of signal
names; only those names defined by the system are defined by this module.

signal.CTRL_C_EVENT
The signal corresponding to the CTRL+C keystroke event. This signal can only be used with os.kill().

Availability: Windows. New in version 3.2.

signal.CTRL_BREAK_EVENT
The signal corresponding to the CTRL+BREAK keystroke event. This signal can only be used with
os.kill().

Availability: Windows. New in version 3.2.

signal.NSIG
One more than the number of the highest signal number.

signal.ITIMER_REAL
Decrements interval timer in real time, and delivers SIGALRM upon expiration.

signal.ITIMER_VIRTUAL
Decrements interval timer only when the process is executing, and delivers SIGVTALRM upon expiration.

signal.ITIMER_PROF
Decrements interval timer both when the process executes and when the system is executing on behalf of
the process. Coupled with ITIMER_VIRTUAL, this timer is usually used to profile the time spent by the
application in user and kernel space. SIGPROF is delivered upon expiration.

The signal module defines one exception:

exception signal.ItimerError
Raised to signal an error from the underlying setitimer() or getitimer() implementation. Expect
this error if an invalid interval timer or a negative time is passed to setitimer(). This error is a subtype
of IOError.

17.4. signal — Set handlers for asynchronous events 635

The Python Library Reference, Release 3.2

The signal module defines the following functions:

signal.alarm(time)
If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time seconds.
Any previously scheduled alarm is canceled (only one alarm can be scheduled at any time). The returned
value is then the number of seconds before any previously set alarm was to have been delivered. If time is
zero, no alarm is scheduled, and any scheduled alarm is canceled. If the return value is zero, no alarm is
currently scheduled. (See the Unix man page alarm(2).) Availability: Unix.

signal.getsignal(signalnum)
Return the current signal handler for the signal signalnum. The returned value may be a callable
Python object, or one of the special values signal.SIG_IGN, signal.SIG_DFL or None. Here,
signal.SIG_IGN means that the signal was previously ignored, signal.SIG_DFL means that the
default way of handling the signal was previously in use, and None means that the previous signal handler
was not installed from Python.

signal.pause()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns
nothing. Not on Windows. (See the Unix man page signal(2).)

signal.setitimer(which, seconds[, interval])
Sets given interval timer (one of signal.ITIMER_REAL, signal.ITIMER_VIRTUAL or
signal.ITIMER_PROF) specified by which to fire after seconds (float is accepted, different from
alarm()) and after that every interval seconds. The interval timer specified by which can be cleared
by setting seconds to zero.

When an interval timer fires, a signal is sent to the process. The signal sent is dependent on the
timer being used; signal.ITIMER_REAL will deliver SIGALRM, signal.ITIMER_VIRTUAL sends
SIGVTALRM, and signal.ITIMER_PROF will deliver SIGPROF.

The old values are returned as a tuple: (delay, interval).

Attempting to pass an invalid interval timer will cause an ItimerError. Availability: Unix.

signal.getitimer(which)
Returns current value of a given interval timer specified by which. Availability: Unix.

signal.set_wakeup_fd(fd)
Set the wakeup fd to fd. When a signal is received, a ’\0’ byte is written to the fd. This can be used by a
library to wakeup a poll or select call, allowing the signal to be fully processed.

The old wakeup fd is returned. fd must be non-blocking. It is up to the library to remove any bytes before
calling poll or select again.

When threads are enabled, this function can only be called from the main thread; attempting to call it from
other threads will cause a ValueError exception to be raised.

signal.siginterrupt(signalnum, flag)
Change system call restart behaviour: if flag is False, system calls will be restarted when interrupted by
signal signalnum, otherwise system calls will be interrupted. Returns nothing. Availability: Unix (see the
man page siginterrupt(3) for further information).

Note that installing a signal handler with signal() will reset the restart behaviour to interruptible by
implicitly calling siginterrupt() with a true flag value for the given signal.

signal.signal(signalnum, handler)
Set the handler for signal signalnum to the function handler. handler can be a callable Python object taking
two arguments (see below), or one of the special values signal.SIG_IGN or signal.SIG_DFL. The
previous signal handler will be returned (see the description of getsignal() above). (See the Unix man
page signal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to call it from
other threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame
object; for a description of frame objects, see the description in the type hierarchy or see the attribute

636 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

descriptions in the inspect module).

On Windows, signal() can only be called with SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, or
SIGTERM. A ValueError will be raised in any other case.

17.4.1 Example

Here is a minimal example program. It uses the alarm() function to limit the time spent waiting to open a
file; this is useful if the file is for a serial device that may not be turned on, which would normally cause the
os.open() to hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation
takes too long, the alarm signal will be sent, and the handler raises an exception.

import signal, os

def handler(signum, frame):
print(’Signal handler called with signal’, signum)
raise IOError("Couldn’t open device!")

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open(’/dev/ttyS0’, os.O_RDWR)

signal.alarm(0) # Disable the alarm

17.5 asyncore — Asynchronous socket handler

Source code: Lib/asyncore.py

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.” Multi-
threaded programming is the simplest and most popular way to do it, but there is another very different technique,
that lets you have nearly all the advantages of multi-threading, without actually using multiple threads. It’s re-
ally only practical if your program is largely I/O bound. If your program is processor bound, then pre-emptive
scheduled threads are probably what you really need. Network servers are rarely processor bound, however.

If your operating system supports the select() system call in its I/O library (and nearly all do), then you can
use it to juggle multiple communication channels at once; doing other work while your I/O is taking place in the
“background.” Although this strategy can seem strange and complex, especially at first, it is in many ways easier
to understand and control than multi-threaded programming. The asyncore module solves many of the difficult
problems for you, making the task of building sophisticated high-performance network servers and clients a snap.
For “conversational” applications and protocols the companion asynchat module is invaluable.

The basic idea behind both modules is to create one or more network channels, instances of class
asyncore.dispatcher and asynchat.async_chat. Creating the channels adds them to a global map,
used by the loop() function if you do not provide it with your own map.

Once the initial channel(s) is(are) created, calling the loop() function activates channel service, which continues
until the last channel (including any that have been added to the map during asynchronous service) is closed.

asyncore.loop([timeout[, use_poll[, map[, count]]]])
Enter a polling loop that terminates after count passes or all open channels have been closed. All arguments
are optional. The count parameter defaults to None, resulting in the loop terminating only when all channels
have been closed. The timeout argument sets the timeout parameter for the appropriate select() or

17.5. asyncore — Asynchronous socket handler 637

http://svn.python.org/view/python/branches/py3k/Lib/asyncore.py?view=markup

The Python Library Reference, Release 3.2

poll() call, measured in seconds; the default is 30 seconds. The use_poll parameter, if true, indicates that
poll() should be used in preference to select() (the default is False).

The map parameter is a dictionary whose items are the channels to watch. As channels are closed
they are deleted from their map. If map is omitted, a global map is used. Channels (instances of
asyncore.dispatcher, asynchat.async_chat and subclasses thereof) can freely be mixed in
the map.

class asyncore.dispatcher
The dispatcher class is a thin wrapper around a low-level socket object. To make it more useful, it has a
few methods for event-handling which are called from the asynchronous loop. Otherwise, it can be treated
as a normal non-blocking socket object.

The firing of low-level events at certain times or in certain connection states tells the asynchronous loop
that certain higher-level events have taken place. For example, if we have asked for a socket to connect
to another host, we know that the connection has been made when the socket becomes writable for the
first time (at this point you know that you may write to it with the expectation of success). The implied
higher-level events are:

Event Description
handle_connect() Implied by the first read or write event
handle_close() Implied by a read event with no data available
handle_accepted() Implied by a read event on a listening socket

During asynchronous processing, each mapped channel’s readable() and writable() methods are
used to determine whether the channel’s socket should be added to the list of channels select()ed or
poll()ed for read and write events.

Thus, the set of channel events is larger than the basic socket events. The full set of methods that can be
overridden in your subclass follows:

handle_read()
Called when the asynchronous loop detects that a read() call on the channel’s socket will succeed.

handle_write()
Called when the asynchronous loop detects that a writable socket can be written. Often this method
will implement the necessary buffering for performance. For example:

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

handle_expt()
Called when there is out of band (OOB) data for a socket connection. This will almost never happen,
as OOB is tenuously supported and rarely used.

handle_connect()
Called when the active opener’s socket actually makes a connection. Might send a “welcome” banner,
or initiate a protocol negotiation with the remote endpoint, for example.

handle_close()
Called when the socket is closed.

handle_error()
Called when an exception is raised and not otherwise handled. The default version prints a condensed
traceback.

handle_accept()
Called on listening channels (passive openers) when a connection can be established with a new remote
endpoint that has issued a connect() call for the local endpoint. Deprecated in version 3.2; use
handle_accepted() instead. Deprecated since version 3.2.

handle_accepted(sock, addr)
Called on listening channels (passive openers) when a connection has been established with a new
remote endpoint that has issued a connect() call for the local endpoint. conn is a new socket object

638 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

usable to send and receive data on the connection, and address is the address bound to the socket on
the other end of the connection. New in version 3.2.

readable()
Called each time around the asynchronous loop to determine whether a channel’s socket should be
added to the list on which read events can occur. The default method simply returns True, indicating
that by default, all channels will be interested in read events.

writable()
Called each time around the asynchronous loop to determine whether a channel’s socket should be
added to the list on which write events can occur. The default method simply returns True, indicating
that by default, all channels will be interested in write events.

In addition, each channel delegates or extends many of the socket methods. Most of these are nearly identical
to their socket partners.

create_socket(family, type)
This is identical to the creation of a normal socket, and will use the same options for creation. Refer
to the socket documentation for information on creating sockets.

connect(address)
As with the normal socket object, address is a tuple with the first element the host to connect to, and
the second the port number.

send(data)
Send data to the remote end-point of the socket.

recv(buffer_size)
Read at most buffer_size bytes from the socket’s remote end-point. An empty string implies that the
channel has been closed from the other end.

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number of
queued connections and should be at least 1; the maximum value is system-dependent (usually 5).

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address de-
pends on the address family — refer to the socket documentation for more information.) To
mark the socket as re-usable (setting the SO_REUSEADDR option), call the dispatcher object’s
set_reuse_addr() method.

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return
value can be either None or a pair (conn, address) where conn is a new socket object usable to
send and receive data on the connection, and address is the address bound to the socket on the other
end of the connection. When None is returned it means the connection didn’t take place, in which
case the server should just ignore this event and keep listening for further incoming connections.

close()
Close the socket. All future operations on the socket object will fail. The remote end-point will
receive no more data (after queued data is flushed). Sockets are automatically closed when they are
garbage-collected.

class asyncore.dispatcher_with_send
A dispatcher subclass which adds simple buffered output capability, useful for simple clients. For more
sophisticated usage use asynchat.async_chat.

class asyncore.file_dispatcher
A file_dispatcher takes a file descriptor or file object along with an optional map argument and wraps it
for use with the poll() or loop() functions. If provided a file object or anything with a fileno()
method, that method will be called and passed to the file_wrapper constructor. Availability: UNIX.

class asyncore.file_wrapper
A file_wrapper takes an integer file descriptor and calls os.dup() to duplicate the handle so that the

17.5. asyncore — Asynchronous socket handler 639

The Python Library Reference, Release 3.2

original handle may be closed independently of the file_wrapper. This class implements sufficient methods
to emulate a socket for use by the file_dispatcher class. Availability: UNIX.

17.5.1 asyncore Example basic HTTP client

Here is a very basic HTTP client that uses the dispatcher class to implement its socket handling:

import asyncore, socket

class HTTPClient(asyncore.dispatcher):

def __init__(self, host, path):
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((host, 80))
self.buffer = bytes(’GET %s HTTP/1.0\r\n\r\n’ % path, ’ascii’)

def handle_connect(self):
pass

def handle_close(self):
self.close()

def handle_read(self):
print(self.recv(8192))

def writable(self):
return (len(self.buffer) > 0)

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

client = HTTPClient(’www.python.org’, ’/’)
asyncore.loop()

17.5.2 asyncore Example basic echo server

Here is abasic echo server that uses the dispatcher class to accept connections and dispatches the incoming
connections to a handler:

import asyncore
import socket

class EchoHandler(asyncore.dispatcher_with_send):

def handle_read(self):
data = self.recv(8192)
self.send(data)

class EchoServer(asyncore.dispatcher):

def __init__(self, host, port):
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.set_reuse_addr()

640 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

self.bind((host, port))
self.listen(5)

def handle_accepted(self, sock, addr):
print(’Incoming connection from %s’ % repr(addr))
handler = EchoHandler(sock)

server = EchoServer(’localhost’, 8080)
asyncore.loop()

17.6 asynchat — Asynchronous socket command/response han-
dler

Source code: Lib/asynchat.py

This module builds on the asyncore infrastructure, simplifying asynchronous clients and servers and mak-
ing it easier to handle protocols whose elements are terminated by arbitrary strings, or are of variable length.
asynchat defines the abstract class async_chat that you subclass, providing implementations of the
collect_incoming_data() and found_terminator() methods. It uses the same asynchronous loop
as asyncore, and the two types of channel, asyncore.dispatcher and asynchat.async_chat, can
freely be mixed in the channel map. Typically an asyncore.dispatcher server channel generates new
asynchat.async_chat channel objects as it receives incoming connection requests.

class asynchat.async_chat
This class is an abstract subclass of asyncore.dispatcher. To make practical use of the
code you must subclass async_chat, providing meaningful collect_incoming_data() and
found_terminator() methods. The asyncore.dispatcher methods can be used, although not
all make sense in a message/response context.

Like asyncore.dispatcher, async_chat defines a set of events that are generated by an analysis of
socket conditions after a select() call. Once the polling loop has been started the async_chat object’s
methods are called by the event-processing framework with no action on the part of the programmer.

Two class attributes can be modified, to improve performance, or possibly even to conserve memory.

ac_in_buffer_size
The asynchronous input buffer size (default 4096).

ac_out_buffer_size
The asynchronous output buffer size (default 4096).

Unlike asyncore.dispatcher, async_chat allows you to define a first-in-first-out queue (fifo) of
producers. A producer need have only one method, more(), which should return data to be transmitted on
the channel. The producer indicates exhaustion (i.e. that it contains no more data) by having its more()
method return the empty string. At this point the async_chat object removes the producer from the fifo
and starts using the next producer, if any. When the producer fifo is empty the handle_write() method
does nothing. You use the channel object’s set_terminator() method to describe how to recognize
the end of, or an important breakpoint in, an incoming transmission from the remote endpoint.

To build a functioning async_chat subclass your input methods collect_incoming_data() and
found_terminator() must handle the data that the channel receives asynchronously. The methods are
described below.

async_chat.close_when_done()
Pushes a None on to the producer fifo. When this producer is popped off the fifo it causes the channel to be
closed.

async_chat.collect_incoming_data(data)
Called with data holding an arbitrary amount of received data. The default method, which must be overrid-
den, raises a NotImplementedError exception.

17.6. asynchat — Asynchronous socket command/response handler 641

http://svn.python.org/view/python/branches/py3k/Lib/asynchat.py?view=markup

The Python Library Reference, Release 3.2

async_chat.discard_buffers()
In emergencies this method will discard any data held in the input and/or output buffers and the producer
fifo.

async_chat.found_terminator()
Called when the incoming data stream matches the termination condition set by set_terminator().
The default method, which must be overridden, raises a NotImplementedError exception. The
buffered input data should be available via an instance attribute.

async_chat.get_terminator()
Returns the current terminator for the channel.

async_chat.push(data)
Pushes data on to the channel’s fifo to ensure its transmission. This is all you need to do to have the channel
write the data out to the network, although it is possible to use your own producers in more complex schemes
to implement encryption and chunking, for example.

async_chat.push_with_producer(producer)
Takes a producer object and adds it to the producer fifo associated with the channel. When all currently-
pushed producers have been exhausted the channel will consume this producer’s data by calling its more()
method and send the data to the remote endpoint.

async_chat.set_terminator(term)
Sets the terminating condition to be recognized on the channel. term may be any of three types of value,
corresponding to three different ways to handle incoming protocol data.

term Description
string Will call found_terminator() when the string is found in the input stream
integer Will call found_terminator() when the indicated number of characters have been received
None The channel continues to collect data forever

Note that any data following the terminator will be available for reading by the channel after
found_terminator() is called.

17.6.1 asynchat - Auxiliary Classes

class asynchat.fifo(list=None)
A fifo holding data which has been pushed by the application but not yet popped for writing to the
channel. A fifo is a list used to hold data and/or producers until they are required. If the list argument is
provided then it should contain producers or data items to be written to the channel.

is_empty()
Returns True if and only if the fifo is empty.

first()
Returns the least-recently push()ed item from the fifo.

push(data)
Adds the given data (which may be a string or a producer object) to the producer fifo.

pop()
If the fifo is not empty, returns True, first(), deleting the popped item. Returns False, None
for an empty fifo.

17.6.2 asynchat Example

The following partial example shows how HTTP requests can be read with async_chat. A web server might
create an http_request_handler object for each incoming client connection. Notice that initially the chan-
nel terminator is set to match the blank line at the end of the HTTP headers, and a flag indicates that the headers
are being read.

642 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 3.2

Once the headers have been read, if the request is of type POST (indicating that further data are present in the
input stream) then the Content-Length: header is used to set a numeric terminator to read the right amount
of data from the channel.

The handle_request() method is called once all relevant input has been marshalled, after setting the channel
terminator to None to ensure that any extraneous data sent by the web client are ignored.

class http_request_handler(asynchat.async_chat):

def __init__(self, sock, addr, sessions, log):
asynchat.async_chat.__init__(self, sock=sock)
self.addr = addr
self.sessions = sessions
self.ibuffer = []
self.obuffer = b""
self.set_terminator(b"\r\n\r\n")
self.reading_headers = True
self.handling = False
self.cgi_data = None
self.log = log

def collect_incoming_data(self, data):
"""Buffer the data"""
self.ibuffer.append(data)

def found_terminator(self):
if self.reading_headers:

self.reading_headers = False
self.parse_headers("".join(self.ibuffer))
self.ibuffer = []
if self.op.upper() == b"POST":

clen = self.headers.getheader("content-length")
self.set_terminator(int(clen))

else:
self.handling = True
self.set_terminator(None)
self.handle_request()

elif not self.handling:
self.set_terminator(None) # browsers sometimes over-send
self.cgi_data = parse(self.headers, b"".join(self.ibuffer))
self.handling = True
self.ibuffer = []
self.handle_request()

17.6. asynchat — Asynchronous socket command/response handler 643

The Python Library Reference, Release 3.2

644 Chapter 17. Interprocess Communication and Networking

CHAPTER

EIGHTEEN

INTERNET DATA HANDLING

This chapter describes modules which support handling data formats commonly used on the Internet.

18.1 email — An email and MIME handling package

The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. It is specifically not designed to do any sending of email messages to SMTP (RFC 2821),
NNTP, or other servers; those are functions of modules such as smtplib and nntplib. The email package
attempts to be as RFC-compliant as possible, supporting in addition to RFC 2822, such MIME-related RFCs as

RFC 2045, RFC 2046, RFC 2047, and RFC 2231.

The primary distinguishing feature of the email package is that it splits the parsing and generating of email
messages from the internal object model representation of email. Applications using the email package deal
primarily with objects; you can add sub-objects to messages, remove sub-objects from messages, completely re-
arrange the contents, etc. There is a separate parser and a separate generator which handles the transformation
from flat text to the object model, and then back to flat text again. There are also handy subclasses for some
common MIME object types, and a few miscellaneous utilities that help with such common tasks as extracting
and parsing message field values, creating RFC-compliant dates, etc.

The following sections describe the functionality of the email package. The ordering follows a progression that
should be common in applications: an email message is read as flat text from a file or other source, the text is
parsed to produce the object structure of the email message, this structure is manipulated, and finally, the object
tree is rendered back into flat text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From there,
a similar progression can be taken as above.

Also included are detailed specifications of all the classes and modules that the email package provides, the ex-
ception classes you might encounter while using the email package, some auxiliary utilities, and a few examples.
For users of the older mimelib package, or previous versions of the email package, a section on differences
and porting is provided.

Contents of the email package documentation:

18.1.1 email: Representing an email message

The central class in the email package is the Message class, imported from the email.message module. It
is the base class for the email object model. Message provides the core functionality for setting and querying
header fields, and for accessing message bodies.

Conceptually, a Message object consists of headers and payloads. Headers are RFC 2822 style field names and
values where the field name and value are separated by a colon. The colon is not part of either the field name or
the field value.

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also be
a single envelope header, also known as the Unix-From header or the From_ header. The payload is either a

645

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2821.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

string in the case of simple message objects or a list of Message objects for MIME container documents (e.g.
multipart/* and message/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface
for accessing both the headers and the payload. It provides convenience methods for generating a flat text repre-
sentation of the message object tree, for accessing commonly used header parameters, and for recursively walking
over the object tree.

Here are the methods of the Message class:

class email.message.Message
The constructor takes no arguments.

as_string(unixfrom=False, maxheaderlen=0)
Return the entire message flattened as a string. When optional unixfrom is True, the envelope header
is included in the returned string. unixfrom defaults to False. Flattening the message may trigger
changes to the Message if defaults need to be filled in to complete the transformation to a string (for
example, MIME boundaries may be generated or modified).

Note that this method is provided as a convenience and may not always format the message the way you
want. For example, by default it mangles lines that begin with From. For more flexibility, instantiate
a Generator instance and use its flatten() method directly. For example:

from io import StringIO
from email.generator import Generator
fp = StringIO()
g = Generator(fp, mangle_from_=False, maxheaderlen=60)
g.flatten(msg)
text = fp.getvalue()

__str__()
Equivalent to as_string(unixfrom=True).

is_multipart()
Return True if the message’s payload is a list of sub-Message objects, otherwise return False.
When is_multipart() returns False, the payload should be a string object.

set_unixfrom(unixfrom)
Set the message’s envelope header to unixfrom, which should be a string.

get_unixfrom()
Return the message’s envelope header. Defaults to None if the envelope header was never set.

attach(payload)
Add the given payload to the current payload, which must be None or a list of Message objects
before the call. After the call, the payload will always be a list of Message objects. If you want to
set the payload to a scalar object (e.g. a string), use set_payload() instead.

get_payload(i=None, decode=False)
Return the current payload, which will be a list of Message objects when is_multipart() is
True, or a string when is_multipart() is False. If the payload is a list and you mutate the list
object, you modify the message’s payload in place.

With optional argument i, get_payload() will return the i-th element of the payload, count-
ing from zero, if is_multipart() is True. An IndexError will be raised if i is less than
0 or greater than or equal to the number of items in the payload. If the payload is a string (i.e.
is_multipart() is False) and i is given, a TypeError is raised.

Optional decode is a flag indicating whether the payload should be decoded or not, according to the
Content-Transfer-Encoding header. When True and the message is not a multipart, the
payload will be decoded if this header’s value is quoted-printable or base64. If some other
encoding is used, or Content-Transfer-Encoding header is missing, or if the payload has
bogus base64 data, the payload is returned as-is (undecoded). In all cases the returned value is binary
data. If the message is a multipart and the decode flag is True, then None is returned.

646 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

When decode is False (the default) the body is returned as a string without decoding the
Content-Transfer-Encoding. However, for a Content-Transfer-Encoding of 8bit,
an attempt is made to decode the original bytes using the charset specified by the Content-Type
header, using the replace error handler. If no charset is specified, or if the charset given is
not recognized by the email package, the body is decoded using the default ASCII charset.

set_payload(payload, charset=None)
Set the entire message object’s payload to payload. It is the client’s responsibility to ensure the pay-
load invariants. Optional charset sets the message’s default character set; see set_charset() for
details.

set_charset(charset)
Set the character set of the payload to charset, which can either be a Charset instance (see
email.charset), a string naming a character set, or None. If it is a string, it will be converted
to a Charset instance. If charset is None, the charset parameter will be removed from the
Content-Type header. Anything else will generate a TypeError.

The message will be assumed to be of type text/* encoded with charset.input_charset. It
will be converted to charset.output_charset and encoded properly, if needed, when generating the
plain text representation of the message. MIME headers (MIME-Version, Content-Type,
Content-Transfer-Encoding) will be added as needed.

get_charset()
Return the Charset instance associated with the message’s payload.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers.
Note that there are some semantic differences between these methods and a normal mapping (i.e. dictio-
nary) interface. For example, in a dictionary there are no duplicate keys, but here there may be duplicate
message headers. Also, in dictionaries there is no guaranteed order to the keys returned by keys(), but in
a Message object, headers are always returned in the order they appeared in the original message, or were
added to the message later. Any header deleted and then re-added are always appended to the end of the
header list.

These semantic differences are intentional and are biased toward maximal convenience.

Note that in all cases, any envelope header present in the message is not included in the mapping interface.

In a model generated from bytes, any header values that (in contravention of the RFCs) contain non-ASCII
bytes will, when retrieved through this interface, be represented as Header objects with a charset of
unknown-8bit.

__len__()
Return the total number of headers, including duplicates.

__contains__(name)
Return true if the message object has a field named name. Matching is done case-insensitively and
name should not include the trailing colon. Used for the in operator, e.g.:

if ’message-id’ in myMessage:
print(’Message-ID:’, myMessage[’message-id’])

__getitem__(name)
Return the value of the named header field. name should not include the colon field separator. If the
header is missing, None is returned; a KeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those
field values will be returned is undefined. Use the get_all() method to get the values of all the
extant named headers.

__setitem__(name, val)
Add a header to the message with field name name and value val. The field is appended to the end of
the message’s existing fields.

18.1. email — An email and MIME handling package 647

http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

Note that this does not overwrite or delete any existing header with the same name. If you want to
ensure that the new header is the only one present in the message with field name name, delete the
field first, e.g.:

del msg[’subject’]
msg[’subject’] = ’Python roolz!’

__delitem__(name)
Delete all occurrences of the field with name name from the message’s headers. No exception is raised
if the named field isn’t present in the headers.

__contains__(name)
Return true if the message contains a header field named name, otherwise return false.

keys()
Return a list of all the message’s header field names.

values()
Return a list of all the message’s field values.

items()
Return a list of 2-tuples containing all the message’s field headers and values.

get(name, failobj=None)
Return the value of the named header field. This is identical to __getitem__() except that optional
failobj is returned if the named header is missing (defaults to None).

Here are some additional useful methods:

get_all(name, failobj=None)
Return a list of all the values for the field named name. If there are no such named headers in the
message, failobj is returned (defaults to None).

add_header(_name, _value, **_params)
Extended header setting. This method is similar to __setitem__() except that additional header
parameters can be provided as keyword arguments. _name is the header field to add and _value is the
primary value for the header.

For each item in the keyword argument dictionary _params, the key is taken as the parameter name,
with underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the
parameter will be added as key="value" unless the value is None, in which case only the key will
be added. If the value contains non-ASCII characters, it can be specified as a three tuple in the format
(CHARSET, LANGUAGE, VALUE), where CHARSET is a string naming the charset to be used to
encode the value, LANGUAGE can usually be set to None or the empty string (see RFC 2231 for other
possibilities), and VALUE is the string value containing non-ASCII code points. If a three tuple is not
passed and the value contains non-ASCII characters, it is automatically encoded in RFC 2231 format
using a CHARSET of utf-8 and a LANGUAGE of None.

Here’s an example:

msg.add_header(’Content-Disposition’, ’attachment’, filename=’bud.gif’)

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

An example with with non-ASCII characters:

msg.add_header(’Content-Disposition’, ’attachment’,
filename=(’iso-8859-1’, ’’, ’Fußballer.ppt’))

Which produces

648 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.2

Content-Disposition: attachment; filename*="iso-8859-1’’Fu%DFballer.ppt"

replace_header(_name, _value)
Replace a header. Replace the first header found in the message that matches _name, retaining header
order and field name case. If no matching header was found, a KeyError is raised.

get_content_type()
Return the message’s content type. The returned string is coerced to lower case of the form
maintype/subtype. If there was no Content-Type header in the message the default type
as given by get_default_type() will be returned. Since according to

RFC 2045, messages always have a default type, get_content_type() will always return a
value.

RFC 2045 defines a message’s default type to be text/plain unless it appears inside
a multipart/digest container, in which case it would be message/rfc822. If the
Content-Type header has an invalid type specification,

RFC 2045 mandates that the default type be text/plain.

get_content_maintype()
Return the message’s main content type. This is the maintype part of the string returned by
get_content_type().

get_content_subtype()
Return the message’s sub-content type. This is the subtype part of the string returned by
get_content_type().

get_default_type()
Return the default content type. Most messages have a default content type of text/plain, except
for messages that are subparts of multipart/digest containers. Such subparts have a default
content type of message/rfc822.

set_default_type(ctype)
Set the default content type. ctype should either be text/plain or message/rfc822, although
this is not enforced. The default content type is not stored in the Content-Type header.

get_params(failobj=None, header=’content-type’, unquote=True)
Return the message’s Content-Type parameters, as a list. The elements of the returned list are
2-tuples of key/value pairs, as split on the ’=’ sign. The left hand side of the ’=’ is the key, while
the right hand side is the value. If there is no ’=’ sign in the parameter the value is the empty string,
otherwise the value is as described in get_param() and is unquoted if optional unquote is True
(the default).

Optional failobj is the object to return if there is no Content-Type header. Optional header is the
header to search instead of Content-Type.

get_param(param, failobj=None, header=’content-type’, unquote=True)
Return the value of the Content-Type header’s parameter param as a string. If the message has no
Content-Type header or if there is no such parameter, then failobj is returned (defaults to None).

Optional header if given, specifies the message header to use instead of Content-Type.

Parameter keys are always compared case insensitively. The return value can either be a string, or a
3-tuple if the parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are
of the form (CHARSET, LANGUAGE, VALUE). Note that both CHARSET and LANGUAGE can be
None, in which case you should consider VALUE to be encoded in the us-ascii charset. You can
usually ignore LANGUAGE.

If your application doesn’t care whether the parameter was encoded as in

RFC 2231, you can collapse the parameter value by calling
email.utils.collapse_rfc2231_value(), passing in the return value from
get_param(). This will return a suitably decoded Unicode string when the value is a tuple,
or the original string unquoted if it isn’t. For example:

18.1. email — An email and MIME handling package 649

http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.2

rawparam = msg.get_param(’foo’)
param = email.utils.collapse_rfc2231_value(rawparam)

In any case, the parameter value (either the returned string, or the VALUE item in the 3-tuple) is always
unquoted, unless unquote is set to False.

set_param(param, value, header=’Content-Type’, requote=True, charset=None, language=’‘)
Set a parameter in the Content-Type header. If the parameter already exists in the header, its value
will be replaced with value. If the Content-Type header as not yet been defined for this message,
it will be set to text/plain and the new parameter value will be appended as per RFC 2045.

Optional header specifies an alternative header to Content-Type, and all parameters will be quoted
as necessary unless optional requote is False (the default is True).

If optional charset is specified, the parameter will be encoded according to RFC 2231. Optional
language specifies the RFC 2231 language, defaulting to the empty string. Both charset and language
should be strings.

del_param(param, header=’content-type’, requote=True)
Remove the given parameter completely from the Content-Type header. The header will be re-
written in place without the parameter or its value. All values will be quoted as necessary unless
requote is False (the default is True). Optional header specifies an alternative to Content-Type.

set_type(type, header=’Content-Type’, requote=True)
Set the main type and subtype for the Content-Type header. type must be a string in the form
maintype/subtype, otherwise a ValueError is raised.

This method replaces the Content-Type header, keeping all the parameters in place. If requote is
False, this leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the
default).

An alternative header can be specified in the header argument. When the Content-Type header is
set a MIME-Version header is also added.

get_filename(failobj=None)
Return the value of the filename parameter of the Content-Disposition header of the mes-
sage. If the header does not have a filename parameter, this method falls back to looking for the
name parameter on the Content-Type header. If neither is found, or the header is missing, then
failobj is returned. The returned string will always be unquoted as per email.utils.unquote().

get_boundary(failobj=None)
Return the value of the boundary parameter of the Content-Type header of the message, or
failobj if either the header is missing, or has no boundary parameter. The returned string will
always be unquoted as per email.utils.unquote().

set_boundary(boundary)
Set the boundary parameter of the Content-Type header to boundary. set_boundary() will
always quote boundary if necessary. A HeaderParseError is raised if the message object has no
Content-Type header.

Note that using this method is subtly different than deleting the old Content-Type header and
adding a new one with the new boundary via add_header(), because set_boundary() pre-
serves the order of the Content-Type header in the list of headers. However, it does not preserve
any continuation lines which may have been present in the original Content-Type header.

get_content_charset(failobj=None)
Return the charset parameter of the Content-Type header, coerced to lower case. If there is no
Content-Type header, or if that header has no charset parameter, failobj is returned.

Note that this method differs from get_charset() which returns the Charset instance for the
default encoding of the message body.

get_charsets(failobj=None)
Return a list containing the character set names in the message. If the message is a multipart, then
the list will contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

650 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.2

Each item in the list will be a string which is the value of the charset parameter in the
Content-Type header for the represented subpart. However, if the subpart has no Content-Type
header, no charset parameter, or is not of the text main MIME type, then that item in the returned
list will be failobj.

walk()
The walk() method is an all-purpose generator which can be used to iterate over all the parts and
subparts of a message object tree, in depth-first traversal order. You will typically use walk() as the
iterator in a for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():
... print(part.get_content_type())
multipart/report
text/plain
message/delivery-status
text/plain
text/plain
message/rfc822

Message objects can also optionally contain two instance attributes, which can be used when generating
the plain text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers,
and the first multipart boundary string. Normally, this text is never visible in a MIME-aware mail
reader because it falls outside the standard MIME armor. However, when viewing the raw text of the
message, or when viewing the message in a non-MIME aware reader, this text can become visible.

The preamble attribute contains this leading extra-armor text for MIME documents. When the
Parser discovers some text after the headers but before the first boundary string, it assigns this
text to the message’s preamble attribute. When the Generator is writing out the plain text represen-
tation of a MIME message, and it finds the message has a preamble attribute, it will write this text in
the area between the headers and the first boundary. See email.parser and email.generator
for details.

Note that if the message object has no preamble, the preamble attribute will be None.

epilogue
The epilogue attribute acts the same way as the preamble attribute, except that it contains text that
appears between the last boundary and the end of the message.

You do not need to set the epilogue to the empty string in order for the Generator to print a newline
at the end of the file.

defects
The defects attribute contains a list of all the problems found when parsing this message. See
email.errors for a detailed description of the possible parsing defects.

18.1.2 email: Parsing email messages

Message object structures can be created in one of two ways: they can be created from whole cloth by instantiating
Message objects and stringing them together via attach() and set_payload() calls, or they can be created
by parsing a flat text representation of the email message.

The email package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a string or a file object, and the parser will return to you the root Message
instance of the object structure. For simple, non-MIME messages the payload of this root object will likely be
a string containing the text of the message. For MIME messages, the root object will return True from its
is_multipart() method, and the subparts can be accessed via the get_payload() and walk() methods.

18.1. email — An email and MIME handling package 651

The Python Library Reference, Release 3.2

There are actually two parser interfaces available for use, the classic Parser API and the incremental
FeedParser API. The classic Parser API is fine if you have the entire text of the message in memory as
a string, or if the entire message lives in a file on the file system. FeedParser is more appropriate for when
you’re reading the message from a stream which might block waiting for more input (e.g. reading an email mes-
sage from a socket). The FeedParser can consume and parse the message incrementally, and only returns the
root object when you close the parser 1.

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. There is no magical connection between the email package’s bundled parser and the Message
class, so your custom parser can create message object trees any way it finds necessary.

FeedParser API

The FeedParser, imported from the email.feedparser module, provides an API that is conducive to
incremental parsing of email messages, such as would be necessary when reading the text of an email message
from a source that can block (e.g. a socket). The FeedParser can of course be used to parse an email message
fully contained in a string or a file, but the classic Parser API may be more convenient for such use cases. The
semantics and results of the two parser APIs are identical.

The FeedParser‘s API is simple; you create an instance, feed it a bunch of text until there’s no more to feed
it, then close the parser to retrieve the root message object. The FeedParser is extremely accurate when
parsing standards-compliant messages, and it does a very good job of parsing non-compliant messages, providing
information about how a message was deemed broken. It will populate a message object’s defects attribute with a
list of any problems it found in a message. See the email.errors module for the list of defects that it can find.

Here is the API for the FeedParser:

class email.parser.FeedParser(_factory=email.message.Message)
Create a FeedParser instance. Optional _factory is a no-argument callable that will be called whenever
a new message object is needed. It defaults to the email.message.Message class.

feed(data)
Feed the FeedParser some more data. data should be a string containing one or more lines. The
lines can be partial and the FeedParser will stitch such partial lines together properly. The lines in
the string can have any of the common three line endings, carriage return, newline, or carriage return
and newline (they can even be mixed).

close()
Closing a FeedParser completes the parsing of all previously fed data, and returns the root message
object. It is undefined what happens if you feed more data to a closed FeedParser.

class email.parser.BytesFeedParser(_factory=email.message.Message)
Works exactly like FeedParser except that the input to the feed() method must be bytes and not string.
New in version 3.2.

Parser class API

The Parser class, imported from the email.parser module, provides an API that can be used to parse
a message when the complete contents of the message are available in a string or file. The email.parser
module also provides a second class, called HeaderParser which can be used if you’re only interested in the
headers of the message. HeaderParser can be much faster in these situations, since it does not attempt to parse
the message body, instead setting the payload to the raw body as a string. HeaderParser has the same API as
the Parser class.

class email.parser.Parser(_class=email.message.Message, strict=None)
The constructor for the Parser class takes an optional argument _class. This must be a callable factory
(such as a function or a class), and it is used whenever a sub-message object needs to be created. It defaults
to Message (see email.message). The factory will be called without arguments.

1 As of email package version 3.0, introduced in Python 2.4, the classic Parser was re-implemented in terms of the FeedParser, so
the semantics and results are identical between the two parsers.

652 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

The optional strict flag is ignored. Deprecated since version 2.4: Because the Parser class is a backward
compatible API wrapper around the new-in-Python 2.4 FeedParser, all parsing is effectively non-strict.
You should simply stop passing a strict flag to the Parser constructor. The other public Parser methods
are:

parse(fp, headersonly=False)
Read all the data from the file-like object fp, parse the resulting text, and return the root message
object. fp must support both the readline() and the read() methods on file-like objects.

The text contained in fp must be formatted as a block of RFC 2822 style headers and header contin-
uation lines, optionally preceded by a envelope header. The header block is terminated either by the
end of the data or by a blank line. Following the header block is the body of the message (which may
contain MIME-encoded subparts).

Optional headersonly is as with the parse() method.

parsestr(text, headersonly=False)
Similar to the parse() method, except it takes a string object instead of a file-like object. Calling
this method on a string is exactly equivalent to wrapping text in a StringIO instance first and calling
parse().

Optional headersonly is a flag specifying whether to stop parsing after reading the headers or not. The
default is False, meaning it parses the entire contents of the file.

class email.parser.BytesParser(_class=email.message.Message, strict=None)
This class is exactly parallel to Parser, but handles bytes input. The _class and strict arguments are
interpreted in the same way as for the Parser constructor. strict is supported only to make porting code
easier; it is deprecated.

parse(fp, headeronly=False)
Read all the data from the binary file-like object fp, parse the resulting bytes, and return the message
object. fp must support both the readline() and the read() methods on file-like objects.

The bytes contained in fp must be formatted as a block of RFC 2822 style headers and header contin-
uation lines, optionally preceded by a envelope header. The header block is terminated either by the
end of the data or by a blank line. Following the header block is the body of the message (which may
contain MIME-encoded subparts, including subparts with a Content-Transfer-Encoding of
8bit.

Optional headersonly is a flag specifying whether to stop parsing after reading the headers or not. The
default is False, meaning it parses the entire contents of the file.

parsebytes(bytes, headersonly=False)
Similar to the parse() method, except it takes a byte string object instead of a file-like object.
Calling this method on a byte string is exactly equivalent to wrapping text in a BytesIO instance first
and calling parse().

Optional headersonly is as with the parse() method.

New in version 3.2.

Since creating a message object structure from a string or a file object is such a common task, four functions are
provided as a convenience. They are available in the top-level email package namespace.

email.message_from_string(s, _class=email.message.Message, strict=None)
Return a message object structure from a string. This is exactly equivalent to Parser().parsestr(s).
Optional _class and strict are interpreted as with the Parser class constructor.

email.message_from_bytes(s, _class=email.message.Message, strict=None)
Return a message object structure from a byte string. This is exactly equivalent to
BytesParser().parsebytes(s). Optional _class and strict are interpreted as with the Parser
class constructor. New in version 3.2.

email.message_from_file(fp, _class=email.message.Message, strict=None)
Return a message object structure tree from an open file object. This is exactly equivalent to
Parser().parse(fp). Optional _class and strict are interpreted as with the Parser class constructor.

18.1. email — An email and MIME handling package 653

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

email.message_from_binary_file(fp, _class=email.message.Message, strict=None)
Return a message object structure tree from an open binary file object. This is exactly equivalent to
BytesParser().parse(fp). Optional _class and strict are interpreted as with the Parser class
constructor. New in version 3.2.

Here’s an example of how you might use this at an interactive Python prompt:

>>> import email
>>> msg = email.message_from_string(myString)

Additional notes

Here are some notes on the parsing semantics:

• Most non-multipart type messages are parsed as a single message object with a string payload. These
objects will return False for is_multipart(). Their get_payload() method will return a string
object.

• All multipart type messages will be parsed as a container message object with a list of sub-message
objects for their payload. The outer container message will return True for is_multipart() and their
get_payload() method will return the list of Message subparts.

• Most messages with a content type of message/* (e.g. message/delivery-status and
message/rfc822) will also be parsed as container object containing a list payload of length 1. Their
is_multipart()method will return True. The single element in the list payload will be a sub-message
object.

• Some non-standards compliant messages may not be internally consistent about their multipart-edness.
Such messages may have a Content-Type header of type multipart, but their is_multipart()
method may return False. If such messages were parsed with the FeedParser, they will have an
instance of the MultipartInvariantViolationDefect class in their defects attribute list. See
email.errors for details.

18.1.3 email: Generating MIME documents

One of the most common tasks is to generate the flat text of the email message represented by a message object
structure. You will need to do this if you want to send your message via the smtplib module or the nntplib
module, or print the message on the console. Taking a message object structure and producing a flat text document
is the job of the Generator class.

Again, as with the email.parser module, you aren’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that
the transformation from flat text, to a message structure via the Parser class, and back to flat text, is idempotent
(the input is identical to the output). On the other hand, using the Generator on a Message constructed by
program may result in changes to the Message object as defaults are filled in.

bytes output can be generated using the BytesGenerator class. If the message object structure contains
non-ASCII bytes, this generator’s flatten() method will emit the original bytes. Parsing a binary message
and then flattening it with BytesGenerator should be idempotent for standards compliant messages.

Here are the public methods of the Generator class, imported from the email.generator module:

class email.generator.Generator(outfp, mangle_from_=True, maxheaderlen=78)
The constructor for the Generator class takes a file-like object called outfp for an argument. outfp must
support the write() method and be usable as the output file for the print() function.

Optional mangle_from_ is a flag that, when True, puts a > character in front of any line in the body
that starts exactly as From, i.e. From followed by a space at the beginning of the line. This is the only
guaranteed portable way to avoid having such lines be mistaken for a Unix mailbox format envelope header
separator (see WHY THE CONTENT-LENGTH FORMAT IS BAD for details). mangle_from_ defaults to
True, but you might want to set this to False if you are not writing Unix mailbox format files.

654 Chapter 18. Internet Data Handling

http://www.jwz.org/doc/content-length.html

The Python Library Reference, Release 3.2

Optional maxheaderlen specifies the longest length for a non-continued header. When a header line is
longer than maxheaderlen (in characters, with tabs expanded to 8 spaces), the header will be split as defined
in the Header class. Set to zero to disable header wrapping. The default is 78, as recommended (but not
required) by RFC 2822.

The other public Generator methods are:

flatten(msg, unixfrom=False, linesep=’\n’)
Print the textual representation of the message object structure rooted at msg to the output file specified
when the Generator instance was created. Subparts are visited depth-first and the resulting text will
be properly MIME encoded.

Optional unixfrom is a flag that forces the printing of the envelope header delimiter before the first
RFC 2822 header of the root message object. If the root object has no envelope header, a standard one
is crafted. By default, this is set to False to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed.

Optional linesep specifies the line separator character used to terminate lines in the output. It defaults to
\n because that is the most useful value for Python application code (other library packages expect \n
separated lines). linesep=\r\n can be used to generate output with RFC-compliant line separators.

Messages parsed with a Bytes parser that have a Content-Transfer-Encoding of 8bit will be
converted to a use a 7bit Content-Transfer-Encoding. Non-ASCII bytes in the headers will be RFC
2047 encoded with a charset of unknown-8bit. Changed in version 3.2: Added support for re-encoding
8bit message bodies, and the linesep argument.

clone(fp)
Return an independent clone of this Generator instance with the exact same options.

write(s)
Write the string s to the underlying file object, i.e. outfp passed to Generator‘s constructor. This
provides just enough file-like API for Generator instances to be used in the print() function.

As a convenience, see the Message methods as_string() and str(aMessage), a.k.a. __str__(),
which simplify the generation of a formatted string representation of a message object. For more detail, see
email.message.

class email.generator.BytesGenerator(outfp, mangle_from_=True, maxheaderlen=78)
The constructor for the BytesGenerator class takes a binary file-like object called outfp for an argument.
outfp must support a write() method that accepts binary data.

Optional mangle_from_ is a flag that, when True, puts a > character in front of any line in the body
that starts exactly as From, i.e. From followed by a space at the beginning of the line. This is the only
guaranteed portable way to avoid having such lines be mistaken for a Unix mailbox format envelope header
separator (see WHY THE CONTENT-LENGTH FORMAT IS BAD for details). mangle_from_ defaults to
True, but you might want to set this to False if you are not writing Unix mailbox format files.

Optional maxheaderlen specifies the longest length for a non-continued header. When a header line is
longer than maxheaderlen (in characters, with tabs expanded to 8 spaces), the header will be split as defined
in the Header class. Set to zero to disable header wrapping. The default is 78, as recommended (but not
required) by

RFC 2822.

The other public BytesGenerator methods are:

flatten(msg, unixfrom=False, linesep=’n’)
Print the textual representation of the message object structure rooted at msg to the output file specified
when the BytesGenerator instance was created. Subparts are visited depth-first and the resulting
text will be properly MIME encoded. If the input that created the msg contained bytes with the high bit
set and those bytes have not been modified, they will be copied faithfully to the output, even if doing
so is not strictly RFC compliant. (To produce strictly RFC compliant output, use the Generator
class.)

18.1. email — An email and MIME handling package 655

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2047.html
http://www.jwz.org/doc/content-length.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

Messages parsed with a Bytes parser that have a Content-Transfer-Encoding of 8bit will be
reconstructed as 8bit if they have not been modified.

Optional unixfrom is a flag that forces the printing of the envelope header delimiter before the first
RFC 2822 header of the root message object. If the root object has no envelope header, a standard one
is crafted. By default, this is set to False to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed.

Optional linesep specifies the line separator character used to terminate lines in the output. It defaults to
\n because that is the most useful value for Python application code (other library packages expect \n
separated lines). linesep=\r\n can be used to generate output with RFC-compliant line separators.

clone(fp)
Return an independent clone of this BytesGenerator instance with the exact same options.

write(s)
Write the string s to the underlying file object. s is encoded using the ASCII codec and written to the
write method of the outfp outfp passed to the BytesGenerator‘s constructor. This provides just
enough file-like API for BytesGenerator instances to be used in the print() function.

New in version 3.2.

The email.generator module also provides a derived class, called DecodedGenerator which is like the
Generator base class, except that non-text parts are substituted with a format string representing the part.

class email.generator.DecodedGenerator(outfp[, mangle_from_=True, maxheaderlen=78,
fmt=None)

This class, derived from Generator walks through all the subparts of a message. If the subpart is of main
type text, then it prints the decoded payload of the subpart. Optional _mangle_from_ and maxheaderlen
are as with the Generator base class.

If the subpart is not of main type text, optional fmt is a format string that is used instead of the message
payload. fmt is expanded with the following keywords, %(keyword)s format:

•type – Full MIME type of the non-text part

•maintype – Main MIME type of the non-text part

•subtype – Sub-MIME type of the non-text part

•filename – Filename of the non-text part

•description – Description associated with the non-text part

•encoding – Content transfer encoding of the non-text part

The default value for fmt is None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

18.1.4 email: Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individual Message objects by hand. In fact, you can also take an existing structure and add new Message
objects, move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by creating Message instances, adding attachments and all the appropriate
headers manually. For MIME messages though, the email package provides some convenient subclasses to make
things easier.

Here are the classes:

class email.mime.base.MIMEBase(_maintype, _subtype, **_params)
Module: email.mime.base

656 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

This is the base class for all the MIME-specific subclasses of Message. Ordinarily you won’t create
instances specifically of MIMEBase, although you could. MIMEBase is provided primarily as a convenient
base class for more specific MIME-aware subclasses.

_maintype is the Content-Typemajor type (e.g. text or image), and _subtype is the Content-Type
minor type (e.g. plain or gif). _params is a parameter key/value dictionary and is passed directly to
Message.add_header().

The MIMEBase class always adds a Content-Type header (based on _maintype, _subtype, and
_params), and a MIME-Version header (always set to 1.0).

class email.mime.nonmultipart.MIMENonMultipart
Module: email.mime.nonmultipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are not multipart.
The primary purpose of this class is to prevent the use of the attach() method, which only makes sense
for multipart messages. If attach() is called, a MultipartConversionError exception is
raised.

class email.mime.multipart.MIMEMultipart(_subtype=’mixed’, boundary=None, _sub-
parts=None, **_params)

Module: email.mime.multipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are multipart.
Optional _subtype defaults to mixed, but can be used to specify the subtype of the message. A
Content-Type header of multipart/_subtype will be added to the message object. A
MIME-Version header will also be added.

Optional boundary is the multipart boundary string. When None (the default), the boundary is calculated
when needed (for example, when the message is serialized).

_subparts is a sequence of initial subparts for the payload. It must be possible to convert this sequence to a
list. You can always attach new subparts to the message by using the Message.attach() method.

Additional parameters for the Content-Type header are taken from the keyword arguments, or passed
into the _params argument, which is a keyword dictionary.

class email.mime.application.MIMEApplication(_data, _subtype=’octet-stream’, _en-
coder=email.encoders.encode_base64,
**_params)

Module: email.mime.application

A subclass of MIMENonMultipart, the MIMEApplication class is used to represent MIME message
objects of major type application. _data is a string containing the raw byte data. Optional _subtype
specifies the MIME subtype and defaults to octet-stream.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the data for
transport. This callable takes one argument, which is the MIMEApplication instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add
any Content-Transfer-Encoding or other headers to the message object as necessary. The default
encoding is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

class email.mime.audio.MIMEAudio(_audiodata, _subtype=None, _en-
coder=email.encoders.encode_base64, **_params)

Module: email.mime.audio

A subclass of MIMENonMultipart, the MIMEAudio class is used to create MIME message objects of
major type audio. _audiodata is a string containing the raw audio data. If this data can be decoded by the
standard Python module sndhdr, then the subtype will be automatically included in the Content-Type
header. Otherwise you can explicitly specify the audio subtype via the _subtype parameter. If the minor
type could not be guessed and _subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the audio
data for transport. This callable takes one argument, which is the MIMEAudio instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add

18.1. email — An email and MIME handling package 657

The Python Library Reference, Release 3.2

any Content-Transfer-Encoding or other headers to the message object as necessary. The default
encoding is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

class email.mime.image.MIMEImage(_imagedata, _subtype=None, _en-
coder=email.encoders.encode_base64, **_params)

Module: email.mime.image

A subclass of MIMENonMultipart, the MIMEImage class is used to create MIME message objects of
major type image. _imagedata is a string containing the raw image data. If this data can be decoded by the
standard Python module imghdr, then the subtype will be automatically included in the Content-Type
header. Otherwise you can explicitly specify the image subtype via the _subtype parameter. If the minor
type could not be guessed and _subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the image
data for transport. This callable takes one argument, which is the MIMEImage instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add
any Content-Transfer-Encoding or other headers to the message object as necessary. The default
encoding is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the MIMEBase constructor.

class email.mime.message.MIMEMessage(_msg, _subtype=’rfc822’)
Module: email.mime.message

A subclass of MIMENonMultipart, the MIMEMessage class is used to create MIME objects of main
type message. _msg is used as the payload, and must be an instance of class Message (or a subclass
thereof), otherwise a TypeError is raised.

Optional _subtype sets the subtype of the message; it defaults to rfc822.

class email.mime.text.MIMEText(_text, _subtype=’plain’, _charset=’us-ascii’)
Module: email.mime.text

A subclass of MIMENonMultipart, the MIMEText class is used to create MIME objects of major type
text. _text is the string for the payload. _subtype is the minor type and defaults to plain. _charset is the
character set of the text and is passed as a parameter to the MIMENonMultipart constructor; it defaults
to us-ascii. No guessing or encoding is performed on the text data.

18.1.5 email: Internationalized headers

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822
standard which came into widespread use at a time when most email was composed of ASCII characters only.
RFC 2822 is a specification written assuming email contains only 7-bit ASCII characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific
character sets can now be used in email messages. The base standard still requires email messages to be transferred
using only 7-bit ASCII characters, so a slew of RFCs have been written describing how to encode email containing
non-ASCII characters into

RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046,

RFC 2047, and RFC 2231. The email package supports these standards in its email.header and
email.charset modules.

If you want to include non-ASCII characters in your email headers, say in the Subject or To fields, you should
use the Header class and assign the field in the Message object to an instance of Header instead of using a
string for the header value. Import the Header class from the email.header module. For example:

>>> from email.message import Message
>>> from email.header import Header
>>> msg = Message()
>>> h = Header(’p\xf6stal’, ’iso-8859-1’)
>>> msg[’Subject’] = h

658 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.2

>>> print(msg.as_string())
Subject: =?iso-8859-1?q?p=F6stal?=

Notice here how we wanted the Subject field to contain a non-ASCII character? We did this by creating a
Header instance and passing in the character set that the byte string was encoded in. When the subsequent
Message instance was flattened, the Subject field was properly RFC 2047 encoded. MIME-aware mail read-
ers would show this header using the embedded ISO-8859-1 character.

Here is the Header class description:

class email.header.Header(s=None, charset=None, maxlinelen=None, header_name=None, con-
tinuation_ws=’ ‘, errors=’strict’)

Create a MIME-compliant header that can contain strings in different character sets.

Optional s is the initial header value. If None (the default), the initial header value is not set. You can later
append to the header with append() method calls. s may be an instance of bytes or str, but see the
append() documentation for semantics.

Optional charset serves two purposes: it has the same meaning as the charset argument to the append()
method. It also sets the default character set for all subsequent append() calls that omit the charset
argument. If charset is not provided in the constructor (the default), the us-ascii character set is used
both as s‘s initial charset and as the default for subsequent append() calls.

The maximum line length can be specified explicitly via maxlinelen. For splitting the first line to a shorter
value (to account for the field header which isn’t included in s, e.g. Subject) pass in the name of the field
in header_name. The default maxlinelen is 76, and the default value for header_name is None, meaning it
is not taken into account for the first line of a long, split header.

Optional continuation_ws must be RFC 2822-compliant folding whitespace, and is usually either a space
or a hard tab character. This character will be prepended to continuation lines. continuation_ws defaults to
a single space character.

Optional errors is passed straight through to the append() method.

append(s, charset=None, errors=’strict’)
Append the string s to the MIME header.

Optional charset, if given, should be a Charset instance (see email.charset) or the name of a
character set, which will be converted to a Charset instance. A value of None (the default) means
that the charset given in the constructor is used.

s may be an instance of bytes or str. If it is an instance of bytes, then charset is the encoding
of that byte string, and a UnicodeError will be raised if the string cannot be decoded with that
character set.

If s is an instance of str, then charset is a hint specifying the character set of the characters in the
string.

In either case, when producing an RFC 2822-compliant header using

RFC 2047 rules, the string will be encoded using the output codec of the charset. If the string cannot
be encoded using the output codec, a UnicodeError will be raised.

Optional errors is passed as the errors argument to the decode call if s is a byte string.

encode(splitchars=’;, \t’, maxlinelen=None, linesep=’\n’)
Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulat-
ing non-ASCII parts in base64 or quoted-printable encodings. Optional splitchars is a string containing
characters to split long ASCII lines on, in rough support of RFC 2822‘s highest level syntactic breaks.
This doesn’t affect RFC 2047 encoded lines.

maxlinelen, if given, overrides the instance’s value for the maximum line length.

linesep specifies the characters used to separate the lines of the folded header. It defaults to the most
useful value for Python application code (\n), but \r\n can be specified in order to produce headers
with RFC-compliant line separators. Changed in version 3.2: Added the linesep argument.

The Header class also provides a number of methods to support standard operators and built-in functions.

18.1. email — An email and MIME handling package 659

http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html

The Python Library Reference, Release 3.2

__str__()
Returns an approximation of the Header as a string, using an unlimited line length. All pieces are
converted to unicode using the specified encoding and joined together appropriately. Any pieces with
a charset of unknown-8bit are decoded as ASCII using the replace error handler. Changed in version
3.2: Added handling for the unknown-8bit charset.

__eq__(other)
This method allows you to compare two Header instances for equality.

__ne__(other)
This method allows you to compare two Header instances for inequality.

The email.header module also provides the following convenient functions.

email.header.decode_header(header)
Decode a message header value without converting the character set. The header value is in header.

This function returns a list of (decoded_string, charset) pairs containing each of the decoded
parts of the header. charset is None for non-encoded parts of the header, otherwise a lower case string
containing the name of the character set specified in the encoded string.

Here’s an example:

>>> from email.header import decode_header
>>> decode_header(’=?iso-8859-1?q?p=F6stal?=’)
[(’p\xf6stal’, ’iso-8859-1’)]

email.header.make_header(decoded_seq, maxlinelen=None, header_name=None, continua-
tion_ws=’ ‘)

Create a Header instance from a sequence of pairs as returned by decode_header().

decode_header() takes a header value string and returns a sequence of pairs of the format
(decoded_string, charset) where charset is the name of the character set.

This function takes one of those sequence of pairs and returns a Header instance. Optional maxlinelen,
header_name, and continuation_ws are as in the Header constructor.

18.1.6 email: Representing character sets

This module provides a class Charset for representing character sets and character set conversions in email
messages, as well as a character set registry and several convenience methods for manipulating this registry.
Instances of Charset are used in several other modules within the email package.

Import this class from the email.charset module.

class email.charset.Charset(input_charset=DEFAULT_CHARSET)
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in
an email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or
bodies. Certain character sets must be converted outright, and are not allowed in email.

Optional input_charset is as described below; it is always coerced to lower case. After being alias nor-
malized it is also used as a lookup into the registry of character sets to find out the header encoding, body
encoding, and output conversion codec to be used for the character set. For example, if input_charset is
iso-8859-1, then headers and bodies will be encoded using quoted-printable and no output conversion
codec is necessary. If input_charset is euc-jp, then headers will be encoded with base64, bodies will
not be encoded, but output text will be converted from the euc-jp character set to the iso-2022-jp
character set.

660 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

Charset instances have the following data attributes:

input_charset
The initial character set specified. Common aliases are converted to their official email names (e.g.
latin_1 is converted to iso-8859-1). Defaults to 7-bit us-ascii.

header_encoding
If the character set must be encoded before it can be used in an email header, this attribute
will be set to Charset.QP (for quoted-printable), Charset.BASE64 (for base64 encoding), or
Charset.SHORTEST for the shortest of QP or BASE64 encoding. Otherwise, it will be None.

body_encoding
Same as header_encoding, but describes the encoding for the mail message’s body, which indeed may
be different than the header encoding. Charset.SHORTEST is not allowed for body_encoding.

output_charset
Some character sets must be converted before they can be used in email headers or bodies. If the
input_charset is one of them, this attribute will contain the name of the character set output will be
converted to. Otherwise, it will be None.

input_codec
The name of the Python codec used to convert the input_charset to Unicode. If no conversion codec
is necessary, this attribute will be None.

output_codec
The name of the Python codec used to convert Unicode to the output_charset. If no conversion codec
is necessary, this attribute will have the same value as the input_codec.

Charset instances also have the following methods:

get_body_encoding()
Return the content transfer encoding used for body encoding.

This is either the string quoted-printable or base64 depending on the encoding used, or it
is a function, in which case you should call the function with a single argument, the Message object
being encoded. The function should then set the Content-Transfer-Encoding header itself to
whatever is appropriate.

Returns the string quoted-printable if body_encoding is QP, returns the string base64 if
body_encoding is BASE64, and returns the string 7bit otherwise.

get_output_charset()
Return the output character set.

This is the output_charset attribute if that is not None, otherwise it is input_charset.

header_encode(string)
Header-encode the string string.

The type of encoding (base64 or quoted-printable) will be based on the header_encoding attribute.

header_encode_lines(string, maxlengths)
Header-encode a string by converting it first to bytes.

This is similar to header_encode() except that the string is fit into maximum line lengths as given
by the argument maxlengths, which must be an iterator: each element returned from this iterator will
provide the next maximum line length.

body_encode(string)
Body-encode the string string.

The type of encoding (base64 or quoted-printable) will be based on the body_encoding attribute.

The Charset class also provides a number of methods to support standard operations and built-in func-
tions.

__str__()
Returns input_charset as a string coerced to lower case. __repr__() is an alias for __str__().

18.1. email — An email and MIME handling package 661

The Python Library Reference, Release 3.2

__eq__(other)
This method allows you to compare two Charset instances for equality.

__ne__(other)
This method allows you to compare two Charset instances for inequality.

The email.charset module also provides the following functions for adding new entries to the global char-
acter set, alias, and codec registries:

email.charset.add_charset(charset, header_enc=None, body_enc=None, out-
put_charset=None)

Add character properties to the global registry.

charset is the input character set, and must be the canonical name of a character set.

Optional header_enc and body_enc is either Charset.QP for quoted-printable, Charset.BASE64 for
base64 encoding, Charset.SHORTEST for the shortest of quoted-printable or base64 encoding, or None
for no encoding. SHORTEST is only valid for header_enc. The default is None for no encoding.

Optional output_charset is the character set that the output should be in. Conversions will proceed from
input charset, to Unicode, to the output charset when the method Charset.convert() is called. The
default is to output in the same character set as the input.

Both input_charset and output_charset must have Unicode codec entries in the module’s character set-to-
codec mapping; use add_codec() to add codecs the module does not know about. See the codecs
module’s documentation for more information.

The global character set registry is kept in the module global dictionary CHARSETS.

email.charset.add_alias(alias, canonical)
Add a character set alias. alias is the alias name, e.g. latin-1. canonical is the character set’s canonical
name, e.g. iso-8859-1.

The global charset alias registry is kept in the module global dictionary ALIASES.

email.charset.add_codec(charset, codecname)
Add a codec that map characters in the given character set to and from Unicode.

charset is the canonical name of a character set. codecname is the name of a Python codec, as appropriate
for the second argument to the str‘s decode() method

18.1.7 email: Encoders

When creating Message objects from scratch, you often need to encode the payloads for transport through
compliant mail servers. This is especially true for image/* and text/* type messages containing binary data.

The email package provides some convenient encodings in its encoders module. These encoders are actually
used by the MIMEAudio and MIMEImage class constructors to provide default encodings. All encoder functions
take exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset
the payload to this newly encoded value. They should also set the Content-Transfer-Encoding header as
appropriate.

Here are the encoding functions provided:

email.encoders.encode_quopri(msg)
Encodes the payload into quoted-printable form and sets the Content-Transfer-Encoding header
to quoted-printable 2. This is a good encoding to use when most of your payload is normal printable
data, but contains a few unprintable characters.

email.encoders.encode_base64(msg)
Encodes the payload into base64 form and sets the Content-Transfer-Encoding header to
base64. This is a good encoding to use when most of your payload is unprintable data since it is a
more compact form than quoted-printable. The drawback of base64 encoding is that it renders the text
non-human readable.

2 Note that encoding with encode_quopri() also encodes all tabs and space characters in the data.

662 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

email.encoders.encode_7or8bit(msg)
This doesn’t actually modify the message’s payload, but it does set the Content-Transfer-Encoding
header to either 7bit or 8bit as appropriate, based on the payload data.

email.encoders.encode_noop(msg)
This does nothing; it doesn’t even set the Content-Transfer-Encoding header.

18.1.8 email: Exception and Defect classes

The following exception classes are defined in the email.errors module:

exception email.errors.MessageError
This is the base class for all exceptions that the email package can raise. It is derived from the standard
Exception class and defines no additional methods.

exception email.errors.MessageParseError
This is the base class for exceptions raised by the Parser class. It is derived from MessageError.

exception email.errors.HeaderParseError
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived
from MessageParseError. It can be raised from the Parser.parse() or Parser.parsestr()
methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header of
the message, finding a continuation line before the first RFC 2822 header is found, or finding a line in the
headers which is neither a header or a continuation line.

exception email.errors.BoundaryError
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived
from MessageParseError. It can be raised from the Parser.parse() or Parser.parsestr()
methods.

Situations where it can be raised include not being able to find the starting or terminating boundary in a
multipart/* message when strict parsing is used.

exception email.errors.MultipartConversionError
Raised when a payload is added to a Message object using add_payload(), but the payload is al-
ready a scalar and the message’s Content-Type main type is not either multipart or missing.
MultipartConversionErrormultiply inherits from MessageError and the built-in TypeError.

Since Message.add_payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if the attach() method is called on an instance of a class derived from
MIMENonMultipart (e.g. MIMEImage).

Here’s the list of the defects that the FeedParser can find while parsing messages. Note that the de-
fects are added to the message where the problem was found, so for example, if a message nested inside a
multipart/alternative had a malformed header, that nested message object would have a defect, but
the containing messages would not.

All defect classes are subclassed from email.errors.MessageDefect, but this class is not an exception!

• NoBoundaryInMultipartDefect – A message claimed to be a multipart, but had no boundary
parameter.

• StartBoundaryNotFoundDefect – The start boundary claimed in the Content-Type header was
never found.

• FirstHeaderLineIsContinuationDefect – The message had a continuation line as its first
header line.

• MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the middle of a header
block.

• MalformedHeaderDefect – A header was found that was missing a colon, or was otherwise mal-
formed.

18.1. email — An email and MIME handling package 663

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

• MultipartInvariantViolationDefect – A message claimed to be a multipart, but no sub-
parts were found. Note that when a message has this defect, its is_multipart() method may return
false even though its content type claims to be multipart.

18.1.9 email: Miscellaneous utilities

There are several useful utilities provided in the email.utils module:

email.utils.quote(str)
Return a new string with backslashes in str replaced by two backslashes, and double quotes replaced by
backslash-double quote.

email.utils.unquote(str)
Return a new string which is an unquoted version of str. If str ends and begins with double quotes, they are
stripped off. Likewise if str ends and begins with angle brackets, they are stripped off.

email.utils.parseaddr(address)
Parse address – which should be the value of some address-containing field such as To or Cc – into its
constituent realname and email address parts. Returns a tuple of that information, unless the parse fails, in
which case a 2-tuple of (”, ”) is returned.

email.utils.formataddr(pair)
The inverse of parseaddr(), this takes a 2-tuple of the form (realname, email_address) and
returns the string value suitable for a To or Cc header. If the first element of pair is false, then the second
element is returned unmodified.

email.utils.getaddresses(fieldvalues)
This method returns a list of 2-tuples of the form returned by parseaddr(). fieldvalues is a sequence of
header field values as might be returned by Message.get_all(). Here’s a simple example that gets all
the recipients of a message:

from email.utils import getaddresses

tos = msg.get_all(’to’, [])
ccs = msg.get_all(’cc’, [])
resent_tos = msg.get_all(’resent-to’, [])
resent_ccs = msg.get_all(’resent-cc’, [])
all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

email.utils.parsedate(date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that
format as specified, so parsedate() tries to guess correctly in such cases. date is a string containing
an RFC 2822 date, such as "Mon, 20 Nov 1995 19:12:08 -0500". If it succeeds in parsing the
date, parsedate() returns a 9-tuple that can be passed directly to time.mktime(); otherwise None
will be returned. Note that indexes 6, 7, and 8 of the result tuple are not usable.

email.utils.parsedate_tz(date)
Performs the same function as parsedate(), but returns either None or a 10-tuple; the first 9 elements
make up a tuple that can be passed directly to time.mktime(), and the tenth is the offset of the date’s
timezone from UTC (which is the official term for Greenwich Mean Time) 3. If the input string has no
timezone, the last element of the tuple returned is None. Note that indexes 6, 7, and 8 of the result tuple are
not usable.

email.utils.mktime_tz(tuple)
Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp. It the timezone item in the tuple
is None, assume local time. Minor deficiency: mktime_tz() interprets the first 8 elements of tuple as a
local time and then compensates for the timezone difference. This may yield a slight error around changes
in daylight savings time, though not worth worrying about for common use.

3 Note that the sign of the timezone offset is the opposite of the sign of the time.timezone variable for the same timezone; the latter
variable follows the POSIX standard while this module follows RFC 2822.

664 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

email.utils.formatdate(timeval=None, localtime=False, usegmt=False)
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted by time.gmtime() and
time.localtime(), otherwise the current time is used.

Optional localtime is a flag that when True, interprets timeval, and returns a date relative to the local time-
zone instead of UTC, properly taking daylight savings time into account. The default is False meaning
UTC is used.

Optional usegmt is a flag that when True, outputs a date string with the timezone as an ascii string GMT,
rather than a numeric -0000. This is needed for some protocols (such as HTTP). This only applies when
localtime is False. The default is False.

email.utils.make_msgid(idstring=None, domain=None)
Returns a string suitable for an RFC 2822-compliant Message-ID header. Optional idstring if given, is
a string used to strengthen the uniqueness of the message id. Optional domain if given provides the portion
of the msgid after the ‘@’. The default is the local hostname. It is not normally necessary to override this
default, but may be useful certain cases, such as a constructing distributed system that uses a consistent
domain name across multiple hosts. Changed in version 3.2: domain keyword added

email.utils.decode_rfc2231(s)
Decode the string s according to RFC 2231.

email.utils.encode_rfc2231(s, charset=None, language=None)
Encode the string s according to RFC 2231. Optional charset and language, if given is the character set
name and language name to use. If neither is given, s is returned as-is. If charset is given but language is
not, the string is encoded using the empty string for language.

email.utils.collapse_rfc2231_value(value, errors=’replace’, fallback_charset=’us-ascii’)
When a header parameter is encoded in RFC 2231 format, Message.get_param() may return a 3-
tuple containing the character set, language, and value. collapse_rfc2231_value() turns this into
a unicode string. Optional errors is passed to the errors argument of str‘s encode() method; it defaults
to ’replace’. Optional fallback_charset specifies the character set to use if the one in the

RFC 2231 header is not known by Python; it defaults to ’us-ascii’.

For convenience, if the value passed to collapse_rfc2231_value() is not a tuple, it should be a
string and it is returned unquoted.

email.utils.decode_params(params)
Decode parameters list according to RFC 2231. params is a sequence of 2-tuples containing elements of
the form (content-type, string-value).

18.1.10 email: Iterators

Iterating over a message object tree is fairly easy with the Message.walk() method. The
email.iterators module provides some useful higher level iterations over message object trees.

email.iterators.body_line_iterator(msg, decode=False)
This iterates over all the payloads in all the subparts of msg, returning the string payloads line-by-line.
It skips over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python
string. This is somewhat equivalent to reading the flat text representation of the message from a file us-
ing readline(), skipping over all the intervening headers.

Optional decode is passed through to Message.get_payload().

email.iterators.typed_subpart_iterator(msg, maintype=’text’, subtype=None)
This iterates over all the subparts of msg, returning only those subparts that match the MIME type specified
by maintype and subtype.

18.1. email — An email and MIME handling package 665

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.2

Note that subtype is optional; if omitted, then subpart MIME type matching is done only with the main type.
maintype is optional too; it defaults to text.

Thus, by default typed_subpart_iterator() returns each subpart that has a MIME type of
text/*.

The following function has been added as a useful debugging tool. It should not be considered part of the supported
public interface for the package.

email.iterators._structure(msg, fp=None, level=0, include_default=False)
Prints an indented representation of the content types of the message object structure. For example:

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed

text/plain
text/plain
multipart/digest

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

text/plain

Optional fp is a file-like object to print the output to. It must be suitable for Python’s print() function.
level is used internally. include_default, if true, prints the default type as well.

18.1.11 email: Examples

Here are a few examples of how to use the email package to read, write, and send simple email messages, as
well as more complex MIME messages.

First, let’s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we’ll need
from email.mime.text import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCII characters.
fp = open(textfile, ’rb’)
Create a text/plain message
msg = MIMEText(fp.read())
fp.close()

me == the sender’s email address
you == the recipient’s email address
msg[’Subject’] = ’The contents of %s’ % textfile
msg[’From’] = me
msg[’To’] = you

Send the message via our own SMTP server.

666 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

s = smtplib.SMTP()
s.sendmail(msg)
s.quit()

And parsing RFC822 headers can easily be done by the parse(filename) or parsestr(message_as_string) methods
of the Parser() class:

Import the email modules we’ll need
from email.parser import Parser

If the e-mail headers are in a file, uncomment this line:
#headers = Parser().parse(open(messagefile, ’r’))

Or for parsing headers in a string, use:
headers = Parser().parsestr(’From: <user@example.com>\n’

’To: <someone_else@example.com>\n’
’Subject: Test message\n’
’\n’
’Body would go here\n’)

Now the header items can be accessed as a dictionary:
print(’To: %s’ % headers[’to’])
print(’From: %s’ % headers[’from’])
print(’Subject: %s’ % headers[’subject’])

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in
a directory:

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we’ll need
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

COMMASPACE = ’, ’

Create the container (outer) email message.
msg = MIMEMultipart()
msg[’Subject’] = ’Our family reunion’
me == the sender’s email address
family = the list of all recipients’ email addresses
msg[’From’] = me
msg[’To’] = COMMASPACE.join(family)
msg.preamble = ’Our family reunion’

Assume we know that the image files are all in PNG format
for file in pngfiles:

Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
fp = open(file, ’rb’)
img = MIMEImage(fp.read())
fp.close()
msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP()
s.send_message(msg)
s.quit()

18.1. email — An email and MIME handling package 667

The Python Library Reference, Release 3.2

Here’s an example of how to send the entire contents of a directory as an email message: 4

#!/usr/bin/env python3

"""Send the contents of a directory as a MIME message."""

import os
import sys
import smtplib
For guessing MIME type based on file name extension
import mimetypes

from optparse import OptionParser

from email import encoders
from email.message import Message
from email.mime.audio import MIMEAudio
from email.mime.base import MIMEBase
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

COMMASPACE = ’, ’

def main():
parser = OptionParser(usage="""\

Send the contents of a directory as a MIME message.

Usage: %prog [options]

Unless the -o option is given, the email is sent by forwarding to your local
SMTP server, which then does the normal delivery process. Your local machine
must be running an SMTP server.
""")

parser.add_option(’-d’, ’--directory’,
type=’string’, action=’store’,
help="""Mail the contents of the specified directory,
otherwise use the current directory. Only the regular
files in the directory are sent, and we don’t recurse to
subdirectories.""")

parser.add_option(’-o’, ’--output’,
type=’string’, action=’store’, metavar=’FILE’,
help="""Print the composed message to FILE instead of
sending the message to the SMTP server.""")

parser.add_option(’-s’, ’--sender’,
type=’string’, action=’store’, metavar=’SENDER’,
help=’The value of the From: header (required)’)

parser.add_option(’-r’, ’--recipient’,
type=’string’, action=’append’, metavar=’RECIPIENT’,
default=[], dest=’recipients’,
help=’A To: header value (at least one required)’)

opts, args = parser.parse_args()
if not opts.sender or not opts.recipients:

parser.print_help()
sys.exit(1)

directory = opts.directory

4 Thanks to Matthew Dixon Cowles for the original inspiration and examples.

668 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

if not directory:
directory = ’.’

Create the enclosing (outer) message
outer = MIMEMultipart()
outer[’Subject’] = ’Contents of directory %s’ % os.path.abspath(directory)
outer[’To’] = COMMASPACE.join(opts.recipients)
outer[’From’] = opts.sender
outer.preamble = ’You will not see this in a MIME-aware mail reader.\n’

for filename in os.listdir(directory):
path = os.path.join(directory, filename)
if not os.path.isfile(path):

continue
Guess the content type based on the file’s extension. Encoding
will be ignored, although we should check for simple things like
gzip’d or compressed files.
ctype, encoding = mimetypes.guess_type(path)
if ctype is None or encoding is not None:

No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.
ctype = ’application/octet-stream’

maintype, subtype = ctype.split(’/’, 1)
if maintype == ’text’:

fp = open(path)
Note: we should handle calculating the charset
msg = MIMEText(fp.read(), _subtype=subtype)
fp.close()

elif maintype == ’image’:
fp = open(path, ’rb’)
msg = MIMEImage(fp.read(), _subtype=subtype)
fp.close()

elif maintype == ’audio’:
fp = open(path, ’rb’)
msg = MIMEAudio(fp.read(), _subtype=subtype)
fp.close()

else:
fp = open(path, ’rb’)
msg = MIMEBase(maintype, subtype)
msg.set_payload(fp.read())
fp.close()
Encode the payload using Base64
encoders.encode_base64(msg)

Set the filename parameter
msg.add_header(’Content-Disposition’, ’attachment’, filename=filename)
outer.attach(msg)

Now send or store the message
composed = outer.as_string()
if opts.output:

fp = open(opts.output, ’w’)
fp.write(composed)
fp.close()

else:
s = smtplib.SMTP()
s.sendmail(opts.sender, opts.recipients, composed)
s.quit()

if __name__ == ’__main__’:

18.1. email — An email and MIME handling package 669

The Python Library Reference, Release 3.2

main()

Here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python3

"""Unpack a MIME message into a directory of files."""

import os
import sys
import email
import errno
import mimetypes

from optparse import OptionParser

def main():
parser = OptionParser(usage="""\

Unpack a MIME message into a directory of files.

Usage: %prog [options] msgfile
""")

parser.add_option(’-d’, ’--directory’,
type=’string’, action=’store’,
help="""Unpack the MIME message into the named
directory, which will be created if it doesn’t already
exist.""")

opts, args = parser.parse_args()
if not opts.directory:

parser.print_help()
sys.exit(1)

try:
msgfile = args[0]

except IndexError:
parser.print_help()
sys.exit(1)

try:
os.mkdir(opts.directory)

except OSError as e:
Ignore directory exists error
if e.errno != errno.EEXIST:

raise

fp = open(msgfile)
msg = email.message_from_file(fp)
fp.close()

counter = 1
for part in msg.walk():

multipart/* are just containers
if part.get_content_maintype() == ’multipart’:

continue
Applications should really sanitize the given filename so that an
email message can’t be used to overwrite important files
filename = part.get_filename()
if not filename:

670 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

ext = mimetypes.guess_extension(part.get_content_type())
if not ext:

Use a generic bag-of-bits extension
ext = ’.bin’

filename = ’part-%03d%s’ % (counter, ext)
counter += 1
fp = open(os.path.join(opts.directory, filename), ’wb’)
fp.write(part.get_payload(decode=True))
fp.close()

if __name__ == ’__main__’:
main()

Here’s an example of how to create an HTML message with an alternative plain text version: 5

#!/usr/bin/env python3

import smtplib

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

me == my email address
you == recipient’s email address
me = "my@email.com"
you = "your@email.com"

Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart(’alternative’)
msg[’Subject’] = "Link"
msg[’From’] = me
msg[’To’] = you

Create the body of the message (a plain-text and an HTML version).
text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.python.org"
html = """\
<html>

<head></head>
<body>

<p>Hi!

How are you?

Here is the link you wanted.

</p>
</body>

</html>
"""

Record the MIME types of both parts - text/plain and text/html.
part1 = MIMEText(text, ’plain’)
part2 = MIMEText(html, ’html’)

Attach parts into message container.
According to RFC 2046, the last part of a multipart message, in this case
the HTML message, is best and preferred.
msg.attach(part1)
msg.attach(part2)

5 Contributed by Martin Matejek.

18.1. email — An email and MIME handling package 671

The Python Library Reference, Release 3.2

Send the message via local SMTP server.
s = smtplib.SMTP(’localhost’)
sendmail function takes 3 arguments: sender’s address, recipient’s address
and message to send - here it is sent as one string.
s.sendmail(me, you, msg.as_string())
s.quit()

See Also:

Module smtplib SMTP protocol client

Module nntplib NNTP protocol client

18.1.12 Package History

This table describes the release history of the email package, corresponding to the version of Python that the
package was released with. For purposes of this document, when you see a note about change or added versions,
these refer to the Python version the change was made in, not the email package version. This table also describes
the Python compatibility of each version of the package.

email version distributed with compatible with
1.x Python 2.2.0 to Python 2.2.1 no longer supported
2.5 Python 2.2.2+ and Python 2.3 Python 2.1 to 2.5
3.0 Python 2.4 Python 2.3 to 2.5
4.0 Python 2.5 Python 2.3 to 2.5
5.0 Python 3.0 and Python 3.1 Python 3.0 to 3.2
5.1 Python 3.2 Python 3.0 to 3.2

Here are the major differences between email version 5.1 and version 5.0:

• It is once again possible to parse messages containing non-ASCII bytes, and to reproduce such messages if
the data containing the non-ASCII bytes is not modified.

• New functions message_from_bytes() and message_from_binary_file(), and new classes
BytesFeedParser and BytesParser allow binary message data to be parsed into model objects.

• Given bytes input to the model, get_payload() will by default decode a message body that has a
Content-Transfer-Encoding of 8bit using the charset specified in the MIME headers and return
the resulting string.

• Given bytes input to the model, Generator will convert message bodies that have a
Content-Transfer-Encoding of 8bit to instead have a 7bit Content-Transfer-Encoding.

• New class BytesGenerator produces bytes as output, preserving any unchanged non-ASCII
data that was present in the input used to build the model, including message bodies with a
Content-Transfer-Encoding of 8bit.

Here are the major differences between email version 5.0 and version 4:

• All operations are on unicode strings. Text inputs must be strings, text outputs are strings. Outputs are
limited to the ASCII character set and so can be encoded to ASCII for transmission. Inputs are also limited
to ASCII; this is an acknowledged limitation of email 5.0 and means it can only be used to parse email that
is 7bit clean.

Here are the major differences between email version 4 and version 3:

• All modules have been renamed according to PEP 8 standards. For example, the version 3 module
email.Message was renamed to email.message in version 4.

• A new subpackage email.mime was added and all the version 3 email.MIME* modules were renamed
and situated into the email.mime subpackage. For example, the version 3 module email.MIMEText
was renamed to email.mime.text.

Note that the version 3 names will continue to work until Python 2.6.

• The email.mime.application module was added, which contains the MIMEApplication class.

672 Chapter 18. Internet Data Handling

http://www.python.org/dev/peps/pep-0008

The Python Library Reference, Release 3.2

• Methods that were deprecated in version 3 have been removed. These include
Generator.__call__(), Message.get_type(), Message.get_main_type(),
Message.get_subtype().

• Fixes have been added for RFC 2231 support which can change some of the return types for
Message.get_param() and friends. Under some circumstances, values which used to return a 3-
tuple now return simple strings (specifically, if all extended parameter segments were unencoded, there is
no language and charset designation expected, so the return type is now a simple string). Also, %-decoding
used to be done for both encoded and unencoded segments; this decoding is now done only for encoded
segments.

Here are the major differences between email version 3 and version 2:

• The FeedParser class was introduced, and the Parser class was implemented in terms of the
FeedParser. All parsing therefore is non-strict, and parsing will make a best effort never to raise an
exception. Problems found while parsing messages are stored in the message’s defect attribute.

• All aspects of the API which raised DeprecationWarnings in version 2 have been removed.
These include the _encoder argument to the MIMEText constructor, the Message.add_payload()
method, the Utils.dump_address_pair() function, and the functions Utils.decode() and
Utils.encode().

• New DeprecationWarnings have been added to: Generator.__call__(),
Message.get_type(), Message.get_main_type(), Message.get_subtype(), and
the strict argument to the Parser class. These are expected to be removed in future versions.

• Support for Pythons earlier than 2.3 has been removed.

Here are the differences between email version 2 and version 1:

• The email.Header and email.Charset modules have been added.

• The pickle format for Message instances has changed. Since this was never (and still isn’t) formally
defined, this isn’t considered a backward incompatibility. However if your application pickles and unpickles
Message instances, be aware that in email version 2, Message instances now have private variables
_charset and _default_type.

• Several methods in the Message class have been deprecated, or their signatures changed. Also, many new
methods have been added. See the documentation for the Message class for details. The changes should
be completely backward compatible.

• The object structure has changed in the face of message/rfc822 content types. In email version 1,
such a type would be represented by a scalar payload, i.e. the container message’s is_multipart()
returned false, get_payload() was not a list object, but a single Message instance.

This structure was inconsistent with the rest of the package, so the object representation for
message/rfc822 content types was changed. In email version 2, the container does return True
from is_multipart(), and get_payload() returns a list containing a single Message item.

Note that this is one place that backward compatibility could not be completely maintained. However, if
you’re already testing the return type of get_payload(), you should be fine. You just need to make sure
your code doesn’t do a set_payload() with a Message instance on a container with a content type of
message/rfc822.

• The Parser constructor’s strict argument was added, and its parse() and parsestr() methods grew
a headersonly argument. The strict flag was also added to functions email.message_from_file()
and email.message_from_string().

• Generator.__call__() is deprecated; use Generator.flatten() instead. The Generator
class has also grown the clone() method.

• The DecodedGenerator class in the email.Generator module was added.

• The intermediate base classes MIMENonMultipart and MIMEMultipart have been added, and inter-
posed in the class hierarchy for most of the other MIME-related derived classes.

18.1. email — An email and MIME handling package 673

http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.2

• The _encoder argument to the MIMEText constructor has been deprecated. Encoding now happens implic-
itly based on the _charset argument.

• The following functions in the email.Utils module have been deprecated:
dump_address_pairs(), decode(), and encode(). The following functions have been
added to the module: make_msgid(), decode_rfc2231(), encode_rfc2231(), and
decode_params().

• The non-public function email.Iterators._structure() was added.

18.1.13 Differences from mimelib

The email package was originally prototyped as a separate library called mimelib. Changes have been made so
that method names are more consistent, and some methods or modules have either been added or removed. The
semantics of some of the methods have also changed. For the most part, any functionality available in mimelib
is still available in the email package, albeit often in a different way. Backward compatibility between the
mimelib package and the email package was not a priority.

Here is a brief description of the differences between the mimelib and the email packages, along with hints on
how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been changed to
email. In addition, the top-level package has the following differences:

• messageFromString() has been renamed to message_from_string().

• messageFromFile() has been renamed to message_from_file().

The Message class has the following differences:

• The method asString() was renamed to as_string().

• The method ismultipart() was renamed to is_multipart().

• The get_payload() method has grown a decode optional argument.

• The method getall() was renamed to get_all().

• The method addheader() was renamed to add_header().

• The method gettype() was renamed to get_type().

• The method getmaintype() was renamed to get_main_type().

• The method getsubtype() was renamed to get_subtype().

• The method getparams() was renamed to get_params(). Also, whereas getparams() returned a
list of strings, get_params() returns a list of 2-tuples, effectively the key/value pairs of the parameters,
split on the ’=’ sign.

• The method getparam() was renamed to get_param().

• The method getcharsets() was renamed to get_charsets().

• The method getfilename() was renamed to get_filename().

• The method getboundary() was renamed to get_boundary().

• The method setboundary() was renamed to set_boundary().

• The method getdecodedpayload() was removed. To get similar functionality, pass the value 1 to the
decode flag of the get_payload() method.

• The method getpayloadastext() was removed. Similar functionality is supported by the
DecodedGenerator class in the email.generator module.

• The method getbodyastext() was removed. You can get similar functionality by creating an iterator
with typed_subpart_iterator() in the email.iterators module.

674 Chapter 18. Internet Data Handling

http://mimelib.sf.net/

The Python Library Reference, Release 3.2

The Parser class has no differences in its public interface. It does have some additional smarts to recognize
message/delivery-status type messages, which it represents as a Message instance containing separate
Message subparts for each header block in the delivery status notification 6.

The Generator class has no differences in its public interface. There is a new class in the email.generator
module though, called DecodedGenerator which provides most of the functionality previously available in
the Message.getpayloadastext() method.

The following modules and classes have been changed:

• The MIMEBase class constructor arguments _major and _minor have changed to _maintype and _subtype
respectively.

• The Image class/module has been renamed to MIMEImage. The _minor argument has been renamed to
_subtype.

• The Text class/module has been renamed to MIMEText. The _minor argument has been renamed to
_subtype.

• The MessageRFC822 class/module has been renamed to MIMEMessage. Note that an earlier version
of mimelib called this class/module RFC822, but that clashed with the Python standard library module
rfc822 on some case-insensitive file systems.

Also, the MIMEMessage class now represents any kind of MIME message with main type message. It
takes an optional argument _subtype which is used to set the MIME subtype. _subtype defaults to rfc822.

mimelib provided some utility functions in its address and date modules. All of these functions have been
moved to the email.utils module.

The MsgReader class/module has been removed. Its functionality is most closely supported in the
body_line_iterator() function in the email.iterators module.

18.2 json — JSON encoder and decoder

JSON (JavaScript Object Notation) <http://json.org> is a subset of JavaScript syntax (ECMA-262 3rd edition)
used as a lightweight data interchange format.

json exposes an API familiar to users of the standard library marshal and pickle modules.

Encoding basic Python object hierarchies:

>>> import json
>>> json.dumps([’foo’, {’bar’: (’baz’, None, 1.0, 2)}])
’["foo", {"bar": ["baz", null, 1.0, 2]}]’
>>> print(json.dumps("\"foo\bar"))
"\"foo\bar"
>>> print(json.dumps(’\u1234’))
"\u1234"
>>> print(json.dumps(’\\’))
"\\"
>>> print(json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True))
{"a": 0, "b": 0, "c": 0}
>>> from io import StringIO
>>> io = StringIO()
>>> json.dump([’streaming API’], io)
>>> io.getvalue()
’["streaming API"]’

Compact encoding:

6 Delivery Status Notifications (DSN) are defined in RFC 1894.

18.2. json — JSON encoder and decoder 675

http://json.org
http://tools.ietf.org/html/rfc1894.html

The Python Library Reference, Release 3.2

>>> import json
>>> json.dumps([1,2,3,{’4’: 5, ’6’: 7}], separators=(’,’,’:’))
’[1,2,3,{"4":5,"6":7}]’

Pretty printing:

>>> import json
>>> print(json.dumps({’4’: 5, ’6’: 7}, sort_keys=True, indent=4))
{

"4": 5,
"6": 7

}

Decoding JSON:

>>> import json
>>> json.loads(’["foo", {"bar":["baz", null, 1.0, 2]}]’)
[’foo’, {’bar’: [’baz’, None, 1.0, 2]}]
>>> json.loads(’"\\"foo\\bar"’)
’"foo\x08ar’
>>> from io import StringIO
>>> io = StringIO(’["streaming API"]’)
>>> json.load(io)
[’streaming API’]

Specializing JSON object decoding:

>>> import json
>>> def as_complex(dct):
... if ’__complex__’ in dct:
... return complex(dct[’real’], dct[’imag’])
... return dct
...
>>> json.loads(’{"__complex__": true, "real": 1, "imag": 2}’,
... object_hook=as_complex)
(1+2j)
>>> import decimal
>>> json.loads(’1.1’, parse_float=decimal.Decimal)
Decimal(’1.1’)

Extending JSONEncoder:

>>> import json
>>> class ComplexEncoder(json.JSONEncoder):
... def default(self, obj):
... if isinstance(obj, complex):
... return [obj.real, obj.imag]
... return json.JSONEncoder.default(self, obj)
...
>>> json.dumps(2 + 1j, cls=ComplexEncoder)
’[2.0, 1.0]’
>>> ComplexEncoder().encode(2 + 1j)
’[2.0, 1.0]’
>>> list(ComplexEncoder().iterencode(2 + 1j))
[’[2.0’, ’, 1.0’, ’]’]

Using json.tool from the shell to validate and pretty-print:

$ echo ’{"json":"obj"}’ | python -mjson.tool
{

"json": "obj"
}

676 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

$ echo ’{ 1.2:3.4}’ | python -mjson.tool
Expecting property name: line 1 column 2 (char 2)

Note: The JSON produced by this module’s default settings is a subset of YAML, so it may be used as a serializer
for that as well.

18.2.1 Basic Usage

json.dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, default=None, **kw)

Serialize obj as a JSON formatted stream to fp (a .write()-supporting file-like object).

If skipkeys is True (default: False), then dict keys that are not of a basic type (str, int, float, bool,
None) will be skipped instead of raising a TypeError.

The json module always produces str objects, not bytes objects. Therefore, fp.write() must
support str input.

If check_circular is False (default: True), then the circular reference check for container types will be
skipped and a circular reference will result in an OverflowError (or worse).

If allow_nan is False (default: True), then it will be a ValueError to serialize out of range float
values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript
equivalents (NaN, Infinity, -Infinity).

If indent is a non-negative integer or string, then JSON array elements and object members will be pretty-
printed with that indent level. An indent level of 0 or "" will only insert newlines. None (the default)
selects the most compact representation. Using an integer indent indents that many spaces per level. If
indent is a string (such at ‘t’), that string is used to indent each level.

If separators is an (item_separator, dict_separator) tuple, then it will be used instead of the
default (’, ’, ’: ’) separators. (’,’, ’:’) is the most compact JSON representation.

default(obj) is a function that should return a serializable version of obj or raise TypeError. The default
simply raises TypeError.

To use a custom JSONEncoder subclass (e.g. one that overrides the default() method to serialize
additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

json.dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, default=None, **kw)

Serialize obj to a JSON formatted str. The arguments have the same meaning as in dump().

json.load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, object_pairs_hook=None, **kw)

Deserialize fp (a .read()-supporting file-like object containing a JSON document) to a Python object.

object_hook is an optional function that will be called with the result of any object literal decoded (a dict).
The return value of object_hook will be used instead of the dict. This feature can be used to implement
custom decoders (e.g. JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the result of any object literal decoded
with an ordered list of pairs. The return value of object_pairs_hook will be used instead of the dict.
This feature can be used to implement custom decoders that rely on the order that the key and value pairs
are decoded (for example, collections.OrderedDict() will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority. Changed in version 3.1: Added support
for object_pairs_hook. parse_float, if specified, will be called with the string of every JSON float to be
decoded. By default, this is equivalent to float(num_str). This can be used to use another datatype or
parser for JSON floats (e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default, this is
equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g.
float).

18.2. json — JSON encoder and decoder 677

The Python Library Reference, Release 3.2

parse_constant, if specified, will be called with one of the following strings: ’-Infinity’,
’Infinity’, ’NaN’, ’null’, ’true’, ’false’. This can be used to raise an exception if invalid
JSON numbers are encountered.

To use a custom JSONDecoder subclass, specify it with the cls kwarg; otherwise JSONDecoder is
used. Additional keyword arguments will be passed to the constructor of the class.

json.loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, object_pairs_hook=None, **kw)

Deserialize s (a str instance containing a JSON document) to a Python object.

The other arguments have the same meaning as in load(), except encoding which is ignored and depre-
cated.

18.2.2 Encoders and decoders

class json.JSONDecoder(object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, strict=True, object_pairs_hook=None)

Simple JSON decoder.

Performs the following translations in decoding by default:

JSON Python
object dict
array list
string str
number (int) int
number (real) float
true True
false False
null None

It also understands NaN, Infinity, and -Infinity as their corresponding float values, which is
outside the JSON spec.

object_hook, if specified, will be called with the result of every JSON object decoded and its return value
will be used in place of the given dict. This can be used to provide custom deserializations (e.g. to support
JSON-RPC class hinting).

object_pairs_hook, if specified will be called with the result of every JSON object decoded with an ordered
list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can be
used to implement custom decoders that rely on the order that the key and value pairs are decoded (for exam-
ple, collections.OrderedDict() will remember the order of insertion). If object_hook is also de-
fined, the object_pairs_hook takes priority. Changed in version 3.1: Added support for object_pairs_hook.
parse_float, if specified, will be called with the string of every JSON float to be decoded. By default, this is
equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g.
decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default, this is
equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g.
float).

parse_constant, if specified, will be called with one of the following strings: ’-Infinity’,
’Infinity’, ’NaN’, ’null’, ’true’, ’false’. This can be used to raise an exception if invalid
JSON numbers are encountered.

If strict is False (True is the default), then control characters will be allowed inside strings. Control
characters in this context are those with character codes in the 0-31 range, including ’\t’ (tab), ’\n’,
’\r’ and ’\0’.

decode(s)
Return the Python representation of s (a str instance containing a JSON document)

678 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

raw_decode(s)
Decode a JSON document from s (a str beginning with a JSON document) and return a 2-tuple of
the Python representation and the index in s where the document ended.

This can be used to decode a JSON document from a string that may have extraneous data at the end.

class json.JSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, al-
low_nan=True, sort_keys=False, indent=None, separators=None, de-
fault=None)

Extensible JSON encoder for Python data structures.

Supports the following objects and types by default:

Python JSON
dict object
list, tuple array
str string
int, float number
True true
False false
None null

To extend this to recognize other objects, subclass and implement a default() method with another
method that returns a serializable object for o if possible, otherwise it should call the superclass implemen-
tation (to raise TypeError).

If skipkeys is False (the default), then it is a TypeError to attempt encoding of keys that are not str, int,
float or None. If skipkeys is True, such items are simply skipped.

If ensure_ascii is True (the default), the output is guaranteed to have all incoming non-ASCII characters
escaped. If ensure_ascii is False, these characters will be output as-is.

If check_circular is True (the default), then lists, dicts, and custom encoded objects will be
checked for circular references during encoding to prevent an infinite recursion (which would cause an
OverflowError). Otherwise, no such check takes place.

If allow_nan is True (the default), then NaN, Infinity, and -Infinity will be encoded as such. This
behavior is not JSON specification compliant, but is consistent with most JavaScript based encoders and
decoders. Otherwise, it will be a ValueError to encode such floats.

If sort_keys is True (default False), then the output of dictionaries will be sorted by key; this is useful
for regression tests to ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer (it is None by default), then JSON array elements and object members
will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most
compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is
(’, ’, ’: ’). To get the most compact JSON representation, you should specify (’,’, ’:’) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should
return a JSON encodable version of the object or raise a TypeError.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

18.2. json — JSON encoder and decoder 679

The Python Library Reference, Release 3.2

return list(iterable)
return json.JSONEncoder.default(self, o)

encode(o)
Return a JSON string representation of a Python data structure, o. For example:

>>> json.JSONEncoder().encode({"foo": ["bar", "baz"]})
’{"foo": ["bar", "baz"]}’

iterencode(o)
Encode the given object, o, and yield each string representation as available. For example:

for chunk in json.JSONEncoder().iterencode(bigobject):
mysocket.write(chunk)

18.3 mailcap — Mailcap file handling

Source code: Lib/mailcap.py

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react
to files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For
example, a mailcap file might contain a line like video/mpeg; xmpeg %s. Then, if the user encounters an
email message or Web document with the MIME type video/mpeg, %s will be replaced by a filename (usually
one belonging to a temporary file) and the xmpeg program can be automatically started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail
Format Information,” but is not an Internet standard. However, mailcap files are supported on most Unix systems.

mailcap.findmatch(caps, MIMEtype, key=’view’, filename=’/dev/null’, plist=[])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can be
passed to os.system()), and the second element is the mailcap entry for a given MIME type. If no
matching MIME type can be found, (None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the default value
is ‘view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be ‘compose’ and ‘edit’, if you wanted to create a new body of the given MIME type
or alter the existing body data. See RFC 1524 for a complete list of these fields.

filename is the filename to be substituted for %s in the command line; the default value is ’/dev/null’
which is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the
list must be a string containing the parameter name, an equals sign (’=’), and the parameter’s value. Mail-
cap entries can contain named parameters like %{foo}, which will be replaced by the value of the parameter
named ‘foo’. For example, if the command line showpartial %{id} %{number} %{total} was
in a mailcap file, and plist was set to [’id=1’, ’number=2’, ’total=3’], the resulting command
line would be ’showpartial 1 2 3’.

In a mailcap file, the “test” field can optionally be specified to test some external condition (such as the
machine architecture, or the window system in use) to determine whether or not the mailcap line applies.
findmatch() will automatically check such conditions and skip the entry if the check fails.

mailcap.getcaps()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed
to the findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t be necessary to
know the details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s
mailcap file $HOME/.mailcap will override settings in the system mailcap files /etc/mailcap,
/usr/etc/mailcap, and /usr/local/etc/mailcap.

680 Chapter 18. Internet Data Handling

http://svn.python.org/view/python/branches/py3k/Lib/mailcap.py?view=markup
http://tools.ietf.org/html/rfc1524.html
http://tools.ietf.org/html/rfc1524.html

The Python Library Reference, Release 3.2

An example usage:

>>> import mailcap
>>> d=mailcap.getcaps()
>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)
(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

18.4 mailbox — Manipulate mailboxes in various formats

This module defines two classes, Mailbox and Message, for accessing and manipulating on-disk mailboxes
and the messages they contain. Mailbox offers a dictionary-like mapping from keys to messages. Message
extends the email.Message module’s Message class with format-specific state and behavior. Supported
mailbox formats are Maildir, mbox, MH, Babyl, and MMDF.

See Also:

Module email Represent and manipulate messages.

18.4.1 Mailbox objects

class mailbox.Mailbox
A mailbox, which may be inspected and modified.

The Mailbox class defines an interface and is not intended to be instantiated. Instead, format-specific
subclasses should inherit from Mailbox and your code should instantiate a particular subclass.

The Mailbox interface is dictionary-like, with small keys corresponding to messages. Keys are issued by
the Mailbox instance with which they will be used and are only meaningful to that Mailbox instance. A
key continues to identify a message even if the corresponding message is modified, such as by replacing it
with another message.

Messages may be added to a Mailbox instance using the set-like method add() and removed using a
del statement or the set-like methods remove() and discard().

Mailbox interface semantics differ from dictionary semantics in some noteworthy ways. Each time a
message is requested, a new representation (typically a Message instance) is generated based upon the
current state of the mailbox. Similarly, when a message is added to a Mailbox instance, the provided
message representation’s contents are copied. In neither case is a reference to the message representation
kept by the Mailbox instance.

The default Mailbox iterator iterates over message representations, not keys as the default dictionary
iterator does. Moreover, modification of a mailbox during iteration is safe and well-defined. Messages
added to the mailbox after an iterator is created will not be seen by the iterator. Messages removed from
the mailbox before the iterator yields them will be silently skipped, though using a key from an iterator may
result in a KeyError exception if the corresponding message is subsequently removed.

Warning: Be very cautious when modifying mailboxes that might be simultaneously changed by some
other process. The safest mailbox format to use for such tasks is Maildir; try to avoid using single-file
formats such as mbox for concurrent writing. If you’re modifying a mailbox, you must lock it by calling
the lock() and unlock() methods before reading any messages in the file or making any changes by
adding or deleting a message. Failing to lock the mailbox runs the risk of losing messages or corrupting
the entire mailbox.

Mailbox instances have the following methods:

add(message)
Add message to the mailbox and return the key that has been assigned to it.

Parameter message may be a Message instance, an email.Message.Message instance, a string,
a byte string, or a file-like object (which should be open in binary mode). If message is an instance

18.4. mailbox — Manipulate mailboxes in various formats 681

The Python Library Reference, Release 3.2

of the appropriate format-specific Message subclass (e.g., if it’s an mboxMessage instance and
this is an mbox instance), its format-specific information is used. Otherwise, reasonable defaults for
format-specific information are used. Changed in version 3.2: support for binary input

remove(key)
__delitem__(key)
discard(key)

Delete the message corresponding to key from the mailbox.

If no such message exists, a KeyError exception is raised if the method was called as remove() or
__delitem__() but no exception is raised if the method was called as discard(). The behavior
of discard() may be preferred if the underlying mailbox format supports concurrent modification
by other processes.

__setitem__(key, message)
Replace the message corresponding to key with message. Raise a KeyError exception if no message
already corresponds to key.

As with add(), parameter message may be a Message instance, an email.Message.Message
instance, a string, a byte string, or a file-like object (which should be open in binary mode). If message
is an instance of the appropriate format-specific Message subclass (e.g., if it’s an mboxMessage
instance and this is an mbox instance), its format-specific information is used. Otherwise, the format-
specific information of the message that currently corresponds to key is left unchanged.

iterkeys()
keys()

Return an iterator over all keys if called as iterkeys() or return a list of keys if called as keys().

itervalues()
__iter__()
values()

Return an iterator over representations of all messages if called as itervalues() or __iter__()
or return a list of such representations if called as values(). The messages are represented as
instances of the appropriate format-specific Message subclass unless a custom message factory was
specified when the Mailbox instance was initialized.

Note: The behavior of __iter__() is unlike that of dictionaries, which iterate over keys.

iteritems()
items()

Return an iterator over (key, message) pairs, where key is a key and message is a message representa-
tion, if called as iteritems() or return a list of such pairs if called as items(). The messages
are represented as instances of the appropriate format-specific Message subclass unless a custom
message factory was specified when the Mailbox instance was initialized.

get(key, default=None)
__getitem__(key)

Return a representation of the message corresponding to key. If no such message exists, default is
returned if the method was called as get() and a KeyError exception is raised if the method was
called as __getitem__(). The message is represented as an instance of the appropriate format-
specific Message subclass unless a custom message factory was specified when the Mailbox in-
stance was initialized.

get_message(key)
Return a representation of the message corresponding to key as an instance of the appropriate format-
specific Message subclass, or raise a KeyError exception if no such message exists.

get_bytes(key)
Return a byte representation of the message corresponding to key, or raise a KeyError exception if
no such message exists. New in version 3.2.

682 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

get_string(key)
Return a string representation of the message corresponding to key, or raise a KeyError exception if
no such message exists. The message is processed through email.message.Message to convert
it to a 7bit clean representation.

get_file(key)
Return a file-like representation of the message corresponding to key, or raise a KeyError exception
if no such message exists. The file-like object behaves as if open in binary mode. This file should
be closed once it is no longer needed. Changed in version 3.2: The file object really is a binary file;
previously it was incorrectly returned in text mode. Also, the file-like object now supports the context
manager protocol: you can use a with statement to automatically close it.

Note: Unlike other representations of messages, file-like representations are not necessarily inde-
pendent of the Mailbox instance that created them or of the underlying mailbox. More specific
documentation is provided by each subclass.

__contains__(key)
Return True if key corresponds to a message, False otherwise.

__len__()
Return a count of messages in the mailbox.

clear()
Delete all messages from the mailbox.

pop(key, default=None)
Return a representation of the message corresponding to key and delete the message. If no such mes-
sage exists, return default. The message is represented as an instance of the appropriate format-specific
Message subclass unless a custom message factory was specified when the Mailbox instance was
initialized.

popitem()
Return an arbitrary (key, message) pair, where key is a key and message is a message representation,
and delete the corresponding message. If the mailbox is empty, raise a KeyError exception. The
message is represented as an instance of the appropriate format-specific Message subclass unless a
custom message factory was specified when the Mailbox instance was initialized.

update(arg)
Parameter arg should be a key-to-message mapping or an iterable of (key, message) pairs. Updates the
mailbox so that, for each given key and message, the message corresponding to key is set to message
as if by using __setitem__(). As with __setitem__(), each key must already correspond to a
message in the mailbox or else a KeyError exception will be raised, so in general it is incorrect for
arg to be a Mailbox instance.

Note: Unlike with dictionaries, keyword arguments are not supported.

flush()
Write any pending changes to the filesystem. For some Mailbox subclasses, changes are always
written immediately and flush() does nothing, but you should still make a habit of calling this
method.

lock()
Acquire an exclusive advisory lock on the mailbox so that other processes know not to modify it.
An ExternalClashError is raised if the lock is not available. The particular locking mecha-
nisms used depend upon the mailbox format. You should always lock the mailbox before making any
modifications to its contents.

unlock()
Release the lock on the mailbox, if any.

18.4. mailbox — Manipulate mailboxes in various formats 683

The Python Library Reference, Release 3.2

close()
Flush the mailbox, unlock it if necessary, and close any open files. For some Mailbox subclasses,
this method does nothing.

Maildir

class mailbox.Maildir(dirname, factory=None, create=True)
A subclass of Mailbox for mailboxes in Maildir format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom repre-
sentation. If factory is None, MaildirMessage is used as the default message representation. If create
is True, the mailbox is created if it does not exist.

It is for historical reasons that dirname is named as such rather than path.

Maildir is a directory-based mailbox format invented for the qmail mail transfer agent and now widely
supported by other programs. Messages in a Maildir mailbox are stored in separate files within a common
directory structure. This design allows Maildir mailboxes to be accessed and modified by multiple unrelated
programs without data corruption, so file locking is unnecessary.

Maildir mailboxes contain three subdirectories, namely: tmp, new, and cur. Messages are created mo-
mentarily in the tmp subdirectory and then moved to the new subdirectory to finalize delivery. A mail user
agent may subsequently move the message to the cur subdirectory and store information about the state of
the message in a special “info” section appended to its file name.

Folders of the style introduced by the Courier mail transfer agent are also supported. Any subdirectory of the
main mailbox is considered a folder if ’.’ is the first character in its name. Folder names are represented
by Maildir without the leading ’.’. Each folder is itself a Maildir mailbox but should not contain other
folders. Instead, a logical nesting is indicated using ’.’ to delimit levels, e.g., “Archived.2005.07”.

Note: The Maildir specification requires the use of a colon (’:’) in certain message file names. However,
some operating systems do not permit this character in file names, If you wish to use a Maildir-like format
on such an operating system, you should specify another character to use instead. The exclamation point
(’!’) is a popular choice. For example:

import mailbox
mailbox.Maildir.colon = ’!’

The colon attribute may also be set on a per-instance basis.

Maildir instances have all of the methods of Mailbox in addition to the following:

list_folders()
Return a list of the names of all folders.

get_folder(folder)
Return a Maildir instance representing the folder whose name is folder. A
NoSuchMailboxError exception is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return a Maildir instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains any messages, a NotEmptyError
exception will be raised and the folder will not be deleted.

clean()
Delete temporary files from the mailbox that have not been accessed in the last 36 hours. The Maildir
specification says that mail-reading programs should do this occasionally.

Some Mailbox methods implemented by Maildir deserve special remarks:

add(message)

684 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

__setitem__(key, message)
update(arg)

Warning: These methods generate unique file names based upon the current process ID. When
using multiple threads, undetected name clashes may occur and cause corruption of the mailbox
unless threads are coordinated to avoid using these methods to manipulate the same mailbox si-
multaneously.

flush()
All changes to Maildir mailboxes are immediately applied, so this method does nothing.

lock()
unlock()

Maildir mailboxes do not support (or require) locking, so these methods do nothing.

close()
Maildir instances do not keep any open files and the underlying mailboxes do not support locking,
so this method does nothing.

get_file(key)
Depending upon the host platform, it may not be possible to modify or remove the underlying message
while the returned file remains open.

See Also:

maildir man page from qmail The original specification of the format.

Using maildir format Notes on Maildir by its inventor. Includes an updated name-creation scheme and details
on “info” semantics.

maildir man page from Courier Another specification of the format. Describes a common extension for sup-
porting folders.

mbox

class mailbox.mbox(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in mbox format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom rep-
resentation. If factory is None, mboxMessage is used as the default message representation. If create is
True, the mailbox is created if it does not exist.

The mbox format is the classic format for storing mail on Unix systems. All messages in an mbox mailbox
are stored in a single file with the beginning of each message indicated by a line whose first five characters
are “From ”.

Several variations of the mbox format exist to address perceived shortcomings in the original. In the interest
of compatibility, mbox implements the original format, which is sometimes referred to as mboxo. This
means that the Content-Length header, if present, is ignored and that any occurrences of “From ” at
the beginning of a line in a message body are transformed to “>From ” when storing the message, although
occurrences of “>From ” are not transformed to “From ” when reading the message.

Some Mailbox methods implemented by mbox deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the mbox instance may yield unpredictable
results or raise an exception.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf()
system calls.

See Also:

mbox man page from qmail A specification of the format and its variations.

18.4. mailbox — Manipulate mailboxes in various formats 685

http://www.qmail.org/man/man5/maildir.html
http://cr.yp.to/proto/maildir.html
http://www.courier-mta.org/maildir.html
http://www.qmail.org/man/man5/mbox.html

The Python Library Reference, Release 3.2

mbox man page from tin Another specification of the format, with details on locking.

Configuring Netscape Mail on Unix: Why The Content-Length Format is Bad An argument for using the
original mbox format rather than a variation.

“mbox” is a family of several mutually incompatible mailbox formats A history of mbox variations.

MH

class mailbox.MH(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in MH format. Parameter factory is a callable object that accepts a
file-like message representation (which behaves as if opened in binary mode) and returns a custom repre-
sentation. If factory is None, MHMessage is used as the default message representation. If create is True,
the mailbox is created if it does not exist.

MH is a directory-based mailbox format invented for the MH Message Handling System, a mail user agent.
Each message in an MH mailbox resides in its own file. An MH mailbox may contain other MH mailboxes
(called folders) in addition to messages. Folders may be nested indefinitely. MH mailboxes also support
sequences, which are named lists used to logically group messages without moving them to sub-folders.
Sequences are defined in a file called .mh_sequences in each folder.

The MH class manipulates MH mailboxes, but it does not attempt to emulate all of mh‘s behaviors. In
particular, it does not modify and is not affected by the context or .mh_profile files that are used by
mh to store its state and configuration.

MH instances have all of the methods of Mailbox in addition to the following:

list_folders()
Return a list of the names of all folders.

get_folder(folder)
Return an MH instance representing the folder whose name is folder. A NoSuchMailboxError
exception is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return an MH instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains any messages, a NotEmptyError
exception will be raised and the folder will not be deleted.

get_sequences()
Return a dictionary of sequence names mapped to key lists. If there are no sequences, the empty
dictionary is returned.

set_sequences(sequences)
Re-define the sequences that exist in the mailbox based upon sequences, a dictionary of names mapped
to key lists, like returned by get_sequences().

pack()
Rename messages in the mailbox as necessary to eliminate gaps in numbering. Entries in the sequences
list are updated correspondingly.

Note: Already-issued keys are invalidated by this operation and should not be subsequently used.

Some Mailbox methods implemented by MH deserve special remarks:

remove(key)
__delitem__(key)
discard(key)

These methods immediately delete the message. The MH convention of marking a message for dele-
tion by prepending a comma to its name is not used.

lock()

686 Chapter 18. Internet Data Handling

http://www.tin.org/bin/man.cgi?section=5&topic=mbox
http://www.jwz.org/doc/content-length.html
http://homepages.tesco.net./~J.deBoynePollard/FGA/mail-mbox-formats.html

The Python Library Reference, Release 3.2

unlock()
Three locking mechanisms are used—dot locking and, if available, the flock() and lockf()
system calls. For MH mailboxes, locking the mailbox means locking the .mh_sequences file and,
only for the duration of any operations that affect them, locking individual message files.

get_file(key)
Depending upon the host platform, it may not be possible to remove the underlying message while the
returned file remains open.

flush()
All changes to MH mailboxes are immediately applied, so this method does nothing.

close()
MH instances do not keep any open files, so this method is equivalent to unlock().

See Also:

nmh - Message Handling System Home page of nmh, an updated version of the original mh.

MH & nmh: Email for Users & Programmers A GPL-licensed book on mh and nmh, with some information
on the mailbox format.

Babyl

class mailbox.Babyl(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in Babyl format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom repre-
sentation. If factory is None, BabylMessage is used as the default message representation. If create is
True, the mailbox is created if it does not exist.

Babyl is a single-file mailbox format used by the Rmail mail user agent included with Emacs. The begin-
ning of a message is indicated by a line containing the two characters Control-Underscore (’\037’) and
Control-L (’\014’). The end of a message is indicated by the start of the next message or, in the case of
the last message, a line containing a Control-Underscore (’\037’) character.

Messages in a Babyl mailbox have two sets of headers, original headers and so-called visible headers.
Visible headers are typically a subset of the original headers that have been reformatted or abridged to be
more attractive. Each message in a Babyl mailbox also has an accompanying list of labels, or short strings
that record extra information about the message, and a list of all user-defined labels found in the mailbox is
kept in the Babyl options section.

Babyl instances have all of the methods of Mailbox in addition to the following:

get_labels()
Return a list of the names of all user-defined labels used in the mailbox.

Note: The actual messages are inspected to determine which labels exist in the mailbox rather than
consulting the list of labels in the Babyl options section, but the Babyl section is updated whenever
the mailbox is modified.

Some Mailbox methods implemented by Babyl deserve special remarks:

get_file(key)
In Babyl mailboxes, the headers of a message are not stored contiguously with the body of the message.
To generate a file-like representation, the headers and body are copied together into a StringIO
instance (from the StringIO module), which has an API identical to that of a file. As a result, the
file-like object is truly independent of the underlying mailbox but does not save memory compared to
a string representation.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf()
system calls.

18.4. mailbox — Manipulate mailboxes in various formats 687

http://www.nongnu.org/nmh/
http://rand-mh.sourceforge.net/book/

The Python Library Reference, Release 3.2

See Also:

Format of Version 5 Babyl Files A specification of the Babyl format.

Reading Mail with Rmail The Rmail manual, with some information on Babyl semantics.

MMDF

class mailbox.MMDF(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in MMDF format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom rep-
resentation. If factory is None, MMDFMessage is used as the default message representation. If create is
True, the mailbox is created if it does not exist.

MMDF is a single-file mailbox format invented for the Multichannel Memorandum Distribution Facility, a
mail transfer agent. Each message is in the same form as an mbox message but is bracketed before and after
by lines containing four Control-A (’\001’) characters. As with the mbox format, the beginning of each
message is indicated by a line whose first five characters are “From ”, but additional occurrences of “From
” are not transformed to “>From ” when storing messages because the extra message separator lines prevent
mistaking such occurrences for the starts of subsequent messages.

Some Mailbox methods implemented by MMDF deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the MMDF instance may yield unpredictable
results or raise an exception.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf()
system calls.

See Also:

mmdf man page from tin A specification of MMDF format from the documentation of tin, a newsreader.

MMDF A Wikipedia article describing the Multichannel Memorandum Distribution Facility.

18.4.2 Message objects

class mailbox.Message(message=None)
A subclass of the email.Message module’s Message. Subclasses of mailbox.Message add
mailbox-format-specific state and behavior.

If message is omitted, the new instance is created in a default, empty state. If message is an
email.Message.Message instance, its contents are copied; furthermore, any format-specific infor-
mation is converted insofar as possible if message is a Message instance. If message is a string, a byte
string, or a file, it should contain an RFC 2822-compliant message, which is read and parsed. Files should
be open in binary mode, but text mode files are accepted for backward compatibility.

The format-specific state and behaviors offered by subclasses vary, but in general it is only the properties that
are not specific to a particular mailbox that are supported (although presumably the properties are specific
to a particular mailbox format). For example, file offsets for single-file mailbox formats and file names for
directory-based mailbox formats are not retained, because they are only applicable to the original mailbox.
But state such as whether a message has been read by the user or marked as important is retained, because
it applies to the message itself.

There is no requirement that Message instances be used to represent messages retrieved using Mailbox
instances. In some situations, the time and memory required to generate Message representations might
not not acceptable. For such situations, Mailbox instances also offer string and file-like representations,
and a custom message factory may be specified when a Mailbox instance is initialized.

688 Chapter 18. Internet Data Handling

http://quimby.gnus.org/notes/BABYL
http://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail.html
http://www.tin.org/bin/man.cgi?section=5&topic=mmdf
http://en.wikipedia.org/wiki/MMDF
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

MaildirMessage

class mailbox.MaildirMessage(message=None)
A message with Maildir-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Typically, a mail user agent application moves all of the messages in the new subdirectory to the cur
subdirectory after the first time the user opens and closes the mailbox, recording that the messages are old
whether or not they’ve actually been read. Each message in cur has an “info” section added to its file name
to store information about its state. (Some mail readers may also add an “info” section to messages in new.)
The “info” section may take one of two forms: it may contain “2,” followed by a list of standardized flags
(e.g., “2,FR”) or it may contain “1,” followed by so-called experimental information. Standard flags for
Maildir messages are as follows:

Flag Meaning Explanation
D Draft Under composition
F Flagged Marked as important
P Passed Forwarded, resent, or bounced
R Replied Replied to
S Seen Read
T Trashed Marked for subsequent deletion

MaildirMessage instances offer the following methods:

get_subdir()
Return either “new” (if the message should be stored in the new subdirectory) or “cur” (if the message
should be stored in the cur subdirectory).

Note: A message is typically moved from new to cur after its mailbox has been accessed, whether
or not the message is has been read. A message msg has been read if "S" in msg.get_flags()
is True.

set_subdir(subdir)
Set the subdirectory the message should be stored in. Parameter subdir must be either “new” or “cur”.

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the standard
Maildir format, the result is the concatenation in alphabetical order of zero or one occurrence of each
of ’D’, ’F’, ’P’, ’R’, ’S’, and ’T’. The empty string is returned if no flags are set or if “info”
contains experimental semantics.

set_flags(flags)
Set the flags specified by flags and unset all others.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time,
flag may be a string of more than one character. The current “info” is overwritten whether or not it
contains experimental information rather than flags.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a
time, flag maybe a string of more than one character. If “info” contains experimental information
rather than flags, the current “info” is not modified.

get_date()
Return the delivery date of the message as a floating-point number representing seconds since the
epoch.

set_date(date)
Set the delivery date of the message to date, a floating-point number representing seconds since the
epoch.

18.4. mailbox — Manipulate mailboxes in various formats 689

The Python Library Reference, Release 3.2

get_info()
Return a string containing the “info” for a message. This is useful for accessing and modifying “info”
that is experimental (i.e., not a list of flags).

set_info(info)
Set “info” to info, which should be a string.

When a MaildirMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“cur” subdirectory O flag
F flag F flag
R flag A flag
S flag R flag
T flag D flag

When a MaildirMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state MHMessage state
“cur” subdirectory “unseen” sequence
“cur” subdirectory and S flag no “unseen” sequence
F flag “flagged” sequence
R flag “replied” sequence

When a MaildirMessage instance is created based upon a BabylMessage instance, the following conver-
sions take place:

Resulting state BabylMessage state
“cur” subdirectory “unseen” label
“cur” subdirectory and S flag no “unseen” label
P flag “forwarded” or “resent” label
R flag “answered” label
T flag “deleted” label

mboxMessage

class mailbox.mboxMessage(message=None)
A message with mbox-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Messages in an mbox mailbox are stored together in a single file. The sender’s envelope address and the time
of delivery are typically stored in a line beginning with “From ” that is used to indicate the start of a message,
though there is considerable variation in the exact format of this data among mbox implementations. Flags
that indicate the state of the message, such as whether it has been read or marked as important, are typically
stored in Status and X-Status headers.

Conventional flags for mbox messages are as follows:

Flag Meaning Explanation
R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

mboxMessage instances offer the following methods:

690 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

get_from()
Return a string representing the “From ” line that marks the start of the message in an mbox mailbox.
The leading “From ” and the trailing newline are excluded.

set_from(from_, time_=None)
Set the “From ” line to from_, which should be specified without a leading “From ” or trailing new-
line. For convenience, time_ may be specified and will be formatted appropriately and appended to
from_. If time_ is specified, it should be a struct_time instance, a tuple suitable for passing to
time.strftime(), or True (to use time.gmtime()).

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of ’R’,
’O’, ’D’, ’F’, and ’A’.

set_flags(flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any
order of zero or more occurrences of each of ’R’, ’O’, ’D’, ’F’, and ’A’.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag
may be a string of more than one character.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a
time, flag maybe a string of more than one character.

When an mboxMessage instance is created based upon a MaildirMessage instance, a “From ” line is gen-
erated based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

Resulting state MaildirMessage state
R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

When an mboxMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state MHMessage state
R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an mboxMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When a Message instance is created based upon an MMDFMessage instance, the “From ” line is copied and all
flags directly correspond:

Resulting state MMDFMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

18.4. mailbox — Manipulate mailboxes in various formats 691

The Python Library Reference, Release 3.2

MHMessage

class mailbox.MHMessage(message=None)
A message with MH-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

MH messages do not support marks or flags in the traditional sense, but they do support sequences, which
are logical groupings of arbitrary messages. Some mail reading programs (although not the standard mh
and nmh) use sequences in much the same way flags are used with other formats, as follows:

Sequence Explanation
unseen Not read, but previously detected by MUA
replied Replied to
flagged Marked as important

MHMessage instances offer the following methods:

get_sequences()
Return a list of the names of sequences that include this message.

set_sequences(sequences)
Set the list of sequences that include this message.

add_sequence(sequence)
Add sequence to the list of sequences that include this message.

remove_sequence(sequence)
Remove sequence from the list of sequences that include this message.

When an MHMessage instance is created based upon a MaildirMessage instance, the following conversions
take place:

Resulting state MaildirMessage state
“unseen” sequence no S flag
“replied” sequence R flag
“flagged” sequence F flag

When an MHMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“unseen” sequence no R flag
“replied” sequence A flag
“flagged” sequence F flag

When an MHMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
“unseen” sequence “unseen” label
“replied” sequence “answered” label

BabylMessage

class mailbox.BabylMessage(message=None)
A message with Babyl-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Certain message labels, called attributes, are defined by convention to have special meanings. The attributes
are as follows:

692 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

Label Explanation
unseen Not read, but previously detected by MUA
deleted Marked for subsequent deletion
filed Copied to another file or mailbox
answered Replied to
forwarded Forwarded
edited Modified by the user
resent Resent

By default, Rmail displays only visible headers. The BabylMessage class, though, uses the original
headers because they are more complete. Visible headers may be accessed explicitly if desired.

BabylMessage instances offer the following methods:

get_labels()
Return a list of labels on the message.

set_labels(labels)
Set the list of labels on the message to labels.

add_label(label)
Add label to the list of labels on the message.

remove_label(label)
Remove label from the list of labels on the message.

get_visible()
Return an Message instance whose headers are the message’s visible headers and whose body is
empty.

set_visible(visible)
Set the message’s visible headers to be the same as the headers in message. Parameter visible should be
a Message instance, an email.Message.Message instance, a string, or a file-like object (which
should be open in text mode).

update_visible()
When a BabylMessage instance’s original headers are modified, the visible headers are not auto-
matically modified to correspond. This method updates the visible headers as follows: each visible
header with a corresponding original header is set to the value of the original header, each visible
header without a corresponding original header is removed, and any of Date, From, Reply-To,
To, CC, and Subject that are present in the original headers but not the visible headers are added to
the visible headers.

When a BabylMessage instance is created based upon a MaildirMessage instance, the following conver-
sions take place:

Resulting state MaildirMessage state
“unseen” label no S flag
“deleted” label T flag
“answered” label R flag
“forwarded” label P flag

When a BabylMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“unseen” label no R flag
“deleted” label D flag
“answered” label A flag

When a BabylMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state MHMessage state
“unseen” label “unseen” sequence
“answered” label “replied” sequence

18.4. mailbox — Manipulate mailboxes in various formats 693

The Python Library Reference, Release 3.2

MMDFMessage

class mailbox.MMDFMessage(message=None)
A message with MMDF-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

As with message in an mbox mailbox, MMDF messages are stored with the sender’s address and the delivery
date in an initial line beginning with “From ”. Likewise, flags that indicate the state of the message are
typically stored in Status and X-Status headers.

Conventional flags for MMDF messages are identical to those of mbox message and are as follows:

Flag Meaning Explanation
R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

MMDFMessage instances offer the following methods, which are identical to those offered by
mboxMessage:

get_from()
Return a string representing the “From ” line that marks the start of the message in an mbox mailbox.
The leading “From ” and the trailing newline are excluded.

set_from(from_, time_=None)
Set the “From ” line to from_, which should be specified without a leading “From ” or trailing new-
line. For convenience, time_ may be specified and will be formatted appropriately and appended to
from_. If time_ is specified, it should be a struct_time instance, a tuple suitable for passing to
time.strftime(), or True (to use time.gmtime()).

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of ’R’,
’O’, ’D’, ’F’, and ’A’.

set_flags(flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any
order of zero or more occurrences of each of ’R’, ’O’, ’D’, ’F’, and ’A’.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag
may be a string of more than one character.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a
time, flag maybe a string of more than one character.

When an MMDFMessage instance is created based upon a MaildirMessage instance, a “From ” line is gen-
erated based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

Resulting state MaildirMessage state
R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

When an MMDFMessage instance is created based upon an MHMessage instance, the following conversions
take place:

694 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

Resulting state MHMessage state
R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an MMDFMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When an MMDFMessage instance is created based upon an mboxMessage instance, the “From ” line is copied
and all flags directly correspond:

Resulting state mboxMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

18.4.3 Exceptions

The following exception classes are defined in the mailbox module:

exception mailbox.Error
The based class for all other module-specific exceptions.

exception mailbox.NoSuchMailboxError
Raised when a mailbox is expected but is not found, such as when instantiating a Mailbox subclass with
a path that does not exist (and with the create parameter set to False), or when opening a folder that does
not exist.

exception mailbox.NotEmptyError
Raised when a mailbox is not empty but is expected to be, such as when deleting a folder that contains
messages.

exception mailbox.ExternalClashError
Raised when some mailbox-related condition beyond the control of the program causes it to be unable
to proceed, such as when failing to acquire a lock that another program already holds a lock, or when a
uniquely-generated file name already exists.

exception mailbox.FormatError
Raised when the data in a file cannot be parsed, such as when an MH instance attempts to read a corrupted
.mh_sequences file.

18.4.4 Examples

A simple example of printing the subjects of all messages in a mailbox that seem interesting:

import mailbox
for message in mailbox.mbox(’~/mbox’):

subject = message[’subject’] # Could possibly be None.
if subject and ’python’ in subject.lower():

print(subject)

To copy all mail from a Babyl mailbox to an MH mailbox, converting all of the format-specific information that
can be converted:

18.4. mailbox — Manipulate mailboxes in various formats 695

The Python Library Reference, Release 3.2

import mailbox
destination = mailbox.MH(’~/Mail’)
destination.lock()
for message in mailbox.Babyl(’~/RMAIL’):

destination.add(mailbox.MHMessage(message))
destination.flush()
destination.unlock()

This example sorts mail from several mailing lists into different mailboxes, being careful to avoid mail corruption
due to concurrent modification by other programs, mail loss due to interruption of the program, or premature
termination due to malformed messages in the mailbox:

import mailbox
import email.Errors

list_names = (’python-list’, ’python-dev’, ’python-bugs’)

boxes = {name: mailbox.mbox(’~/email/%s’ % name) for name in list_names}
inbox = mailbox.Maildir(’~/Maildir’, factory=None)

for key in inbox.iterkeys():
try:

message = inbox[key]
except email.Errors.MessageParseError:

continue # The message is malformed. Just leave it.

for name in list_names:
list_id = message[’list-id’]
if list_id and name in list_id:

Get mailbox to use
box = boxes[name]

Write copy to disk before removing original.
If there’s a crash, you might duplicate a message, but
that’s better than losing a message completely.
box.lock()
box.add(message)
box.flush()
box.unlock()

Remove original message
inbox.lock()
inbox.discard(key)
inbox.flush()
inbox.unlock()
break # Found destination, so stop looking.

for box in boxes.itervalues():
box.close()

18.5 mimetypes — Map filenames to MIME types

Source code: Lib/mimetypes.py

The mimetypes module converts between a filename or URL and the MIME type associated with the filename
extension. Conversions are provided from filename to MIME type and from MIME type to filename extension;
encodings are not supported for the latter conversion.

696 Chapter 18. Internet Data Handling

http://svn.python.org/view/python/branches/py3k/Lib/mimetypes.py?view=markup

The Python Library Reference, Release 3.2

The module provides one class and a number of convenience functions. The functions are the normal interface to
this module, but some applications may be interested in the class as well.

The functions described below provide the primary interface for this module. If the module has not been initialized,
they will call init() if they rely on the information init() sets up.

mimetypes.guess_type(url, strict=True)
Guess the type of a file based on its filename or URL, given by filename. The return value is a tuple
(type, encoding) where type is None if the type can’t be guessed (missing or unknown suffix) or a
string of the form ’type/subtype’, usable for a MIME content-type header.

encoding is None for no encoding or the name of the program used to encode (e.g. com-
press or gzip). The encoding is suitable for use as a Content-Encoding header, not as a
Content-Transfer-Encoding header. The mappings are table driven. Encoding suffixes are case
sensitive; type suffixes are first tried case sensitively, then case insensitively.

Optional strict is a flag specifying whether the list of known MIME types is limited to only the official types
registered with IANA are recognized. When strict is true (the default), only the IANA types are supported;
when strict is false, some additional non-standard but commonly used MIME types are also recognized.

mimetypes.guess_all_extensions(type, strict=True)
Guess the extensions for a file based on its MIME type, given by type. The return value is a list of strings
giving all possible filename extensions, including the leading dot (’.’). The extensions are not guaranteed
to have been associated with any particular data stream, but would be mapped to the MIME type type by
guess_type().

Optional strict has the same meaning as with the guess_type() function.

mimetypes.guess_extension(type, strict=True)
Guess the extension for a file based on its MIME type, given by type. The return value is a string giving a
filename extension, including the leading dot (’.’). The extension is not guaranteed to have been associated
with any particular data stream, but would be mapped to the MIME type type by guess_type(). If no
extension can be guessed for type, None is returned.

Optional strict has the same meaning as with the guess_type() function.

Some additional functions and data items are available for controlling the behavior of the module.

mimetypes.init(files=None)
Initialize the internal data structures. If given, files must be a sequence of file names which should be
used to augment the default type map. If omitted, the file names to use are taken from knownfiles;
on Windows, the current registry settings are loaded. Each file named in files or knownfiles takes
precedence over those named before it. Calling init() repeatedly is allowed. Changed in version 3.2:
Previously, Windows registry settings were ignored.

mimetypes.read_mime_types(filename)
Load the type map given in the file filename, if it exists. The type map is returned as a dictionary mapping
filename extensions, including the leading dot (’.’), to strings of the form ’type/subtype’. If the file
filename does not exist or cannot be read, None is returned.

mimetypes.add_type(type, ext, strict=True)
Add a mapping from the mimetype type to the extension ext. When the extension is already known, the
new type will replace the old one. When the type is already known the extension will be added to the list of
known extensions.

When strict is True (the default), the mapping will added to the official MIME types, otherwise to the
non-standard ones.

mimetypes.inited
Flag indicating whether or not the global data structures have been initialized. This is set to true by init().

mimetypes.knownfiles
List of type map file names commonly installed. These files are typically named mime.types and are
installed in different locations by different packages.

18.5. mimetypes — Map filenames to MIME types 697

http://www.iana.org/assignments/media-types/

The Python Library Reference, Release 3.2

mimetypes.suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the .tgz extension is mapped to
.tar.gz to allow the encoding and type to be recognized separately.

mimetypes.encodings_map
Dictionary mapping filename extensions to encoding types.

mimetypes.types_map
Dictionary mapping filename extensions to MIME types.

mimetypes.common_types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types.

The MimeTypes class may be useful for applications which may want more than one MIME-type database:

class mimetypes.MimeTypes(filenames=(), strict=True)
This class represents a MIME-types database. By default, it provides access to the same database as the
rest of this module. The initial database is a copy of that provided by the module, and may be extended by
loading additional mime.types-style files into the database using the read() or readfp() methods.
The mapping dictionaries may also be cleared before loading additional data if the default data is not desired.

The optional filenames parameter can be used to cause additional files to be loaded “on top” of the default
database.

An example usage of the module:

>>> import mimetypes
>>> mimetypes.init()
>>> mimetypes.knownfiles
[’/etc/mime.types’, ’/etc/httpd/mime.types’, ...]
>>> mimetypes.suffix_map[’.tgz’]
’.tar.gz’
>>> mimetypes.encodings_map[’.gz’]
’gzip’
>>> mimetypes.types_map[’.tgz’]
’application/x-tar-gz’

18.5.1 MimeTypes Objects

MimeTypes instances provide an interface which is very like that of the mimetypes module.

MimeTypes.suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the .tgz extension is mapped to
.tar.gz to allow the encoding and type to be recognized separately. This is initially a copy of the global
suffix_map defined in the module.

MimeTypes.encodings_map
Dictionary mapping filename extensions to encoding types. This is initially a copy of the global
encodings_map defined in the module.

MimeTypes.types_map
Dictionary mapping filename extensions to MIME types. This is initially a copy of the global types_map
defined in the module.

MimeTypes.common_types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types. This is initially
a copy of the global common_types defined in the module.

MimeTypes.guess_extension(type, strict=True)
Similar to the guess_extension() function, using the tables stored as part of the object.

698 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

MimeTypes.guess_type(url, strict=True)
Similar to the guess_type() function, using the tables stored as part of the object.

MimeTypes.read(path)
Load MIME information from a file named path. This uses readfp() to parse the file.

MimeTypes.readfp(file)
Load MIME type information from an open file. The file must have the format of the standard
mime.types files.

MimeTypes.read_windows_registry()
Load MIME type information from the Windows registry. Availability: Windows. New in version 3.2.

18.6 base64 — RFC 3548: Base16, Base32, Base64 Data Encod-
ings

This module provides data encoding and decoding as specified in RFC 3548. This standard defines the Base16,
Base32, and Base64 algorithms for encoding and decoding arbitrary binary strings into ASCII-only byte strings
that can be safely sent by email, used as parts of URLs, or included as part of an HTTP POST request. The
encoding algorithm is not the same as the uuencode program.

There are two interfaces provided by this module. The modern interface supports encoding and decoding ASCII
byte string objects using all three alphabets. The legacy interface provides for encoding and decoding to and from
file-like objects as well as byte strings, but only using the Base64 standard alphabet.

The modern interface provides:

base64.b64encode(s, altchars=None)
Encode a byte string using Base64.

s is the string to encode. Optional altchars must be a string of at least length 2 (additional characters are
ignored) which specifies an alternative alphabet for the + and / characters. This allows an application to
e.g. generate URL or filesystem safe Base64 strings. The default is None, for which the standard Base64
alphabet is used.

The encoded byte string is returned.

base64.b64decode(s, altchars=None, validate=False)
Decode a Base64 encoded byte string.

s is the byte string to decode. Optional altchars must be a string of at least length 2 (additional characters
are ignored) which specifies the alternative alphabet used instead of the + and / characters.

The decoded string is returned. A binascii.Error is raised if s is incorrectly padded.

If validate is False (the default), non-base64-alphabet characters are discarded prior to the padding check.
If validate is True, non-base64-alphabet characters in the input result in a binascii.Error.

base64.standard_b64encode(s)
Encode byte string s using the standard Base64 alphabet.

base64.standard_b64decode(s)
Decode byte string s using the standard Base64 alphabet.

base64.urlsafe_b64encode(s)
Encode byte string s using a URL-safe alphabet, which substitutes - instead of + and _ instead of / in the
standard Base64 alphabet. The result can still contain =.

base64.urlsafe_b64decode(s)
Decode byte string s using a URL-safe alphabet, which substitutes - instead of + and _ instead of / in the
standard Base64 alphabet.

base64.b32encode(s)
Encode a byte string using Base32. s is the string to encode. The encoded string is returned.

18.6. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings 699

http://tools.ietf.org/html/rfc3548.html

The Python Library Reference, Release 3.2

base64.b32decode(s, casefold=False, map01=None)
Decode a Base32 encoded byte string.

s is the byte string to decode. Optional casefold is a flag specifying whether a lowercase alphabet is accept-
able as input. For security purposes, the default is False.

RFC 3548 allows for optional mapping of the digit 0 (zero) to the letter O (oh), and for optional mapping
of the digit 1 (one) to either the letter I (eye) or letter L (el). The optional argument map01 when not None,
specifies which letter the digit 1 should be mapped to (when map01 is not None, the digit 0 is always
mapped to the letter O). For security purposes the default is None, so that 0 and 1 are not allowed in the
input.

The decoded byte string is returned. A TypeError is raised if s were incorrectly padded or if there are
non-alphabet characters present in the string.

base64.b16encode(s)
Encode a byte string using Base16.

s is the string to encode. The encoded byte string is returned.

base64.b16decode(s, casefold=False)
Decode a Base16 encoded byte string.

s is the string to decode. Optional casefold is a flag specifying whether a lowercase alphabet is acceptable
as input. For security purposes, the default is False.

The decoded byte string is returned. A TypeError is raised if s were incorrectly padded or if there are
non-alphabet characters present in the string.

The legacy interface:

base64.decode(input, output)
Decode the contents of the binary input file and write the resulting binary data to the output file. input and
output must be file objects. input will be read until input.read() returns an empty bytes object.

base64.decodebytes(s)
base64.decodestring(s)

Decode the byte string s, which must contain one or more lines of base64 encoded data, and return a byte
string containing the resulting binary data. decodestring is a deprecated alias.

base64.encode(input, output)
Encode the contents of the binary input file and write the resulting base64 encoded data to the output file.
input and output must be file objects. input will be read until input.read() returns an empty bytes
object. encode() returns the encoded data plus a trailing newline character (b’\n’).

base64.encodebytes(s)
base64.encodestring(s)

Encode the byte string s, which can contain arbitrary binary data, and return a byte string containing one
or more lines of base64-encoded data. encodebytes() returns a string containing one or more lines of
base64-encoded data always including an extra trailing newline (b’\n’). encodestring is a deprecated
alias.

An example usage of the module:

>>> import base64
>>> encoded = base64.b64encode(b’data to be encoded’)
>>> encoded
b’ZGF0YSB0byBiZSBlbmNvZGVk’
>>> data = base64.b64decode(encoded)
>>> data
b’data to be encoded’

See Also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

700 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc3548.html

The Python Library Reference, Release 3.2

RFC 1521 - MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies
Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

18.7 binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files in
ASCII. Only the data fork is handled.

The binhex module defines the following functions:

binhex.binhex(input, output)
Convert a binary file with filename input to binhex file output. The output parameter can either be a filename
or a file-like object (any object supporting a write() and close() method).

binhex.hexbin(input, output)
Decode a binhex file input. input may be a filename or a file-like object supporting read() and close()
methods. The resulting file is written to a file named output, unless the argument is None in which case the
output filename is read from the binhex file.

The following exception is also defined:

exception binhex.Error
Exception raised when something can’t be encoded using the binhex format (for example, a filename is too
long to fit in the filename field), or when input is not properly encoded binhex data.

See Also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

18.7.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the old Macintosh newline conven-
tion (carriage-return as end of line).

As of this writing, hexbin() appears to not work in all cases.

18.8 binascii — Convert between binary and ASCII

The binascii module contains a number of methods to convert between binary and various ASCII-encoded
binary representations. Normally, you will not use these functions directly but use wrapper modules like uu,
base64, or binhex instead. The binascii module contains low-level functions written in C for greater
speed that are used by the higher-level modules.

Note: Encoding and decoding functions do not accept Unicode strings. Only bytestring and bytearray objects
can be processed.

The binascii module defines the following functions:

binascii.a2b_uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain
45 (binary) bytes, except for the last line. Line data may be followed by whitespace.

binascii.b2a_uu(data)
Convert binary data to a line of ASCII characters, the return value is the converted line, including a newline
char. The length of data should be at most 45.

18.7. binhex — Encode and decode binhex4 files 701

http://tools.ietf.org/html/rfc1521.html

The Python Library Reference, Release 3.2

binascii.a2b_base64(string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed
at a time.

binascii.b2a_base64(data)
Convert binary data to a line of ASCII characters in base64 coding. The return value is the converted line,
including a newline char. The length of data should be at most 57 to adhere to the base64 standard.

binascii.a2b_qp(string, header=False)
Convert a block of quoted-printable data back to binary and return the binary data. More than one line may
be passed at a time. If the optional argument header is present and true, underscores will be decoded as
spaces. Changed in version 3.2: Accept only bytestring or bytearray objects as input.

binascii.b2a_qp(data, quotetabs=False, istext=True, header=False)
Convert binary data to a line(s) of ASCII characters in quoted-printable encoding. The return value is the
converted line(s). If the optional argument quotetabs is present and true, all tabs and spaces will be encoded.
If the optional argument istext is present and true, newlines are not encoded but trailing whitespace will be
encoded. If the optional argument header is present and true, spaces will be encoded as underscores per
RFC1522. If the optional argument header is present and false, newline characters will be encoded as well;
otherwise linefeed conversion might corrupt the binary data stream.

binascii.a2b_hqx(string)
Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string should
contain a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the
remaining bits zero.

binascii.rledecode_hqx(data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90 after a
byte as a repeat indicator, followed by a count. A count of 0 specifies a byte value of 0x90. The routine
returns the decompressed data, unless data input data ends in an orphaned repeat indicator, in which case
the Incomplete exception is raised. Changed in version 3.2: Accept only bytestring or bytearray objects
as input.

binascii.rlecode_hqx(data)
Perform binhex4 style RLE-compression on data and return the result.

binascii.b2a_hqx(data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should already
be RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

binascii.crc_hqx(data, crc)
Compute the binhex4 crc value of data, starting with an initial crc and returning the result.

binascii.crc32(data[, crc])
Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This is consistent with the ZIP
file checksum. Since the algorithm is designed for use as a checksum algorithm, it is not suitable for use as
a general hash algorithm. Use as follows:

print(binascii.crc32(b"hello world"))
Or, in two pieces:
crc = binascii.crc32(b"hello")
crc = binascii.crc32(b" world", crc) & 0xffffffff
print(’crc32 = {:#010x}’.format(crc))

Note: To generate the same numeric value across all Python versions and platforms use crc32(data) & 0xffffffff.
If you are only using the checksum in packed binary format this is not necessary as the return value is the correct
32bit binary representation regardless of sign.

binascii.b2a_hex(data)

702 Chapter 18. Internet Data Handling

The Python Library Reference, Release 3.2

binascii.hexlify(data)
Return the hexadecimal representation of the binary data. Every byte of data is converted into the corre-
sponding 2-digit hex representation. The resulting string is therefore twice as long as the length of data.

binascii.a2b_hex(hexstr)
binascii.unhexlify(hexstr)

Return the binary data represented by the hexadecimal string hexstr. This function is the inverse of
b2a_hex(). hexstr must contain an even number of hexadecimal digits (which can be upper or lower
case), otherwise a TypeError is raised. Changed in version 3.2: Accept only bytestring or bytearray
objects as input.

exception binascii.Error
Exception raised on errors. These are usually programming errors.

exception binascii.Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by
reading a little more data and trying again.

See Also:

Module base64 Support for base64 encoding used in MIME email messages.

Module binhex Support for the binhex format used on the Macintosh.

Module uu Support for UU encoding used on Unix.

Module quopri Support for quoted-printable encoding used in MIME email messages.

18.9 quopri — Encode and decode MIME quoted-printable data

Source code: Lib/quopri.py

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet
Message Bodies”. The quoted-printable encoding is designed for data where there are relatively few nonprintable
characters; the base64 encoding scheme available via the base64 module is more compact if there are many such
characters, as when sending a graphics file.

quopri.decode(input, output, header=False)
Decode the contents of the input file and write the resulting decoded binary data to the output file. input
and output must be file objects. input will be read until input.readline() returns an empty string.
If the optional argument header is present and true, underscore will be decoded as space. This is used to
decode “Q”-encoded headers as described in RFC 1522: “MIME (Multipurpose Internet Mail Extensions)
Part Two: Message Header Extensions for Non-ASCII Text”.

quopri.encode(input, output, quotetabs, header=False)
Encode the contents of the input file and write the resulting quoted-printable data to the output file. input
and output must be file objects. input will be read until input.readline() returns an empty string.
quotetabs is a flag which controls whether to encode embedded spaces and tabs; when true it encodes such
embedded whitespace, and when false it leaves them unencoded. Note that spaces and tabs appearing at the
end of lines are always encoded, as per RFC 1521. header is a flag which controls if spaces are encoded as
underscores as per RFC 1522.

quopri.decodestring(s, header=False)
Like decode(), except that it accepts a source string and returns the corresponding decoded string.

quopri.encodestring(s, quotetabs=False, header=False)
Like encode(), except that it accepts a source string and returns the corresponding encoded string.
quotetabs and header are optional (defaulting to False), and are passed straight through to encode().

See Also:

Module base64 Encode and decode MIME base64 data

18.9. quopri — Encode and decode MIME quoted-printable data 703

http://svn.python.org/view/python/branches/py3k/Lib/quopri.py?view=markup
http://tools.ietf.org/html/rfc1521.html
http://tools.ietf.org/html/rfc1522.html
http://tools.ietf.org/html/rfc1521.html
http://tools.ietf.org/html/rfc1522.html

The Python Library Reference, Release 3.2

18.10 uu — Encode and decode uuencode files

Source code: Lib/uu.py

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ASCII-only connections. Wherever a file argument is expected, the methods accept a file-like object. For back-
wards compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened
for reading and writing; the pathname ’-’ is understood to mean the standard input or output. However, this
interface is deprecated; it’s better for the caller to open the file itself, and be sure that, when required, the mode is
’rb’ or ’wb’ on Windows.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

The uu module defines the following functions:

uu.encode(in_file, out_file, name=None, mode=None)
Uuencode file in_file into file out_file. The uuencoded file will have the header specifying name and mode
as the defaults for the results of decoding the file. The default defaults are taken from in_file, or ’-’ and
0o666 respectively.

uu.decode(in_file, out_file=None, mode=None, quiet=False)
This call decodes uuencoded file in_file placing the result on file out_file. If out_file is a pathname, mode is
used to set the permission bits if the file must be created. Defaults for out_file and mode are taken from the
uuencode header. However, if the file specified in the header already exists, a uu.Error is raised.

decode() may print a warning to standard error if the input was produced by an incorrect uuencoder and
Python could recover from that error. Setting quiet to a true value silences this warning.

exception uu.Error
Subclass of Exception, this can be raised by uu.decode() under various situations, such as described
above, but also including a badly formatted header, or truncated input file.

See Also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

704 Chapter 18. Internet Data Handling

http://svn.python.org/view/python/branches/py3k/Lib/uu.py?view=markup

CHAPTER

NINETEEN

STRUCTURED MARKUP
PROCESSING TOOLS

Python supports a variety of modules to work with various forms of structured data markup. This includes modules
to work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup Language (HTML),
and several interfaces for working with the Extensible Markup Language (XML).

It is important to note that modules in the xml package require that there be at least one SAX-compliant XML
parser available. The Expat parser is included with Python, so the xml.parsers.expat module will always
be available.

The documentation for the xml.dom and xml.sax packages are the definition of the Python bindings for the
DOM and SAX interfaces.

19.1 html — HyperText Markup Language support

New in version 3.2. Source code: Lib/html/__init__.py

This module defines utilities to manipulate HTML.

html.escape(s, quote=True)
Convert the characters &, < and > in string s to HTML-safe sequences. Use this if you need to display
text that might contain such characters in HTML. If the optional flag quote is true, the characters (") and
(’) are also translated; this helps for inclusion in an HTML attribute value delimited by quotes, as in .

19.2 html.parser — Simple HTML and XHTML parser

Source code: Lib/html/parser.py

This module defines a class HTMLParser which serves as the basis for parsing text files formatted in HTML
(HyperText Mark-up Language) and XHTML.

class html.parser.HTMLParser(strict=True)
Create a parser instance. If strict is True (the default), invalid html results in HTMLParseError excep-
tions 1. If strict is False, the parser uses heuristics to make a best guess at the intention of any invalid html
it encounters, similar to the way most browsers do.

1 For backward compatibility reasons strict mode does not raise exceptions for all non-compliant HTML. That is, some invalid HTML is
tolerated even in strict mode.

705

http://svn.python.org/view/python/branches/py3k/Lib/html/__init__.py?view=markup
http://svn.python.org/view/python/branches/py3k/Lib/html/parser.py?view=markup

The Python Library Reference, Release 3.2

An HTMLParser instance is fed HTML data and calls handler functions when tags begin and end. The
HTMLParser class is meant to be overridden by the user to provide a desired behavior.

This parser does not check that end tags match start tags or call the end-tag handler for elements which are
closed implicitly by closing an outer element. Changed in version 3.2: strict keyword added

An exception is defined as well:

exception html.parser.HTMLParseError
Exception raised by the HTMLParser class when it encounters an error while parsing. This exception
provides three attributes: msg is a brief message explaining the error, lineno is the number of the line on
which the broken construct was detected, and offset is the number of characters into the line at which
the construct starts.

HTMLParser instances have the following methods:

HTMLParser.reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

HTMLParser.feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed or close() is called.

HTMLParser.close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined version
should always call the HTMLParser base class method close().

HTMLParser.getpos()
Return current line number and offset.

HTMLParser.get_starttag_text()
Return the text of the most recently opened start tag. This should not normally be needed for structured
processing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal
changes (whitespace between attributes can be preserved, etc.).

HTMLParser.handle_starttag(tag, attrs)
This method is called to handle the start of a tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

The tag argument is the name of the tag converted to lower case. The attrs argument is a list of (name,
value) pairs containing the attributes found inside the tag’s <> brackets. The name will be translated
to lower case, and quotes in the value have been removed, and character and entity references have been
replaced. For instance, for the tag , this method would be called
as handle_starttag(’a’, [(’href’, ’http://www.cwi.nl/’)]).

All entity references from html.entities are replaced in the attribute values.

HTMLParser.handle_startendtag(tag, attrs)
Similar to handle_starttag(), but called when the parser encounters an XHTML-style empty tag (<a
.../>). This method may be overridden by subclasses which require this particular lexical information;
the default implementation simple calls handle_starttag() and handle_endtag().

HTMLParser.handle_endtag(tag)
This method is called to handle the end tag of an element. It is intended to be overridden by a derived class;
the base class implementation does nothing. The tag argument is the name of the tag converted to lower
case.

HTMLParser.handle_data(data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base
class implementation does nothing.

HTMLParser.handle_charref(name)
This method is called to process a character reference of the form &#ref;. It is intended to be overridden
by a derived class; the base class implementation does nothing.

706 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

HTMLParser.handle_entityref(name)
This method is called to process a general entity reference of the form &name; where name is an general
entity reference. It is intended to be overridden by a derived class; the base class implementation does
nothing.

HTMLParser.handle_comment(data)
This method is called when a comment is encountered. The comment argument is a string containing the
text between the -- and -- delimiters, but not the delimiters themselves. For example, the comment
<!--text--> will cause this method to be called with the argument ’text’. It is intended to be over-
ridden by a derived class; the base class implementation does nothing.

HTMLParser.handle_decl(decl)
Method called when an SGML doctype declaration is read by the parser. The decl parameter will be the
entire contents of the declaration inside the <!...> markup. It is intended to be overridden by a derived
class; the base class implementation does nothing.

HTMLParser.unknown_decl(data)
Method called when an unrecognized SGML declaration is read by the parser. The data parameter will be
the entire contents of the declaration inside the <!...> markup. It is sometimes useful to be be overridden
by a derived class; the base class implementation raises an HTMLParseError.

HTMLParser.handle_pi(data)
Method called when a processing instruction is encountered. The data parameter will contain the entire pro-
cessing instruction. For example, for the processing instruction <?proc color=’red’>, this method
would be called as handle_pi("proc color=’red’"). It is intended to be overridden by a derived
class; the base class implementation does nothing.

Note: The HTMLParser class uses the SGML syntactic rules for processing instructions. An XHTML
processing instruction using the trailing ’?’ will cause the ’?’ to be included in data.

19.2.1 Example HTML Parser Application

As a basic example, below is a very basic HTML parser that uses the HTMLParser class to print out tags as they
are encountered:

>>> from html.parser import HTMLParser
>>>
>>> class MyHTMLParser(HTMLParser):
... def handle_starttag(self, tag, attrs):
... print("Encountered a {} start tag".format(tag))
... def handle_endtag(self, tag):
... print("Encountered a {} end tag".format(tag))
...
>>> page = """<html><h1>Title</h1><p>I’m a paragraph!</p></html>"""
>>>
>>> myparser = MyHTMLParser()
>>> myparser.feed(page)
Encountered a html start tag
Encountered a h1 start tag
Encountered a h1 end tag
Encountered a p start tag
Encountered a p end tag
Encountered a html end tag

19.3 html.entities — Definitions of HTML general entities

Source code: Lib/html/entities.py

19.3. html.entities — Definitions of HTML general entities 707

http://svn.python.org/view/python/branches/py3k/Lib/html/entities.py?view=markup

The Python Library Reference, Release 3.2

This module defines three dictionaries, name2codepoint, codepoint2name, and entitydefs.
entitydefs is used to provide the entitydefs member of the html.parser.HTMLParser class. The
definition provided here contains all the entities defined by XHTML 1.0 that can be handled using simple textual
substitution in the Latin-1 character set (ISO-8859-1).

html.entities.entitydefs
A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

html.entities.name2codepoint
A dictionary that maps HTML entity names to the Unicode codepoints.

html.entities.codepoint2name
A dictionary that maps Unicode codepoints to HTML entity names.

19.4 xml.parsers.expat — Fast XML parsing using Expat

The xml.parsers.expat module is a Python interface to the Expat non-validating XML parser. The module
provides a single extension type, xmlparser, that represents the current state of an XML parser. After an
xmlparser object has been created, various attributes of the object can be set to handler functions. When an
XML document is then fed to the parser, the handler functions are called for the character data and markup in the
XML document.

This module uses the pyexpat module to provide access to the Expat parser. Direct use of the pyexpat module
is deprecated.

This module provides one exception and one type object:

exception xml.parsers.expat.ExpatError
The exception raised when Expat reports an error. See section ExpatError Exceptions for more information
on interpreting Expat errors.

exception xml.parsers.expat.error
Alias for ExpatError.

xml.parsers.expat.XMLParserType
The type of the return values from the ParserCreate() function.

The xml.parsers.expat module contains two functions:

xml.parsers.expat.ErrorString(errno)
Returns an explanatory string for a given error number errno.

xml.parsers.expat.ParserCreate(encoding=None, namespace_separator=None)
Creates and returns a new xmlparser object. encoding, if specified, must be a string naming the encoding
used by the XML data. Expat doesn’t support as many encodings as Python does, and its repertoire of
encodings can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and ASCII. If encoding 2 is
given it will override the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value for names-
pace_separator. The value must be a one-character string; a ValueError will be raised if the string
has an illegal length (None is considered the same as omission). When namespace processing is enabled,
element type names and attribute names that belong to a namespace will be expanded. The element name
passed to the element handlers StartElementHandler and EndElementHandler will be the con-
catenation of the namespace URI, the namespace separator character, and the local part of the name. If the
namespace separator is a zero byte (chr(0)) then the namespace URI and the local part will be concate-
nated without any separator.

For example, if namespace_separator is set to a space character (’ ’) and the following document is
parsed:

2 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8”
is not. See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and http://www.iana.org/assignments/character-sets .

708 Chapter 19. Structured Markup Processing Tools

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets

The Python Library Reference, Release 3.2

<?xml version="1.0"?>
<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">
<py:elem1 />
<elem2 xmlns="" />

</root>

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root
http://www.python.org/ns/ elem1
elem2

See Also:

The Expat XML Parser Home page of the Expat project.

19.4.1 XMLParser Objects

xmlparser objects have the following methods:

xmlparser.Parse(data[, isfinal])
Parses the contents of the string data, calling the appropriate handler functions to process the parsed data.
isfinal must be true on the final call to this method. data can be the empty string at any time.

xmlparser.ParseFile(file)
Parse XML data reading from the object file. file only needs to provide the read(nbytes) method,
returning the empty string when there’s no more data.

xmlparser.SetBase(base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations. Re-
solving relative identifiers is left to the application: this value will be passed through as
the base argument to the ExternalEntityRefHandler(), NotationDeclHandler(), and
UnparsedEntityDeclHandler() functions.

xmlparser.GetBase()
Returns a string containing the base set by a previous call to SetBase(), or None if SetBase() hasn’t
been called.

xmlparser.GetInputContext()
Returns the input data that generated the current event as a string. The data is in the encoding of the entity
which contains the text. When called while an event handler is not active, the return value is None.

xmlparser.ExternalEntityParserCreate(context[, encoding])
Create a “child” parser which can be used to parse an external parsed entity referred to by con-
tent parsed by the parent parser. The context parameter should be the string passed to the
ExternalEntityRefHandler() handler function, described below. The child parser is created with
the ordered_attributes and specified_attributes set to the values of this parser.

xmlparser.SetParamEntityParsing(flag)
Control parsing of parameter entities (including the external DTD sub-
set). Possible flag values are XML_PARAM_ENTITY_PARSING_NEVER,
XML_PARAM_ENTITY_PARSING_UNLESS_STANDALONE and XML_PARAM_ENTITY_PARSING_ALWAYS.
Return true if setting the flag was successful.

xmlparser.UseForeignDTD([flag])
Calling this with a true value for flag (the default) will cause Expat to call the
ExternalEntityRefHandler with None for all arguments to allow an alternate DTD to be loaded.
If the document does not contain a document type declaration, the ExternalEntityRefHandler will
still be called, but the StartDoctypeDeclHandler and EndDoctypeDeclHandler will not be
called.

19.4. xml.parsers.expat — Fast XML parsing using Expat 709

http://www.libexpat.org/

The Python Library Reference, Release 3.2

Passing a false value for flag will cancel a previous call that passed a true value, but otherwise has no effect.

This method can only be called before the Parse() or ParseFile() methods are called; calling it
after either of those have been called causes ExpatError to be raised with the code attribute set to
errors.codes[errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING].

xmlparser objects have the following attributes:

xmlparser.buffer_size
The size of the buffer used when buffer_text is true. A new buffer size can be set by assigning a new
integer value to this attribute. When the size is changed, the buffer will be flushed.

xmlparser.buffer_text
Setting this to true causes the xmlparser object to buffer textual content returned by Expat to avoid multi-
ple calls to the CharacterDataHandler() callback whenever possible. This can improve performance
substantially since Expat normally breaks character data into chunks at every line ending. This attribute is
false by default, and may be changed at any time.

xmlparser.buffer_used
If buffer_text is enabled, the number of bytes stored in the buffer. These bytes represent UTF-8
encoded text. This attribute has no meaningful interpretation when buffer_text is false.

xmlparser.ordered_attributes
Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather than a dictionary.
The attributes are presented in the order found in the document text. For each attribute, two list entries are
presented: the attribute name and the attribute value. (Older versions of this module also used this format.)
By default, this attribute is false; it may be changed at any time.

xmlparser.specified_attributes
If set to a non-zero integer, the parser will report only those attributes which were specified in the document
instance and not those which were derived from attribute declarations. Applications which set this need
to be especially careful to use what additional information is available from the declarations as needed to
comply with the standards for the behavior of XML processors. By default, this attribute is false; it may be
changed at any time.

The following attributes contain values relating to the most recent error encountered by an xmlparser
object, and will only have correct values once a call to Parse() or ParseFile() has raised a
xml.parsers.expat.ExpatError exception.

xmlparser.ErrorByteIndex
Byte index at which an error occurred.

xmlparser.ErrorCode
Numeric code specifying the problem. This value can be passed to the ErrorString() function, or
compared to one of the constants defined in the errors object.

xmlparser.ErrorColumnNumber
Column number at which an error occurred.

xmlparser.ErrorLineNumber
Line number at which an error occurred.

The following attributes contain values relating to the current parse location in an xmlparser object. During a
callback reporting a parse event they indicate the location of the first of the sequence of characters that generated
the event. When called outside of a callback, the position indicated will be just past the last parse event (regardless
of whether there was an associated callback).

xmlparser.CurrentByteIndex
Current byte index in the parser input.

xmlparser.CurrentColumnNumber
Current column number in the parser input.

xmlparser.CurrentLineNumber
Current line number in the parser input.

710 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

Here is the list of handlers that can be set. To set a handler on an xmlparser object o, use o.handlername
= func. handlername must be taken from the following list, and func must be a callable object accepting the
correct number of arguments. The arguments are all strings, unless otherwise stated.

xmlparser.XmlDeclHandler(version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of the appli-
cable version of the XML recommendation, the encoding of the document text, and an optional “standalone”
declaration. version and encoding will be strings, and standalone will be 1 if the document is declared stan-
dalone, 0 if it is declared not to be standalone, or -1 if the standalone clause was omitted. This is only
available with Expat version 1.95.0 or newer.

xmlparser.StartDoctypeDeclHandler(doctypeName, systemId, publicId, has_internal_subset)
Called when Expat begins parsing the document type declaration (<!DOCTYPE ...). The doctypeName is
provided exactly as presented. The systemId and publicId parameters give the system and public identifiers
if specified, or None if omitted. has_internal_subset will be true if the document contains and internal
document declaration subset. This requires Expat version 1.2 or newer.

xmlparser.EndDoctypeDeclHandler()
Called when Expat is done parsing the document type declaration. This requires Expat version 1.2 or newer.

xmlparser.ElementDeclHandler(name, model)
Called once for each element type declaration. name is the name of the element type, and model is a
representation of the content model.

xmlparser.AttlistDeclHandler(elname, attname, type, default, required)
Called for each declared attribute for an element type. If an attribute list declaration declares three attributes,
this handler is called three times, once for each attribute. elname is the name of the element to which the
declaration applies and attname is the name of the attribute declared. The attribute type is a string passed
as type; the possible values are ’CDATA’, ’ID’, ’IDREF’, ... default gives the default value for the
attribute used when the attribute is not specified by the document instance, or None if there is no default
value (#IMPLIED values). If the attribute is required to be given in the document instance, required will
be true. This requires Expat version 1.95.0 or newer.

xmlparser.StartElementHandler(name, attributes)
Called for the start of every element. name is a string containing the element name, and attributes is a
dictionary mapping attribute names to their values.

xmlparser.EndElementHandler(name)
Called for the end of every element.

xmlparser.ProcessingInstructionHandler(target, data)
Called for every processing instruction.

xmlparser.CharacterDataHandler(data)
Called for character data. This will be called for normal character data, CDATA marked con-
tent, and ignorable whitespace. Applications which must distinguish these cases can use the
StartCdataSectionHandler, EndCdataSectionHandler, and ElementDeclHandler
callbacks to collect the required information.

xmlparser.UnparsedEntityDeclHandler(entityName, base, systemId, publicId, notation-
Name)

Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat library;
for more recent versions, use EntityDeclHandler instead. (The underlying function in the Expat
library has been declared obsolete.)

xmlparser.EntityDeclHandler(entityName, is_parameter_entity, value, base, systemId, publicId,
notationName)

Called for all entity declarations. For parameter and internal entities, value will be a string giving the
declared contents of the entity; this will be None for external entities. The notationName parameter will
be None for parsed entities, and the name of the notation for unparsed entities. is_parameter_entity will
be true if the entity is a parameter entity or false for general entities (most applications only need to be
concerned with general entities). This is only available starting with version 1.95.0 of the Expat library.

xmlparser.NotationDeclHandler(notationName, base, systemId, publicId)
Called for notation declarations. notationName, base, and systemId, and publicId are strings if given. If the

19.4. xml.parsers.expat — Fast XML parsing using Expat 711

The Python Library Reference, Release 3.2

public identifier is omitted, publicId will be None.

xmlparser.StartNamespaceDeclHandler(prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed before
the StartElementHandler is called for the element on which declarations are placed.

xmlparser.EndNamespaceDeclHandler(prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This is
called once for each namespace declaration on the element in the reverse of the order for which the
StartNamespaceDeclHandlerwas called to indicate the start of each namespace declaration’s scope.
Calls to this handler are made after the corresponding EndElementHandler for the end of the element.

xmlparser.CommentHandler(data)
Called for comments. data is the text of the comment, excluding the leading ‘<!--‘ and trailing ‘-->‘.

xmlparser.StartCdataSectionHandler()
Called at the start of a CDATA section. This and EndCdataSectionHandler are needed to be able to
identify the syntactical start and end for CDATA sections.

xmlparser.EndCdataSectionHandler()
Called at the end of a CDATA section.

xmlparser.DefaultHandler(data)
Called for any characters in the XML document for which no applicable handler has been specified. This
means characters that are part of a construct which could be reported, but for which no handler has been
supplied.

xmlparser.DefaultHandlerExpand(data)
This is the same as the DefaultHandler(), but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

xmlparser.NotStandaloneHandler()
Called if the XML document hasn’t been declared as being a standalone document. This happens when
there is an external subset or a reference to a parameter entity, but the XML declaration does not set
standalone to yes in an XML declaration. If this handler returns 0, then the parser will raise an
XML_ERROR_NOT_STANDALONE error. If this handler is not set, no exception is raised by the parser
for this condition.

xmlparser.ExternalEntityRefHandler(context, base, systemId, publicId)
Called for references to external entities. base is the current base, as set by a previous call to SetBase().
The public and system identifiers, systemId and publicId, are strings if given; if the public identifier is not
given, publicId will be None. The context value is opaque and should only be used as described below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating the
sub-parser using ExternalEntityParserCreate(context), initializing it with the appropriate
callbacks, and parsing the entity. This handler should return an integer; if it returns 0, the parser will raise
an XML_ERROR_EXTERNAL_ENTITY_HANDLING error, otherwise parsing will continue.

If this handler is not provided, external entities are reported by the DefaultHandler callback, if pro-
vided.

19.4.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

ExpatError.code
Expat’s internal error number for the specific error. The errors.messages dictionary maps these error
numbers to Expat’s error messages. For example:

from xml.parsers.expat import ParserCreate, ExpatError, errors

p = ParserCreate()
try:

712 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

p.Parse(some_xml_document)
except ExpatError as err:

print("Error:", errors.messages[err.code])

The errors module also provides error message constants and a dictionary codes mapping these mes-
sages back to the error codes, see below.

ExpatError.lineno
Line number on which the error was detected. The first line is numbered 1.

ExpatError.offset
Character offset into the line where the error occurred. The first column is numbered 0.

19.4.3 Example

The following program defines three handlers that just print out their arguments.

import xml.parsers.expat

3 handler functions
def start_element(name, attrs):

print(’Start element:’, name, attrs)
def end_element(name):

print(’End element:’, name)
def char_data(data):

print(’Character data:’, repr(data))

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>
<parent id="top"><child1 name="paul">Text goes here</child1>
<child2 name="fred">More text</child2>
</parent>""", 1)

The output from this program is:

Start element: parent {’id’: ’top’}
Start element: child1 {’name’: ’paul’}
Character data: ’Text goes here’
End element: child1
Character data: ’\n’
Start element: child2 {’name’: ’fred’}
Character data: ’More text’
End element: child2
Character data: ’\n’
End element: parent

19.4.4 Content Model Descriptions

Content modules are described using nested tuples. Each tuple contains four values: the type, the quantifier, the
name, and a tuple of children. Children are simply additional content module descriptions.

The values of the first two fields are constants defined in the xml.parsers.expat.model module. These
constants can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

19.4. xml.parsers.expat — Fast XML parsing using Expat 713

The Python Library Reference, Release 3.2

xml.parsers.expat.model.XML_CTYPE_ANY
The element named by the model name was declared to have a content model of ANY.

xml.parsers.expat.model.XML_CTYPE_CHOICE
The named element allows a choice from a number of options; this is used for content models such as (A
| B | C).

xml.parsers.expat.model.XML_CTYPE_EMPTY
Elements which are declared to be EMPTY have this model type.

xml.parsers.expat.model.XML_CTYPE_MIXED

xml.parsers.expat.model.XML_CTYPE_NAME

xml.parsers.expat.model.XML_CTYPE_SEQ
Models which represent a series of models which follow one after the other are indicated with this model
type. This is used for models such as (A, B, C).

The constants in the quantifier group are:

xml.parsers.expat.model.XML_CQUANT_NONE
No modifier is given, so it can appear exactly once, as for A.

xml.parsers.expat.model.XML_CQUANT_OPT
The model is optional: it can appear once or not at all, as for A?.

xml.parsers.expat.model.XML_CQUANT_PLUS
The model must occur one or more times (like A+).

xml.parsers.expat.model.XML_CQUANT_REP
The model must occur zero or more times, as for A*.

19.4.5 Expat error constants

The following constants are provided in the xml.parsers.expat.errors module. These con-
stants are useful in interpreting some of the attributes of the ExpatError exception objects raised
when an error has occurred. Since for backwards compatibility reasons, the constants’ value is the
error message and not the numeric error code, you do this by comparing its code attribute with
‘errors.codes[errors.XML_ERROR_CONSTANT_NAME]’.

The errors module has the following attributes:

xml.parsers.expat.errors.codes
A dictionary mapping numeric error codes to their string descriptions. New in version 3.2.

xml.parsers.expat.errors.messages
A dictionary mapping string descriptions to their error codes. New in version 3.2.

xml.parsers.expat.errors.XML_ERROR_ASYNC_ENTITY

xml.parsers.expat.errors.XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
An entity reference in an attribute value referred to an external entity instead of an internal entity.

xml.parsers.expat.errors.XML_ERROR_BAD_CHAR_REF
A character reference referred to a character which is illegal in XML (for example, character 0, or ‘�‘).

xml.parsers.expat.errors.XML_ERROR_BINARY_ENTITY_REF
An entity reference referred to an entity which was declared with a notation, so cannot be parsed.

xml.parsers.expat.errors.XML_ERROR_DUPLICATE_ATTRIBUTE
An attribute was used more than once in a start tag.

xml.parsers.expat.errors.XML_ERROR_INCORRECT_ENCODING

xml.parsers.expat.errors.XML_ERROR_INVALID_TOKEN
Raised when an input byte could not properly be assigned to a character; for example, a NUL byte (value
0) in a UTF-8 input stream.

714 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

xml.parsers.expat.errors.XML_ERROR_JUNK_AFTER_DOC_ELEMENT
Something other than whitespace occurred after the document element.

xml.parsers.expat.errors.XML_ERROR_MISPLACED_XML_PI
An XML declaration was found somewhere other than the start of the input data.

xml.parsers.expat.errors.XML_ERROR_NO_ELEMENTS
The document contains no elements (XML requires all documents to contain exactly one top-level element)..

xml.parsers.expat.errors.XML_ERROR_NO_MEMORY
Expat was not able to allocate memory internally.

xml.parsers.expat.errors.XML_ERROR_PARAM_ENTITY_REF
A parameter entity reference was found where it was not allowed.

xml.parsers.expat.errors.XML_ERROR_PARTIAL_CHAR
An incomplete character was found in the input.

xml.parsers.expat.errors.XML_ERROR_RECURSIVE_ENTITY_REF
An entity reference contained another reference to the same entity; possibly via a different name, and
possibly indirectly.

xml.parsers.expat.errors.XML_ERROR_SYNTAX
Some unspecified syntax error was encountered.

xml.parsers.expat.errors.XML_ERROR_TAG_MISMATCH
An end tag did not match the innermost open start tag.

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_TOKEN
Some token (such as a start tag) was not closed before the end of the stream or the next token was encoun-
tered.

xml.parsers.expat.errors.XML_ERROR_UNDEFINED_ENTITY
A reference was made to a entity which was not defined.

xml.parsers.expat.errors.XML_ERROR_UNKNOWN_ENCODING
The document encoding is not supported by Expat.

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_CDATA_SECTION
A CDATA marked section was not closed.

xml.parsers.expat.errors.XML_ERROR_EXTERNAL_ENTITY_HANDLING

xml.parsers.expat.errors.XML_ERROR_NOT_STANDALONE
The parser determined that the document was not “standalone” though it declared itself to be in the XML
declaration, and the NotStandaloneHandler was set and returned 0.

xml.parsers.expat.errors.XML_ERROR_UNEXPECTED_STATE

xml.parsers.expat.errors.XML_ERROR_ENTITY_DECLARED_IN_PE

xml.parsers.expat.errors.XML_ERROR_FEATURE_REQUIRES_XML_DTD
An operation was requested that requires DTD support to be compiled in, but Expat was configured without
DTD support. This should never be reported by a standard build of the xml.parsers.expat module.

xml.parsers.expat.errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING
A behavioral change was requested after parsing started that can only be changed before parsing has started.
This is (currently) only raised by UseForeignDTD().

xml.parsers.expat.errors.XML_ERROR_UNBOUND_PREFIX
An undeclared prefix was found when namespace processing was enabled.

xml.parsers.expat.errors.XML_ERROR_UNDECLARING_PREFIX
The document attempted to remove the namespace declaration associated with a prefix.

xml.parsers.expat.errors.XML_ERROR_INCOMPLETE_PE
A parameter entity contained incomplete markup.

19.4. xml.parsers.expat — Fast XML parsing using Expat 715

The Python Library Reference, Release 3.2

xml.parsers.expat.errors.XML_ERROR_XML_DECL
The document contained no document element at all.

xml.parsers.expat.errors.XML_ERROR_TEXT_DECL
There was an error parsing a text declaration in an external entity.

xml.parsers.expat.errors.XML_ERROR_PUBLICID
Characters were found in the public id that are not allowed.

xml.parsers.expat.errors.XML_ERROR_SUSPENDED
The requested operation was made on a suspended parser, but isn’t allowed. This includes attempts to
provide additional input or to stop the parser.

xml.parsers.expat.errors.XML_ERROR_NOT_SUSPENDED
An attempt to resume the parser was made when the parser had not been suspended.

xml.parsers.expat.errors.XML_ERROR_ABORTED
This should not be reported to Python applications.

xml.parsers.expat.errors.XML_ERROR_FINISHED
The requested operation was made on a parser which was finished parsing input, but isn’t allowed. This
includes attempts to provide additional input or to stop the parser.

xml.parsers.expat.errors.XML_ERROR_SUSPEND_PE

19.5 xml.dom — The Document Object Model API

The Document Object Model, or “DOM,” is a cross-language API from the World Wide Web Consortium (W3C)
for accessing and modifying XML documents. A DOM implementation presents an XML document as a tree
structure, or allows client code to build such a structure from scratch. It then gives access to the structure through
a set of objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit of the
document at a time. If you are looking at one SAX element, you have no access to another. If you are looking at a
text node, you have no access to a containing element. When you write a SAX application, you need to keep track
of your program’s position in the document somewhere in your own code. SAX does not do it for you. Also, if
you need to look ahead in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course you could
build some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that code. The DOM is
a standard tree representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology. The Python
mapping of the API is substantially based on the DOM Level 2 recommendation.

DOM applications typically start by parsing some XML into a DOM. How this is accomplished is not covered
at all by DOM Level 1, and Level 2 provides only limited improvements: There is a DOMImplementation
object class which provides access to Document creation methods, but no way to access an XML
reader/parser/Document builder in an implementation-independent way. There is also no well-defined way to
access these methods without an existing Document object. In Python, each DOM implementation will provide
a function getDOMImplementation(). DOM Level 3 adds a Load/Store specification, which defines an
interface to the reader, but this is not yet available in the Python standard library.

Once you have a DOM document object, you can access the parts of your XML document through its properties
and methods. These properties are defined in the DOM specification; this portion of the reference manual describes
the interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL. The Python
mapping defined here is based in large part on the IDL version of the specification, but strict compliance is not
required (though implementations are free to support the strict mapping from IDL). See section Conformance for
a detailed discussion of mapping requirements.

See Also:

716 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

Document Object Model (DOM) Level 2 Specification The W3C recommendation upon which the Python
DOM API is based.

Document Object Model (DOM) Level 1 Specification The W3C recommendation for the DOM supported by
xml.dom.minidom.

Python Language Mapping Specification This specifies the mapping from OMG IDL to Python.

19.5.1 Module Contents

The xml.dom contains the following functions:

xml.dom.registerDOMImplementation(name, factory)
Register the factory function with the name name. The factory function should return an object which
implements the DOMImplementation interface. The factory function can return the same object every
time, or a new one for each call, as appropriate for the specific implementation (e.g. if that implementation
supports some customization).

xml.dom.getDOMImplementation(name=None, features=())
Return a suitable DOM implementation. The name is either well-known, the module name of a
DOM implementation, or None. If it is not None, imports the corresponding module and returns a
DOMImplementation object if the import succeeds. If no name is given, and if the environment variable

PYTHON_DOM is set, this variable is used to find the implementation.

If name is not given, this examines the available implementations to find one with the required fea-
ture set. If no implementation can be found, raise an ImportError. The features list must be a se-
quence of (feature, version) pairs which are passed to the hasFeature() method on available
DOMImplementation objects.

Some convenience constants are also provided:

xml.dom.EMPTY_NAMESPACE
The value used to indicate that no namespace is associated with a node in the DOM. This is typically
found as the namespaceURI of a node, or used as the namespaceURI parameter to a namespaces-specific
method.

xml.dom.XML_NAMESPACE
The namespace URI associated with the reserved prefix xml, as defined by Namespaces in XML (section
4).

xml.dom.XMLNS_NAMESPACE
The namespace URI for namespace declarations, as defined by Document Object Model (DOM) Level 2
Core Specification (section 1.1.8).

xml.dom.XHTML_NAMESPACE
The URI of the XHTML namespace as defined by XHTML 1.0: The Extensible HyperText Markup Lan-
guage (section 3.1.1).

In addition, xml.dom contains a base Node class and the DOM exception classes. The Node class provided
by this module does not implement any of the methods or attributes defined by the DOM specification; concrete
DOM implementations must provide those. The Node class provided as part of this module does provide the
constants used for the nodeType attribute on concrete Node objects; they are located within the class rather than
at the module level to conform with the DOM specifications.

19.5.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly rare that you
must do this, however, so this usage is not yet documented.

19.5. xml.dom — The Document Object Model API 717

http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.omg.org/spec/PYTH/1.2/PDF
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/

The Python Library Reference, Release 3.2

Interface Section Purpose
DOMImplementation DOMImplementation

Objects
Interface to the underlying implementation.

Node Node Objects Base interface for most objects in a document.
NodeList NodeList Objects Interface for a sequence of nodes.
DocumentType DocumentType Objects Information about the declarations needed to

process a document.
Document Document Objects Object which represents an entire document.
Element Element Objects Element nodes in the document hierarchy.
Attr Attr Objects Attribute value nodes on element nodes.
Comment Comment Objects Representation of comments in the source

document.
Text Text and CDATASection

Objects
Nodes containing textual content from the
document.

ProcessingInstructionProcessingInstruction
Objects

Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of par-
ticular features in the DOM they are using. DOM Level 2 added the ability to create new Document and
DocumentType objects using the DOMImplementation as well.

DOMImplementation.hasFeature(feature, version)
Return true if the feature identified by the pair of strings feature and version is implemented.

DOMImplementation.createDocument(namespaceUri, qualifiedName, doctype)
Return a new Document object (the root of the DOM), with a child Element object having the
given namespaceUri and qualifiedName. The doctype must be a DocumentType object created by
createDocumentType(), or None. In the Python DOM API, the first two arguments can also be
None in order to indicate that no Element child is to be created.

DOMImplementation.createDocumentType(qualifiedName, publicId, systemId)
Return a new DocumentType object that encapsulates the given qualifiedName, publicId, and systemId
strings, representing the information contained in an XML document type declaration.

Node Objects

All of the components of an XML document are subclasses of Node.

Node.nodeType
An integer representing the node type. Symbolic constants for the types are on the Node
object: ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE, CDATA_SECTION_NODE,
ENTITY_NODE, PROCESSING_INSTRUCTION_NODE, COMMENT_NODE, DOCUMENT_NODE,
DOCUMENT_TYPE_NODE, NOTATION_NODE. This is a read-only attribute.

Node.parentNode
The parent of the current node, or None for the document node. The value is always a Node object or
None. For Element nodes, this will be the parent element, except for the root element, in which case it
will be the Document object. For Attr nodes, this is always None. This is a read-only attribute.

Node.attributes
A NamedNodeMap of attribute objects. Only elements have actual values for this; others provide None
for this attribute. This is a read-only attribute.

Node.previousSibling
The node that immediately precedes this one with the same parent. For instance the element with an end-tag
that comes just before the self element’s start-tag. Of course, XML documents are made up of more than

718 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

just elements so the previous sibling could be text, a comment, or something else. If this node is the first
child of the parent, this attribute will be None. This is a read-only attribute.

Node.nextSibling
The node that immediately follows this one with the same parent. See also previousSibling. If this is
the last child of the parent, this attribute will be None. This is a read-only attribute.

Node.childNodes
A list of nodes contained within this node. This is a read-only attribute.

Node.firstChild
The first child of the node, if there are any, or None. This is a read-only attribute.

Node.lastChild
The last child of the node, if there are any, or None. This is a read-only attribute.

Node.localName
The part of the tagName following the colon if there is one, else the entire tagName. The value is a string.

Node.prefix
The part of the tagName preceding the colon if there is one, else the empty string. The value is a string, or
None

Node.namespaceURI
The namespace associated with the element name. This will be a string or None. This is a read-only
attribute.

Node.nodeName
This has a different meaning for each node type; see the DOM specification for details. You can always
get the information you would get here from another property such as the tagName property for elements
or the name property for attributes. For all node types, the value of this attribute will be either a string or
None. This is a read-only attribute.

Node.nodeValue
This has a different meaning for each node type; see the DOM specification for details. The situation is
similar to that with nodeName. The value is a string or None.

Node.hasAttributes()
Returns true if the node has any attributes.

Node.hasChildNodes()
Returns true if the node has any child nodes.

Node.isSameNode(other)
Returns true if other refers to the same node as this node. This is especially useful for DOM implementations
which use any sort of proxy architecture (because more than one object can refer to the same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “working draft” stage, but this
particular interface appears uncontroversial. Changes from the W3C will not necessarily affect this method
in the Python DOM interface (though any new W3C API for this would also be supported).

Node.appendChild(newChild)
Add a new child node to this node at the end of the list of children, returning newChild. If the node was
already in in the tree, it is removed first.

Node.insertBefore(newChild, refChild)
Insert a new child node before an existing child. It must be the case that refChild is a child of this node; if
not, ValueError is raised. newChild is returned. If refChild is None, it inserts newChild at the end of
the children’s list.

Node.removeChild(oldChild)
Remove a child node. oldChild must be a child of this node; if not, ValueError is raised. oldChild is
returned on success. If oldChild will not be used further, its unlink() method should be called.

19.5. xml.dom — The Document Object Model API 719

The Python Library Reference, Release 3.2

Node.replaceChild(newChild, oldChild)
Replace an existing node with a new node. It must be the case that oldChild is a child of this node; if not,
ValueError is raised.

Node.normalize()
Join adjacent text nodes so that all stretches of text are stored as single Text instances. This simplifies
processing text from a DOM tree for many applications.

Node.cloneNode(deep)
Clone this node. Setting deep means to clone all child nodes as well. This returns the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recommen-
dation: the Element objects provides one as its list of child nodes, and the getElementsByTagName() and
getElementsByTagNameNS() methods of Node return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

NodeList.item(i)
Return the i‘th item from the sequence, if there is one, or None. The index i is not allowed to be less then
zero or greater than or equal to the length of the sequence.

NodeList.length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allow NodeList
objects to be used as Python sequences. All NodeList implementations must include support for __len__()
and __getitem__(); this allows iteration over the NodeList in for statements and proper support for the
len() built-in function.

If a DOM implementation supports modification of the document, the NodeList implementation must also
support the __setitem__() and __delitem__() methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset if the parser
uses it and can provide the information) is available from a DocumentType object. The DocumentType for a
document is available from the Document object’s doctype attribute; if there is no DOCTYPE declaration for
the document, the document’s doctype attribute will be set to None instead of an instance of this interface.

DocumentType is a specialization of Node, and adds the following attributes:

DocumentType.publicId
The public identifier for the external subset of the document type definition. This will be a string or None.

DocumentType.systemId
The system identifier for the external subset of the document type definition. This will be a URI as a string,
or None.

DocumentType.internalSubset
A string giving the complete internal subset from the document. This does not include the brackets which
enclose the subset. If the document has no internal subset, this should be None.

DocumentType.name
The name of the root element as given in the DOCTYPE declaration, if present.

DocumentType.entities
This is a NamedNodeMap giving the definitions of external entities. For entity names defined more than
once, only the first definition is provided (others are ignored as required by the XML recommendation).
This may be None if the information is not provided by the parser, or if no entities are defined.

720 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

DocumentType.notations
This is a NamedNodeMap giving the definitions of notations. For notation names defined more than once,
only the first definition is provided (others are ignored as required by the XML recommendation). This may
be None if the information is not provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, processing in-
structions, comments etc. Remember that it inherits properties from Node.

Document.documentElement
The one and only root element of the document.

Document.createElement(tagName)
Create and return a new element node. The element is not inserted into the document when it is created. You
need to explicitly insert it with one of the other methods such as insertBefore() or appendChild().

Document.createElementNS(namespaceURI, tagName)
Create and return a new element with a namespace. The tagName may have a prefix. The element is not
inserted into the document when it is created. You need to explicitly insert it with one of the other methods
such as insertBefore() or appendChild().

Document.createTextNode(data)
Create and return a text node containing the data passed as a parameter. As with the other creation methods,
this one does not insert the node into the tree.

Document.createComment(data)
Create and return a comment node containing the data passed as a parameter. As with the other creation
methods, this one does not insert the node into the tree.

Document.createProcessingInstruction(target, data)
Create and return a processing instruction node containing the target and data passed as parameters. As
with the other creation methods, this one does not insert the node into the tree.

Document.createAttribute(name)
Create and return an attribute node. This method does not associate the attribute node with any particular
element. You must use setAttributeNode() on the appropriate Element object to use the newly
created attribute instance.

Document.createAttributeNS(namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. The tagName may have a prefix. This method does
not associate the attribute node with any particular element. You must use setAttributeNode() on
the appropriate Element object to use the newly created attribute instance.

Document.getElementsByTagName(tagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type name.

Document.getElementsByTagNameNS(namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace URI and
localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass of Node, so inherits all the attributes of that class.

Element.tagName
The element type name. In a namespace-using document it may have colons in it. The value is a string.

Element.getElementsByTagName(tagName)
Same as equivalent method in the Document class.

Element.getElementsByTagNameNS(namespaceURI, localName)
Same as equivalent method in the Document class.

19.5. xml.dom — The Document Object Model API 721

The Python Library Reference, Release 3.2

Element.hasAttribute(name)
Returns true if the element has an attribute named by name.

Element.hasAttributeNS(namespaceURI, localName)
Returns true if the element has an attribute named by namespaceURI and localName.

Element.getAttribute(name)
Return the value of the attribute named by name as a string. If no such attribute exists, an empty string is
returned, as if the attribute had no value.

Element.getAttributeNode(attrname)
Return the Attr node for the attribute named by attrname.

Element.getAttributeNS(namespaceURI, localName)
Return the value of the attribute named by namespaceURI and localName as a string. If no such attribute
exists, an empty string is returned, as if the attribute had no value.

Element.getAttributeNodeNS(namespaceURI, localName)
Return an attribute value as a node, given a namespaceURI and localName.

Element.removeAttribute(name)
Remove an attribute by name. If there is no matching attribute, a NotFoundErr is raised.

Element.removeAttributeNode(oldAttr)
Remove and return oldAttr from the attribute list, if present. If oldAttr is not present, NotFoundErr is
raised.

Element.removeAttributeNS(namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a qname. No exception is raised if there is
no matching attribute.

Element.setAttribute(name, value)
Set an attribute value from a string.

Element.setAttributeNode(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the name attribute
matches. If a replacement occurs, the old attribute node will be returned. If newAttr is already in use,
InuseAttributeErr will be raised.

Element.setAttributeNodeNS(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the namespaceURI
and localName attributes match. If a replacement occurs, the old attribute node will be returned. If
newAttr is already in use, InuseAttributeErr will be raised.

Element.setAttributeNS(namespaceURI, qname, value)
Set an attribute value from a string, given a namespaceURI and a qname. Note that a qname is the whole
attribute name. This is different than above.

Attr Objects

Attr inherits from Node, so inherits all its attributes.

Attr.name
The attribute name. In a namespace-using document it may include a colon.

Attr.localName
The part of the name following the colon if there is one, else the entire name. This is a read-only attribute.

Attr.prefix
The part of the name preceding the colon if there is one, else the empty string.

Attr.value
The text value of the attribute. This is a synonym for the nodeValue attribute.

722 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

NamedNodeMap.length
The length of the attribute list.

NamedNodeMap.item(index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but will be
consistent for the life of a DOM. Each item is an attribute node. Get its value with the value attribute.

There are also experimental methods that give this class more mapping behavior. You can use them or you can
use the standardized getAttribute*() family of methods on the Element objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass of Node, but cannot have child nodes.

Comment.data
The content of the comment as a string. The attribute contains all characters between the leading <!-- and
trailing -->, but does not include them.

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM implementation support the
DOM’s XML extension, portions of the text enclosed in CDATA marked sections are stored in CDATASection
objects. These two interfaces are identical, but provide different values for the nodeType attribute.

These interfaces extend the Node interface. They cannot have child nodes.

Text.data
The content of the text node as a string.

Note: The use of a CDATASection node does not indicate that the node represents a complete CDATA marked
section, only that the content of the node was part of a CDATA section. A single CDATA section may be
represented by more than one node in the document tree. There is no way to determine whether two adjacent
CDATASection nodes represent different CDATA marked sections.

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from the Node interface and cannot have
child nodes.

ProcessingInstruction.target
The content of the processing instruction up to the first whitespace character. This is a read-only attribute.

ProcessingInstruction.data
The content of the processing instruction following the first whitespace character.

Exceptions

The DOM Level 2 recommendation defines a single exception, DOMException, and a number of constants that
allow applications to determine what sort of error occurred. DOMException instances carry a code attribute
that provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of exceptions so that a specific excep-
tion exists for each of the exception codes defined by the DOM. The implementations must raise the appropriate
specific exception, each of which carries the appropriate value for the code attribute.

19.5. xml.dom — The Document Object Model API 723

The Python Library Reference, Release 3.2

exception xml.dom.DOMException
Base exception class used for all specific DOM exceptions. This exception class cannot be directly instan-
tiated.

exception xml.dom.DomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to be used in the Python
DOM implementations, but may be received from DOM implementations not written in Python.

exception xml.dom.HierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not allowed.

exception xml.dom.IndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exception xml.dom.InuseAttributeErr
Raised when an attempt is made to insert an Attr node that is already present elsewhere in the document.

exception xml.dom.InvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exception xml.dom.InvalidCharacterErr
This exception is raised when a string parameter contains a character that is not permitted in the context it’s
being used in by the XML 1.0 recommendation. For example, attempting to create an Element node with
a space in the element type name will cause this error to be raised.

exception xml.dom.InvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exception xml.dom.InvalidStateErr
Raised when an attempt is made to use an object that is not defined or is no longer usable.

exception xml.dom.NamespaceErr
If an attempt is made to change any object in a way that is not permitted with regard to the Namespaces in
XML recommendation, this exception is raised.

exception xml.dom.NotFoundErr
Exception when a node does not exist in the referenced context. For example,
NamedNodeMap.removeNamedItem() will raise this if the node passed in does not exist in
the map.

exception xml.dom.NotSupportedErr
Raised when the implementation does not support the requested type of object or operation.

exception xml.dom.NoDataAllowedErr
This is raised if data is specified for a node which does not support data.

exception xml.dom.NoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such as for read-only nodes).

exception xml.dom.SyntaxErr
Raised when an invalid or illegal string is specified.

exception xml.dom.WrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, and the implementation
does not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above according to
this table:

724 Chapter 19. Structured Markup Processing Tools

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

The Python Library Reference, Release 3.2

Constant Exception
DOMSTRING_SIZE_ERR DomstringSizeErr
HIERARCHY_REQUEST_ERR HierarchyRequestErr
INDEX_SIZE_ERR IndexSizeErr
INUSE_ATTRIBUTE_ERR InuseAttributeErr
INVALID_ACCESS_ERR InvalidAccessErr
INVALID_CHARACTER_ERR InvalidCharacterErr
INVALID_MODIFICATION_ERR InvalidModificationErr
INVALID_STATE_ERR InvalidStateErr
NAMESPACE_ERR NamespaceErr
NOT_FOUND_ERR NotFoundErr
NOT_SUPPORTED_ERR NotSupportedErr
NO_DATA_ALLOWED_ERR NoDataAllowedErr
NO_MODIFICATION_ALLOWED_ERR NoModificationAllowedErr
SYNTAX_ERR SyntaxErr
WRONG_DOCUMENT_ERR WrongDocumentErr

19.5.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API, the W3C
DOM recommendations, and the OMG IDL mapping for Python.

Type Mapping

The IDL types used in the DOM specification are mapped to Python types according to the following table.

IDL Type Python Type
boolean bool or int
int int
long int int
unsigned int int
DOMString str or bytes
null None

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL attribute declarations in much
the way the Java mapping does. Mapping the IDL declarations

readonly attribute string someValue;
attribute string anotherValue;

yields three accessor functions: a “get” method for someValue (_get_someValue()), and “get” and
“set” methods for anotherValue (_get_anotherValue() and _set_anotherValue()). The map-
ping, in particular, does not require that the IDL attributes are accessible as normal Python attributes:
object.someValue is not required to work, and may raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work. This means that the typical
surrogates generated by Python IDL compilers are not likely to work, and wrapper objects may be needed on the
client if the DOM objects are accessed via CORBA. While this does require some additional consideration for
CORBA DOM clients, the implementers with experience using DOM over CORBA from Python do not consider
this a problem. Attributes that are declared readonly may not restrict write access in all DOM implementations.

In the Python DOM API, accessor functions are not required. If provided, they should take the form defined by
the Python IDL mapping, but these methods are considered unnecessary since the attributes are accessible directly
from Python. “Set” accessors should never be provided for readonly attributes.

19.5. xml.dom — The Document Object Model API 725

The Python Library Reference, Release 3.2

The IDL definitions do not fully embody the requirements of the W3C DOM API, such as the notion of certain
objects, such as the return value of getElementsByTagName(), being “live”. The Python DOM API does
not require implementations to enforce such requirements.

19.6 xml.dom.minidom — Lightweight DOM implementation

Source code: Lib/xml/dom/minidom.py

xml.dom.minidom is a light-weight implementation of the Document Object Model interface. It is intended to
be simpler than the full DOM and also significantly smaller.

DOM applications typically start by parsing some XML into a DOM. With xml.dom.minidom, this is done
through the parse functions:

from xml.dom.minidom import parse, parseString

dom1 = parse(’c:\\temp\\mydata.xml’) # parse an XML file by name

datasource = open(’c:\\temp\\mydata.xml’)
dom2 = parse(datasource) # parse an open file

dom3 = parseString(’<myxml>Some data<empty/> some more data</myxml>’)

The parse() function can take either a filename or an open file object.

xml.dom.minidom.parse(filename_or_file, parser=None, bufsize=None)
Return a Document from the given input. filename_or_file may be either a file name, or a file-like object.
parser, if given, must be a SAX2 parser object. This function will change the document handler of the
parser and activate namespace support; other parser configuration (like setting an entity resolver) must have
been done in advance.

If you have XML in a string, you can use the parseString() function instead:

xml.dom.minidom.parseString(string, parser=None)
Return a Document that represents the string. This method creates a StringIO object for the string and
passes that on to parse().

Both functions return a Document object representing the content of the document.

What the parse() and parseString() functions do is connect an XML parser with a “DOM builder” that
can accept parse events from any SAX parser and convert them into a DOM tree. The name of the functions
are perhaps misleading, but are easy to grasp when learning the interfaces. The parsing of the document will be
completed before these functions return; it’s simply that these functions do not provide a parser implementation
themselves.

You can also create a Document by calling a method on a “DOM Implementation” object. You can get
this object either by calling the getDOMImplementation() function in the xml.dom package or the
xml.dom.minidom module. Using the implementation from the xml.dom.minidom module will always
return a Document instance from the minidom implementation, while the version from xml.dom may pro-
vide an alternate implementation (this is likely if you have the PyXML package installed). Once you have a
Document, you can add child nodes to it to populate the DOM:

from xml.dom.minidom import getDOMImplementation

impl = getDOMImplementation()

newdoc = impl.createDocument(None, "some_tag", None)
top_element = newdoc.documentElement
text = newdoc.createTextNode(’Some textual content.’)
top_element.appendChild(text)

726 Chapter 19. Structured Markup Processing Tools

http://svn.python.org/view/python/branches/py3k/Lib/xml/dom/minidom.py?view=markup
http://pyxml.sourceforge.net/

The Python Library Reference, Release 3.2

Once you have a DOM document object, you can access the parts of your XML document through its properties
and methods. These properties are defined in the DOM specification. The main property of the document object
is the documentElement property. It gives you the main element in the XML document: the one that holds all
others. Here is an example program:

dom3 = parseString("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM tree, you may optionally call the unlink() method to encourage early
cleanup of the now-unneeded objects. unlink() is a xml.dom.minidom-specific extension to the DOM
API that renders the node and its descendants are essentially useless. Otherwise, Python’s garbage collector will
eventually take care of the objects in the tree.

See Also:

Document Object Model (DOM) Level 1 Specification The W3C recommendation for the DOM supported by
xml.dom.minidom.

19.6.1 DOM Objects

The definition of the DOM API for Python is given as part of the xml.dom module documentation. This section
lists the differences between the API and xml.dom.minidom.

Node.unlink()
Break internal references within the DOM so that it will be garbage collected on versions of Python without
cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory available
sooner, so calling this on DOM objects as soon as they are no longer needed is good practice. This only
needs to be called on the Document object, but may be called on child nodes to discard children of that
node.

You can avoid calling this method explicitly by using the with statement. The following code will auto-
matically unlink dom when the with block is exited:

with xml.dom.minidom.parse(datasource) as dom:
... # Work with dom.

Node.writexml(writer, indent=”“, addindent=”“, newl=”“)
Write XML to the writer object. The writer should have a write() method which matches that of the file
object interface. The indent parameter is the indentation of the current node. The addindent parameter is
the incremental indentation to use for subnodes of the current one. The newl parameter specifies the string
to use to terminate newlines.

For the Document node, an additional keyword argument encoding can be used to specify the encoding
field of the XML header.

Node.toxml(encoding=None)
Return a string or byte string containing the XML represented by the DOM node.

With an explicit encoding 3 argument, the result is a byte string in the specified encoding. It is recommended
that you always specify an encoding; you may use any encoding you like, but an argument of “utf-8” is the
most common choice, avoiding UnicodeError exceptions in case of unrepresentable text data.

With no encoding argument, the result is a Unicode string, and the XML declaration in the resulting string
does not specify an encoding. Encoding this string in an encoding other than UTF-8 is likely incorrect, since
UTF-8 is the default encoding of XML.

Node.toprettyxml(indent=”“, newl=”“, encoding=”“)
Return a pretty-printed version of the document. indent specifies the indentation string and defaults to a
tabulator; newl specifies the string emitted at the end of each line and defaults to \n.

3 The encoding name included in the XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8”
is not valid in an XML document’s declaration, even though Python accepts it as an encoding name. See http://www.w3.org/TR/2006/REC-
xml11-20060816/#NT-EncodingDecl and http://www.iana.org/assignments/character-sets .

19.6. xml.dom.minidom — Lightweight DOM implementation 727

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets

The Python Library Reference, Release 3.2

The encoding argument behaves like the corresponding argument of toxml().

19.6.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do not take
much advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\
<slideshow>
<title>Demo slideshow</title>
<slide><title>Slide title</title>
<point>This is a demo</point>
<point>Of a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>
<point>To have more than</point>
<point>one slide</point>
</slide>
</slideshow>
"""

dom = xml.dom.minidom.parseString(document)

def getText(nodelist):
rc = []
for node in nodelist:

if node.nodeType == node.TEXT_NODE:
rc.append(node.data)

return ’’.join(rc)

def handleSlideshow(slideshow):
print("<html>")
handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])
slides = slideshow.getElementsByTagName("slide")
handleToc(slides)
handleSlides(slides)
print("</html>")

def handleSlides(slides):
for slide in slides:

handleSlide(slide)

def handleSlide(slide):
handleSlideTitle(slide.getElementsByTagName("title")[0])
handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):
print("<title>%s</title>" % getText(title.childNodes))

def handleSlideTitle(title):
print("<h2>%s</h2>" % getText(title.childNodes))

def handlePoints(points):
print("")

728 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

for point in points:
handlePoint(point)

print("")

def handlePoint(point):
print("%s" % getText(point.childNodes))

def handleToc(slides):
for slide in slides:

title = slide.getElementsByTagName("title")[0]
print("<p>%s</p>" % getText(title.childNodes))

handleSlideshow(dom)

19.6.3 minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features (pri-
marily namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

• Interfaces are accessed through instance objects. Applications should not instantiate the classes themselves;
they should use the creator functions available on the Document object. Derived interfaces support all
operations (and attributes) from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses only in parameters, the arguments are passed in
normal order (from left to right). There are no optional arguments. void operations return None.

• IDL attributes map to instance attributes. For compatibility with the OMG IDL language mapping for
Python, an attribute foo can also be accessed through accessor methods _get_foo() and _set_foo().
readonly attributes must not be changed; this is not enforced at runtime.

• The types short int, unsigned int, unsigned long long, and boolean all map to Python
integer objects.

• The type DOMString maps to Python strings. xml.dom.minidom supports either bytes or strings, but
will normally produce strings. Values of type DOMString may also be None where allowed to have the
IDL null value by the DOM specification from the W3C.

• const declarations map to variables in their respective scope (e.g.
xml.dom.minidom.Node.PROCESSING_INSTRUCTION_NODE); they must not be changed.

• DOMException is currently not supported in xml.dom.minidom. Instead, xml.dom.minidom uses
standard Python exceptions such as TypeError and AttributeError.

• NodeList objects are implemented using Python’s built-in list type. These objects provide the interface
defined in the DOM specification, but with earlier versions of Python they do not support the official API.
They are, however, much more “Pythonic” than the interface defined in the W3C recommendations.

The following interfaces have no implementation in xml.dom.minidom:

• DOMTimeStamp

• DocumentType

• DOMImplementation

• CharacterData

• CDATASection

• Notation

• Entity

• EntityReference

19.6. xml.dom.minidom — Lightweight DOM implementation 729

The Python Library Reference, Release 3.2

• DocumentFragment

Most of these reflect information in the XML document that is not of general utility to most DOM users.

19.7 xml.dom.pulldom — Support for building partial DOM trees

Source code: Lib/xml/dom/pulldom.py

xml.dom.pulldom allows building only selected portions of a Document Object Model representation of a
document from SAX events.

class xml.dom.pulldom.PullDOM(documentFactory=None)
xml.sax.handler.ContentHandler implementation that ...

class xml.dom.pulldom.DOMEventStream(stream, parser, bufsize)
...

class xml.dom.pulldom.SAX2DOM(documentFactory=None)
xml.sax.handler.ContentHandler implementation that ...

xml.dom.pulldom.parse(stream_or_string, parser=None, bufsize=None)
...

xml.dom.pulldom.parseString(string, parser=None)
...

xml.dom.pulldom.default_bufsize
Default value for the bufsize parameter to parse().

The value of this variable can be changed before calling parse() and the new value will take effect.

19.7.1 DOMEventStream Objects

DOMEventStream.getEvent()
...

DOMEventStream.expandNode(node)
...

DOMEventStream.reset()
...

19.8 xml.sax — Support for SAX2 parsers

The xml.sax package provides a number of modules which implement the Simple API for XML (SAX) interface
for Python. The package itself provides the SAX exceptions and the convenience functions which will be most
used by users of the SAX API.

The convenience functions are:

xml.sax.make_parser(parser_list=[])
Create and return a SAX XMLReader object. The first parser found will be used. If parser_list is provided,
it must be a sequence of strings which name modules that have a function named create_parser().
Modules listed in parser_list will be used before modules in the default list of parsers.

xml.sax.parse(filename_or_stream, handler, error_handler=handler.ErrorHandler())
Create a SAX parser and use it to parse a document. The document, passed in as filename_or_stream, can
be a filename or a file object. The handler parameter needs to be a SAX ContentHandler instance. If
error_handler is given, it must be a SAX ErrorHandler instance; if omitted, SAXParseException
will be raised on all errors. There is no return value; all work must be done by the handler passed in.

730 Chapter 19. Structured Markup Processing Tools

http://svn.python.org/view/python/branches/py3k/Lib/xml/dom/pulldom.py?view=markup

The Python Library Reference, Release 3.2

xml.sax.parseString(string, handler, error_handler=handler.ErrorHandler())
Similar to parse(), but parses from a buffer string received as a parameter.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this
context is another term for parser, i.e. some piece of code that reads the bytes or characters from the input source,
and produces a sequence of events. The events then get distributed to the handler objects, i.e. the reader invokes a
method on the handler. A SAX application must therefore obtain a reader object, create or open the input sources,
create the handlers, and connect these objects all together. As the final step of preparation, the reader is called to
parse the input. During parsing, methods on the handler objects are called based on structural and syntactic events
from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the applica-
tion itself. Since Python does not have an explicit notion of interface, they are formally introduced as
classes, but applications may use implementations which do not inherit from the provided classes. The
InputSource, Locator, Attributes, AttributesNS, and XMLReader interfaces are defined in the
module xml.sax.xmlreader. The handler interfaces are defined in xml.sax.handler. For convenience,
InputSource (which is often instantiated directly) and the handler classes are also available from xml.sax.
These interfaces are described below.

In addition to these classes, xml.sax provides the following exception classes.

exception xml.sax.SAXException(msg, exception=None)
Encapsulate an XML error or warning. This class can contain basic error or warning information from
either the XML parser or the application: it can be subclassed to provide additional functionality or to add
localization. Note that although the handlers defined in the ErrorHandler interface receive instances
of this exception, it is not required to actually raise the exception — it is also useful as a container for
information.

When instantiated, msg should be a human-readable description of the error. The optional exception param-
eter, if given, should be None or an exception that was caught by the parsing code and is being passed along
as information.

This is the base class for the other SAX exception classes.

exception xml.sax.SAXParseException(msg, exception, locator)
Subclass of SAXException raised on parse errors. Instances of this class are passed to the methods of the
SAX ErrorHandler interface to provide information about the parse error. This class supports the SAX
Locator interface as well as the SAXException interface.

exception xml.sax.SAXNotRecognizedException(msg, exception=None)
Subclass of SAXException raised when a SAX XMLReader is confronted with an unrecognized feature
or property. SAX applications and extensions may use this class for similar purposes.

exception xml.sax.SAXNotSupportedException(msg, exception=None)
Subclass of SAXException raised when a SAX XMLReader is asked to enable a feature that is not
supported, or to set a property to a value that the implementation does not support. SAX applications and
extensions may use this class for similar purposes.

See Also:

SAX: The Simple API for XML This site is the focal point for the definition of the SAX API. It provides a Java
implementation and online documentation. Links to implementations and historical information are also
available.

Module xml.sax.handler Definitions of the interfaces for application-provided objects.

Module xml.sax.saxutils Convenience functions for use in SAX applications.

Module xml.sax.xmlreader Definitions of the interfaces for parser-provided objects.

19.8.1 SAXException Objects

The SAXException exception class supports the following methods:

19.8. xml.sax — Support for SAX2 parsers 731

http://www.saxproject.org/

The Python Library Reference, Release 3.2

SAXException.getMessage()
Return a human-readable message describing the error condition.

SAXException.getException()
Return an encapsulated exception object, or None.

19.9 xml.sax.handler — Base classes for SAX handlers

The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers, and entity resolvers.
Applications normally only need to implement those interfaces whose events they are interested in; they can
implement the interfaces in a single object or in multiple objects. Handler implementations should inherit from
the base classes provided in the module xml.sax.handler, so that all methods get default implementations.

class xml.sax.handler.ContentHandler
This is the main callback interface in SAX, and the one most important to applications. The order of events
in this interface mirrors the order of the information in the document.

class xml.sax.handler.DTDHandler
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and attributes).

class xml.sax.handler.EntityResolver
Basic interface for resolving entities. If you create an object implementing this interface, then register the
object with your Parser, the parser will call the method in your object to resolve all external entities.

class xml.sax.handler.ErrorHandler
Interface used by the parser to present error and warning messages to the application. The methods of this
object control whether errors are immediately converted to exceptions or are handled in some other way.

In addition to these classes, xml.sax.handler provides symbolic constants for the feature and property names.

xml.sax.handler.feature_namespaces

value: "http://xml.org/sax/features/namespaces"
true: Perform Namespace processing.
false: Optionally do not perform Namespace processing (implies namespace-prefixes; default).
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_namespace_prefixes

value: "http://xml.org/sax/features/namespace-prefixes"
true: Report the original prefixed names and attributes used for Namespace declarations.
false: Do not report attributes used for Namespace declarations, and optionally do not report original
prefixed names (default).
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_string_interning

value: "http://xml.org/sax/features/string-interning"
true: All element names, prefixes, attribute names, Namespace URIs, and local names are interned using
the built-in intern function.
false: Names are not necessarily interned, although they may be (default).
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_validation

value: "http://xml.org/sax/features/validation"

732 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

true: Report all validation errors (implies external-general-entities and external-parameter-entities).
false: Do not report validation errors.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_external_ges

value: "http://xml.org/sax/features/external-general-entities"
true: Include all external general (text) entities.
false: Do not include external general entities.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_external_pes

value: "http://xml.org/sax/features/external-parameter-entities"
true: Include all external parameter entities, including the external DTD subset.
false: Do not include any external parameter entities, even the external DTD subset.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.all_features
List of all features.

xml.sax.handler.property_lexical_handler

value: "http://xml.org/sax/properties/lexical-handler"
data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)
description: An optional extension handler for lexical events like comments.
access: read/write

xml.sax.handler.property_declaration_handler

value: "http://xml.org/sax/properties/declaration-handler"
data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)
description: An optional extension handler for DTD-related events other than notations and unparsed
entities.
access: read/write

xml.sax.handler.property_dom_node

value: "http://xml.org/sax/properties/dom-node"
data type: org.w3c.dom.Node (not supported in Python 2)
description: When parsing, the current DOM node being visited if this is a DOM iterator; when not
parsing, the root DOM node for iteration.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.property_xml_string

value: "http://xml.org/sax/properties/xml-string"
data type: String
description: The literal string of characters that was the source for the current event.
access: read-only

xml.sax.handler.all_properties
List of all known property names.

19.9. xml.sax.handler — Base classes for SAX handlers 733

The Python Library Reference, Release 3.2

19.9.1 ContentHandler Objects

Users are expected to subclass ContentHandler to support their application. The following methods are called
by the parser on the appropriate events in the input document:

ContentHandler.setDocumentLocator(locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does so, it
must supply the locator to the application by invoking this method before invoking any of the other methods
in the DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even if
the parser is not reporting an error. Typically, the application will use this information for reporting its
own errors (such as character content that does not match an application’s business rules). The information
returned by the locator is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

ContentHandler.startDocument()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or in DTD-
Handler (except for setDocumentLocator()).

ContentHandler.endDocument()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the parse.
The parser shall not invoke this method until it has either abandoned parsing (because of an unrecoverable
error) or reached the end of input.

ContentHandler.startPrefixMapping(prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX XML reader
will automatically replace prefixes for element and attribute names when the feature_namespaces
feature is enabled (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute
values, where they cannot safely be expanded automatically; the startPrefixMapping() and
endPrefixMapping() events supply the information to the application to expand prefixes in those
contexts itself, if necessary.

Note that startPrefixMapping() and endPrefixMapping() events are not guaranteed to be
properly nested relative to each-other: all startPrefixMapping() events will occur before the corre-
sponding startElement() event, and all endPrefixMapping() events will occur after the corre-
sponding endElement() event, but their order is not guaranteed.

ContentHandler.endPrefixMapping(prefix)
End the scope of a prefix-URI mapping.

See startPrefixMapping() for details. This event will always occur after the corresponding
endElement() event, but the order of endPrefixMapping() events is not otherwise guaranteed.

ContentHandler.startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs parameter
holds an object of the Attributes interface (see The Attributes Interface) containing the attributes of the
element. The object passed as attrs may be re-used by the parser; holding on to a reference to it is not a
reliable way to keep a copy of the attributes. To keep a copy of the attributes, use the copy() method of
the attrs object.

ContentHandler.endElement(name)
Signals the end of an element in non-namespace mode.

734 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

The name parameter contains the name of the element type, just as with the startElement() event.

ContentHandler.startElementNS(name, qname, attrs)
Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri, localname) tuple, the qname
parameter contains the raw XML 1.0 name used in the source document, and the attrs parameter holds an
instance of the AttributesNS interface (see The AttributesNS Interface) containing the attributes of the
element. If no namespace is associated with the element, the uri component of name will be None. The
object passed as attrs may be re-used by the parser; holding on to a reference to it is not a reliable way to
keep a copy of the attributes. To keep a copy of the attributes, use the copy() method of the attrs object.

Parsers may set the qname parameter to None, unless the feature_namespace_prefixes feature is
activated.

ContentHandler.endElementNS(name, qname)
Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the startElementNS()method,
likewise the qname parameter.

ContentHandler.characters(content)
Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return all contigu-
ous character data in a single chunk, or they may split it into several chunks; however, all of the characters
in any single event must come from the same external entity so that the Locator provides useful information.

content may be a string or bytes instance; the expat reader module always produces strings.

Note: The earlier SAX 1 interface provided by the Python XML Special Interest Group used a more Java-
like interface for this method. Since most parsers used from Python did not take advantage of the older
interface, the simpler signature was chosen to replace it. To convert old code to the new interface, use
content instead of slicing content with the old offset and length parameters.

ContentHandler.ignorableWhitespace(whitespace)
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C XML
1.0 recommendation, section 2.10): non-validating parsers may also use this method if they are capable of
parsing and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several
chunks; however, all of the characters in any single event must come from the same external entity, so that
the Locator provides useful information.

ContentHandler.processingInstruction(target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing instruc-
tions may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration (XML
1.0, section 4.3.1) using this method.

ContentHandler.skippedEntity(name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors may skip entities
if they have not seen the declarations (because, for example, the entity was declared in an external DTD sub-
set). All processors may skip external entities, depending on the values of the feature_external_ges
and the feature_external_pes properties.

19.9. xml.sax.handler — Base classes for SAX handlers 735

The Python Library Reference, Release 3.2

19.9.2 DTDHandler Objects

DTDHandler instances provide the following methods:

DTDHandler.notationDecl(name, publicId, systemId)
Handle a notation declaration event.

DTDHandler.unparsedEntityDecl(name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

19.9.3 EntityResolver Objects

EntityResolver.resolveEntity(publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a string, or
an InputSource to read from. The default implementation returns systemId.

19.9.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from the XMLReader. If you create
an object that implements this interface, then register the object with your XMLReader, the parser will call the
methods in your object to report all warnings and errors. There are three levels of errors available: warnings,
(possibly) recoverable errors, and unrecoverable errors. All methods take a SAXParseException as the only
parameter. Errors and warnings may be converted to an exception by raising the passed-in exception object.

ErrorHandler.error(exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception, parsing
may continue, but further document information should not be expected by the application. Allowing the
parser to continue may allow additional errors to be discovered in the input document.

ErrorHandler.fatalError(exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate when
this method returns.

ErrorHandler.warning(exception)
Called when the parser presents minor warning information to the application. Parsing is expected to con-
tinue when this method returns, and document information will continue to be passed to the application.
Raising an exception in this method will cause parsing to end.

19.10 xml.sax.saxutils — SAX Utilities

The module xml.sax.saxutils contains a number of classes and functions that are commonly useful when
creating SAX applications, either in direct use, or as base classes.

xml.sax.saxutils.escape(data, entities={})
Escape ’&’, ’<’, and ’>’ in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter. The keys and
values must all be strings; each key will be replaced with its corresponding value. The characters ’&’, ’<’
and ’>’ are always escaped, even if entities is provided.

xml.sax.saxutils.unescape(data, entities={})
Unescape ’&’, ’<’, and ’>’ in a string of data.

You can unescape other strings of data by passing a dictionary as the optional entities parameter. The keys
and values must all be strings; each key will be replaced with its corresponding value. ’&’, ’<’,
and ’>’ are always unescaped, even if entities is provided.

xml.sax.saxutils.quoteattr(data, entities={})
Similar to escape(), but also prepares data to be used as an attribute value. The return value is a quoted
version of data with any additional required replacements. quoteattr() will select a quote character

736 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

based on the content of data, attempting to avoid encoding any quote characters in the string. If both single-
and double-quote characters are already in data, the double-quote characters will be encoded and data will
be wrapped in double-quotes. The resulting string can be used directly as an attribute value:

>>> print("<element attr=%s>" % quoteattr("ab ’ cd \" ef"))
<element attr="ab ’ cd " ef">

This function is useful when generating attribute values for HTML or any SGML using the reference con-
crete syntax.

class xml.sax.saxutils.XMLGenerator(out=None, encoding=’iso-8859-1’,
short_empty_elements=False)

This class implements the ContentHandler interface by writing SAX events back into an XML docu-
ment. In other words, using an XMLGenerator as the content handler will reproduce the original docu-
ment being parsed. out should be a file-like object which will default to sys.stdout. encoding is the encoding
of the output stream which defaults to ’iso-8859-1’. short_empty_elements controls the formatting of
elements that contain no content: if False (the default) they are emitted as a pair of start/end tags, if set to
True they are emitted as a single self-closed tag. New in version 3.2: short_empty_elements

class xml.sax.saxutils.XMLFilterBase(base)
This class is designed to sit between an XMLReader and the client application’s event handlers. By default,
it does nothing but pass requests up to the reader and events on to the handlers unmodified, but subclasses
can override specific methods to modify the event stream or the configuration requests as they pass through.

xml.sax.saxutils.prepare_input_source(source, base=’‘)
This function takes an input source and an optional base URL and returns a fully resolved InputSource
object ready for reading. The input source can be given as a string, a file-like object, or an InputSource
object; parsers will use this function to implement the polymorphic source argument to their parse()
method.

19.11 xml.sax.xmlreader — Interface for XML parsers

SAX parsers implement the XMLReader interface. They are implemented in a Python module, which must
provide a function create_parser(). This function is invoked by xml.sax.make_parser() with no
arguments to create a new parser object.

class xml.sax.xmlreader.XMLReader
Base class which can be inherited by SAX parsers.

class xml.sax.xmlreader.IncrementalParser
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document as
they get available. Note that the reader will normally not read the entire file, but read it in chunks as well;
still parse() won’t return until the entire document is processed. So these interfaces should be used if the
blocking behaviour of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately. After
parsing has been finished with a call to close the reset method must be called to make the parser ready to
accept new data, either from feed or using the parse method.

Note that these methods must not be called during parsing, that is, after parse has been called and before it
returns.

By default, the class also implements the parse method of the XMLReader interface using the feed, close
and reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

class xml.sax.xmlreader.Locator
Interface for associating a SAX event with a document location. A locator object will return valid results
only during calls to DocumentHandler methods; at any other time, the results are unpredictable. If informa-
tion is not available, methods may return None.

class xml.sax.xmlreader.InputSource(system_id=None)
Encapsulation of the information needed by the XMLReader to read entities.

19.11. xml.sax.xmlreader — Interface for XML parsers 737

The Python Library Reference, Release 3.2

This class may include information about the public identifier, system identifier, byte stream (possibly with
character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in the XMLReader.parse() method and for return-
ing from EntityResolver.resolveEntity.

An InputSource belongs to the application, the XMLReader is not allowed to modify InputSource
objects passed to it from the application, although it may make copies and modify those.

class xml.sax.xmlreader.AttributesImpl(attrs)
This is an implementation of the Attributes interface (see section The Attributes Interface). This is a
dictionary-like object which represents the element attributes in a startElement() call. In addition to
the most useful dictionary operations, it supports a number of other methods as described by the interface.
Objects of this class should be instantiated by readers; attrs must be a dictionary-like object containing a
mapping from attribute names to attribute values.

class xml.sax.xmlreader.AttributesNSImpl(attrs, qnames)
Namespace-aware variant of AttributesImpl, which will be passed to startElementNS(). It is
derived from AttributesImpl, but understands attribute names as two-tuples of namespaceURI and
localname. In addition, it provides a number of methods expecting qualified names as they appear in the
original document. This class implements the AttributesNS interface (see section The AttributesNS
Interface).

19.11.1 XMLReader Objects

The XMLReader interface supports the following methods:

XMLReader.parse(source)
Process an input source, producing SAX events. The source object can be a system identifier (a string
identifying the input source – typically a file name or an URL), a file-like object, or an InputSource
object. When parse() returns, the input is completely processed, and the parser object can be discarded
or reset. As a limitation, the current implementation only accepts byte streams; processing of character
streams is for further study.

XMLReader.getContentHandler()
Return the current ContentHandler.

XMLReader.setContentHandler(handler)
Set the current ContentHandler. If no ContentHandler is set, content events will be discarded.

XMLReader.getDTDHandler()
Return the current DTDHandler.

XMLReader.setDTDHandler(handler)
Set the current DTDHandler. If no DTDHandler is set, DTD events will be discarded.

XMLReader.getEntityResolver()
Return the current EntityResolver.

XMLReader.setEntityResolver(handler)
Set the current EntityResolver. If no EntityResolver is set, attempts to resolve an external entity
will result in opening the system identifier for the entity, and fail if it is not available.

XMLReader.getErrorHandler()
Return the current ErrorHandler.

XMLReader.setErrorHandler(handler)
Set the current error handler. If no ErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

XMLReader.setLocale(locale)
Allow an application to set the locale for errors and warnings.

738 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

SAX parsers are not required to provide localization for errors and warnings; if they cannot support the
requested locale, however, they must raise a SAX exception. Applications may request a locale change in
the middle of a parse.

XMLReader.getFeature(featurename)
Return the current setting for feature featurename. If the feature is not recognized,
SAXNotRecognizedException is raised. The well-known featurenames are listed in the mod-
ule xml.sax.handler.

XMLReader.setFeature(featurename, value)
Set the featurename to value. If the feature is not recognized, SAXNotRecognizedException is raised.
If the feature or its setting is not supported by the parser, SAXNotSupportedException is raised.

XMLReader.getProperty(propertyname)
Return the current setting for property propertyname. If the property is not recognized, a
SAXNotRecognizedException is raised. The well-known propertynames are listed in the module
xml.sax.handler.

XMLReader.setProperty(propertyname, value)
Set the propertyname to value. If the property is not recognized, SAXNotRecognizedException is
raised. If the property or its setting is not supported by the parser, SAXNotSupportedException is raised.

19.11.2 IncrementalParser Objects

Instances of IncrementalParser offer the following additional methods:

IncrementalParser.feed(data)
Process a chunk of data.

IncrementalParser.close()
Assume the end of the document. That will check well-formedness conditions that can be checked only at
the end, invoke handlers, and may clean up resources allocated during parsing.

IncrementalParser.reset()
This method is called after close has been called to reset the parser so that it is ready to parse new documents.
The results of calling parse or feed after close without calling reset are undefined.

19.11.3 Locator Objects

Instances of Locator provide these methods:

Locator.getColumnNumber()
Return the column number where the current event ends.

Locator.getLineNumber()
Return the line number where the current event ends.

Locator.getPublicId()
Return the public identifier for the current event.

Locator.getSystemId()
Return the system identifier for the current event.

19.11.4 InputSource Objects

InputSource.setPublicId(id)
Sets the public identifier of this InputSource.

InputSource.getPublicId()
Returns the public identifier of this InputSource.

19.11. xml.sax.xmlreader — Interface for XML parsers 739

The Python Library Reference, Release 3.2

InputSource.setSystemId(id)
Sets the system identifier of this InputSource.

InputSource.getSystemId()
Returns the system identifier of this InputSource.

InputSource.setEncoding(encoding)
Sets the character encoding of this InputSource.

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the XML
recommendation).

The encoding attribute of the InputSource is ignored if the InputSource also contains a character
stream.

InputSource.getEncoding()
Get the character encoding of this InputSource.

InputSource.setByteStream(bytefile)
Set the byte stream (a Python file-like object which does not perform byte-to-character conversion) for this
input source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte stream in
preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncoding
method.

InputSource.getByteStream()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

InputSource.setCharacterStream(charfile)
Set the character stream for this input source. (The stream must be a Python 1.6 Unicode-wrapped file-like
that performs conversion to strings.)

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt to
open a URI connection to the system identifier.

InputSource.getCharacterStream()
Get the character stream for this input source.

19.11.5 The Attributes Interface

Attributes objects implement a portion of the mapping protocol, including the methods copy(), get(),
__contains__(), items(), keys(), and values(). The following methods are also provided:

Attributes.getLength()
Return the number of attributes.

Attributes.getNames()
Return the names of the attributes.

Attributes.getType(name)
Returns the type of the attribute name, which is normally ’CDATA’.

Attributes.getValue(name)
Return the value of attribute name.

19.11.6 The AttributesNS Interface

This interface is a subtype of the Attributes interface (see section The Attributes Interface). All methods
supported by that interface are also available on AttributesNS objects.

740 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

The following methods are also available:

AttributesNS.getValueByQName(name)
Return the value for a qualified name.

AttributesNS.getNameByQName(name)
Return the (namespace, localname) pair for a qualified name.

AttributesNS.getQNameByName(name)
Return the qualified name for a (namespace, localname) pair.

AttributesNS.getQNames()
Return the qualified names of all attributes.

19.12 xml.etree.ElementTree — The ElementTree XML API

Source code: Lib/xml/etree/ElementTree.py

The Element type is a flexible container object, designed to store hierarchical data structures in memory. The
type can be described as a cross between a list and a dictionary.

Each element has a number of properties associated with it:

• a tag which is a string identifying what kind of data this element represents (the element type, in other
words).

• a number of attributes, stored in a Python dictionary.

• a text string.

• an optional tail string.

• a number of child elements, stored in a Python sequence

To create an element instance, use the Element constructor or the SubElement() factory function.

The ElementTree class can be used to wrap an element structure, and convert it from and to XML.

A C implementation of this API is available as xml.etree.cElementTree.

See http://effbot.org/zone/element-index.htm for tutorials and links to other docs. Fredrik Lundh’s page is also the
location of the development version of the xml.etree.ElementTree. Changed in version 3.2: The ElementTree API
is updated to 1.3. For more information, see Introducing ElementTree 1.3.

19.12.1 Functions

xml.etree.ElementTree.Comment(text=None)
Comment element factory. This factory function creates a special element that will be serialized as an XML
comment by the standard serializer. The comment string can be either a bytestring or a Unicode string. text
is a string containing the comment string. Returns an element instance representing a comment.

xml.etree.ElementTree.dump(elem)
Writes an element tree or element structure to sys.stdout. This function should be used for debugging only.

The exact output format is implementation dependent. In this version, it’s written as an ordinary XML file.

elem is an element tree or an individual element.

xml.etree.ElementTree.fromstring(text)
Parses an XML section from a string constant. Same as XML(). text is a string containing XML data.
Returns an Element instance.

19.12. xml.etree.ElementTree — The ElementTree XML API 741

http://svn.python.org/view/python/branches/py3k/Lib/xml/etree/ElementTree.py?view=markup
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/elementtree-13-intro.htm

The Python Library Reference, Release 3.2

xml.etree.ElementTree.fromstringlist(sequence, parser=None)
Parses an XML document from a sequence of string fragments. sequence is a list or other sequence con-
taining XML data fragments. parser is an optional parser instance. If not given, the standard XMLParser
parser is used. Returns an Element instance. New in version 3.2.

xml.etree.ElementTree.iselement(element)
Checks if an object appears to be a valid element object. element is an element instance. Returns a true
value if this is an element object.

xml.etree.ElementTree.iterparse(source, events=None, parser=None)
Parses an XML section into an element tree incrementally, and reports what’s going on to the user. source
is a filename or file object containing XML data. events is a list of events to report back. If omitted, only
“end” events are reported. parser is an optional parser instance. If not given, the standard XMLParser
parser is used. Returns an iterator providing (event, elem) pairs.

Note: iterparse() only guarantees that it has seen the “>” character of a starting tag when it emits a
“start” event, so the attributes are defined, but the contents of the text and tail attributes are undefined at that
point. The same applies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

xml.etree.ElementTree.parse(source, parser=None)
Parses an XML section into an element tree. source is a filename or file object containing XML data.
parser is an optional parser instance. If not given, the standard XMLParser parser is used. Returns an
ElementTree instance.

xml.etree.ElementTree.ProcessingInstruction(target, text=None)
PI element factory. This factory function creates a special element that will be serialized as an XML pro-
cessing instruction. target is a string containing the PI target. text is a string containing the PI contents, if
given. Returns an element instance, representing a processing instruction.

xml.etree.ElementTree.register_namespace(prefix, uri)
Registers a namespace prefix. The registry is global, and any existing mapping for either the given prefix
or the namespace URI will be removed. prefix is a namespace prefix. uri is a namespace uri. Tags and
attributes in this namespace will be serialized with the given prefix, if at all possible. New in version 3.2.

xml.etree.ElementTree.SubElement(parent, tag, attrib={}, **extra)
Subelement factory. This function creates an element instance, and appends it to an existing element.

The element name, attribute names, and attribute values can be either bytestrings or Unicode strings. parent
is the parent element. tag is the subelement name. attrib is an optional dictionary, containing element
attributes. extra contains additional attributes, given as keyword arguments. Returns an element instance.

xml.etree.ElementTree.tostring(element, encoding=”us-ascii”, method=”xml”)
Generates a string representation of an XML element, including all subelements. element is an Element
instance. encoding 4 is the output encoding (default is US-ASCII). Use encoding="unicode" to gen-
erate a Unicode string. method is either "xml", "html" or "text" (default is "xml"). Returns an
(optionally) encoded string containing the XML data.

xml.etree.ElementTree.tostringlist(element, encoding=”us-ascii”, method=”xml”)
Generates a string representation of an XML element, including all subelements. element is an Element
instance. encoding 1 is the output encoding (default is US-ASCII). Use encoding="unicode" to gen-
erate a Unicode string. method is either "xml", "html" or "text" (default is "xml"). Returns a list of
(optionally) encoded strings containing the XML data. It does not guarantee any specific sequence, except
that "".join(tostringlist(element)) == tostring(element). New in version 3.2.

xml.etree.ElementTree.XML(text, parser=None)
Parses an XML section from a string constant. This function can be used to embed “XML literals” in Python
code. text is a string containing XML data. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns an Element instance.

4 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8”
is not. See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and http://www.iana.org/assignments/character-sets.

742 Chapter 19. Structured Markup Processing Tools

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets

The Python Library Reference, Release 3.2

xml.etree.ElementTree.XMLID(text, parser=None)
Parses an XML section from a string constant, and also returns a dictionary which maps from element id:s
to elements. text is a string containing XML data. parser is an optional parser instance. If not given, the
standard XMLParser parser is used. Returns a tuple containing an Element instance and a dictionary.

19.12.2 Element Objects

class xml.etree.ElementTree.Element(tag, attrib={}, **extra)
Element class. This class defines the Element interface, and provides a reference implementation of this
interface.

The element name, attribute names, and attribute values can be either bytestrings or Unicode strings. tag is
the element name. attrib is an optional dictionary, containing element attributes. extra contains additional
attributes, given as keyword arguments.

tag
A string identifying what kind of data this element represents (the element type, in other words).

text
The text attribute can be used to hold additional data associated with the element. As the name implies
this attribute is usually a string but may be any application-specific object. If the element is created
from an XML file the attribute will contain any text found between the element tags.

tail
The tail attribute can be used to hold additional data associated with the element. This attribute is
usually a string but may be any application-specific object. If the element is created from an XML file
the attribute will contain any text found after the element’s end tag and before the next tag.

attrib
A dictionary containing the element’s attributes. Note that while the attrib value is always a real muta-
ble Python dictionary, an ElementTree implementation may choose to use another internal representa-
tion, and create the dictionary only if someone asks for it. To take advantage of such implementations,
use the dictionary methods below whenever possible.

The following dictionary-like methods work on the element attributes.

clear()
Resets an element. This function removes all subelements, clears all attributes, and sets the text and
tail attributes to None.

get(key, default=None)
Gets the element attribute named key.

Returns the attribute value, or default if the attribute was not found.

items()
Returns the element attributes as a sequence of (name, value) pairs. The attributes are returned in an
arbitrary order.

keys()
Returns the elements attribute names as a list. The names are returned in an arbitrary order.

set(key, value)
Set the attribute key on the element to value.

The following methods work on the element’s children (subelements).

append(subelement)
Adds the element subelement to the end of this elements internal list of subelements.

extend(subelements)
Appends subelements from a sequence object with zero or more elements. Raises AssertionError
if a subelement is not a valid object. New in version 3.2.

19.12. xml.etree.ElementTree — The ElementTree XML API 743

The Python Library Reference, Release 3.2

find(match)
Finds the first subelement matching match. match may be a tag name or path. Returns an element
instance or None.

findall(match)
Finds all matching subelements, by tag name or path. Returns a list containing all matching elements
in document order.

findtext(match, default=None)
Finds text for the first subelement matching match. match may be a tag name or path. Returns the text
content of the first matching element, or default if no element was found. Note that if the matching
element has no text content an empty string is returned.

getchildren()
Deprecated since version 3.2: Use list(elem) or iteration.

getiterator(tag=None)
Deprecated since version 3.2: Use method Element.iter() instead.

insert(index, element)
Inserts a subelement at the given position in this element.

iter(tag=None)
Creates a tree iterator with the current element as the root. The iterator iterates over this element and
all elements below it, in document (depth first) order. If tag is not None or ’*’, only elements whose
tag equals tag are returned from the iterator. If the tree structure is modified during iteration, the result
is undefined.

iterfind(match)
Finds all matching subelements, by tag name or path. Returns an iterable yielding all matching ele-
ments in document order. New in version 3.2.

itertext()
Creates a text iterator. The iterator loops over this element and all subelements, in document order,
and returns all inner text. New in version 3.2.

makeelement(tag, attrib)
Creates a new element object of the same type as this element. Do not call this method, use the
SubElement() factory function instead.

remove(subelement)
Removes subelement from the element. Unlike the find* methods this method compares elements
based on the instance identity, not on tag value or contents.

Element objects also support the following sequence type methods for working with subelements:
__delitem__(), __getitem__(), __setitem__(), __len__().

Caution: Elements with no subelements will test as False. This behavior will change in future versions.
Use specific len(elem) or elem is None test instead.

element = root.find(’foo’)

if not element: # careful!
print("element not found, or element has no subelements")

if element is None:
print("element not found")

19.12.3 ElementTree Objects

class xml.etree.ElementTree.ElementTree(element=None, file=None)
ElementTree wrapper class. This class represents an entire element hierarchy, and adds some extra support
for serialization to and from standard XML.

744 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

element is the root element. The tree is initialized with the contents of the XML file if given.

_setroot(element)
Replaces the root element for this tree. This discards the current contents of the tree, and replaces it
with the given element. Use with care. element is an element instance.

find(match)
Finds the first toplevel element matching match. match may be a tag name or path. Same as get-
root().find(match). Returns the first matching element, or None if no element was found.

findall(match)
Finds all matching subelements, by tag name or path. Same as getroot().findall(match). match may be
a tag name or path. Returns a list containing all matching elements, in document order.

findtext(match, default=None)
Finds the element text for the first toplevel element with given tag. Same as getroot().findtext(match).
match may be a tag name or path. default is the value to return if the element was not found. Returns
the text content of the first matching element, or the default value no element was found. Note that if
the element is found, but has no text content, this method returns an empty string.

getiterator(tag=None)
Deprecated since version 3.2: Use method ElementTree.iter() instead.

getroot()
Returns the root element for this tree.

iter(tag=None)
Creates and returns a tree iterator for the root element. The iterator loops over all elements in this tree,
in section order. tag is the tag to look for (default is to return all elements)

iterfind(match)
Finds all matching subelements, by tag name or path. Same as getroot().iterfind(match). Returns an
iterable yielding all matching elements in document order. New in version 3.2.

parse(source, parser=None)
Loads an external XML section into this element tree. source is a file name or file object. parser is an
optional parser instance. If not given, the standard XMLParser parser is used. Returns the section root
element.

write(file, encoding=”us-ascii”, xml_declaration=None, method=”xml”)
Writes the element tree to a file, as XML. file is a file name, or a file object opened for writing.
encoding 1 is the output encoding (default is US-ASCII). Use encoding="unicode" to write a
Unicode string. xml_declaration controls if an XML declaration should be added to the file. Use False
for never, True for always, None for only if not US-ASCII or UTF-8 or Unicode (default is None).
method is either "xml", "html" or "text" (default is "xml"). Returns an (optionally) encoded
string.

This is the XML file that is going to be manipulated:

<html>
<head>

<title>Example page</title>
</head>
<body>

<p>Moved to example.org
or example.com.</p>

</body>
</html>

Example of changing the attribute “target” of every link in first paragraph:

>>> from xml.etree.ElementTree import ElementTree
>>> tree = ElementTree()
>>> tree.parse("index.xhtml")
<Element ’html’ at 0xb77e6fac>

19.12. xml.etree.ElementTree — The ElementTree XML API 745

The Python Library Reference, Release 3.2

>>> p = tree.find("body/p") # Finds first occurrence of tag p in body
>>> p
<Element ’p’ at 0xb77ec26c>
>>> links = list(p.iter("a")) # Returns list of all links
>>> links
[<Element ’a’ at 0xb77ec2ac>, <Element ’a’ at 0xb77ec1cc>]
>>> for i in links: # Iterates through all found links
... i.attrib["target"] = "blank"
>>> tree.write("output.xhtml")

19.12.4 QName Objects

class xml.etree.ElementTree.QName(text_or_uri, tag=None)
QName wrapper. This can be used to wrap a QName attribute value, in order to get proper namespace
handling on output. text_or_uri is a string containing the QName value, in the form {uri}local, or, if the tag
argument is given, the URI part of a QName. If tag is given, the first argument is interpreted as an URI, and
this argument is interpreted as a local name. QName instances are opaque.

19.12.5 TreeBuilder Objects

class xml.etree.ElementTree.TreeBuilder(element_factory=None)
Generic element structure builder. This builder converts a sequence of start, data, and end method calls to
a well-formed element structure. You can use this class to build an element structure using a custom XML
parser, or a parser for some other XML-like format. The element_factory is called to create new Element
instances when given.

close()
Flushes the builder buffers, and returns the toplevel document element. Returns an Element instance.

data(data)
Adds text to the current element. data is a string. This should be either a bytestring, or a Unicode
string.

end(tag)
Closes the current element. tag is the element name. Returns the closed element.

start(tag, attrs)
Opens a new element. tag is the element name. attrs is a dictionary containing element attributes.
Returns the opened element.

In addition, a custom TreeBuilder object can provide the following method:

doctype(name, pubid, system)
Handles a doctype declaration. name is the doctype name. pubid is the public identifier. system is the
system identifier. This method does not exist on the default TreeBuilder class. New in version
3.2.

19.12.6 XMLParser Objects

class xml.etree.ElementTree.XMLParser(html=0, target=None, encoding=None)
Element structure builder for XML source data, based on the expat parser. html are predefined HTML
entities. This flag is not supported by the current implementation. target is the target object. If omitted,
the builder uses an instance of the standard TreeBuilder class. encoding 1 is optional. If given, the value
overrides the encoding specified in the XML file.

close()
Finishes feeding data to the parser. Returns an element structure.

746 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 3.2

doctype(name, pubid, system)
Deprecated since version 3.2: Define the TreeBuilder.doctype() method on a custom Tree-
Builder target.

feed(data)
Feeds data to the parser. data is encoded data.

XMLParser.feed() calls target‘s start() method for each opening tag, its end() method for each clos-
ing tag, and data is processed by method data(). XMLParser.close() calls target‘s method close().
XMLParser can be used not only for building a tree structure. This is an example of counting the maximum
depth of an XML file:

>>> from xml.etree.ElementTree import XMLParser
>>> class MaxDepth: # The target object of the parser
... maxDepth = 0
... depth = 0
... def start(self, tag, attrib): # Called for each opening tag.
... self.depth += 1
... if self.depth > self.maxDepth:
... self.maxDepth = self.depth
... def end(self, tag): # Called for each closing tag.
... self.depth -= 1
... def data(self, data):
... pass # We do not need to do anything with data.
... def close(self): # Called when all data has been parsed.
... return self.maxDepth
...
>>> target = MaxDepth()
>>> parser = XMLParser(target=target)
>>> exampleXml = """
... <a>
...
...
...
... <c>
... <d>
... </d>
... </c>
...
... """
>>> parser.feed(exampleXml)
>>> parser.close()
4

19.12. xml.etree.ElementTree — The ElementTree XML API 747

The Python Library Reference, Release 3.2

748 Chapter 19. Structured Markup Processing Tools

CHAPTER

TWENTY

INTERNET PROTOCOLS AND
SUPPORT

The modules described in this chapter implement Internet protocols and support for related technology. They are
all implemented in Python. Most of these modules require the presence of the system-dependent module socket,
which is currently supported on most popular platforms. Here is an overview:

20.1 webbrowser — Convenient Web-browser controller

Source code: Lib/webbrowser.py

The webbrowser module provides a high-level interface to allow displaying Web-based documents to users.
Under most circumstances, simply calling the open() function from this module will do the right thing.

Under Unix, graphical browsers are preferred under X11, but text-mode browsers will be used if graphical
browsers are not available or an X11 display isn’t available. If text-mode browsers are used, the calling process
will block until the user exits the browser.

If the environment variable BROWSER exists, it is interpreted to override the platform default list of browsers, as a
os.pathsep-separated list of browsers to try in order. When the value of a list part contains the string %s, then
it is interpreted as a literal browser command line to be used with the argument URL substituted for %s; if the part
does not contain %s, it is simply interpreted as the name of the browser to launch. 1

For non-Unix platforms, or when a remote browser is available on Unix, the controlling process will not wait for
the user to finish with the browser, but allow the remote browser to maintain its own windows on the display. If
remote browsers are not available on Unix, the controlling process will launch a new browser and wait.

The script webbrowser can be used as a command-line interface for the module. It accepts an URL as the
argument. It accepts the following optional parameters: -n opens the URL in a new browser window, if possible;
-t opens the URL in a new browser page (“tab”). The options are, naturally, mutually exclusive.

The following exception is defined:

exception webbrowser.Error
Exception raised when a browser control error occurs.

The following functions are defined:

webbrowser.open(url, new=0, autoraise=True)
Display url using the default browser. If new is 0, the url is opened in the same browser window if possible.
If new is 1, a new browser window is opened if possible. If new is 2, a new browser page (“tab”) is opened
if possible. If autoraise is True, the window is raised if possible (note that under many window managers
this will occur regardless of the setting of this variable).

1 Executables named here without a full path will be searched in the directories given in the PATH environment variable.

749

http://svn.python.org/view/python/branches/py3k/Lib/webbrowser.py?view=markup

The Python Library Reference, Release 3.2

Note that on some platforms, trying to open a filename using this function, may work and start the operating
system’s associated program. However, this is neither supported nor portable.

webbrowser.open_new(url)
Open url in a new window of the default browser, if possible, otherwise, open url in the only browser
window.

webbrowser.open_new_tab(url)
Open url in a new page (“tab”) of the default browser, if possible, otherwise equivalent to open_new().

webbrowser.get(using=None)
Return a controller object for the browser type using. If using is None, return a controller for a default
browser appropriate to the caller’s environment.

webbrowser.register(name, constructor, instance=None)
Register the browser type name. Once a browser type is registered, the get() function can return a con-
troller for that browser type. If instance is not provided, or is None, constructor will be called without
parameters to create an instance when needed. If instance is provided, constructor will never be called, and
may be None.

This entry point is only useful if you plan to either set the BROWSER variable or call get()with a nonempty
argument matching the name of a handler you declare.

A number of browser types are predefined. This table gives the type names that may be passed to the get()
function and the corresponding instantiations for the controller classes, all defined in this module.

Type Name Class Name Notes
’mozilla’ Mozilla(’mozilla’)
’firefox’ Mozilla(’mozilla’)
’netscape’ Mozilla(’netscape’)
’galeon’ Galeon(’galeon’)
’epiphany’ Galeon(’epiphany’)
’skipstone’ BackgroundBrowser(’skipstone’)
’kfmclient’ Konqueror() (1)
’konqueror’ Konqueror() (1)
’kfm’ Konqueror() (1)
’mosaic’ BackgroundBrowser(’mosaic’)
’opera’ Opera()
’grail’ Grail()
’links’ GenericBrowser(’links’)
’elinks’ Elinks(’elinks’)
’lynx’ GenericBrowser(’lynx’)
’w3m’ GenericBrowser(’w3m’)
’windows-default’ WindowsDefault (2)
’internet-config’ InternetConfig (3)
’macosx’ MacOSX(’default’) (4)

Notes:

1. “Konqueror” is the file manager for the KDE desktop environment for Unix, and only makes sense to use if
KDE is running. Some way of reliably detecting KDE would be nice; the KDEDIR variable is not sufficient.
Note also that the name “kfm” is used even when using the konqueror command with KDE 2 — the
implementation selects the best strategy for running Konqueror.

2. Only on Windows platforms.

3. Only on Mac OS platforms; requires the standard MacPython ic module.

4. Only on Mac OS X platform.

Here are some simple examples:

url = ’http://www.python.org/’

Open URL in a new tab, if a browser window is already open.

750 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

webbrowser.open_new_tab(url + ’doc/’)

Open URL in new window, raising the window if possible.
webbrowser.open_new(url)

20.1.1 Browser Controller Objects

Browser controllers provide these methods which parallel three of the module-level convenience functions:

controller.open(url, new=0, autoraise=True)
Display url using the browser handled by this controller. If new is 1, a new browser window is opened if
possible. If new is 2, a new browser page (“tab”) is opened if possible.

controller.open_new(url)
Open url in a new window of the browser handled by this controller, if possible, otherwise, open url in the
only browser window. Alias open_new().

controller.open_new_tab(url)
Open url in a new page (“tab”) of the browser handled by this controller, if possible, otherwise equivalent
to open_new().

20.2 cgi — Common Gateway Interface support

Source code: Lib/cgi.py

Support module for Common Gateway Interface (CGI) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

20.2.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML <FORM>
or <ISINDEX> element.

Most often, CGI scripts live in the server’s special cgi-bin directory. The HTTP server places all sorts of
information about the request (such as the client’s hostname, the requested URL, the query string, and lots of
other goodies) in the script’s shell environment, executes the script, and sends the script’s output back to the
client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the
form data is passed via the “query string” part of the URL. This module is intended to take care of the different
cases and provide a simpler interface to the Python script. It also provides a number of utilities that help in
debugging scripts, and the latest addition is support for file uploads from a form (if your browser supports it).

The output of a CGI script should consist of two sections, separated by a blank line. The first section contains a
number of headers, telling the client what kind of data is following. Python code to generate a minimal header
section looks like this:

print("Content-Type: text/html") # HTML is following
print() # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print("<TITLE>CGI script output</TITLE>")
print("<H1>This is my first CGI script</H1>")
print("Hello, world!")

20.2. cgi — Common Gateway Interface support 751

http://svn.python.org/view/python/branches/py3k/Lib/cgi.py?view=markup

The Python Library Reference, Release 3.2

20.2.2 Using the cgi module

Begin by writing import cgi.

When you write a new script, consider adding these lines:

import cgitb
cgitb.enable()

This activates a special exception handler that will display detailed reports in the Web browser if any errors occur.
If you’d rather not show the guts of your program to users of your script, you can have the reports saved to files
instead, with code like this:

import cgitb
cgitb.enable(display=0, logdir="/tmp")

It’s very helpful to use this feature during script development. The reports produced by cgitb provide informa-
tion that can save you a lot of time in tracking down bugs. You can always remove the cgitb line later when you
have tested your script and are confident that it works correctly.

To get at submitted form data, use the FieldStorage class. Instantiate it exactly once, without arguments. This
reads the form contents from standard input or the environment (depending on the value of various environment
variables set according to the CGI standard). Since it may consume standard input, it should be instantiated only
once.

The FieldStorage instance can be indexed like a Python dictionary. It allows membership testing with the in
operator, and also supports the standard dictionary method keys() and the built-in function len(). Form fields
containing empty strings are ignored and do not appear in the dictionary; to keep such values, provide a true value
for the optional keep_blank_values keyword parameter when creating the FieldStorage instance.

For instance, the following code (which assumes that the Content-Type header and blank line have already
been printed) checks that the fields name and addr are both set to a non-empty string:

form = cgi.FieldStorage()
if "name" not in form or "addr" not in form:

print("<H1>Error</H1>")
print("Please fill in the name and addr fields.")
return

print("<p>name:", form["name"].value)
print("<p>addr:", form["addr"].value)
...further form processing here...

Here the fields, accessed through form[key], are themselves instances of FieldStorage (or
MiniFieldStorage, depending on the form encoding). The value attribute of the instance yields the string
value of the field. The getvalue() method returns this string value directly; it also accepts an optional second
argument as a default to return if the requested key is not present.

If the submitted form data contains more than one field with the same name, the object retrieved by form[key] is
not a FieldStorage or MiniFieldStorage instance but a list of such instances. Similarly, in this situation,
form.getvalue(key) would return a list of strings. If you expect this possibility (when your HTML form
contains multiple fields with the same name), use the getlist() function, which always returns a list of values
(so that you do not need to special-case the single item case). For example, this code concatenates any number of
username fields, separated by commas:

value = form.getlist("username")
usernames = ",".join(value)

If a field represents an uploaded file, accessing the value via the value attribute or the getvalue() method
reads the entire file in memory as a string. This may not be what you want. You can test for an uploaded file by
testing either the filename attribute or the file attribute. You can then read the data at leisure from the file
attribute:

fileitem = form["userfile"]
if fileitem.file:

It’s an uploaded file; count lines

752 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

linecount = 0
while True:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

If an error is encountered when obtaining the contents of an uploaded file (for example, when the user interrupts
the form submission by clicking on a Back or Cancel button) the done attribute of the object for the field will be
set to the value -1.

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-like FieldStorage item. This can
be determined by testing its type attribute, which should be multipart/form-data (or perhaps another
MIME type matching multipart/*). In this case, it can be iterated over recursively just like the top-level form
object.

When a form is submitted in the “old” format (as the query string or as a single data part of
type application/x-www-form-urlencoded), the items will actually be instances of the class
MiniFieldStorage. In this case, the list, file, and filename attributes are always None.

A form submitted via POST that also has a query string will contain both FieldStorage and
MiniFieldStorage items.

20.2.3 Higher Level Interface

The previous section explains how to read CGI form data using the FieldStorage class. This section describes
a higher level interface which was added to this class to allow one to do it in a more readable and intuitive way. The
interface doesn’t make the techniques described in previous sections obsolete — they are still useful to process
file uploads efficiently, for example.

The interface consists of two simple methods. Using the methods you can process form data in a generic way,
without the need to worry whether only one or more values were posted under one name.

In the previous section, you learned to write following code anytime you expected a user to post more than one
value under one name:

item = form.getvalue("item")
if isinstance(item, list):

The user is requesting more than one item.
else:

The user is requesting only one item.

This situation is common for example when a form contains a group of multiple checkboxes with the same name:

<input type="checkbox" name="item" value="1" />
<input type="checkbox" name="item" value="2" />

In most situations, however, there’s only one form control with a particular name in a form and then you expect
and need only one value associated with this name. So you write a script containing for example this code:

user = form.getvalue("user").upper()

The problem with the code is that you should never expect that a client will provide valid input to your scripts.
For example, if a curious user appends another user=foo pair to the query string, then the script would
crash, because in this situation the getvalue("user") method call returns a list instead of a string. Call-
ing the upper() method on a list is not valid (since lists do not have a method of this name) and results in an
AttributeError exception.

Therefore, the appropriate way to read form data values was to always use the code which checks whether the
obtained value is a single value or a list of values. That’s annoying and leads to less readable scripts.

A more convenient approach is to use the methods getfirst() and getlist() provided by this higher level
interface.

20.2. cgi — Common Gateway Interface support 753

The Python Library Reference, Release 3.2

FieldStorage.getfirst(name, default=None)
This method always returns only one value associated with form field name. The method returns only the
first value in case that more values were posted under such name. Please note that the order in which the
values are received may vary from browser to browser and should not be counted on. 2 If no such form field
or value exists then the method returns the value specified by the optional parameter default. This parameter
defaults to None if not specified.

FieldStorage.getlist(name)
This method always returns a list of values associated with form field name. The method returns an empty
list if no such form field or value exists for name. It returns a list consisting of one item if only one such
value exists.

Using these methods you can write nice compact code:

import cgi
form = cgi.FieldStorage()
user = form.getfirst("user", "").upper() # This way it’s safe.
for item in form.getlist("item"):

do_something(item)

20.2.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

cgi.parse(fp=None, environ=os.environ, keep_blank_values=False, strict_parsing=False)
Parse a query in the environment or from a file (the file defaults to sys.stdin). The keep_blank_values
and strict_parsing parameters are passed to urllib.parse.parse_qs() unchanged.

cgi.parse_qs(qs, keep_blank_values=False, strict_parsing=False)
This function is deprecated in this module. Use urllib.parse.parse_qs() instead. It is maintained
here only for backward compatibility.

cgi.parse_qsl(qs, keep_blank_values=False, strict_parsing=False)
This function is deprecated in this module. Use urllib.parse.parse_qs() instead. It is maintained
here only for backward compatibility.

cgi.parse_multipart(fp, pdict)
Parse input of type multipart/form-data (for file uploads). Arguments are fp for the input file and
pdict for a dictionary containing other parameters in the Content-Type header.

Returns a dictionary just like urllib.parse.parse_qs() keys are the field names, each value is a list
of values for that field. This is easy to use but not much good if you are expecting megabytes to be uploaded
— in that case, use the FieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — use FieldStorage for that.

cgi.parse_header(string)
Parse a MIME header (such as Content-Type) into a main value and a dictionary of parameters.

cgi.test()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the script in HTML form.

cgi.print_environ()
Format the shell environment in HTML.

cgi.print_form(form)
Format a form in HTML.

cgi.print_directory()
Format the current directory in HTML.

2 Note that some recent versions of the HTML specification do state what order the field values should be supplied in, but knowing whether
a request was received from a conforming browser, or even from a browser at all, is tedious and error-prone.

754 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

cgi.print_environ_usage()
Print a list of useful (used by CGI) environment variables in HTML.

cgi.escape(s, quote=False)
Convert the characters ’&’, ’<’ and ’>’ in string s to HTML-safe sequences. Use this if you need
to display text that might contain such characters in HTML. If the optional flag quote is true, the quota-
tion mark character (") is also translated; this helps for inclusion in an HTML attribute value delimited
by double quotes, as in . Note that single quotes are never translated. Deprecated
since version 3.2: This function is unsafe because quote is false by default, and therefore deprecated. Use
html.escape() instead.

20.2.5 Caring about security

There’s one important rule: if you invoke an external program (via the os.system() or os.popen() func-
tions. or others with similar functionality), make very sure you don’t pass arbitrary strings received from the client
to the shell. This is a well-known security hole whereby clever hackers anywhere on the Web can exploit a gullible
CGI script to invoke arbitrary shell commands. Even parts of the URL or field names cannot be trusted, since the
request doesn’t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only alphanumeric characters, dashes, underscores, and periods.

20.2.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGI scripts should be installed; usually this is in a directory cgi-bin in the server tree.

Make sure that your script is readable and executable by “others”; the Unix file mode should be 0o755 octal (use
chmod 0755 filename). Make sure that the first line of the script contains #! starting in column 1 followed
by the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others” —
their mode should be 0o644 for readable and 0o666 for writable. This is because, for security reasons, the HTTP
server executes your script as user “nobody”, without any special privileges. It can only read (write, execute) files
that everybody can read (write, execute). The current directory at execution time is also different (it is usually the
server’s cgi-bin directory) and the set of environment variables is also different from what you get when you log
in. In particular, don’t count on the shell’s search path for executables (PATH) or the Python module search path
(PYTHONPATH) to be set to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can change
the path in your script, before importing other modules. For example:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-Unix systems will vary; check your HTTP server’s documentation (it will usually have a
section on CGI scripts).

20.2.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There’s one reason why you
should still test your script from the command line: if it contains a syntax error, the Python interpreter won’t
execute it at all, and the HTTP server will most likely send a cryptic error to the client.

20.2. cgi — Common Gateway Interface support 755

The Python Library Reference, Release 3.2

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section.

20.2.8 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script carefully
can save you a lot of time. If you wonder whether you have understood the installation procedure correctly, try
installing a copy of this module file (cgi.py) as a CGI script. When invoked as a script, the file will dump its
environment and the contents of the form in HTML form. Give it the right mode etc, and send it a request. If it’s
installed in the standard cgi-bin directory, it should be possible to send it a request by entering a URL into your
browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a different
directory. If it gives another error, there’s an installation problem that you should fix before trying to go any
further. If you get a nicely formatted listing of the environment and form content (in this example, the fields
should be listed as “addr” with value “At Home” and “name” with value “Joe Blow”), the cgi.py script has been
installed correctly. If you follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call the cgi module’s test() function from your script: replace its main code with
the single statement

cgi.test()

This should produce the same results as those gotten from installing the cgi.py file itself.

When an ordinary Python script raises an unhandled exception (for whatever reason: of a typo in a module name, a
file that can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter
will still do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP
server’s log files, or be discarded altogether.

Fortunately, once you have managed to get your script to execute some code, you can easily send tracebacks to the
Web browser using the cgitb module. If you haven’t done so already, just add the lines:

import cgitb
cgitb.enable()

to the top of your script. Then try running it again; when a problem occurs, you should see a detailed report that
will likely make apparent the cause of the crash.

If you suspect that there may be a problem in importing the cgitb module, you can use an even more robust
approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print("Content-Type: text/plain")
print()
...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text,
which disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it
raises an exception, most likely after the first two lines have been printed, a traceback will be displayed. Because
no HTML interpretation is going on, the traceback will be readable.

20.2.9 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is
not possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (tail -f logfile in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like python script.py.

756 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

• If your script does not have any syntax errors, try adding import cgitb; cgitb.enable() to the
top of the script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute path
names — PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by the userid under which
your CGI script will be running: this is typically the userid under which the web server is running, or some
explicitly specified userid for a web server’s suexec feature.

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security liability
as well.

20.3 cgitb — Traceback manager for CGI scripts

The cgitb module provides a special exception handler for Python scripts. (Its name is a bit misleading. It was
originally designed to display extensive traceback information in HTML for CGI scripts. It was later generalized
to also display this information in plain text.) After this module is activated, if an uncaught exception occurs, a
detailed, formatted report will be displayed. The report includes a traceback showing excerpts of the source code
for each level, as well as the values of the arguments and local variables to currently running functions, to help
you debug the problem. Optionally, you can save this information to a file instead of sending it to the browser.

To enable this feature, simply add this to the top of your CGI script:

import cgitb
cgitb.enable()

The options to the enable() function control whether the report is displayed in the browser and whether the
report is logged to a file for later analysis.

cgitb.enable(display=1, logdir=None, context=5, format=”html”)
This function causes the cgitb module to take over the interpreter’s default handling for exceptions by
setting the value of sys.excepthook.

The optional argument display defaults to 1 and can be set to 0 to suppress sending the traceback to the
browser. If the argument logdir is present, the traceback reports are written to files. The value of logdir
should be a directory where these files will be placed. The optional argument context is the number of
lines of context to display around the current line of source code in the traceback; this defaults to 5. If the
optional argument format is "html", the output is formatted as HTML. Any other value forces plain text
output. The default value is "html".

cgitb.handler(info=None)
This function handles an exception using the default settings (that is, show a report in the browser, but don’t
log to a file). This can be used when you’ve caught an exception and want to report it using cgitb. The
optional info argument should be a 3-tuple containing an exception type, exception value, and traceback
object, exactly like the tuple returned by sys.exc_info(). If the info argument is not supplied, the
current exception is obtained from sys.exc_info().

20.4 wsgiref — WSGI Utilities and Reference Implementation

The Web Server Gateway Interface (WSGI) is a standard interface between web server software and web applica-
tions written in Python. Having a standard interface makes it easy to use an application that supports WSGI with
a number of different web servers.

Only authors of web servers and programming frameworks need to know every detail and corner case of the WSGI
design. You don’t need to understand every detail of WSGI just to install a WSGI application or to write a web
application using an existing framework.

wsgiref is a reference implementation of the WSGI specification that can be used to add WSGI support to a
web server or framework. It provides utilities for manipulating WSGI environment variables and response headers,

20.3. cgitb — Traceback manager for CGI scripts 757

The Python Library Reference, Release 3.2

base classes for implementing WSGI servers, a demo HTTP server that serves WSGI applications, and a validation
tool that checks WSGI servers and applications for conformance to the WSGI specification (PEP 3333).

See http://www.wsgi.org for more information about WSGI, and links to tutorials and other resources.

20.4.1 wsgiref.util – WSGI environment utilities

This module provides a variety of utility functions for working with WSGI environments. A WSGI environment is
a dictionary containing HTTP request variables as described in PEP 3333. All of the functions taking an environ
parameter expect a WSGI-compliant dictionary to be supplied; please see

PEP 3333 for a detailed specification.

wsgiref.util.guess_scheme(environ)
Return a guess for whether wsgi.url_scheme should be “http” or “https”, by checking for a HTTPS
environment variable in the environ dictionary. The return value is a string.

This function is useful when creating a gateway that wraps CGI or a CGI-like protocol such as FastCGI.
Typically, servers providing such protocols will include a HTTPS variable with a value of “1” “yes”, or
“on” when a request is received via SSL. So, this function returns “https” if such a value is found, and
“http” otherwise.

wsgiref.util.request_uri(environ, include_query=True)
Return the full request URI, optionally including the query string, using the algorithm found in the “URL
Reconstruction” section of PEP 3333. If include_query is false, the query string is not included in the
resulting URI.

wsgiref.util.application_uri(environ)
Similar to request_uri(), except that the PATH_INFO and QUERY_STRING variables are ignored.
The result is the base URI of the application object addressed by the request.

wsgiref.util.shift_path_info(environ)
Shift a single name from PATH_INFO to SCRIPT_NAME and return the name. The environ dictionary is
modified in-place; use a copy if you need to keep the original PATH_INFO or SCRIPT_NAME intact.

If there are no remaining path segments in PATH_INFO, None is returned.

Typically, this routine is used to process each portion of a request URI path, for example to treat the path
as a series of dictionary keys. This routine modifies the passed-in environment to make it suitable for
invoking another WSGI application that is located at the target URI. For example, if there is a WSGI
application at /foo, and the request URI path is /foo/bar/baz, and the WSGI application at /foo
calls shift_path_info(), it will receive the string “bar”, and the environment will be updated to be
suitable for passing to a WSGI application at /foo/bar. That is, SCRIPT_NAME will change from /foo
to /foo/bar, and PATH_INFO will change from /bar/baz to /baz.

When PATH_INFO is just a “/”, this routine returns an empty string and appends a trailing slash to
SCRIPT_NAME, even though empty path segments are normally ignored, and SCRIPT_NAME doesn’t
normally end in a slash. This is intentional behavior, to ensure that an application can tell the difference
between URIs ending in /x from ones ending in /x/ when using this routine to do object traversal.

wsgiref.util.setup_testing_defaults(environ)
Update environ with trivial defaults for testing purposes.

This routine adds various parameters required for WSGI, including HTTP_HOST, SERVER_NAME,
SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME, PATH_INFO, and all of the PEP 3333-defined
wsgi.* variables. It only supplies default values, and does not replace any existing settings for these
variables.

This routine is intended to make it easier for unit tests of WSGI servers and applications to set up dummy
environments. It should NOT be used by actual WSGI servers or applications, since the data is fake!

Example usage:

758 Chapter 20. Internet Protocols and Support

http://www.python.org/dev/peps/pep-3333
http://www.wsgi.org
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.2

from wsgiref.util import setup_testing_defaults
from wsgiref.simple_server import make_server

A relatively simple WSGI application. It’s going to print out the
environment dictionary after being updated by setup_testing_defaults
def simple_app(environ, start_response):

setup_testing_defaults(environ)

status = b’200 OK’
headers = [(b’Content-type’, b’text/plain; charset=utf-8’)]

start_response(status, headers)

ret = [("%s: %s\n" % (key, value)).encode("utf-8")
for key, value in environ.items()]

return ret

httpd = make_server(’’, 8000, simple_app)
print("Serving on port 8000...")
httpd.serve_forever()

In addition to the environment functions above, the wsgiref.util module also provides these miscellaneous
utilities:

wsgiref.util.is_hop_by_hop(header_name)
Return true if ‘header_name’ is an HTTP/1.1 “Hop-by-Hop” header, as defined by

RFC 2616.

class wsgiref.util.FileWrapper(filelike, blksize=8192)
A wrapper to convert a file-like object to an iterator. The resulting objects support both __getitem__()
and __iter__() iteration styles, for compatibility with Python 2.1 and Jython. As the object is iter-
ated over, the optional blksize parameter will be repeatedly passed to the filelike object’s read() method
to obtain bytestrings to yield. When read() returns an empty bytestring, iteration is ended and is not
resumable.

If filelike has a close() method, the returned object will also have a close() method, and it will invoke
the filelike object’s close() method when called.

Example usage:

from io import StringIO
from wsgiref.util import FileWrapper

We’re using a StringIO-buffer for as the file-like object
filelike = StringIO("This is an example file-like object"*10)
wrapper = FileWrapper(filelike, blksize=5)

for chunk in wrapper:
print(chunk)

20.4.2 wsgiref.headers – WSGI response header tools

This module provides a single class, Headers, for convenient manipulation of WSGI response headers using a
mapping-like interface.

class wsgiref.headers.Headers(headers)
Create a mapping-like object wrapping headers, which must be a list of header name/value tuples as de-
scribed in PEP 3333.

20.4. wsgiref — WSGI Utilities and Reference Implementation 759

http://tools.ietf.org/html/rfc2616.html
http://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.2

Headers objects support typical mapping operations including __getitem__(), get(),
__setitem__(), setdefault(), __delitem__() and __contains__(). For each of these
methods, the key is the header name (treated case-insensitively), and the value is the first value associated
with that header name. Setting a header deletes any existing values for that header, then adds a new value at
the end of the wrapped header list. Headers’ existing order is generally maintained, with new headers added
to the end of the wrapped list.

Unlike a dictionary, Headers objects do not raise an error when you try to get or delete a key that isn’t in
the wrapped header list. Getting a nonexistent header just returns None, and deleting a nonexistent header
does nothing.

Headers objects also support keys(), values(), and items() methods. The lists returned by
keys() and items() can include the same key more than once if there is a multi-valued header. The
len() of a Headers object is the same as the length of its items(), which is the same as the length of
the wrapped header list. In fact, the items() method just returns a copy of the wrapped header list.

Calling bytes() on a Headers object returns a formatted bytestring suitable for transmission as HTTP
response headers. Each header is placed on a line with its value, separated by a colon and a space. Each
line is terminated by a carriage return and line feed, and the bytestring is terminated with a blank line.

In addition to their mapping interface and formatting features, Headers objects also have the following
methods for querying and adding multi-valued headers, and for adding headers with MIME parameters:

get_all(name)
Return a list of all the values for the named header.

The returned list will be sorted in the order they appeared in the original header list or were added to
this instance, and may contain duplicates. Any fields deleted and re-inserted are always appended to
the header list. If no fields exist with the given name, returns an empty list.

add_header(name, value, **_params)
Add a (possibly multi-valued) header, with optional MIME parameters specified via keyword argu-
ments.

name is the header field to add. Keyword arguments can be used to set MIME parameters for the
header field. Each parameter must be a string or None. Underscores in parameter names are converted
to dashes, since dashes are illegal in Python identifiers, but many MIME parameter names include
dashes. If the parameter value is a string, it is added to the header value parameters in the form
name="value". If it is None, only the parameter name is added. (This is used for MIME parameters
without a value.) Example usage:

h.add_header(’content-disposition’, ’attachment’, filename=’bud.gif’)

The above will add a header that looks like this:

Content-Disposition: attachment; filename="bud.gif"

20.4.3 wsgiref.simple_server – a simple WSGI HTTP server

This module implements a simple HTTP server (based on http.server) that serves WSGI applications. Each
server instance serves a single WSGI application on a given host and port. If you want to serve multiple appli-
cations on a single host and port, you should create a WSGI application that parses PATH_INFO to select which
application to invoke for each request. (E.g., using the shift_path_info() function from wsgiref.util.)

wsgiref.simple_server.make_server(host, port, app, server_class=WSGIServer, han-
dler_class=WSGIRequestHandler)

Create a new WSGI server listening on host and port, accepting connections for app. The return value is an
instance of the supplied server_class, and will process requests using the specified handler_class. app must
be a WSGI application object, as defined by PEP 3333.

Example usage:

760 Chapter 20. Internet Protocols and Support

http://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.2

from wsgiref.simple_server import make_server, demo_app

httpd = make_server(’’, 8000, demo_app)
print("Serving HTTP on port 8000...")

Respond to requests until process is killed
httpd.serve_forever()

Alternative: serve one request, then exit
httpd.handle_request()

wsgiref.simple_server.demo_app(environ, start_response)
This function is a small but complete WSGI application that returns a text page containing the message
“Hello world!” and a list of the key/value pairs provided in the environ parameter. It’s useful for verifying
that a WSGI server (such as wsgiref.simple_server) is able to run a simple WSGI application
correctly.

class wsgiref.simple_server.WSGIServer(server_address, RequestHandlerClass)
Create a WSGIServer instance. server_address should be a (host,port) tuple, and RequestHandler-
Class should be the subclass of http.server.BaseHTTPRequestHandler that will be used to pro-
cess requests.

You do not normally need to call this constructor, as the make_server() function can handle all the
details for you.

WSGIServer is a subclass of http.server.HTTPServer, so all of its methods (such as
serve_forever() and handle_request()) are available. WSGIServer also provides these
WSGI-specific methods:

set_app(application)
Sets the callable application as the WSGI application that will receive requests.

get_app()
Returns the currently-set application callable.

Normally, however, you do not need to use these additional methods, as set_app() is normally called by
make_server(), and the get_app() exists mainly for the benefit of request handler instances.

class wsgiref.simple_server.WSGIRequestHandler(request, client_address, server)
Create an HTTP handler for the given request (i.e. a socket), client_address (a (host,port) tuple), and
server (WSGIServer instance).

You do not need to create instances of this class directly; they are automatically created as needed by
WSGIServer objects. You can, however, subclass this class and supply it as a handler_class to the
make_server() function. Some possibly relevant methods for overriding in subclasses:

get_environ()
Returns a dictionary containing the WSGI environment for a request. The default implementation
copies the contents of the WSGIServer object’s base_environ dictionary attribute and then adds
various headers derived from the HTTP request. Each call to this method should return a new dictio-
nary containing all of the relevant CGI environment variables as specified in

PEP 3333.

get_stderr()
Return the object that should be used as the wsgi.errors stream. The default implementation just
returns sys.stderr.

handle()
Process the HTTP request. The default implementation creates a handler instance using a
wsgiref.handlers class to implement the actual WSGI application interface.

20.4. wsgiref — WSGI Utilities and Reference Implementation 761

http://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.2

20.4.4 wsgiref.validate — WSGI conformance checker

When creating new WSGI application objects, frameworks, servers, or middleware, it can be useful to validate
the new code’s conformance using wsgiref.validate. This module provides a function that creates WSGI
application objects that validate communications between a WSGI server or gateway and a WSGI application
object, to check both sides for protocol conformance.

Note that this utility does not guarantee complete PEP 3333 compliance; an absence of errors from this module
does not necessarily mean that errors do not exist. However, if this module does produce an error, then it is
virtually certain that either the server or application is not 100% compliant.

This module is based on the paste.lint module from Ian Bicking’s “Python Paste” library.

wsgiref.validate.validator(application)
Wrap application and return a new WSGI application object. The returned application will forward all
requests to the original application, and will check that both the application and the server invoking it are
conforming to the WSGI specification and to RFC 2616.

Any detected nonconformance results in an AssertionError being raised; note, however, that how
these errors are handled is server-dependent. For example, wsgiref.simple_server and other servers
based on wsgiref.handlers (that don’t override the error handling methods to do something else) will
simply output a message that an error has occurred, and dump the traceback to sys.stderr or some other
error stream.

This wrapper may also generate output using the warnings module to indicate behaviors that are ques-
tionable but which may not actually be prohibited by PEP 3333. Unless they are suppressed using Python
command-line options or the warnings API, any such warnings will be written to sys.stderr (not
wsgi.errors, unless they happen to be the same object).

Example usage:

from wsgiref.validate import validator
from wsgiref.simple_server import make_server

Our callable object which is intentionally not compliant to the
standard, so the validator is going to break
def simple_app(environ, start_response):

status = b’200 OK’ # HTTP Status
headers = [(b’Content-type’, b’text/plain’)] # HTTP Headers
start_response(status, headers)

This is going to break because we need to return a list, and
the validator is going to inform us
return b"Hello World"

This is the application wrapped in a validator
validator_app = validator(simple_app)

httpd = make_server(’’, 8000, validator_app)
print("Listening on port 8000....")
httpd.serve_forever()

20.4.5 wsgiref.handlers – server/gateway base classes

This module provides base handler classes for implementing WSGI servers and gateways. These base classes
handle most of the work of communicating with a WSGI application, as long as they are given a CGI-like envi-
ronment, along with input, output, and error streams.

class wsgiref.handlers.CGIHandler
CGI-based invocation via sys.stdin, sys.stdout, sys.stderr and os.environ. This is

762 Chapter 20. Internet Protocols and Support

http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.2

useful when you have a WSGI application and want to run it as a CGI script. Simply invoke
CGIHandler().run(app), where app is the WSGI application object you wish to invoke.

This class is a subclass of BaseCGIHandler that sets wsgi.run_once to true, wsgi.multithread
to false, and wsgi.multiprocess to true, and always uses sys and os to obtain the necessary CGI
streams and environment.

class wsgiref.handlers.IISCGIHandler
A specialized alternative to CGIHandler, for use when deploying on Microsoft’s IIS web server, without
having set the config allowPathInfo option (IIS>=7) or metabase allowPathInfoForScriptMappings (IIS<7).

By default, IIS gives a PATH_INFO that duplicates the SCRIPT_NAME at the front, causing problems for
WSGI applications that wish to implement routing. This handler strips any such duplicated path.

IIS can be configured to pass the correct PATH_INFO, but this causes another bug where
PATH_TRANSLATED is wrong. Luckily this variable is rarely used and is not guaranteed by WSGI. On
IIS<7, though, the setting can only be made on a vhost level, affecting all other script mappings, many of
which break when exposed to the PATH_TRANSLATED bug. For this reason IIS<7 is almost never deployed
with the fix. (Even IIS7 rarely uses it because there is still no UI for it.)

There is no way for CGI code to tell whether the option was set, so a separate handler class is provided. It
is used in the same way as CGIHandler, i.e., by calling IISCGIHandler().run(app), where app
is the WSGI application object you wish to invoke. New in version 3.2.

class wsgiref.handlers.BaseCGIHandler(stdin, stdout, stderr, environ, multithread=True, mul-
tiprocess=False)

Similar to CGIHandler, but instead of using the sys and os modules, the CGI environment and
I/O streams are specified explicitly. The multithread and multiprocess values are used to set the
wsgi.multithread and wsgi.multiprocess flags for any applications run by the handler instance.

This class is a subclass of SimpleHandler intended for use with software other than HTTP “ori-
gin servers”. If you are writing a gateway protocol implementation (such as CGI, FastCGI, SCGI, etc.)
that uses a Status: header to send an HTTP status, you probably want to subclass this instead of
SimpleHandler.

class wsgiref.handlers.SimpleHandler(stdin, stdout, stderr, environ, multithread=True, multi-
process=False)

Similar to BaseCGIHandler, but designed for use with HTTP origin servers. If you are writing an HTTP
server implementation, you will probably want to subclass this instead of BaseCGIHandler

This class is a subclass of BaseHandler. It overrides the __init__(), get_stdin(),
get_stderr(), add_cgi_vars(), _write(), and _flush() methods to support explicitly set-
ting the environment and streams via the constructor. The supplied environment and streams are stored in
the stdin, stdout, stderr, and environ attributes.

class wsgiref.handlers.BaseHandler
This is an abstract base class for running WSGI applications. Each instance will handle a single HTTP
request, although in principle you could create a subclass that was reusable for multiple requests.

BaseHandler instances have only one method intended for external use:

run(app)
Run the specified WSGI application, app.

All of the other BaseHandler methods are invoked by this method in the process of running the applica-
tion, and thus exist primarily to allow customizing the process.

The following methods MUST be overridden in a subclass:

_write(data)
Buffer the bytes data for transmission to the client. It’s okay if this method actually transmits the data;
BaseHandler just separates write and flush operations for greater efficiency when the underlying
system actually has such a distinction.

_flush()
Force buffered data to be transmitted to the client. It’s okay if this method is a no-op (i.e., if

20.4. wsgiref — WSGI Utilities and Reference Implementation 763

The Python Library Reference, Release 3.2

_write() actually sends the data).

get_stdin()
Return an input stream object suitable for use as the wsgi.input of the request currently being
processed.

get_stderr()
Return an output stream object suitable for use as the wsgi.errors of the request currently being
processed.

add_cgi_vars()
Insert CGI variables for the current request into the environ attribute.

Here are some other methods and attributes you may wish to override. This list is only a summary, however,
and does not include every method that can be overridden. You should consult the docstrings and source
code for additional information before attempting to create a customized BaseHandler subclass.

Attributes and methods for customizing the WSGI environment:

wsgi_multithread
The value to be used for the wsgi.multithread environment variable. It defaults to true in
BaseHandler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_multiprocess
The value to be used for the wsgi.multiprocess environment variable. It defaults to true in
BaseHandler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_run_once
The value to be used for the wsgi.run_once environment variable. It defaults to false in
BaseHandler, but CGIHandler sets it to true by default.

os_environ
The default environment variables to be included in every request’s WSGI environment. By default,
this is a copy of os.environ at the time that wsgiref.handlers was imported, but subclasses
can either create their own at the class or instance level. Note that the dictionary should be considered
read-only, since the default value is shared between multiple classes and instances.

server_software
If the origin_server attribute is set, this attribute’s value is used to set the default
SERVER_SOFTWARE WSGI environment variable, and also to set a default Server: header in
HTTP responses. It is ignored for handlers (such as BaseCGIHandler and CGIHandler) that are
not HTTP origin servers.

get_scheme()
Return the URL scheme being used for the current request. The default implementation uses the
guess_scheme() function from wsgiref.util to guess whether the scheme should be “http”
or “https”, based on the current request’s environ variables.

setup_environ()
Set the environ attribute to a fully-populated WSGI environment. The default implementa-
tion uses all of the above methods and attributes, plus the get_stdin(), get_stderr(),
and add_cgi_vars() methods and the wsgi_file_wrapper attribute. It also inserts a
SERVER_SOFTWARE key if not present, as long as the origin_server attribute is a true value
and the server_software attribute is set.

Methods and attributes for customizing exception handling:

log_exception(exc_info)
Log the exc_info tuple in the server log. exc_info is a (type, value, traceback) tuple. The
default implementation simply writes the traceback to the request’s wsgi.errors stream and flushes
it. Subclasses can override this method to change the format or retarget the output, mail the traceback
to an administrator, or whatever other action may be deemed suitable.

traceback_limit
The maximum number of frames to include in tracebacks output by the default log_exception()
method. If None, all frames are included.

764 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

error_output(environ, start_response)
This method is a WSGI application to generate an error page for the user. It is only invoked if an error
occurs before headers are sent to the client.

This method can access the current error information using sys.exc_info(), and should pass that
information to start_response when calling it (as described in the “Error Handling” section of PEP
3333).

The default implementation just uses the error_status, error_headers, and error_body
attributes to generate an output page. Subclasses can override this to produce more dynamic error
output.

Note, however, that it’s not recommended from a security perspective to spit out diagnostics to any old
user; ideally, you should have to do something special to enable diagnostic output, which is why the
default implementation doesn’t include any.

error_status
The HTTP status used for error responses. This should be a status string as defined in PEP 3333; it
defaults to a 500 code and message.

error_headers
The HTTP headers used for error responses. This should be a list of WSGI response headers
((name, value) tuples), as described in PEP 3333. The default list just sets the content type
to text/plain.

error_body
The error response body. This should be an HTTP response body bytestring. It defaults to the plain
text, “A server error occurred. Please contact the administrator.”

Methods and attributes for PEP 3333‘s “Optional Platform-Specific File Handling” feature:

wsgi_file_wrapper
A wsgi.file_wrapper factory, or None. The default value of this attribute is the FileWrapper
class from wsgiref.util.

sendfile()
Override to implement platform-specific file transmission. This method is called only if the appli-
cation’s return value is an instance of the class specified by the wsgi_file_wrapper attribute. It
should return a true value if it was able to successfully transmit the file, so that the default transmission
code will not be executed. The default implementation of this method just returns a false value.

Miscellaneous methods and attributes:

origin_server
This attribute should be set to a true value if the handler’s _write() and _flush() are being used
to communicate directly to the client, rather than via a CGI-like gateway protocol that wants the HTTP
status in a special Status: header.

This attribute’s default value is true in BaseHandler, but false in BaseCGIHandler and
CGIHandler.

http_version
If origin_server is true, this string attribute is used to set the HTTP version of the response set
to the client. It defaults to "1.0".

wsgiref.handlers.read_environ()
Transcode CGI variables from os.environ to PEP 3333 “bytes in unicode” strings, returning a new
dictionary. This function is used by CGIHandler and IISCGIHandler in place of directly using
os.environ, which is not necessarily WSGI-compliant on all platforms and web servers using Python 3
– specifically, ones where the OS’s actual environment is Unicode (i.e. Windows), or ones where the envi-
ronment is bytes, but the system encoding used by Python to decode it is anything other than ISO-8859-1
(e.g. Unix systems using UTF-8).

If you are implementing a CGI-based handler of your own, you probably want to use this routine instead of
just copying values out of os.environ directly. New in version 3.2.

20.4. wsgiref — WSGI Utilities and Reference Implementation 765

http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.2

20.4.6 Examples

This is a working “Hello World” WSGI application:

from wsgiref.simple_server import make_server

Every WSGI application must have an application object - a callable
object that accepts two arguments. For that purpose, we’re going to
use a function (note that you’re not limited to a function, you can
use a class for example). The first argument passed to the function
is a dictionary containing CGI-style envrironment variables and the
second variable is the callable object (see PEP 333).
def hello_world_app(environ, start_response):

status = b’200 OK’ # HTTP Status
headers = [(b’Content-type’, b’text/plain; charset=utf-8’)] # HTTP Headers
start_response(status, headers)

The returned object is going to be printed
return [b"Hello World"]

httpd = make_server(’’, 8000, hello_world_app)
print("Serving on port 8000...")

Serve until process is killed
httpd.serve_forever()

20.5 urllib.request — Extensible library for opening URLs

The urllib.request module defines functions and classes which help in opening URLs (mostly HTTP) in a
complex world — basic and digest authentication, redirections, cookies and more.

The urllib.request module defines the following functions:

urllib.request.urlopen(url, data=None[, timeout], *, cafile=None, capath=None)
Open the URL url, which can be either a string or a Request object.

data may be a bytes object specifying additional data to send to the server, or None if no such data is
needed. data may also be an iterable object and in that case Content-Length value must be specified
in the headers. Currently HTTP requests are the only ones that use data; the HTTP request will be a
POST instead of a GET when the data parameter is provided. data should be a buffer in the standard
application/x-www-form-urlencoded format. The urllib.parse.urlencode() func-
tion takes a mapping or sequence of 2-tuples and returns a string in this format. urllib.request module
uses HTTP/1.1 and includes Connection:close header in its HTTP requests.

The optional timeout parameter specifies a timeout in seconds for blocking operations like the connection
attempt (if not specified, the global default timeout setting will be used). This actually only works for HTTP,
HTTPS and FTP connections.

The optional cafile and capath parameters specify a set of trusted CA certificates for HTTPS re-
quests. cafile should point to a single file containing a bundle of CA certificates, whereas ca-
path should point to a directory of hashed certificate files. More information can be found in
ssl.SSLContext.load_verify_locations().

Warning: If neither cafile nor capath is specified, an HTTPS request will not do any verification of the
server’s certificate.

This function returns a file-like object with two additional methods from the urllib.response module

•geturl() — return the URL of the resource retrieved, commonly used to determine if a redirect
was followed

766 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

•info() — return the meta-information of the page, such as headers, in the form of an
email.message_from_string() instance (see Quick Reference to HTTP Headers)

Raises URLError on errors.

Note that None may be returned if no handler handles the request (though the default installed global
OpenerDirector uses UnknownHandler to ensure this never happens).

In addition, default installed ProxyHandler makes sure the requests are handled through the proxy when
they are set.

The legacy urllib.urlopen function from Python 2.6 and earlier has been discontinued; urlopen()
corresponds to the old urllib2.urlopen. Proxy handling, which was done by passing a dictionary
parameter to urllib.urlopen, can be obtained by using ProxyHandler objects. Changed in version
3.2: cafile and capath were added.Changed in version 3.2: HTTPS virtual hosts are now supported if
possible (that is, if ssl.HAS_SNI is true).New in version 3.2: data can be an iterable object.

urllib.request.install_opener(opener)
Install an OpenerDirector instance as the default global opener. Installing an opener is only necessary
if you want urlopen to use that opener; otherwise, simply call OpenerDirector.open() instead of
urlopen(). The code does not check for a real OpenerDirector, and any class with the appropriate
interface will work.

urllib.request.build_opener([handler, ...])
Return an OpenerDirector instance, which chains the handlers in the order given. handlers can be
either instances of BaseHandler, or subclasses of BaseHandler (in which case it must be possible
to call the constructor without any parameters). Instances of the following classes will be in front of the
handlers, unless the handlers contain them, instances of them or subclasses of them: ProxyHandler,
UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler, HTTPRedirectHandler,
FTPHandler, FileHandler, HTTPErrorProcessor.

If the Python installation has SSL support (i.e., if the ssl module can be imported), HTTPSHandler will
also be added.

A BaseHandler subclass may also change its handler_order member variable to modify its position
in the handlers list.

urllib.request.pathname2url(path)
Convert the pathname path from the local syntax for a path to the form used in the path component of a
URL. This does not produce a complete URL. The return value will already be quoted using the quote()
function.

urllib.request.url2pathname(path)
Convert the path component path from a percent-encoded URL to the local syntax for a path. This does not
accept a complete URL. This function uses unquote() to decode path.

urllib.request.getproxies()
This helper function returns a dictionary of scheme to proxy server URL mappings. It scans the environment
for variables named <scheme>_proxy for all operating systems first, and when it cannot find it, looks
for proxy information from Mac OSX System Configuration for Mac OS X and Windows Systems Registry
for Windows.

The following classes are provided:

class urllib.request.Request(url, data=None, headers={}, origin_req_host=None, unverifi-
able=False)

This class is an abstraction of a URL request.

url should be a string containing a valid URL.

data may be a string specifying additional data to send to the server, or None if no such data is
needed. Currently HTTP requests are the only ones that use data; the HTTP request will be a POST
instead of a GET when the data parameter is provided. data should be a buffer in the standard
application/x-www-form-urlencoded format. The urllib.parse.urlencode() func-
tion takes a mapping or sequence of 2-tuples and returns a string in this format.

20.5. urllib.request — Extensible library for opening URLs 767

http://www.cs.tut.fi/~jkorpela/http.html

The Python Library Reference, Release 3.2

headers should be a dictionary, and will be treated as if add_header() was called with each key
and value as arguments. This is often used to “spoof” the User-Agent header, which is used by
a browser to identify itself – some HTTP servers only allow requests coming from common browsers
as opposed to scripts. For example, Mozilla Firefox may identify itself as "Mozilla/5.0 (X11;
U; Linux i686) Gecko/20071127 Firefox/2.0.0.11", while urllib‘s default user agent
string is "Python-urllib/2.6" (on Python 2.6).

The final two arguments are only of interest for correct handling of third-party HTTP cookies:

origin_req_host should be the request-host of the origin transaction, as defined by RFC 2965. It defaults
to http.cookiejar.request_host(self). This is the host name or IP address of the original
request that was initiated by the user. For example, if the request is for an image in an HTML document,
this should be the request-host of the request for the page containing the image.

unverifiable should indicate whether the request is unverifiable, as defined by RFC 2965. It defaults to False.
An unverifiable request is one whose URL the user did not have the option to approve. For example, if the
request is for an image in an HTML document, and the user had no option to approve the automatic fetching
of the image, this should be true.

class urllib.request.OpenerDirector
The OpenerDirector class opens URLs via BaseHandlers chained together. It manages the chaining
of handlers, and recovery from errors.

class urllib.request.BaseHandler
This is the base class for all registered handlers — and handles only the simple mechanics of registration.

class urllib.request.HTTPDefaultErrorHandler
A class which defines a default handler for HTTP error responses; all responses are turned into HTTPError
exceptions.

class urllib.request.HTTPRedirectHandler
A class to handle redirections.

class urllib.request.HTTPCookieProcessor(cookiejar=None)
A class to handle HTTP Cookies.

class urllib.request.ProxyHandler(proxies=None)
Cause requests to go through a proxy. If proxies is given, it must be a dictionary mapping protocol
names to URLs of proxies. The default is to read the list of proxies from the environment variables
<protocol>_proxy. If no proxy environment variables are set, in a Windows environment, proxy
settings are obtained from the registry’s Internet Settings section and in a Mac OS X environment, proxy
information is retrieved from the OS X System Configuration Framework.

To disable autodetected proxy pass an empty dictionary.

class urllib.request.HTTPPasswordMgr
Keep a database of (realm, uri) -> (user, password) mappings.

class urllib.request.HTTPPasswordMgrWithDefaultRealm
Keep a database of (realm, uri) -> (user, password) mappings. A realm of None is consid-
ered a catch-all realm, which is searched if no other realm fits.

class urllib.request.AbstractBasicAuthHandler(password_mgr=None)
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy. pass-
word_mgr, if given, should be something that is compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be supported.

class urllib.request.HTTPBasicAuthHandler(password_mgr=None)
Handle authentication with the remote host. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface
that must be supported.

class urllib.request.ProxyBasicAuthHandler(password_mgr=None)
Handle authentication with the proxy. password_mgr, if given, should be something that is compatible with
HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that
must be supported.

768 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2965.html

The Python Library Reference, Release 3.2

class urllib.request.AbstractDigestAuthHandler(password_mgr=None)
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy. pass-
word_mgr, if given, should be something that is compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be supported.

class urllib.request.HTTPDigestAuthHandler(password_mgr=None)
Handle authentication with the remote host. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface
that must be supported.

class urllib.request.ProxyDigestAuthHandler(password_mgr=None)
Handle authentication with the proxy. password_mgr, if given, should be something that is compatible with
HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that
must be supported.

class urllib.request.HTTPHandler
A class to handle opening of HTTP URLs.

class urllib.request.HTTPSHandler(debuglevel=0, context=None, check_hostname=None)
A class to handle opening of HTTPS URLs. context and check_hostname have the same meaning as in
http.client.HTTPSConnection. Changed in version 3.2: context and check_hostname were added.

class urllib.request.FileHandler
Open local files.

class urllib.request.FTPHandler
Open FTP URLs.

class urllib.request.CacheFTPHandler
Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

class urllib.request.UnknownHandler
A catch-all class to handle unknown URLs.

20.5.1 Request Objects

The following methods describe Request‘s public interface, and so all may be overridden in subclasses. It also
defines several public attributes that can be used by clients to inspect the parsed request.

Request.full_url
The original URL passed to the constructor.

Request.type
The URI scheme.

Request.host
The URI authority, typically a host, but may also contain a port separated by a colon.

Request.origin_req_host
The original host for the request, without port.

Request.selector
The URI path. If the Request uses a proxy, then selector will be the full url that is passed to the proxy.

Request.data
The entity body for the request, or None if not specified.

Request.unverifiable
boolean, indicates whether the request is unverifiable as defined by RFC 2965.

Request.add_data(data)
Set the Request data to data. This is ignored by all handlers except HTTP handlers — and there it should
be a byte string, and will change the request to be POST rather than GET.

20.5. urllib.request — Extensible library for opening URLs 769

The Python Library Reference, Release 3.2

Request.get_method()
Return a string indicating the HTTP request method. This is only meaningful for HTTP requests, and
currently always returns ’GET’ or ’POST’.

Request.has_data()
Return whether the instance has a non-None data.

Request.get_data()
Return the instance’s data.

Request.add_header(key, val)
Add another header to the request. Headers are currently ignored by all handlers except HTTP handlers,
where they are added to the list of headers sent to the server. Note that there cannot be more than one header
with the same name, and later calls will overwrite previous calls in case the key collides. Currently, this
is no loss of HTTP functionality, since all headers which have meaning when used more than once have a
(header-specific) way of gaining the same functionality using only one header.

Request.add_unredirected_header(key, header)
Add a header that will not be added to a redirected request.

Request.has_header(header)
Return whether the instance has the named header (checks both regular and unredirected).

Request.get_full_url()
Return the URL given in the constructor.

Request.get_type()
Return the type of the URL — also known as the scheme.

Request.get_host()
Return the host to which a connection will be made.

Request.get_selector()
Return the selector — the part of the URL that is sent to the server.

Request.set_proxy(host, type)
Prepare the request by connecting to a proxy server. The host and type will replace those of the instance,
and the instance’s selector will be the original URL given in the constructor.

Request.get_origin_req_host()
Return the request-host of the origin transaction, as defined by RFC 2965. See the documentation for the
Request constructor.

Request.is_unverifiable()
Return whether the request is unverifiable, as defined by RFC 2965. See the documentation for the
Request constructor.

20.5.2 OpenerDirector Objects

OpenerDirector instances have the following methods:

OpenerDirector.add_handler(handler)
handler should be an instance of BaseHandler. The following methods are searched, and added to the
possible chains (note that HTTP errors are a special case).

•protocol_open() — signal that the handler knows how to open protocol URLs.

•http_error_type() — signal that the handler knows how to handle HTTP errors with HTTP
error code type.

•protocol_error() — signal that the handler knows how to handle errors from (non-http) pro-
tocol.

•protocol_request() — signal that the handler knows how to pre-process protocol requests.

•protocol_response() — signal that the handler knows how to post-process protocol responses.

770 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2965.html

The Python Library Reference, Release 3.2

OpenerDirector.open(url, data=None[, timeout])
Open the given url (which can be a request object or a string), optionally passing the given data. Arguments,
return values and exceptions raised are the same as those of urlopen() (which simply calls the open()
method on the currently installed global OpenerDirector). The optional timeout parameter specifies
a timeout in seconds for blocking operations like the connection attempt (if not specified, the global de-
fault timeout setting will be used). The timeout feature actually works only for HTTP, HTTPS and FTP
connections).

OpenerDirector.error(proto, *args)
Handle an error of the given protocol. This will call the registered error handlers for the given protocol
with the given arguments (which are protocol specific). The HTTP protocol is a special case which uses the
HTTP response code to determine the specific error handler; refer to the http_error_*() methods of
the handler classes.

Return values and exceptions raised are the same as those of urlopen().

OpenerDirector objects open URLs in three stages:

The order in which these methods are called within each stage is determined by sorting the handler instances.

1. Every handler with a method named like protocol_request() has that method called to pre-process
the request.

2. Handlers with a method named like protocol_open() are called to handle the request. This stage
ends when a handler either returns a non-None value (ie. a response), or raises an exception (usually
URLError). Exceptions are allowed to propagate.

In fact, the above algorithm is first tried for methods named default_open(). If all such methods return
None, the algorithm is repeated for methods named like protocol_open(). If all such methods return
None, the algorithm is repeated for methods named unknown_open().

Note that the implementation of these methods may involve calls of the parent OpenerDirector in-
stance’s open() and error() methods.

3. Every handler with a method named like protocol_response() has that method called to post-process
the response.

20.5.3 BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly useful, and others that are meant to be used
by derived classes. These are intended for direct use:

BaseHandler.add_parent(director)
Add a director as parent.

BaseHandler.close()
Remove any parents.

The following members and methods should only be used by classes derived from BaseHandler.

Note: The convention has been adopted that subclasses defining protocol_request() or
protocol_response() methods are named *Processor; all others are named *Handler.

BaseHandler.parent
A valid OpenerDirector, which can be used to open using a different protocol, or handle errors.

BaseHandler.default_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all
URLs.

This method, if implemented, will be called by the parent OpenerDirector. It should return a file-like
object as described in the return value of the open() of OpenerDirector, or None. It should raise
URLError, unless a truly exceptional thing happens (for example, MemoryError should not be mapped
to URLError).

20.5. urllib.request — Extensible library for opening URLs 771

The Python Library Reference, Release 3.2

This method will be called before any protocol-specific open method.

BaseHandler.protocol_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to handle URLs
with the given protocol.

This method, if defined, will be called by the parent OpenerDirector. Return values should be the same
as for default_open().

BaseHandler.unknown_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all URLs
with no specific registered handler to open it.

This method, if implemented, will be called by the parent OpenerDirector. Return values should be
the same as for default_open().

BaseHandler.http_error_default(req, fp, code, msg, hdrs)
This method is not defined in BaseHandler, but subclasses should override it if they intend to provide a
catch-all for otherwise unhandled HTTP errors. It will be called automatically by the OpenerDirector
getting the error, and should not normally be called in other circumstances.

req will be a Request object, fp will be a file-like object with the HTTP error body, code will be the
three-digit code of the error, msg will be the user-visible explanation of the code and hdrs will be a mapping
object with the headers of the error.

Return values and exceptions raised should be the same as those of urlopen().

BaseHandler.http_error_nnn(req, fp, code, msg, hdrs)
nnn should be a three-digit HTTP error code. This method is also not defined in BaseHandler, but will
be called, if it exists, on an instance of a subclass, when an HTTP error with code nnn occurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as for http_error_default().

BaseHandler.protocol_request(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to pre-process
requests of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object.
The return value should be a Request object.

BaseHandler.protocol_response(req, response)
This method is not defined in BaseHandler, but subclasses should define it if they want to post-process
responses of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object.
response will be an object implementing the same interface as the return value of urlopen(). The return
value should implement the same interface as the return value of urlopen().

20.5.4 HTTPRedirectHandler Objects

Note: Some HTTP redirections require action from this module’s client code. If this is the case, HTTPError is
raised. See RFC 2616 for details of the precise meanings of the various redirection codes.

HTTPRedirectHandler.redirect_request(req, fp, code, msg, hdrs, newurl)
Return a Request or None in response to a redirect. This is called by the default implementations of
the http_error_30*() methods when a redirection is received from the server. If a redirection should
take place, return a new Request to allow http_error_30*() to perform the redirect to newurl.
Otherwise, raise HTTPError if no other handler should try to handle this URL, or return None if you
can’t but another handler might.

772 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2616.html

The Python Library Reference, Release 3.2

Note: The default implementation of this method does not strictly follow RFC 2616, which says that 301
and 302 responses to POST requests must not be automatically redirected without confirmation by the user.
In reality, browsers do allow automatic redirection of these responses, changing the POST to a GET, and the
default implementation reproduces this behavior.

HTTPRedirectHandler.http_error_301(req, fp, code, msg, hdrs)
Redirect to the Location: or URI: URL. This method is called by the parent OpenerDirector when
getting an HTTP ‘moved permanently’ response.

HTTPRedirectHandler.http_error_302(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘found’ response.

HTTPRedirectHandler.http_error_303(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘see other’ response.

HTTPRedirectHandler.http_error_307(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘temporary redirect’ response.

20.5.5 HTTPCookieProcessor Objects

HTTPCookieProcessor instances have one attribute:

HTTPCookieProcessor.cookiejar
The http.cookiejar.CookieJar in which cookies are stored.

20.5.6 ProxyHandler Objects

ProxyHandler.protocol_open(request)
The ProxyHandler will have a method protocol_open() for every protocol which has a proxy in
the proxies dictionary given in the constructor. The method will modify requests to go through the proxy, by
calling request.set_proxy(), and call the next handler in the chain to actually execute the protocol.

20.5.7 HTTPPasswordMgr Objects

These methods are available on HTTPPasswordMgr and HTTPPasswordMgrWithDefaultRealm objects.

HTTPPasswordMgr.add_password(realm, uri, user, passwd)
uri can be either a single URI, or a sequence of URIs. realm, user and passwd must be strings. This causes
(user, passwd) to be used as authentication tokens when authentication for realm and a super-URI of
any of the given URIs is given.

HTTPPasswordMgr.find_user_password(realm, authuri)
Get user/password for given realm and URI, if any. This method will return (None, None) if there is no
matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realm None will be searched if the given
realm has no matching user/password.

20.5.8 AbstractBasicAuthHandler Objects

AbstractBasicAuthHandler.http_error_auth_reqed(authreq, host, req, headers)
Handle an authentication request by getting a user/password pair, and re-trying the request. authreq should
be the name of the header where the information about the realm is included in the request, host specifies
the URL and path to authenticate for, req should be the (failed) Request object, and headers should be
the error headers.

host is either an authority (e.g. "python.org") or a URL containing an authority component (e.g.
"http://python.org/"). In either case, the authority must not contain a userinfo component (so,
"python.org" and "python.org:80" are fine, "joe:password@python.org" is not).

20.5. urllib.request — Extensible library for opening URLs 773

http://tools.ietf.org/html/rfc2616.html

The Python Library Reference, Release 3.2

20.5.9 HTTPBasicAuthHandler Objects

HTTPBasicAuthHandler.http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

20.5.10 ProxyBasicAuthHandler Objects

ProxyBasicAuthHandler.http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

20.5.11 AbstractDigestAuthHandler Objects

AbstractDigestAuthHandler.http_error_auth_reqed(authreq, host, req, headers)
authreq should be the name of the header where the information about the realm is included in the request,
host should be the host to authenticate to, req should be the (failed) Request object, and headers should
be the error headers.

20.5.12 HTTPDigestAuthHandler Objects

HTTPDigestAuthHandler.http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

20.5.13 ProxyDigestAuthHandler Objects

ProxyDigestAuthHandler.http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

20.5.14 HTTPHandler Objects

HTTPHandler.http_open(req)
Send an HTTP request, which can be either GET or POST, depending on req.has_data().

20.5.15 HTTPSHandler Objects

HTTPSHandler.https_open(req)
Send an HTTPS request, which can be either GET or POST, depending on req.has_data().

20.5.16 FileHandler Objects

FileHandler.file_open(req)
Open the file locally, if there is no host name, or the host name is ’localhost’.

This method is applicable only for local hostnames. When a remote hostname is given, an URLError is
raised.

Changed in version 3.2.

20.5.17 FTPHandler Objects

FTPHandler.ftp_open(req)
Open the FTP file indicated by req. The login is always done with empty username and password.

774 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

20.5.18 CacheFTPHandler Objects

CacheFTPHandler objects are FTPHandler objects with the following additional methods:

CacheFTPHandler.setTimeout(t)
Set timeout of connections to t seconds.

CacheFTPHandler.setMaxConns(m)
Set maximum number of cached connections to m.

20.5.19 UnknownHandler Objects

UnknownHandler.unknown_open()
Raise a URLError exception.

20.5.20 HTTPErrorProcessor Objects

HTTPErrorProcessor.unknown_open()
Process HTTP error responses.

For 200 error codes, the response object is returned immediately.

For non-200 error codes, this simply passes the job on to the protocol_error_code() handler
methods, via OpenerDirector.error(). Eventually, HTTPDefaultErrorHandler will raise
an HTTPError if no other handler handles the error.

20.5.21 Examples

This example gets the python.org main page and displays the first 300 bytes of it.

>>> import urllib.request
>>> f = urllib.request.urlopen(’http://www.python.org/’)
>>> print(f.read(300))
b’<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\n\n\n<html
xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">\n\n<head>\n
<meta http-equiv="content-type" content="text/html; charset=utf-8" />\n
<title>Python Programming ’

Note that urlopen returns a bytes object. This is because there is no way for urlopen to automatically determine
the encoding of the byte stream it receives from the http server. In general, a program will decode the returned
bytes object to string once it determines or guesses the appropriate encoding.

The following W3C document, http://www.w3.org/International/O-charset , lists the various ways in which a
(X)HTML or a XML document could have specified its encoding information.

As python.org website uses utf-8 encoding as specified in it’s meta tag, we will use same for decoding the bytes
object.

>>> import urllib.request
>>> f = urllib.request.urlopen(’http://www.python.org/’)
>>> print(f.read(100).decode(’utf-8’))
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtm

In the following example, we are sending a data-stream to the stdin of a CGI and reading the data it returns to us.
Note that this example will only work when the Python installation supports SSL.

>>> import urllib.request
>>> req = urllib.request.Request(url=’https://localhost/cgi-bin/test.cgi’,
... data=b’This data is passed to stdin of the CGI’)

20.5. urllib.request — Extensible library for opening URLs 775

http://www.w3.org/International/O-charset

The Python Library Reference, Release 3.2

>>> f = urllib.request.urlopen(req)
>>> print(f.read().decode(’utf-8’))
Got Data: "This data is passed to stdin of the CGI"

The code for the sample CGI used in the above example is:

#!/usr/bin/env python
import sys
data = sys.stdin.read()
print(’Content-type: text-plain\n\nGot Data: "%s"’ % data)

Use of Basic HTTP Authentication:

import urllib.request
Create an OpenerDirector with support for Basic HTTP Authentication...
auth_handler = urllib.request.HTTPBasicAuthHandler()
auth_handler.add_password(realm=’PDQ Application’,

uri=’https://mahler:8092/site-updates.py’,
user=’klem’,
passwd=’kadidd!ehopper’)

opener = urllib.request.build_opener(auth_handler)
...and install it globally so it can be used with urlopen.
urllib.request.install_opener(opener)
urllib.request.urlopen(’http://www.example.com/login.html’)

build_opener() provides many handlers by default, including a ProxyHandler. By default,
ProxyHandler uses the environment variables named <scheme>_proxy, where <scheme> is the URL
scheme involved. For example, the http_proxy environment variable is read to obtain the HTTP proxy’s URL.

This example replaces the default ProxyHandler with one that uses programmatically-supplied proxy URLs,
and adds proxy authorization support with ProxyBasicAuthHandler.

proxy_handler = urllib.request.ProxyHandler({’http’: ’http://www.example.com:3128/’})
proxy_auth_handler = urllib.request.ProxyBasicAuthHandler()
proxy_auth_handler.add_password(’realm’, ’host’, ’username’, ’password’)

opener = urllib.request.build_opener(proxy_handler, proxy_auth_handler)
This time, rather than install the OpenerDirector, we use it directly:
opener.open(’http://www.example.com/login.html’)

Adding HTTP headers:

Use the headers argument to the Request constructor, or:

import urllib.request
req = urllib.request.Request(’http://www.example.com/’)
req.add_header(’Referer’, ’http://www.python.org/’)
r = urllib.request.urlopen(req)

OpenerDirector automatically adds a User-Agent header to every Request. To change this:

import urllib.request
opener = urllib.request.build_opener()
opener.addheaders = [(’User-agent’, ’Mozilla/5.0’)]
opener.open(’http://www.example.com/’)

Also, remember that a few standard headers (Content-Length, Content-Type and Host) are added when
the Request is passed to urlopen() (or OpenerDirector.open()). Here is an example session that
uses the GET method to retrieve a URL containing parameters:

>>> import urllib.request
>>> import urllib.parse
>>> params = urllib.parse.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.request.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print(f.read().decode(’utf-8’))

776 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

The following example uses the POST method instead. Note that params output from urlencode is encoded to
bytes before it is sent to urlopen as data:

>>> import urllib.request
>>> import urllib.parse
>>> params = urllib.parse.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> params = params.encode(’utf-8’)
>>> f = urllib.request.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print(f.read().decode(’utf-8’))

The following example uses an explicitly specified HTTP proxy, overriding environment settings:

>>> import urllib.request
>>> proxies = {’http’: ’http://proxy.example.com:8080/’}
>>> opener = urllib.request.FancyURLopener(proxies)
>>> f = opener.open("http://www.python.org")
>>> f.read().decode(’utf-8’)

The following example uses no proxies at all, overriding environment settings:

>>> import urllib.request
>>> opener = urllib.request.FancyURLopener({})
>>> f = opener.open("http://www.python.org/")
>>> f.read().decode(’utf-8’)

20.5.22 Legacy interface

The following functions and classes are ported from the Python 2 module urllib (as opposed to urllib2).
They might become deprecated at some point in the future.

urllib.request.urlretrieve(url, filename=None, reporthook=None, data=None)
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file, or a
valid cached copy of the object exists, the object is not copied. Return a tuple (filename, headers)
where filename is the local file name under which the object can be found, and headers is whatever the
info() method of the object returned by urlopen() returned (for a remote object, possibly cached).
Exceptions are the same as for urlopen().

The second argument, if present, specifies the file location to copy to (if absent, the location will be a
tempfile with a generated name). The third argument, if present, is a hook function that will be called once
on establishment of the network connection and once after each block read thereafter. The hook will be
passed three arguments; a count of blocks transferred so far, a block size in bytes, and the total size of the
file. The third argument may be -1 on older FTP servers which do not return a file size in response to a
retrieval request.

If the url uses the http: scheme identifier, the optional data argument may be given to spec-
ify a POST request (normally the request type is GET). The data argument must in standard
application/x-www-form-urlencoded format; see the urlencode() function below.

urlretrieve() will raise ContentTooShortError when it detects that the amount of data avail-
able was less than the expected amount (which is the size reported by a Content-Length header). This can
occur, for example, when the download is interrupted.

The Content-Length is treated as a lower bound: if there’s more data to read, urlretrieve reads more data,
but if less data is available, it raises the exception.

You can still retrieve the downloaded data in this case, it is stored in the content attribute of the exception
instance.

If no Content-Length header was supplied, urlretrieve can not check the size of the data it has downloaded,
and just returns it. In this case you just have to assume that the download was successful.

urllib.request.urlcleanup()
Clear the cache that may have been built up by previous calls to urlretrieve().

20.5. urllib.request — Extensible library for opening URLs 777

The Python Library Reference, Release 3.2

class urllib.request.URLopener(proxies=None, **x509)
Base class for opening and reading URLs. Unless you need to support opening objects using schemes other
than http:, ftp:, or file:, you probably want to use FancyURLopener.

By default, the URLopener class sends a User-Agent header of urllib/VVV, where VVV is
the urllib version number. Applications can define their own User-Agent header by subclassing
URLopener or FancyURLopener and setting the class attribute version to an appropriate string value
in the subclass definition.

The optional proxies parameter should be a dictionary mapping scheme names to proxy URLs, where an
empty dictionary turns proxies off completely. Its default value is None, in which case environmental proxy
settings will be used if present, as discussed in the definition of urlopen(), above.

Additional keyword parameters, collected in x509, may be used for authentication of the client when us-
ing the https: scheme. The keywords key_file and cert_file are supported to provide an SSL key and
certificate; both are needed to support client authentication.

URLopener objects will raise an IOError exception if the server returns an error code.

open(fullurl, data=None)
Open fullurl using the appropriate protocol. This method sets up cache and proxy informa-
tion, then calls the appropriate open method with its input arguments. If the scheme is not
recognized, open_unknown() is called. The data argument has the same meaning as the
data argument of urlopen().

open_unknown(fullurl, data=None)
Overridable interface to open unknown URL types.

retrieve(url, filename=None, reporthook=None, data=None)
Retrieves the contents of url and places it in filename. The return value is a tuple consist-
ing of a local filename and either a email.message.Message object containing the
response headers (for remote URLs) or None (for local URLs). The caller must then open
and read the contents of filename. If filename is not given and the URL refers to a local
file, the input filename is returned. If the URL is non-local and filename is not given, the
filename is the output of tempfile.mktemp() with a suffix that matches the suffix of
the last path component of the input URL. If reporthook is given, it must be a function ac-
cepting three numeric parameters. It will be called after each chunk of data is read from the
network. reporthook is ignored for local URLs.

If the url uses the http: scheme identifier, the optional data argument may be given to
specify a POST request (normally the request type is GET). The data argument must in
standard application/x-www-form-urlencoded format; see the urlencode()
function below.

version
Variable that specifies the user agent of the opener object. To get urllib to tell servers
that it is a particular user agent, set this in a subclass as a class variable or in the constructor
before calling the base constructor.

class urllib.request.FancyURLopener(...)
FancyURLopener subclasses URLopener providing default handling for the following HTTP response
codes: 301, 302, 303, 307 and 401. For the 30x response codes listed above, the Location header is used
to fetch the actual URL. For 401 response codes (authentication required), basic HTTP authentication is
performed. For the 30x response codes, recursion is bounded by the value of the maxtries attribute, which
defaults to 10.

For all other response codes, the method http_error_default() is called which you can override in
subclasses to handle the error appropriately.

Note: According to the letter of RFC 2616, 301 and 302 responses to POST requests must not be auto-
matically redirected without confirmation by the user. In reality, browsers do allow automatic redirection of
these responses, changing the POST to a GET, and urllib reproduces this behaviour.

778 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2616.html

The Python Library Reference, Release 3.2

The parameters to the constructor are the same as those for URLopener.

Note: When performing basic authentication, a FancyURLopener instance calls its
prompt_user_passwd() method. The default implementation asks the users for the required
information on the controlling terminal. A subclass may override this method to support more appropriate
behavior if needed.

The FancyURLopener class offers one additional method that should be overloaded to provide the ap-
propriate behavior:

prompt_user_passwd(host, realm)
Return information needed to authenticate the user at the given host in the specified security realm. The
return value should be a tuple, (user, password), which can be used for basic authentication.

The implementation prompts for this information on the terminal; an application should override this
method to use an appropriate interaction model in the local environment.

20.5.23 urllib.request Restrictions

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), FTP, and local files.

• The caching feature of urlretrieve() has been disabled until I find the time to hack proper processing
of Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL
is re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• The urlopen() and urlretrieve() functions can cause arbitrarily long delays while waiting for a
network connection to be set up. This means that it is difficult to build an interactive Web client using these
functions without using threads.

• The data returned by urlopen() or urlretrieve() is the raw data returned by the server. This may
be binary data (such as an image), plain text or (for example) HTML. The HTTP protocol provides type
information in the reply header, which can be inspected by looking at the Content-Type header. If the
returned data is HTML, you can use the module html.parser to parse it.

• The code handling the FTP protocol cannot differentiate between a file and a directory. This can lead to
unexpected behavior when attempting to read a URL that points to a file that is not accessible. If the URL
ends in a /, it is assumed to refer to a directory and will be handled accordingly. But if an attempt to read
a file leads to a 550 error (meaning the URL cannot be found or is not accessible, often for permission
reasons), then the path is treated as a directory in order to handle the case when a directory is specified by
a URL but the trailing / has been left off. This can cause misleading results when you try to fetch a file
whose read permissions make it inaccessible; the FTP code will try to read it, fail with a 550 error, and
then perform a directory listing for the unreadable file. If fine-grained control is needed, consider using the
ftplib module, subclassing FancyURLOpener, or changing _urlopener to meet your needs.

20.6 urllib.response — Response classes used by urllib

The urllib.responsemodule defines functions and classes which define a minimal file like interface, includ-
ing read() and readline(). The typical response object is an addinfourl instance, which defines an info()
method and that returns headers and a geturl() method that returns the url. Functions defined by this module
are used internally by the urllib.request module.

20.6. urllib.response — Response classes used by urllib 779

The Python Library Reference, Release 3.2

20.7 urllib.parse — Parse URLs into components

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in components
(addressing scheme, network location, path etc.), to combine the components back into a URL string, and to
convert a “relative URL” to an absolute URL given a “base URL.”

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and discovered
a bug in an earlier draft!). It supports the following URL schemes: file, ftp, gopher, hdl, http, https,
imap, mailto, mms, news, nntp, prospero, rsync, rtsp, rtspu, sftp, shttp, sip, sips, snews,
svn, svn+ssh, telnet, wais.

The urllib.parse module defines functions that fall into two broad categories: URL parsing and URL quot-
ing. These are covered in detail in the following sections.

20.7.1 URL Parsing

The URL parsing functions focus on splitting a URL string into its components, or on combining URL components
into a URL string.

urllib.parse.urlparse(urlstring, scheme=’‘, allow_fragments=True)
Parse a URL into six components, returning a 6-tuple. This corresponds to the general structure of a URL:
scheme://netloc/path;parameters?query#fragment. Each tuple item is a string, possibly
empty. The components are not broken up in smaller parts (for example, the network location is a single
string), and % escapes are not expanded. The delimiters as shown above are not part of the result, except
for a leading slash in the path component, which is retained if present. For example:

>>> from urllib.parse import urlparse
>>> o = urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)
>>> o
ParseResult(scheme=’http’, netloc=’www.cwi.nl:80’, path=’/%7Eguido/Python.html’,

params=’’, query=’’, fragment=’’)
>>> o.scheme
’http’
>>> o.port
80
>>> o.geturl()
’http://www.cwi.nl:80/%7Eguido/Python.html’

Following the syntax specifications in RFC 1808, urlparse recognizes a netloc only if it is properly intro-
duced by ‘//’. Otherwise the input is presumed to be a relative URL and thus to start with a path component.

>>> from urlparse import urlparse
>>> urlparse(’//www.cwi.nl:80/%7Eguido/Python.html’)
ParseResult(scheme=’’, netloc=’www.cwi.nl:80’, path=’/%7Eguido/Python.html’,

params=’’, query=’’, fragment=’’)
>>> urlparse(’www.cwi.nl:80/%7Eguido/Python.html’)
ParseResult(scheme=’’, netloc=’’, path=’www.cwi.nl:80/%7Eguido/Python.html’,

params=’’, query=’’, fragment=’’)
>>> urlparse(’help/Python.html’)
ParseResult(scheme=’’, netloc=’’, path=’help/Python.html’, params=’’,

query=’’, fragment=’’)

If the scheme argument is specified, it gives the default addressing scheme, to be used only if the URL does
not specify one. The default value for this argument is the empty string.

If the allow_fragments argument is false, fragment identifiers are not allowed, even if the URL’s addressing
scheme normally does support them. The default value for this argument is True.

780 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc1808.html

The Python Library Reference, Release 3.2

The return value is actually an instance of a subclass of tuple. This class has the following additional
read-only convenience attributes:

Attribute Index Value Value if not present
scheme 0 URL scheme specifier empty string
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
params 3 Parameters for last path element empty string
query 4 Query component empty string
fragment 5 Fragment identifier empty string
username User name None
password Password None
hostname Host name (lower case) None
port Port number as integer, if present None

See section Structured Parse Results for more information on the result object. Changed in version 3.2:
Added IPv6 URL parsing capabilities.

urllib.parse.parse_qs(qs, keep_blank_values=False, strict_parsing=False, encoding=’utf-8’, er-
rors=’replace’)

Parse a query string given as a string argument (data of type
application/x-www-form-urlencoded). Data are returned as a dictionary. The dictionary
keys are the unique query variable names and the values are lists of values for each name.

The optional argument keep_blank_values is a flag indicating whether blank values in percent-encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained as blank
strings. The default false value indicates that blank values are to be ignored and treated as if they were not
included.

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

The optional encoding and errors parameters specify how to decode percent-encoded sequences into Uni-
code characters, as accepted by the bytes.decode() method.

Use the urllib.parse.urlencode() function to convert such dictionaries into query strings.
Changed in version 3.2: Add encoding and errors parameters.

urllib.parse.parse_qsl(qs, keep_blank_values=False, strict_parsing=False, encoding=’utf-8’,
errors=’replace’)

Parse a query string given as a string argument (data of type
application/x-www-form-urlencoded). Data are returned as a list of name, value pairs.

The optional argument keep_blank_values is a flag indicating whether blank values in percent-encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained as blank
strings. The default false value indicates that blank values are to be ignored and treated as if they were not
included.

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

The optional encoding and errors parameters specify how to decode percent-encoded sequences into Uni-
code characters, as accepted by the bytes.decode() method.

Use the urllib.parse.urlencode() function to convert such lists of pairs into query strings.
Changed in version 3.2: Add encoding and errors parameters.

urllib.parse.urlunparse(parts)
Construct a URL from a tuple as returned by urlparse(). The parts argument can be any six-item
iterable. This may result in a slightly different, but equivalent URL, if the URL that was parsed originally
had unnecessary delimiters (for example, a ? with an empty query; the RFC states that these are equivalent).

urllib.parse.urlsplit(urlstring, scheme=’‘, allow_fragments=True)
This is similar to urlparse(), but does not split the params from the URL. This should generally be used
instead of urlparse() if the more recent URL syntax allowing parameters to be applied to each segment

20.7. urllib.parse — Parse URLs into components 781

The Python Library Reference, Release 3.2

of the path portion of the URL (see RFC 2396) is wanted. A separate function is needed to separate the
path segments and parameters. This function returns a 5-tuple: (addressing scheme, network location, path,
query, fragment identifier).

The return value is actually an instance of a subclass of tuple. This class has the following additional
read-only convenience attributes:

Attribute Index Value Value if not present
scheme 0 URL scheme specifier empty string
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
query 3 Query component empty string
fragment 4 Fragment identifier empty string
username User name None
password Password None
hostname Host name (lower case) None
port Port number as integer, if present None

See section Structured Parse Results for more information on the result object.

urllib.parse.urlunsplit(parts)
Combine the elements of a tuple as returned by urlsplit() into a complete URL as a string. The parts
argument can be any five-item iterable. This may result in a slightly different, but equivalent URL, if the
URL that was parsed originally had unnecessary delimiters (for example, a ? with an empty query; the RFC
states that these are equivalent).

urllib.parse.urljoin(base, url, allow_fragments=True)
Construct a full (“absolute”) URL by combining a “base URL” (base) with another URL (url). Informally,
this uses components of the base URL, in particular the addressing scheme, the network location and (part
of) the path, to provide missing components in the relative URL. For example:

>>> from urllib.parse import urljoin
>>> urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)
’http://www.cwi.nl/%7Eguido/FAQ.html’

The allow_fragments argument has the same meaning and default as for urlparse().

Note: If url is an absolute URL (that is, starting with // or scheme://), the url‘s host name and/or
scheme will be present in the result. For example:

>>> urljoin(’http://www.cwi.nl/%7Eguido/Python.html’,
... ’//www.python.org/%7Eguido’)
’http://www.python.org/%7Eguido’

If you do not want that behavior, preprocess the url with urlsplit() and urlunsplit(), removing
possible scheme and netloc parts.

urllib.parse.urldefrag(url)
If url contains a fragment identifier, return a modified version of url with no fragment identifier, and the
fragment identifier as a separate string. If there is no fragment identifier in url, return url unmodified and an
empty string.

The return value is actually an instance of a subclass of tuple. This class has the following additional
read-only convenience attributes:

Attribute Index Value Value if not present
url 0 URL with no fragment empty string
fragment 1 Fragment identifier empty string

See section Structured Parse Results for more information on the result object. Changed in version 3.2:
Result is a structured object rather than a simple 2-tuple.

782 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2396.html

The Python Library Reference, Release 3.2

20.7.2 Parsing ASCII Encoded Bytes

The URL parsing functions were originally designed to operate on character strings only. In practice, it is useful
to be able to manipulate properly quoted and encoded URLs as sequences of ASCII bytes. Accordingly, the URL
parsing functions in this module all operate on bytes and bytearray objects in addition to str objects.

If str data is passed in, the result will also contain only str data. If bytes or bytearray data is passed in,
the result will contain only bytes data.

Attempting to mix str data with bytes or bytearray in a single function call will result in a TypeError
being raised, while attempting to pass in non-ASCII byte values will trigger UnicodeDecodeError.

To support easier conversion of result objects between str and bytes, all return values from URL parsing
functions provide either an encode() method (when the result contains str data) or a decode() method
(when the result contains bytes data). The signatures of these methods match those of the corresponding str
and bytesmethods (except that the default encoding is ’ascii’ rather than ’utf-8’). Each produces a value
of a corresponding type that contains either bytes data (for encode() methods) or str data (for decode()
methods).

Applications that need to operate on potentially improperly quoted URLs that may contain non-ASCII data will
need to do their own decoding from bytes to characters before invoking the URL parsing methods.

The behaviour described in this section applies only to the URL parsing functions. The URL quoting functions
use their own rules when producing or consuming byte sequences as detailed in the documentation of the indi-
vidual URL quoting functions. Changed in version 3.2: URL parsing functions now accept ASCII encoded byte
sequences

20.7.3 Structured Parse Results

The result objects from the urlparse(), urlsplit() and urldefrag() functions are subclasses of the
tuple type. These subclasses add the attributes listed in the documentation for those functions, the encoding and
decoding support described in the previous section, as well as an additional method:

urllib.parse.SplitResult.geturl()
Return the re-combined version of the original URL as a string. This may differ from the original URL
in that the scheme may be normalized to lower case and empty components may be dropped. Specifically,
empty parameters, queries, and fragment identifiers will be removed.

For urldefrag() results, only empty fragment identifiers will be removed. For urlsplit() and
urlparse() results, all noted changes will be made to the URL returned by this method.

The result of this method remains unchanged if passed back through the original parsing function:

>>> from urllib.parse import urlsplit
>>> url = ’HTTP://www.Python.org/doc/#’
>>> r1 = urlsplit(url)
>>> r1.geturl()
’http://www.Python.org/doc/’
>>> r2 = urlsplit(r1.geturl())
>>> r2.geturl()
’http://www.Python.org/doc/’

The following classes provide the implementations of the structured parse results when operating on str objects:

class urllib.parse.DefragResult(url, fragment)
Concrete class for urldefrag() results containing str data. The encode() method returns a
DefragResultBytes instance. New in version 3.2.

class urllib.parse.ParseResult(scheme, netloc, path, params, query, fragment)
Concrete class for urlparse() results containing str data. The encode() method returns a
ParseResultBytes instance.

20.7. urllib.parse — Parse URLs into components 783

The Python Library Reference, Release 3.2

class urllib.parse.SplitResult(scheme, netloc, path, query, fragment)
Concrete class for urlsplit() results containing str data. The encode() method returns a
SplitResultBytes instance.

The following classes provide the implementations of the parse results when operating on bytes or bytearray
objects:

class urllib.parse.DefragResultBytes(url, fragment)
Concrete class for urldefrag() results containing bytes data. The decode() method returns a
DefragResult instance. New in version 3.2.

class urllib.parse.ParseResultBytes(scheme, netloc, path, params, query, fragment)
Concrete class for urlparse() results containing bytes data. The decode() method returns a
ParseResult instance. New in version 3.2.

class urllib.parse.SplitResultBytes(scheme, netloc, path, query, fragment)
Concrete class for urlsplit() results containing bytes data. The decode() method returns a
SplitResult instance. New in version 3.2.

20.7.4 URL Quoting

The URL quoting functions focus on taking program data and making it safe for use as URL components by quot-
ing special characters and appropriately encoding non-ASCII text. They also support reversing these operations
to recreate the original data from the contents of a URL component if that task isn’t already covered by the URL
parsing functions above.

urllib.parse.quote(string, safe=’/’, encoding=None, errors=None)
Replace special characters in string using the %xx escape. Letters, digits, and the characters ’_.-’ are
never quoted. By default, this function is intended for quoting the path section of URL. The optional safe
parameter specifies additional ASCII characters that should not be quoted — its default value is ’/’.

string may be either a str or a bytes.

The optional encoding and errors parameters specify how to deal with non-ASCII characters, as accepted
by the str.encode() method. encoding defaults to ’utf-8’. errors defaults to ’strict’, meaning
unsupported characters raise a UnicodeEncodeError. encoding and errors must not be supplied if
string is a bytes, or a TypeError is raised.

Note that quote(string, safe, encoding, errors) is equivalent to
quote_from_bytes(string.encode(encoding, errors), safe).

Example: quote(’/El Niño/’) yields ’/El%20Ni%C3%B1o/’.

urllib.parse.quote_plus(string, safe=’‘, encoding=None, errors=None)
Like quote(), but also replace spaces by plus signs, as required for quoting HTML form values when
building up a query string to go into a URL. Plus signs in the original string are escaped unless they are
included in safe. It also does not have safe default to ’/’.

Example: quote_plus(’/El Niño/’) yields ’%2FEl+Ni%C3%B1o%2F’.

urllib.parse.quote_from_bytes(bytes, safe=’/’)
Like quote(), but accepts a bytes object rather than a str, and does not perform string-to-bytes en-
coding.

Example: quote_from_bytes(b’a&\xef’) yields ’a%26%EF’.

urllib.parse.unquote(string, encoding=’utf-8’, errors=’replace’)
Replace %xx escapes by their single-character equivalent. The optional encoding and errors param-
eters specify how to decode percent-encoded sequences into Unicode characters, as accepted by the
bytes.decode() method.

string must be a str.

encoding defaults to ’utf-8’. errors defaults to ’replace’, meaning invalid sequences are replaced
by a placeholder character.

784 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

Example: unquote(’/El%20Ni%C3%B1o/’) yields ’/El Niño/’.

urllib.parse.unquote_plus(string, encoding=’utf-8’, errors=’replace’)
Like unquote(), but also replace plus signs by spaces, as required for unquoting HTML form values.

string must be a str.

Example: unquote_plus(’/El+Ni%C3%B1o/’) yields ’/El Niño/’.

urllib.parse.unquote_to_bytes(string)
Replace %xx escapes by their single-octet equivalent, and return a bytes object.

string may be either a str or a bytes.

If it is a str, unescaped non-ASCII characters in string are encoded into UTF-8 bytes.

Example: unquote_to_bytes(’a%26%EF’) yields b’a&\xef’.

urllib.parse.urlencode(query, doseq=False, safe=’‘, encoding=None, errors=None)
Convert a mapping object or a sequence of two-element tuples, which may either be a str or a bytes,
to a “percent-encoded” string. The resultant string must be converted to bytes using the user-specified
encoding before it is sent to urlopen() as the optional data argument. The resulting string is a se-
ries of key=value pairs separated by ’&’ characters, where both key and value are quoted using
quote_plus() above. When a sequence of two-element tuples is used as the query argument, the first
element of each tuple is a key and the second is a value. The value element in itself can be a sequence and
in that case, if the optional parameter doseq is evaluates to True, individual key=value pairs separated
by ’&’ are generated for each element of the value sequence for the key. The order of parameters in the
encoded string will match the order of parameter tuples in the sequence.

When query parameter is a str, the safe, encoding and error parameters are passed down to
quote_plus() for encoding.

To reverse this encoding process, parse_qs() and parse_qsl() are provided in this module to parse
query strings into Python data structures.

Refer to urllib examples to find out how urlencode method can be used for generating query string for a
URL or data for POST. Changed in version 3.2: Query parameter supports bytes and string objects.

See Also:

RFC 3986 - Uniform Resource Identifiers This is the current standard (STD66). Any changes to urlparse mod-
ule should conform to this. Certain deviations could be observed, which are mostly for backward compati-
bility purposes and for certain de-facto parsing requirements as commonly observed in major browsers.

RFC 2732 - Format for Literal IPv6 Addresses in URL’s. This specifies the parsing requirements of IPv6
URLs.

RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax Document describing the generic syntactic
requirements for both Uniform Resource Names (URNs) and Uniform Resource Locators (URLs).

RFC 2368 - The mailto URL scheme. Parsing requirements for mailto url schemes.

RFC 1808 - Relative Uniform Resource Locators This Request For Comments includes the rules for joining
an absolute and a relative URL, including a fair number of “Abnormal Examples” which govern the treat-
ment of border cases.

RFC 1738 - Uniform Resource Locators (URL) This specifies the formal syntax and semantics of absolute
URLs.

20.8 urllib.error — Exception classes raised by urllib.request

The urllib.error module defines the exception classes for exceptions raised by urllib.request. The
base exception class is URLError, which inherits from IOError.

The following exceptions are raised by urllib.error as appropriate:

20.8. urllib.error — Exception classes raised by urllib.request 785

http://tools.ietf.org/html/rfc3986.html
http://tools.ietf.org/html/rfc2732.html
http://tools.ietf.org/html/rfc2396.html
http://tools.ietf.org/html/rfc2368.html
http://tools.ietf.org/html/rfc1808.html
http://tools.ietf.org/html/rfc1738.html

The Python Library Reference, Release 3.2

exception urllib.error.URLError
The handlers raise this exception (or derived exceptions) when they run into a problem. It is a subclass of
IOError.

reason
The reason for this error. It can be a message string or another exception instance (socket.error
for remote URLs, OSError for local URLs).

exception urllib.error.HTTPError
Though being an exception (a subclass of URLError), an HTTPError can also function as a non-
exceptional file-like return value (the same thing that urlopen() returns). This is useful when handling
exotic HTTP errors, such as requests for authentication.

code
An HTTP status code as defined in RFC 2616. This numeric value corresponds to a value found in the
dictionary of codes as found in http.server.BaseHTTPRequestHandler.responses.

exception urllib.error.ContentTooShortError(msg, content)
This exception is raised when the urlretrieve() function detects that the amount of the downloaded
data is less than the expected amount (given by the Content-Length header). The content attribute stores
the downloaded (and supposedly truncated) data.

20.9 urllib.robotparser — Parser for robots.txt

This module provides a single class, RobotFileParser, which answers questions about whether or not a
particular user agent can fetch a URL on the Web site that published the robots.txt file. For more details on
the structure of robots.txt files, see http://www.robotstxt.org/orig.html.

class urllib.robotparser.RobotFileParser
This class provides a set of methods to read, parse and answer questions about a single robots.txt file.

set_url(url)
Sets the URL referring to a robots.txt file.

read()
Reads the robots.txt URL and feeds it to the parser.

parse(lines)
Parses the lines argument.

can_fetch(useragent, url)
Returns True if the useragent is allowed to fetch the url according to the rules contained in the parsed
robots.txt file.

mtime()
Returns the time the robots.txt file was last fetched. This is useful for long-running web spiders
that need to check for new robots.txt files periodically.

modified()
Sets the time the robots.txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import urllib.robotparser
>>> rp = urllib.robotparser.RobotFileParser()
>>> rp.set_url("http://www.musi-cal.com/robots.txt")
>>> rp.read()
>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
False
>>> rp.can_fetch("*", "http://www.musi-cal.com/")
True

786 Chapter 20. Internet Protocols and Support

http://www.faqs.org/rfcs/rfc2616.html
http://www.robotstxt.org/orig.html

The Python Library Reference, Release 3.2

20.10 http.client — HTTP protocol client

Source code: Lib/http/client.py

This module defines classes which implement the client side of the HTTP and HTTPS protocols. It is normally
not used directly — the module urllib.request uses it to handle URLs that use HTTP and HTTPS.

Note: HTTPS support is only available if Python was compiled with SSL support (through the ssl module).

The module provides the following classes:

class http.client.HTTPConnection(host, port=None[, strict[, timeout[, source_address]]])
An HTTPConnection instance represents one transaction with an HTTP server. It should be instantiated
passing it a host and optional port number. If no port number is passed, the port is extracted from the
host string if it has the form host:port, else the default HTTP port (80) is used. If the optional timeout
parameter is given, blocking operations (like connection attempts) will timeout after that many seconds (if
it is not given, the global default timeout setting is used). The optional source_address parameter may be a
tuple of a (host, port) to use as the source address the HTTP connection is made from.

For example, the following calls all create instances that connect to the server at the same host and port:

>>> h1 = http.client.HTTPConnection(’www.cwi.nl’)
>>> h2 = http.client.HTTPConnection(’www.cwi.nl:80’)
>>> h3 = http.client.HTTPConnection(’www.cwi.nl’, 80)
>>> h3 = http.client.HTTPConnection(’www.cwi.nl’, 80, timeout=10)

Changed in version 3.2: source_address was added.Changed in version 3.2: The strict parameter is depre-
cated. HTTP 0.9-style “Simple Responses” are not supported anymore.

class http.client.HTTPSConnection(host, port=None, key_file=None, cert_file=None[,
strict[, timeout[, source_address]]], *, context=None,
check_hostname=None)

A subclass of HTTPConnection that uses SSL for communication with secure servers. Default port is
443. If context is specified, it must be a ssl.SSLContext instance describing the various SSL options.
If context is specified and has a verify_mode of either CERT_OPTIONAL or CERT_REQUIRED, then
by default host is matched against the host name(s) allowed by the server’s certificate. If you want to change
that behaviour, you can explicitly set check_hostname to False.

key_file and cert_file are deprecated, please use ssl.SSLContext.load_cert_chain() instead.

If you access arbitrary hosts on the Internet, it is recommended to require certificate checking and feed the
context with a set of trusted CA certificates:

context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
context.verify_mode = ssl.CERT_REQUIRED
context.load_verify_locations(’/etc/pki/tls/certs/ca-bundle.crt’)
h = client.HTTPSConnection(’svn.python.org’, 443, context=context)

Changed in version 3.2: source_address, context and check_hostname were added.Changed in version 3.2:
This class now supports HTTPS virtual hosts if possible (that is, if ssl.HAS_SNI is true).Changed in
version 3.2: The strict parameter is deprecated. HTTP 0.9-style “Simple Responses” are not supported
anymore.

class http.client.HTTPResponse(sock, debuglevel=0[, strict], method=None, url=None)
Class whose instances are returned upon successful connection. Not instantiated directly by user. Changed
in version 3.2: The strict parameter is deprecated. HTTP 0.9-style “Simple Responses” are not supported
anymore.

The following exceptions are raised as appropriate:

20.10. http.client — HTTP protocol client 787

http://svn.python.org/view/python/branches/py3k/Lib/http/client.py?view=markup

The Python Library Reference, Release 3.2

exception http.client.HTTPException
The base class of the other exceptions in this module. It is a subclass of Exception.

exception http.client.NotConnected
A subclass of HTTPException.

exception http.client.InvalidURL
A subclass of HTTPException, raised if a port is given and is either non-numeric or empty.

exception http.client.UnknownProtocol
A subclass of HTTPException.

exception http.client.UnknownTransferEncoding
A subclass of HTTPException.

exception http.client.UnimplementedFileMode
A subclass of HTTPException.

exception http.client.IncompleteRead
A subclass of HTTPException.

exception http.client.ImproperConnectionState
A subclass of HTTPException.

exception http.client.CannotSendRequest
A subclass of ImproperConnectionState.

exception http.client.CannotSendHeader
A subclass of ImproperConnectionState.

exception http.client.ResponseNotReady
A subclass of ImproperConnectionState.

exception http.client.BadStatusLine
A subclass of HTTPException. Raised if a server responds with a HTTP status code that we don’t
understand.

The constants defined in this module are:

http.client.HTTP_PORT
The default port for the HTTP protocol (always 80).

http.client.HTTPS_PORT
The default port for the HTTPS protocol (always 443).

and also the following constants for integer status codes:

Constant Value Definition
CONTINUE 100 HTTP/1.1, RFC 2616, Section 10.1.1
SWITCHING_PROTOCOLS 101 HTTP/1.1, RFC 2616, Section 10.1.2
PROCESSING 102 WEBDAV, RFC 2518, Section 10.1
OK 200 HTTP/1.1, RFC 2616, Section 10.2.1
CREATED 201 HTTP/1.1, RFC 2616, Section 10.2.2
ACCEPTED 202 HTTP/1.1, RFC 2616, Section 10.2.3
NON_AUTHORITATIVE_INFORMATION 203 HTTP/1.1, RFC 2616, Section 10.2.4
NO_CONTENT 204 HTTP/1.1, RFC 2616, Section 10.2.5
RESET_CONTENT 205 HTTP/1.1, RFC 2616, Section 10.2.6
PARTIAL_CONTENT 206 HTTP/1.1, RFC 2616, Section 10.2.7
MULTI_STATUS 207 WEBDAV RFC 2518, Section 10.2
IM_USED 226 Delta encoding in HTTP, RFC 3229, Section 10.4.1
MULTIPLE_CHOICES 300 HTTP/1.1, RFC 2616, Section 10.3.1
MOVED_PERMANENTLY 301 HTTP/1.1, RFC 2616, Section 10.3.2
FOUND 302 HTTP/1.1, RFC 2616, Section 10.3.3
SEE_OTHER 303 HTTP/1.1, RFC 2616, Section 10.3.4
NOT_MODIFIED 304 HTTP/1.1, RFC 2616, Section 10.3.5

Continued on next page

788 Chapter 20. Internet Protocols and Support

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.2
http://www.webdav.org/specs/rfc2518.html#STATUS_102
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
http://www.webdav.org/specs/rfc2518.html#STATUS_207
http://tools.ietf.org/html/rfc3229.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5

The Python Library Reference, Release 3.2

Table 20.1 – continued from previous page
USE_PROXY 305 HTTP/1.1, RFC 2616, Section 10.3.6
TEMPORARY_REDIRECT 307 HTTP/1.1, RFC 2616, Section 10.3.8
BAD_REQUEST 400 HTTP/1.1, RFC 2616, Section 10.4.1
UNAUTHORIZED 401 HTTP/1.1, RFC 2616, Section 10.4.2
PAYMENT_REQUIRED 402 HTTP/1.1, RFC 2616, Section 10.4.3
FORBIDDEN 403 HTTP/1.1, RFC 2616, Section 10.4.4
NOT_FOUND 404 HTTP/1.1, RFC 2616, Section 10.4.5
METHOD_NOT_ALLOWED 405 HTTP/1.1, RFC 2616, Section 10.4.6
NOT_ACCEPTABLE 406 HTTP/1.1, RFC 2616, Section 10.4.7
PROXY_AUTHENTICATION_REQUIRED 407 HTTP/1.1, RFC 2616, Section 10.4.8
REQUEST_TIMEOUT 408 HTTP/1.1, RFC 2616, Section 10.4.9
CONFLICT 409 HTTP/1.1, RFC 2616, Section 10.4.10
GONE 410 HTTP/1.1, RFC 2616, Section 10.4.11
LENGTH_REQUIRED 411 HTTP/1.1, RFC 2616, Section 10.4.12
PRECONDITION_FAILED 412 HTTP/1.1, RFC 2616, Section 10.4.13
REQUEST_ENTITY_TOO_LARGE 413 HTTP/1.1, RFC 2616, Section 10.4.14
REQUEST_URI_TOO_LONG 414 HTTP/1.1, RFC 2616, Section 10.4.15
UNSUPPORTED_MEDIA_TYPE 415 HTTP/1.1, RFC 2616, Section 10.4.16
REQUESTED_RANGE_NOT_SATISFIABLE 416 HTTP/1.1, RFC 2616, Section 10.4.17
EXPECTATION_FAILED 417 HTTP/1.1, RFC 2616, Section 10.4.18
UNPROCESSABLE_ENTITY 422 WEBDAV, RFC 2518, Section 10.3
LOCKED 423 WEBDAV RFC 2518, Section 10.4
FAILED_DEPENDENCY 424 WEBDAV, RFC 2518, Section 10.5
UPGRADE_REQUIRED 426 HTTP Upgrade to TLS, RFC 2817, Section 6
INTERNAL_SERVER_ERROR 500 HTTP/1.1, RFC 2616, Section 10.5.1
NOT_IMPLEMENTED 501 HTTP/1.1, RFC 2616, Section 10.5.2
BAD_GATEWAY 502 HTTP/1.1 RFC 2616, Section 10.5.3
SERVICE_UNAVAILABLE 503 HTTP/1.1, RFC 2616, Section 10.5.4
GATEWAY_TIMEOUT 504 HTTP/1.1 RFC 2616, Section 10.5.5
HTTP_VERSION_NOT_SUPPORTED 505 HTTP/1.1, RFC 2616, Section 10.5.6
INSUFFICIENT_STORAGE 507 WEBDAV, RFC 2518, Section 10.6
NOT_EXTENDED 510 An HTTP Extension Framework, RFC 2774, Section 7

http.client.responses
This dictionary maps the HTTP 1.1 status codes to the W3C names.

Example: http.client.responses[http.client.NOT_FOUND] is ’Not Found’.

20.10.1 HTTPConnection Objects

HTTPConnection instances have the following methods:

HTTPConnection.request(method, url, body=None, headers={})
This will send a request to the server using the HTTP request method method and the selector url. If the
body argument is present, it should be string or bytes object of data to send after the headers are finished.
Strings are encoded as ISO-8859-1, the default charset for HTTP. To use other encodings, pass a bytes
object. The Content-Length header is set to the length of the string.

The body may also be an open file object, in which case the contents of the file is sent; this file object should
support fileno() and read() methods. The header Content-Length is automatically set to the length of
the file as reported by stat. The body argument may also be an iterable and Content-Length header should
be explicitly provided when the body is an iterable.

The headers argument should be a mapping of extra HTTP headers to send with the request. New in version
3.2: body can now be an iterable.

HTTPConnection.getresponse()
Should be called after a request is sent to get the response from the server. Returns an HTTPResponse

20.10. http.client — HTTP protocol client 789

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.12
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.15
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.18
http://www.webdav.org/specs/rfc2518.html#STATUS_422
http://www.webdav.org/specs/rfc2518.html#STATUS_423
http://www.webdav.org/specs/rfc2518.html#STATUS_424
http://tools.ietf.org/html/rfc2817.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.6
http://www.webdav.org/specs/rfc2518.html#STATUS_507
http://tools.ietf.org/html/rfc2774.html

The Python Library Reference, Release 3.2

instance.

Note: Note that you must have read the whole response before you can send a new request to the server.

HTTPConnection.set_debuglevel(level)
Set the debugging level. The default debug level is 0, meaning no debugging output is printed. Any value
greater than 0 will cause all currently defined debug output to be printed to stdout. The debuglevel is
passed to any new HTTPResponse objects that are created. New in version 3.1.

HTTPConnection.set_tunnel(host, port=None, headers=None)
Set the host and the port for HTTP Connect Tunnelling. Normally used when it is required to a HTTPS
Connection through a proxy server.

The headers argument should be a mapping of extra HTTP headers to to sent with the CONNECT request.
New in version 3.2.

HTTPConnection.connect()
Connect to the server specified when the object was created.

HTTPConnection.close()
Close the connection to the server.

As an alternative to using the request() method described above, you can also send your request step by step,
by using the four functions below.

HTTPConnection.putrequest(request, selector, skip_host=False, skip_accept_encoding=False)
This should be the first call after the connection to the server has been made. It sends a line to the server
consisting of the request string, the selector string, and the HTTP version (HTTP/1.1). To disable au-
tomatic sending of Host: or Accept-Encoding: headers (for example to accept additional content
encodings), specify skip_host or skip_accept_encoding with non-False values.

HTTPConnection.putheader(header, argument[, ...])
Send an RFC 822-style header to the server. It sends a line to the server consisting of the header, a colon
and a space, and the first argument. If more arguments are given, continuation lines are sent, each consisting
of a tab and an argument.

HTTPConnection.endheaders()
Send a blank line to the server, signalling the end of the headers.

HTTPConnection.send(data)
Send data to the server. This should be used directly only after the endheaders() method has been
called and before getresponse() is called.

20.10.2 HTTPResponse Objects

An HTTPResponse instance wraps the HTTP response from the server. It provides access to the request headers
and the entity body. The response is an iterable object and can be used in a with statement.

HTTPResponse.read([amt])
Reads and returns the response body, or up to the next amt bytes.

HTTPResponse.getheader(name, default=None)
Return the value of the header name, or default if there is no header matching name. If there is more than
one header with the name name, return all of the values joined by ‘, ‘. If ‘default’ is any iterable other than
a single string, its elements are similarly returned joined by commas.

HTTPResponse.getheaders()
Return a list of (header, value) tuples.

HTTPResponse.fileno()
Return the fileno of the underlying socket.

790 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.2

HTTPResponse.msg
A http.client.HTTPMessage instance containing the response headers.
http.client.HTTPMessage is a subclass of email.message.Message.

HTTPResponse.version
HTTP protocol version used by server. 10 for HTTP/1.0, 11 for HTTP/1.1.

HTTPResponse.status
Status code returned by server.

HTTPResponse.reason
Reason phrase returned by server.

HTTPResponse.debuglevel
A debugging hook. If debuglevel is greater than zero, messages will be printed to stdout as the response
is read and parsed.

20.10.3 Examples

Here is an example session that uses the GET method:

>>> import http.client
>>> conn = http.client.HTTPConnection("www.python.org")
>>> conn.request("GET", "/index.html")
>>> r1 = conn.getresponse()
>>> print(r1.status, r1.reason)
200 OK
>>> data1 = r1.read()
>>> conn.request("GET", "/parrot.spam")
>>> r2 = conn.getresponse()
>>> print(r2.status, r2.reason)
404 Not Found
>>> data2 = r2.read()
>>> conn.close()

Here is an example session that uses the HEAD method. Note that the HEAD method never returns any data.

>>> import http.client
>>> conn = http.client.HTTPConnection("www.python.org")
>>> conn.request("HEAD","/index.html")
>>> res = conn.getresponse()
>>> print(res.status, res.reason)
200 OK
>>> data = res.read()
>>> print(len(data))
0
>>> data == b’’
True

Here is an example session that shows how to POST requests:

>>> import http.client, urllib.parse
>>> params = urllib.parse.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> headers = {"Content-type": "application/x-www-form-urlencoded",
... "Accept": "text/plain"}
>>> conn = http.client.HTTPConnection("musi-cal.mojam.com:80")
>>> conn.request("POST", "/cgi-bin/query", params, headers)
>>> response = conn.getresponse()
>>> print(response.status, response.reason)
200 OK
>>> data = response.read()
>>> conn.close()

20.10. http.client — HTTP protocol client 791

The Python Library Reference, Release 3.2

20.10.4 HTTPMessage Objects

An http.client.HTTPMessage instance holds the headers from an HTTP response. It is implemented using
the email.message.Message class.

20.11 ftplib — FTP protocol client

Source code: Lib/ftp.py

This module defines the class FTP and a few related items. The FTP class implements the client side of the
FTP protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as
mirroring other ftp servers. It is also used by the module urllib.request to handle URLs that use FTP. For
more information on FTP (File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP
>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port
>>> ftp.login() # user anonymous, passwd anonymous@
>>> ftp.retrlines(’LIST’) # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX
.
.
.

>>> ftp.retrbinary(’RETR README’, open(’README’, ’wb’).write)
’226 Transfer complete.’
>>> ftp.quit()

The module defines the following items:

class ftplib.FTP(host=’‘, user=’‘, passwd=’‘, acct=’‘[, timeout])
Return a new instance of the FTP class. When host is given, the method call connect(host) is made.
When user is given, additionally the method call login(user, passwd, acct) is made (where
passwd and acct default to the empty string when not given). The optional timeout parameter specifies
a timeout in seconds for blocking operations like the connection attempt (if is not specified, the global
default timeout setting will be used).

FTP class supports the with statement. Here is a sample on how using it:

>>> from ftplib import FTP
>>> with FTP("ftp1.at.proftpd.org") as ftp:
... ftp.login()
... ftp.dir()
...
’230 Anonymous login ok, restrictions apply.’
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 .
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 ..
dr-xr-xr-x 5 ftp ftp 4096 May 6 10:43 CentOS
dr-xr-xr-x 3 ftp ftp 18 Jul 10 2008 Fedora
>>>

Changed in version 3.2: Support for the with statement was added.

class ftplib.FTP_TLS(host=’‘, user=’‘, passwd=’‘, acct=’‘[, keyfile[, certfile[, context[, timeout]]
]])

A FTP subclass which adds TLS support to FTP as described in

792 Chapter 20. Internet Protocols and Support

http://svn.python.org/view/python/branches/py3k/Lib/ftp.py?view=markup
http://tools.ietf.org/html/rfc959.html

The Python Library Reference, Release 3.2

RFC 4217. Connect as usual to port 21 implicitly securing the FTP control connection before authen-
ticating. Securing the data connection requires the user to explicitly ask for it by calling the prot_p()
method. keyfile and certfile are optional – they can contain a PEM formatted private key and certificate chain
file name for the SSL connection. context parameter is a ssl.SSLContext object which allows bundling
SSL configuration options, certificates and private keys into a single (potentially long-lived) structure. New
in version 3.2. Here’s a sample session using the FTP_TLS class:

>>> from ftplib import FTP_TLS
>>> ftps = FTP_TLS(’ftp.python.org’)
>>> ftps.login() # login anonymously before securing control channel
>>> ftps.prot_p() # switch to secure data connection
>>> ftps.retrlines(’LIST’) # list directory content securely
total 9
drwxr-xr-x 8 root wheel 1024 Jan 3 1994 .
drwxr-xr-x 8 root wheel 1024 Jan 3 1994 ..
drwxr-xr-x 2 root wheel 1024 Jan 3 1994 bin
drwxr-xr-x 2 root wheel 1024 Jan 3 1994 etc
d-wxrwxr-x 2 ftp wheel 1024 Sep 5 13:43 incoming
drwxr-xr-x 2 root wheel 1024 Nov 17 1993 lib
drwxr-xr-x 6 1094 wheel 1024 Sep 13 19:07 pub
drwxr-xr-x 3 root wheel 1024 Jan 3 1994 usr
-rw-r--r-- 1 root root 312 Aug 1 1994 welcome.msg
’226 Transfer complete.’
>>> ftps.quit()
>>>

exception ftplib.error_reply
Exception raised when an unexpected reply is received from the server.

exception ftplib.error_temp
Exception raised when an error code signifying a temporary error (response codes in the range 400–499) is
received.

exception ftplib.error_perm
Exception raised when an error code signifying a permanent error (response codes in the range 500–599) is
received.

exception ftplib.error_proto
Exception raised when a reply is received from the server that does not fit the response specifications of the
File Transfer Protocol, i.e. begin with a digit in the range 1–5.

ftplib.all_errors
The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of problems with
the FTP connection (as opposed to programming errors made by the caller). This set includes the four
exceptions listed above as well as socket.error and IOError.

See Also:

Module netrc Parser for the .netrc file format. The file .netrc is typically used by FTP clients to load
user authentication information before prompting the user.

The file Tools/scripts/ftpmirror.py in the Python source distribution is a script that can mirror FTP
sites, or portions thereof, using the ftplib module. It can be used as an extended example that applies this
module.

20.11.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files. These are
named for the command which is used followed by lines for the text version or binary for the binary version.

FTP instances have the following methods:

20.11. ftplib — FTP protocol client 793

http://tools.ietf.org/html/rfc4217.html

The Python Library Reference, Release 3.2

FTP.set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally a
single line per request. A value of 2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

FTP.connect(host=’‘, port=0[, timeout])
Connect to the given host and port. The default port number is 21, as specified by the FTP protocol
specification. It is rarely needed to specify a different port number. This function should be called only
once for each instance; it should not be called at all if a host was given when the instance was created. All
other methods can only be used after a connection has been made.

The optional timeout parameter specifies a timeout in seconds for the connection attempt. If no timeout is
passed, the global default timeout setting will be used.

FTP.getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

FTP.login(user=’anonymous’, passwd=’‘, acct=’‘)
Log in as the given user. The passwd and acct parameters are optional and default to the empty string.
If no user is specified, it defaults to ’anonymous’. If user is ’anonymous’, the default passwd is
’anonymous@’. This function should be called only once for each instance, after a connection has been
established; it should not be called at all if a host and user were given when the instance was created. Most
FTP commands are only allowed after the client has logged in. The acct parameter supplies “accounting
information”; few systems implement this.

FTP.abort()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

FTP.sendcmd(cmd)
Send a simple command string to the server and return the response string.

FTP.voidcmd(cmd)
Send a simple command string to the server and handle the response. Return nothing if a response code
corresponding to success (codes in the range 200–299) is received. Raise error_reply otherwise.

FTP.retrbinary(cmd, callback, blocksize=8192, rest=None)
Retrieve a file in binary transfer mode. cmd should be an appropriate RETR command: ’RETR
filename’. The callback function is called for each block of data received, with a single string argument
giving the data block. The optional blocksize argument specifies the maximum chunk size to read on the
low-level socket object created to do the actual transfer (which will also be the largest size of the data blocks
passed to callback). A reasonable default is chosen. rest means the same thing as in the transfercmd()
method.

FTP.retrlines(cmd, callback=None)
Retrieve a file or directory listing in ASCII transfer mode. cmd should be an appropriate RETR command
(see retrbinary()) or a command such as LIST, NLST or MLSD (usually just the string ’LIST’).
LIST retrieves a list of files and information about those files. NLST retrieves a list of file names. On some
servers, MLSD retrieves a machine readable list of files and information about those files. The callback
function is called for each line with a string argument containing the line with the trailing CRLF stripped.
The default callback prints the line to sys.stdout.

FTP.set_pasv(boolean)
Enable “passive” mode if boolean is true, other disable passive mode. Passive mode is on by default.

FTP.storbinary(cmd, file, blocksize=8192, callback=None, rest=None)
Store a file in binary transfer mode. cmd should be an appropriate STOR command: "STOR filename".
file is an open file object which is read until EOF using its read() method in blocks of size blocksize
to provide the data to be stored. The blocksize argument defaults to 8192. callback is an optional single
parameter callable that is called on each block of data after it is sent. rest means the same thing as in the
transfercmd() method. Changed in version 3.2: rest parameter added.

794 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

FTP.storlines(cmd, file, callback=None)
Store a file in ASCII transfer mode. cmd should be an appropriate STOR command (see storbinary()).
Lines are read until EOF from the open file object file using its readline() method to provide the data
to be stored. callback is an optional single parameter callable that is called on each line after it is sent.

FTP.transfercmd(cmd, rest=None)
Initiate a transfer over the data connection. If the transfer is active, send a EPRT or PORT command and
the transfer command specified by cmd, and accept the connection. If the server is passive, send a EPSV
or PASV command, connect to it, and start the transfer command. Either way, return the socket for the
connection.

If optional rest is given, a REST command is sent to the server, passing rest as an argument. rest is usually a
byte offset into the requested file, telling the server to restart sending the file’s bytes at the requested offset,
skipping over the initial bytes. Note however that RFC 959 requires only that rest be a string containing
characters in the printable range from ASCII code 33 to ASCII code 126. The transfercmd() method,
therefore, converts rest to a string, but no check is performed on the string’s contents. If the server does not
recognize the REST command, an error_reply exception will be raised. If this happens, simply call
transfercmd() without a rest argument.

FTP.ntransfercmd(cmd, rest=None)
Like transfercmd(), but returns a tuple of the data connection and the expected size of the data. If the
expected size could not be computed, None will be returned as the expected size. cmd and rest means the
same thing as in transfercmd().

FTP.nlst(argument[, ...])
Return a list of file names as returned by the NLST command. The optional argument is a directory to list
(default is the current server directory). Multiple arguments can be used to pass non-standard options to the
NLST command.

FTP.dir(argument[, ...])
Produce a directory listing as returned by the LIST command, printing it to standard output. The optional
argument is a directory to list (default is the current server directory). Multiple arguments can be used to
pass non-standard options to the LIST command. If the last argument is a function, it is used as a callback
function as for retrlines(); the default prints to sys.stdout. This method returns None.

FTP.rename(fromname, toname)
Rename file fromname on the server to toname.

FTP.delete(filename)
Remove the file named filename from the server. If successful, returns the text of the response, otherwise
raises error_perm on permission errors or error_reply on other errors.

FTP.cwd(pathname)
Set the current directory on the server.

FTP.mkd(pathname)
Create a new directory on the server.

FTP.pwd()
Return the pathname of the current directory on the server.

FTP.rmd(dirname)
Remove the directory named dirname on the server.

FTP.size(filename)
Request the size of the file named filename on the server. On success, the size of the file is returned as an
integer, otherwise None is returned. Note that the SIZE command is not standardized, but is supported by
many common server implementations.

FTP.quit()
Send a QUIT command to the server and close the connection. This is the “polite” way to close a connection,
but it may raise an exception if the server responds with an error to the QUIT command. This implies a call
to the close() method which renders the FTP instance useless for subsequent calls (see below).

20.11. ftplib — FTP protocol client 795

The Python Library Reference, Release 3.2

FTP.close()
Close the connection unilaterally. This should not be applied to an already closed connection such as after
a successful call to quit(). After this call the FTP instance should not be used any more (after a call to
close() or quit() you cannot reopen the connection by issuing another login() method).

20.11.2 FTP_TLS Objects

FTP_TLS class inherits from FTP, defining these additional objects:

FTP_TLS.ssl_version
The SSL version to use (defaults to TLSv1).

FTP_TLS.auth()
Set up secure control connection by using TLS or SSL, depending on what specified in ssl_version()
attribute.

FTP_TLS.prot_p()
Set up secure data connection.

FTP_TLS.prot_c()
Set up clear text data connection.

20.12 poplib — POP3 protocol client

Source code: Lib/poplib.py

This module defines a class, POP3, which encapsulates a connection to a POP3 server and implements the protocol
as defined in RFC 1725. The POP3 class supports both the minimal and optional command sets. Additionally,
this module provides a class POP3_SSL, which provides support for connecting to POP3 servers that use SSL as
an underlying protocol layer.

Note that POP3, though widely supported, is obsolescent. The implementation quality of POP3 servers varies
widely, and too many are quite poor. If your mailserver supports IMAP, you would be better off using the
imaplib.IMAP4 class, as IMAP servers tend to be better implemented.

A single class is provided by the poplib module:

class poplib.POP3(host, port=POP3_PORT[, timeout])
This class implements the actual POP3 protocol. The connection is created when the instance is initialized.
If port is omitted, the standard POP3 port (110) is used. The optional timeout parameter specifies a timeout
in seconds for the connection attempt (if not specified, the global default timeout setting will be used).

class poplib.POP3_SSL(host, port=POP3_SSL_PORT, keyfile=None, certfile=None, timeout=None,
context=None)

This is a subclass of POP3 that connects to the server over an SSL encrypted socket. If port is not specified,
995, the standard POP3-over-SSL port is used. keyfile and certfile are also optional - they can contain a
PEM formatted private key and certificate chain file for the SSL connection. timeout works as in the POP3
constructor. context parameter is a ssl.SSLContext object which allows bundling SSL configuration
options, certificates and private keys into a single (potentially long-lived) structure. Changed in version 3.2:
context parameter added.

One exception is defined as an attribute of the poplib module:

exception poplib.error_proto
Exception raised on any errors from this module (errors from socket module are not caught). The reason
for the exception is passed to the constructor as a string.

See Also:

Module imaplib The standard Python IMAP module.

796 Chapter 20. Internet Protocols and Support

http://svn.python.org/view/python/branches/py3k/Lib/poplib.py?view=markup
http://tools.ietf.org/html/rfc1725.html

The Python Library Reference, Release 3.2

Frequently Asked Questions About Fetchmail The FAQ for the fetchmail POP/IMAP client collects informa-
tion on POP3 server variations and RFC noncompliance that may be useful if you need to write an applica-
tion based on the POP protocol.

20.12.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the response text
sent by the server.

An POP3 instance has the following methods:

POP3.set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally a
single line per request. A value of 2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

POP3.getwelcome()
Returns the greeting string sent by the POP3 server.

POP3.user(username)
Send user command, response should indicate that a password is required.

POP3.pass_(password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server is
locked until quit() is called.

POP3.apop(user, secret)
Use the more secure APOP authentication to log into the POP3 server.

POP3.rpop(user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

POP3.stat()
Get mailbox status. The result is a tuple of 2 integers: (message count, mailbox size).

POP3.list([which])
Request message list, result is in the form (response, [’mesg_num octets’, ...],
octets). If which is set, it is the message to list.

POP3.retr(which)
Retrieve whole message number which, and set its seen flag. Result is in form (response, [’line’,
...], octets).

POP3.dele(which)
Flag message number which for deletion. On most servers deletions are not actually performed until QUIT
(the major exception is Eudora QPOP, which deliberately violates the RFCs by doing pending deletes on
any disconnect).

POP3.rset()
Remove any deletion marks for the mailbox.

POP3.noop()
Do nothing. Might be used as a keep-alive.

POP3.quit()
Signoff: commit changes, unlock mailbox, drop connection.

POP3.top(which, howmuch)
Retrieves the message header plus howmuch lines of the message after the header of message number which.
Result is in form (response, [’line’, ...], octets).

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the message’s seen
flag; unfortunately, TOP is poorly specified in the RFCs and is frequently broken in off-brand servers. Test
this method by hand against the POP3 servers you will use before trusting it.

20.12. poplib — POP3 protocol client 797

http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html

The Python Library Reference, Release 3.2

POP3.uidl(which=None)
Return message digest (unique id) list. If which is specified, result contains the unique id for that message
in the form ’response mesgnum uid, otherwise result is list (response, [’mesgnum uid’,
...], octets).

Instances of POP3_SSL have no additional methods. The interface of this subclass is identical to its parent.

20.12.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, poplib

M = poplib.POP3(’localhost’)
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):

for j in M.retr(i+1)[1]:
print(j)

At the end of the module, there is a test section that contains a more extensive example of usage.

20.13 imaplib — IMAP4 protocol client

Source code: Lib/imaplib.py

This module defines three classes, IMAP4, IMAP4_SSL and IMAP4_stream, which encapsulate a connection
to an IMAP4 server and implement a large subset of the IMAP4rev1 client protocol as defined in

RFC 2060. It is backward compatible with IMAP4 (RFC 1730) servers, but note that the STATUS command is
not supported in IMAP4.

Three classes are provided by the imaplib module, IMAP4 is the base class:

class imaplib.IMAP4(host=’‘, port=IMAP4_PORT)
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4
or IMAP4rev1) is determined when the instance is initialized. If host is not specified, ” (the local host) is
used. If port is omitted, the standard IMAP4 port (143) is used.

Three exceptions are defined as attributes of the IMAP4 class:

exception IMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

exception IMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class of IMAP4.error. Note that
closing the instance and instantiating a new one will usually allow recovery from this exception.

exception IMAP4.readonly
This exception is raised when a writable mailbox has its status changed by the server. This is a sub-class of
IMAP4.error. Some other client now has write permission, and the mailbox will need to be re-opened
to re-obtain write permission.

There’s also a subclass for secure connections:

class imaplib.IMAP4_SSL(host=’‘, port=IMAP4_SSL_PORT, keyfile=None, certfile=None)
This is a subclass derived from IMAP4 that connects over an SSL encrypted socket (to use this class you
need a socket module that was compiled with SSL support). If host is not specified, ” (the local host)
is used. If port is omitted, the standard IMAP4-over-SSL port (993) is used. keyfile and certfile are also
optional - they can contain a PEM formatted private key and certificate chain file for the SSL connection.

798 Chapter 20. Internet Protocols and Support

http://svn.python.org/view/python/branches/py3k/Lib/imaplib.py?view=markup
http://tools.ietf.org/html/rfc2060.html
http://tools.ietf.org/html/rfc1730.html

The Python Library Reference, Release 3.2

The second subclass allows for connections created by a child process:

class imaplib.IMAP4_stream(command)
This is a subclass derived from IMAP4 that connects to the stdin/stdout file descriptors created by
passing command to subprocess.Popen().

The following utility functions are defined:

imaplib.Internaldate2tuple(datestr)
Parse an IMAP4 INTERNALDATE string and return corresponding local time. The return value is a
time.struct_time tuple or None if the string has wrong format.

imaplib.Int2AP(num)
Converts an integer into a string representation using characters from the set [A .. P].

imaplib.ParseFlags(flagstr)
Converts an IMAP4 FLAGS response to a tuple of individual flags.

imaplib.Time2Internaldate(date_time)
Convert date_time to an IMAP4 INTERNALDATE representation. The return value is a string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMM" (including double-quotes). The date_time argument can be a
number (int or float) represening seconds since epoch (as returned by time.time()), a 9-tuple repre-
senting local time (as returned by time.localtime()), or a double-quoted string. In the last case, it is
assumed to already be in the correct format.

Note that IMAP4 message numbers change as the mailbox changes; in particular, after an EXPUNGE command
performs deletions the remaining messages are renumbered. So it is highly advisable to use UIDs instead, with
the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found at the
University of Washington’s IMAP Information Center (http://www.washington.edu/imap/).

20.13.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

All arguments to commands are converted to strings, except for AUTHENTICATE, and the last argument to
APPEND which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-sensitive char-
acters and isn’t enclosed with either parentheses or double quotes) each string is quoted. However, the password
argument to the LOGIN command is always quoted. If you want to avoid having an argument string quoted (eg:
the flags argument to STORE) then enclose the string in parentheses (eg: r’(\Deleted)’).

Each command returns a tuple: (type, [data, ...]) where type is usually ’OK’ or ’NO’, and data is
either the text from the command response, or mandated results from the command. Each data is either a string,
or a tuple. If a tuple, then the first part is the header of the response, and the second part contains the data (ie:
‘literal’ value).

The message_set options to commands below is a string specifying one or more messages to be acted upon. It
may be a simple message number (’1’), a range of message numbers (’2:4’), or a group of non-contiguous
ranges separated by commas (’1:3,6:9’). A range can contain an asterisk to indicate an infinite upper bound
(’3:*’).

An IMAP4 instance has the following methods:

IMAP4.append(mailbox, flags, date_time, message)
Append message to named mailbox.

IMAP4.authenticate(mechanism, authobject)
Authenticate command — requires response processing.

mechanism specifies which authentication mechanism is to be used - it should appear in the instance variable
capabilities in the form AUTH=mechanism.

20.13. imaplib — IMAP4 protocol client 799

http://www.washington.edu/imap/

The Python Library Reference, Release 3.2

authobject must be a callable object:

data = authobject(response)

It will be called to process server continuation responses. It should return data that will be encoded and
sent to server. It should return None if the client abort response * should be sent instead.

IMAP4.check()
Checkpoint mailbox on server.

IMAP4.close()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command before LOGOUT.

IMAP4.copy(message_set, new_mailbox)
Copy message_set messages onto end of new_mailbox.

IMAP4.create(mailbox)
Create new mailbox named mailbox.

IMAP4.delete(mailbox)
Delete old mailbox named mailbox.

IMAP4.deleteacl(mailbox, who)
Delete the ACLs (remove any rights) set for who on mailbox.

IMAP4.expunge()
Permanently remove deleted items from selected mailbox. Generates an EXPUNGE response for each
deleted message. Returned data contains a list of EXPUNGE message numbers in order received.

IMAP4.fetch(message_set, message_parts)
Fetch (parts of) messages. message_parts should be a string of message part names enclosed within paren-
theses, eg: "(UID BODY[TEXT])". Returned data are tuples of message part envelope and data.

IMAP4.getacl(mailbox)
Get the ACLs for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.getannotation(mailbox, entry, attribute)
Retrieve the specified ANNOTATIONs for mailbox. The method is non-standard, but is supported by the
Cyrus server.

IMAP4.getquota(root)
Get the quota root‘s resource usage and limits. This method is part of the IMAP4 QUOTA extension
defined in rfc2087.

IMAP4.getquotaroot(mailbox)
Get the list of quota roots for the named mailbox. This method is part of the IMAP4 QUOTA extension
defined in rfc2087.

IMAP4.list([directory[, pattern]])
List mailbox names in directory matching pattern. directory defaults to the top-level mail folder, and pattern
defaults to match anything. Returned data contains a list of LIST responses.

IMAP4.login(user, password)
Identify the client using a plaintext password. The password will be quoted.

IMAP4.login_cram_md5(user, password)
Force use of CRAM-MD5 authentication when identifying the client to protect the password. Will only work
if the server CAPABILITY response includes the phrase AUTH=CRAM-MD5.

IMAP4.logout()
Shutdown connection to server. Returns server BYE response.

IMAP4.lsub(directory=”’“’, pattern=’*’)
List subscribed mailbox names in directory matching pattern. directory defaults to the top level directory
and pattern defaults to match any mailbox. Returned data are tuples of message part envelope and data.

800 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

IMAP4.myrights(mailbox)
Show my ACLs for a mailbox (i.e. the rights that I have on mailbox).

IMAP4.namespace()
Returns IMAP namespaces as defined in RFC2342.

IMAP4.noop()
Send NOOP to server.

IMAP4.open(host, port)
Opens socket to port at host. This method is implicitly called by the IMAP4 constructor. The connection
objects established by this method will be used in the read, readline, send, and shutdown methods.
You may override this method.

IMAP4.partial(message_num, message_part, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

IMAP4.proxyauth(user)
Assume authentication as user. Allows an authorised administrator to proxy into any user’s mailbox.

IMAP4.read(size)
Reads size bytes from the remote server. You may override this method.

IMAP4.readline()
Reads one line from the remote server. You may override this method.

IMAP4.recent()
Prompt server for an update. Returned data is None if no new messages, else value of RECENT response.

IMAP4.rename(oldmailbox, newmailbox)
Rename mailbox named oldmailbox to newmailbox.

IMAP4.response(code)
Return data for response code if received, or None. Returns the given code, instead of the usual type.

IMAP4.search(charset, criterion[, ...])
Search mailbox for matching messages. charset may be None, in which case no CHARSETwill be specified
in the request to the server. The IMAP protocol requires that at least one criterion be specified; an exception
will be raised when the server returns an error.

Example:

M is a connected IMAP4 instance...
typ, msgnums = M.search(None, ’FROM’, ’"LDJ"’)

or:
typ, msgnums = M.search(None, ’(FROM "LDJ")’)

IMAP4.select(mailbox=’INBOX’, readonly=False)
Select a mailbox. Returned data is the count of messages in mailbox (EXISTS response). The default
mailbox is ’INBOX’. If the readonly flag is set, modifications to the mailbox are not allowed.

IMAP4.send(data)
Sends data to the remote server. You may override this method.

IMAP4.setacl(mailbox, who, what)
Set an ACL for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.setannotation(mailbox, entry, attribute[, ...])
Set ANNOTATIONs for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.setquota(root, limits)
Set the quota root‘s resource limits. This method is part of the IMAP4 QUOTA extension defined in
rfc2087.

20.13. imaplib — IMAP4 protocol client 801

The Python Library Reference, Release 3.2

IMAP4.shutdown()
Close connection established in open. This method is implicitly called by IMAP4.logout(). You may
override this method.

IMAP4.socket()
Returns socket instance used to connect to server.

IMAP4.sort(sort_criteria, charset, search_criterion[, ...])
The sort command is a variant of search with sorting semantics for the results. Returned data contains
a space separated list of matching message numbers.

Sort has two arguments before the search_criterion argument(s); a parenthesized list of sort_criteria, and
the searching charset. Note that unlike search, the searching charset argument is mandatory. There is also
a uid sort command which corresponds to sort the way that uid search corresponds to search.
The sort command first searches the mailbox for messages that match the given searching criteria using
the charset argument for the interpretation of strings in the searching criteria. It then returns the numbers of
matching messages.

This is an IMAP4rev1 extension command.

IMAP4.starttls(ssl_context=None)
Send a STARTTLS command. The ssl_context argument is optional and should be a ssl.SSLContext
object. This will enable encryption on the IMAP connection. New in version 3.2.

IMAP4.status(mailbox, names)
Request named status conditions for mailbox.

IMAP4.store(message_set, command, flag_list)
Alters flag dispositions for messages in mailbox. command is specified by section 6.4.6 of RFC 2060 as
being one of “FLAGS”, “+FLAGS”, or “-FLAGS”, optionally with a suffix of ”.SILENT”.

For example, to set the delete flag on all messages:

typ, data = M.search(None, ’ALL’)
for num in data[0].split():

M.store(num, ’+FLAGS’, ’\\Deleted’)
M.expunge()

IMAP4.subscribe(mailbox)
Subscribe to new mailbox.

IMAP4.thread(threading_algorithm, charset, search_criterion[, ...])
The thread command is a variant of search with threading semantics for the results. Returned data
contains a space separated list of thread members.

Thread members consist of zero or more messages numbers, delimited by spaces, indicating successive
parent and child.

Thread has two arguments before the search_criterion argument(s); a threading_algorithm, and the search-
ing charset. Note that unlike search, the searching charset argument is mandatory. There is also a uid
thread command which corresponds to thread the way that uid search corresponds to search.
The thread command first searches the mailbox for messages that match the given searching criteria using
the charset argument for the interpretation of strings in the searching criteria. It then returns the matching
messages threaded according to the specified threading algorithm.

This is an IMAP4rev1 extension command.

IMAP4.uid(command, arg[, ...])
Execute command args with messages identified by UID, rather than message number. Returns response
appropriate to command. At least one argument must be supplied; if none are provided, the server will
return an error and an exception will be raised.

IMAP4.unsubscribe(mailbox)
Unsubscribe from old mailbox.

802 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2060.html

The Python Library Reference, Release 3.2

IMAP4.xatom(name[, ...])
Allow simple extension commands notified by server in CAPABILITY response.

The following attributes are defined on instances of IMAP4:

IMAP4.PROTOCOL_VERSION
The most recent supported protocol in the CAPABILITY response from the server.

IMAP4.debug
Integer value to control debugging output. The initialize value is taken from the module variable Debug.
Values greater than three trace each command.

20.13.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib

M = imaplib.IMAP4()
M.login(getpass.getuser(), getpass.getpass())
M.select()
typ, data = M.search(None, ’ALL’)
for num in data[0].split():

typ, data = M.fetch(num, ’(RFC822)’)
print(’Message %s\n%s\n’ % (num, data[0][1]))

M.close()
M.logout()

20.14 nntplib — NNTP protocol client

Source code: Lib/nntplib.py

This module defines the class NNTP which implements the client side of the Network News Transfer Protocol. It
can be used to implement a news reader or poster, or automated news processors. It is compatible with RFC 3977
as well as the older RFC 977 and RFC 2980.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects
of the last 10 articles:

>>> s = nntplib.NNTP(’news.gmane.org’)
>>> resp, count, first, last, name = s.group(’gmane.comp.python.committers’)
>>> print(’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last)
Group gmane.comp.python.committers has 1096 articles, range 1 to 1096
>>> resp, overviews = s.over((last - 9, last))
>>> for id, over in overviews:
... print(id, nntplib.decode_header(over[’subject’]))
...
1087 Re: Commit privileges for Łukasz Langa
1088 Re: 3.2 alpha 2 freeze
1089 Re: 3.2 alpha 2 freeze
1090 Re: Commit privileges for Łukasz Langa
1091 Re: Commit privileges for Łukasz Langa
1092 Updated ssh key
1093 Re: Updated ssh key
1094 Re: Updated ssh key
1095 Hello fellow committers!
1096 Re: Hello fellow committers!

20.14. nntplib — NNTP protocol client 803

http://svn.python.org/view/python/branches/py3k/Lib/nntplib.py?view=markup
http://tools.ietf.org/html/rfc3977.html
http://tools.ietf.org/html/rfc977.html
http://tools.ietf.org/html/rfc2980.html

The Python Library Reference, Release 3.2

>>> s.quit()
’205 Bye!’

To post an article from a binary file (this assumes that the article has valid headers, and that you have right to post
on the particular newsgroup):

>>> s = nntplib.NNTP(’news.gmane.org’)
>>> f = open(’/tmp/article.txt’, ’rb’)
>>> s.post(f)
’240 Article posted successfully.’
>>> s.quit()
’205 Bye!’

The module itself defines the following classes:

class nntplib.NNTP(host, port=119, user=None, password=None, readermode=None, usen-
etrc=False[, timeout])

Return a new NNTP object, representing a connection to the NNTP server running on host host, listening
at port port. An optional timeout can be specified for the socket connection. If the optional user and
password are provided, or if suitable credentials are present in /.netrc and the optional flag usenetrc is
true, the AUTHINFO USER and AUTHINFO PASS commands are used to identify and authenticate the
user to the server. If the optional flag readermode is true, then a mode reader command is sent before
authentication is performed. Reader mode is sometimes necessary if you are connecting to an NNTP server
on the local machine and intend to call reader-specific commands, such as group. If you get unexpected
NNTPPermanentErrors, you might need to set readermode. Changed in version 3.2: usenetrc is now
False by default.

class nntplib.NNTP_SSL(host, port=563, user=None, password=None, ssl_context=None, reader-
mode=None, usenetrc=False[, timeout])

Return a new NNTP_SSL object, representing an encrypted connection to the NNTP server running on host
host, listening at port port. NNTP_SSL objects have the same methods as NNTP objects. If port is omitted,
port 563 (NNTPS) is used. ssl_context is also optional, and is a SSLContext object. All other parameters
behave the same as for NNTP.

Note that SSL-on-563 is discouraged per RFC 4642, in favor of STARTTLS as described below. However,
some servers only support the former. New in version 3.2.

exception nntplib.NNTPError
Derived from the standard exception Exception, this is the base class for all exceptions raised by the
nntplib module. Instances of this class have the following attribute:

response
The response of the server if available, as a str object.

exception nntplib.NNTPReplyError
Exception raised when an unexpected reply is received from the server.

exception nntplib.NNTPTemporaryError
Exception raised when a response code in the range 400–499 is received.

exception nntplib.NNTPPermanentError
Exception raised when a response code in the range 500–599 is received.

exception nntplib.NNTPProtocolError
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.

exception nntplib.NNTPDataError
Exception raised when there is some error in the response data.

20.14.1 NNTP Objects

When connected, NNTP and NNTP_SSL objects support the following methods and attributes.

804 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc4642.html

The Python Library Reference, Release 3.2

Attributes

NNTP.nntp_version
An integer representing the version of the NNTP protocol supported by the server. In practice, this should
be 2 for servers advertising

RFC 3977 compliance and 1 for others. New in version 3.2.

NNTP.nntp_implementation
A string describing the software name and version of the NNTP server, or None if not advertised by the
server. New in version 3.2.

Methods

The response that is returned as the first item in the return tuple of almost all methods is the server’s response: a
string beginning with a three-digit code. If the server’s response indicates an error, the method raises one of the
above exceptions.

Many of the following methods take an optional keyword-only argument file. When the file argument is supplied,
it must be either a file object opened for binary writing, or the name of an on-disk file to be written to. The method
will then write any data returned by the server (except for the response line and the terminating dot) to the file; any
list of lines, tuples or objects that the method normally returns will be empty. Changed in version 3.2: Many of
the following methods have been reworked and fixed, which makes them incompatible with their 3.1 counterparts.

NNTP.quit()
Send a QUIT command and close the connection. Once this method has been called, no other methods of
the NNTP object should be called.

NNTP.getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

NNTP.getcapabilities()
Return the RFC 3977 capabilities advertised by the server, as a dict instance mapping capability names to
(possibly empty) lists of values. On legacy servers which don’t understand the CAPABILITIES command,
an empty dictionary is returned instead.

>>> s = NNTP(’news.gmane.org’)
>>> ’POST’ in s.getcapabilities()
True

New in version 3.2.

NNTP.login(user=None, password=None, usenetrc=True)
Send AUTHINFO commands with the user name and password. If user and password are None and usenetrc
is True, credentials from ~/.netrc will be used if possible.

Unless intentionally delayed, login is normally performed during the NNTP object initialization and sepa-
rately calling this function is unnecessary. To force authentication to be delayed, you must not set user or
password when creating the object, and must set usenetrc to False. New in version 3.2.

NNTP.starttls(ssl_context=None)
Send a STARTTLS command. The ssl_context argument is optional and should be a ssl.SSLContext
object. This will enable encryption on the NNTP connection.

Note that this may not be done after authentication information has been transmitted, and authentication
occurs by default if possible during a NNTP object initialization. See NNTP.login() for information on
suppressing this behavior. New in version 3.2.

NNTP.newgroups(date, *, file=None)
Send a NEWGROUPS command. The date argument should be a datetime.date or

20.14. nntplib — NNTP protocol client 805

http://tools.ietf.org/html/rfc3977.html
http://tools.ietf.org/html/rfc3977.html

The Python Library Reference, Release 3.2

datetime.datetime object. Return a pair (response, groups) where groups is a list repre-
senting the groups that are new since the given date. If file is supplied, though, then groups will be empty.

>>> from datetime import date, timedelta
>>> resp, groups = s.newgroups(date.today() - timedelta(days=3))
>>> len(groups)
85
>>> groups[0]
GroupInfo(group=’gmane.network.tor.devel’, last=’4’, first=’1’, flag=’m’)

NNTP.newnews(group, date, *, file=None)
Send a NEWNEWS command. Here, group is a group name or ’*’, and date has the same meaning as for
newgroups(). Return a pair (response, articles) where articles is a list of message ids.

This command is frequently disabled by NNTP server administrators.

NNTP.list(group_pattern=None, *, file=None)
Send a LIST or LIST ACTIVE command. Return a pair (response, list) where list is a list of
tuples representing all the groups available from this NNTP server, optionally matching the pattern string
group_pattern. Each tuple has the form (group, last, first, flag), where group is a group
name, last and first are the last and first article numbers, and flag usually takes one of these values:

•y: Local postings and articles from peers are allowed.

•m: The group is moderated and all postings must be approved.

•n: No local postings are allowed, only articles from peers.

•j: Articles from peers are filed in the junk group instead.

•x: No local postings, and articles from peers are ignored.

•=foo.bar: Articles are filed in the foo.bar group instead.

If flag has another value, then the status of the newsgroup should be considered unknown.

This command can return very large results, especially if group_pattern is not specified. It is best to cache
the results offline unless you really need to refresh them. Changed in version 3.2: group_pattern was added.

NNTP.descriptions(grouppattern)
Send a LIST NEWSGROUPS command, where grouppattern is a wildmat string as specified in RFC
3977 (it’s essentially the same as DOS or UNIX shell wildcard strings). Return a pair (response,
descriptions), where descriptions is a dictionary mapping group names to textual descriptions.

>>> resp, descs = s.descriptions(’gmane.comp.python.*’)
>>> len(descs)
295
>>> descs.popitem()
(’gmane.comp.python.bio.general’, ’BioPython discussion list (Moderated)’)

NNTP.description(group)
Get a description for a single group group. If more than one group matches (if ‘group’ is a real wildmat
string), return the first match. If no group matches, return an empty string.

This elides the response code from the server. If the response code is needed, use descriptions().

NNTP.group(name)
Send a GROUP command, where name is the group name. The group is selected as the current group, if it
exists. Return a tuple (response, count, first, last, name) where count is the (estimated)
number of articles in the group, first is the first article number in the group, last is the last article number in
the group, and name is the group name.

NNTP.over(message_spec, *, file=None)
Send a OVER command, or a XOVER command on legacy servers. message_spec can be either a string
representing a message id, or a (first, last) tuple of numbers indicating a range of articles in the

806 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc3977.html
http://tools.ietf.org/html/rfc3977.html

The Python Library Reference, Release 3.2

current group, or a (first, None) tuple indicating a range of articles starting from first to the last
article in the current group, or None to select the current article in the current group.

Return a pair (response, overviews). overviews is a list of (article_number, overview)
tuples, one for each article selected by message_spec. Each overview is a dictionary with the same number
of items, but this number depends on the server. These items are either message headers (the key is then the
lower-cased header name) or metadata items (the key is then the metadata name prepended with ":"). The
following items are guaranteed to be present by the NNTP specification:

•the subject, from, date, message-id and references headers

•the :bytes metadata: the number of bytes in the entire raw article (including headers and body)

•the :lines metadata: the number of lines in the article body

The value of each item is either a string, or None if not present.

It is advisable to use the decode_header() function on header values when they may contain non-ASCII
characters:

>>> _, _, first, last, _ = s.group(’gmane.comp.python.devel’)
>>> resp, overviews = s.over((last, last))
>>> art_num, over = overviews[0]
>>> art_num
117216
>>> list(over.keys())
[’xref’, ’from’, ’:lines’, ’:bytes’, ’references’, ’date’, ’message-id’, ’subject’]
>>> over[’from’]
’=?UTF-8?B?Ik1hcnRpbiB2LiBMw7Z3aXMi?= <martin@v.loewis.de>’
>>> nntplib.decode_header(over[’from’])
’"Martin v. Löwis" <martin@v.loewis.de>’

New in version 3.2.

NNTP.help(*, file=None)
Send a HELP command. Return a pair (response, list) where list is a list of help strings.

NNTP.stat(message_spec=None)
Send a STAT command, where message_spec is either a message id (enclosed in ’<’ and ’>’) or an article
number in the current group. If message_spec is omitted or None, the current article in the current group is
considered. Return a triple (response, number, id) where number is the article number and id is
the message id.

>>> _, _, first, last, _ = s.group(’gmane.comp.python.devel’)
>>> resp, number, message_id = s.stat(first)
>>> number, message_id
(9099, ’<20030112190404.GE29873@epoch.metaslash.com>’)

NNTP.next()
Send a NEXT command. Return as for stat().

NNTP.last()
Send a LAST command. Return as for stat().

NNTP.article(message_spec=None, *, file=None)
Send an ARTICLE command, where message_spec has the same meaning as for stat(). Return a tuple
(response, info) where info is a namedtuple with three members number, message_id and lines
(in that order). number is the article number in the group (or 0 if the information is not available), mes-
sage_id the message id as a string, and lines a list of lines (without terminating newlines) comprising the
raw message including headers and body.

>>> resp, info = s.article(’<20030112190404.GE29873@epoch.metaslash.com>’)
>>> info.number

20.14. nntplib — NNTP protocol client 807

The Python Library Reference, Release 3.2

0
>>> info.message_id
’<20030112190404.GE29873@epoch.metaslash.com>’
>>> len(info.lines)
65
>>> info.lines[0]
b’Path: main.gmane.org!not-for-mail’
>>> info.lines[1]
b’From: Neal Norwitz <neal@metaslash.com>’
>>> info.lines[-3:]
[b’There is a patch for 2.3 as well as 2.2.’, b’’, b’Neal’]

NNTP.head(message_spec=None, *, file=None)
Same as article(), but sends a HEAD command. The lines returned (or written to file) will only contain
the message headers, not the body.

NNTP.body(message_spec=None, *, file=None)
Same as article(), but sends a BODY command. The lines returned (or written to file) will only contain
the message body, not the headers.

NNTP.post(data)
Post an article using the POST command. The data argument is either a file object opened for binary
reading, or any iterable of bytes objects (representing raw lines of the article to be posted). It should
represent a well-formed news article, including the required headers. The post() method automatically
escapes lines beginning with . and appends the termination line.

If the method succeeds, the server’s response is returned. If the server refuses posting, a
NNTPReplyError is raised.

NNTP.ihave(message_id, data)
Send an IHAVE command. message_id is the id of the message to send to the server (enclosed in ’<’ and
’>’). The data parameter and the return value are the same as for post().

NNTP.date()
Return a pair (response, date). date is a datetime object containing the current date and time of
the server.

NNTP.slave()
Send a SLAVE command. Return the server’s response.

NNTP.set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally
a single line per request or response. A value of 2 or higher produces the maximum amount of debugging
output, logging each line sent and received on the connection (including message text).

The following are optional NNTP extensions defined in RFC 2980. Some of them have been superseded by newer
commands in RFC 3977.

NNTP.xhdr(header, string, *, file=None)
Send an XHDR command. The header argument is a header keyword, e.g. ’subject’. The string
argument should have the form ’first-last’ where first and last are the first and last article numbers
to search. Return a pair (response, list), where list is a list of pairs (id, text), where id is an
article number (as a string) and text is the text of the requested header for that article. If the file parameter
is supplied, then the output of the XHDR command is stored in a file. If file is a string, then the method will
open a file with that name, write to it then close it. If file is a file object, then it will start calling write()
on it to store the lines of the command output. If file is supplied, then the returned list is an empty list.

NNTP.xover(start, end, *, file=None)
Send an XOVER command. start and end are article numbers delimiting the range of articles to select.
The return value is the same of for over(). It is recommended to use over() instead, since it will
automatically use the newer OVER command if available.

808 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2980.html
http://tools.ietf.org/html/rfc3977.html

The Python Library Reference, Release 3.2

NNTP.xpath(id)
Return a pair (resp, path), where path is the directory path to the article with message ID id. Most of
the time, this extension is not enabled by NNTP server administrators.

20.14.2 Utility functions

The module also defines the following utility function:

nntplib.decode_header(header_str)
Decode a header value, un-escaping any escaped non-ASCII characters. header_str must be a str object.
The unescaped value is returned. Using this function is recommended to display some headers in a human
readable form:

>>> decode_header("Some subject")
’Some subject’
>>> decode_header("=?ISO-8859-15?Q?D=E9buter_en_Python?=")
’Débuter en Python’
>>> decode_header("Re: =?UTF-8?B?cHJvYmzDqG1lIGRlIG1hdHJpY2U=?=")
’Re: problème de matrice’

20.15 smtplib — SMTP protocol client

Source code: Lib/smtplib.py

The smtplibmodule defines an SMTP client session object that can be used to send mail to any Internet machine
with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult RFC 821 (Simple
Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

class smtplib.SMTP(host=’‘, port=0, local_hostname=None[, timeout])
A SMTP instance encapsulates an SMTP connection. It has methods that support a full repertoire of SMTP
and ESMTP operations. If the optional host and port parameters are given, the SMTP connect() method
is called with those parameters during initialization. An SMTPConnectError is raised if the specified
host doesn’t respond correctly. The optional timeout parameter specifies a timeout in seconds for blocking
operations like the connection attempt (if not specified, the global default timeout setting will be used).

For normal use, you should only require the initialization/connect, sendmail(), and quit() methods.
An example is included below.

class smtplib.SMTP_SSL(host=’‘, port=0, local_hostname=None, keyfile=None, certfile=None[,
timeout])

A SMTP_SSL instance behaves exactly the same as instances of SMTP. SMTP_SSL should be used for
situations where SSL is required from the beginning of the connection and using starttls() is not
appropriate. If host is not specified, the local host is used. If port is zero, the standard SMTP-over-SSL
port (465) is used. keyfile and certfile are also optional, and can contain a PEM formatted private key and
certificate chain file for the SSL connection. The optional timeout parameter specifies a timeout in seconds
for blocking operations like the connection attempt (if not specified, the global default timeout setting will
be used).

class smtplib.LMTP(host=’‘, port=LMTP_PORT, local_hostname=None)
The LMTP protocol, which is very similar to ESMTP, is heavily based on the standard SMTP client. It’s
common to use Unix sockets for LMTP, so our connect() method must support that as well as a regular
host:port server. To specify a Unix socket, you must use an absolute path for host, starting with a ‘/’.

Authentication is supported, using the regular SMTP mechanism. When using a Unix socket, LMTP gener-
ally don’t support or require any authentication, but your mileage might vary.

A nice selection of exceptions is defined as well:

20.15. smtplib — SMTP protocol client 809

http://svn.python.org/view/python/branches/py3k/Lib/smtplib.py?view=markup
http://tools.ietf.org/html/rfc821.html
http://tools.ietf.org/html/rfc1869.html

The Python Library Reference, Release 3.2

exception smtplib.SMTPException
Base exception class for all exceptions raised by this module.

exception smtplib.SMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use the
SMTP instance before connecting it to a server.

exception smtplib.SMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated in some
instances when the SMTP server returns an error code. The error code is stored in the smtp_code attribute
of the error, and the smtp_error attribute is set to the error message.

exception smtplib.SMTPSenderRefused
Sender address refused. In addition to the attributes set by on all SMTPResponseException exceptions,
this sets ‘sender’ to the string that the SMTP server refused.

exception smtplib.SMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessible through the attribute
recipients, which is a dictionary of exactly the same sort as SMTP.sendmail() returns.

exception smtplib.SMTPDataError
The SMTP server refused to accept the message data.

exception smtplib.SMTPConnectError
Error occurred during establishment of a connection with the server.

exception smtplib.SMTPHeloError
The server refused our HELO message.

exception smtplib.SMTPAuthenticationError
SMTP authentication went wrong. Most probably the server didn’t accept the username/password combi-
nation provided.

See Also:

RFC 821 - Simple Mail Transfer Protocol Protocol definition for SMTP. This document covers the model, op-
erating procedure, and protocol details for SMTP.

RFC 1869 - SMTP Service Extensions Definition of the ESMTP extensions for SMTP. This describes a frame-
work for extending SMTP with new commands, supporting dynamic discovery of the commands provided
by the server, and defines a few additional commands.

20.15.1 SMTP Objects

An SMTP instance has the following methods:

SMTP.set_debuglevel(level)
Set the debug output level. A true value for level results in debug messages for connection and for all
messages sent to and received from the server.

SMTP.connect(host=’localhost’, port=0)
Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP port
(25). If the hostname ends with a colon (’:’) followed by a number, that suffix will be stripped off and the
number interpreted as the port number to use. This method is automatically invoked by the constructor if a
host is specified during instantiation.

SMTP.docmd(cmd, args=’‘)
Send a command cmd to the server. The optional argument args is simply concatenated to the command,
separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline responses
are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly. It is used to implement other
methods and may be useful for testing private extensions.

810 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc821.html
http://tools.ietf.org/html/rfc1869.html

The Python Library Reference, Release 3.2

If the connection to the server is lost while waiting for the reply, SMTPServerDisconnected will be
raised.

SMTP.helo(name=’‘)
Identify yourself to the SMTP server using HELO. The hostname argument defaults to the fully qualified
domain name of the local host. The message returned by the server is stored as the helo_resp attribute
of the object.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly called by
the sendmail() when necessary.

SMTP.ehlo(name=’‘)
Identify yourself to an ESMTP server using EHLO. The hostname argument defaults to the fully quali-
fied domain name of the local host. Examine the response for ESMTP option and store them for use by
has_extn(). Also sets several informational attributes: the message returned by the server is stored as
the ehlo_resp attribute, does_esmtp is set to true or false depending on whether the server supports
ESMTP, and esmtp_featureswill be a dictionary containing the names of the SMTP service extensions
this server supports, and their parameters (if any).

Unless you wish to use has_extn() before sending mail, it should not be necessary to call this method
explicitly. It will be implicitly called by sendmail() when necessary.

SMTP.ehlo_or_helo_if_needed()
This method call ehlo() and or helo() if there has been no previous EHLO or HELO command this
session. It tries ESMTP EHLO first.

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTP.has_extn(name)
Return True if name is in the set of SMTP service extensions returned by the server, False otherwise.
Case is ignored.

SMTP.verify(address)
Check the validity of an address on this server using SMTP VRFY. Returns a tuple consisting of code 250
and a full RFC 822 address (including human name) if the user address is valid. Otherwise returns an SMTP
error code of 400 or greater and an error string.

Note: Many sites disable SMTP VRFY in order to foil spammers.

SMTP.login(user, password)
Log in on an SMTP server that requires authentication. The arguments are the username and the password
to authenticate with. If there has been no previous EHLO or HELO command this session, this method tries
ESMTP EHLO first. This method will return normally if the authentication was successful, or may raise the
following exceptions:

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPAuthenticationError The server didn’t accept the username/password combination.

SMTPException No suitable authentication method was found.

SMTP.starttls(keyfile=None, certfile=None)
Put the SMTP connection in TLS (Transport Layer Security) mode. All SMTP commands that follow will
be encrypted. You should then call ehlo() again.

If keyfile and certfile are provided, these are passed to the socket module’s ssl() function.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first.

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPException The server does not support the STARTTLS extension.

RuntimeError SSL/TLS support is not available to your Python interpreter.

20.15. smtplib — SMTP protocol client 811

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.2

SMTP.sendmail(from_addr, to_addrs, msg, mail_options=[], rcpt_options=[])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address
strings (a bare string will be treated as a list with 1 address), and a message string. The caller may pass
a list of ESMTP options (such as 8bitmime) to be used in MAIL FROM commands as mail_options.
ESMTP options (such as DSN commands) that should be used with all RCPT commands can be passed
as rcpt_options. (If you need to use different ESMTP options to different recipients you have to use the
low-level methods such as mail(), rcpt() and data() to send the message.)

Note: The from_addr and to_addrs parameters are used to construct the message envelope used by the
transport agents. sendmail does not modify the message headers in any way.

msg may be a string containing characters in the ASCII range, or a byte string. A string is encoded to bytes
using the ascii codec, and lone \r and \n characters are converted to \r\n characters. A byte string is not
modified.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first. If
the server does ESMTP, message size and each of the specified options will be passed to it (if the option is
in the feature set the server advertises). If EHLO fails, HELO will be tried and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it will raise
an exception. That is, if this method does not raise an exception, then someone should get your mail. If
this method does not raise an exception, it returns a dictionary, with one entry for each recipient that was
refused. Each entry contains a tuple of the SMTP error code and the accompanying error message sent by
the server.

This method may raise the following exceptions:

SMTPRecipientsRefused All recipients were refused. Nobody got the mail. The recipients
attribute of the exception object is a dictionary with information about the refused recipients (like the
one returned when at least one recipient was accepted).

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPSenderRefused The server didn’t accept the from_addr.

SMTPDataError The server replied with an unexpected error code (other than a refusal of a recipient).

Unless otherwise noted, the connection will be open even after an exception is raised. Changed in version
3.2: msg may be a byte string.

SMTP.send_message(msg, from_addr=None, to_addrs=None, mail_options=[], rcpt_options=[])
This is a convenience method for calling sendmail() with the message represented by an
email.message.Message object. The arguments have the same meaning as for sendmail(), except
that msg is a Message object.

If from_addr is None, send_message sets its value to the value of the From header from msg. If
to_addrs is None, send_message combines the values (if any) of the To, CC, and Bcc fields from msg.
Regardless of the values of from_addr and to_addrs, send_message deletes any Bcc field from msg.
It then serializes msg using BytesGenerator with \r\n as the linesep, and calls sendmail() to
transmit the resulting message. New in version 3.2.

SMTP.quit()
Terminate the SMTP session and close the connection. Return the result of the SMTP QUIT command.

Low-level methods corresponding to the standard SMTP/ESMTP commands HELP, RSET, NOOP, MAIL, RCPT,
and DATA are also supported. Normally these do not need to be called directly, so they are not documented here.
For details, consult the module code.

20.15.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses), and the
message to be delivered. Note that the headers to be included with the message must be included in the message

812 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.2

as entered; this example doesn’t do any processing of the RFC 822 headers. In particular, the ‘To’ and ‘From’
addresses must be included in the message headers explicitly.

import smtplib

def prompt(prompt):
return input(prompt).strip()

fromaddr = prompt("From: ")
toaddrs = prompt("To: ").split()
print("Enter message, end with ^D (Unix) or ^Z (Windows):")

Add the From: and To: headers at the start!
msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, ", ".join(toaddrs)))
while True:

try:
line = input()

except EOFError:
break

if not line:
break

msg = msg + line

print("Message length is", len(msg))

server = smtplib.SMTP(’localhost’)
server.set_debuglevel(1)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

Note: In general, you will want to use the email package’s features to construct an email message, which you
can then send via send_message(); see email: Examples.

20.16 smtpd — SMTP Server

Source code: Lib/smtpd.py

This module offers several classes to implement SMTP (email) servers.

Several server implementations are present; one is a generic do-nothing implementation, which can be overridden,
while the other two offer specific mail-sending strategies.

Additionally the SMTPChannel may be extended to implement very specific interaction behaviour with SMTP
clients.

20.16.1 SMTPServer Objects

class smtpd.SMTPServer(localaddr, remoteaddr)
Create a new SMTPServer object, which binds to local address localaddr. It will treat remoteaddr as
an upstream SMTP relayer. It inherits from asyncore.dispatcher, and so will insert itself into
asyncore‘s event loop on instantiation.

process_message(peer, mailfrom, rcpttos, data)
Raise NotImplementedError exception. Override this in subclasses to do something useful

20.16. smtpd — SMTP Server 813

http://tools.ietf.org/html/rfc822.html
http://svn.python.org/view/python/branches/py3k/Lib/smtpd.py?view=markup

The Python Library Reference, Release 3.2

with this message. Whatever was passed in the constructor as remoteaddr will be available as the
_remoteaddr attribute. peer is the remote host’s address, mailfrom is the envelope originator, rcpt-
tos are the envelope recipients and data is a string containing the contents of the e-mail (which should
be in RFC 2822 format).

channel_class
Override this in subclasses to use a custom SMTPChannel for managing SMTP clients.

20.16.2 DebuggingServer Objects

class smtpd.DebuggingServer(localaddr, remoteaddr)
Create a new debugging server. Arguments are as per SMTPServer. Messages will be discarded, and
printed on stdout.

20.16.3 PureProxy Objects

class smtpd.PureProxy(localaddr, remoteaddr)
Create a new pure proxy server. Arguments are as per SMTPServer. Everything will be relayed to
remoteaddr. Note that running this has a good chance to make you into an open relay, so please be careful.

20.16.4 MailmanProxy Objects

class smtpd.MailmanProxy(localaddr, remoteaddr)
Create a new pure proxy server. Arguments are as per SMTPServer. Everything will be relayed to
remoteaddr, unless local mailman configurations knows about an address, in which case it will be handled
via mailman. Note that running this has a good chance to make you into an open relay, so please be careful.

20.16.5 SMTPChannel Objects

class smtpd.SMTPChannel(server, conn, addr)
Create a new SMTPChannel object which manages the communication between the server and a single
SMTP client.

To use a custom SMTPChannel implementation you need to override the
SMTPServer.channel_class of your SMTPServer.

The SMTPChannel has the following instance variables:

smtp_server
Holds the SMTPServer that spawned this channel.

conn
Holds the socket object connecting to the client.

addr
Holds the address of the client, the second value returned by socket.accept()

received_lines
Holds a list of the line strings (decoded using UTF-8) received from the client. The lines have their
“rn” line ending translated to “n”.

smtp_state
Holds the current state of the channel. This will be either COMMAND initially and then DATA after the
client sends a “DATA” line.

seen_greeting
Holds a string containing the greeting sent by the client in its “HELO”.

mailfrom
Holds a string containing the address identified in the “MAIL FROM:” line from the client.

814 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.2

rcpttos
Holds a list of strings containing the addresses identified in the “RCPT TO:” lines from the client.

received_data
Holds a string containing all of the data sent by the client during the DATA state, up to but not including
the terminating “rn.rn”.

fqdn
Holds the fully-qualified domain name of the server as returned by socket.getfqdn().

peer
Holds the name of the client peer as returned by conn.getpeername() where conn is conn.

The SMTPChannel operates by invoking methods named smtp_<command> upon reception of a com-
mand line from the client. Built into the base SMTPChannel class are methods for handling the following
commands (and responding to them appropriately):

Com-
mand

Action taken

HELO Accepts the greeting from the client and stores it in seen_greeting.
NOOP Takes no action.
QUIT Closes the connection cleanly.
MAIL Accepts the “MAIL FROM:” syntax and stores the supplied address as mailfrom.
RCPT Accepts the “RCPT TO:” syntax and stores the supplied addresses in the rcpttos list.
RSET Resets the mailfrom, rcpttos, and received_data, but not the greeting.
DATA Sets the internal state to DATA and stores remaining lines from the client in

received_data until the terminator “rn.rn” is received.

20.17 telnetlib — Telnet client

Source code: Lib/telnetlib.py

The telnetlib module provides a Telnet class that implements the Telnet protocol. See RFC 854 for
details about the protocol. In addition, it provides symbolic constants for the protocol characters (see below),
and for the telnet options. The symbolic names of the telnet options follow the definitions in arpa/telnet.h,
with the leading TELOPT_ removed. For symbolic names of options which are traditionally not included in
arpa/telnet.h, see the module source itself.

The symbolic constants for the telnet commands are: IAC, DONT, DO, WONT, WILL, SE (Subnegotiation End),
NOP (No Operation), DM (Data Mark), BRK (Break), IP (Interrupt process), AO (Abort output), AYT (Are You
There), EC (Erase Character), EL (Erase Line), GA (Go Ahead), SB (Subnegotiation Begin).

class telnetlib.Telnet(host=None, port=0[, timeout])
Telnet represents a connection to a Telnet server. The instance is initially not connected by default; the
open() method must be used to establish a connection. Alternatively, the host name and optional port
number can be passed to the constructor, to, in which case the connection to the server will be established
before the constructor returns. The optional timeout parameter specifies a timeout in seconds for blocking
operations like the connection attempt (if not specified, the global default timeout setting will be used).

Do not reopen an already connected instance.

This class has many read_*() methods. Note that some of them raise EOFError when the end of the
connection is read, because they can return an empty string for other reasons. See the individual descriptions
below.

See Also:

RFC 854 - Telnet Protocol Specification Definition of the Telnet protocol.

20.17. telnetlib — Telnet client 815

http://svn.python.org/view/python/branches/py3k/Lib/telnetlib.py?view=markup
http://tools.ietf.org/html/rfc854.html
http://tools.ietf.org/html/rfc854.html

The Python Library Reference, Release 3.2

20.17.1 Telnet Objects

Telnet instances have the following methods:

Telnet.read_until(expected, timeout=None)
Read until a given byte string, expected, is encountered or until timeout seconds have passed.

When no match is found, return whatever is available instead, possibly empty bytes. Raise EOFError if
the connection is closed and no cooked data is available.

Telnet.read_all()
Read all data until EOF as bytes; block until connection closed.

Telnet.read_some()
Read at least one byte of cooked data unless EOF is hit. Return b” if EOF is hit. Block if no data is
immediately available.

Telnet.read_very_eager()
Read everything that can be without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return b” if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

Telnet.read_eager()
Read readily available data.

Raise EOFError if connection closed and no cooked data available. Return b” if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

Telnet.read_lazy()
Process and return data already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return b” if no cooked data available other-
wise. Do not block unless in the midst of an IAC sequence.

Telnet.read_very_lazy()
Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return b” if no cooked data available other-
wise. This method never blocks.

Telnet.read_sb_data()
Return the data collected between a SB/SE pair (suboption begin/end). The callback should access these
data when it was invoked with a SE command. This method never blocks.

Telnet.open(host, port=0[, timeout])
Connect to a host. The optional second argument is the port number, which defaults to the standard Telnet
port (23). The optional timeout parameter specifies a timeout in seconds for blocking operations like the
connection attempt (if not specified, the global default timeout setting will be used).

Do not try to reopen an already connected instance.

Telnet.msg(msg, *args)
Print a debug message when the debug level is > 0. If extra arguments are present, they are substituted in
the message using the standard string formatting operator.

Telnet.set_debuglevel(debuglevel)
Set the debug level. The higher the value of debuglevel, the more debug output you get (on sys.stdout).

Telnet.close()
Close the connection.

Telnet.get_socket()
Return the socket object used internally.

Telnet.fileno()
Return the file descriptor of the socket object used internally.

816 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

Telnet.write(buffer)
Write a byte string to the socket, doubling any IAC characters. This can block if the connection is blocked.
May raise socket.error if the connection is closed.

Telnet.interact()
Interaction function, emulates a very dumb Telnet client.

Telnet.mt_interact()
Multithreaded version of interact().

Telnet.expect(list, timeout=None)
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.RegexObject instances) or un-
compiled (byte strings). The optional second argument is a timeout, in seconds; the default is to block
indefinitely.

Return a tuple of three items: the index in the list of the first regular expression that matches; the match
object returned; and the bytes read up till and including the match.

If end of file is found and no bytes were read, raise EOFError. Otherwise, when nothing matches, return
(-1, None, data) where data is the bytes received so far (may be empty bytes if a timeout happened).

If a regular expression ends with a greedy match (such as .*) or if more than one expression can match the
same input, the results are non-deterministic, and may depend on the I/O timing.

Telnet.set_option_negotiation_callback(callback)
Each time a telnet option is read on the input flow, this callback (if set) is called with the following pa-
rameters : callback(telnet socket, command (DO/DONT/WILL/WONT), option). No other action is done
afterwards by telnetlib.

20.17.2 Telnet Example

A simple example illustrating typical use:

import getpass
import telnetlib

HOST = "localhost"
user = input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"login: ")
tn.write(user.encode(’ascii’) + b"\n")
if password:

tn.read_until(b"Password: ")
tn.write(password.encode(’ascii’) + b"\n")

tn.write(b"ls\n")
tn.write(b"exit\n")

print(tn.read_all().decode(’ascii’))

20.18 uuid — UUID objects according to RFC 4122

This module provides immutable UUID objects (the UUID class) and the functions uuid1(), uuid3(),
uuid4(), uuid5() for generating version 1, 3, 4, and 5 UUIDs as specified in RFC 4122.

20.18. uuid — UUID objects according to RFC 4122 817

http://tools.ietf.org/html/rfc4122.html

The Python Library Reference, Release 3.2

If all you want is a unique ID, you should probably call uuid1() or uuid4(). Note that uuid1() may
compromise privacy since it creates a UUID containing the computer’s network address. uuid4() creates a
random UUID.

class uuid.UUID(hex=None, bytes=None, bytes_le=None, fields=None, int=None, version=None)
Create a UUID from either a string of 32 hexadecimal digits, a string of 16 bytes as the bytes argument, a
string of 16 bytes in little-endian order as the bytes_le argument, a tuple of six integers (32-bit time_low,
16-bit time_mid, 16-bit time_hi_version, 8-bit clock_seq_hi_variant, 8-bit clock_seq_low, 48-bit node) as
the fields argument, or a single 128-bit integer as the int argument. When a string of hex digits is given,
curly braces, hyphens, and a URN prefix are all optional. For example, these expressions all yield the same
UUID:

UUID(’{12345678-1234-5678-1234-567812345678}’)
UUID(’12345678123456781234567812345678’)
UUID(’urn:uuid:12345678-1234-5678-1234-567812345678’)
UUID(bytes=b’\x12\x34\x56\x78’*4)
UUID(bytes_le=b’\x78\x56\x34\x12\x34\x12\x78\x56’ +

b’\x12\x34\x56\x78\x12\x34\x56\x78’)
UUID(fields=(0x12345678, 0x1234, 0x5678, 0x12, 0x34, 0x567812345678))
UUID(int=0x12345678123456781234567812345678)

Exactly one of hex, bytes, bytes_le, fields, or int must be given. The version argument is optional; if given,
the resulting UUID will have its variant and version number set according to RFC 4122, overriding bits in
the given hex, bytes, bytes_le, fields, or int.

UUID instances have these read-only attributes:

UUID.bytes
The UUID as a 16-byte string (containing the six integer fields in big-endian byte order).

UUID.bytes_le
The UUID as a 16-byte string (with time_low, time_mid, and time_hi_version in little-endian byte order).

UUID.fields
A tuple of the six integer fields of the UUID, which are also available as six individual attributes and two
derived attributes:

Field Meaning
time_low the first 32 bits of the UUID
time_mid the next 16 bits of the UUID
time_hi_version the next 16 bits of the UUID
clock_seq_hi_variant the next 8 bits of the UUID
clock_seq_low the next 8 bits of the UUID
node the last 48 bits of the UUID
time the 60-bit timestamp
clock_seq the 14-bit sequence number

UUID.hex
The UUID as a 32-character hexadecimal string.

UUID.int
The UUID as a 128-bit integer.

UUID.urn
The UUID as a URN as specified in RFC 4122.

UUID.variant
The UUID variant, which determines the internal layout of the UUID. This will be one of the integer
constants RESERVED_NCS, RFC_4122, RESERVED_MICROSOFT, or RESERVED_FUTURE.

UUID.version
The UUID version number (1 through 5, meaningful only when the variant is RFC_4122).

The uuid module defines the following functions:

818 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

uuid.getnode()
Get the hardware address as a 48-bit positive integer. The first time this runs, it may launch a separate
program, which could be quite slow. If all attempts to obtain the hardware address fail, we choose a random
48-bit number with its eighth bit set to 1 as recommended in RFC 4122. “Hardware address” means the
MAC address of a network interface, and on a machine with multiple network interfaces the MAC address
of any one of them may be returned.

uuid.uuid1(node=None, clock_seq=None)
Generate a UUID from a host ID, sequence number, and the current time. If node is not given, getnode()
is used to obtain the hardware address. If clock_seq is given, it is used as the sequence number; otherwise a
random 14-bit sequence number is chosen.

uuid.uuid3(namespace, name)
Generate a UUID based on the MD5 hash of a namespace identifier (which is a UUID) and a name (which
is a string).

uuid.uuid4()
Generate a random UUID.

uuid.uuid5(namespace, name)
Generate a UUID based on the SHA-1 hash of a namespace identifier (which is a UUID) and a name (which
is a string).

The uuid module defines the following namespace identifiers for use with uuid3() or uuid5().

uuid.NAMESPACE_DNS
When this namespace is specified, the name string is a fully-qualified domain name.

uuid.NAMESPACE_URL
When this namespace is specified, the name string is a URL.

uuid.NAMESPACE_OID
When this namespace is specified, the name string is an ISO OID.

uuid.NAMESPACE_X500
When this namespace is specified, the name string is an X.500 DN in DER or a text output format.

The uuid module defines the following constants for the possible values of the variant attribute:

uuid.RESERVED_NCS
Reserved for NCS compatibility.

uuid.RFC_4122
Specifies the UUID layout given in RFC 4122.

uuid.RESERVED_MICROSOFT
Reserved for Microsoft compatibility.

uuid.RESERVED_FUTURE
Reserved for future definition.

See Also:

RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace This specification defines a Uniform
Resource Name namespace for UUIDs, the internal format of UUIDs, and methods of generating UUIDs.

20.18.1 Example

Here are some examples of typical usage of the uuid module:

>>> import uuid

make a UUID based on the host ID and current time
>>> uuid.uuid1()
UUID(’a8098c1a-f86e-11da-bd1a-00112444be1e’)

20.18. uuid — UUID objects according to RFC 4122 819

http://tools.ietf.org/html/rfc4122.html
http://tools.ietf.org/html/rfc4122.html

The Python Library Reference, Release 3.2

make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, ’python.org’)
UUID(’6fa459ea-ee8a-3ca4-894e-db77e160355e’)

make a random UUID
>>> uuid.uuid4()
UUID(’16fd2706-8baf-433b-82eb-8c7fada847da’)

make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, ’python.org’)
UUID(’886313e1-3b8a-5372-9b90-0c9aee199e5d’)

make a UUID from a string of hex digits (braces and hyphens ignored)
>>> x = uuid.UUID(’{00010203-0405-0607-0809-0a0b0c0d0e0f}’)

convert a UUID to a string of hex digits in standard form
>>> str(x)
’00010203-0405-0607-0809-0a0b0c0d0e0f’

get the raw 16 bytes of the UUID
>>> x.bytes
b’\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f’

make a UUID from a 16-byte string
>>> uuid.UUID(bytes=x.bytes)
UUID(’00010203-0405-0607-0809-0a0b0c0d0e0f’)

20.19 socketserver — A framework for network servers

Source code: Lib/socketserver.py

The socketserver module simplifies the task of writing network servers.

There are four basic server classes: TCPServer uses the Internet TCP protocol, which provides for continuous
streams of data between the client and server. UDPServer uses datagrams, which are discrete packets of infor-
mation that may arrive out of order or be lost while in transit. The more infrequently used UnixStreamServer
and UnixDatagramServer classes are similar, but use Unix domain sockets; they’re not available on non-
Unix platforms. For more details on network programming, consult a book such as W. Richard Steven’s UNIX
Network Programming or Ralph Davis’s Win32 Network Programming.

These four classes process requests synchronously; each request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process
or thread to handle each request; the ForkingMixIn and ThreadingMixIn mix-in classes can be used to
support asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding its handle() method; this method will process incoming re-
quests. Second, you must instantiate one of the server classes, passing it the server’s address and the request
handler class. Finally, call the handle_request() or serve_forever() method of the server object to
process one or many requests.

When inheriting from ThreadingMixIn for threaded connection behavior, you should explicitly declare how
you want your threads to behave on an abrupt shutdown. The ThreadingMixIn class defines an attribute
daemon_threads, which indicates whether or not the server should wait for thread termination. You should set the
flag explicitly if you would like threads to behave autonomously; the default is False, meaning that Python will
not exit until all threads created by ThreadingMixIn have exited.

820 Chapter 20. Internet Protocols and Support

http://svn.python.org/view/python/branches/py3k/Lib/socketserver.py?view=markup

The Python Library Reference, Release 3.2

Server classes have the same external methods and attributes, no matter what network protocol they use.

20.19.1 Server Creation Notes

There are five classes in an inheritance diagram, four of which represent synchronous servers of four types:

+------------+
| BaseServer |
+------------+

|
v

+-----------+ +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+ +------------------+

|
v

+-----------+ +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+ +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from UnixStreamServer — the only
difference between an IP and a Unix stream server is the address family, which is simply repeated in both Unix
server classes.

Forking and threading versions of each type of server can be created using the ForkingMixIn and
ThreadingMixIn mix-in classes. For instance, a threading UDP server class is created as follows:

class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

The mix-in class must come first, since it overrides a method defined in UDPServer. Setting the various member
variables also changes the behavior of the underlying server mechanism.

To implement a service, you must derive a class from BaseRequestHandler and redefine its handle()
method. You can then run various versions of the service by combining one of the server classes with your request
handler class. The request handler class must be different for datagram or stream services. This can be hidden by
using the handler subclasses StreamRequestHandler or DatagramRequestHandler.

Of course, you still have to use your head! For instance, it makes no sense to use a forking server if the service
contains state in memory that can be modified by different requests, since the modifications in the child process
would never reach the initial state kept in the parent process and passed to each child. In this case, you can use a
threading server, but you will probably have to use locks to protect the integrity of the shared data.

On the other hand, if you are building an HTTP server where all data is stored externally (for instance, in the file
system), a synchronous class will essentially render the service “deaf” while one request is being handled – which
may be for a very long time if a client is slow to receive all the data it has requested. Here a threading or forking
server is appropriate.

In some cases, it may be appropriate to process part of a request synchronously, but to finish processing in a forked
child depending on the request data. This can be implemented by using a synchronous server and doing an explicit
fork in the request handler class handle() method.

Another approach to handling multiple simultaneous requests in an environment that supports neither threads nor
fork() (or where these are too expensive or inappropriate for the service) is to maintain an explicit table of
partially finished requests and to use select() to decide which request to work on next (or whether to handle
a new incoming request). This is particularly important for stream services where each client can potentially be
connected for a long time (if threads or subprocesses cannot be used). See asyncore for another way to manage
this.

20.19. socketserver — A framework for network servers 821

The Python Library Reference, Release 3.2

20.19.2 Server Objects

class socketserver.BaseServer
This is the superclass of all Server objects in the module. It defines the interface, given below, but does not
implement most of the methods, which is done in subclasses.

BaseServer.fileno()
Return an integer file descriptor for the socket on which the server is listening. This function is most
commonly passed to select.select(), to allow monitoring multiple servers in the same process.

BaseServer.handle_request()
Process a single request. This function calls the following methods in order: get_request(),
verify_request(), and process_request(). If the user-provided handle() method of
the handler class raises an exception, the server’s handle_error() method will be called. If
no request is received within self.timeout seconds, handle_timeout() will be called and
handle_request() will return.

BaseServer.serve_forever(poll_interval=0.5)
Handle requests until an explicit shutdown() request. Polls for shutdown every poll_interval seconds.

BaseServer.shutdown()
Tells the serve_forever() loop to stop and waits until it does.

BaseServer.address_family
The family of protocols to which the server’s socket belongs. Common examples are socket.AF_INET
and socket.AF_UNIX.

BaseServer.RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

BaseServer.server_address
The address on which the server is listening. The format of addresses varies depending on the protocol
family; see the documentation for the socket module for details. For Internet protocols, this is a tuple
containing a string giving the address, and an integer port number: (’127.0.0.1’, 80), for example.

BaseServer.socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

BaseServer.allow_reuse_address
Whether the server will allow the reuse of an address. This defaults to False, and can be set in subclasses
to change the policy.

BaseServer.request_queue_size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive
while the server is busy are placed into a queue, up to request_queue_size requests. Once the queue
is full, further requests from clients will get a “Connection denied” error. The default value is usually 5, but
this can be overridden by subclasses.

BaseServer.socket_type
The type of socket used by the server; socket.SOCK_STREAM and socket.SOCK_DGRAM are two
common values.

BaseServer.timeout
Timeout duration, measured in seconds, or None if no timeout is desired. If handle_request() re-
ceives no incoming requests within the timeout period, the handle_timeout() method is called.

There are various server methods that can be overridden by subclasses of base server classes like TCPServer;
these methods aren’t useful to external users of the server object.

BaseServer.finish_request()
Actually processes the request by instantiating RequestHandlerClass and calling its handle()
method.

822 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

BaseServer.get_request()
Must accept a request from the socket, and return a 2-tuple containing the new socket object to be used to
communicate with the client, and the client’s address.

BaseServer.handle_error(request, client_address)
This function is called if the RequestHandlerClass‘s handle() method raises an exception. The
default action is to print the traceback to standard output and continue handling further requests.

BaseServer.handle_timeout()
This function is called when the timeout attribute has been set to a value other than None and the timeout
period has passed with no requests being received. The default action for forking servers is to collect the
status of any child processes that have exited, while in threading servers this method does nothing.

BaseServer.process_request(request, client_address)
Calls finish_request() to create an instance of the RequestHandlerClass. If desired, this func-
tion can create a new process or thread to handle the request; the ForkingMixIn and ThreadingMixIn
classes do this.

BaseServer.server_activate()
Called by the server’s constructor to activate the server. The default behavior just listen()s to the
server’s socket. May be overridden.

BaseServer.server_bind()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

BaseServer.verify_request(request, client_address)
Must return a Boolean value; if the value is True, the request will be processed, and if it’s False, the
request will be denied. This function can be overridden to implement access controls for a server. The
default implementation always returns True.

20.19.3 RequestHandler Objects

The request handler class must define a new handle() method, and can override any of the following methods.
A new instance is created for each request.

RequestHandler.finish()
Called after the handle() method to perform any clean-up actions required. The default implementation
does nothing. If setup() or handle() raise an exception, this function will not be called.

RequestHandler.handle()
This function must do all the work required to service a request. The default implementation does nothing.
Several instance attributes are available to it; the request is available as self.request; the client address
as self.client_address; and the server instance as self.server, in case it needs access to per-
server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services, self.request is a pair of string and
socket. However, this can be hidden by using the request handler subclasses StreamRequestHandler
or DatagramRequestHandler, which override the setup() and finish() methods, and provide
self.rfile and self.wfile attributes. self.rfile and self.wfile can be read or written,
respectively, to get the request data or return data to the client.

RequestHandler.setup()
Called before the handle() method to perform any initialization actions required. The default implemen-
tation does nothing.

20.19.4 Examples

socketserver.TCPServer Example

This is the server side:

20.19. socketserver — A framework for network servers 823

The Python Library Reference, Release 3.2

import socketserver

class MyTCPHandler(socketserver.BaseRequestHandler):
"""
The RequestHandler class for our server.

It is instantiated once per connection to the server, and must
override the handle() method to implement communication to the
client.
"""

def handle(self):
self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print("%s wrote:" % self.client_address[0])
print(self.data)
just send back the same data, but upper-cased
self.request.send(self.data.upper())

if __name__ == "__main__":
HOST, PORT = "localhost", 9999

Create the server, binding to localhost on port 9999
server = socketserver.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you
interrupt the program with Ctrl-C
server.serve_forever()

An alternative request handler class that makes use of streams (file-like objects that simplify communication by
providing the standard file interface):

class MyTCPHandler(socketserver.StreamRequestHandler):

def handle(self):
self.rfile is a file-like object created by the handler;
we can now use e.g. readline() instead of raw recv() calls
self.data = self.rfile.readline().strip()
print("%s wrote:" % self.client_address[0])
print(self.data)
Likewise, self.wfile is a file-like object used to write back
to the client
self.wfile.write(self.data.upper())

The difference is that the readline() call in the second handler will call recv() multiple times until it
encounters a newline character, while the single recv() call in the first handler will just return what has been
sent from the client in one send() call.

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

Create a socket (SOCK_STREAM means a TCP socket)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect to server and send data
sock.connect((HOST, PORT))

824 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

sock.send(bytes(data + "\n","utf8"))

Receive data from the server and shut down
received = sock.recv(1024)
sock.close()

print("Sent: %s" % data)
print("Received: %s" % received)

The output of the example should look something like this:

Server:

$ python TCPServer.py
127.0.0.1 wrote:
b’hello world with TCP’
127.0.0.1 wrote:
b’python is nice’

Client:

$ python TCPClient.py hello world with TCP
Sent: hello world with TCP
Received: b’HELLO WORLD WITH TCP’
$ python TCPClient.py python is nice
Sent: python is nice
Received: b’PYTHON IS NICE’

socketserver.UDPServer Example

This is the server side:

import socketserver

class MyUDPHandler(socketserver.BaseRequestHandler):
"""
This class works similar to the TCP handler class, except that
self.request consists of a pair of data and client socket, and since
there is no connection the client address must be given explicitly
when sending data back via sendto().
"""

def handle(self):
data = self.request[0].strip()
socket = self.request[1]
print("%s wrote:" % self.client_address[0])
print(data)
socket.sendto(data.upper(), self.client_address)

if __name__ == "__main__":
HOST, PORT = "localhost", 9999
server = socketserver.UDPServer((HOST, PORT), MyUDPHandler)
server.serve_forever()

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

20.19. socketserver — A framework for network servers 825

The Python Library Reference, Release 3.2

SOCK_DGRAM is the socket type to use for UDP sockets
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

As you can see, there is no connect() call; UDP has no connections.
Instead, data is directly sent to the recipient via sendto().
sock.sendto(bytes(data + "\n","utf8"), (HOST, PORT))
received = sock.recv(1024)

print("Sent: %s" % data)
print("Received: %s" % received)

The output of the example should look exactly like for the TCP server example.

Asynchronous Mixins

To build asynchronous handlers, use the ThreadingMixIn and ForkingMixIn classes.

An example for the ThreadingMixIn class:

import socket
import threading
import socketserver

class ThreadedTCPRequestHandler(socketserver.BaseRequestHandler):

def handle(self):
data = self.request.recv(1024)
cur_thread = threading.current_thread()
response = bytes("%s: %s" % (cur_thread.getName(), data),’ascii’)
self.request.send(response)

class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer):
pass

def client(ip, port, message):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((ip, port))
sock.send(message)
response = sock.recv(1024)
print("Received: %s" % response)
sock.close()

if __name__ == "__main__":
Port 0 means to select an arbitrary unused port
HOST, PORT = "localhost", 0

server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler)
ip, port = server.server_address

Start a thread with the server -- that thread will then start one
more thread for each request
server_thread = threading.Thread(target=server.serve_forever)
Exit the server thread when the main thread terminates
server_thread.setDaemon(True)
server_thread.start()
print("Server loop running in thread:", server_thread.name)

client(ip, port, b"Hello World 1")

826 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

client(ip, port, b"Hello World 2")
client(ip, port, b"Hello World 3")

server.shutdown()

The output of the example should look something like this:

$ python ThreadedTCPServer.py
Server loop running in thread: Thread-1
Received: b"Thread-2: b’Hello World 1’"
Received: b"Thread-3: b’Hello World 2’"
Received: b"Thread-4: b’Hello World 3’"

The ForkingMixIn class is used in the same way, except that the server will spawn a new process for each
request.

20.20 http.server — HTTP servers

Source code: Lib/http/server.py

This module defines classes for implementing HTTP servers (Web servers).

One class, HTTPServer, is a socketserver.TCPServer subclass. It creates and listens at the HTTP
socket, dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=HTTPServer, handler_class=BaseHTTPRequestHandler):
server_address = (’’, 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

class http.server.HTTPServer(server_address, RequestHandlerClass)
This class builds on the TCPServer class by storing the server address as instance variables named
server_name and server_port. The server is accessible by the handler, typically through the han-
dler’s server instance variable.

The HTTPServer must be given a RequestHandlerClass on instantiation, of which this module provides three
different variants:

class http.server.BaseHTTPRequestHandler(request, client_address, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to
any actual HTTP requests; it must be subclassed to handle each request method (e.g. GET or POST).
BaseHTTPRequestHandler provides a number of class and instance variables, and methods for use by
subclasses.

The handler will parse the request and the headers, then call a method specific to the request type. The
method name is constructed from the request. For example, for the request method SPAM, the do_SPAM()
method will be called with no arguments. All of the relevant information is stored in instance variables of
the handler. Subclasses should not need to override or extend the __init__() method.

BaseHTTPRequestHandler has the following instance variables:

client_address
Contains a tuple of the form (host, port) referring to the client’s address.

server
Contains the server instance.

command
Contains the command (request type). For example, ’GET’.

path
Contains the request path.

20.20. http.server — HTTP servers 827

http://svn.python.org/view/python/branches/py3k/Lib/http/server.py?view=markup

The Python Library Reference, Release 3.2

request_version
Contains the version string from the request. For example, ’HTTP/1.0’.

headers
Holds an instance of the class specified by the MessageClass class variable. This instance parses
and manages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherence to the HTTP
protocol must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server_version
Specifies the server software version. You may want to override this. The format is multi-
ple whitespace-separated strings, where each string is of the form name[/version]. For example,
’BaseHTTP/0.2’.

sys_version
Contains the Python system version, in a form usable by the version_string method and the
server_version class variable. For example, ’Python/1.4’.

error_message_format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed
format specifiers, so the format operand must be a dictionary. The code key should be an integer,
specifying the numeric HTTP error code value. message should be a string containing a (detailed)
error message of what occurred, and explain should be an explanation of the error code number.
Default message and explain values can found in the responses class variable.

error_content_type
Specifies the Content-Type HTTP header of error responses sent to the client. The default value is
’text/html’.

protocol_version
This specifies the HTTP protocol version used in responses. If set to ’HTTP/1.1’, the server
will permit HTTP persistent connections; however, your server must then include an accurate
Content-Length header (using send_header()) in all of its responses to clients. For back-
wards compatibility, the setting defaults to ’HTTP/1.0’.

MessageClass
Specifies an email.message.Message-like class to parse HTTP headers. Typically, this is not
overridden, and it defaults to http.client.HTTPMessage.

responses
This variable contains a mapping of error code integers to two-element tuples containing a short and
long message. For example, {code: (shortmessage, longmessage)}. The shortmessage
is usually used as the message key in an error response, and longmessage as the explain key (see the
error_message_format class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle()
Calls handle_one_request() once (or, if persistent connections are enabled, multiple times) to
handle incoming HTTP requests. You should never need to override it; instead, implement appropriate
do_*() methods.

handle_one_request()
This method will parse and dispatch the request to the appropriate do_*() method. You should never
need to override it.

handle_expect_100()
When a HTTP/1.1 compliant server receives a Expect: 100-continue request header it re-
sponds back with a 100 Continue followed by 200 OK headers. This method can be overridden

828 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

to raise an error if the server does not want the client to continue. For e.g. server can chose to send
417 Expectation Failed as a response header and return False. New in version 3.2.

send_error(code, message=None)
Sends and logs a complete error reply to the client. The numeric code specifies the HTTP error code,
with message as optional, more specific text. A complete set of headers is sent, followed by text
composed using the error_message_format class variable.

send_response(code, message=None)
Sends a response header and logs the accepted request. The HTTP response line is sent, fol-
lowed by Server and Date headers. The values for these two headers are picked up from the
version_string() and date_time_string() methods, respectively.

send_header(keyword, value)
Stores the HTTP header to an internal buffer which will be written to the output stream when
end_headers() method is invoked. keyword should specify the header keyword, with value spec-
ifying its value. Changed in version 3.2: Storing the headers in an internal buffer

send_response_only(code, message=None)
Sends the reponse header only, used for the purposes when 100 Continue response is sent by the
server to the client. The headers not buffered and sent directly the output stream.If the message is not
specified, the HTTP message corresponding the response code is sent. New in version 3.2.

end_headers()
Write the buffered HTTP headers to the output stream and send a blank line, indicating the end of the
HTTP headers in the response. Changed in version 3.2: Writing the buffered headers to the output
stream.

log_request(code=’-‘, size=’-‘)
Logs an accepted (successful) request. code should specify the numeric HTTP code associated with
the response. If a size of the response is available, then it should be passed as the size parameter.

log_error(...)
Logs an error when a request cannot be fulfilled. By default, it passes the message to
log_message(), so it takes the same arguments (format and additional values).

log_message(format, ...)
Logs an arbitrary message to sys.stderr. This is typically overridden to create custom error log-
ging mechanisms. The format argument is a standard printf-style format string, where the additional
arguments to log_message() are applied as inputs to the formatting. The client address and current
date and time are prefixed to every message logged.

version_string()
Returns the server software’s version string. This is a combination of the server_version and
sys_version class variables.

date_time_string(timestamp=None)
Returns the date and time given by timestamp (which must be None or in the format returned by
time.time()), formatted for a message header. If timestamp is omitted, it uses the current date and
time.

The result looks like ’Sun, 06 Nov 1994 08:49:37 GMT’.

log_date_time_string()
Returns the current date and time, formatted for logging.

address_string()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP
address.

class http.server.SimpleHTTPRequestHandler(request, client_address, server)
This class serves files from the current directory and below, directly mapping the directory structure to
HTTP requests.

A lot of the work, such as parsing the request, is done by the base class BaseHTTPRequestHandler.
This class implements the do_GET() and do_HEAD() functions.

20.20. http.server — HTTP servers 829

The Python Library Reference, Release 3.2

The following are defined as class-level attributes of SimpleHTTPRequestHandler:

server_version
This will be "SimpleHTTP/" + __version__, where __version__ is defined at the module
level.

extensions_map
A dictionary mapping suffixes into MIME types. The default is signified by an empty string, and is
considered to be application/octet-stream. The mapping is used case-insensitively, and so
should contain only lower-cased keys.

The SimpleHTTPRequestHandler class defines the following methods:

do_HEAD()
This method serves the ’HEAD’ request type: it sends the headers it would send for the equivalent
GET request. See the do_GET() method for a more complete explanation of the possible headers.

do_GET()
The request is mapped to a local file by interpreting the request as a path relative to the current working
directory.

If the request was mapped to a directory, the directory is checked for a file named index.html or
index.htm (in that order). If found, the file’s contents are returned; otherwise a directory listing is
generated by calling the list_directory() method. This method uses os.listdir() to scan
the directory, and returns a 404 error response if the listdir() fails.

If the request was mapped to a file, it is opened and the contents are returned. Any IOError exception
in opening the requested file is mapped to a 404, ’File not found’ error. Otherwise, the con-
tent type is guessed by calling the guess_type() method, which in turn uses the extensions_map
variable.

A ’Content-type:’ header with the guessed content type is output, followed by a
’Content-Length:’ header with the file’s size and a ’Last-Modified:’ header with the
file’s modification time.

Then follows a blank line signifying the end of the headers, and then the contents of the file are output.
If the file’s MIME type starts with text/ the file is opened in text mode; otherwise binary mode is
used.

For example usage, see the implementation of the test() function invocation in the http.server
module.

The SimpleHTTPRequestHandler class can be used in the following manner in order to create a very basic
webserver serving files relative to the current directory.

import http.server
import socketserver

PORT = 8000

Handler = http.server.SimpleHTTPRequestHandler

httpd = socketserver.TCPServer(("", PORT), Handler)

print("serving at port", PORT)
httpd.serve_forever()

http.server can also be invoked directly using the -m switch of the interpreter a with port number argu-
ment. Similar to the previous example, this serves files relative to the current directory.

python -m http.server 8000

class http.server.CGIHTTPRequestHandler(request, client_address, server)
This class is used to serve either files or output of CGI scripts from the current directory and be-
low. Note that mapping HTTP hierarchic structure to local directory structure is exactly as in
SimpleHTTPRequestHandler.

830 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

Note: CGI scripts run by the CGIHTTPRequestHandler class cannot execute redirects (HTTP code
302), because code 200 (script output follows) is sent prior to execution of the CGI script. This pre-empts
the status code.

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a CGI script.
Only directory-based CGI are used — the other common server configuration is to treat special extensions
as denoting CGI scripts.

The do_GET() and do_HEAD() functions are modified to run CGI scripts and serve the output, instead
of serving files, if the request leads to somewhere below the cgi_directories path.

The CGIHTTPRequestHandler defines the following data member:

cgi_directories
This defaults to [’/cgi-bin’, ’/htbin’] and describes directories to treat as containing CGI
scripts.

The CGIHTTPRequestHandler defines the following method:

do_POST()
This method serves the ’POST’ request type, only allowed for CGI scripts. Error 501, “Can only
POST to CGI scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI
script will be translated to error 403.

20.21 http.cookies — HTTP state management

Source code: Lib/http/cookies.py

The http.cookies module defines classes for abstracting the concept of cookies, an HTTP state management
mechanism. It supports both simple string-only cookies, and provides an abstraction for having any serializable
data-type as cookie value.

The module formerly strictly applied the parsing rules described in the

RFC 2109 and RFC 2068 specifications. It has since been discovered that MSIE 3.0x doesn’t follow the character
rules outlined in those specs. As a result, the parsing rules used are a bit less strict.

Note: On encountering an invalid cookie, CookieError is raised, so if your cookie data comes from a browser
you should always prepare for invalid data and catch CookieError on parsing.

exception http.cookies.CookieError
Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrect Set-Cookie header, etc.

class http.cookies.BaseCookie([input])
This class is a dictionary-like object whose keys are strings and whose values are Morsel instances. Note
that upon setting a key to a value, the value is first converted to a Morsel containing the key and the value.

If input is given, it is passed to the load() method.

class http.cookies.SimpleCookie([input])
This class derives from BaseCookie and overrides value_decode() and value_encode() to be
the identity and str() respectively.

See Also:

Module http.cookiejar HTTP cookie handling for web clients. The http.cookiejar and
http.cookies modules do not depend on each other.

20.21. http.cookies — HTTP state management 831

http://svn.python.org/view/python/branches/py3k/Lib/http/cookies.py?view=markup
http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2068.html
http://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 3.2

RFC 2109 - HTTP State Management Mechanism This is the state management specification implemented
by this module.

20.21.1 Cookie Objects

BaseCookie.value_decode(val)
Return a decoded value from a string representation. Return value can be any type. This method does
nothing in BaseCookie — it exists so it can be overridden.

BaseCookie.value_encode(val)
Return an encoded value. val can be any type, but return value must be a string. This method does nothing
in BaseCookie — it exists so it can be overridden

In general, it should be the case that value_encode() and value_decode() are inverses on the range
of value_decode.

BaseCookie.output(attrs=None, header=’Set-Cookie:’, sep=’\r\n’)
Return a string representation suitable to be sent as HTTP headers. attrs and header are sent to each
Morsel‘s output() method. sep is used to join the headers together, and is by default the combination
’\r\n’ (CRLF).

BaseCookie.js_output(attrs=None)
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP headers was sent.

The meaning for attrs is the same as in output().

BaseCookie.load(rawdata)
If rawdata is a string, parse it as an HTTP_COOKIE and add the values found there as Morsels. If it is a
dictionary, it is equivalent to:

for k, v in rawdata.items():
cookie[k] = v

20.21.2 Morsel Objects

class http.cookies.Morsel
Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid

RFC 2109 attributes, which are

•expires

•path

•comment

•domain

•max-age

•secure

•version

•httponly

The attribute httponly specifies that the cookie is only transferred in HTTP requests, and is not accessible
through JavaScript. This is intended to mitigate some forms of cross-site scripting.

The keys are case-insensitive.

Morsel.value
The value of the cookie.

832 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 3.2

Morsel.coded_value
The encoded value of the cookie — this is what should be sent.

Morsel.key
The name of the cookie.

Morsel.set(key, value, coded_value)
Set the key, value and coded_value members.

Morsel.isReservedKey(K)
Whether K is a member of the set of keys of a Morsel.

Morsel.output(attrs=None, header=’Set-Cookie:’)
Return a string representation of the Morsel, suitable to be sent as an HTTP header. By default, all the
attributes are included, unless attrs is given, in which case it should be a list of attributes to use. header is
by default "Set-Cookie:".

Morsel.js_output(attrs=None)
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP header was sent.

The meaning for attrs is the same as in output().

Morsel.OutputString(attrs=None)
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning for attrs is the same as in output().

20.21.3 Example

The following example demonstrates how to use the http.cookies module.

>>> from http import cookies
>>> C = cookies.SimpleCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> print(C) # generate HTTP headers
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer
>>> print(C.output()) # same thing
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer
>>> C = cookies.SimpleCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print(C.output(header="Cookie:"))
Cookie: rocky=road; Path=/cookie
>>> print(C.output(attrs=[], header="Cookie:"))
Cookie: rocky=road
>>> C = cookies.SimpleCookie()
>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)
>>> print(C)
Set-Cookie: chips=ahoy
Set-Cookie: vienna=finger
>>> C = cookies.SimpleCookie()
>>> C.load(’keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";’)
>>> print(C)
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"
>>> C = cookies.SimpleCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> print(C)

20.21. http.cookies — HTTP state management 833

The Python Library Reference, Release 3.2

Set-Cookie: oreo=doublestuff; Path=/
>>> C = cookies.SimpleCookie()
>>> C["twix"] = "none for you"
>>> C["twix"].value
’none for you’
>>> C = cookies.SimpleCookie()
>>> C["number"] = 7 # equivalent to C["number"] = str(7)
>>> C["string"] = "seven"
>>> C["number"].value
’7’
>>> C["string"].value
’seven’
>>> print(C)
Set-Cookie: number=7
Set-Cookie: string=seven

20.22 http.cookiejar — Cookie handling for HTTP clients

Source code: Lib/http/cookiejar.py

The http.cookiejar module defines classes for automatic handling of HTTP cookies. It is useful for access-
ing web sites that require small pieces of data – cookies – to be set on the client machine by an HTTP response
from a web server, and then returned to the server in later HTTP requests.

Both the regular Netscape cookie protocol and the protocol defined by

RFC 2965 are handled. RFC 2965 handling is switched off by default.

RFC 2109 cookies are parsed as Netscape cookies and subsequently treated either as Netscape or RFC 2965
cookies according to the ‘policy’ in effect. Note that the great majority of cookies on the Internet are Netscape
cookies. http.cookiejar attempts to follow the de-facto Netscape cookie protocol (which differs substan-
tially from that set out in the original Netscape specification), including taking note of the max-age and port
cookie-attributes introduced with RFC 2965.

Note: The various named parameters found in Set-Cookie and Set-Cookie2 headers (eg. domain and
expires) are conventionally referred to as attributes. To distinguish them from Python attributes, the documen-
tation for this module uses the term cookie-attribute instead.

The module defines the following exception:

exception http.cookiejar.LoadError
Instances of FileCookieJar raise this exception on failure to load cookies from a file. LoadError is
a subclass of IOError.

The following classes are provided:

class http.cookiejar.CookieJar(policy=None)
policy is an object implementing the CookiePolicy interface.

The CookieJar class stores HTTP cookies. It extracts cookies from HTTP requests, and returns them
in HTTP responses. CookieJar instances automatically expire contained cookies when necessary. Sub-
classes are also responsible for storing and retrieving cookies from a file or database.

class http.cookiejar.FileCookieJar(filename, delayload=None, policy=None)
policy is an object implementing the CookiePolicy interface. For the other arguments, see the docu-
mentation for the corresponding attributes.

A CookieJar which can load cookies from, and perhaps save cookies to, a file on disk. Cookies are NOT
loaded from the named file until either the load() or revert() method is called. Subclasses of this
class are documented in section FileCookieJar subclasses and co-operation with web browsers.

834 Chapter 20. Internet Protocols and Support

http://svn.python.org/view/python/branches/py3k/Lib/http/cookiejar.py?view=markup
http://tools.ietf.org/html/rfc2965.html
http://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 3.2

class http.cookiejar.CookiePolicy
This class is responsible for deciding whether each cookie should be accepted from / returned to the server.

class http.cookiejar.DefaultCookiePolicy(blocked_domains=None, al-
lowed_domains=None, netscape=True,
rfc2965=False, rfc2109_as_netscape=None,
hide_cookie2=False, strict_domain=False,
strict_rfc2965_unverifiable=True,
strict_ns_unverifiable=False,
strict_ns_domain=DefaultCookiePolicy.DomainLiberal,
strict_ns_set_initial_dollar=False,
strict_ns_set_path=False)

Constructor arguments should be passed as keyword arguments only. blocked_domains is a sequence of
domain names that we never accept cookies from, nor return cookies to. allowed_domains if not None, this
is a sequence of the only domains for which we accept and return cookies. For all other arguments, see the
documentation for CookiePolicy and DefaultCookiePolicy objects.

DefaultCookiePolicy implements the standard accept / reject rules for Netscape and RFC 2965
cookies. By default, RFC 2109 cookies (ie. cookies received in a Set-Cookie header with a ver-
sion cookie-attribute of 1) are treated according to the RFC 2965 rules. However, if RFC 2965 han-
dling is turned off or rfc2109_as_netscape is True, RFC 2109 cookies are ‘downgraded’ by the
CookieJar instance to Netscape cookies, by setting the version attribute of the Cookie instance to 0.
DefaultCookiePolicy also provides some parameters to allow some fine-tuning of policy.

class http.cookiejar.Cookie
This class represents Netscape, RFC 2109 and RFC 2965 cookies. It is not expected that
users of http.cookiejar construct their own Cookie instances. Instead, if necessary, call
make_cookies() on a CookieJar instance.

See Also:

Module urllib.request URL opening with automatic cookie handling.

Module http.cookies HTTP cookie classes, principally useful for server-side code. The
http.cookiejar and http.cookies modules do not depend on each other.

http://wp.netscape.com/newsref/std/cookie_spec.html The specification of the original Netscape cookie pro-
tocol. Though this is still the dominant protocol, the ‘Netscape cookie protocol’ implemented by all the
major browsers (and http.cookiejar) only bears a passing resemblance to the one sketched out in
cookie_spec.html.

RFC 2109 - HTTP State Management Mechanism Obsoleted by RFC 2965. Uses Set-Cookie with ver-
sion=1.

RFC 2965 - HTTP State Management Mechanism The Netscape protocol with the bugs fixed. Uses
Set-Cookie2 in place of Set-Cookie. Not widely used.

http://kristol.org/cookie/errata.html Unfinished errata to RFC 2965.

RFC 2964 - Use of HTTP State Management

20.22.1 CookieJar and FileCookieJar Objects

CookieJar objects support the iterator protocol for iterating over contained Cookie objects.

CookieJar has the following methods:

CookieJar.add_cookie_header(request)
Add correct Cookie header to request.

If policy allows (ie. the rfc2965 and hide_cookie2 attributes of the CookieJar‘s CookiePolicy
instance are true and false respectively), the Cookie2 header is also added when appropriate.

The request object (usually a urllib.request..Request instance) must support
the methods get_full_url(), get_host(), get_type(), unverifiable(),

20.22. http.cookiejar — Cookie handling for HTTP clients 835

http://wp.netscape.com/newsref/std/cookie_spec.html
http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2965.html
http://kristol.org/cookie/errata.html
http://tools.ietf.org/html/rfc2964.html

The Python Library Reference, Release 3.2

get_origin_req_host(), has_header(), get_header(), header_items(), and
add_unredirected_header(), as documented by urllib.request.

CookieJar.extract_cookies(response, request)
Extract cookies from HTTP response and store them in the CookieJar, where allowed by policy.

The CookieJar will look for allowable Set-Cookie and Set-Cookie2 headers in the response argu-
ment, and store cookies as appropriate (subject to the CookiePolicy.set_ok() method’s approval).

The response object (usually the result of a call to urllib.request.urlopen(), or similar) should
support an info() method, which returns a email.message.Message instance.

The request object (usually a urllib.request.Request instance) must support the methods
get_full_url(), get_host(), unverifiable(), and get_origin_req_host(), as doc-
umented by urllib.request. The request is used to set default values for cookie-attributes as well as
for checking that the cookie is allowed to be set.

CookieJar.set_policy(policy)
Set the CookiePolicy instance to be used.

CookieJar.make_cookies(response, request)
Return sequence of Cookie objects extracted from response object.

See the documentation for extract_cookies() for the interfaces required of the response and request
arguments.

CookieJar.set_cookie_if_ok(cookie, request)
Set a Cookie if policy says it’s OK to do so.

CookieJar.set_cookie(cookie)
Set a Cookie, without checking with policy to see whether or not it should be set.

CookieJar.clear([domain[, path[, name]]])
Clear some cookies.

If invoked without arguments, clear all cookies. If given a single argument, only cookies belonging to that
domain will be removed. If given two arguments, cookies belonging to the specified domain and URL
path are removed. If given three arguments, then the cookie with the specified domain, path and name is
removed.

Raises KeyError if no matching cookie exists.

CookieJar.clear_session_cookies()
Discard all session cookies.

Discards all contained cookies that have a true discard attribute (usually because they had either
no max-age or expires cookie-attribute, or an explicit discard cookie-attribute). For interactive
browsers, the end of a session usually corresponds to closing the browser window.

Note that the save() method won’t save session cookies anyway, unless you ask otherwise by passing a
true ignore_discard argument.

FileCookieJar implements the following additional methods:

FileCookieJar.save(filename=None, ignore_discard=False, ignore_expires=False)
Save cookies to a file.

This base class raises NotImplementedError. Subclasses may leave this method unimplemented.

filename is the name of file in which to save cookies. If filename is not specified, self.filename is used
(whose default is the value passed to the constructor, if any); if self.filename is None, ValueError
is raised.

ignore_discard: save even cookies set to be discarded. ignore_expires: save even cookies that have expired

The file is overwritten if it already exists, thus wiping all the cookies it contains. Saved cookies can be
restored later using the load() or revert() methods.

836 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

FileCookieJar.load(filename=None, ignore_discard=False, ignore_expires=False)
Load cookies from a file.

Old cookies are kept unless overwritten by newly loaded ones.

Arguments are as for save().

The named file must be in the format understood by the class, or LoadError will be raised. Also,
IOError may be raised, for example if the file does not exist.

FileCookieJar.revert(filename=None, ignore_discard=False, ignore_expires=False)
Clear all cookies and reload cookies from a saved file.

revert() can raise the same exceptions as load(). If there is a failure, the object’s state will not be
altered.

FileCookieJar instances have the following public attributes:

FileCookieJar.filename
Filename of default file in which to keep cookies. This attribute may be assigned to.

FileCookieJar.delayload
If true, load cookies lazily from disk. This attribute should not be assigned to. This is only a hint, since this
only affects performance, not behaviour (unless the cookies on disk are changing). A CookieJar object
may ignore it. None of the FileCookieJar classes included in the standard library lazily loads cookies.

20.22.2 FileCookieJar subclasses and co-operation with web browsers

The following CookieJar subclasses are provided for reading and writing .

class http.cookiejar.MozillaCookieJar(filename, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in the Mozilla cookies.txt file format
(which is also used by the Lynx and Netscape browsers).

Note: This loses information about RFC 2965 cookies, and also about newer or non-standard cookie-
attributes such as port.

Warning: Back up your cookies before saving if you have cookies whose loss / corruption would be
inconvenient (there are some subtleties which may lead to slight changes in the file over a load / save
round-trip).

Also note that cookies saved while Mozilla is running will get clobbered by Mozilla.

class http.cookiejar.LWPCookieJar(filename, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in format compatible with the libwww-
perl library’s Set-Cookie3 file format. This is convenient if you want to store cookies in a human-
readable file.

20.22.3 CookiePolicy Objects

Objects implementing the CookiePolicy interface have the following methods:

CookiePolicy.set_ok(cookie, request)
Return boolean value indicating whether cookie should be accepted from server.

cookie is a Cookie instance. request is an object implementing the interface defined by the documentation
for CookieJar.extract_cookies().

CookiePolicy.return_ok(cookie, request)
Return boolean value indicating whether cookie should be returned to server.

20.22. http.cookiejar — Cookie handling for HTTP clients 837

The Python Library Reference, Release 3.2

cookie is a Cookie instance. request is an object implementing the interface defined by the documentation
for CookieJar.add_cookie_header().

CookiePolicy.domain_return_ok(domain, request)
Return false if cookies should not be returned, given cookie domain.

This method is an optimization. It removes the need for checking every cookie with a particular do-
main (which might involve reading many files). Returning true from domain_return_ok() and
path_return_ok() leaves all the work to return_ok().

If domain_return_ok() returns true for the cookie domain, path_return_ok() is called for the
cookie path. Otherwise, path_return_ok() and return_ok() are never called for that cookie do-
main. If path_return_ok() returns true, return_ok() is called with the Cookie object itself for a
full check. Otherwise, return_ok() is never called for that cookie path.

Note that domain_return_ok() is called for every cookie domain, not just for the request domain. For
example, the function might be called with both ".example.com" and "www.example.com" if the
request domain is "www.example.com". The same goes for path_return_ok().

The request argument is as documented for return_ok().

CookiePolicy.path_return_ok(path, request)
Return false if cookies should not be returned, given cookie path.

See the documentation for domain_return_ok().

In addition to implementing the methods above, implementations of the CookiePolicy interface must also
supply the following attributes, indicating which protocols should be used, and how. All of these attributes may
be assigned to.

CookiePolicy.netscape
Implement Netscape protocol.

CookiePolicy.rfc2965
Implement RFC 2965 protocol.

CookiePolicy.hide_cookie2
Don’t add Cookie2 header to requests (the presence of this header indicates to the server that we under-
stand RFC 2965 cookies).

The most useful way to define a CookiePolicy class is by subclassing from DefaultCookiePolicy and
overriding some or all of the methods above. CookiePolicy itself may be used as a ‘null policy’ to allow
setting and receiving any and all cookies (this is unlikely to be useful).

20.22.4 DefaultCookiePolicy Objects

Implements the standard rules for accepting and returning cookies.

Both RFC 2965 and Netscape cookies are covered. RFC 2965 handling is switched off by default.

The easiest way to provide your own policy is to override this class and call its methods in your overridden
implementations before adding your own additional checks:

import http.cookiejar
class MyCookiePolicy(http.cookiejar.DefaultCookiePolicy):

def set_ok(self, cookie, request):
if not http.cookiejar.DefaultCookiePolicy.set_ok(self, cookie, request):

return False
if i_dont_want_to_store_this_cookie(cookie):

return False
return True

In addition to the features required to implement the CookiePolicy interface, this class allows you to block
and allow domains from setting and receiving cookies. There are also some strictness switches that allow you to
tighten up the rather loose Netscape protocol rules a little bit (at the cost of blocking some benign cookies).

838 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

A domain blacklist and whitelist is provided (both off by default). Only domains not in the blacklist and present
in the whitelist (if the whitelist is active) participate in cookie setting and returning. Use the blocked_domains
constructor argument, and blocked_domains() and set_blocked_domains() methods (and the corre-
sponding argument and methods for allowed_domains). If you set a whitelist, you can turn it off again by setting
it to None.

Domains in block or allow lists that do not start with a dot must equal the cookie domain to be matched.
For example, "example.com" matches a blacklist entry of "example.com", but "www.example.com"
does not. Domains that do start with a dot are matched by more specific domains too. For exam-
ple, both "www.example.com" and "www.coyote.example.com" match ".example.com" (but
"example.com" itself does not). IP addresses are an exception, and must match exactly. For example, if
blocked_domains contains "192.168.1.2" and ".168.1.2", 192.168.1.2 is blocked, but 193.168.1.2 is
not.

DefaultCookiePolicy implements the following additional methods:

DefaultCookiePolicy.blocked_domains()
Return the sequence of blocked domains (as a tuple).

DefaultCookiePolicy.set_blocked_domains(blocked_domains)
Set the sequence of blocked domains.

DefaultCookiePolicy.is_blocked(domain)
Return whether domain is on the blacklist for setting or receiving cookies.

DefaultCookiePolicy.allowed_domains()
Return None, or the sequence of allowed domains (as a tuple).

DefaultCookiePolicy.set_allowed_domains(allowed_domains)
Set the sequence of allowed domains, or None.

DefaultCookiePolicy.is_not_allowed(domain)
Return whether domain is not on the whitelist for setting or receiving cookies.

DefaultCookiePolicy instances have the following attributes, which are all initialised from the constructor
arguments of the same name, and which may all be assigned to.

DefaultCookiePolicy.rfc2109_as_netscape
If true, request that the CookieJar instance downgrade RFC 2109 cookies (ie. cookies received in a
Set-Cookie header with a version cookie-attribute of 1) to Netscape cookies by setting the version at-
tribute of the Cookie instance to 0. The default value is None, in which case RFC 2109 cookies are
downgraded if and only if RFC 2965 handling is turned off. Therefore, RFC 2109 cookies are downgraded
by default.

General strictness switches:

DefaultCookiePolicy.strict_domain
Don’t allow sites to set two-component domains with country-code top-level domains like .co.uk,
.gov.uk, .co.nz.etc. This is far from perfect and isn’t guaranteed to work!

RFC 2965 protocol strictness switches:

DefaultCookiePolicy.strict_rfc2965_unverifiable
Follow RFC 2965 rules on unverifiable transactions (usually, an unverifiable transaction is one resulting
from a redirect or a request for an image hosted on another site). If this is false, cookies are never blocked
on the basis of verifiability

Netscape protocol strictness switches:

DefaultCookiePolicy.strict_ns_unverifiable
apply RFC 2965 rules on unverifiable transactions even to Netscape cookies

DefaultCookiePolicy.strict_ns_domain
Flags indicating how strict to be with domain-matching rules for Netscape cookies. See below for acceptable
values.

20.22. http.cookiejar — Cookie handling for HTTP clients 839

The Python Library Reference, Release 3.2

DefaultCookiePolicy.strict_ns_set_initial_dollar
Ignore cookies in Set-Cookie: headers that have names starting with ’$’.

DefaultCookiePolicy.strict_ns_set_path
Don’t allow setting cookies whose path doesn’t path-match request URI.

strict_ns_domain is a collection of flags. Its value is constructed by or-ing together (for example,
DomainStrictNoDots|DomainStrictNonDomain means both flags are set).

DefaultCookiePolicy.DomainStrictNoDots
When setting cookies, the ‘host prefix’ must not contain a dot (eg. www.foo.bar.com can’t set a cookie
for .bar.com, because www.foo contains a dot).

DefaultCookiePolicy.DomainStrictNonDomain
Cookies that did not explicitly specify a domain cookie-attribute can only be returned to a domain equal to
the domain that set the cookie (eg. spam.example.comwon’t be returned cookies from example.com
that had no domain cookie-attribute).

DefaultCookiePolicy.DomainRFC2965Match
When setting cookies, require a full RFC 2965 domain-match.

The following attributes are provided for convenience, and are the most useful combinations of the above flags:

DefaultCookiePolicy.DomainLiberal
Equivalent to 0 (ie. all of the above Netscape domain strictness flags switched off).

DefaultCookiePolicy.DomainStrict
Equivalent to DomainStrictNoDots|DomainStrictNonDomain.

20.22.5 Cookie Objects

Cookie instances have Python attributes roughly corresponding to the standard cookie-attributes specified in the
various cookie standards. The correspondence is not one-to-one, because there are complicated rules for assign-
ing default values, because the max-age and expires cookie-attributes contain equivalent information, and
because RFC 2109 cookies may be ‘downgraded’ by http.cookiejar from version 1 to version 0 (Netscape)
cookies.

Assignment to these attributes should not be necessary other than in rare circumstances in a CookiePolicy
method. The class does not enforce internal consistency, so you should know what you’re doing if you do that.

Cookie.version
Integer or None. Netscape cookies have version 0. RFC 2965 and RFC 2109 cookies have a version
cookie-attribute of 1. However, note that http.cookiejar may ‘downgrade’ RFC 2109 cookies to
Netscape cookies, in which case version is 0.

Cookie.name
Cookie name (a string).

Cookie.value
Cookie value (a string), or None.

Cookie.port
String representing a port or a set of ports (eg. ‘80’, or ‘80,8080’), or None.

Cookie.path
Cookie path (a string, eg. ’/acme/rocket_launchers’).

Cookie.secure
True if cookie should only be returned over a secure connection.

Cookie.expires
Integer expiry date in seconds since epoch, or None. See also the is_expired() method.

Cookie.discard
True if this is a session cookie.

840 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

Cookie.comment
String comment from the server explaining the function of this cookie, or None.

Cookie.comment_url
URL linking to a comment from the server explaining the function of this cookie, or None.

Cookie.rfc2109
True if this cookie was received as an RFC 2109 cookie (ie. the cookie arrived in a Set-Cookie header,
and the value of the Version cookie-attribute in that header was 1). This attribute is provided because
http.cookiejar may ‘downgrade’ RFC 2109 cookies to Netscape cookies, in which case version is
0.

Cookie.port_specified
True if a port or set of ports was explicitly specified by the server (in the Set-Cookie / Set-Cookie2
header).

Cookie.domain_specified
True if a domain was explicitly specified by the server.

Cookie.domain_initial_dot
True if the domain explicitly specified by the server began with a dot (’.’).

Cookies may have additional non-standard cookie-attributes. These may be accessed using the following methods:

Cookie.has_nonstandard_attr(name)
Return true if cookie has the named cookie-attribute.

Cookie.get_nonstandard_attr(name, default=None)
If cookie has the named cookie-attribute, return its value. Otherwise, return default.

Cookie.set_nonstandard_attr(name, value)
Set the value of the named cookie-attribute.

The Cookie class also defines the following method:

Cookie.is_expired([now=None])
True if cookie has passed the time at which the server requested it should expire. If now is given (in seconds
since the epoch), return whether the cookie has expired at the specified time.

20.22.6 Examples

The first example shows the most common usage of http.cookiejar:

import http.cookiejar, urllib.request
cj = http.cookiejar.CookieJar()
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

This example illustrates how to open a URL using your Netscape, Mozilla, or Lynx cookies (assumes
Unix/Netscape convention for location of the cookies file):

import os, http.cookiejar, urllib.request
cj = http.cookiejar.MozillaCookieJar()
cj.load(os.path.join(os.environ["HOME"], ".netscape/cookies.txt"))
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

The next example illustrates the use of DefaultCookiePolicy. Turn on RFC 2965 cookies, be more strict
about domains when setting and returning Netscape cookies, and block some domains from setting cookies or
having them returned:

import urllib.request
from http.cookiejar import CookieJar, DefaultCookiePolicy
policy = DefaultCookiePolicy(

rfc2965=True, strict_ns_domain=Policy.DomainStrict,

20.22. http.cookiejar — Cookie handling for HTTP clients 841

The Python Library Reference, Release 3.2

blocked_domains=["ads.net", ".ads.net"])
cj = CookieJar(policy)
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

20.23 xmlrpc.client — XML-RPC client access

Source code: Lib/xmlrpc/client.py

XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP as a transport. With it, a client
can call methods with parameters on a remote server (the server is named by a URI) and get back structured data.
This module supports writing XML-RPC client code; it handles all the details of translating between conformable
Python objects and XML on the wire.

class xmlrpc.client.ServerProxy(uri, transport=None, encoding=None, verbose=False, al-
low_none=False, use_datetime=False)

A ServerProxy instance is an object that manages communication with a remote XML-RPC server. The
required first argument is a URI (Uniform Resource Indicator), and will normally be the URL of the server.
The optional second argument is a transport factory instance; by default it is an internal SafeTransport
instance for https: URLs and an internal HTTP Transport instance otherwise. The optional third argu-
ment is an encoding, by default UTF-8. The optional fourth argument is a debugging flag. If allow_none
is true, the Python constant None will be translated into XML; the default behaviour is for None to raise
a TypeError. This is a commonly-used extension to the XML-RPC specification, but isn’t supported by
all clients and servers; see http://ontosys.com/xml-rpc/extensions.php for a description. The use_datetime
flag can be used to cause date/time values to be presented as datetime.datetime objects; this is false
by default. datetime.datetime objects may be passed to calls.

Both the HTTP and HTTPS transports support the URL syntax extension for HTTP Basic Authentication:
http://user:pass@host:port/path. The user:pass portion will be base64-encoded as an
HTTP ‘Authorization’ header, and sent to the remote server as part of the connection process when invoking
an XML-RPC method. You only need to use this if the remote server requires a Basic Authentication user
and password.

The returned instance is a proxy object with methods that can be used to invoke corresponding RPC calls on
the remote server. If the remote server supports the introspection API, the proxy can also be used to query
the remote server for the methods it supports (service discovery) and fetch other server-associated metadata.

ServerProxy instance methods take Python basic types and objects as arguments and return Python
basic types and classes. Types that are conformable (e.g. that can be marshalled through XML), include the
following (and except where noted, they are unmarshalled as the same Python type):

Name Meaning
boolean The True and False constants
integers Pass in directly
floating-point
numbers

Pass in directly

strings Pass in directly
arrays Any Python sequence type containing conformable elements. Arrays are returned as

lists
structures A Python dictionary. Keys must be strings, values may be any conformable type.

Objects of user-defined classes can be passed in; only their __dict__ attribute is
transmitted.

dates in seconds since the epoch (pass in an instance of the DateTime class) or a
datetime.datetime instance.

binary
data

pass in an instance of the Binary wrapper class

This is the full set of data types supported by XML-RPC. Method calls may also raise a special Fault
instance, used to signal XML-RPC server errors, or ProtocolError used to signal an error in the

842 Chapter 20. Internet Protocols and Support

http://svn.python.org/view/python/branches/py3k/Lib/xmlrpc/client.py?view=markup
http://ontosys.com/xml-rpc/extensions.php

The Python Library Reference, Release 3.2

HTTP/HTTPS transport layer. Both Fault and ProtocolError derive from a base class called Error.
Note that the xmlrpc client module currently does not marshal instances of subclasses of built-in types.

When passing strings, characters special to XML such as <, >, and & will be automatically escaped. How-
ever, it’s the caller’s responsibility to ensure that the string is free of characters that aren’t allowed in XML,
such as the control characters with ASCII values between 0 and 31 (except, of course, tab, newline and
carriage return); failing to do this will result in an XML-RPC request that isn’t well-formed XML. If you
have to pass arbitrary strings via XML-RPC, use the Binary wrapper class described below.

Server is retained as an alias for ServerProxy for backwards compatibility. New code should use
ServerProxy.

See Also:

XML-RPC HOWTO A good description of XML-RPC operation and client software in several languages. Con-
tains pretty much everything an XML-RPC client developer needs to know.

XML-RPC Introspection Describes the XML-RPC protocol extension for introspection.

XML-RPC Specification The official specification.

Unofficial XML-RPC Errata Fredrik Lundh’s “unofficial errata, intended to clarify certain details in the XML-
RPC specification, as well as hint at ‘best practices’ to use when designing your own XML-RPC implemen-
tations.”

20.23.1 ServerProxy Objects

A ServerProxy instance has a method corresponding to each remote procedure call accepted by the XML-
RPC server. Calling the method performs an RPC, dispatched by both name and argument signature (e.g. the
same method name can be overloaded with multiple argument signatures). The RPC finishes by returning a value,
which may be either returned data in a conformant type or a Fault or ProtocolError object indicating an
error.

Servers that support the XML introspection API support some common methods grouped under the reserved
system member:

ServerProxy.system.listMethods()
This method returns a list of strings, one for each (non-system) method supported by the XML-RPC server.

ServerProxy.system.methodSignature(name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It returns
an array of possible signatures for this method. A signature is an array of types. The first of these types is
the return type of the method, the rest are parameters.

Because multiple signatures (ie. overloading) is permitted, this method returns a list of signatures rather
than a singleton.

Signatures themselves are restricted to the top level parameters expected by a method. For instance if a
method expects one array of structs as a parameter, and it returns a string, its signature is simply “string,
array”. If it expects three integers and returns a string, its signature is “string, int, int, int”.

If no signature is defined for the method, a non-array value is returned. In Python this means that the type
of the returned value will be something other than list.

ServerProxy.system.methodHelp(name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It returns
a documentation string describing the use of that method. If no such string is available, an empty string is
returned. The documentation string may contain HTML markup.

A working example follows. The server code:

from xmlrpc.server import SimpleXMLRPCServer

def is_even(n):
return n%2 == 0

20.23. xmlrpc.client — XML-RPC client access 843

http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html
http://xmlrpc-c.sourceforge.net/introspection.html
http://www.xmlrpc.com/spec
http://effbot.org/zone/xmlrpc-errata.htm

The Python Library Reference, Release 3.2

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(is_even, "is_even")
server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")
print("3 is even: %s" % str(proxy.is_even(3)))
print("100 is even: %s" % str(proxy.is_even(100)))

20.23.2 DateTime Objects

This class may be initialized with seconds since the epoch, a time tuple, an ISO 8601 time/date string, or a
datetime.datetime instance. It has the following methods, supported mainly for internal use by the mar-
shalling/unmarshalling code:

DateTime.decode(string)
Accept a string as the instance’s new time value.

DateTime.encode(out)
Write the XML-RPC encoding of this DateTime item to the out stream object.

It also supports certain of Python’s built-in operators through rich comparison and __repr__() methods.

A working example follows. The server code:

import datetime
from xmlrpc.server import SimpleXMLRPCServer
import xmlrpc.client

def today():
today = datetime.datetime.today()
return xmlrpc.client.DateTime(today)

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(today, "today")
server.serve_forever()

The client code for the preceding server:

import xmlrpc.client
import datetime

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")

today = proxy.today()
convert the ISO8601 string to a datetime object
converted = datetime.datetime.strptime(today.value, "%Y%m%dT%H:%M:%S")
print("Today: %s" % converted.strftime("%d.%m.%Y, %H:%M"))

20.23.3 Binary Objects

This class may be initialized from string data (which may include NULs). The primary access to the content of a
Binary object is provided by an attribute:

844 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

Binary.data
The binary data encapsulated by the Binary instance. The data is provided as an 8-bit string.

Binary objects have the following methods, supported mainly for internal use by the marshalling/unmarshalling
code:

Binary.decode(string)
Accept a base64 string and decode it as the instance’s new data.

Binary.encode(out)
Write the XML-RPC base 64 encoding of this binary item to the out stream object.

The encoded data will have newlines every 76 characters as per RFC 2045 section 6.8, which was the de
facto standard base64 specification when the XML-RPC spec was written.

It also supports certain of Python’s built-in operators through __eq__() and __ne__() methods.

Example usage of the binary objects. We’re going to transfer an image over XMLRPC:

from xmlrpc.server import SimpleXMLRPCServer
import xmlrpc.client

def python_logo():
with open("python_logo.jpg", "rb") as handle:

return xmlrpc.client.Binary(handle.read())

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(python_logo, ’python_logo’)

server.serve_forever()

The client gets the image and saves it to a file:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")
with open("fetched_python_logo.jpg", "wb") as handle:

handle.write(proxy.python_logo().data)

20.23.4 Fault Objects

A Fault object encapsulates the content of an XML-RPC fault tag. Fault objects have the following members:

Fault.faultCode
A string indicating the fault type.

Fault.faultString
A string containing a diagnostic message associated with the fault.

In the following example we’re going to intentionally cause a Fault by returning a complex type object. The
server code:

from xmlrpc.server import SimpleXMLRPCServer

A marshalling error is going to occur because we’re returning a
complex number
def add(x,y):

return x+y+0j

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(add, ’add’)

20.23. xmlrpc.client — XML-RPC client access 845

http://tools.ietf.org/html/rfc2045#section-6.8

The Python Library Reference, Release 3.2

server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")
try:

proxy.add(2, 5)
except xmlrpc.client.Fault as err:

print("A fault occurred")
print("Fault code: %d" % err.faultCode)
print("Fault string: %s" % err.faultString)

20.23.5 ProtocolError Objects

A ProtocolError object describes a protocol error in the underlying transport layer (such as a 404 ‘not found’
error if the server named by the URI does not exist). It has the following members:

ProtocolError.url
The URI or URL that triggered the error.

ProtocolError.errcode
The error code.

ProtocolError.errmsg
The error message or diagnostic string.

ProtocolError.headers
A dict containing the headers of the HTTP/HTTPS request that triggered the error.

In the following example we’re going to intentionally cause a ProtocolError by providing an invalid URI:

import xmlrpc.client

create a ServerProxy with an URI that doesn’t respond to XMLRPC requests
proxy = xmlrpc.client.ServerProxy("http://google.com/")

try:
proxy.some_method()

except xmlrpc.client.ProtocolError as err:
print("A protocol error occurred")
print("URL: %s" % err.url)
print("HTTP/HTTPS headers: %s" % err.headers)
print("Error code: %d" % err.errcode)
print("Error message: %s" % err.errmsg)

20.23.6 MultiCall Objects

In http://www.xmlrpc.com/discuss/msgReader%241208, an approach is presented to encapsulate multiple calls to
a remote server into a single request.

class xmlrpc.client.MultiCall(server)
Create an object used to boxcar method calls. server is the eventual target of the call. Calls can be made
to the result object, but they will immediately return None, and only store the call name and parameters
in the MultiCall object. Calling the object itself causes all stored calls to be transmitted as a single
system.multicall request. The result of this call is a generator; iterating over this generator yields
the individual results.

A usage example of this class follows. The server code

846 Chapter 20. Internet Protocols and Support

http://www.xmlrpc.com/discuss/msgReader%241208

The Python Library Reference, Release 3.2

from xmlrpc.server import SimpleXMLRPCServer

def add(x,y):
return x+y

def subtract(x, y):
return x-y

def multiply(x, y):
return x*y

def divide(x, y):
return x/y

A simple server with simple arithmetic functions
server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_multicall_functions()
server.register_function(add, ’add’)
server.register_function(subtract, ’subtract’)
server.register_function(multiply, ’multiply’)
server.register_function(divide, ’divide’)
server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")
multicall = xmlrpc.client.MultiCall(proxy)
multicall.add(7,3)
multicall.subtract(7,3)
multicall.multiply(7,3)
multicall.divide(7,3)
result = multicall()

print("7+3=%d, 7-3=%d, 7*3=%d, 7/3=%d" % tuple(result))

20.23.7 Convenience Functions

xmlrpc.client.dumps(params, methodname=None, methodresponse=None, encoding=None, al-
low_none=False)

Convert params into an XML-RPC request. or into a response if methodresponse is true. params can
be either a tuple of arguments or an instance of the Fault exception class. If methodresponse is true,
only a single value can be returned, meaning that params must be of length 1. encoding, if supplied, is
the encoding to use in the generated XML; the default is UTF-8. Python’s None value cannot be used in
standard XML-RPC; to allow using it via an extension, provide a true value for allow_none.

xmlrpc.client.loads(data, use_datetime=False)
Convert an XML-RPC request or response into Python objects, a (params, methodname). params is a
tuple of argument; methodname is a string, or None if no method name is present in the packet. If the XML-
RPC packet represents a fault condition, this function will raise a Fault exception. The use_datetime flag
can be used to cause date/time values to be presented as datetime.datetime objects; this is false by
default.

20.23. xmlrpc.client — XML-RPC client access 847

The Python Library Reference, Release 3.2

20.23.8 Example of Client Usage

simple test program (from the XML-RPC specification)
from xmlrpc.client import ServerProxy, Error

server = ServerProxy("http://localhost:8000") # local server
server = ServerProxy("http://betty.userland.com")

print(server)

try:
print(server.examples.getStateName(41))

except Error as v:
print("ERROR", v)

To access an XML-RPC server through a proxy, you need to define a custom transport. The following example
shows how:

import xmlrpc.client, http.client

class ProxiedTransport(xmlrpc.client.Transport):
def set_proxy(self, proxy):

self.proxy = proxy
def make_connection(self, host):

self.realhost = host
h = http.client.HTTP(self.proxy)
return h

def send_request(self, connection, handler, request_body):
connection.putrequest("POST", ’http://%s%s’ % (self.realhost, handler))

def send_host(self, connection, host):
connection.putheader(’Host’, self.realhost)

p = ProxiedTransport()
p.set_proxy(’proxy-server:8080’)
server = xmlrpc.client.Server(’http://time.xmlrpc.com/RPC2’, transport=p)
print(server.currentTime.getCurrentTime())

20.23.9 Example of Client and Server Usage

See SimpleXMLRPCServer Example.

20.24 xmlrpc.server — Basic XML-RPC servers

Source code: Lib/xmlrpc/server.py

The xmlrpc.server module provides a basic server framework for XML-RPC servers written in Python.
Servers can either be free standing, using SimpleXMLRPCServer, or embedded in a CGI environment, using
CGIXMLRPCRequestHandler.

class xmlrpc.server.SimpleXMLRPCServer(addr, requestHandler=SimpleXMLRPCRequestHandler,
logRequests=True, allow_none=False, encod-
ing=None, bind_and_activate=True)

Create a new server instance. This class provides methods for registration of functions that can be called by
the XML-RPC protocol. The requestHandler parameter should be a factory for request handler instances;
it defaults to SimpleXMLRPCRequestHandler. The addr and requestHandler parameters are passed
to the socketserver.TCPServer constructor. If logRequests is true (the default), requests will be

848 Chapter 20. Internet Protocols and Support

http://svn.python.org/view/python/branches/py3k/Lib/xmlrpc/server.py?view=markup

The Python Library Reference, Release 3.2

logged; setting this parameter to false will turn off logging. The allow_none and encoding parameters are
passed on to xmlrpc.client and control the XML-RPC responses that will be returned from the server.
The bind_and_activate parameter controls whether server_bind() and server_activate() are
called immediately by the constructor; it defaults to true. Setting it to false allows code to manipulate the
allow_reuse_address class variable before the address is bound.

class xmlrpc.server.CGIXMLRPCRequestHandler(allow_none=False, encoding=None)
Create a new instance to handle XML-RPC requests in a CGI environment. The allow_none and encoding
parameters are passed on to xmlrpc.client and control the XML-RPC responses that will be returned
from the server.

class xmlrpc.server.SimpleXMLRPCRequestHandler
Create a new request handler instance. This request handler supports POST requests and modifies logging
so that the logRequests parameter to the SimpleXMLRPCServer constructor parameter is honored.

20.24.1 SimpleXMLRPCServer Objects

The SimpleXMLRPCServer class is based on socketserver.TCPServer and provides a means of creat-
ing simple, stand alone XML-RPC servers.

SimpleXMLRPCServer.register_function(function, name=None)
Register a function that can respond to XML-RPC requests. If name is given, it will be the method name
associated with function, otherwise function.__name__ will be used. name can be either a normal or
Unicode string, and may contain characters not legal in Python identifiers, including the period character.

SimpleXMLRPCServer.register_instance(instance, allow_dotted_names=False)
Register an object which is used to expose method names which have not been registered using
register_function(). If instance contains a _dispatch() method, it is called with the requested
method name and the parameters from the request. Its API is def _dispatch(self, method,
params) (note that params does not represent a variable argument list). If it calls an underlying function
to perform its task, that function is called as func(*params), expanding the parameter list. The return
value from _dispatch() is returned to the client as the result. If instance does not have a _dispatch()
method, it is searched for an attribute matching the name of the requested method.

If the optional allow_dotted_names argument is true and the instance does not have a _dispatch()
method, then if the requested method name contains periods, each component of the method name is
searched for individually, with the effect that a simple hierarchical search is performed. The value found
from this search is then called with the parameters from the request, and the return value is passed back to
the client.

Warning: Enabling the allow_dotted_names option allows intruders to access your module’s global
variables and may allow intruders to execute arbitrary code on your machine. Only use this option on a
secure, closed network.

SimpleXMLRPCServer.register_introspection_functions()
Registers the XML-RPC introspection functions system.listMethods, system.methodHelp and
system.methodSignature.

SimpleXMLRPCServer.register_multicall_functions()
Registers the XML-RPC multicall function system.multicall.

SimpleXMLRPCRequestHandler.rpc_paths
An attribute value that must be a tuple listing valid path portions of the URL for receiving XML-RPC
requests. Requests posted to other paths will result in a 404 “no such page” HTTP error. If this tuple is
empty, all paths will be considered valid. The default value is (’/’, ’/RPC2’).

SimpleXMLRPCServer Example

Server code:

20.24. xmlrpc.server — Basic XML-RPC servers 849

The Python Library Reference, Release 3.2

from xmlrpc.server import SimpleXMLRPCServer
from xmlrpc.server import SimpleXMLRPCRequestHandler

Restrict to a particular path.
class RequestHandler(SimpleXMLRPCRequestHandler):

rpc_paths = (’/RPC2’,)

Create server
server = SimpleXMLRPCServer(("localhost", 8000),

requestHandler=RequestHandler)
server.register_introspection_functions()

Register pow() function; this will use the value of
pow.__name__ as the name, which is just ’pow’.
server.register_function(pow)

Register a function under a different name
def adder_function(x,y):

return x + y
server.register_function(adder_function, ’add’)

Register an instance; all the methods of the instance are
published as XML-RPC methods (in this case, just ’mul’).
class MyFuncs:

def mul(self, x, y):
return x * y

server.register_instance(MyFuncs())

Run the server’s main loop
server.serve_forever()

The following client code will call the methods made available by the preceding server:

import xmlrpc.client

s = xmlrpc.client.ServerProxy(’http://localhost:8000’)
print(s.pow(2,3)) # Returns 2**3 = 8
print(s.add(2,3)) # Returns 5
print(s.mul(5,2)) # Returns 5*2 = 10

Print list of available methods
print(s.system.listMethods())

20.24.2 CGIXMLRPCRequestHandler

The CGIXMLRPCRequestHandler class can be used to handle XML-RPC requests sent to Python CGI scripts.

CGIXMLRPCRequestHandler.register_function(function, name=None)
Register a function that can respond to XML-RPC requests. If name is given, it will be the method name as-
sociated with function, otherwise function.__name__ will be used. name can be either a normal or Unicode
string, and may contain characters not legal in Python identifiers, including the period character.

CGIXMLRPCRequestHandler.register_instance(instance)
Register an object which is used to expose method names which have not been registered using
register_function(). If instance contains a _dispatch() method, it is called with the requested
method name and the parameters from the request; the return value is returned to the client as the result. If
instance does not have a _dispatch() method, it is searched for an attribute matching the name of the
requested method; if the requested method name contains periods, each component of the method name is

850 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 3.2

searched for individually, with the effect that a simple hierarchical search is performed. The value found
from this search is then called with the parameters from the request, and the return value is passed back to
the client.

CGIXMLRPCRequestHandler.register_introspection_functions()
Register the XML-RPC introspection functions system.listMethods, system.methodHelp and
system.methodSignature.

CGIXMLRPCRequestHandler.register_multicall_functions()
Register the XML-RPC multicall function system.multicall.

CGIXMLRPCRequestHandler.handle_request(request_text=None)
Handle a XML-RPC request. If request_text is given, it should be the POST data provided by the HTTP
server, otherwise the contents of stdin will be used.

Example:

class MyFuncs:
def mul(self, x, y):

return x * y

handler = CGIXMLRPCRequestHandler()
handler.register_function(pow)
handler.register_function(lambda x,y: x+y, ’add’)
handler.register_introspection_functions()
handler.register_instance(MyFuncs())
handler.handle_request()

20.24.3 Documenting XMLRPC server

These classes extend the above classes to serve HTML documentation in response to HTTP GET requests.
Servers can either be free standing, using DocXMLRPCServer, or embedded in a CGI environment, using
DocCGIXMLRPCRequestHandler.

class xmlrpc.server.DocXMLRPCServer(addr, requestHandler=DocXMLRPCRequestHandler,
logRequests=True, allow_none=False, encoding=None,
bind_and_activate=True)

Create a new server instance. All parameters have the same meaning as for SimpleXMLRPCServer;
requestHandler defaults to DocXMLRPCRequestHandler.

class xmlrpc.server.DocCGIXMLRPCRequestHandler
Create a new instance to handle XML-RPC requests in a CGI environment.

class xmlrpc.server.DocXMLRPCRequestHandler
Create a new request handler instance. This request handler supports XML-RPC POST requests, documen-
tation GET requests, and modifies logging so that the logRequests parameter to the DocXMLRPCServer
constructor parameter is honored.

20.24.4 DocXMLRPCServer Objects

The DocXMLRPCServer class is derived from SimpleXMLRPCServer and provides a means of creating
self-documenting, stand alone XML-RPC servers. HTTP POST requests are handled as XML-RPC method calls.
HTTP GET requests are handled by generating pydoc-style HTML documentation. This allows a server to provide
its own web-based documentation.

DocXMLRPCServer.set_server_title(server_title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML “title”
element.

20.24. xmlrpc.server — Basic XML-RPC servers 851

The Python Library Reference, Release 3.2

DocXMLRPCServer.set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a “h1” element.

DocXMLRPCServer.set_server_documentation(server_documentation)
Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

20.24.5 DocCGIXMLRPCRequestHandler

The DocCGIXMLRPCRequestHandler class is derived from CGIXMLRPCRequestHandler and provides
a means of creating self-documenting, XML-RPC CGI scripts. HTTP POST requests are handled as XML-RPC
method calls. HTTP GET requests are handled by generating pydoc-style HTML documentation. This allows a
server to provide its own web-based documentation.

DocCGIXMLRPCRequestHandler.set_server_title(server_title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML “title”
element.

DocCGIXMLRPCRequestHandler.set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a “h1” element.

DocCGIXMLRPCRequestHandler.set_server_documentation(server_documentation)
Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

852 Chapter 20. Internet Protocols and Support

CHAPTER

TWENTYONE

MULTIMEDIA SERVICES

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for mul-
timedia applications. They are available at the discretion of the installation. Here’s an overview:

21.1 audioop — Manipulate raw audio data

The audioop module contains some useful operations on sound fragments. It operates on sound fragments
consisting of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. All scalar items are integers,
unless specified otherwise.

This module provides support for a-LAW, u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always
a parameter of the operation.

The module defines the following variables and functions:

exception audioop.error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

audioop.add(fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters. width is the sample width
in bytes, either 1, 2 or 4. Both fragments should have the same length.

audioop.adpcm2lin(adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description of lin2adpcm()
for details on ADPCM coding. Return a tuple (sample, newstate) where the sample has the width
specified in width.

audioop.alaw2lin(fragment, width)
Convert sound fragments in a-LAW encoding to linearly encoded sound fragments. a-LAW encoding always
uses 8 bits samples, so width refers only to the sample width of the output fragment here.

audioop.avg(fragment, width)
Return the average over all samples in the fragment.

audioop.avgpp(fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the usefulness
of this routine is questionable.

audioop.bias(fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

audioop.cross(fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

audioop.findfactor(fragment, reference)
Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal, i.e., return

853

The Python Library Reference, Release 3.2

the factor with which you should multiply reference to make it match as well as possible to fragment. The
fragments should both contain 2-byte samples.

The time taken by this routine is proportional to len(fragment).

audioop.findfit(fragment, reference)
Try to match reference as well as possible to a portion of fragment (which should be the longer fragment).
This is (conceptually) done by taking slices out of fragment, using findfactor() to compute the best
match, and minimizing the result. The fragments should both contain 2-byte samples. Return a tuple
(offset, factor) where offset is the (integer) offset into fragment where the optimal match started
and factor is the (floating-point) factor as per findfactor().

audioop.findmax(fragment, length)
Search fragment for a slice of length length samples (not bytes!) with maximum energy, i.e., return i for
which rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte
samples.

The routine takes time proportional to len(fragment).

audioop.getsample(fragment, width, index)
Return the value of sample index from the fragment.

audioop.lin2adpcm(fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme,
whereby each 4 bit number is the difference between one sample and the next, divided by a (varying) step.
The Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it may well become a standard.

state is a tuple containing the state of the coder. The coder returns a tuple (adpcmfrag, newstate),
and the newstate should be passed to the next call of lin2adpcm(). In the initial call, None can be passed
as the state. adpcmfrag is the ADPCM coded fragment packed 2 4-bit values per byte.

audioop.lin2alaw(fragment, width)
Convert samples in the audio fragment to a-LAW encoding and return this as a Python string. a-LAW is an
audio encoding format whereby you get a dynamic range of about 13 bits using only 8 bit samples. It is
used by the Sun audio hardware, among others.

audioop.lin2lin(fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

Note: In some audio formats, such as .WAV files, 16 and 32 bit samples are signed, but 8 bit samples
are unsigned. So when converting to 8 bit wide samples for these formats, you need to also add 128 to the
result:

new_frames = audioop.lin2lin(frames, old_width, 1)
new_frames = audioop.bias(new_frames, 1, 128)

The same, in reverse, has to be applied when converting from 8 to 16 or 32 bit width samples.

audioop.lin2ulaw(fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string. u-LAW is
an audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is
used by the Sun audio hardware, among others.

audioop.minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

audioop.max(fragment, width)
Return the maximum of the absolute value of all samples in a fragment.

audioop.maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

854 Chapter 21. Multimedia Services

The Python Library Reference, Release 3.2

audioop.mul(fragment, width, factor)
Return a fragment that has all samples in the original fragment multiplied by the floating-point value factor.
Overflow is silently ignored.

audioop.ratecv(fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])
Convert the frame rate of the input fragment.

state is a tuple containing the state of the converter. The converter returns a tuple (newfragment,
newstate), and newstate should be passed to the next call of ratecv(). The initial call should pass
None as the state.

The weightA and weightB arguments are parameters for a simple digital filter and default to 1 and 0 respec-
tively.

audioop.reverse(fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

audioop.rms(fragment, width)
Return the root-mean-square of the fragment, i.e. sqrt(sum(S_i^2)/n).

This is a measure of the power in an audio signal.

audioop.tomono(fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied by lfactor and the right channel
by rfactor before adding the two channels to give a mono signal.

audioop.tostereo(fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are computed
from the mono sample, whereby left channel samples are multiplied by lfactor and right channel samples
by rfactor.

audioop.ulaw2lin(fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding al-
ways uses 8 bits samples, so width refers only to the sample width of the output fragment here.

Note that operations such as mul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments first
and recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(lsample, width, lfactor)
rsample = audioop.mul(rsample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to
tolerate packet loss) you should not only transmit the data but also the state. Note that you should send the initial
state (the one you passed to lin2adpcm()) along to the decoder, not the final state (as returned by the coder).
If you want to use struct.struct() to store the state in binary you can code the first element (the predicted
value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well
be that I misinterpreted the standards in which case they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation.
A reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the input
sample and subtract the whole output sample from the input sample:

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)

21.1. audioop — Manipulate raw audio data 855

The Python Library Reference, Release 3.2

Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = ’\0’*(pos+ipos)*2
postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

21.2 aifc — Read and write AIFF and AIFC files

Source code: Lib/aifc.py

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File
Format, a format for storing digital audio samples in a file. AIFF-C is a newer version of the format that includes
the ability to compress the audio data.

Note: Some operations may only work under IRIX; these will raise ImportError when attempting to import
the cl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the
number of times per second the sound is sampled. The number of channels indicate if the audio is mono, stereo,
or quadro. Each frame consists of one sample per channel. The sample size is the size in bytes of each sam-
ple. Thus a frame consists of nchannels**samplesize* bytes, and a second’s worth of audio consists of nchan-
nels**samplesize***framerate* bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame
rate of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100
bytes (176,400 bytes).

Module aifc defines the following function:

aifc.open(file, mode=None)
Open an AIFF or AIFF-C file and return an object instance with methods that are described below. The
argument file is either a string naming a file or a file object. mode must be ’r’ or ’rb’ when the file must
be opened for reading, or ’w’ or ’wb’ when the file must be opened for writing. If omitted, file.mode
is used if it exists, otherwise ’rb’ is used. When used for writing, the file object should be seekable, unless
you know ahead of time how many samples you are going to write in total and use writeframesraw()
and setnframes().

Objects returned by open() when a file is opened for reading have the following methods:

aifc.getnchannels()
Return the number of audio channels (1 for mono, 2 for stereo).

aifc.getsampwidth()
Return the size in bytes of individual samples.

aifc.getframerate()
Return the sampling rate (number of audio frames per second).

aifc.getnframes()
Return the number of audio frames in the file.

aifc.getcomptype()
Return a bytes array of length 4 describing the type of compression used in the audio file. For AIFF files,
the returned value is b’NONE’.

aifc.getcompname()
Return a bytes array convertible to a human-readable description of the type of compression used in the
audio file. For AIFF files, the returned value is b’not compressed’.

856 Chapter 21. Multimedia Services

http://svn.python.org/view/python/branches/py3k/Lib/aifc.py?view=markup

The Python Library Reference, Release 3.2

aifc.getparams()
Return a tuple consisting of all of the above values in the above order.

aifc.getmarkers()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is the
mark ID (an integer), the second is the mark position in frames from the beginning of the data (an integer),
the third is the name of the mark (a string).

aifc.getmark(id)
Return the tuple as described in getmarkers() for the mark with the given id.

aifc.readframes(nframes)
Read and return the next nframes frames from the audio file. The returned data is a string containing for
each frame the uncompressed samples of all channels.

aifc.rewind()
Rewind the read pointer. The next readframes() will start from the beginning.

aifc.setpos(pos)
Seek to the specified frame number.

aifc.tell()
Return the current frame number.

aifc.close()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned by open() when a file is opened for writing have all the above methods, except for
readframes() and setpos(). In addition the following methods exist. The get*() methods can only
be called after the corresponding set*() methods have been called. Before the first writeframes() or
writeframesraw(), all parameters except for the number of frames must be filled in.

aifc.aiff()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in
’.aiff’ in which case the default is an AIFF file.

aifc.aifc()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends in
’.aiff’ in which case the default is an AIFF file.

aifc.setnchannels(nchannels)
Specify the number of channels in the audio file.

aifc.setsampwidth(width)
Specify the size in bytes of audio samples.

aifc.setframerate(rate)
Specify the sampling frequency in frames per second.

aifc.setnframes(nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set
correctly, the file needs to support seeking.

aifc.setcomptype(type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files,

compression is not possible. The name parameter should be a human-readable description of the compres-
sion type as a bytes array, the type parameter should be a bytes array of length 4. Currently the following
compression types are supported: b’NONE’, b’ULAW’, b’ALAW’, b’G722’.

aifc.setparams(nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters. This
means that it is possible to use the result of a getparams() call as argument to setparams().

aifc.setmark(id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This method can be
called at any time before close().

21.2. aifc — Read and write AIFF and AIFC files 857

The Python Library Reference, Release 3.2

aifc.tell()
Return the current write position in the output file. Useful in combination with setmark().

aifc.writeframes(data)
Write data to the output file. This method can only be called after the audio file parameters have been set.

aifc.writeframesraw(data)
Like writeframes(), except that the header of the audio file is not updated.

aifc.close()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After calling
this method, the object can no longer be used.

21.3 sunau — Read and write Sun AU files

Source code: Lib/sunau.py

The sunau module provides a convenient interface to the Sun AU sound format. Note that this module is
interface-compatible with the modules aifc and wave.

An audio file consists of a header followed by the data. The fields of the header are:

Field Contents
magic word The four bytes .snd.
header size Size of the header, including info, in bytes.
data size Physical size of the data, in bytes.
encoding Indicates how the audio samples are encoded.
sample rate The sampling rate.
of channels The number of channels in the samples.
info ASCII string giving a description of the audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all 32-bit unsigned integers encoded in
big-endian byte order.

The sunau module defines the following functions:

sunau.open(file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object. mode can be any
of

’r’ Read only mode.

’w’ Write only mode.

Note that it does not allow read/write files.

A mode of ’r’ returns a AU_read object, while a mode of ’w’ or ’wb’ returns a AU_write object.

sunau.openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

The sunau module defines the following exception:

exception sunau.Error
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

The sunau module defines the following data items:

sunau.AUDIO_FILE_MAGIC
An integer every valid Sun AU file begins with, stored in big-endian form. This is the string .snd inter-
preted as an integer.

sunau.AUDIO_FILE_ENCODING_MULAW_8
sunau.AUDIO_FILE_ENCODING_LINEAR_8

858 Chapter 21. Multimedia Services

http://svn.python.org/view/python/branches/py3k/Lib/sunau.py?view=markup

The Python Library Reference, Release 3.2

sunau.AUDIO_FILE_ENCODING_LINEAR_16
sunau.AUDIO_FILE_ENCODING_LINEAR_24
sunau.AUDIO_FILE_ENCODING_LINEAR_32
sunau.AUDIO_FILE_ENCODING_ALAW_8

Values of the encoding field from the AU header which are supported by this module.

sunau.AUDIO_FILE_ENCODING_FLOAT
sunau.AUDIO_FILE_ENCODING_DOUBLE
sunau.AUDIO_FILE_ENCODING_ADPCM_G721
sunau.AUDIO_FILE_ENCODING_ADPCM_G722
sunau.AUDIO_FILE_ENCODING_ADPCM_G723_3
sunau.AUDIO_FILE_ENCODING_ADPCM_G723_5

Additional known values of the encoding field from the AU header, but which are not supported by this
module.

21.3.1 AU_read Objects

AU_read objects, as returned by open() above, have the following methods:

AU_read.close()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

AU_read.getnchannels()
Returns number of audio channels (1 for mone, 2 for stereo).

AU_read.getsampwidth()
Returns sample width in bytes.

AU_read.getframerate()
Returns sampling frequency.

AU_read.getnframes()
Returns number of audio frames.

AU_read.getcomptype()
Returns compression type. Supported compression types are ’ULAW’, ’ALAW’ and ’NONE’.

AU_read.getcompname()
Human-readable version of getcomptype(). The supported types have the respective names ’CCITT
G.711 u-law’, ’CCITT G.711 A-law’ and ’not compressed’.

AU_read.getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype,
compname), equivalent to output of the get*() methods.

AU_read.readframes(n)
Reads and returns at most n frames of audio, as a string of bytes. The data will be returned in linear format.
If the original data is in u-LAW format, it will be converted.

AU_read.rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise imple-
mentation dependent.

AU_read.setpos(pos)
Set the file pointer to the specified position. Only values returned from tell() should be used for pos.

AU_read.tell()
Return current file pointer position. Note that the returned value has nothing to do with the actual position
in the file.

The following two functions are defined for compatibility with the aifc, and don’t do anything interesting.

21.3. sunau — Read and write Sun AU files 859

The Python Library Reference, Release 3.2

AU_read.getmarkers()
Returns None.

AU_read.getmark(id)
Raise an error.

21.3.2 AU_write Objects

AU_write objects, as returned by open() above, have the following methods:

AU_write.setnchannels(n)
Set the number of channels.

AU_write.setsampwidth(n)
Set the sample width (in bytes.)

AU_write.setframerate(n)
Set the frame rate.

AU_write.setnframes(n)
Set the number of frames. This can be later changed, when and if more frames are written.

AU_write.setcomptype(type, name)
Set the compression type and description. Only ’NONE’ and ’ULAW’ are supported on output.

AU_write.setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype,
compname), with values valid for the set*() methods. Set all parameters.

AU_write.tell()
Return current position in the file, with the same disclaimer for the AU_read.tell() and
AU_read.setpos() methods.

AU_write.writeframesraw(data)
Write audio frames, without correcting nframes.

AU_write.writeframes(data)
Write audio frames and make sure nframes is correct.

AU_write.close()
Make sure nframes is correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw().

21.4 wave — Read and write WAV files

Source code: Lib/wave.py

The wave module provides a convenient interface to the WAV sound format. It does not support compres-
sion/decompression, but it does support mono/stereo.

The wave module defines the following function and exception:

wave.open(file, mode=None)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object. mode can be any
of

’r’, ’rb’ Read only mode.

’w’, ’wb’ Write only mode.

860 Chapter 21. Multimedia Services

http://svn.python.org/view/python/branches/py3k/Lib/wave.py?view=markup

The Python Library Reference, Release 3.2

Note that it does not allow read/write WAV files.

A mode of ’r’ or ’rb’ returns a Wave_read object, while a mode of ’w’ or ’wb’ returns a
Wave_write object. If mode is omitted and a file-like object is passed as file, file.mode is used
as the default value for mode (the ’b’ flag is still added if necessary).

If you pass in a file-like object, the wave object will not close it when its close() method is called; it is
the caller’s responsibility to close the file object.

wave.openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

exception wave.Error
An error raised when something is impossible because it violates the WAV specification or hits an imple-
mentation deficiency.

21.4.1 Wave_read Objects

Wave_read objects, as returned by open(), have the following methods:

Wave_read.close()
Close the stream if it was opened by wave, and make the instance unusable. This is called automatically
on object collection.

Wave_read.getnchannels()
Returns number of audio channels (1 for mono, 2 for stereo).

Wave_read.getsampwidth()
Returns sample width in bytes.

Wave_read.getframerate()
Returns sampling frequency.

Wave_read.getnframes()
Returns number of audio frames.

Wave_read.getcomptype()
Returns compression type (’NONE’ is the only supported type).

Wave_read.getcompname()
Human-readable version of getcomptype(). Usually ’not compressed’ parallels ’NONE’.

Wave_read.getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype,
compname), equivalent to output of the get*() methods.

Wave_read.readframes(n)
Reads and returns at most n frames of audio, as a string of bytes.

Wave_read.rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the aifcmodule, and don’t do anything interesting.

Wave_read.getmarkers()
Returns None.

Wave_read.getmark(id)
Raise an error.

The following two methods define a term “position” which is compatible between them, and is otherwise imple-
mentation dependent.

Wave_read.setpos(pos)
Set the file pointer to the specified position.

21.4. wave — Read and write WAV files 861

The Python Library Reference, Release 3.2

Wave_read.tell()
Return current file pointer position.

21.4.2 Wave_write Objects

Wave_write objects, as returned by open(), have the following methods:

Wave_write.close()
Make sure nframes is correct, and close the file if it was opened by wave. This method is called upon object
collection.

Wave_write.setnchannels(n)
Set the number of channels.

Wave_write.setsampwidth(n)
Set the sample width to n bytes.

Wave_write.setframerate(n)
Set the frame rate to n. Changed in version 3.2: A non-integral input to this method is rounded to the nearest
integer.

Wave_write.setnframes(n)
Set the number of frames to n. This will be changed later if more frames are written.

Wave_write.setcomptype(type, name)
Set the compression type and description. At the moment, only compression type NONE is supported,
meaning no compression.

Wave_write.setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype,
compname), with values valid for the set*() methods. Sets all parameters.

Wave_write.tell()
Return current position in the file, with the same disclaimer for the Wave_read.tell() and
Wave_read.setpos() methods.

Wave_write.writeframesraw(data)
Write audio frames, without correcting nframes.

Wave_write.writeframes(data)
Write audio frames and make sure nframes is correct.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw(), and any
attempt to do so will raise wave.Error.

21.5 chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks. 1 This format is used in at least the
Audio Interchange File Format (AIFF/AIFF-C) and the Real Media File Format (RMFF). The WAVE audio file
format is closely related and can also be read using this module.

A chunk has the following structure:

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, not including the header
8 n Data bytes, where n is the size given in the preceding field
8 + n 0 or 1 Pad byte needed if n is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

1 “EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

862 Chapter 21. Multimedia Services

The Python Library Reference, Release 3.2

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the chunk data, not including
the 8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of the Chunk class defined here is
to instantiate an instance at the start of each chunk and read from the instance until it reaches the end, after which
a new instance can be instantiated. At the end of the file, creating a new instance will fail with a EOFError
exception.

class chunk.Chunk(file, align=True, bigendian=True, inclheader=False)
Class which represents a chunk. The file argument is expected to be a file-like object. An instance of this
class is specifically allowed. The only method that is needed is read(). If the methods seek() and
tell() are present and don’t raise an exception, they are also used. If these methods are present and raise
an exception, they are expected to not have altered the object. If the optional argument align is true, chunks
are assumed to be aligned on 2-byte boundaries. If align is false, no alignment is assumed. The default
value is true. If the optional argument bigendian is false, the chunk size is assumed to be in little-endian
order. This is needed for WAVE audio files. The default value is true. If the optional argument inclheader
is true, the size given in the chunk header includes the size of the header. The default value is false.

A Chunk object supports the following methods:

getname()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

getsize()
Returns the size of the chunk.

close()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raise IOError if called after the close() method has been called.

isatty()
Returns False.

seek(pos, whence=0)
Set the chunk’s current position. The whence argument is optional and defaults to 0 (absolute file
positioning); other values are 1 (seek relative to the current position) and 2 (seek relative to the file’s
end). There is no return value. If the underlying file does not allow seek, only forward seeks are
allowed.

tell()
Return the current position into the chunk.

read(size=-1)
Read at most size bytes from the chunk (less if the read hits the end of the chunk before obtaining size
bytes). If the size argument is negative or omitted, read all data until the end of the chunk. The bytes
are returned as a string object. An empty string is returned when the end of the chunk is encountered
immediately.

skip()
Skip to the end of the chunk. All further calls to read() for the chunk will return ”. If you are not
interested in the contents of the chunk, this method should be called so that the file points to the start
of the next chunk.

21.6 colorsys — Conversions between color systems

Source code: Lib/colorsys.py

The colorsys module defines bidirectional conversions of color values between colors expressed in the RGB
(Red Green Blue) color space used in computer monitors and three other coordinate systems: YIQ, HLS (Hue
Lightness Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color spaces are floating point

21.6. colorsys — Conversions between color systems 863

http://svn.python.org/view/python/branches/py3k/Lib/colorsys.py?view=markup

The Python Library Reference, Release 3.2

values. In the YIQ space, the Y coordinate is between 0 and 1, but the I and Q coordinates can be positive or
negative. In all other spaces, the coordinates are all between 0 and 1.

See Also:

More information about color spaces can be found at http://www.poynton.com/ColorFAQ.html and
http://www.cambridgeincolour.com/tutorials/color-spaces.htm.

The colorsys module defines the following functions:

colorsys.rgb_to_yiq(r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

colorsys.yiq_to_rgb(y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

colorsys.rgb_to_hls(r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

colorsys.hls_to_rgb(h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

colorsys.rgb_to_hsv(r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

colorsys.hsv_to_rgb(h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys
>>> colorsys.rgb_to_hsv(.3, .4, .2)
(0.25, 0.5, 0.4)
>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)
(0.3, 0.4, 0.2)

21.7 imghdr — Determine the type of an image

Source code: Lib/imghdr.py

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

imghdr.what(filename, h=None)
Tests the image data contained in the file named by filename, and returns a string describing the image type.
If optional h is provided, the filename is ignored and h is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value from what():

Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JFIF or Exif formats
’bmp’ BMP files
’png’ Portable Network Graphics

You can extend the list of file types imghdr can recognize by appending to this variable:

864 Chapter 21. Multimedia Services

http://www.poynton.com/ColorFAQ.html
http://www.cambridgeincolour.com/tutorials/color-spaces.htm
http://svn.python.org/view/python/branches/py3k/Lib/imghdr.py?view=markup

The Python Library Reference, Release 3.2

imghdr.tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and
an open file-like object. When what() is called with a byte-stream, the file-like object will be None.

The test function should return a string describing the image type if the test succeeded, or None if it failed.

Example:

>>> import imghdr
>>> imghdr.what(’/tmp/bass.gif’)
’gif’

21.8 sndhdr — Determine type of sound file

Source code: Lib/sndhdr.py

The sndhdr provides utility functions which attempt to determine the type of sound data which is in a file. When
these functions are able to determine what type of sound data is stored in a file, they return a tuple (type,
sampling_rate, channels, frames, bits_per_sample). The value for type indicates the data
type and will be one of the strings ’aifc’, ’aiff’, ’au’, ’hcom’, ’sndr’, ’sndt’, ’voc’, ’wav’,
’8svx’, ’sb’, ’ub’, or ’ul’. The sampling_rate will be either the actual value or 0 if unknown or difficult
to decode. Similarly, channels will be either the number of channels or 0 if it cannot be determined or if the value
is difficult to decode. The value for frames will be either the number of frames or -1. The last item in the tuple,
bits_per_sample, will either be the sample size in bits or ’A’ for A-LAW or ’U’ for u-LAW.

sndhdr.what(filename)
Determines the type of sound data stored in the file filename using whathdr(). If it succeeds, returns a
tuple as described above, otherwise None is returned.

sndhdr.whathdr(filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is given by
filename. This function returns a tuple as described above on success, or None.

21.9 ossaudiodev — Access to OSS-compatible audio devices

Platforms: Linux, FreeBSD

This module allows you to access the OSS (Open Sound System) audio interface. OSS is available for a wide
range of open-source and commercial Unices, and is the standard audio interface for Linux and recent versions of
FreeBSD.

See Also:

Open Sound System Programmer’s Guide the official documentation for the OSS C API

The module defines a large number of constants supplied by the OSS device driver; see <sys/soundcard.h>
on either Linux or FreeBSD for a listing .

ossaudiodev defines the following variables and functions:

exception ossaudiodev.OSSAudioError
This exception is raised on certain errors. The argument is a string describing what went wrong.

(If ossaudiodev receives an error from a system call such as open(), write(), or ioctl(), it raises
IOError. Errors detected directly by ossaudiodev result in OSSAudioError.)

(For backwards compatibility, the exception class is also available as ossaudiodev.error.)

21.8. sndhdr — Determine type of sound file 865

http://svn.python.org/view/python/branches/py3k/Lib/sndhdr.py?view=markup
http://www.opensound.com/pguide/oss.pdf

The Python Library Reference, Release 3.2

ossaudiodev.open([device], mode)
Open an audio device and return an OSS audio device object. This object supports many file-like methods,
such as read(), write(), and fileno() (although there are subtle differences between conventional
Unix read/write semantics and those of OSS audio devices). It also supports a number of audio-specific
methods; see below for the complete list of methods.

device is the audio device filename to use. If it is not specified, this module first looks in the environment
variable AUDIODEV for a device to use. If not found, it falls back to /dev/dsp.

mode is one of ’r’ for read-only (record) access, ’w’ for write-only (playback) access and ’rw’ for both.
Since many sound cards only allow one process to have the recorder or player open at a time, it is a good
idea to open the device only for the activity needed. Further, some sound cards are half-duplex: they can be
opened for reading or writing, but not both at once.

Note the unusual calling syntax: the first argument is optional, and the second is required. This is a historical
artifact for compatibility with the older linuxaudiodev module which ossaudiodev supersedes.

ossaudiodev.openmixer([device])
Open a mixer device and return an OSS mixer device object. device is the mixer device filename to use. If
it is not specified, this module first looks in the environment variable MIXERDEV for a device to use. If not
found, it falls back to /dev/mixer.

21.9.1 Audio Device Objects

Before you can write to or read from an audio device, you must call three methods in the correct order:

1. setfmt() to set the output format

2. channels() to set the number of channels

3. speed() to set the sample rate

Alternately, you can use the setparameters() method to set all three audio parameters at once. This is more
convenient, but may not be as flexible in all cases.

The audio device objects returned by open() define the following methods and (read-only) attributes:

oss_audio_device.close()
Explicitly close the audio device. When you are done writing to or reading from an audio device, you should
explicitly close it. A closed device cannot be used again.

oss_audio_device.fileno()
Return the file descriptor associated with the device.

oss_audio_device.read(size)
Read size bytes from the audio input and return them as a Python string. Unlike most Unix device drivers,
OSS audio devices in blocking mode (the default) will block read() until the entire requested amount of
data is available.

oss_audio_device.write(data)
Write the Python string data to the audio device and return the number of bytes written. If the audio
device is in blocking mode (the default), the entire string is always written (again, this is different from
usual Unix device semantics). If the device is in non-blocking mode, some data may not be written —see
writeall().

oss_audio_device.writeall(data)
Write the entire Python string data to the audio device: waits until the audio device is able to accept data,
writes as much data as it will accept, and repeats until data has been completely written. If the device
is in blocking mode (the default), this has the same effect as write(); writeall() is only useful in
non-blocking mode. Has no return value, since the amount of data written is always equal to the amount of
data supplied.

Changed in version 3.2: Audio device objects also support the context manager protocol, i.e. they can be used
in a with statement. The following methods each map to exactly one ioctl() system call. The correspon-
dence is obvious: for example, setfmt() corresponds to the SNDCTL_DSP_SETFMT ioctl, and sync() to

866 Chapter 21. Multimedia Services

The Python Library Reference, Release 3.2

SNDCTL_DSP_SYNC (this can be useful when consulting the OSS documentation). If the underlying ioctl()
fails, they all raise IOError.

oss_audio_device.nonblock()
Put the device into non-blocking mode. Once in non-blocking mode, there is no way to return it to blocking
mode.

oss_audio_device.getfmts()
Return a bitmask of the audio output formats supported by the soundcard. Some of the formats supported
by OSS are:

Format Description
AFMT_MU_LAW a logarithmic encoding (used by Sun .au files and /dev/audio)
AFMT_A_LAW a logarithmic encoding
AFMT_IMA_ADPCM a 4:1 compressed format defined by the Interactive Multimedia Association
AFMT_U8 Unsigned, 8-bit audio
AFMT_S16_LE Signed, 16-bit audio, little-endian byte order (as used by Intel processors)
AFMT_S16_BE Signed, 16-bit audio, big-endian byte order (as used by 68k, PowerPC, Sparc)
AFMT_S8 Signed, 8 bit audio
AFMT_U16_LE Unsigned, 16-bit little-endian audio
AFMT_U16_BE Unsigned, 16-bit big-endian audio

Consult the OSS documentation for a full list of audio formats, and note that most devices support only a
subset of these formats. Some older devices only support AFMT_U8; the most common format used today
is AFMT_S16_LE.

oss_audio_device.setfmt(format)
Try to set the current audio format to format—see getfmts() for a list. Returns the audio format that
the device was set to, which may not be the requested format. May also be used to return the current audio
format—do this by passing an “audio format” of AFMT_QUERY.

oss_audio_device.channels(nchannels)
Set the number of output channels to nchannels. A value of 1 indicates monophonic sound, 2 stereophonic.
Some devices may have more than 2 channels, and some high-end devices may not support mono. Returns
the number of channels the device was set to.

oss_audio_device.speed(samplerate)
Try to set the audio sampling rate to samplerate samples per second. Returns the rate actually set. Most
sound devices don’t support arbitrary sampling rates. Common rates are:

Rate Description
8000 default rate for /dev/audio
11025 speech recording
22050
44100 CD quality audio (at 16 bits/sample and 2 channels)
96000 DVD quality audio (at 24 bits/sample)

oss_audio_device.sync()
Wait until the sound device has played every byte in its buffer. (This happens implicitly when the device is
closed.) The OSS documentation recommends closing and re-opening the device rather than using sync().

oss_audio_device.reset()
Immediately stop playing or recording and return the device to a state where it can accept commands. The
OSS documentation recommends closing and re-opening the device after calling reset().

oss_audio_device.post()
Tell the driver that there is likely to be a pause in the output, making it possible for the device to handle the
pause more intelligently. You might use this after playing a spot sound effect, before waiting for user input,
or before doing disk I/O.

The following convenience methods combine several ioctls, or one ioctl and some simple calculations.

oss_audio_device.setparameters(format, nchannels, samplerate[, strict=False])
Set the key audio sampling parameters—sample format, number of channels, and sampling rate—in one
method call. format, nchannels, and samplerate should be as specified in the setfmt(), channels(),

21.9. ossaudiodev — Access to OSS-compatible audio devices 867

The Python Library Reference, Release 3.2

and speed() methods. If strict is true, setparameters() checks to see if each parameter was actu-
ally set to the requested value, and raises OSSAudioError if not. Returns a tuple (format, nchannels,
samplerate) indicating the parameter values that were actually set by the device driver (i.e., the same as the
return values of setfmt(), channels(), and speed()).

For example,

(fmt, channels, rate) = dsp.setparameters(fmt, channels, rate)

is equivalent to

fmt = dsp.setfmt(fmt)
channels = dsp.channels(channels)
rate = dsp.rate(channels)

oss_audio_device.bufsize()
Returns the size of the hardware buffer, in samples.

oss_audio_device.obufcount()
Returns the number of samples that are in the hardware buffer yet to be played.

oss_audio_device.obuffree()
Returns the number of samples that could be queued into the hardware buffer to be played without blocking.

Audio device objects also support several read-only attributes:

oss_audio_device.closed
Boolean indicating whether the device has been closed.

oss_audio_device.name
String containing the name of the device file.

oss_audio_device.mode
The I/O mode for the file, either "r", "rw", or "w".

21.9.2 Mixer Device Objects

The mixer object provides two file-like methods:

oss_mixer_device.close()
This method closes the open mixer device file. Any further attempts to use the mixer after this file is closed
will raise an IOError.

oss_mixer_device.fileno()
Returns the file handle number of the open mixer device file.

Changed in version 3.2: Mixer objects also support the context manager protocol. The remaining methods are
specific to audio mixing:

oss_mixer_device.controls()
This method returns a bitmask specifying the available mixer controls (“Control” being a specific mixable
“channel”, such as SOUND_MIXER_PCM or SOUND_MIXER_SYNTH). This bitmask indicates a subset of
all available mixer controls—the SOUND_MIXER_* constants defined at module level. To determine if, for
example, the current mixer object supports a PCM mixer, use the following Python code:

mixer=ossaudiodev.openmixer()
if mixer.controls() & (1 << ossaudiodev.SOUND_MIXER_PCM):

PCM is supported
... code ...

For most purposes, the SOUND_MIXER_VOLUME (master volume) and SOUND_MIXER_PCM controls
should suffice—but code that uses the mixer should be flexible when it comes to choosing mixer controls.
On the Gravis Ultrasound, for example, SOUND_MIXER_VOLUME does not exist.

868 Chapter 21. Multimedia Services

The Python Library Reference, Release 3.2

oss_mixer_device.stereocontrols()
Returns a bitmask indicating stereo mixer controls. If a bit is set, the corresponding control is stereo;
if it is unset, the control is either monophonic or not supported by the mixer (use in combination with
controls() to determine which).

See the code example for the controls() function for an example of getting data from a bitmask.

oss_mixer_device.reccontrols()
Returns a bitmask specifying the mixer controls that may be used to record. See the code example for
controls() for an example of reading from a bitmask.

oss_mixer_device.get(control)
Returns the volume of a given mixer control. The returned volume is a 2-tuple
(left_volume,right_volume). Volumes are specified as numbers from 0 (silent) to 100
(full volume). If the control is monophonic, a 2-tuple is still returned, but both volumes are the same.

Raises OSSAudioError if an invalid control was is specified, or IOError if an unsupported control is
specified.

oss_mixer_device.set(control, (left, right))
Sets the volume for a given mixer control to (left,right). left and right must be ints and between
0 (silent) and 100 (full volume). On success, the new volume is returned as a 2-tuple. Note that this may not
be exactly the same as the volume specified, because of the limited resolution of some soundcard’s mixers.

Raises OSSAudioError if an invalid mixer control was specified, or if the specified volumes were out-
of-range.

oss_mixer_device.get_recsrc()
This method returns a bitmask indicating which control(s) are currently being used as a recording source.

oss_mixer_device.set_recsrc(bitmask)
Call this function to specify a recording source. Returns a bitmask indicating the new recording source
(or sources) if successful; raises IOError if an invalid source was specified. To set the current recording
source to the microphone input:

mixer.setrecsrc (1 << ossaudiodev.SOUND_MIXER_MIC)

21.9. ossaudiodev — Access to OSS-compatible audio devices 869

The Python Library Reference, Release 3.2

870 Chapter 21. Multimedia Services

CHAPTER

TWENTYTWO

INTERNATIONALIZATION

The modules described in this chapter help you write software that is independent of language and locale by
providing mechanisms for selecting a language to be used in program messages or by tailoring output to match
local conventions.

The list of modules described in this chapter is:

22.1 gettext — Multilingual internationalization services

Source code: Lib/gettext.py

The gettext module provides internationalization (I18N) and localization (L10N) services for your Python
modules and applications. It supports both the GNU gettext message catalog API and a higher level, class-
based API that may be more appropriate for Python files. The interface described below allows you to write
your module and application messages in one natural language, and provide a catalog of translated messages for
running under different natural languages.

Some hints on localizing your Python modules and applications are also given.

22.1.1 GNU gettext API

The gettext module defines the following API, which is very similar to the GNU gettext API. If you use
this API you will affect the translation of your entire application globally. Often this is what you want if your
application is monolingual, with the choice of language dependent on the locale of your user. If you are localizing
a Python module, or if your application needs to switch languages on the fly, you probably want to use the class-
based API instead.

gettext.bindtextdomain(domain, localedir=None)
Bind the domain to the locale directory localedir. More concretely, gettext will look for binary .mo files
for the given domain using the path (on Unix): localedir/language/LC_MESSAGES/domain.mo,
where languages is searched for in the environment variables LANGUAGE,

LC_ALL, LC_MESSAGES, and LANG respectively.

If localedir is omitted or None, then the current binding for domain is returned. 1

gettext.bind_textdomain_codeset(domain, codeset=None)
Bind the domain to codeset, changing the encoding of strings returned by the gettext() family of func-
tions. If codeset is omitted, then the current binding is returned.

1 The default locale directory is system dependent; for example, on RedHat Linux it is /usr/share/locale, but on Solaris
it is /usr/lib/locale. The gettext module does not try to support these system dependent defaults; instead its default is
sys.prefix/share/locale. For this reason, it is always best to call bindtextdomain() with an explicit absolute path at the
start of your application.

871

http://svn.python.org/view/python/branches/py3k/Lib/gettext.py?view=markup

The Python Library Reference, Release 3.2

gettext.textdomain(domain=None)
Change or query the current global domain. If domain is None, then the current global domain is returned,
otherwise the global domain is set to domain, which is returned.

gettext.gettext(message)
Return the localized translation of message, based on the current global domain, language, and locale direc-
tory. This function is usually aliased as _() in the local namespace (see examples below).

gettext.lgettext(message)
Equivalent to gettext(), but the translation is returned in the preferred system encoding, if no other
encoding was explicitly set with bind_textdomain_codeset().

gettext.dgettext(domain, message)
Like gettext(), but look the message up in the specified domain.

gettext.ldgettext(domain, message)
Equivalent to dgettext(), but the translation is returned in the preferred system encoding, if no other
encoding was explicitly set with bind_textdomain_codeset().

gettext.ngettext(singular, plural, n)
Like gettext(), but consider plural forms. If a translation is found, apply the plural formula to n, and
return the resulting message (some languages have more than two plural forms). If no translation is found,
return singular if n is 1; return plural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python expression that has a free variable
n; the expression evaluates to the index of the plural in the catalog. See the GNU gettext documentation for
the precise syntax to be used in .po files and the formulas for a variety of languages.

gettext.lngettext(singular, plural, n)
Equivalent to ngettext(), but the translation is returned in the preferred system encoding, if no other
encoding was explicitly set with bind_textdomain_codeset().

gettext.dngettext(domain, singular, plural, n)
Like ngettext(), but look the message up in the specified domain.

gettext.ldngettext(domain, singular, plural, n)
Equivalent to dngettext(), but the translation is returned in the preferred system encoding, if no other
encoding was explicitly set with bind_textdomain_codeset().

Note that GNU gettext also defines a dcgettext()method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext
gettext.bindtextdomain(’myapplication’, ’/path/to/my/language/directory’)
gettext.textdomain(’myapplication’)
_ = gettext.gettext
...
print(_(’This is a translatable string.’))

22.1.2 Class-based API

The class-based API of the gettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modules. gettext defines
a “translations” class which implements the parsing of GNU .mo format files, and has methods for returning
strings. Instances of this “translations” class can also install themselves in the built-in namespace as the function
_().

gettext.find(domain, localedir=None, languages=None, all=False)
This function implements the standard .mo file search algorithm. It takes a domain, identical to what
textdomain() takes. Optional localedir is as in bindtextdomain() Optional languages is a list of
strings, where each string is a language code.

872 Chapter 22. Internationalization

The Python Library Reference, Release 3.2

If localedir is not given, then the default system locale directory is used. 2 If languages is not given, then
the following environment variables are searched: LANGUAGE, LC_ALL, LC_MESSAGES, and

LANG. The first one returning a non-empty value is used for the languages variable. The environment
variables should contain a colon separated list of languages, which will be split on the colon to produce the
expected list of language code strings.

find() then expands and normalizes the languages, and then iterates through them, searching for an
existing file built of these components:

localedir/language/LC_MESSAGES/domain.mo

The first such file name that exists is returned by find(). If no such file is found, then None is returned.
If all is given, it returns a list of all file names, in the order in which they appear in the languages list or the
environment variables.

gettext.translation(domain, localedir=None, languages=None, class_=None, fallback=False,
codeset=None)

Return a Translations instance based on the domain, localedir, and languages, which are first passed
to find() to get a list of the associated .mo file paths. Instances with identical .mo file names are
cached. The actual class instantiated is either class_ if provided, otherwise GNUTranslations. The
class’s constructor must take a single file object argument. If provided, codeset will change the charset used
to encode translated strings in the lgettext() and lngettext() methods.

If multiple files are found, later files are used as fallbacks for earlier ones. To allow setting the fallback,
copy.copy() is used to clone each translation object from the cache; the actual instance data is still
shared with the cache.

If no .mo file is found, this function raises IOError if fallback is false (which is the default), and returns
a NullTranslations instance if fallback is true.

gettext.install(domain, localedir=None, codeset=None, names=None)
This installs the function _() in Python’s builtins namespace, based on domain, localedir, and codeset
which are passed to the function translation().

For the names parameter, please see the description of the translation object’s install() method.

As seen below, you usually mark the strings in your application that are candidates for translation, by
wrapping them in a call to the _() function, like this:

print(_(’This string will be translated.’))

For convenience, you want the _() function to be installed in Python’s builtins namespace, so it is easily
accessible in all modules of your application.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to trans-
lated message strings. The base class used by all translation classes is NullTranslations; this provides
the basic interface you can use to write your own specialized translation classes. Here are the methods of
NullTranslations:

class gettext.NullTranslations(fp=None)
Takes an optional file object fp, which is ignored by the base class. Initializes “protected” instance vari-
ables _info and _charset which are set by derived classes, as well as _fallback, which is set through
add_fallback(). It then calls self._parse(fp) if fp is not None.

_parse(fp)
No-op’d in the base class, this method takes file object fp, and reads the data from the file, initializing
its message catalog. If you have an unsupported message catalog file format, you should override this
method to parse your format.

2 See the footnote for bindtextdomain() above.

22.1. gettext — Multilingual internationalization services 873

The Python Library Reference, Release 3.2

add_fallback(fallback)
Add fallback as the fallback object for the current translation object. A translation object should
consult the fallback if it cannot provide a translation for a given message.

gettext(message)
If a fallback has been set, forward gettext() to the fallback. Otherwise, return the translated
message. Overridden in derived classes.

lgettext(message)
If a fallback has been set, forward lgettext() to the fallback. Otherwise, return the translated
message. Overridden in derived classes.

ngettext(singular, plural, n)
If a fallback has been set, forward ngettext() to the fallback. Otherwise, return the translated
message. Overridden in derived classes.

lngettext(singular, plural, n)
If a fallback has been set, forward ngettext() to the fallback. Otherwise, return the translated
message. Overridden in derived classes.

info()
Return the “protected” _info variable.

charset()
Return the “protected” _charset variable, which is the encoding of the message catalog file.

output_charset()
Return the “protected” _output_charset variable, which defines the encoding used to return
translated messages in lgettext() and lngettext().

set_output_charset(charset)
Change the “protected” _output_charset variable, which defines the encoding used to return
translated messages.

install(names=None)
This method installs self.gettext() into the built-in namespace, binding it to _.

If the names parameter is given, it must be a sequence containing the names of functions you
want to install in the builtins namespace in addition to _(). Supported names are ’gettext’
(bound to self.gettext()), ’ngettext’ (bound to self.ngettext()), ’lgettext’
and ’lngettext’.

Note that this is only one way, albeit the most convenient way, to make the _() function available
to your application. Because it affects the entire application globally, and specifically the built-in
namespace, localized modules should never install _(). Instead, they should use this code to make
_() available to their module:

import gettext
t = gettext.translation(’mymodule’, ...)
_ = t.gettext

This puts _() only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

The gettext module provides one additional class derived from NullTranslations:
GNUTranslations. This class overrides _parse() to enable reading GNU gettext format .mo files
in both big-endian and little-endian format.

GNUTranslations parses optional meta-data out of the translation catalog. It is convention with GNU gettext
to include meta-data as the translation for the empty string. This meta-data is in RFC 822-style key: value
pairs, and should contain the Project-Id-Version key. If the key Content-Type is found, then the
charset property is used to initialize the “protected” _charset instance variable, defaulting to None if not

874 Chapter 22. Internationalization

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.2

found. If the charset encoding is specified, then all message ids and message strings read from the catalog are
converted to Unicode using this encoding, else ASCII encoding is assumed.

Since message ids are read as Unicode strings too, all *gettext()methods will assume message ids as Unicode
strings, not byte strings.

The entire set of key/value pairs are placed into a dictionary and set as the “protected” _info instance variable.

If the .mo file’s magic number is invalid, or if other problems occur while reading the file, instantiating a
GNUTranslations class can raise IOError.

The following methods are overridden from the base class implementation:

GNUTranslations.gettext(message)
Look up the message id in the catalog and return the corresponding message string, as a Unicode string. If
there is no entry in the catalog for the message id, and a fallback has been set, the look up is forwarded to
the fallback’s gettext() method. Otherwise, the message id is returned.

GNUTranslations.lgettext(message)
Equivalent to gettext(), but the translation is returned as a bytestring encoded in the se-
lected output charset, or in the preferred system encoding if no encoding was explicitly set with
set_output_charset().

GNUTranslations.ngettext(singular, plural, n)
Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup in the
catalog, while n is used to determine which plural form to use. The returned message string is a Unicode
string.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the
fallback’s ngettext() method. Otherwise, when n is 1 singular is returned, and plural is returned in all
other cases.

Here is an example:

n = len(os.listdir(’.’))
cat = GNUTranslations(somefile)
message = cat.ngettext(

’There is %(num)d file in this directory’,
’There are %(num)d files in this directory’,
n) % {’num’: n}

GNUTranslations.lngettext(singular, plural, n)
Equivalent to gettext(), but the translation is returned as a bytestring encoded in the se-
lected output charset, or in the preferred system encoding if no encoding was explicitly set with
set_output_charset().

Solaris message catalog support

The Solaris operating system defines its own binary .mo file format, but since no documentation can be found on
this format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of the gettext module by James Henstridge, but this version has a slightly different
API. Its documented usage was:

import gettext
cat = gettext.Catalog(domain, localedir)
_ = cat.gettext
print(_(’hello world’))

22.1. gettext — Multilingual internationalization services 875

The Python Library Reference, Release 3.2

For compatibility with this older module, the function Catalog() is an alias for the translation() function
described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping
API, but this appears to be unused and so is not currently supported.

22.1.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages.
Localization (L10N) refers to the adaptation of your program, once internationalized, to the local language and
cultural habits. In order to provide multilingual messages for your Python programs, you need to take the following
steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use the gettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that needs to be
translated should be marked by wrapping it in _(’...’) — that is, a call to the function _(). For example:

filename = ’mylog.txt’
message = _(’writing a log message’)
fp = open(filename, ’w’)
fp.write(message)
fp.close()

In this example, the string ’writing a log message’ is marked as a candidate for translation, while the
strings ’mylog.txt’ and ’w’ are not.

The Python distribution comes with two tools which help you generate the message catalogs once you’ve prepared
your source code. These may or may not be available from a binary distribution, but they can be found in a source
distribution, in the Tools/i18n directory.

The pygettext 3 program scans all your Python source code looking for the strings you previously marked as
translatable. It is similar to the GNU gettext program except that it understands all the intricacies of Python
source code, but knows nothing about C or C++ source code. You don’t need GNU gettext unless you’re also
going to be translating C code (such as C extension modules).

pygettext generates textual Uniforum-style human readable message catalog .pot files, essentially structured
human readable files which contain every marked string in the source code, along with a placeholder for the
translation strings. pygettext is a command line script that supports a similar command line interface as xgettext;
for details on its use, run:

pygettext.py --help

Copies of these .pot files are then handed over to the individual human translators who write language-specific
versions for every supported natural language. They send you back the filled in language-specific versions as a
.po file. Using the msgfmt.py 4 program (in the Tools/i18n directory), you take the .po files from your
translators and generate the machine-readable .mo binary catalog files. The .mo files are what the gettext
module uses for the actual translation processing during run-time.

How you use the gettext module in your code depends on whether you are internationalizing a single module
or your entire application. The next two sections will discuss each case.

3 François Pinard has written a program called xpot which does a similar job. It is available as part of his po-utils package at http
://po-utils.progiciels-bpi.ca/.

4 msgfmt.py is binary compatible with GNU msgfmt except that it provides a simpler, all-Python implementation. With this and pyget-
text.py, you generally won’t need to install the GNU gettext package to internationalize your Python applications.

876 Chapter 22. Internationalization

The Python Library Reference, Release 3.2

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace.
You should not use the GNU gettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation .mo files reside in
/usr/share/locale in GNU gettext format. Here’s what you would put at the top of your module:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.lgettext

Localizing your application

If you are localizing your application, you can install the _() function globally into the built-in namespace, usu-
ally in the main driver file of your application. This will let all your application-specific files just use _(’...’)
without having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

import gettext
gettext.install(’myapplication’)

If you need to set the locale directory, you can pass these into the install() function:

import gettext
gettext.install(’myapplication’, ’/usr/share/locale’)

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple translation
instances and then switch between them explicitly, like so:

import gettext

lang1 = gettext.translation(’myapplication’, languages=[’en’])
lang2 = gettext.translation(’myapplication’, languages=[’fr’])
lang3 = gettext.translation(’myapplication’, languages=[’de’])

start by using language1
lang1.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

Deferred translations

In most coding situations, strings are translated where they are coded. Occasionally however, you need to mark
strings for translation, but defer actual translation until later. A classic example is:

animals = [’mollusk’,
’albatross’,
’rat’,
’penguin’,
’python’,]

...

22.1. gettext — Multilingual internationalization services 877

The Python Library Reference, Release 3.2

for a in animals:
print(a)

Here, you want to mark the strings in the animals list as being translatable, but you don’t actually want to
translate them until they are printed.

Here is one way you can handle this situation:

def _(message): return message

animals = [_(’mollusk’),
_(’albatross’),
_(’rat’),
_(’penguin’),
_(’python’),]

del _

...
for a in animals:

print(_(a))

This works because the dummy definition of _() simply returns the string unchanged. And this dummy definition
will temporarily override any definition of _() in the built-in namespace (until the del command). Take care,
though if you have a previous definition of _() in the local namespace.

Note that the second use of _() will not identify “a” as being translatable to the pygettext program, since it is not
a string.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_(’mollusk’),
N_(’albatross’),
N_(’rat’),
N_(’penguin’),
N_(’python’),]

...
for a in animals:

print(_(a))

In this case, you are marking translatable strings with the function N_(), 5 which won’t conflict with any definition
of _(). However, you will need to teach your message extraction program to look for translatable strings marked
with N_(). pygettext and xpot both support this through the use of command line switches.

22.1.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable
experience to the creation of this module:

• Peter Funk

• James Henstridge

• Juan David Ibáñez Palomar

• Marc-André Lemburg

• Martin von Löwis

• François Pinard

5 The choice of N_() here is totally arbitrary; it could have just as easily been MarkThisStringForTranslation().

878 Chapter 22. Internationalization

The Python Library Reference, Release 3.2

• Barry Warsaw

• Gustavo Niemeyer

22.2 locale — Internationalization services

The locale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to
know all the specifics of each country where the software is executed.

The locale module is implemented on top of the _locale module, which in turn uses an ANSI C locale
implementation if available.

The locale module defines the following exception and functions:

exception locale.Error
Exception raised when setlocale() fails.

locale.setlocale(category, locale=None)
If locale is specified, it may be a string, a tuple of the form (language code, encoding), or None.
If it is a tuple, it is converted to a string using the locale aliasing engine. If locale is given and not None,
setlocale() modifies the locale setting for the category. The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings.
If the modification of the locale fails, the exception Error is raised. If successful, the new locale setting is
returned.

If locale is omitted or None, the current setting for category is returned.

setlocale() is not thread-safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL, ’’)

This sets the locale for all categories to the user’s default setting (typically specified in the LANG environ-
ment variable). If the locale is not changed thereafter, using multithreading should not cause problems.

locale.localeconv()
Returns the database of the local conventions as a dictionary. This dictionary has the following strings as
keys:

22.2. locale — Internationalization services 879

The Python Library Reference, Release 3.2

Cate-
gory

Key Meaning

LC_NUMERIC’decimal_point’Decimal point character.
’grouping’ Sequence of numbers specifying which relative positions the

’thousands_sep’ is expected. If the sequence is terminated with
CHAR_MAX, no further grouping is performed. If the sequence
terminates with a 0, the last group size is repeatedly used.

’thousands_sep’Character used between groups.
LC_MONETARY’int_curr_symbol’International currency symbol.

’currency_symbol’Local currency symbol.
’p_cs_precedes/n_cs_precedes’Whether the currency symbol precedes the value (for positive resp.

negative values).
’p_sep_by_space/n_sep_by_space’Whether the currency symbol is separated from the value by a space

(for positive resp. negative values).
’mon_decimal_point’Decimal point used for monetary values.
’frac_digits’ Number of fractional digits used in local formatting of monetary

values.
’int_frac_digits’Number of fractional digits used in international formatting of

monetary values.
’mon_thousands_sep’Group separator used for monetary values.
’mon_grouping’ Equivalent to ’grouping’, used for monetary values.
’positive_sign’Symbol used to annotate a positive monetary value.
’negative_sign’Symbol used to annotate a negative monetary value.
’p_sign_posn/n_sign_posn’The position of the sign (for positive resp. negative values), see below.

All numeric values can be set to CHAR_MAX to indicate that there is no value specified in this locale.

The possible values for ’p_sign_posn’ and ’n_sign_posn’ are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
CHAR_MAX Nothing is specified in this locale.

locale.nl_langinfo(option)
Return some locale-specific information as a string. This function is not available on all systems, and the set
of possible options might also vary across platforms. The possible argument values are numbers, for which
symbolic constants are available in the locale module.

The nl_langinfo() function accepts one of the following keys. Most descriptions are taken from the
corresponding description in the GNU C library.

locale.CODESET
Get a string with the name of the character encoding used in the selected locale.

locale.D_T_FMT
Get a string that can be used as a format string for strftime() to represent time and date in a
locale-specific way.

locale.D_FMT
Get a string that can be used as a format string for strftime() to represent a date in a locale-specific
way.

locale.T_FMT
Get a string that can be used as a format string for strftime() to represent a time in a locale-specific
way.

locale.T_FMT_AMPM
Get a format string for strftime() to represent time in the am/pm format.

880 Chapter 22. Internationalization

The Python Library Reference, Release 3.2

DAY_1 ... DAY_7
Get the name of the n-th day of the week.

Note: This follows the US convention of DAY_1 being Sunday, not the international convention (ISO
8601) that Monday is the first day of the week.

ABDAY_1 ... ABDAY_7
Get the abbreviated name of the n-th day of the week.

MON_1 ... MON_12
Get the name of the n-th month.

ABMON_1 ... ABMON_12
Get the abbreviated name of the n-th month.

locale.RADIXCHAR
Get the radix character (decimal dot, decimal comma, etc.)

locale.THOUSEP
Get the separator character for thousands (groups of three digits).

locale.YESEXPR
Get a regular expression that can be used with the regex function to recognize a positive response to a
yes/no question.

Note: The expression is in the syntax suitable for the regex() function from the C library, which
might differ from the syntax used in re.

locale.NOEXPR
Get a regular expression that can be used with the regex(3) function to recognize a negative response
to a yes/no question.

locale.CRNCYSTR
Get the currency symbol, preceded by “-” if the symbol should appear before the value, “+” if the
symbol should appear after the value, or ”.” if the symbol should replace the radix character.

locale.ERA
Get a string that represents the era used in the current locale.

Most locales do not define this value. An example of a locale which does define this value is the
Japanese one. In Japan, the traditional representation of dates includes the name of the era corre-
sponding to the then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying the Emodifier in their format
strings causes the strftime() function to use this information. The format of the returned string is
not specified, and therefore you should not assume knowledge of it on different systems.

locale.ERA_D_T_FMT
Get a format string for strftime() to represent dates and times in a locale-specific era-based way.

locale.ERA_D_FMT
Get a format string for strftime() to represent time in a locale-specific era-based way.

locale.ALT_DIGITS
Get a representation of up to 100 values used to represent the values 0 to 99.

locale.getdefaultlocale([envvars])
Tries to determine the default locale settings and returns them as a tuple of the form (language code,
encoding).

According to POSIX, a program which has not called setlocale(LC_ALL, ”) runs using the portable
’C’ locale. Calling setlocale(LC_ALL, ”) lets it use the default locale as defined by the LANG
variable. Since we do not want to interfere with the current locale setting we thus emulate the behavior in
the way described above.

22.2. locale — Internationalization services 881

The Python Library Reference, Release 3.2

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables
given as envvars parameter. The first found to be defined will be used. envvars defaults to the search path
used in GNU gettext; it must always contain the variable name ’LANG’. The GNU gettext search path
contains ’LC_ALL’, ’LC_CTYPE’, ’LANG’ and ’LANGUAGE’, in that order.

Except for the code ’C’, the language code corresponds to RFC 1766. language code and encoding may
be None if their values cannot be determined.

locale.getlocale(category=LC_CTYPE)
Returns the current setting for the given locale category as sequence containing language code, encoding.
category may be one of the LC_* values except LC_ALL. It defaults to LC_CTYPE.

Except for the code ’C’, the language code corresponds to RFC 1766. language code and encoding may
be None if their values cannot be determined.

locale.getpreferredencoding(do_setlocale=True)
Return the encoding used for text data, according to user preferences. User preferences are expressed
differently on different systems, and might not be available programmatically on some systems, so this
function only returns a guess.

On some systems, it is necessary to invoke setlocale() to obtain the user preferences, so this function
is not thread-safe. If invoking setlocale is not necessary or desired, do_setlocale should be set to False.

locale.normalize(localename)
Returns a normalized locale code for the given locale name. The returned locale code is formatted for use
with setlocale(). If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code just like
setlocale().

locale.resetlocale(category=LC_ALL)
Sets the locale for category to the default setting.

The default setting is determined by calling getdefaultlocale(). category defaults to LC_ALL.

locale.strcoll(string1, string2)
Compares two strings according to the current LC_COLLATE setting. As any other compare function,
returns a negative, or a positive value, or 0, depending on whether string1 collates before or after string2 or
is equal to it.

locale.strxfrm(string)
Transforms a string to one that can be used in locale-aware comparisons. For example, strxfrm(s1)
< strxfrm(s2) is equivalent to strcoll(s1, s2) < 0. This function can be used when the same
string is compared repeatedly, e.g. when collating a sequence of strings.

locale.format(format, val, grouping=False, monetary=False)
Formats a number val according to the current LC_NUMERIC setting. The format follows the conventions
of the % operator. For floating point values, the decimal point is modified if appropriate. If grouping is true,
also takes the grouping into account.

If monetary is true, the conversion uses monetary thousands separator and grouping strings.

Please note that this function will only work for exactly one %char specifier. For whole format strings, use
format_string().

locale.format_string(format, val, grouping=False)
Processes formatting specifiers as in format % val, but takes the current locale settings into account.

locale.currency(val, symbol=True, grouping=False, international=False)
Formats a number val according to the current LC_MONETARY settings.

The returned string includes the currency symbol if symbol is true, which is the default. If grouping is true
(which is not the default), grouping is done with the value. If international is true (which is not the default),
the international currency symbol is used.

Note that this function will not work with the ‘C’ locale, so you have to set a locale via setlocale()
first.

882 Chapter 22. Internationalization

http://tools.ietf.org/html/rfc1766.html
http://tools.ietf.org/html/rfc1766.html

The Python Library Reference, Release 3.2

locale.str(float)
Formats a floating point number using the same format as the built-in function str(float), but takes the
decimal point into account.

locale.atof(string)
Converts a string to a floating point number, following the LC_NUMERIC settings.

locale.atoi(string)
Converts a string to an integer, following the LC_NUMERIC conventions.

locale.LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions

of module string dealing with case change their behaviour.

locale.LC_COLLATE
Locale category for sorting strings. The functions strcoll() and strxfrm() of the locale module
are affected.

locale.LC_TIME
Locale category for the formatting of time. The function time.strftime() follows these conventions.

locale.LC_MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

locale.LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware
messages. Messages displayed by the operating system, like those returned by os.strerror() might be
affected by this category.

locale.LC_NUMERIC
Locale category for formatting numbers. The functions format(), atoi(), atof() and str() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

locale.LC_ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for
all categories is attempted. If that fails for any category, no category is changed at all. When the locale is
retrieved using this flag, a string indicating the setting for all categories is returned. This string can be later
used to restore the settings.

locale.CHAR_MAX
This is a symbolic constant used for different values returned by localeconv().

Example:

>>> import locale
>>> loc = locale.getlocale() # get current locale
use German locale; name might vary with platform
>>> locale.setlocale(locale.LC_ALL, ’de_DE’)
>>> locale.strcoll(’f\xe4n’, ’foo’) # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, ’’) # use user’s preferred locale
>>> locale.setlocale(locale.LC_ALL, ’C’) # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

22.2.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top
of that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This
makes the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the C locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by calling setlocale(LC_ALL,
”).

22.2. locale — Internationalization services 883

The Python Library Reference, Release 3.2

It is generally a bad idea to call setlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run
before the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by
the locale (such as certain formats used with time.strftime()), you will have to find a way to do it without
using the standard library routine. Even better is convincing yourself that using locale settings is okay. Only as a
last resort should you document that your module is not compatible with non-C locale settings.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module: atof(), atoi(), format(), str().

There is no way to perform case conversions and character classifications according to the locale. For (Unicode)
text strings these are done according to the character value only, while for byte strings, the conversions and
classifications are done according to the ASCII value of the byte, and bytes whose high bit is set (i.e., non-ASCII
bytes) are never converted or considered part of a character class such as letter or whitespace.

22.2.2 For extension writers and programs that embed Python

Extension modules should never call setlocale(), except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or
not the locale is C).

When Python code uses the locale module to change the locale, this also affects the embedding application. If
the embedding application doesn’t want this to happen, it should remove the _locale extension module (which
does all the work) from the table of built-in modules in the config.c file, and make sure that the _locale
module is not accessible as a shared library.

22.2.3 Access to message catalogs

The locale module exposes the C library’s gettext interface on systems that provide this interface. It consists
of the functions gettext(), dgettext(), dcgettext(), textdomain(), bindtextdomain(), and
bind_textdomain_codeset(). These are similar to the same functions in the gettext module, but use
the C library’s binary format for message catalogs, and the C library’s search algorithms for locating message
catalogs.

Python applications should normally find no need to invoke these functions, and should use gettext instead.
A known exception to this rule are applications that link with additional C libraries which internally invoke
gettext() or dcgettext(). For these applications, it may be necessary to bind the text domain, so that
the libraries can properly locate their message catalogs.

884 Chapter 22. Internationalization

CHAPTER

TWENTYTHREE

PROGRAM FRAMEWORKS

The modules described in this chapter are frameworks that will largely dictate the structure of your program.
Currently the modules described here are all oriented toward writing command-line interfaces.

The full list of modules described in this chapter is:

23.1 turtle — Turtle graphics

23.1.1 Introduction

Turtle graphics is a popular way for introducing programming to kids. It was part of the original Logo program-
ming language developed by Wally Feurzig and Seymour Papert in 1966.

Imagine a robotic turtle starting at (0, 0) in the x-y plane. Give it the command turtle.forward(15), and
it moves (on-screen!) 15 pixels in the direction it is facing, drawing a line as it moves. Give it the command
turtle.left(25), and it rotates in-place 25 degrees clockwise.

885

The Python Library Reference, Release 3.2

Turtle star

Turtle can draw intricate shapes using programs that repeat simple moves.

from turtle import *
color(’red’, ’yellow’)
begin_fill()
while True:

forward(200)
left(170)
if abs(pos()) < 1:

break
end_fill()
done()

By combining together these and similar commands, intricate shapes and pictures can easily be drawn.

The turtle module is an extended reimplementation of the same-named module from the Python standard
distribution up to version Python 2.5.

It tries to keep the merits of the old turtle module and to be (nearly) 100% compatible with it. This means in the
first place to enable the learning programmer to use all the commands, classes and methods interactively when
using the module from within IDLE run with the -n switch.

The turtle module provides turtle graphics primitives, in both object-oriented and procedure-oriented ways. Be-
cause it uses tkinter for the underlying graphics, it needs a version of Python installed with Tk support.

The object-oriented interface uses essentially two+two classes:

1. The TurtleScreen class defines graphics windows as a playground for the drawing turtles. Its construc-
tor needs a tkinter.Canvas or a ScrolledCanvas as argument. It should be used when turtle
is used as part of some application.

The function Screen() returns a singleton object of a TurtleScreen subclass. This function should
be used when turtle is used as a standalone tool for doing graphics. As a singleton object, inheriting
from its class is not possible.

All methods of TurtleScreen/Screen also exist as functions, i.e. as part of the procedure-oriented interface.

2. RawTurtle (alias: RawPen) defines Turtle objects which draw on a TurtleScreen. Its constructor
needs a Canvas, ScrolledCanvas or TurtleScreen as argument, so the RawTurtle objects know where to draw.

Derived from RawTurtle is the subclass Turtle (alias: Pen), which draws on “the” Screen instance
which is automatically created, if not already present.

886 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

All methods of RawTurtle/Turtle also exist as functions, i.e. part of the procedure-oriented interface.

The procedural interface provides functions which are derived from the methods of the classes Screen and
Turtle. They have the same names as the corresponding methods. A screen object is automatically created
whenever a function derived from a Screen method is called. An (unnamed) turtle object is automatically created
whenever any of the functions derived from a Turtle method is called.

To use multiple turtles on a screen one has to use the object-oriented interface.

Note: In the following documentation the argument list for functions is given. Methods, of course, have the
additional first argument self which is omitted here.

23.1.2 Overview of available Turtle and Screen methods

Turtle methods

Turtle motion

Move and draw

forward() | fd()
backward() | bk() | back()
right() | rt()
left() | lt()
goto() | setpos() | setposition()
setx()

sety()

setheading() | seth()
home()

circle()

dot()

stamp()

clearstamp()

clearstamps()

undo()

speed()

Tell Turtle’s state

position() | pos()
towards()

xcor()

ycor()

heading()

distance()

Setting and measurement

degrees()

radians()

Pen control

Drawing state

pendown() | pd() | down()
penup() | pu() | up()
pensize() | width()

23.1. turtle — Turtle graphics 887

The Python Library Reference, Release 3.2

pen()

isdown()

Color control

color()

pencolor()

fillcolor()

Filling

filling()

begin_fill()

end_fill()

More drawing control

reset()

clear()

write()

Turtle state

Visibility

showturtle() | st()
hideturtle() | ht()
isvisible()

Appearance

shape()

resizemode()

shapesize() | turtlesize()
shearfactor()

settiltangle()

tiltangle()

tilt()

shapetransform()

get_shapepoly()

Using events

onclick()

onrelease()

ondrag()

Special Turtle methods

begin_poly()

end_poly()

get_poly()

clone()

getturtle() | getpen()
getscreen()

setundobuffer()

undobufferentries()

Methods of TurtleScreen/Screen

Window control

888 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

bgcolor()

bgpic()

clear() | clearscreen()
reset() | resetscreen()
screensize()

setworldcoordinates()

Animation control

delay()

tracer()

update()

Using screen events

listen()

onkey() | onkeyrelease()
onkeypress()

onclick() | onscreenclick()
ontimer()

mainloop()

Settings and special methods

mode()

colormode()

getcanvas()

getshapes()

register_shape() | addshape()
turtles()

window_height()

window_width()

Input methods

textinput()

numinput()

Methods specific to Screen

bye()

exitonclick()

setup()

title()

23.1.3 Methods of RawTurtle/Turtle and corresponding functions

Most of the examples in this section refer to a Turtle instance called turtle.

Turtle motion

turtle.forward(distance)
turtle.fd(distance)

Parameters distance – a number (integer or float)

Move the turtle forward by the specified distance, in the direction the turtle is headed.

23.1. turtle — Turtle graphics 889

The Python Library Reference, Release 3.2

>>> turtle.position()
(0.00,0.00)
>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)
>>> turtle.forward(-75)
>>> turtle.position()
(-50.00,0.00)

turtle.back(distance)
turtle.bk(distance)
turtle.backward(distance)

Parameters distance – a number

Move the turtle backward by distance, opposite to the direction the turtle is headed. Do not change the
turtle’s heading.

>>> turtle.position()
(0.00,0.00)
>>> turtle.backward(30)
>>> turtle.position()
(-30.00,0.00)

turtle.right(angle)
turtle.rt(angle)

Parameters angle – a number (integer or float)

Turn turtle right by angle units. (Units are by default degrees, but can be set via the degrees() and
radians() functions.) Angle orientation depends on the turtle mode, see mode().

>>> turtle.heading()
22.0
>>> turtle.right(45)
>>> turtle.heading()
337.0

turtle.left(angle)
turtle.lt(angle)

Parameters angle – a number (integer or float)

Turn turtle left by angle units. (Units are by default degrees, but can be set via the degrees() and
radians() functions.) Angle orientation depends on the turtle mode, see mode().

>>> turtle.heading()
22.0
>>> turtle.left(45)
>>> turtle.heading()
67.0

turtle.goto(x, y=None)
turtle.setpos(x, y=None)
turtle.setposition(x, y=None)

Parameters

• x – a number or a pair/vector of numbers

• y – a number or None

890 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

If y is None, x must be a pair of coordinates or a Vec2D (e.g. as returned by pos()).

Move turtle to an absolute position. If the pen is down, draw line. Do not change the turtle’s orientation.

>>> tp = turtle.pos()
>>> tp
(0.00,0.00)
>>> turtle.setpos(60,30)
>>> turtle.pos()
(60.00,30.00)
>>> turtle.setpos((20,80))
>>> turtle.pos()
(20.00,80.00)
>>> turtle.setpos(tp)
>>> turtle.pos()
(0.00,0.00)

turtle.setx(x)

Parameters x – a number (integer or float)

Set the turtle’s first coordinate to x, leave second coordinate unchanged.

>>> turtle.position()
(0.00,240.00)
>>> turtle.setx(10)
>>> turtle.position()
(10.00,240.00)

turtle.sety(y)

Parameters y – a number (integer or float)

Set the turtle’s second coordinate to y, leave first coordinate unchanged.

>>> turtle.position()
(0.00,40.00)
>>> turtle.sety(-10)
>>> turtle.position()
(0.00,-10.00)

turtle.setheading(to_angle)
turtle.seth(to_angle)

Parameters to_angle – a number (integer or float)

Set the orientation of the turtle to to_angle. Here are some common directions in degrees:

standard mode logo mode
0 - east 0 - north
90 - north 90 - east
180 - west 180 - south
270 - south 270 - west

>>> turtle.setheading(90)
>>> turtle.heading()
90.0

turtle.home()
Move turtle to the origin – coordinates (0,0) – and set its heading to its start-orientation (which depends on
the mode, see mode()).

23.1. turtle — Turtle graphics 891

The Python Library Reference, Release 3.2

>>> turtle.heading()
90.0
>>> turtle.position()
(0.00,-10.00)
>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

turtle.circle(radius, extent=None, steps=None)

Parameters

• radius – a number

• extent – a number (or None)

• steps – an integer (or None)

Draw a circle with given radius. The center is radius units left of the turtle; extent – an angle – determines
which part of the circle is drawn. If extent is not given, draw the entire circle. If extent is not a full circle,
one endpoint of the arc is the current pen position. Draw the arc in counterclockwise direction if radius is
positive, otherwise in clockwise direction. Finally the direction of the turtle is changed by the amount of
extent.

As the circle is approximated by an inscribed regular polygon, steps determines the number of steps to use.
If not given, it will be calculated automatically. May be used to draw regular polygons.

>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(50)
>>> turtle.position()
(-0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(120, 180) # draw a semicircle
>>> turtle.position()
(0.00,240.00)
>>> turtle.heading()
180.0

turtle.dot(size=None, *color)

Parameters

• size – an integer >= 1 (if given)

• color – a colorstring or a numeric color tuple

Draw a circular dot with diameter size, using color. If size is not given, the maximum of pensize+4 and
2*pensize is used.

>>> turtle.home()
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
>>> turtle.position()
(100.00,-0.00)
>>> turtle.heading()
0.0

892 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

turtle.stamp()
Stamp a copy of the turtle shape onto the canvas at the current turtle position. Return a stamp_id for that
stamp, which can be used to delete it by calling clearstamp(stamp_id).

>>> turtle.color("blue")
>>> turtle.stamp()
11
>>> turtle.fd(50)

turtle.clearstamp(stampid)

Parameters stampid – an integer, must be return value of previous stamp() call

Delete stamp with given stampid.

>>> turtle.position()
(150.00,-0.00)
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.position()
(200.00,-0.00)
>>> turtle.clearstamp(astamp)
>>> turtle.position()
(200.00,-0.00)

turtle.clearstamps(n=None)

Parameters n – an integer (or None)

Delete all or first/last n of turtle’s stamps. If n is None, delete all stamps, if n > 0 delete first n stamps, else
if n < 0 delete last n stamps.

>>> for i in range(8):
... turtle.stamp(); turtle.fd(30)
13
14
15
16
17
18
19
20
>>> turtle.clearstamps(2)
>>> turtle.clearstamps(-2)
>>> turtle.clearstamps()

turtle.undo()
Undo (repeatedly) the last turtle action(s). Number of available undo actions is determined by the size of
the undobuffer.

>>> for i in range(4):
... turtle.fd(50); turtle.lt(80)
...
>>> for i in range(8):
... turtle.undo()

turtle.speed(speed=None)

Parameters speed – an integer in the range 0..10 or a speedstring (see below)

23.1. turtle — Turtle graphics 893

The Python Library Reference, Release 3.2

Set the turtle’s speed to an integer value in the range 0..10. If no argument is given, return current speed.

If input is a number greater than 10 or smaller than 0.5, speed is set to 0. Speedstrings are mapped to
speedvalues as follows:

•“fastest”: 0

•“fast”: 10

•“normal”: 6

•“slow”: 3

•“slowest”: 1

Speeds from 1 to 10 enforce increasingly faster animation of line drawing and turtle turning.

Attention: speed = 0 means that no animation takes place. forward/back makes turtle jump and likewise
left/right make the turtle turn instantly.

>>> turtle.speed()
3
>>> turtle.speed(’normal’)
>>> turtle.speed()
6
>>> turtle.speed(9)
>>> turtle.speed()
9

Tell Turtle’s state

turtle.position()
turtle.pos()

Return the turtle’s current location (x,y) (as a Vec2D vector).

>>> turtle.pos()
(440.00,-0.00)

turtle.towards(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

Return the angle between the line from turtle position to position specified by (x,y), the vector or the other
turtle. This depends on the turtle’s start orientation which depends on the mode - “standard”/”world” or
“logo”).

>>> turtle.goto(10, 10)
>>> turtle.towards(0,0)
225.0

turtle.xcor()
Return the turtle’s x coordinate.

>>> turtle.home()
>>> turtle.left(50)
>>> turtle.forward(100)
>>> turtle.pos()
(64.28,76.60)

894 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

>>> print(round(turtle.xcor(), 5))
64.27876

turtle.ycor()
Return the turtle’s y coordinate.

>>> turtle.home()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print(turtle.pos())
(50.00,86.60)
>>> print(round(turtle.ycor(), 5))
86.60254

turtle.heading()
Return the turtle’s current heading (value depends on the turtle mode, see mode()).

>>> turtle.home()
>>> turtle.left(67)
>>> turtle.heading()
67.0

turtle.distance(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

Return the distance from the turtle to (x,y), the given vector, or the given other turtle, in turtle step units.

>>> turtle.home()
>>> turtle.distance(30,40)
50.0
>>> turtle.distance((30,40))
50.0
>>> joe = Turtle()
>>> joe.forward(77)
>>> turtle.distance(joe)
77.0

Settings for measurement

turtle.degrees(fullcircle=360.0)

Parameters fullcircle – a number

Set angle measurement units, i.e. set number of “degrees” for a full circle. Default value is 360 degrees.

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0

Change angle measurement unit to grad (also known as gon,
grade, or gradian and equals 1/100-th of the right angle.)
>>> turtle.degrees(400.0)
>>> turtle.heading()
100.0

23.1. turtle — Turtle graphics 895

The Python Library Reference, Release 3.2

>>> turtle.degrees(360)
>>> turtle.heading()
90.0

turtle.radians()
Set the angle measurement units to radians. Equivalent to degrees(2*math.pi).

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966

Pen control

Drawing state

turtle.pendown()
turtle.pd()
turtle.down()

Pull the pen down – drawing when moving.

turtle.penup()
turtle.pu()
turtle.up()

Pull the pen up – no drawing when moving.

turtle.pensize(width=None)
turtle.width(width=None)

Parameters width – a positive number

Set the line thickness to width or return it. If resizemode is set to “auto” and turtleshape is a polygon, that
polygon is drawn with the same line thickness. If no argument is given, the current pensize is returned.

>>> turtle.pensize()
1
>>> turtle.pensize(10) # from here on lines of width 10 are drawn

turtle.pen(pen=None, **pendict)

Parameters

• pen – a dictionary with some or all of the below listed keys

• pendict – one or more keyword-arguments with the below listed keys as keywords

Return or set the pen’s attributes in a “pen-dictionary” with the following key/value pairs:

•“shown”: True/False

•“pendown”: True/False

•“pencolor”: color-string or color-tuple

•“fillcolor”: color-string or color-tuple

•“pensize”: positive number

•“speed”: number in range 0..10

•“resizemode”: “auto” or “user” or “noresize”

896 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

•“stretchfactor”: (positive number, positive number)

•“outline”: positive number

•“tilt”: number

This dictionary can be used as argument for a subsequent call to pen() to restore the former pen-state.
Moreover one or more of these attributes can be provided as keyword-arguments. This can be used to set
several pen attributes in one statement.

>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
>>> sorted(turtle.pen().items())
[(’fillcolor’, ’black’), (’outline’, 1), (’pencolor’, ’red’),
(’pendown’, True), (’pensize’, 10), (’resizemode’, ’noresize’),
(’shearfactor’, 0.0), (’shown’, True), (’speed’, 9),
(’stretchfactor’, (1.0, 1.0)), (’tilt’, 0.0)]
>>> penstate=turtle.pen()
>>> turtle.color("yellow", "")
>>> turtle.penup()
>>> sorted(turtle.pen().items())[:3]
[(’fillcolor’, ’’), (’outline’, 1), (’pencolor’, ’yellow’)]
>>> turtle.pen(penstate, fillcolor="green")
>>> sorted(turtle.pen().items())[:3]
[(’fillcolor’, ’green’), (’outline’, 1), (’pencolor’, ’red’)]

turtle.isdown()
Return True if pen is down, False if it’s up.

>>> turtle.penup()
>>> turtle.isdown()
False
>>> turtle.pendown()
>>> turtle.isdown()
True

Color control

turtle.pencolor(*args)
Return or set the pencolor.

Four input formats are allowed:

pencolor() Return the current pencolor as color specification string or as a tuple (see example). May
be used as input to another color/pencolor/fillcolor call.

pencolor(colorstring) Set pencolor to colorstring, which is a Tk color specification string, such
as "red", "yellow", or "#33cc8c".

pencolor((r, g, b)) Set pencolor to the RGB color represented by the tuple of r, g, and b.
Each of r, g, and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see
colormode()).

pencolor(r, g, b)

Set pencolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the
range 0..colormode.

If turtleshape is a polygon, the outline of that polygon is drawn with the newly set pencolor.

>>> colormode()
1.0
>>> turtle.pencolor()

23.1. turtle — Turtle graphics 897

The Python Library Reference, Release 3.2

’red’
>>> turtle.pencolor("brown")
>>> turtle.pencolor()
’brown’
>>> tup = (0.2, 0.8, 0.55)
>>> turtle.pencolor(tup)
>>> turtle.pencolor()
(0.2, 0.8, 0.5490196078431373)
>>> colormode(255)
>>> turtle.pencolor()
(51.0, 204.0, 140.0)
>>> turtle.pencolor(’#32c18f’)
>>> turtle.pencolor()
(50.0, 193.0, 143.0)

turtle.fillcolor(*args)
Return or set the fillcolor.

Four input formats are allowed:

fillcolor() Return the current fillcolor as color specification string, possibly in tuple format (see ex-
ample). May be used as input to another color/pencolor/fillcolor call.

fillcolor(colorstring) Set fillcolor to colorstring, which is a Tk color specification string, such
as "red", "yellow", or "#33cc8c".

fillcolor((r, g, b)) Set fillcolor to the RGB color represented by the tuple of r, g, and b.
Each of r, g, and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see
colormode()).

fillcolor(r, g, b)

Set fillcolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the
range 0..colormode.

If turtleshape is a polygon, the interior of that polygon is drawn with the newly set fillcolor.

>>> turtle.fillcolor("violet")
>>> turtle.fillcolor()
’violet’
>>> col = turtle.pencolor()
>>> col
(50.0, 193.0, 143.0)
>>> turtle.fillcolor(col)
>>> turtle.fillcolor()
(50.0, 193.0, 143.0)
>>> turtle.fillcolor(’#ffffff’)
>>> turtle.fillcolor()
(255.0, 255.0, 255.0)

turtle.color(*args)
Return or set pencolor and fillcolor.

Several input formats are allowed. They use 0 to 3 arguments as follows:

color() Return the current pencolor and the current fillcolor as a pair of color specification strings or
tuples as returned by pencolor() and fillcolor().

color(colorstring), color((r,g,b)), color(r,g,b) Inputs as in pencolor(), set both,
fillcolor and pencolor, to the given value.

color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))

898 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

Equivalent to pencolor(colorstring1) and fillcolor(colorstring2) and
analogously if the other input format is used.

If turtleshape is a polygon, outline and interior of that polygon is drawn with the newly set colors.

>>> turtle.color("red", "green")
>>> turtle.color()
(’red’, ’green’)
>>> color("#285078", "#a0c8f0")
>>> color()
((40.0, 80.0, 120.0), (160.0, 200.0, 240.0))

See also: Screen method colormode().

Filling

turtle.filling()
Return fillstate (True if filling, False else).

>>> turtle.begin_fill()
>>> if turtle.filling():
... turtle.pensize(5)
... else:
... turtle.pensize(3)

turtle.begin_fill()
To be called just before drawing a shape to be filled.

turtle.end_fill()
Fill the shape drawn after the last call to begin_fill().

>>> turtle.color("black", "red")
>>> turtle.begin_fill()
>>> turtle.circle(80)
>>> turtle.end_fill()

More drawing control

turtle.reset()
Delete the turtle’s drawings from the screen, re-center the turtle and set variables to the default values.

>>> turtle.goto(0,-22)
>>> turtle.left(100)
>>> turtle.position()
(0.00,-22.00)
>>> turtle.heading()
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

turtle.clear()
Delete the turtle’s drawings from the screen. Do not move turtle. State and position of the turtle as well as
drawings of other turtles are not affected.

turtle.write(arg, move=False, align=”left”, font=(“Arial”, 8, “normal”))

23.1. turtle — Turtle graphics 899

The Python Library Reference, Release 3.2

Parameters

• arg – object to be written to the TurtleScreen

• move – True/False

• align – one of the strings “left”, “center” or right”

• font – a triple (fontname, fontsize, fonttype)

Write text - the string representation of arg - at the current turtle position according to align (“left”, “center”
or right”) and with the given font. If move is True, the pen is moved to the bottom-right corner of the text.
By default, move is False.

>>> turtle.write("Home = ", True, align="center")
>>> turtle.write((0,0), True)

Turtle state

Visibility

turtle.hideturtle()
turtle.ht()

Make the turtle invisible. It’s a good idea to do this while you’re in the middle of doing some complex
drawing, because hiding the turtle speeds up the drawing observably.

>>> turtle.hideturtle()

turtle.showturtle()
turtle.st()

Make the turtle visible.

>>> turtle.showturtle()

turtle.isvisible()
Return True if the Turtle is shown, False if it’s hidden.

>>> turtle.hideturtle()
>>> turtle.isvisible()
False
>>> turtle.showturtle()
>>> turtle.isvisible()
True

Appearance

turtle.shape(name=None)

Parameters name – a string which is a valid shapename

Set turtle shape to shape with given name or, if name is not given, return name of current shape. Shape with
name must exist in the TurtleScreen’s shape dictionary. Initially there are the following polygon shapes:
“arrow”, “turtle”, “circle”, “square”, “triangle”, “classic”. To learn about how to deal with shapes see
Screen method register_shape().

>>> turtle.shape()
’classic’
>>> turtle.shape("turtle")
>>> turtle.shape()
’turtle’

900 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

turtle.resizemode(rmode=None)

Parameters rmode – one of the strings “auto”, “user”, “noresize”

Set resizemode to one of the values: “auto”, “user”, “noresize”. If rmode is not given, return current
resizemode. Different resizemodes have the following effects:

•“auto”: adapts the appearance of the turtle corresponding to the value of pensize.

•“user”: adapts the appearance of the turtle according to the values of stretchfactor and outlinewidth
(outline), which are set by shapesize().

•“noresize”: no adaption of the turtle’s appearance takes place.

resizemode(“user”) is called by shapesize() when used with arguments.

>>> turtle.resizemode()
’noresize’
>>> turtle.resizemode("auto")
>>> turtle.resizemode()
’auto’

turtle.shapesize(stretch_wid=None, stretch_len=None, outline=None)
turtle.turtlesize(stretch_wid=None, stretch_len=None, outline=None)

Parameters

• stretch_wid – positive number

• stretch_len – positive number

• outline – positive number

Return or set the pen’s attributes x/y-stretchfactors and/or outline. Set resizemode to “user”. If and only if
resizemode is set to “user”, the turtle will be displayed stretched according to its stretchfactors: stretch_wid
is stretchfactor perpendicular to its orientation, stretch_len is stretchfactor in direction of its orientation,
outline determines the width of the shapes’s outline.

>>> turtle.shapesize()
(1.0, 1.0, 1)
>>> turtle.resizemode("user")
>>> turtle.shapesize(5, 5, 12)
>>> turtle.shapesize()
(5, 5, 12)
>>> turtle.shapesize(outline=8)
>>> turtle.shapesize()
(5, 5, 8)

turtle.shearfactor(shear=None)

Parameters shear – number (optional)

Set or return the current shearfactor. Shear the turtleshape according to the given shearfactor shear, which
is the tangent of the shear angle. Do not change the turtle’s heading (direction of movement). If shear is
not given: return the current shearfactor, i. e. the tangent of the shear angle, by which lines parallel to the
heading of the turtle are sheared.

>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.shearfactor(0.5)
>>> turtle.shearfactor()
0.5

turtle.tilt(angle)

23.1. turtle — Turtle graphics 901

The Python Library Reference, Release 3.2

Parameters angle – a number

Rotate the turtleshape by angle from its current tilt-angle, but do not change the turtle’s heading (direction
of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(30)
>>> turtle.fd(50)
>>> turtle.tilt(30)
>>> turtle.fd(50)

turtle.settiltangle(angle)

Parameters angle – a number

Rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. Do not
change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.settiltangle(45)
>>> turtle.fd(50)
>>> turtle.settiltangle(-45)
>>> turtle.fd(50)

Deprecated since version 3.1.

turtle.tiltangle(angle=None)

Parameters angle – a number (optional)

Set or return the current tilt-angle. If angle is given, rotate the turtleshape to point in the direction specified
by angle, regardless of its current tilt-angle. Do not change the turtle’s heading (direction of movement). If
angle is not given: return the current tilt-angle, i. e. the angle between the orientation of the turtleshape and
the heading of the turtle (its direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(45)
>>> turtle.tiltangle()
45.0

turtle.shapetransform(t11=None, t12=None, t21=None, t22=None)

Parameters

• t11 – a number (optional)

• t12 – a number (optional)

• t21 – a number (optional)

• t12 – a number (optional)

Set or return the current transformation matrix of the turtle shape.

If none of the matrix elements are given, return the transformation matrix as a tuple of 4 elements. Otherwise
set the given elements and transform the turtleshape according to the matrix consisting of first row t11, t12
and second row t21, 22. The determinant t11 * t22 - t12 * t21 must not be zero, otherwise an error is raised.
Modify stretchfactor, shearfactor and tiltangle according to the given matrix.

902 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

>>> turtle = Turtle()
>>> turtle.shape("square")
>>> turtle.shapesize(4,2)
>>> turtle.shearfactor(-0.5)
>>> turtle.shapetransform()
(4.0, -1.0, -0.0, 2.0)

turtle.get_shapepoly()
Return the current shape polygon as tuple of coordinate pairs. This can be used to define a new shape or
components of a compound shape.

>>> turtle.shape("square")
>>> turtle.shapetransform(4, -1, 0, 2)
>>> turtle.get_shapepoly()
((50, -20), (30, 20), (-50, 20), (-30, -20))

Using events

turtle.onclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-click events on this turtle. If fun is None, existing bindings are removed. Example for
the anonymous turtle, i.e. the procedural way:

>>> def turn(x, y):
... left(180)
...
>>> onclick(turn) # Now clicking into the turtle will turn it.
>>> onclick(None) # event-binding will be removed

turtle.onrelease(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-button-release events on this turtle. If fun is None, existing bindings are removed.

>>> class MyTurtle(Turtle):
... def glow(self,x,y):
... self.fillcolor("red")
... def unglow(self,x,y):
... self.fillcolor("")
...
>>> turtle = MyTurtle()
>>> turtle.onclick(turtle.glow) # clicking on turtle turns fillcolor red,
>>> turtle.onrelease(turtle.unglow) # releasing turns it to transparent.

23.1. turtle — Turtle graphics 903

The Python Library Reference, Release 3.2

turtle.ondrag(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-move events on this turtle. If fun is None, existing bindings are removed.

Remark: Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that turtle.

>>> turtle.ondrag(turtle.goto)

Subsequently, clicking and dragging the Turtle will move it across the screen thereby producing handdraw-
ings (if pen is down).

Special Turtle methods

turtle.begin_poly()
Start recording the vertices of a polygon. Current turtle position is first vertex of polygon.

turtle.end_poly()
Stop recording the vertices of a polygon. Current turtle position is last vertex of polygon. This will be
connected with the first vertex.

turtle.get_poly()
Return the last recorded polygon.

>>> turtle.home()
>>> turtle.begin_poly()
>>> turtle.fd(100)
>>> turtle.left(20)
>>> turtle.fd(30)
>>> turtle.left(60)
>>> turtle.fd(50)
>>> turtle.end_poly()
>>> p = turtle.get_poly()
>>> register_shape("myFavouriteShape", p)

turtle.clone()
Create and return a clone of the turtle with same position, heading and turtle properties.

>>> mick = Turtle()
>>> joe = mick.clone()

turtle.getturtle()
turtle.getpen()

Return the Turtle object itself. Only reasonable use: as a function to return the “anonymous turtle”:

>>> pet = getturtle()
>>> pet.fd(50)
>>> pet
<turtle.Turtle object at 0x...>

904 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

turtle.getscreen()
Return the TurtleScreen object the turtle is drawing on. TurtleScreen methods can then be called for
that object.

>>> ts = turtle.getscreen()
>>> ts
<turtle._Screen object at 0x...>
>>> ts.bgcolor("pink")

turtle.setundobuffer(size)

Parameters size – an integer or None

Set or disable undobuffer. If size is an integer an empty undobuffer of given size is installed. size gives the
maximum number of turtle actions that can be undone by the undo() method/function. If size is None,
the undobuffer is disabled.

>>> turtle.setundobuffer(42)

turtle.undobufferentries()
Return number of entries in the undobuffer.

>>> while undobufferentries():
... undo()

Compound shapes

To use compound turtle shapes, which consist of several polygons of different color, you must use the helper class
Shape explicitly as described below:

1. Create an empty Shape object of type “compound”.

2. Add as many components to this object as desired, using the addcomponent() method.

For example:

>>> s = Shape("compound")
>>> poly1 = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s.addcomponent(poly1, "red", "blue")
>>> poly2 = ((0,0),(10,-5),(-10,-5))
>>> s.addcomponent(poly2, "blue", "red")

3. Now add the Shape to the Screen’s shapelist and use it:

>>> register_shape("myshape", s)
>>> shape("myshape")

Note: The Shape class is used internally by the register_shape() method in different ways. The applica-
tion programmer has to deal with the Shape class only when using compound shapes like shown above!

23.1.4 Methods of TurtleScreen/Screen and corresponding functions

Most of the examples in this section refer to a TurtleScreen instance called screen.

Window control

turtle.bgcolor(*args)

23.1. turtle — Turtle graphics 905

The Python Library Reference, Release 3.2

Parameters args – a color string or three numbers in the range 0..colormode or a 3-tuple of
such numbers

Set or return background color of the TurtleScreen.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
’orange’
>>> screen.bgcolor("#800080")
>>> screen.bgcolor()
(128.0, 0.0, 128.0)

turtle.bgpic(picname=None)

Parameters picname – a string, name of a gif-file or "nopic", or None

Set background image or return name of current backgroundimage. If picname is a filename, set the corre-
sponding image as background. If picname is "nopic", delete background image, if present. If picname
is None, return the filename of the current backgroundimage.

>>> screen.bgpic()
’nopic’
>>> screen.bgpic("landscape.gif")
>>> screen.bgpic()
"landscape.gif"

turtle.clear()
turtle.clearscreen()

Delete all drawings and all turtles from the TurtleScreen. Reset the now empty TurtleScreen to its initial
state: white background, no background image, no event bindings and tracing on.

Note: This TurtleScreen method is available as a global function only under the name clearscreen.
The global function clear is a different one derived from the Turtle method clear.

turtle.reset()
turtle.resetscreen()

Reset all Turtles on the Screen to their initial state.

Note: This TurtleScreen method is available as a global function only under the name resetscreen.
The global function reset is another one derived from the Turtle method reset.

turtle.screensize(canvwidth=None, canvheight=None, bg=None)

Parameters

• canvwidth – positive integer, new width of canvas in pixels

• canvheight – positive integer, new height of canvas in pixels

• bg – colorstring or color-tuple, new background color

If no arguments are given, return current (canvaswidth, canvasheight). Else resize the canvas the turtles are
drawing on. Do not alter the drawing window. To observe hidden parts of the canvas, use the scrollbars.
With this method, one can make visible those parts of a drawing which were outside the canvas before.

>>> screen.screensize()
(400, 300)
>>> screen.screensize(2000,1500)
>>> screen.screensize()
(2000, 1500)

906 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

e.g. to search for an erroneously escaped turtle ;-)

turtle.setworldcoordinates(llx, lly, urx, ury)

Parameters

• llx – a number, x-coordinate of lower left corner of canvas

• lly – a number, y-coordinate of lower left corner of canvas

• urx – a number, x-coordinate of upper right corner of canvas

• ury – a number, y-coordinate of upper right corner of canvas

Set up user-defined coordinate system and switch to mode “world” if necessary. This performs a
screen.reset(). If mode “world” is already active, all drawings are redrawn according to the new
coordinates.

ATTENTION: in user-defined coordinate systems angles may appear distorted.

>>> screen.reset()
>>> screen.setworldcoordinates(-50,-7.5,50,7.5)
>>> for _ in range(72):
... left(10)
...
>>> for _ in range(8):
... left(45); fd(2) # a regular octagon

Animation control

turtle.delay(delay=None)

Parameters delay – positive integer

Set or return the drawing delay in milliseconds. (This is approximately the time interval between two
consecutive canvas updates.) The longer the drawing delay, the slower the animation.

Optional argument:

>>> screen.delay()
10
>>> screen.delay(5)
>>> screen.delay()
5

turtle.tracer(n=None, delay=None)

Parameters

• n – nonnegative integer

• delay – nonnegative integer

Turn turtle animation on/off and set delay for update drawings. If n is given, only each n-th regular screen
update is really performed. (Can be used to accelerate the drawing of complex graphics.) When called with-
out arguments, returns the currently stored value of n. Second argument sets delay value (see delay()).

>>> screen.tracer(8, 25)
>>> dist = 2
>>> for i in range(200):
... fd(dist)
... rt(90)
... dist += 2

23.1. turtle — Turtle graphics 907

The Python Library Reference, Release 3.2

turtle.update()
Perform a TurtleScreen update. To be used when tracer is turned off.

See also the RawTurtle/Turtle method speed().

Using screen events

turtle.listen(xdummy=None, ydummy=None)
Set focus on TurtleScreen (in order to collect key-events). Dummy arguments are provided in order to be
able to pass listen() to the onclick method.

turtle.onkey(fun, key)
turtle.onkeyrelease(fun, key)

Parameters

• fun – a function with no arguments or None

• key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-release event of key. If fun is None, event bindings are removed. Remark: in order to be
able to register key-events, TurtleScreen must have the focus. (See method listen().)

>>> def f():
... fd(50)
... lt(60)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()

turtle.onkeypress(fun, key=None)

Parameters

• fun – a function with no arguments or None

• key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-press event of key if key is given, or to any key-press-event if no key is given. Remark: in
order to be able to register key-events, TurtleScreen must have focus. (See method listen().)

>>> def f():
... fd(50)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()

turtle.onclick(fun, btn=1, add=None)
turtle.onscreenclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-click events on this screen. If fun is None, existing bindings are removed.

Example for a TurtleScreen instance named screen and a Turtle instance named turtle:

908 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

>>> screen.onclick(turtle.goto) # Subsequently clicking into the TurtleScreen will
>>> # make the turtle move to the clicked point.
>>> screen.onclick(None) # remove event binding again

Note: This TurtleScreen method is available as a global function only under the name onscreenclick.
The global function onclick is another one derived from the Turtle method onclick.

turtle.ontimer(fun, t=0)

Parameters

• fun – a function with no arguments

• t – a number >= 0

Install a timer that calls fun after t milliseconds.

>>> running = True
>>> def f():
... if running:
... fd(50)
... lt(60)
... screen.ontimer(f, 250)
>>> f() ### makes the turtle march around
>>> running = False

turtle.mainloop()
Starts event loop - calling Tkinter’s mainloop function. Must be the last statement in a turtle graphics
program. Must not be used if a script is run from within IDLE in -n mode (No subprocess) - for interactive
use of turtle graphics.

>>> screen.mainloop()

Input methods

turtle.textinput(title, prompt)

Parameters

• title – string

• prompt – string

Pop up a dialog window for input of a string. Parameter title is the title of the dialog window, propmt is a
text mostly describing what information to input. Return the string input. If the dialog is canceled, return
None.

>>> screen.textinput("NIM", "Name of first player:")

turtle.numinput(title, prompt, default=None, minval=None, maxval=None)

Parameters

• title – string

• prompt – string

• default – number (optional)

• minval – number (optional)

• maxval – number (optional)

23.1. turtle — Turtle graphics 909

The Python Library Reference, Release 3.2

Pop up a dialog window for input of a number. title is the title of the dialog window, prompt is a text mostly
describing what numerical information to input. default: default value, minval: minimum value for imput,
maxval: maximum value for input The number input must be in the range minval .. maxval if these are
given. If not, a hint is issued and the dialog remains open for correction. Return the number input. If the
dialog is canceled, return None.

>>> screen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000)

Settings and special methods

turtle.mode(mode=None)

Parameters mode – one of the strings “standard”, “logo” or “world”

Set turtle mode (“standard”, “logo” or “world”) and perform reset. If mode is not given, current mode is
returned.

Mode “standard” is compatible with old turtle. Mode “logo” is compatible with most Logo turtle graph-
ics. Mode “world” uses user-defined “world coordinates”. Attention: in this mode angles appear distorted
if x/y unit-ratio doesn’t equal 1.

Mode Initial turtle heading positive angles
“standard” to the right (east) counterclockwise
“logo” upward (north) clockwise

>>> mode("logo") # resets turtle heading to north
>>> mode()
’logo’

turtle.colormode(cmode=None)

Parameters cmode – one of the values 1.0 or 255

Return the colormode or set it to 1.0 or 255. Subsequently r, g, b values of color triples have to be in the
range 0..cmode.

>>> screen.colormode(1)
>>> turtle.pencolor(240, 160, 80)
Traceback (most recent call last):

...
TurtleGraphicsError: bad color sequence: (240, 160, 80)
>>> screen.colormode()
1.0
>>> screen.colormode(255)
>>> screen.colormode()
255
>>> turtle.pencolor(240,160,80)

turtle.getcanvas()
Return the Canvas of this TurtleScreen. Useful for insiders who know what to do with a Tkinter Canvas.

>>> cv = screen.getcanvas()
>>> cv
<turtle.ScrolledCanvas object at ...>

turtle.getshapes()
Return a list of names of all currently available turtle shapes.

>>> screen.getshapes()
[’arrow’, ’blank’, ’circle’, ..., ’turtle’]

910 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

turtle.register_shape(name, shape=None)
turtle.addshape(name, shape=None)

There are three different ways to call this function:

1.name is the name of a gif-file and shape is None: Install the corresponding image shape.

>>> screen.register_shape("turtle.gif")

Note: Image shapes do not rotate when turning the turtle, so they do not display the heading of the
turtle!

2.name is an arbitrary string and shape is a tuple of pairs of coordinates: Install the corresponding
polygon shape.

>>> screen.register_shape("triangle", ((5,-3), (0,5), (-5,-3)))

3.name is an arbitrary string and shape is a (compound) Shape object: Install the corresponding com-
pound shape.

Add a turtle shape to TurtleScreen’s shapelist. Only thusly registered shapes can be used by issuing the
command shape(shapename).

turtle.turtles()
Return the list of turtles on the screen.

>>> for turtle in screen.turtles():
... turtle.color("red")

turtle.window_height()
Return the height of the turtle window.

>>> screen.window_height()
480

turtle.window_width()
Return the width of the turtle window.

>>> screen.window_width()
640

Methods specific to Screen, not inherited from TurtleScreen

turtle.bye()
Shut the turtlegraphics window.

turtle.exitonclick()
Bind bye() method to mouse clicks on the Screen.

If the value “using_IDLE” in the configuration dictionary is False (default value), also enter main-
loop. Remark: If IDLE with the -n switch (no subprocess) is used, this value should be set to True
in turtle.cfg. In this case IDLE’s own mainloop is active also for the client script.

turtle.setup(width=_CFG[”width”], height=_CFG[”height”], startx=_CFG[”leftright”],
starty=_CFG[”topbottom”])

Set the size and position of the main window. Default values of arguments are stored in the configuration
dictionary and can be changed via a turtle.cfg file.

Parameters

23.1. turtle — Turtle graphics 911

The Python Library Reference, Release 3.2

• width – if an integer, a size in pixels, if a float, a fraction of the screen; default is 50%
of screen

• height – if an integer, the height in pixels, if a float, a fraction of the screen; default is
75% of screen

• startx – if positive, starting position in pixels from the left edge of the screen, if negative
from the right edge, if None, center window horizontally

• startx – if positive, starting position in pixels from the top edge of the screen, if negative
from the bottom edge, if None, center window vertically

>>> screen.setup (width=200, height=200, startx=0, starty=0)
>>> # sets window to 200x200 pixels, in upper left of screen
>>> screen.setup(width=.75, height=0.5, startx=None, starty=None)
>>> # sets window to 75% of screen by 50% of screen and centers

turtle.title(titlestring)

Parameters titlestring – a string that is shown in the titlebar of the turtle graphics window

Set title of turtle window to titlestring.

>>> screen.title("Welcome to the turtle zoo!")

23.1.5 Public classes

class turtle.RawTurtle(canvas)
class turtle.RawPen(canvas)

Parameters canvas – a tkinter.Canvas, a ScrolledCanvas or a TurtleScreen

Create a turtle. The turtle has all methods described above as “methods of Turtle/RawTurtle”.

class turtle.Turtle
Subclass of RawTurtle, has the same interface but draws on a default Screen object created automatically
when needed for the first time.

class turtle.TurtleScreen(cv)

Parameters cv – a tkinter.Canvas

Provides screen oriented methods like setbg() etc. that are described above.

class turtle.Screen
Subclass of TurtleScreen, with four methods added.

class turtle.ScrolledCanvas(master)

Parameters master – some Tkinter widget to contain the ScrolledCanvas, i.e. a Tkinter-canvas
with scrollbars added

Used by class Screen, which thus automatically provides a ScrolledCanvas as playground for the turtles.

class turtle.Shape(type_, data)

Parameters type_ – one of the strings “polygon”, “image”, “compound”

Data structure modeling shapes. The pair (type_, data) must follow this specification:

type_ data
“polygon” a polygon-tuple, i.e. a tuple of pairs of coordinates
“image” an image (in this form only used internally!)
“compound” None (a compound shape has to be constructed using the addcomponent() method)

addcomponent(poly, fill, outline=None)

Parameters

912 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

• poly – a polygon, i.e. a tuple of pairs of numbers

• fill – a color the poly will be filled with

• outline – a color for the poly’s outline (if given)

Example:

>>> poly = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s = Shape("compound")
>>> s.addcomponent(poly, "red", "blue")
>>> # ... add more components and then use register_shape()

See Compound shapes.

class turtle.Vec2D(x, y)
A two-dimensional vector class, used as a helper class for implementing turtle graphics. May be useful for
turtle graphics programs too. Derived from tuple, so a vector is a tuple!

Provides (for a, b vectors, k number):

•a + b vector addition

•a - b vector subtraction

•a * b inner product

•k * a and a * k multiplication with scalar

•abs(a) absolute value of a

•a.rotate(angle) rotation

23.1.6 Help and configuration

How to use help

The public methods of the Screen and Turtle classes are documented extensively via docstrings. So these can be
used as online-help via the Python help facilities:

• When using IDLE, tooltips show the signatures and first lines of the docstrings of typed in function-/method
calls.

• Calling help() on methods or functions displays the docstrings:

>>> help(Screen.bgcolor)
Help on method bgcolor in module turtle:

bgcolor(self, *args) unbound turtle.Screen method
Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
"orange"
>>> screen.bgcolor(0.5,0,0.5)
>>> screen.bgcolor()
"#800080"

>>> help(Turtle.penup)
Help on method penup in module turtle:

23.1. turtle — Turtle graphics 913

The Python Library Reference, Release 3.2

penup(self) unbound turtle.Turtle method
Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

>>> turtle.penup()

• The docstrings of the functions which are derived from methods have a modified form:

>>> help(bgcolor)
Help on function bgcolor in module turtle:

bgcolor(*args)
Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers.

Example::

>>> bgcolor("orange")
>>> bgcolor()
"orange"
>>> bgcolor(0.5,0,0.5)
>>> bgcolor()
"#800080"

>>> help(penup)
Help on function penup in module turtle:

penup()
Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

Example:
>>> penup()

These modified docstrings are created automatically together with the function definitions that are derived from
the methods at import time.

Translation of docstrings into different languages

There is a utility to create a dictionary the keys of which are the method names and the values of which are the
docstrings of the public methods of the classes Screen and Turtle.

turtle.write_docstringdict(filename=”turtle_docstringdict”)

Parameters filename – a string, used as filename

Create and write docstring-dictionary to a Python script with the given filename. This function has to be
called explicitly (it is not used by the turtle graphics classes). The docstring dictionary will be written to
the Python script filename.py. It is intended to serve as a template for translation of the docstrings into
different languages.

914 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

If you (or your students) want to use turtle with online help in your native language, you have to translate the
docstrings and save the resulting file as e.g. turtle_docstringdict_german.py.

If you have an appropriate entry in your turtle.cfg file this dictionary will be read in at import time and will
replace the original English docstrings.

At the time of this writing there are docstring dictionaries in German and in Italian. (Requests please to
glingl@aon.at.)

How to configure Screen and Turtles

The built-in default configuration mimics the appearance and behaviour of the old turtle module in order to retain
best possible compatibility with it.

If you want to use a different configuration which better reflects the features of this module or which better fits to
your needs, e.g. for use in a classroom, you can prepare a configuration file turtle.cfg which will be read at
import time and modify the configuration according to its settings.

The built in configuration would correspond to the following turtle.cfg:

width = 0.5
height = 0.75
leftright = None
topbottom = None
canvwidth = 400
canvheight = 300
mode = standard
colormode = 1.0
delay = 10
undobuffersize = 1000
shape = classic
pencolor = black
fillcolor = black
resizemode = noresize
visible = True
language = english
exampleturtle = turtle
examplescreen = screen
title = Python Turtle Graphics
using_IDLE = False

Short explanation of selected entries:

• The first four lines correspond to the arguments of the Screen.setup() method.

• Line 5 and 6 correspond to the arguments of the method Screen.screensize().

• shape can be any of the built-in shapes, e.g: arrow, turtle, etc. For more info try help(shape).

• If you want to use no fillcolor (i.e. make the turtle transparent), you have to write fillcolor = "" (but
all nonempty strings must not have quotes in the cfg-file).

• If you want to reflect the turtle its state, you have to use resizemode = auto.

• If you set e.g. language = italian the docstringdict turtle_docstringdict_italian.py
will be loaded at import time (if present on the import path, e.g. in the same directory as turtle.

• The entries exampleturtle and examplescreen define the names of these objects as they occur in the doc-
strings. The transformation of method-docstrings to function-docstrings will delete these names from the
docstrings.

• using_IDLE: Set this to True if you regularly work with IDLE and its -n switch (“no subprocess”). This
will prevent exitonclick() to enter the mainloop.

23.1. turtle — Turtle graphics 915

mailto:glingl@aon.at

The Python Library Reference, Release 3.2

There can be a turtle.cfg file in the directory where turtle is stored and an additional one in the current
working directory. The latter will override the settings of the first one.

The Lib/turtledemo directory contains a turtle.cfg file. You can study it as an example and see its
effects when running the demos (preferably not from within the demo-viewer).

23.1.7 Demo scripts

There is a set of demo scripts in the turtledemo package. These scripts can be run and viewed using the
supplied demo viewer as follows:

python -m turtledemo

Alternatively, you can run the demo scripts individually. For example,

python -m turtledemo.bytedesign

The turtledemo package directory contains:

• a set of 15 demo scripts demonstrating different features of the new module turtle;

• a demo viewer __main__.py which can be used to view the sourcecode of the scripts and run them at
the same time. 14 of the examples can be accessed via the Examples menu; all of them can also be run
standalone.

• The example turtledemo.two_canvases demonstrates the simultaneous use of two canvases with
the turtle module. Therefore it only can be run standalone.

• There is a turtle.cfg file in this directory, which serves as an example for how to write and use such
files.

The demo scripts are:

Name Description Features
bytedesign complex classical turtle graphics pattern tracer(), delay, update()
chaos graphs verhust dynamics, proves that you must not

trust computers’ computations
world coordinates

clock analog clock showing time of your computer turtles as clock’s hands, ontimer
colormixer experiment with r, g, b ondrag()
fractal-
curves

Hilbert & Koch curves recursion

linden-
mayer

ethnomathematics (indian kolams) L-System

mini-
mal_hanoi

Towers of Hanoi Rectangular Turtles as Hanoi discs
(shape, shapesize)

nim play the classical nim game with three heaps of
sticks against the computer.

turtles as nimsticks, event driven
(mouse, keyboard)

paint super minimalistic drawing program onclick()
peace elementary turtle: appearance and animation
penrose aperiodic tiling with kites and darts stamp()
planet_and_moonsimulation of gravitational system compound shapes, Vec2D
round_dance dancing turtles rotating pairwise in opposite

direction
compound shapes, clone shapesize, tilt,
get_shapepoly, update

tree a (graphical) breadth first tree (using generators) clone()
wikipedia a pattern from the wikipedia article on turtle

graphics
clone(), undo()

yingyang another elementary example circle()

Have fun!

916 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

23.1.8 Changes since Python 2.6

• The methods Turtle.tracer(), Turtle.window_width() and Turtle.window_height()
have been eliminated. Methods with these names and functionality are now available only as methods of
Screen. The functions derived from these remain available. (In fact already in Python 2.6 these methods
were merely duplications of the corresponding TurtleScreen/Screen-methods.)

• The method Turtle.fill() has been eliminated. The behaviour of begin_fill() and
end_fill() have changed slightly: now every filling-process must be completed with an end_fill()
call.

• A method Turtle.filling() has been added. It returns a boolean value: True if a filling process is
under way, False otherwise. This behaviour corresponds to a fill() call without arguments in Python
2.6.

23.1.9 Changes since Python 3.0

• The methods Turtle.shearfactor(), Turtle.shapetransform() and
Turtle.get_shapepoly() have been added. Thus the full range of regular linear transforms
is now available for transforming turtle shapes. Turtle.tiltangle() has been enhanced in
functionality: it now can be used to get or set the tiltangle. Turtle.settiltangle() has been
deprecated.

• The method Screen.onkeypress() has been added as a complement to Screen.onkey()
which in fact binds actions to the keyrelease event. Accordingly the latter has got an alias:
Screen.onkeyrelease().

• The method Screen.mainloop() has been added. So when working only with Screen and Turtle
objects one must not additonally import mainloop() anymore.

• Two input methods has been added Screen.textinput() and Screen.numinput(). These popup
input dialogs and return strings and numbers respectively.

• Two example scripts tdemo_nim.py and tdemo_round_dance.py have been added to the
Lib/turtledemo directory.

23.2 cmd — Support for line-oriented command interpreters

Source code: Lib/cmd.py

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are often
useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated
interface.

class cmd.Cmd(completekey=’tab’, stdin=None, stdout=None)
A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good reason to
instantiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define yourself in order to
inherit Cmd‘s methods and encapsulate action methods.

The optional argument completekey is the readline name of a completion key; it defaults to Tab. If
completekey is not None and readline is available, command completion is done automatically.

The optional arguments stdin and stdout specify the input and output file objects that the Cmd instance
or subclass instance will use for input and output. If not specified, they will default to sys.stdin and
sys.stdout.

If you want a given stdin to be used, make sure to set the instance’s use_rawinput attribute to False,
otherwise stdin will be ignored.

23.2. cmd — Support for line-oriented command interpreters 917

http://svn.python.org/view/python/branches/py3k/Lib/cmd.py?view=markup

The Python Library Reference, Release 3.2

23.2.1 Cmd Objects

A Cmd instance has the following methods:

Cmd.cmdloop(intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides the
intro class member).

If the readline module is loaded, input will automatically inherit bash-like history-list editing (e.g.
Control-P scrolls back to the last command, Control-N forward to the next one, Control-F moves
the cursor to the right non-destructively, Control-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string ’EOF’.

An interpreter instance will recognize a command name foo if and only if it has a method do_foo().
As a special case, a line beginning with the character ’?’ is dispatched to the method do_help(). As
another special case, a line beginning with the character ’!’ is dispatched to the method do_shell() (if
such a method is defined).

This method will return when the postcmd() method returns a true value. The stop argument to
postcmd() is the return value from the command’s corresponding do_*() method.

If completion is enabled, completing commands will be done automatically, and completing of commands
args is done by calling complete_foo() with arguments text, line, begidx, and endidx. text is the string
prefix we are attempting to match: all returned matches must begin with it. line is the current input line
with leading whitespace removed, begidx and endidx are the beginning and ending indexes of the prefix text,
which could be used to provide different completion depending upon which position the argument is in.

All subclasses of Cmd inherit a predefined do_help(). This method, called with an argument ’bar’,
invokes the corresponding method help_bar(), and if that is not present, prints the docstring of
do_bar(), if available. With no argument, do_help() lists all available help topics (that is, all com-
mands with corresponding help_*() methods or commands that have docstrings), and also lists any
undocumented commands.

Cmd.onecmd(str)
Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but
should not normally need to be; see the precmd() and postcmd() methods for useful execution hooks.
The return value is a flag indicating whether interpretation of commands by the interpreter should stop. If
there is a do_*() method for the command str, the return value of that method is returned, otherwise the
return value from the default() method is returned.

Cmd.emptyline()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

Cmd.default(line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden,
it prints an error message and returns.

Cmd.completedefault(text, line, begidx, endidx)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.

Cmd.precmd(line)
Hook method executed just before the command line line is interpreted, but after the input prompt is gener-
ated and issued. This method is a stub in Cmd; it exists to be overridden by subclasses. The return value is
used as the command which will be executed by the onecmd() method; the precmd() implementation
may re-write the command or simply return line unchanged.

Cmd.postcmd(stop, line)
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd; it exists
to be overridden by subclasses. line is the command line which was executed, and stop is a flag which

918 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

indicates whether execution will be terminated after the call to postcmd(); this will be the return value of
the onecmd() method. The return value of this method will be used as the new value for the internal flag
which corresponds to stop; returning false will cause interpretation to continue.

Cmd.preloop()
Hook method executed once when cmdloop() is called. This method is a stub in Cmd; it exists to be
overridden by subclasses.

Cmd.postloop()
Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it exists
to be overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

Cmd.prompt
The prompt issued to solicit input.

Cmd.identchars
The string of characters accepted for the command prefix.

Cmd.lastcmd
The last nonempty command prefix seen.

Cmd.intro
A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an argument.

Cmd.doc_header
The header to issue if the help output has a section for documented commands.

Cmd.misc_header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help_*() methods without corresponding do_*() methods).

Cmd.undoc_header
The header to issue if the help output has a section for undocumented commands (that is, there are do_*()
methods without corresponding help_*() methods).

Cmd.ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn.
It defaults to ’=’.

Cmd.use_rawinput
A flag, defaulting to true. If true, cmdloop() uses input() to display a prompt and read the next
command; if false, sys.stdout.write() and sys.stdin.readline() are used. (This means
that by importing readline, on systems that support it, the interpreter will automatically support Emacs-
like line editing and command-history keystrokes.)

23.2.2 Cmd Example

The cmd module is mainly useful for building custom shells that let a user work with a program interactively.

This section presents a simple example of how to build a shell around a few of the commands in the turtle
module.

Basic turtle commands such as forward() are added to a Cmd subclass with method named do_forward().
The argument is converted to a number and dispatched to the turtle module. The docstring is used in the help
utility provided by the shell.

The example also includes a basic record and playback facility implemented with the precmd() method which
is responsible for converting the input to lowercase and writing the commands to a file. The do_playback()
method reads the file and adds the recorded commands to the cmdqueue for immediate playback:

import cmd, sys
from turtle import *

23.2. cmd — Support for line-oriented command interpreters 919

The Python Library Reference, Release 3.2

class TurtleShell(cmd.Cmd):
intro = ’Welcome to the turtle shell. Type help or ? to list commands.\n’
prompt = ’(turtle) ’
file = None

----- basic turtle commands -----
def do_forward(self, arg):

’Move the turtle forward by the specified distance: FORWARD 10’
forward(*parse(arg))

def do_right(self, arg):
’Turn turtle right by given number of degrees: RIGHT 20’
right(*parse(arg))

def do_left(self, arg):
’Turn turtle left by given number of degrees: LEFT 90’
right(*parse(arg))

def do_goto(self, arg):
’Move turtle to an absolute position with changing orientation. GOTO 100 200’
goto(*parse(arg))

def do_home(self, arg):
’Return turtle to the home postion: HOME’
home()

def do_circle(self, arg):
’Draw circle with given radius an options extent and steps: CIRCLE 50’
circle(*parse(arg))

def do_position(self, arg):
’Print the current turle position: POSITION’
print(’Current position is %d %d\n’ % position())

def do_heading(self, arg):
’Print the current turle heading in degrees: HEADING’
print(’Current heading is %d\n’ % (heading(),))

def do_color(self, arg):
’Set the color: COLOR BLUE’
color(arg.lower())

def do_undo(self, arg):
’Undo (repeatedly) the last turtle action(s): UNDO’

def do_reset(self, arg):
’Clear the screen and return turtle to center: RESET’
reset()

def do_bye(self, arg):
’Stop recording, close the turtle window, and exit: BYE’
print(’Thank you for using Turtle’)
self.close()
bye()
sys.exit(0)

----- record and playback -----
def do_record(self, arg):

’Save future commands to filename: RECORD rose.cmd’
self.file = open(arg, ’w’)

def do_playback(self, arg):
’Playback commands from a file: PLAYBACK rose.cmd’
self.close()
cmds = open(arg).read().splitlines()
self.cmdqueue.extend(cmds)

def precmd(self, line):
line = line.lower()
if self.file and ’playback’ not in line:

print(line, file=self.file)

920 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

return line
def close(self):

if self.file:
self.file.close()
self.file = None

def parse(arg):
’Convert a series of zero or more numbers to an argument tuple’
return tuple(map(int, arg.split()))

if __name__ == ’__main__’:
TurtleShell().cmdloop()

Here is a sample session with the turtle shell showing the help functions, using blank lines to repeat commands,
and the simple record and playback facility:

Welcome to the turtle shell. Type help or ? to list commands.

(turtle) ?

Documented commands (type help <topic>):
==
bye color goto home playback record right
circle forward heading left position reset undo

(turtle) help forward
Move the turtle forward by the specified distance: FORWARD 10
(turtle) record spiral.cmd
(turtle) position
Current position is 0 0

(turtle) heading
Current heading is 0

(turtle) reset
(turtle) circle 20
(turtle) right 30
(turtle) circle 40
(turtle) right 30
(turtle) circle 60
(turtle) right 30
(turtle) circle 80
(turtle) right 30
(turtle) circle 100
(turtle) right 30
(turtle) circle 120
(turtle) right 30
(turtle) circle 120
(turtle) heading
Current heading is 180

(turtle) forward 100
(turtle)
(turtle) right 90
(turtle) forward 100
(turtle)
(turtle) right 90
(turtle) forward 400
(turtle) right 90

23.2. cmd — Support for line-oriented command interpreters 921

The Python Library Reference, Release 3.2

(turtle) forward 500
(turtle) right 90
(turtle) forward 400
(turtle) right 90
(turtle) forward 300
(turtle) playback spiral.cmd
Current position is 0 0

Current heading is 0

Current heading is 180

(turtle) bye
Thank you for using Turtle

23.3 shlex — Simple lexical analysis

Source code: Lib/shlex.py

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the Unix shell.
This will often be useful for writing minilanguages, (for example, in run control files for Python applications) or
for parsing quoted strings.

The shlex module defines the following functions:

shlex.split(s, comments=False, posix=True)
Split the string s using shell-like syntax. If comments is False (the default), the parsing of comments in
the given string will be disabled (setting the commenters member of the shlex instance to the empty
string). This function operates in POSIX mode by default, but uses non-POSIX mode if the posix argument
is false.

Note: Since the split() function instantiates a shlex instance, passing None for s will read the string
to split from standard input.

The shlex module defines the following class:

class shlex.shlex(instream=None, infile=None, posix=False)
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if
present, specifies where to read characters from. It must be a file-/stream-like object with read() and
readline() methods, or a string. If no argument is given, input will be taken from sys.stdin. The
second optional argument is a filename string, which sets the initial value of the infile member. If the
instream argument is omitted or equal to sys.stdin, this second argument defaults to “stdin”. The posix
argument defines the operational mode: when posix is not true (default), the shlex instance will operate
in compatibility mode. When operating in POSIX mode, shlex will try to be as close as possible to the
POSIX shell parsing rules.

See Also:

Module configparser Parser for configuration files similar to the Windows .ini files.

23.3.1 shlex Objects

A shlex instance has the following methods:

shlex.get_token()
Return a token. If tokens have been stacked using push_token(), pop a token off the stack. Otherwise,

922 Chapter 23. Program Frameworks

http://svn.python.org/view/python/branches/py3k/Lib/shlex.py?view=markup

The Python Library Reference, Release 3.2

read one from the input stream. If reading encounters an immediate end-of-file, self.eof is returned (the
empty string (”) in non-POSIX mode, and None in POSIX mode).

shlex.push_token(str)
Push the argument onto the token stack.

shlex.read_token()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

shlex.sourcehook(filename)
When shlex detects a source request (see source below) this method is given the following token as
argument, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or
there was no previous source request in effect, or the previous source was a stream (such as sys.stdin),
the result is left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the
file immediately before it on the source inclusion stack is prepended (this behavior is like the way the C
preprocessor handles #include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions,
and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call the
close() method of the sourced input stream when it returns EOF.

For more explicit control of source stacking, use the push_source() and pop_source() methods.

shlex.push_source(newstream, newfile=None)
Push an input source stream onto the input stack. If the filename argument is specified it will later be
available for use in error messages. This is the same method used internally by the sourcehook()
method.

shlex.pop_source()
Pop the last-pushed input source from the input stack. This is the same method used internally when the
lexer reaches EOF on a stacked input stream.

shlex.error_leader(infile=None, lineno=None)
This method generates an error message leader in the format of a Unix C compiler error label; the format
is ’"%s", line %d: ’, where the %s is replaced with the name of the current source file and the %d
with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encourage shlex users to generate error messages in the standard,
parseable format understood by Emacs and other Unix tools.

Instances of shlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

shlex.commenters
The string of characters that are recognized as comment beginners. All characters from the comment begin-
ner to end of line are ignored. Includes just ’#’ by default.

shlex.wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes all ASCII
alphanumerics and underscore.

shlex.whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

shlex.escape
Characters that will be considered as escape. This will be only used in POSIX mode, and includes just ’\’
by default.

23.3. shlex — Simple lexical analysis 923

The Python Library Reference, Release 3.2

shlex.quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, includes ASCII single and
double quotes.

shlex.escapedquotes
Characters in quotes that will interpret escape characters defined in escape. This is only used in POSIX
mode, and includes just ’"’ by default.

shlex.whitespace_split
If True, tokens will only be split in whitespaces. This is useful, for example, for parsing command lines
with shlex, getting tokens in a similar way to shell arguments.

shlex.infile
The name of the current input file, as initially set at class instantiation time or stacked by later source
requests. It may be useful to examine this when constructing error messages.

shlex.instream
The input stream from which this shlex instance is reading characters.

shlex.source
This member is None by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to the source keyword in various shells. That is, the immediately following
token will opened as a filename and input taken from that stream until EOF, at which point the close()
method of that stream will be called and the input source will again become the original input stream. Source
requests may be stacked any number of levels deep.

shlex.debug
If this member is numeric and 1 or more, a shlex instance will print verbose progress output on its
behavior. If you need to use this, you can read the module source code to learn the details.

shlex.lineno
Source line number (count of newlines seen so far plus one).

shlex.token
The token buffer. It may be useful to examine this when catching exceptions.

shlex.eof
Token used to determine end of file. This will be set to the empty string (”), in non-POSIX mode, and to
None in POSIX mode.

23.3.2 Parsing Rules

When operating in non-POSIX mode, shlex will try to obey to the following rules.

• Quote characters are not recognized within words (Do"Not"Separate is parsed as the single word
Do"Not"Separate);

• Escape characters are not recognized;

• Enclosing characters in quotes preserve the literal value of all characters within the quotes;

• Closing quotes separate words ("Do"Separate is parsed as "Do" and Separate);

• If whitespace_split is False, any character not declared to be a word character, whitespace, or a
quote will be returned as a single-character token. If it is True, shlexwill only split words in whitespaces;

• EOF is signaled with an empty string (”);

• It’s not possible to parse empty strings, even if quoted.

When operating in POSIX mode, shlex will try to obey to the following parsing rules.

• Quotes are stripped out, and do not separate words ("Do"Not"Separate" is parsed as the single word
DoNotSeparate);

• Non-quoted escape characters (e.g. ’\’) preserve the literal value of the next character that follows;

924 Chapter 23. Program Frameworks

The Python Library Reference, Release 3.2

• Enclosing characters in quotes which are not part of escapedquotes (e.g. "’") preserve the literal value
of all characters within the quotes;

• Enclosing characters in quotes which are part of escapedquotes (e.g. ’"’) preserves the literal value
of all characters within the quotes, with the exception of the characters mentioned in escape. The escape
characters retain its special meaning only when followed by the quote in use, or the escape character itself.
Otherwise the escape character will be considered a normal character.

• EOF is signaled with a None value;

• Quoted empty strings (”) are allowed;

23.3. shlex — Simple lexical analysis 925

The Python Library Reference, Release 3.2

926 Chapter 23. Program Frameworks

CHAPTER

TWENTYFOUR

GRAPHICAL USER INTERFACES
WITH TK

Tk/Tcl has long been an integral part of Python. It provides a robust and platform independent windowing toolkit,
that is available to Python programmers using the tkinter package, and its extension, the tkinter.tix and
the tkinter.ttk modules.

The tkinter package is a thin object-oriented layer on top of Tcl/Tk. To use tkinter, you don’t need to write
Tcl code, but you will need to consult the Tk documentation, and occasionally the Tcl documentation. tkinter
is a set of wrappers that implement the Tk widgets as Python classes. In addition, the internal module _tkinter
provides a threadsafe mechanism which allows Python and Tcl to interact.

tkinter‘s chief virtues are that it is fast, and that it usually comes bundled with Python. Although its stan-
dard documentation is weak, good material is available, which includes: references, tutorials, a book and others.
tkinter is also famous for having an outdated look and feel, which has been vastly improved in Tk 8.5. Never-
theless, there are many other GUI libraries that you could be interested in. For more information about alternatives,
see the Other Graphical User Interface Packages section.

24.1 tkinter — Python interface to Tcl/Tk

The tkinter package (“Tk interface”) is the standard Python interface to the Tk GUI toolkit. Both Tk and
tkinter are available on most Unix platforms, as well as on Windows systems. (Tk itself is not part of Python;
it is maintained at ActiveState.) You can check that tkinter is properly installed on your system by running
python -m tkinter from the command line; this should open a window demonstrating a simple Tk interface.

See Also:

Python Tkinter Resources The Python Tkinter Topic Guide provides a great deal of information on using Tk
from Python and links to other sources of information on Tk.

An Introduction to Tkinter Fredrik Lundh’s on-line reference material.

Tkinter reference: a GUI for Python On-line reference material.

Python and Tkinter Programming The book by John Grayson (ISBN 1-884777-81-3).

24.1.1 Tkinter Modules

Most of the time, tkinter is all you really need, but a number of additional modules are available as well. The
Tk interface is located in a binary module named _tkinter. This module contains the low-level interface to Tk,
and should never be used directly by application programmers. It is usually a shared library (or DLL), but might
in some cases be statically linked with the Python interpreter.

In addition to the Tk interface module, tkinter includes a number of Python modules, tkinter.constants
being one of the most important. Importing tkinter will automatically import tkinter.constants, so,
usually, to use Tkinter all you need is a simple import statement:

927

http://www.python.org/topics/tkinter/
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://infohost.nmt.edu/tcc/help/pubs/lang.html
http://www.amazon.com/exec/obidos/ASIN/1884777813

The Python Library Reference, Release 3.2

import tkinter

Or, more often:

from tkinter import *

class tkinter.Tk(screenName=None, baseName=None, className=’Tk’, useTk=1)
The Tk class is instantiated without arguments. This creates a toplevel widget of Tk which usually is the
main window of an application. Each instance has its own associated Tcl interpreter.

tkinter.Tcl(screenName=None, baseName=None, className=’Tk’, useTk=0)
The Tcl() function is a factory function which creates an object much like that created by the Tk class,
except that it does not initialize the Tk subsystem. This is most often useful when driving the Tcl interpreter
in an environment where one doesn’t want to create extraneous toplevel windows, or where one cannot (such
as Unix/Linux systems without an X server). An object created by the Tcl() object can have a Toplevel
window created (and the Tk subsystem initialized) by calling its loadtk() method.

Other modules that provide Tk support include:

tkinter.scrolledtext Text widget with a vertical scroll bar built in.

tkinter.colorchooser Dialog to let the user choose a color.

tkinter.commondialog Base class for the dialogs defined in the other modules listed here.

tkinter.filedialog Common dialogs to allow the user to specify a file to open or save.

tkinter.font Utilities to help work with fonts.

tkinter.messagebox Access to standard Tk dialog boxes.

tkinter.simpledialog Basic dialogs and convenience functions.

tkinter.dnd Drag-and-drop support for tkinter. This is experimental and should become deprecated when
it is replaced with the Tk DND.

turtle Turtle graphics in a Tk window.

24.1.2 Tkinter Life Preserver

This section is not designed to be an exhaustive tutorial on either Tk or Tkinter. Rather, it is intended as a stop
gap, providing some introductory orientation on the system.

Credits:

• Tk was written by John Ousterhout while at Berkeley.

• Tkinter was written by Steen Lumholt and Guido van Rossum.

• This Life Preserver was written by Matt Conway at the University of Virginia.

• The HTML rendering, and some liberal editing, was produced from a FrameMaker version by Ken Man-
heimer.

• Fredrik Lundh elaborated and revised the class interface descriptions, to get them current with Tk 4.2.

• Mike Clarkson converted the documentation to LaTeX, and compiled the User Interface chapter of the
reference manual.

How To Use This Section

This section is designed in two parts: the first half (roughly) covers background material, while the second half
can be taken to the keyboard as a handy reference.

When trying to answer questions of the form “how do I do blah”, it is often best to find out how to do”blah”
in straight Tk, and then convert this back into the corresponding tkinter call. Python programmers can often
guess at the correct Python command by looking at the Tk documentation. This means that in order to use Tkinter,

928 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

you will have to know a little bit about Tk. This document can’t fulfill that role, so the best we can do is point you
to the best documentation that exists. Here are some hints:

• The authors strongly suggest getting a copy of the Tk man pages. Specifically, the man pages in the manN
directory are most useful. The man3 man pages describe the C interface to the Tk library and thus are not
especially helpful for script writers.

• Addison-Wesley publishes a book called Tcl and the Tk Toolkit by John Ousterhout (ISBN 0-201-63337-X)
which is a good introduction to Tcl and Tk for the novice. The book is not exhaustive, and for many details
it defers to the man pages.

• tkinter/__init__.py is a last resort for most, but can be a good place to go when nothing else makes
sense.

See Also:

Tcl/Tk 8.6 man pages The Tcl/Tk manual on www.tcl.tk.

ActiveState Tcl Home Page The Tk/Tcl development is largely taking place at ActiveState.

Tcl and the Tk Toolkit The book by John Ousterhout, the inventor of Tcl .

Practical Programming in Tcl and Tk Brent Welch’s encyclopedic book.

A Simple Hello World Program

from tkinter import *

class Application(Frame):
def say_hi(self):

print("hi there, everyone!")

def createWidgets(self):
self.QUIT = Button(self)
self.QUIT["text"] = "QUIT"
self.QUIT["fg"] = "red"
self.QUIT["command"] = self.quit

self.QUIT.pack({"side": "left"})

self.hi_there = Button(self)
self.hi_there["text"] = "Hello",
self.hi_there["command"] = self.say_hi

self.hi_there.pack({"side": "left"})

def __init__(self, master=None):
Frame.__init__(self, master)
self.pack()
self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()
root.destroy()

24.1.3 A (Very) Quick Look at Tcl/Tk

The class hierarchy looks complicated, but in actual practice, application programmers almost always refer to the
classes at the very bottom of the hierarchy.

24.1. tkinter — Python interface to Tcl/Tk 929

http://www.tcl.tk/man/tcl8.6/
http://tcl.activestate.com/
http://www.amazon.com/exec/obidos/ASIN/020163337X
http://www.amazon.com/exec/obidos/ASIN/0130220280

The Python Library Reference, Release 3.2

Notes:

• These classes are provided for the purposes of organizing certain functions under one namespace. They
aren’t meant to be instantiated independently.

• The Tk class is meant to be instantiated only once in an application. Application programmers need not
instantiate one explicitly, the system creates one whenever any of the other classes are instantiated.

• The Widget class is not meant to be instantiated, it is meant only for subclassing to make “real” widgets
(in C++, this is called an ‘abstract class’).

To make use of this reference material, there will be times when you will need to know how to read short passages
of Tk and how to identify the various parts of a Tk command. (See section Mapping Basic Tk into Tkinter for the
tkinter equivalents of what’s below.)

Tk scripts are Tcl programs. Like all Tcl programs, Tk scripts are just lists of tokens separated by spaces. A Tk
widget is just its class, the options that help configure it, and the actions that make it do useful things.

To make a widget in Tk, the command is always of the form:

classCommand newPathname options

classCommand denotes which kind of widget to make (a button, a label, a menu...)

newPathname is the new name for this widget. All names in Tk must be unique. To help enforce this, widgets in
Tk are named with pathnames, just like files in a file system. The top level widget, the root, is called . (pe-
riod) and children are delimited by more periods. For example, .myApp.controlPanel.okButton
might be the name of a widget.

options configure the widget’s appearance and in some cases, its behavior. The options come in the form of a list
of flags and values. Flags are preceded by a ‘-‘, like Unix shell command flags, and values are put in quotes
if they are more than one word.

For example:

button .fred -fg red -text "hi there"
^ ^ ______________________/
| | |

class new options
command widget (-opt val -opt val ...)

Once created, the pathname to the widget becomes a new command. This new widget command is the program-
mer’s handle for getting the new widget to perform some action. In C, you’d express this as someAction(fred,
someOptions), in C++, you would express this as fred.someAction(someOptions), and in Tk, you say:

.fred someAction someOptions

Note that the object name, .fred, starts with a dot.

As you’d expect, the legal values for someAction will depend on the widget’s class: .fred disable works if
fred is a button (fred gets greyed out), but does not work if fred is a label (disabling of labels is not supported in
Tk).

The legal values of someOptions is action dependent. Some actions, like disable, require no arguments, others,
like a text-entry box’s delete command, would need arguments to specify what range of text to delete.

24.1.4 Mapping Basic Tk into Tkinter

Class commands in Tk correspond to class constructors in Tkinter.

button .fred =====> fred = Button()

The master of an object is implicit in the new name given to it at creation time. In Tkinter, masters are specified
explicitly.

button .panel.fred =====> fred = Button(panel)

930 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

The configuration options in Tk are given in lists of hyphened tags followed by values. In Tkinter, options are
specified as keyword-arguments in the instance constructor, and keyword-args for configure calls or as instance
indices, in dictionary style, for established instances. See section Setting Options on setting options.

button .fred -fg red =====> fred = Button(panel, fg="red")
.fred configure -fg red =====> fred["fg"] = red

OR ==> fred.config(fg="red")

In Tk, to perform an action on a widget, use the widget name as a command, and follow it with an action name,
possibly with arguments (options). In Tkinter, you call methods on the class instance to invoke actions on the
widget. The actions (methods) that a given widget can perform are listed in tkinter/__init__.py.

.fred invoke =====> fred.invoke()

To give a widget to the packer (geometry manager), you call pack with optional arguments. In Tkinter, the Pack
class holds all this functionality, and the various forms of the pack command are implemented as methods. All wid-
gets in tkinter are subclassed from the Packer, and so inherit all the packing methods. See the tkinter.tix
module documentation for additional information on the Form geometry manager.

pack .fred -side left =====> fred.pack(side="left")

24.1.5 How Tk and Tkinter are Related

From the top down:

Your App Here (Python) A Python application makes a tkinter call.

tkinter (Python Package) This call (say, for example, creating a button widget), is implemented in the tkinter
package, which is written in Python. This Python function will parse the commands and the arguments and
convert them into a form that makes them look as if they had come from a Tk script instead of a Python
script.

_tkinter (C) These commands and their arguments will be passed to a C function in the _tkinter - note the
underscore - extension module.

Tk Widgets (C and Tcl) This C function is able to make calls into other C modules, including the C functions
that make up the Tk library. Tk is implemented in C and some Tcl. The Tcl part of the Tk widgets is used
to bind certain default behaviors to widgets, and is executed once at the point where the Python tkinter
package is imported. (The user never sees this stage).

Tk (C) The Tk part of the Tk Widgets implement the final mapping to ...

Xlib (C) the Xlib library to draw graphics on the screen.

24.1.6 Handy Reference

Setting Options

Options control things like the color and border width of a widget. Options can be set in three ways:

At object creation time, using keyword arguments

fred = Button(self, fg="red", bg="blue")

After object creation, treating the option name like a dictionary index

fred["fg"] = "red"
fred["bg"] = "blue"

Use the config() method to update multiple attrs subsequent to object creation

fred.config(fg="red", bg="blue")

24.1. tkinter — Python interface to Tcl/Tk 931

The Python Library Reference, Release 3.2

For a complete explanation of a given option and its behavior, see the Tk man pages for the widget in question.

Note that the man pages list “STANDARD OPTIONS” and “WIDGET SPECIFIC OPTIONS” for each widget.
The former is a list of options that are common to many widgets, the latter are the options that are idiosyncratic to
that particular widget. The Standard Options are documented on the options(3) man page.

No distinction between standard and widget-specific options is made in this document. Some options don’t apply
to some kinds of widgets. Whether a given widget responds to a particular option depends on the class of the
widget; buttons have a command option, labels do not.

The options supported by a given widget are listed in that widget’s man page, or can be queried at runtime by
calling the config() method without arguments, or by calling the keys() method on that widget. The return
value of these calls is a dictionary whose key is the name of the option as a string (for example, ’relief’) and
whose values are 5-tuples.

Some options, like bg are synonyms for common options with long names (bg is shorthand for “background”).
Passing the config() method the name of a shorthand option will return a 2-tuple, not 5-tuple. The 2-tuple
passed back will contain the name of the synonym and the “real” option (such as (’bg’, ’background’)).

Index Meaning Example
0 option name ’relief’
1 option name for database lookup ’relief’
2 option class for database lookup ’Relief’
3 default value ’raised’
4 current value ’groove’

Example:

>>> print(fred.config())
{’relief’ : (’relief’, ’relief’, ’Relief’, ’raised’, ’groove’)}

Of course, the dictionary printed will include all the options available and their values. This is meant only as an
example.

The Packer

The packer is one of Tk’s geometry-management mechanisms. Geometry managers are used to specify the rela-
tive positioning of the positioning of widgets within their container - their mutual master. In contrast to the more
cumbersome placer (which is used less commonly, and we do not cover here), the packer takes qualitative rela-
tionship specification - above, to the left of, filling, etc - and works everything out to determine the exact placement
coordinates for you.

The size of any master widget is determined by the size of the “slave widgets” inside. The packer is used to control
where slave widgets appear inside the master into which they are packed. You can pack widgets into frames, and
frames into other frames, in order to achieve the kind of layout you desire. Additionally, the arrangement is
dynamically adjusted to accommodate incremental changes to the configuration, once it is packed.

Note that widgets do not appear until they have had their geometry specified with a geometry manager. It’s a
common early mistake to leave out the geometry specification, and then be surprised when the widget is created
but nothing appears. A widget will appear only after it has had, for example, the packer’s pack() method applied
to it.

The pack() method can be called with keyword-option/value pairs that control where the widget is to appear within
its container, and how it is to behave when the main application window is resized. Here are some examples:

fred.pack() # defaults to side = "top"
fred.pack(side="left")
fred.pack(expand=1)

Packer Options

For more extensive information on the packer and the options that it can take, see the man pages and page 183 of
John Ousterhout’s book.

932 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

anchor Anchor type. Denotes where the packer is to place each slave in its parcel.

expand Boolean, 0 or 1.

fill Legal values: ’x’, ’y’, ’both’, ’none’.

ipadx and ipady A distance - designating internal padding on each side of the slave widget.

padx and pady A distance - designating external padding on each side of the slave widget.

side Legal values are: ’left’, ’right’, ’top’, ’bottom’.

Coupling Widget Variables

The current-value setting of some widgets (like text entry widgets) can be connected directly to application vari-
ables by using special options. These options are variable, textvariable, onvalue, offvalue, and
value. This connection works both ways: if the variable changes for any reason, the widget it’s connected to
will be updated to reflect the new value.

Unfortunately, in the current implementation of tkinter it is not possible to hand over an arbitrary Python
variable to a widget through a variable or textvariable option. The only kinds of variables for which this
works are variables that are subclassed from a class called Variable, defined in tkinter.

There are many useful subclasses of Variable already defined: StringVar, IntVar, DoubleVar, and
BooleanVar. To read the current value of such a variable, call the get() method on it, and to change its
value you call the set() method. If you follow this protocol, the widget will always track the value of the
variable, with no further intervention on your part.

For example:

class App(Frame):
def __init__(self, master=None):

Frame.__init__(self, master)
self.pack()

self.entrythingy = Entry()
self.entrythingy.pack()

here is the application variable
self.contents = StringVar()
set it to some value
self.contents.set("this is a variable")
tell the entry widget to watch this variable
self.entrythingy["textvariable"] = self.contents

and here we get a callback when the user hits return.
we will have the program print out the value of the
application variable when the user hits return
self.entrythingy.bind(’<Key-Return>’,

self.print_contents)

def print_contents(self, event):
print("hi. contents of entry is now ---->",

self.contents.get())

The Window Manager

In Tk, there is a utility command, wm, for interacting with the window manager. Options to the wm command
allow you to control things like titles, placement, icon bitmaps, and the like. In tkinter, these commands have
been implemented as methods on the Wm class. Toplevel widgets are subclassed from the Wm class, and so can call
the Wm methods directly.

24.1. tkinter — Python interface to Tcl/Tk 933

The Python Library Reference, Release 3.2

To get at the toplevel window that contains a given widget, you can often just refer to the widget’s master. Of
course if the widget has been packed inside of a frame, the master won’t represent a toplevel window. To get at
the toplevel window that contains an arbitrary widget, you can call the _root() method. This method begins
with an underscore to denote the fact that this function is part of the implementation, and not an interface to Tk
functionality.

Here are some examples of typical usage:

from tkinter import *
class App(Frame):

def __init__(self, master=None):
Frame.__init__(self, master)
self.pack()

create the application
myapp = App()

#
here are method calls to the window manager class
#
myapp.master.title("My Do-Nothing Application")
myapp.master.maxsize(1000, 400)

start the program
myapp.mainloop()

Tk Option Data Types

anchor Legal values are points of the compass: "n", "ne", "e", "se", "s", "sw", "w", "nw", and also
"center".

bitmap There are eight built-in, named bitmaps: ’error’, ’gray25’, ’gray50’, ’hourglass’,
’info’, ’questhead’, ’question’, ’warning’. To specify an X bitmap filename, give the full
path to the file, preceded with an @, as in "@/usr/contrib/bitmap/gumby.bit".

boolean You can pass integers 0 or 1 or the strings "yes" or "no" .

callback This is any Python function that takes no arguments. For example:

def print_it():
print("hi there")

fred["command"] = print_it

color Colors can be given as the names of X colors in the rgb.txt file, or as strings representing RGB values in 4
bit: "#RGB", 8 bit: "#RRGGBB", 12 bit” "#RRRGGGBBB", or 16 bit "#RRRRGGGGBBBB" ranges, where
R,G,B here represent any legal hex digit. See page 160 of Ousterhout’s book for details.

cursor The standard X cursor names from cursorfont.h can be used, without the XC_ prefix. For example
to get a hand cursor (XC_hand2), use the string "hand2". You can also specify a bitmap and mask file of
your own. See page 179 of Ousterhout’s book.

distance Screen distances can be specified in either pixels or absolute distances. Pixels are given as numbers and
absolute distances as strings, with the trailing character denoting units: c for centimetres, i for inches, m
for millimetres, p for printer’s points. For example, 3.5 inches is expressed as "3.5i".

font Tk uses a list font name format, such as {courier 10 bold}. Font sizes with positive numbers are
measured in points; sizes with negative numbers are measured in pixels.

geometry This is a string of the form widthxheight, where width and height are measured in pixels for most
widgets (in characters for widgets displaying text). For example: fred["geometry"] = "200x100".

justify Legal values are the strings: "left", "center", "right", and "fill".

934 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

region This is a string with four space-delimited elements, each of which is a legal distance (see above). For
example: "2 3 4 5" and "3i 2i 4.5i 2i" and "3c 2c 4c 10.43c" are all legal regions.

relief Determines what the border style of a widget will be. Legal values are: "raised", "sunken", "flat",
"groove", and "ridge".

scrollcommand This is almost always the set() method of some scrollbar widget, but can be any widget
method that takes a single argument.

wrap: Must be one of: "none", "char", or "word".

Bindings and Events

The bind method from the widget command allows you to watch for certain events and to have a callback function
trigger when that event type occurs. The form of the bind method is:

def bind(self, sequence, func, add=’’):

where:

sequence is a string that denotes the target kind of event. (See the bind man page and page 201 of John Ouster-
hout’s book for details).

func is a Python function, taking one argument, to be invoked when the event occurs. An Event instance will be
passed as the argument. (Functions deployed this way are commonly known as callbacks.)

add is optional, either ” or ’+’. Passing an empty string denotes that this binding is to replace any other bindings
that this event is associated with. Passing a ’+’means that this function is to be added to the list of functions
bound to this event type.

For example:

def turnRed(self, event):
event.widget["activeforeground"] = "red"

self.button.bind("<Enter>", self.turnRed)

Notice how the widget field of the event is being accessed in the turnRed() callback. This field contains the
widget that caught the X event. The following table lists the other event fields you can access, and how they are
denoted in Tk, which can be useful when referring to the Tk man pages.

Tk Tkinter Event Field Tk Tkinter Event Field
%f focus %A char
%h height %E send_event
%k keycode %K keysym
%s state %N keysym_num
%t time %T type
%w width %W widget
%x x %X x_root
%y y %Y y_root

The index Parameter

A number of widgets require “index” parameters to be passed. These are used to point at a specific place in a Text
widget, or to particular characters in an Entry widget, or to particular menu items in a Menu widget.

Entry widget indexes (index, view index, etc.) Entry widgets have options that refer to character positions in the
text being displayed. You can use these tkinter functions to access these special points in text widgets:

AtEnd() refers to the last position in the text

AtInsert() refers to the point where the text cursor is

AtSelFirst() indicates the beginning point of the selected text

24.1. tkinter — Python interface to Tcl/Tk 935

The Python Library Reference, Release 3.2

AtSelLast() denotes the last point of the selected text and finally

At(x[, y]) refers to the character at pixel location x, y (with y not used in the case of a text entry widget,
which contains a single line of text).

Text widget indexes The index notation for Text widgets is very rich and is best described in the Tk man pages.

Menu indexes (menu.invoke(), menu.entryconfig(), etc.) Some options and methods for menus manipulate spe-
cific menu entries. Anytime a menu index is needed for an option or a parameter, you may pass in:

• an integer which refers to the numeric position of the entry in the widget, counted from the top, starting
with 0;

• the string "active", which refers to the menu position that is currently under the cursor;

• the string "last" which refers to the last menu item;

• An integer preceded by @, as in @6, where the integer is interpreted as a y pixel coordinate in the
menu’s coordinate system;

• the string "none", which indicates no menu entry at all, most often used with menu.activate() to
deactivate all entries, and finally,

• a text string that is pattern matched against the label of the menu entry, as scanned from the top of
the menu to the bottom. Note that this index type is considered after all the others, which means that
matches for menu items labelled last, active, or none may be interpreted as the above literals,
instead.

Images

Bitmap/Pixelmap images can be created through the subclasses of tkinter.Image:

• BitmapImage can be used for X11 bitmap data.

• PhotoImage can be used for GIF and PPM/PGM color bitmaps.

Either type of image is created through either the file or the data option (other options are available as well).

The image object can then be used wherever an image option is supported by some widget (e.g. labels, buttons,
menus). In these cases, Tk will not keep a reference to the image. When the last Python reference to the image
object is deleted, the image data is deleted as well, and Tk will display an empty box wherever the image was
used.

24.2 tkinter.ttk — Tk themed widgets

The tkinter.ttk module provides access to the Tk themed widget set, introduced in Tk 8.5. If Python has
not been compiled against Tk 8.5, this module can still be accessed if Tile has been installed. The former method
using Tk 8.5 provides additional benefits including anti-aliased font rendering under X11 and window transparency
(requiring a composition window manager on X11).

The basic idea for tkinter.ttk is to separate, to the extent possible, the code implementing a widget’s behavior
from the code implementing its appearance.

See Also:

Tk Widget Styling Support A document introducing theming support for Tk

24.2.1 Using Ttk

To start using Ttk, import its module:

from tkinter import ttk

To override the basic Tk widgets, the import should follow the Tk import:

936 Chapter 24. Graphical User Interfaces with Tk

http://www.tcl.tk/cgi-bin/tct/tip/48

The Python Library Reference, Release 3.2

from tkinter import *
from tkinter.ttk import *

That code causes several tkinter.ttk widgets (Button, Checkbutton, Entry, Frame, Label,
LabelFrame, Menubutton, PanedWindow, Radiobutton, Scale and Scrollbar) to automatically
replace the Tk widgets.

This has the direct benefit of using the new widgets which gives a better look and feel across platforms; however,
the replacement widgets are not completely compatible. The main difference is that widget options such as “fg”,
“bg” and others related to widget styling are no longer present in Ttk widgets. Instead, use the ttk.Style class
for improved styling effects.

See Also:

Converting existing applications to use Tile widgets A monograph (using Tcl terminology) about differences
typically encountered when moving applications to use the new widgets.

24.2.2 Ttk Widgets

Ttk comes with 17 widgets, eleven of which already existed in tkinter: Button, Checkbutton, Entry,
Frame, Label, LabelFrame, Menubutton, PanedWindow, Radiobutton, Scale and Scrollbar.
The other six are new: Combobox, Notebook, Progressbar, Separator, Sizegrip and Treeview.
And all them are subclasses of Widget.

Using the Ttk widgets gives the application an improved look and feel. As discussed above, there are differences
in how the styling is coded.

Tk code:

l1 = tkinter.Label(text="Test", fg="black", bg="white")
l2 = tkinter.Label(text="Test", fg="black", bg="white")

Ttk code:

style = ttk.Style()
style.configure("BW.TLabel", foreground="black", background="white")

l1 = ttk.Label(text="Test", style="BW.TLabel")
l2 = ttk.Label(text="Test", style="BW.TLabel")

For more information about TtkStyling, see the Style class documentation.

24.2.3 Widget

ttk.Widget defines standard options and methods supported by Tk themed widgets and is not supposed to be
directly instantiated.

Standard Options

All the ttk Widgets accepts the following options:

24.2. tkinter.ttk — Tk themed widgets 937

http://tktable.sourceforge.net/tile/doc/converting.txt

The Python Library Reference, Release 3.2

Op-
tion

Description

class Specifies the window class. The class is used when querying the option database for the
window’s other options, to determine the default bindtags for the window, and to select
the widget’s default layout and style. This is a read-only which may only be specified
when the window is created

cur-
sor

Specifies the mouse cursor to be used for the widget. If set to the empty string (the
default), the cursor is inherited for the parent widget.

take-
fo-
cus

Determines whether the window accepts the focus during keyboard traversal. 0, 1 or an
empty string is returned. If 0 is returned, it means that the window should be skipped
entirely during keyboard traversal. If 1, it means that the window should receive the input
focus as long as it is viewable. And an empty string means that the traversal scripts make
the decision about whether or not to focus on the window.

style May be used to specify a custom widget style.

Scrollable Widget Options

The following options are supported by widgets that are controlled by a scrollbar.

option description
xscroll-
com-
mand

Used to communicate with horizontal scrollbars.
When the view in the widget’s window change, the widget will generate a Tcl
command based on the scrollcommand.
Usually this option consists of the method Scrollbar.set() of some scrollbar.
This will cause the scrollbar to be updated whenever the view in the window changes.

yscroll-
com-
mand

Used to communicate with vertical scrollbars. For some more information, see above.

Label Options

The following options are supported by labels, buttons and other button-like widgets.

option description
text Specifies a text string to be displayed inside the widget.
textvariable Specifies a name whose value will be used in place of the text option resource.
underline If set, specifies the index (0-based) of a character to underline in the text string.

The underline character is used for mnemonic activation.
image Specifies an image to display. This is a list of 1 or more elements. The first

element is the default image name. The rest of the list if a sequence of state-
spec/value pairs as defined by Style.map(), specifying different images to
use when the widget is in a particular state or a combination of states. All im-
ages in the list should have the same size.

compound Specifies how to display the image relative to the text, in the case both text and
images options are present. Valid values are:

• text: display text only
• image: display image only
• top, bottom, left, right: display image above, below, left of, or right of the

text, respectively.
• none: the default. display the image if present, otherwise the text.

width If greater than zero, specifies how much space, in character widths, to allocate
for the text label, if less than zero, specifies a minimum width. If zero or un-
specified, the natural width of the text label is used.

938 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

Compatibility Options

op-
tion

description

state May be set to “normal” or “disabled” to control the “disabled” state bit. This is a
write-only option: setting it changes the widget state, but the Widget.state()
method does not affect this option.

Widget States

The widget state is a bitmap of independent state flags.

flag description
active The mouse cursor is over the widget and pressing a mouse button will cause some

action to occur
dis-
abled

Widget is disabled under program control

focus Widget has keyboard focus
pressed Widget is being pressed
se-
lected

“On”, “true”, or “current” for things like Checkbuttons and radiobuttons

back-
ground

Windows and Mac have a notion of an “active” or foreground window. The background
state is set for widgets in a background window, and cleared for those in the foreground
window

read-
only

Widget should not allow user modification

alter-
nate

A widget-specific alternate display format

in-
valid

The widget’s value is invalid

A state specification is a sequence of state names, optionally prefixed with an exclamation point indicating that
the bit is off.

ttk.Widget

Besides the methods described below, the ttk.Widget supports the methods tkinter.Widget.cget()
and tkinter.Widget.configure().

class tkinter.ttk.Widget

identify(x, y)
Returns the name of the element at position x y, or the empty string if the point does not lie within any
element.

x and y are pixel coordinates relative to the widget.

instate(statespec, callback=None, *args, **kw)
Test the widget’s state. If a callback is not specified, returns True if the widget state matches statespec
and False otherwise. If callback is specified then it is called with args if widget state matches statespec.

state(statespec=None)
Modify or inquire widget state. If statespec is specified, sets the widget state according to it and
return a new statespec indicating which flags were changed. If statespec is not specified, returns the
currently-enabled state flags.

statespec will usually be a list or a tuple.

24.2. tkinter.ttk — Tk themed widgets 939

The Python Library Reference, Release 3.2

24.2.4 Combobox

The ttk.Combobox widget combines a text field with a pop-down list of values. This widget is a subclass of
Entry.

Besides the methods inherited from Widget: Widget.cget(), Widget.configure(),
Widget.identify(), Widget.instate() and Widget.state(), and the following inher-
ited from Entry: Entry.bbox(), Entry.delete(), Entry.icursor(), Entry.index(),
Entry.inset(), Entry.selection(), Entry.xview(), it has some other methods, described at
ttk.Combobox.

Options

This widget accepts the following specific options:

option description
export-
selec-
tion

Boolean value. If set, the widget selection is linked to the Window Manager selection
(which can be returned by invoking Misc.selection_get, for example).

justify Specifies how the text is aligned within the widget. One of “left”, “center”, or “right”.
height Specifies the height of the pop-down listbox, in rows.
post-
com-
mand

A script (possibly registered with Misc.register) that is called immediately before
displaying the values. It may specify which values to display.

state One of “normal”, “readonly”, or “disabled”. In the “readonly” state, the value may not
be edited directly, and the user can only selection of the values from the dropdown list.
In the “normal” state, the text field is directly editable. In the “disabled” state, no
interaction is possible.

textvari-
able

Specifies a name whose value is linked to the widget value. Whenever the value
associated with that name changes, the widget value is updated, and vice versa. See
tkinter.StringVar.

values Specifies the list of values to display in the drop-down listbox.
width Specifies an integer value indicating the desired width of the entry window, in

average-size characters of the widget’s font.

Virtual events

The combobox widgets generates a <<ComboboxSelected>> virtual event when the user selects an element from
the list of values.

ttk.Combobox

class tkinter.ttk.Combobox

current(newindex=None)
If newindex is specified, sets the combobox value to the element position newindex. Otherwise, returns
the index of the current value or -1 if the current value is not in the values list.

get()
Returns the current value of the combobox.

set(value)
Sets the value of the combobox to value.

940 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

24.2.5 Notebook

Ttk Notebook widget manages a collection of windows and displays a single one at a time. Each child window is
associated with a tab, which the user may select to change the currently-displayed window.

Options

This widget accepts the following specific options:

op-
tion

description

height If present and greater than zero, specifies the desired height of the pane area (not
including internal padding or tabs). Otherwise, the maximum height of all panes is used.

paddingSpecifies the amount of extra space to add around the outside of the notebook. The
padding is a list up to four length specifications left top right bottom. If fewer than four
elements are specified, bottom defaults to top, right defaults to left, and top defaults to left.

width If present and greater than zero, specified the desired width of the pane area (not including
internal padding). Otherwise, the maximum width of all panes is used.

Tab Options

There are also specific options for tabs:

op-
tion

description

state Either “normal”, “disabled” or “hidden”. If “disabled”, then the tab is not selectable. If
“hidden”, then the tab is not shown.

sticky Specifies how the child window is positioned within the pane area. Value is a string
containing zero or more of the characters “n”, “s”, “e” or “w”. Each letter refers to a side
(north, south, east or west) that the child window will stick to, as per the grid()
geometry manager.

padding Specifies the amount of extra space to add between the notebook and this pane. Syntax is
the same as for the option padding used by this widget.

text Specifies a text to be displayed in the tab.
im-
age

Specifies an image to display in the tab. See the option image described in Widget.

com-
pound

Specifies how to display the image relative to the text, in the case both options text and
image are present. See Label Options for legal values.

un-
der-
line

Specifies the index (0-based) of a character to underline in the text string. The
underlined character is used for mnemonic activation if
Notebook.enable_traversal() is called.

Tab Identifiers

The tab_id present in several methods of ttk.Notebook may take any of the following forms:

• An integer between zero and the number of tabs

• The name of a child window

• A positional specification of the form “@x,y”, which identifies the tab

• The literal string “current”, which identifies the currently-selected tab

• The literal string “end”, which returns the number of tabs (only valid for Notebook.index())

Virtual Events

This widget generates a <<NotebookTabChanged>> virtual event after a new tab is selected.

24.2. tkinter.ttk — Tk themed widgets 941

The Python Library Reference, Release 3.2

ttk.Notebook

class tkinter.ttk.Notebook

add(child, **kw)
Adds a new tab to the notebook.

If window is currently managed by the notebook but hidden, it is restored to its previous position.

See Tab Options for the list of available options.

forget(tab_id)
Removes the tab specified by tab_id, unmaps and unmanages the associated window.

hide(tab_id)
Hides the tab specified by tab_id.

The tab will not be displayed, but the associated window remains managed by the notebook and its
configuration remembered. Hidden tabs may be restored with the add() command.

identify(x, y)
Returns the name of the tab element at position x, y, or the empty string if none.

index(tab_id)
Returns the numeric index of the tab specified by tab_id, or the total number of tabs if tab_id is the
string “end”.

insert(pos, child, **kw)
Inserts a pane at the specified position.

pos is either the string “end”, an integer index, or the name of a managed child. If child is already
managed by the notebook, moves it to the specified position.

See Tab Options for the list of available options.

select(tab_id=None)
Selects the specified tab_id.

The associated child window will be displayed, and the previously-selected window (if different) is
unmapped. If tab_id is omitted, returns the widget name of the currently selected pane.

tab(tab_id, option=None, **kw)
Query or modify the options of the specific tab_id.

If kw is not given, returns a dictionary of the tab option values. If option is specified, returns the value
of that option. Otherwise, sets the options to the corresponding values.

tabs()
Returns a list of windows managed by the notebook.

enable_traversal()
Enable keyboard traversal for a toplevel window containing this notebook.

This will extend the bindings for the toplevel window containing the notebook as follows:

•Control-Tab: selects the tab following the currently selected one.

•Shift-Control-Tab: selects the tab preceding the currently selected one.

•Alt-K: where K is the mnemonic (underlined) character of any tab, will select that tab.

Multiple notebooks in a single toplevel may be enabled for traversal, including nested notebooks.
However, notebook traversal only works properly if all panes have the notebook they are in as master.

942 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

24.2.6 Progressbar

The ttk.Progressbar widget shows the status of a long-running operation. It can operate in two modes: 1)
the determinate mode which shows the amount completed relative to the total amount of work to be done and 2)
the indeterminate mode which provides an animated display to let the user know that work is progressing.

Options

This widget accepts the following specific options:

op-
tion

description

ori-
ent

One of “horizontal” or “vertical”. Specifies the orientation of the progress bar.

length Specifies the length of the long axis of the progress bar (width if horizontal, height if
vertical).

mode One of “determinate” or “indeterminate”.
max-
i-
mum

A number specifying the maximum value. Defaults to 100.

value The current value of the progress bar. In “determinate” mode, this represents the amount
of work completed. In “indeterminate” mode, it is interpreted as modulo maximum; that
is, the progress bar completes one “cycle” when its value increases by maximum.

vari-
able

A name which is linked to the option value. If specified, the value of the progress bar is
automatically set to the value of this name whenever the latter is modified.

phase Read-only option. The widget periodically increments the value of this option whenever
its value is greater than 0 and, in determinate mode, less than maximum. This option
may be used by the current theme to provide additional animation effects.

ttk.Progressbar

class tkinter.ttk.Progressbar

start(interval=None)
Begin autoincrement mode: schedules a recurring timer event that calls Progressbar.step()
every interval milliseconds. If omitted, interval defaults to 50 milliseconds.

step(amount=None)
Increments the progress bar’s value by amount.

amount defaults to 1.0 if omitted.

stop()
Stop autoincrement mode: cancels any recurring timer event initiated by Progressbar.start()
for this progress bar.

24.2.7 Separator

The ttk.Separator widget displays a horizontal or vertical separator bar.

It has no other methods besides the ones inherited from ttk.Widget.

Options

This widget accepts the following specific option:

option description
orient One of “horizontal” or “vertical”. Specifies the orientation of the separator.

24.2. tkinter.ttk — Tk themed widgets 943

The Python Library Reference, Release 3.2

24.2.8 Sizegrip

The ttk.Sizegrip widget (also known as a grow box) allows the user to resize the containing toplevel window
by pressing and dragging the grip.

This widget has neither specific options nor specific methods, besides the ones inherited from ttk.Widget.

Platform-specific notes

• On MacOS X, toplevel windows automatically include a built-in size grip by default. Adding a Sizegrip
is harmless, since the built-in grip will just mask the widget.

Bugs

• If the containing toplevel’s position was specified relative to the right or bottom of the screen (e.g.), the
Sizegrip widget will not resize the window.

• This widget supports only “southeast” resizing.

24.2.9 Treeview

The ttk.Treeview widget displays a hierarchical collection of items. Each item has a textual label, an optional
image, and an optional list of data values. The data values are displayed in successive columns after the tree label.

The order in which data values are displayed may be controlled by setting the widget option displaycolumns.
The tree widget can also display column headings. Columns may be accessed by number or symbolic names listed
in the widget option columns. See Column Identifiers.

Each item is identified by an unique name. The widget will generate item IDs if they are not supplied by the caller.
There is a distinguished root item, named {}. The root item itself is not displayed; its children appear at the top
level of the hierarchy.

Each item also has a list of tags, which can be used to associate event bindings with individual items and control
the appearance of the item.

The Treeview widget supports horizontal and vertical scrolling, according to the options described in Scrollable
Widget Options and the methods Treeview.xview() and Treeview.yview().

Options

This widget accepts the following specific options:

944 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

option description
columns A list of column identifiers, specifying the number of columns and their names.
displaycolumns A list of column identifiers (either symbolic or integer indices) specifying which

data columns are displayed and the order in which they appear, or the string
“#all”.

height Specifies the number of rows which should be visible. Note: the requested width
is determined from the sum of the column widths.

padding Specifies the internal padding for the widget. The padding is a list of up to four
length specifications.

selectmode Controls how the built-in class bindings manage the selection. One of “ex-
tended”, “browse” or “none”. If set to “extended” (the default), multiple items
may be selected. If “browse”, only a single item will be selected at a time. If
“none”, the selection will not be changed.
Note that the application code and tag bindings can set the selection however
they wish, regardless of the value of this option.

show A list containing zero or more of the following values, specifying which ele-
ments of the tree to display.

• tree: display tree labels in column #0.
• headings: display the heading row.

The default is “tree headings”, i.e., show all elements.
Note: Column #0 always refers to the tree column, even if show=”tree” is not
specified.

Item Options

The following item options may be specified for items in the insert and item widget commands.

op-
tion

description

text The textual label to display for the item.
im-
age

A Tk Image, displayed to the left of the label.

val-
ues

The list of values associated with the item.
Each item should have the same number of values as the widget option columns. If there
are fewer values than columns, the remaining values are assumed empty. If there are more
values than columns, the extra values are ignored.

open True/False value indicating whether the item’s children should be displayed or hidden.
tags A list of tags associated with this item.

Tag Options

The following options may be specified on tags:

option description
foreground Specifies the text foreground color.
background Specifies the cell or item background color.
font Specifies the font to use when drawing text.
image Specifies the item image, in case the item’s image option is empty.

Column Identifiers

Column identifiers take any of the following forms:

• A symbolic name from the list of columns option.

• An integer n, specifying the nth data column.

• A string of the form #n, where n is an integer, specifying the nth display column.

24.2. tkinter.ttk — Tk themed widgets 945

The Python Library Reference, Release 3.2

Notes:

• Item’s option values may be displayed in a different order than the order in which they are stored.

• Column #0 always refers to the tree column, even if show=”tree” is not specified.

A data column number is an index into an item’s option values list; a display column number is the column number
in the tree where the values are displayed. Tree labels are displayed in column #0. If option displaycolumns is not
set, then data column n is displayed in column #n+1. Again, column #0 always refers to the tree column.

Virtual Events

The Treeview widget generates the following virtual events.

event description
<<TreeviewSelect>> Generated whenever the selection changes.
<<TreeviewOpen>> Generated just before settings the focus item to open=True.
<<TreeviewClose>> Generated just after setting the focus item to open=False.

The Treeview.focus() and Treeview.selection() methods can be used to determine the affected
item or items.

ttk.Treeview

class tkinter.ttk.Treeview

bbox(item, column=None)
Returns the bounding box (relative to the treeview widget’s window) of the specified item in the form
(x, y, width, height).

If column is specified, returns the bounding box of that cell. If the item is not visible (i.e., if it is a
descendant of a closed item or is scrolled offscreen), returns an empty string.

get_children(item=None)
Returns the list of children belonging to item.

If item is not specified, returns root children.

set_children(item, *newchildren)
Replaces item‘s child with newchildren.

Children present in item that are not present in newchildren are detached from the tree. No items in
newchildren may be an ancestor of item. Note that not specifying newchildren results in detaching
item‘s children.

column(column, option=None, **kw)
Query or modify the options for the specified column.

If kw is not given, returns a dict of the column option values. If option is specified then the value for
that option is returned. Otherwise, sets the options to the corresponding values.

The valid options/values are:

•id Returns the column name. This is a read-only option.

•anchor: One of the standard Tk anchor values. Specifies how the text in this column should
be aligned with respect to the cell.

•minwidth: width The minimum width of the column in pixels. The treeview widget will not
make the column any smaller than specified by this option when the widget is resized or the
user drags a column.

•stretch: True/False Specifies whether the column’s width should be adjusted when the widget
is resized.

946 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

•width: width The width of the column in pixels.

To configure the tree column, call this with column = “#0”

delete(*items)
Delete all specified items and all their descendants.

The root item may not be deleted.

detach(*items)
Unlinks all of the specified items from the tree.

The items and all of their descendants are still present, and may be reinserted at another point in the
tree, but will not be displayed.

The root item may not be detached.

exists(item)
Returns True if the specified item is present in the tree.

focus(item=None)
If item is specified, sets the focus item to item. Otherwise, returns the current focus item, or ‘’ if there
is none.

heading(column, option=None, **kw)
Query or modify the heading options for the specified column.

If kw is not given, returns a dict of the heading option values. If option is specified then the value for
that option is returned. Otherwise, sets the options to the corresponding values.

The valid options/values are:

•text: text The text to display in the column heading.

•image: imageName Specifies an image to display to the right of the column heading.

•anchor: anchor Specifies how the heading text should be aligned. One of the standard Tk anchor
values.

•command: callback A callback to be invoked when the heading label is pressed.

To configure the tree column heading, call this with column = “#0”.

identify(component, x, y)
Returns a description of the specified component under the point given by x and y, or the empty string
if no such component is present at that position.

identify_row(y)
Returns the item ID of the item at position y.

identify_column(x)
Returns the data column identifier of the cell at position x.

The tree column has ID #0.

identify_region(x, y)
Returns one of:

region meaning
heading Tree heading area.
separator Space between two columns headings.
tree The tree area.
cell A data cell.

Availability: Tk 8.6.

identify_element(x, y)
Returns the element at position x, y.

Availability: Tk 8.6.

24.2. tkinter.ttk — Tk themed widgets 947

The Python Library Reference, Release 3.2

index(item)
Returns the integer index of item within its parent’s list of children.

insert(parent, index, iid=None, **kw)
Creates a new item and returns the item identifier of the newly created item.

parent is the item ID of the parent item, or the empty string to create a new top-level item. index is an
integer, or the value “end”, specifying where in the list of parent’s children to insert the new item. If
index is less than or equal to zero, the new node is inserted at the beginning; if index is greater than
or equal to the current number of children, it is inserted at the end. If iid is specified, it is used as the
item identifier; iid must not already exist in the tree. Otherwise, a new unique identifier is generated.

See Item Options for the list of available points.

item(item, option=None, **kw)
Query or modify the options for the specified item.

If no options are given, a dict with options/values for the item is returned. If option is specified then
the value for that option is returned. Otherwise, sets the options to the corresponding values as given
by kw.

move(item, parent, index)
Moves item to position index in parent‘s list of children.

It is illegal to move an item under one of its descendants. If index is less than or equal to zero, item is
moved to the beginning; if greater than or equal to the number of children, it is moved to the end. If
item was detached it is reattached.

next(item)
Returns the identifier of item‘s next sibling, or ‘’ if item is the last child of its parent.

parent(item)
Returns the ID of the parent of item, or ‘’ if item is at the top level of the hierarchy.

prev(item)
Returns the identifier of item‘s previous sibling, or ‘’ if item is the first child of its parent.

reattach(item, parent, index)
An alias for Treeview.move().

see(item)
Ensure that item is visible.

Sets all of item‘s ancestors open option to True, and scrolls the widget if necessary so that item is
within the visible portion of the tree.

selection(selop=None, items=None)
If selop is not specified, returns selected items. Otherwise, it will act according to the following
selection methods.

selection_set(items)
items becomes the new selection.

selection_add(items)
Add items to the selection.

selection_remove(items)
Remove items from the selection.

selection_toggle(items)
Toggle the selection state of each item in items.

set(item, column=None, value=None)
With one argument, returns a dictionary of column/value pairs for the specified item. With two argu-
ments, returns the current value of the specified column. With three arguments, sets the value of given
column in given item to the specified value.

948 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

tag_bind(tagname, sequence=None, callback=None)
Bind a callback for the given event sequence to the tag tagname. When an event is delivered to an
item, the callbacks for each of the item’s tags option are called.

tag_configure(tagname, option=None, **kw)
Query or modify the options for the specified tagname.

If kw is not given, returns a dict of the option settings for tagname. If option is specified, returns the
value for that option for the specified tagname. Otherwise, sets the options to the corresponding values
for the given tagname.

tag_has(tagname, item=None)
If item is specified, returns 1 or 0 depending on whether the specified item has the given tagname.
Otherwise, returns a list of all items that have the specified tag.

Availability: Tk 8.6

xview(*args)
Query or modify horizontal position of the treeview.

yview(*args)
Query or modify vertical position of the treeview.

24.2.10 Ttk Styling

Each widget in ttk is assigned a style, which specifies the set of elements making up the widget and how they
are arranged, along with dynamic and default settings for element options. By default the style name is the same
as the widget’s class name, but it may be overriden by the widget’s style option. If you don’t know the class name
of a widget, use the method Misc.winfo_class() (somewidget.winfo_class()).

See Also:

Tcl‘2004 conference presentation This document explains how the theme engine works

class tkinter.ttk.Style
This class is used to manipulate the style database.

configure(style, query_opt=None, **kw)
Query or set the default value of the specified option(s) in style.

Each key in kw is an option and each value is a string identifying the value for that option.

For example, to change every default button to be a flat button with some padding and a different
background color:

from tkinter import ttk
import tkinter

root = tkinter.Tk()

ttk.Style().configure("TButton", padding=6, relief="flat",
background="#ccc")

btn = ttk.Button(text="Sample")
btn.pack()

root.mainloop()

map(style, query_opt=None, **kw)
Query or sets dynamic values of the specified option(s) in style.

Each key in kw is an option and each value should be a list or a tuple (usually) containing statespecs
grouped in tuples, lists, or some other preference. A statespec is a compound of one or more states
and then a value.

24.2. tkinter.ttk — Tk themed widgets 949

http://tktable.sourceforge.net/tile/tile-tcl2004.pdf

The Python Library Reference, Release 3.2

An example may make it more understandable:

import tkinter
from tkinter import ttk

root = tkinter.Tk()

style = ttk.Style()
style.map("C.TButton",

foreground=[(’pressed’, ’red’), (’active’, ’blue’)],
background=[(’pressed’, ’!disabled’, ’black’), (’active’, ’white’)]
)

colored_btn = ttk.Button(text="Test", style="C.TButton").pack()

root.mainloop()

Note that the order of the (states, value) sequences for an option does matter, if the order is changed
to [(’active’, ’blue’), (’pressed’, ’red’)] in the foreground option, for example,
the result would be a blue foreground when the widget were in active or pressed states.

lookup(style, option, state=None, default=None)
Returns the value specified for option in style.

If state is specified, it is expected to be a sequence of one or more states. If the default argument is
set, it is used as a fallback value in case no specification for option is found.

To check what font a Button uses by default:

from tkinter import ttk

print(ttk.Style().lookup("TButton", "font"))

layout(style, layoutspec=None)
Define the widget layout for given style. If layoutspec is omitted, return the layout specification for
given style.

layoutspec, if specified, is expected to be a list or some other sequence type (excluding strings), where
each item should be a tuple and the first item is the layout name and the second item should have the
format described described in Layouts.

To understand the format, see the following example (it is not intended to do anything useful):

from tkinter import ttk
import tkinter

root = tkinter.Tk()

style = ttk.Style()
style.layout("TMenubutton", [

("Menubutton.background", None),
("Menubutton.button", {"children":

[("Menubutton.focus", {"children":
[("Menubutton.padding", {"children":

[("Menubutton.label", {"side": "left", "expand": 1})]
})]

})]
}),

])

mbtn = ttk.Menubutton(text=’Text’)

950 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

mbtn.pack()
root.mainloop()

element_create(elementname, etype, *args, **kw)
Create a new element in the current theme, of the given etype which is expected to be either “image”,
“from” or “vsapi”. The latter is only available in Tk 8.6a for Windows XP and Vista and is not
described here.

If “image” is used, args should contain the default image name followed by statespec/value pairs (this
is the imagespec), and kw may have the following options:

•border=padding padding is a list of up to four integers, specifying the left, top, right, and bottom
borders, respectively.

•height=height Specifies a minimum height for the element. If less than zero, the base image’s
height is used as a default.

•padding=padding Specifies the element’s interior padding. Defaults to border’s value if not
specified.

•sticky=spec Specifies how the image is placed within the final parcel. spec contains zero or more
characters “n”, “s”, “w”, or “e”.

•width=width Specifies a minimum width for the element. If less than zero, the base image’s
width is used as a default.

If “from” is used as the value of etype, element_create() will clone an existing element. args is
expected to contain a themename, from which the element will be cloned, and optionally an element
to clone from. If this element to clone from is not specified, an empty element will be used. kw is
discarded.

element_names()
Returns the list of elements defined in the current theme.

element_options(elementname)
Returns the list of elementname‘s options.

theme_create(themename, parent=None, settings=None)
Create a new theme.

It is an error if themename already exists. If parent is specified, the new theme will inherit styles,
elements and layouts from the parent theme. If settings are present they are expected to have the same
syntax used for theme_settings().

theme_settings(themename, settings)
Temporarily sets the current theme to themename, apply specified settings and then restore the previous
theme.

Each key in settings is a style and each value may contain the keys ‘configure’, ‘map’,
‘layout’ and ‘element create’ and they are expected to have the same format as spec-
ified by the methods Style.configure(), Style.map(), Style.layout() and
Style.element_create() respectively.

As an example, let’s change the Combobox for the default theme a bit:

from tkinter import ttk
import tkinter

root = tkinter.Tk()

style = ttk.Style()
style.theme_settings("default", {

"TCombobox": {
"configure": {"padding": 5},
"map": {

24.2. tkinter.ttk — Tk themed widgets 951

The Python Library Reference, Release 3.2

"background": [("active", "green2"),
("!disabled", "green4")],

"fieldbackground": [("!disabled", "green3")],
"foreground": [("focus", "OliveDrab1"),

("!disabled", "OliveDrab2")]
}

}
})

combo = ttk.Combobox().pack()

root.mainloop()

theme_names()
Returns a list of all known themes.

theme_use(themename=None)
If themename is not given, returns the theme in use. Otherwise, sets the current theme to themename,
refreshes all widgets and emits a <<ThemeChanged>> event.

Layouts

A layout can be just None, if it takes no options, or a dict of options specifying how to arrange the element. The
layout mechanism uses a simplified version of the pack geometry manager: given an initial cavity, each element
is allocated a parcel. Valid options/values are:

• side: whichside Specifies which side of the cavity to place the element; one of top, right, bottom or left. If
omitted, the element occupies the entire cavity.

• sticky: nswe Specifies where the element is placed inside its allocated parcel.

• unit: 0 or 1 If set to 1, causes the element and all of its descendants to be treated as a single element for
the purposes of Widget.identify() et al. It’s used for things like scrollbar thumbs with grips.

• children: [sublayout...] Specifies a list of elements to place inside the element. Each element is a tuple
(or other sequence type) where the first item is the layout name, and the other is a Layout.

24.3 tkinter.tix — Extension widgets for Tk

The tkinter.tix (Tk Interface Extension) module provides an additional rich set of widgets. Although the
standard Tk library has many useful widgets, they are far from complete. The tkinter.tix library provides
most of the commonly needed widgets that are missing from standard Tk: HList, ComboBox, Control (a.k.a.
SpinBox) and an assortment of scrollable widgets. tkinter.tix also includes many more widgets that are
generally useful in a wide range of applications: NoteBook, FileEntry, PanedWindow, etc; there are more
than 40 of them.

With all these new widgets, you can introduce new interaction techniques into applications, creating more useful
and more intuitive user interfaces. You can design your application by choosing the most appropriate widgets to
match the special needs of your application and users.

See Also:

Tix Homepage The home page for Tix. This includes links to additional documentation and downloads.

Tix Man Pages On-line version of the man pages and reference material.

Tix Programming Guide On-line version of the programmer’s reference material.

Tix Development Applications Tix applications for development of Tix and Tkinter programs. Tide applica-
tions work under Tk or Tkinter, and include TixInspect, an inspector to remotely modify and debug
Tix/Tk/Tkinter applications.

952 Chapter 24. Graphical User Interfaces with Tk

http://tix.sourceforge.net/
http://tix.sourceforge.net/dist/current/man/
http://tix.sourceforge.net/dist/current/docs/tix-book/tix.book.html
http://tix.sourceforge.net/Tixapps/src/Tide.html

The Python Library Reference, Release 3.2

24.3.1 Using Tix

class tkinter.tix.Tk(screenName=None, baseName=None, className=’Tix’)
Toplevel widget of Tix which represents mostly the main window of an application. It has an associated Tcl
interpreter.

Classes in the tkinter.tix module subclasses the classes in the tkinter. The former imports the
latter, so to use tkinter.tix with Tkinter, all you need to do is to import one module. In general, you
can just import tkinter.tix, and replace the toplevel call to tkinter.Tk with tix.Tk:

from tkinter import tix
from tkinter.constants import *
root = tix.Tk()

To use tkinter.tix, you must have the Tix widgets installed, usually alongside your installation of the Tk
widgets. To test your installation, try the following:

from tkinter import tix
root = tix.Tk()
root.tk.eval(’package require Tix’)

If this fails, you have a Tk installation problem which must be resolved before proceeding. Use the environment
variable TIX_LIBRARY to point to the installed Tix library directory, and make sure you have the dynamic object
library (tix8183.dll or libtix8183.so) in the same directory that contains your Tk dynamic object library
(tk8183.dll or libtk8183.so). The directory with the dynamic object library should also have a file called
pkgIndex.tcl (case sensitive), which contains the line:

package ifneeded Tix 8.1 [list load "[file join $dir tix8183.dll]" Tix]

24.3.2 Tix Widgets

Tix introduces over 40 widget classes to the tkinter repertoire.

Basic Widgets

class tkinter.tix.Balloon
A Balloon that pops up over a widget to provide help. When the user moves the cursor inside a widget to
which a Balloon widget has been bound, a small pop-up window with a descriptive message will be shown
on the screen.

class tkinter.tix.ButtonBox
The ButtonBox widget creates a box of buttons, such as is commonly used for Ok Cancel.

class tkinter.tix.ComboBox
The ComboBox widget is similar to the combo box control in MS Windows. The user can select a choice
by either typing in the entry subwidget or selecting from the listbox subwidget.

class tkinter.tix.Control
The Control widget is also known as the SpinBox widget. The user can adjust the value by pressing the
two arrow buttons or by entering the value directly into the entry. The new value will be checked against
the user-defined upper and lower limits.

class tkinter.tix.LabelEntry
The LabelEntry widget packages an entry widget and a label into one mega widget. It can be used be used
to simplify the creation of “entry-form” type of interface.

class tkinter.tix.LabelFrame
The LabelFrame widget packages a frame widget and a label into one mega widget. To create widgets inside
a LabelFrame widget, one creates the new widgets relative to the frame subwidget and manage them inside
the frame subwidget.

24.3. tkinter.tix — Extension widgets for Tk 953

http://tix.sourceforge.net/dist/current/man/html/TixCmd/TixIntro.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixBalloon.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixComboBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixControl.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelEntry.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelFrame.htm

The Python Library Reference, Release 3.2

class tkinter.tix.Meter
The Meter widget can be used to show the progress of a background job which may take a long time to
execute.

class tkinter.tix.OptionMenu
The OptionMenu creates a menu button of options.

class tkinter.tix.PopupMenu
The PopupMenu widget can be used as a replacement of the tk_popup command. The advantage of the
Tix PopupMenu widget is it requires less application code to manipulate.

class tkinter.tix.Select
The Select widget is a container of button subwidgets. It can be used to provide radio-box or check-box
style of selection options for the user.

class tkinter.tix.StdButtonBox
The StdButtonBox widget is a group of standard buttons for Motif-like dialog boxes.

File Selectors

class tkinter.tix.DirList
The DirList widget displays a list view of a directory, its previous directories and its sub-directories. The
user can choose one of the directories displayed in the list or change to another directory.

class tkinter.tix.DirTree
The DirTree widget displays a tree view of a directory, its previous directories and its sub-directories. The
user can choose one of the directories displayed in the list or change to another directory.

class tkinter.tix.DirSelectDialog
The DirSelectDialog widget presents the directories in the file system in a dialog window. The user can use
this dialog window to navigate through the file system to select the desired directory.

class tkinter.tix.DirSelectBox
The DirSelectBox is similar to the standard Motif(TM) directory-selection box. It is generally used for
the user to choose a directory. DirSelectBox stores the directories mostly recently selected into a ComboBox
widget so that they can be quickly selected again.

class tkinter.tix.ExFileSelectBox
The ExFileSelectBox widget is usually embedded in a tixExFileSelectDialog widget. It provides an conve-
nient method for the user to select files. The style of the ExFileSelectBox widget is very similar to the
standard file dialog on MS Windows 3.1.

class tkinter.tix.FileSelectBox
The FileSelectBox is similar to the standard Motif(TM) file-selection box. It is generally used for the user
to choose a file. FileSelectBox stores the files mostly recently selected into a ComboBox widget so that
they can be quickly selected again.

class tkinter.tix.FileEntry
The FileEntry widget can be used to input a filename. The user can type in the filename manually. Alter-
natively, the user can press the button widget that sits next to the entry, which will bring up a file selection
dialog.

Hierarchical ListBox

class tkinter.tix.HList
The HList widget can be used to display any data that have a hierarchical structure, for example, file system
directory trees. The list entries are indented and connected by branch lines according to their places in the
hierarchy.

class tkinter.tix.CheckList
The CheckList widget displays a list of items to be selected by the user. CheckList acts similarly to the Tk

954 Chapter 24. Graphical User Interfaces with Tk

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixMeter.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixOptionMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPopupMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixSelect.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixStdButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirSelectDialog.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixExFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileEntry.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixHList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixCheckList.htm

The Python Library Reference, Release 3.2

checkbutton or radiobutton widgets, except it is capable of handling many more items than checkbuttons or
radiobuttons.

class tkinter.tix.Tree
The Tree widget can be used to display hierarchical data in a tree form. The user can adjust the view of the
tree by opening or closing parts of the tree.

Tabular ListBox

class tkinter.tix.TList
The TList widget can be used to display data in a tabular format. The list entries of a TList widget are
similar to the entries in the Tk listbox widget. The main differences are (1) the TList widget can display
the list entries in a two dimensional format and (2) you can use graphical images as well as multiple colors
and fonts for the list entries.

Manager Widgets

class tkinter.tix.PanedWindow
The PanedWindow widget allows the user to interactively manipulate the sizes of several panes. The panes
can be arranged either vertically or horizontally. The user changes the sizes of the panes by dragging the
resize handle between two panes.

class tkinter.tix.ListNoteBook
The ListNoteBook widget is very similar to the TixNoteBook widget: it can be used to display many
windows in a limited space using a notebook metaphor. The notebook is divided into a stack of pages
(windows). At one time only one of these pages can be shown. The user can navigate through these pages
by choosing the name of the desired page in the hlist subwidget.

class tkinter.tix.NoteBook
The NoteBook widget can be used to display many windows in a limited space using a notebook metaphor.
The notebook is divided into a stack of pages. At one time only one of these pages can be shown. The user
can navigate through these pages by choosing the visual “tabs” at the top of the NoteBook widget.

Image Types

The tkinter.tix module adds:

• pixmap capabilities to all tkinter.tix and tkinter widgets to create color images from XPM files.

• Compound image types can be used to create images that consists of multiple horizontal lines; each line is
composed of a series of items (texts, bitmaps, images or spaces) arranged from left to right. For example, a
compound image can be used to display a bitmap and a text string simultaneously in a Tk Button widget.

Miscellaneous Widgets

class tkinter.tix.InputOnly
The InputOnly widgets are to accept inputs from the user, which can be done with the bind command
(Unix only).

Form Geometry Manager

In addition, tkinter.tix augments tkinter by providing:

class tkinter.tix.Form
The Form geometry manager based on attachment rules for all Tk widgets.

24.3. tkinter.tix — Extension widgets for Tk 955

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPanedWindow.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixListNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/pixmap.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/compound.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixInputOnly.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixForm.htm

The Python Library Reference, Release 3.2

24.3.3 Tix Commands

class tkinter.tix.tixCommand
The tix commands provide access to miscellaneous elements of Tix‘s internal state and the Tix application
context. Most of the information manipulated by these methods pertains to the application as a whole, or to
a screen or display, rather than to a particular window.

To view the current settings, the common usage is:

from tkinter import tix
root = tix.Tk()
print(root.tix_configure())

tixCommand.tix_configure([cnf], **kw)
Query or modify the configuration options of the Tix application context. If no option is specified, returns
a dictionary all of the available options. If option is specified with no value, then the method returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value returned
if no option is specified). If one or more option-value pairs are specified, then the method modifies the given
option(s) to have the given value(s); in this case the method returns an empty string. Option may be any of
the configuration options.

tixCommand.tix_cget(option)
Returns the current value of the configuration option given by option. Option may be any of the configura-
tion options.

tixCommand.tix_getbitmap(name)
Locates a bitmap file of the name name.xpm or name in one of the bitmap directories (see the
tix_addbitmapdir() method). By using tix_getbitmap(), you can avoid hard coding the path-
names of the bitmap files in your application. When successful, it returns the complete pathname of the
bitmap file, prefixed with the character @. The returned value can be used to configure the bitmap option
of the Tk and Tix widgets.

tixCommand.tix_addbitmapdir(directory)
Tix maintains a list of directories under which the tix_getimage() and tix_getbitmap() meth-
ods will search for image files. The standard bitmap directory is $TIX_LIBRARY/bitmaps. The
tix_addbitmapdir() method adds directory into this list. By using this method, the image files of
an applications can also be located using the tix_getimage() or tix_getbitmap() method.

tixCommand.tix_filedialog([dlgclass])
Returns the file selection dialog that may be shared among different calls from this application. This
method will create a file selection dialog widget when it is called the first time. This dialog will be re-
turned by all subsequent calls to tix_filedialog(). An optional dlgclass parameter can be passed
as a string to specified what type of file selection dialog widget is desired. Possible options are tix,
FileSelectDialog or tixExFileSelectDialog.

tixCommand.tix_getimage(self, name)
Locates an image file of the name name.xpm, name.xbm or name.ppm in one of the bitmap directories
(see the tix_addbitmapdir() method above). If more than one file with the same name (but different
extensions) exist, then the image type is chosen according to the depth of the X display: xbm images are cho-
sen on monochrome displays and color images are chosen on color displays. By using tix_getimage(),
you can avoid hard coding the pathnames of the image files in your application. When successful, this
method returns the name of the newly created image, which can be used to configure the image option of
the Tk and Tix widgets.

tixCommand.tix_option_get(name)
Gets the options maintained by the Tix scheme mechanism.

tixCommand.tix_resetoptions(newScheme, newFontSet[, newScmPrio])
Resets the scheme and fontset of the Tix application to newScheme and newFontSet, respectively. This
affects only those widgets created after this call. Therefore, it is best to call the resetoptions method before
the creation of any widgets in a Tix application.

956 Chapter 24. Graphical User Interfaces with Tk

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tix.htm

The Python Library Reference, Release 3.2

The optional parameter newScmPrio can be given to reset the priority level of the Tk options set by the Tix
schemes.

Because of the way Tk handles the X option database, after Tix has been has imported and inited, it is
not possible to reset the color schemes and font sets using the tix_config() method. Instead, the
tix_resetoptions() method must be used.

24.4 tkinter.scrolledtext — Scrolled Text Widget

Platforms: Tk

The tkinter.scrolledtext module provides a class of the same name which implements a basic text wid-
get which has a vertical scroll bar configured to do the “right thing.” Using the ScrolledText class is a lot eas-
ier than setting up a text widget and scroll bar directly. The constructor is the same as that of the tkinter.Text
class.

The text widget and scrollbar are packed together in a Frame, and the methods of the Grid and Pack geometry
managers are acquired from the Frame object. This allows the ScrolledText widget to be used directly to
achieve most normal geometry management behavior.

Should more specific control be necessary, the following attributes are available:

ScrolledText.frame
The frame which surrounds the text and scroll bar widgets.

ScrolledText.vbar
The scroll bar widget.

24.5 IDLE

IDLE is the Python IDE built with the tkinter GUI toolkit.

IDLE has the following features:

• coded in 100% pure Python, using the tkinter GUI toolkit

• cross-platform: works on Windows and Unix

• multi-window text editor with multiple undo, Python colorizing and many other features, e.g. smart indent
and call tips

• Python shell window (a.k.a. interactive interpreter)

• debugger (not complete, but you can set breakpoints, view and step)

24.5.1 Menus

File menu

New window create a new editing window

Open... open an existing file

Open module... open an existing module (searches sys.path)

Class browser show classes and methods in current file

Path browser show sys.path directories, modules, classes and methods

Save save current window to the associated file (unsaved windows have a * before and after the window title)

Save As... save current window to new file, which becomes the associated file

24.4. tkinter.scrolledtext — Scrolled Text Widget 957

The Python Library Reference, Release 3.2

Save Copy As... save current window to different file without changing the associated file

Close close current window (asks to save if unsaved)

Exit close all windows and quit IDLE (asks to save if unsaved)

Edit menu

Undo Undo last change to current window (max 1000 changes)

Redo Redo last undone change to current window

Cut Copy selection into system-wide clipboard; then delete selection

Copy Copy selection into system-wide clipboard

Paste Insert system-wide clipboard into window

Select All Select the entire contents of the edit buffer

Find... Open a search dialog box with many options

Find again Repeat last search

Find selection Search for the string in the selection

Find in Files... Open a search dialog box for searching files

Replace... Open a search-and-replace dialog box

Go to line Ask for a line number and show that line

Indent region Shift selected lines right 4 spaces

Dedent region Shift selected lines left 4 spaces

Comment out region Insert ## in front of selected lines

Uncomment region Remove leading # or ## from selected lines

Tabify region Turns leading stretches of spaces into tabs

Untabify region Turn all tabs into the right number of spaces

Expand word Expand the word you have typed to match another word in the same buffer; repeat to get a different
expansion

Format Paragraph Reformat the current blank-line-separated paragraph

Import module Import or reload the current module

Run script Execute the current file in the __main__ namespace

Windows menu

Zoom Height toggles the window between normal size (24x80) and maximum height.

The rest of this menu lists the names of all open windows; select one to bring it to the foreground (deiconifying it
if necessary).

Debug menu (in the Python Shell window only)

Go to file/line look around the insert point for a filename and linenumber, open the file, and show the line.

Open stack viewer show the stack traceback of the last exception

Debugger toggle Run commands in the shell under the debugger

JIT Stack viewer toggle Open stack viewer on traceback

958 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.2

24.5.2 Basic editing and navigation

• Backspace deletes to the left; Del deletes to the right

• Arrow keys and Page Up/Page Down to move around

• Home/End go to begin/end of line

• C-Home/C-End go to begin/end of file

• Some Emacs bindings may also work, including C-B, C-P, C-A, C-E, C-D, C-L

Automatic indentation

After a block-opening statement, the next line is indented by 4 spaces (in the Python Shell window by one tab).
After certain keywords (break, return etc.) the next line is dedented. In leading indentation, Backspace deletes
up to 4 spaces if they are there. Tab inserts 1-4 spaces (in the Python Shell window one tab). See also the
indent/dedent region commands in the edit menu.

Python Shell window

• C-C interrupts executing command

• C-D sends end-of-file; closes window if typed at a >>> prompt

• Alt-p retrieves previous command matching what you have typed

• Alt-n retrieves next

• Return while on any previous command retrieves that command

• Alt-/ (Expand word) is also useful here

24.5.3 Syntax colors

The coloring is applied in a background “thread,” so you may occasionally see uncolorized text. To change the
color scheme, edit the [Colors] section in config.txt.

Python syntax colors:

Keywords orange

Strings green

Comments red

Definitions blue

Shell colors:

Console output brown

stdout blue

stderr dark green

stdin black

24.5.4 Startup

Upon startup with the -s option, IDLE will execute the file referenced by the environment variables
IDLESTARTUP or PYTHONSTARTUP. Idle first checks for IDLESTARTUP; if IDLESTARTUP is present the
file referenced is run. If IDLESTARTUP is not present, Idle checks for PYTHONSTARTUP. Files referenced by

24.5. IDLE 959

The Python Library Reference, Release 3.2

these environment variables are convenient places to store functions that are used frequently from the Idle shell,
or for executing import statements to import common modules.

In addition, Tk also loads a startup file if it is present. Note that the Tk file is loaded unconditionally. This
additional file is .Idle.py and is looked for in the user’s home directory. Statements in this file will be executed
in the Tk namespace, so this file is not useful for importing functions to be used from Idle’s Python shell.

Command line usage

idle.py [-c command] [-d] [-e] [-s] [-t title] [arg] ...

-c command run this command
-d enable debugger
-e edit mode; arguments are files to be edited
-s run $IDLESTARTUP or $PYTHONSTARTUP first
-t title set title of shell window

If there are arguments:

1. If -e is used, arguments are files opened for editing and sys.argv reflects the arguments passed to IDLE
itself.

2. Otherwise, if -c is used, all arguments are placed in sys.argv[1:...], with sys.argv[0] set to
’-c’.

3. Otherwise, if neither -e nor -c is used, the first argument is a script which is executed with the remaining
arguments in sys.argv[1:...] and sys.argv[0] set to the script name. If the script name is ‘-‘, no
script is executed but an interactive Python session is started; the arguments are still available in sys.argv.

24.6 Other Graphical User Interface Packages

There are an number of extension widget sets to tkinter.

See Also:

Python megawidgets is a toolkit for building high-level compound widgets in Python using the tkinter pack-
age. It consists of a set of base classes and a library of flexible and extensible megawidgets built on this
foundation. These megawidgets include notebooks, comboboxes, selection widgets, paned widgets, scrolled
widgets, dialog windows, etc. Also, with the Pmw.Blt interface to BLT, the busy, graph, stripchart, tabset
and vector commands are be available.

The initial ideas for Pmw were taken from the Tk itcl extensions [incr Tk] by Michael McLennan
and [incr Widgets] by Mark Ulferts. Several of the megawidgets are direct translations from the itcl
to Python. It offers most of the range of widgets that [incr Widgets] does, and is almost as complete
as Tix, lacking however Tix’s fast HList widget for drawing trees.

Tkinter3000 Widget Construction Kit (WCK) is a library that allows you to write new Tkinter widgets in pure
Python. The WCK framework gives you full control over widget creation, configuration, screen appearance,
and event handling. WCK widgets can be very fast and light-weight, since they can operate directly on
Python data structures, without having to transfer data through the Tk/Tcl layer.

The major cross-platform (Windows, Mac OS X, Unix-like) GUI toolkits that are also available for Python:

See Also:

PyGTK is a set of bindings for the GTK widget set. It provides an object oriented interface that is slightly higher
level than the C one. It comes with many more widgets than Tkinter provides, and has good Python-specific
reference documentation. There are also bindings to GNOME. One well known PyGTK application is
PythonCAD. An online tutorial is available.

PyQt PyQt is a sip-wrapped binding to the Qt toolkit. Qt is an extensive C++ GUI application development
framework that is available for Unix, Windows and Mac OS X. sip is a tool for generating bindings for C++

960 Chapter 24. Graphical User Interfaces with Tk

http://pmw.sourceforge.net/
http://tkinter.effbot.org/
http://www.pygtk.org/
http://www.gtk.org/
http://www.gnome.org
http://www.pythoncad.org/
http://www.pygtk.org/pygtk2tutorial/index.html
http://www.riverbankcomputing.co.uk/software/pyqt/

The Python Library Reference, Release 3.2

libraries as Python classes, and is specifically designed for Python. The PyQt3 bindings have a book, GUI
Programming with Python: QT Edition by Boudewijn Rempt. The PyQt4 bindings also have a book, Rapid
GUI Programming with Python and Qt, by Mark Summerfield.

wxPython wxPython is a cross-platform GUI toolkit for Python that is built around the popular wxWidgets
(formerly wxWindows) C++ toolkit. It provides a native look and feel for applications on Windows, Mac
OS X, and Unix systems by using each platform’s native widgets where ever possible, (GTK+ on Unix-like
systems). In addition to an extensive set of widgets, wxPython provides classes for online documentation
and context sensitive help, printing, HTML viewing, low-level device context drawing, drag and drop,
system clipboard access, an XML-based resource format and more, including an ever growing library of
user-contributed modules. wxPython has a book, wxPython in Action, by Noel Rappin and Robin Dunn.

PyGTK, PyQt, and wxPython, all have a modern look and feel and more widgets than Tkinter. In addition, there
are many other GUI toolkits for Python, both cross-platform, and platform-specific. See the GUI Programming
page in the Python Wiki for a much more complete list, and also for links to documents where the different GUI
toolkits are compared.

24.6. Other Graphical User Interface Packages 961

http://www.commandprompt.com/community/pyqt/
http://www.commandprompt.com/community/pyqt/
http://www.qtrac.eu/pyqtbook.html
http://www.qtrac.eu/pyqtbook.html
http://www.wxpython.org
http://www.wxwidgets.org/
http://www.amazon.com/exec/obidos/ASIN/1932394621
http://wiki.python.org/moin/GuiProgramming

The Python Library Reference, Release 3.2

962 Chapter 24. Graphical User Interfaces with Tk

CHAPTER

TWENTYFIVE

DEVELOPMENT TOOLS

The modules described in this chapter help you write software. For example, the pydoc module takes a module
and generates documentation based on the module’s contents. The doctest and unittest modules contains
frameworks for writing unit tests that automatically exercise code and verify that the expected output is produced.
2to3 can translate Python 2.x source code into valid Python 3.x code.

The list of modules described in this chapter is:

25.1 pydoc — Documentation generator and online help system

Source code: Lib/pydoc.py

The pydoc module automatically generates documentation from Python modules. The documentation can be
presented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in function help() invokes the online help system in the interactive interpreter, which uses pydoc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside
the Python interpreter by running pydoc as a script at the operating system’s command prompt. For example,
running

pydoc sys

at a shell prompt will display documentation on the sys module, in a style similar to the manual pages shown by
the Unix man command. The argument to pydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argument to pydoc looks
like a path (that is, it contains the path separator for your operating system, such as a slash in Unix), and refers to
an existing Python source file, then documentation is produced for that file.

Note: In order to find objects and their documentation, pydoc imports the module(s) to be documented. There-
fore, any code on module level will be executed on that occasion. Use an if __name__ == ’__main__’:
guard to only execute code when a file is invoked as a script and not just imported.

Specifying a -w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a -k flag before the argument will search the synopsis lines of all available modules for the keyword
given as the argument, again in a manner similar to the Unix man command. The synopsis line of a module is the
first line of its documentation string.

You can also use pydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browsers. pydoc -p 1234 will start a HTTP server on port 1234, allowing you to browse the documentation
at http://localhost:1234/ in your preferred Web browser. Specifying 0 as the port number will select
an arbitrary unused port.

963

http://svn.python.org/view/python/branches/py3k/Lib/pydoc.py?view=markup

The Python Library Reference, Release 3.2

pydoc -g will start the server and additionally bring up a small tkinter-based graphical interface to help you
search for documentation pages. The -g option is deprecated, since the server can now be controlled directly from
HTTP clients.

pydoc -b will start the server and additionally open a web browser to a module index page. Each served page has
a navigation bar at the top where you can Get help on an individual item, Search all modules with a keyword in
their synopsis line, and go to the Module index, Topics and Keywords pages.

When pydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spam documents precisely the version of the module you would get if you started the Python interpreter
and typed import spam.

Module docs for core modules are assumed to reside in http://docs.python.org/X.Y/library/
where X and Y are the major and minor version numbers of the Python interpreter. This can be overridden by
setting the PYTHONDOCS environment variable to a different URL or to a local directory containing the Library
Reference Manual pages. Changed in version 3.2: Added the -b option, deprecated the -g option.

25.2 doctest — Test interactive Python examples

The doctest module searches for pieces of text that look like interactive Python sessions, and then executes
those sessions to verify that they work exactly as shown. There are several common ways to use doctest:

• To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as
documented.

• To perform regression testing by verifying that interactive examples from a test file or a test object work as
expected.

• To write tutorial documentation for a package, liberally illustrated with input-output examples. Depending
on whether the examples or the expository text are emphasized, this has the flavor of “literate testing” or
“executable documentation”.

Here’s a complete but small example module:

"""
This is the "example" module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)
120
"""

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000
>>> factorial(-1)
Traceback (most recent call last):

...
ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

...
ValueError: n must be exact integer

964 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

>>> factorial(30.0)
265252859812191058636308480000000

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

...
OverflowError: n too large
"""

import math
if not n >= 0:

raise ValueError("n must be >= 0")
if math.floor(n) != n:

raise ValueError("n must be exact integer")
if n+1 == n: # catch a value like 1e300

raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:

result *= factor
factor += 1

return result

if __name__ == "__main__":
import doctest
doctest.testmod()

If you run example.py directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and doctest
prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v
Trying:

factorial(5)
Expecting:

120
ok
Trying:

[factorial(n) for n in range(6)]
Expecting:

[1, 1, 2, 6, 24, 120]
ok

And so on, eventually ending with:

Trying:
factorial(1e100)

Expecting:
Traceback (most recent call last):

...
OverflowError: n too large

ok
2 items passed all tests:

1 tests in __main__
8 tests in __main__.factorial

25.2. doctest — Test interactive Python examples 965

The Python Library Reference, Release 3.2

9 tests in 2 items.
9 passed and 0 failed.
Test passed.
$

That’s all you need to know to start making productive use of doctest! Jump in. The following sections
provide full details. Note that there are many examples of doctests in the standard Python test suite and libraries.
Especially useful examples can be found in the standard test file Lib/test/test_doctest.py.

25.2.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you’ll continue to do it) is to end each module
M with:

if __name__ == "__main__":
import doctest
doctest.testmod()

doctest then examines docstrings in module M.

Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of output is ***Test Failed*** N failures., where N
is the number of examples that failed.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passing verbose=True to testmod(), or prohibit it by passing
verbose=False. In either of those cases, sys.argv is not examined by testmod() (so passing -v or
not has no effect).

There is also a command line shortcut for running testmod(). You can instruct the Python interpreter to run
the doctest module directly from the standard library and pass the module name(s) on the command line:

python -m doctest -v example.py

This will import example.py as a standalone module and run testmod() on it. Note that this may not work
correctly if the file is part of a package and imports other submodules from that package.

For more information on testmod(), see section Basic API.

25.2.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with the
testfile() function:

import doctest
doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples contained in the file example.txt. The
file content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python program! For
example, perhaps example.txt contains this:

The ‘‘example‘‘ module
======================

Using ‘‘factorial‘‘

966 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

This is an example text file in reStructuredText format. First import
‘‘factorial‘‘ from the ‘‘example‘‘ module:

>>> from example import factorial

Now use it:

>>> factorial(6)
120

Running doctest.testfile("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt
Failed example:

factorial(6)
Expected:

120
Got:

720

As with testmod(), testfile() won’t display anything unless an example fails. If an example does fail,
then the failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same format as
testmod().

By default, testfile() looks for files in the calling module’s directory. See section Basic API for a description
of the optional arguments that can be used to tell it to look for files in other locations.

Like testmod(), testfile()‘s verbosity can be set with the -v command-line switch or with the optional
keyword argument verbose.

There is also a command line shortcut for running testfile(). You can instruct the Python interpreter to run
the doctest module directly from the standard library and pass the file name(s) on the command line:

python -m doctest -v example.txt

Because the file name does not end with .py, doctest infers that it must be run with testfile(), not
testmod().

For more information on testfile(), see section Basic API.

25.2.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive examples,
what execution context it uses, how it handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for information about actually running
doctest on these examples, see the following sections.

Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are searched. Objects imported into the
module are not searched.

In addition, if M.__test__ exists and “is true”, it must be a dict, and each entry maps a (string) name to
a function object, class object, or string. Function and class object docstrings found from M.__test__ are
searched, and strings are treated as if they were docstrings. In output, a key K in M.__test__ appears with
name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested
classes.

25.2. doctest — Test interactive Python examples 967

The Python Library Reference, Release 3.2

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn’t trying to do an exact
emulation of any specific Python shell.

>>> # comments are ignored
>>> x = 12
>>> x
12
>>> if x == 13:
... print("yes")
... else:
... print("no")
... print("NO")
... print("NO!!!")
...
no
NO
NO!!!
>>>

Any expected output must immediately follow the final ’>>> ’ or ’... ’ line containing the code, and the
expected output (if any) extends to the next ’>>> ’ or all-whitespace line.

The fine print:

• Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected
output. If expected output does contain a blank line, put <BLANKLINE> in your doctest example each place
a blank line is expected.

• All hard tab characters are expanded to spaces, using 8-column tab stops. Tabs in output generated by the
tested code are not modified. Because any hard tabs in the sample output are expanded, this means that if
the code output includes hard tabs, the only way the doctest can pass is if the NORMALIZE_WHITESPACE
option or directive is in effect. Alternatively, the test can be rewritten to capture the output and compare
it to an expected value as part of the test. This handling of tabs in the source was arrived at through trial
and error, and has proven to be the least error prone way of handling them. It is possible to use a different
algorithm for handling tabs by writing a custom DocTestParser class.

• Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different
means).

• If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
should use a raw docstring, which will preserve your backslashes exactly as you type them:

>>> def f(x):
... r’’’Backslashes in a raw docstring: m\n’’’
>>> print(f.__doc__)
Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example, the “\” above would be
interpreted as a newline character. Alternatively, you can double each backslash in the doctest version (and
not use a raw string):

>>> def f(x):
... ’’’Backslashes in a raw docstring: m\\n’’’
>>> print(f.__doc__)
Backslashes in a raw docstring: m\n

• The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math

>>> math.floor(1.9)
1

968 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
’>>> ’ line that started the example.

What’s the Execution Context?

By default, each time doctest finds a docstring to test, it uses a shallow copy of M‘s globals, so that running
tests doesn’t change the module’s real globals, and so that one test in M can’t leave behind crumbs that accidentally
allow another test to work. This means examples can freely use any names defined at top-level in M, and names
defined earlier in the docstring being run. Examples cannot see names defined in other docstrings.

You can force use of your own dict as the execution context by passing globs=your_dict to testmod() or
testfile() instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the traceback. 1

Since tracebacks contain details that are likely to change rapidly (for example, exact file paths and line numbers),
this is one case where doctest works hard to be flexible in what it accepts.

Simple example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

That doctest succeeds if ValueError is raised, with the list.remove(x): x not in list detail as
shown.

The expected output for an exception must start with a traceback header, which may be either of the following two
lines, indented the same as the first line of the example:

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The
traceback stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and detail.
This is usually the last line of a traceback, but can extend across multiple lines if the exception has a multi-line
detail:

>>> raise ValueError(’multi\n line\ndetail’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: multi

line
detail

The last three lines (starting with ValueError) are compared against the exception’s type and detail, and the
rest are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example. So the
last example is probably better as:

>>> raise ValueError(’multi\n line\ndetail’)
Traceback (most recent call last):

...
ValueError: multi

line
detail

1 Examples containing both expected output and an exception are not supported. Trying to guess where one ends and the other begins is
too error-prone, and that also makes for a confusing test.

25.2. doctest — Test interactive Python examples 969

The Python Library Reference, Release 3.2

Note that tracebacks are treated very specially. In particular, in the rewritten example, the use of ... is indepen-
dent of doctest’s ELLIPSIS option. The ellipsis in that example could be left out, or could just as well be three
(or three hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won’t need to remember:

• Doctest can’t guess whether your expected output came from an exception traceback or from ordinary print-
ing. So, e.g., an example that expects ValueError: 42 is prime will pass whether ValueError
is actually raised or if the example merely prints that traceback text. In practice, ordinary output rarely
begins with a traceback header line, so this doesn’t create real problems.

• Each line of the traceback stack (if present) must be indented further than the first line of the example, or
start with a non-alphanumeric character. The first line following the traceback header indented the same and
starting with an alphanumeric is taken to be the start of the exception detail. Of course this does the right
thing for genuine tracebacks.

• When the IGNORE_EXCEPTION_DETAIL doctest option is specified, everything following the leftmost
colon and any module information in the exception name is ignored.

• The interactive shell omits the traceback header line for some SyntaxErrors. But doctest uses the trace-
back header line to distinguish exceptions from non-exceptions. So in the rare case where you need to test
a SyntaxError that omits the traceback header, you will need to manually add the traceback header line
to your test example.

• For some SyntaxErrors, Python displays the character position of the syntax error, using a ^ marker:

>>> 1 1
File "<stdin>", line 1

1 1
^

SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type and detail, they are not
checked by doctest. For example, the following test would pass, even though it puts the ^ marker in the
wrong location:

>>> 1 1
Traceback (most recent call last):

File "<stdin>", line 1
1 1
^

SyntaxError: invalid syntax

Option Flags and Directives

A number of option flags control various aspects of doctest’s behavior. Symbolic names for the flags are supplied
as module constants, which can be or’ed together and passed to various functions. The names can also be used in
doctest directives (see below).

The first group of options define test semantics, controlling aspects of how doctest decides whether actual output
matches an example’s expected output:

doctest.DONT_ACCEPT_TRUE_FOR_1
By default, if an expected output block contains just 1, an actual output block containing just 1 or just True
is considered to be a match, and similarly for 0 versus False. When DONT_ACCEPT_TRUE_FOR_1 is
specified, neither substitution is allowed. The default behavior caters to that Python changed the return
type of many functions from integer to boolean; doctests expecting “little integer” output still work in these
cases. This option will probably go away, but not for several years.

doctest.DONT_ACCEPT_BLANKLINE
By default, if an expected output block contains a line containing only the string <BLANKLINE>, then that
line will match a blank line in the actual output. Because a genuinely blank line delimits the expected output,

970 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

this is the only way to communicate that a blank line is expected. When DONT_ACCEPT_BLANKLINE is
specified, this substitution is not allowed.

doctest.NORMALIZE_WHITESPACE
When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output. By
default, whitespace must match exactly. NORMALIZE_WHITESPACE is especially useful when a line of
expected output is very long, and you want to wrap it across multiple lines in your source.

doctest.ELLIPSIS
When specified, an ellipsis marker (...) in the expected output can match any substring in the actual
output. This includes substrings that span line boundaries, and empty substrings, so it’s best to keep usage
of this simple. Complicated uses can lead to the same kinds of “oops, it matched too much!” surprises that
.* is prone to in regular expressions.

doctest.IGNORE_EXCEPTION_DETAIL
When specified, an example that expects an exception passes if an exception of the expected type is raised,
even if the exception detail does not match. For example, an example expecting ValueError: 42 will
pass if the actual exception raised is ValueError: 3*14, but will fail, e.g., if TypeError is raised.

It will also ignore the module name used in Python 3 doctest reports. Hence both these variations will work
regardless of whether the test is run under Python 2.7 or Python 3.2 (or later versions):

>>> raise CustomError(’message’)
Traceback (most recent call last):
CustomError: message

>>> raise CustomError(’message’)
Traceback (most recent call last):
my_module.CustomError: message

Note that ELLIPSIS can also be used to ignore the details of the exception message, but such a test may
still fail based on whether or not the module details are printed as part of the exception name. Using
IGNORE_EXCEPTION_DETAIL and the details from Python 2.3 is also the only clear way to write a
doctest that doesn’t care about the exception detail yet continues to pass under Python 2.3 or earlier (those
releases do not support doctest directives and ignore them as irrelevant comments). For example,

>>> (1, 2)[3] = ’moo’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment

passes under Python 2.3 and later Python versions, even though the detail changed in Python 2.4 to say “does
not” instead of “doesn’t”. Changed in version 3.2: IGNORE_EXCEPTION_DETAIL now also ignores any
information relating to the module containing the exception under test.

doctest.SKIP
When specified, do not run the example at all. This can be useful in contexts where doctest examples serve
as both documentation and test cases, and an example should be included for documentation purposes, but
should not be checked. E.g., the example’s output might be random; or the example might depend on
resources which would be unavailable to the test driver.

The SKIP flag can also be used for temporarily “commenting out” examples.

doctest.COMPARISON_FLAGS
A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

doctest.REPORT_UDIFF
When specified, failures that involve multi-line expected and actual outputs are displayed using a unified
diff.

25.2. doctest — Test interactive Python examples 971

The Python Library Reference, Release 3.2

doctest.REPORT_CDIFF
When specified, failures that involve multi-line expected and actual outputs will be displayed using a context
diff.

doctest.REPORT_NDIFF
When specified, differences are computed by difflib.Differ, using the same algorithm as the popular
ndiff.py utility. This is the only method that marks differences within lines as well as across lines. For
example, if a line of expected output contains digit 1 where actual output contains letter l, a line is inserted
with a caret marking the mismatching column positions.

doctest.REPORT_ONLY_FIRST_FAILURE
When specified, display the first failing example in each doctest, but suppress output for all remain-
ing examples. This will prevent doctest from reporting correct examples that break because of earlier
failures; but it might also hide incorrect examples that fail independently of the first failure. When
REPORT_ONLY_FIRST_FAILURE is specified, the remaining examples are still run, and still count to-
wards the total number of failures reported; only the output is suppressed.

doctest.REPORTING_FLAGS
A bitmask or’ing together all the reporting flags above.

“Doctest directives” may be used to modify the option flags for individual examples. Doctest directives are
expressed as a special Python comment following an example’s source code:

directive ::= “#” “doctest:” directive_options
directive_options ::= directive_option (”,” directive_option)*
directive_option ::= on_or_off directive_option_name
on_or_off ::= “+” \| “-“
directive_option_name ::= “DONT_ACCEPT_BLANKLINE” \| “NORMALIZE_WHITESPACE” \| ...

Whitespace is not allowed between the + or - and the directive option name. The directive option name can be
any of the option flag names explained above.

An example’s doctest directives modify doctest’s behavior for that single example. Use + to enable the named
behavior, or - to disable it.

For example, this test passes:

>>> print(list(range(20)))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the single-digit
list elements, and because the actual output is on a single line. This test also passes, and also requires a directive
to do so:

>>> print(list(range(20)))
[0, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print(list(range(20)))
[0, 1, ..., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print(list(range(20)))
...
[0, 1, ..., 18, 19]

As the previous example shows, you can add ... lines to your example containing only directives. This can be
useful when an example is too long for a directive to comfortably fit on the same line:

>>> print(list(range(5)) + list(range(10, 20)) + list(range(30, 40)))
...
[0, ..., 4, 10, ..., 19, 30, ..., 39]

972 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

Note that since all options are disabled by default, and directives apply only to the example they appear in, enabling
options (via + in a directive) is usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases, disabling an option via - in a directive
can be useful.

There’s also a way to register new option flag names, although this isn’t useful unless you intend to extend
doctest internals via subclassing:

doctest.register_optionflag(name)
Create a new option flag with a given name, and return the new flag’s integer value.
register_optionflag() can be used when subclassing OutputChecker or DocTestRunner
to create new options that are supported by your subclasses. register_optionflag() should always
be called using the following idiom:

MY_FLAG = register_optionflag(’MY_FLAG’)

Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match,
the test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t
guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the key-value pairs will
be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = sorted(foo().items())
>>> d
[(’Harry’, ’broomstick’), (’Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>> class C: pass
>>> C() # the default repr() for instances embeds an address
<__main__.C instance at 0x00AC18F0>

The ELLIPSIS directive gives a nice approach for the last example:

>>> C()
<__main__.C instance at 0x...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to the
platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285
>>> print(1./7) # safer
0.142857142857
>>> print(round(1./7, 6)) # much safer
0.142857

Numbers of the form I/2.**J are safe across all platforms, and I often contrive doctest examples to produce
numbers of that form:

25.2. doctest — Test interactive Python examples 973

The Python Library Reference, Release 3.2

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

25.2.4 Basic API

The functions testmod() and testfile() provide a simple interface to doctest that should be sufficient for
most basic uses. For a less formal introduction to these two functions, see sections Simple Usage: Checking
Examples in Docstrings and Simple Usage: Checking Examples in a Text File.

doctest.testfile(filename, module_relative=True, name=None, package=None, globs=None,
verbose=None, report=True, optionflags=0, extraglobs=None,
raise_on_error=False, parser=DocTestParser(), encoding=None)

All arguments except filename are optional, and should be specified in keyword form.

Test examples in the file named filename. Return (failure_count, test_count).

Optional argument module_relative specifies how the filename should be interpreted:

•If module_relative is True (the default), then filename specifies an OS-independent module-relative
path. By default, this path is relative to the calling module’s directory; but if the package argument
is specified, then it is relative to that package. To ensure OS-independence, filename should use /
characters to separate path segments, and may not be an absolute path (i.e., it may not begin with /).

•If module_relative is False, then filename specifies an OS-specific path. The path may be absolute
or relative; relative paths are resolved with respect to the current working directory.

Optional argument name gives the name of the test; by default, or if None,
os.path.basename(filename) is used.

Optional argument package is a Python package or the name of a Python package whose directory should
be used as the base directory for a module-relative filename. If no package is specified, then the calling
module’s directory is used as the base directory for module-relative filenames. It is an error to specify
package if module_relative is False.

Optional argument globs gives a dict to be used as the globals when executing examples. A new shallow
copy of this dict is created for the doctest, so its examples start with a clean slate. By default, or if None, a
new empty dict is used.

Optional argument extraglobs gives a dict merged into the globals used to execute examples. This works like
dict.update(): if globs and extraglobs have a common key, the associated value in extraglobs appears
in the combined dict. By default, or if None, no extra globals are used. This is an advanced feature that
allows parameterization of doctests. For example, a doctest can be written for a base class, using a generic
name for the class, then reused to test any number of subclasses by passing an extraglobs dict mapping the
generic name to the subclass to be tested.

Optional argument verbose prints lots of stuff if true, and prints only failures if false; by default, or if None,
it’s true if and only if ’-v’ is in sys.argv.

Optional argument report prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests passed).

Optional argument optionflags or’s together option flags. See section Option Flags and Directives.

Optional argument raise_on_error defaults to false. If true, an exception is raised upon the first failure or
unexpected exception in an example. This allows failures to be post-mortem debugged. Default behavior is
to continue running examples.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests
from the files. It defaults to a normal parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to convert the file to unicode.

974 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

doctest.testmod(m=None, name=None, globs=None, verbose=None, report=True, optionflags=0,
extraglobs=None, raise_on_error=False, exclude_empty=False)

All arguments are optional, and all except for m should be specified in keyword form.

Test examples in docstrings in functions and classes reachable from module m (or module __main__ if m
is not supplied or is None), starting with m.__doc__.

Also test examples reachable from dict m.__test__, if it exists and is not None. m.__test__ maps
names (strings) to functions, classes and strings; function and class docstrings are searched for examples;
strings are searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to module m are searched.

Return (failure_count, test_count).

Optional argument name gives the name of the module; by default, or if None, m.__name__ is used.

Optional argument exclude_empty defaults to false. If true, objects for which no doctests are found are
excluded from consideration. The default is a backward compatibility hack, so that code still using
doctest.master.summarize() in conjunction with testmod() continues to get output for ob-
jects with no tests. The exclude_empty argument to the newer DocTestFinder constructor defaults to
true.

Optional arguments extraglobs, verbose, report, optionflags, raise_on_error, and globs are the same as for
function testfile() above, except that globs defaults to m.__dict__.

There’s also a function to run the doctests associated with a single object. This function is provided for backward
compatibility. There are no plans to deprecate it, but it’s rarely useful:

doctest.run_docstring_examples(f, globs, verbose=False, name=”NoName”, compile-
flags=None, optionflags=0)

Test examples associated with object f ; for example, f may be a module, function, or class object.

A shallow copy of dictionary argument globs is used for the execution context.

Optional argument name is used in failure messages, and defaults to "NoName".

If optional argument verbose is true, output is generated even if there are no failures. By default, output is
generated only in case of an example failure.

Optional argument compileflags gives the set of flags that should be used by the Python compiler when
running the examples. By default, or if None, flags are deduced corresponding to the set of future features
found in globs.

Optional argument optionflags works as for function testfile() above.

25.2.5 Unittest API

As your collection of doctest’ed modules grows, you’ll want a way to run all their doctests systematically.
doctest provides two functions that can be used to create unittest test suites from modules and text files
containing doctests. To integrate with unittest test discovery, include a load_tests() function in your test
module:

import unittest
import doctest
import my_module_with_doctests

def load_tests(loader, tests, ignore):
tests.addTests(doctest.DocTestSuite(my_module_with_doctests))
return tests

There are two main functions for creating unittest.TestSuite instances from text files and modules with
doctests:

25.2. doctest — Test interactive Python examples 975

The Python Library Reference, Release 3.2

doctest.DocFileSuite(*paths, module_relative=True, package=None, setUp=None, tear-
Down=None, globs=None, optionflags=0, parser=DocTestParser(),
encoding=None)

Convert doctest tests from one or more text files to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs the interac-
tive examples in each file. If an example in any file fails, then the synthesized unit test fails, and a
failureException exception is raised showing the name of the file containing the test and a (some-
times approximate) line number.

Pass one or more paths (as strings) to text files to be examined.

Options may be provided as keyword arguments:

Optional argument module_relative specifies how the filenames in paths should be interpreted:

•If module_relative is True (the default), then each filename in paths specifies an OS-independent
module-relative path. By default, this path is relative to the calling module’s directory; but if the
package argument is specified, then it is relative to that package. To ensure OS-independence, each
filename should use / characters to separate path segments, and may not be an absolute path (i.e., it
may not begin with /).

•If module_relative is False, then each filename in paths specifies an OS-specific path. The path may
be absolute or relative; relative paths are resolved with respect to the current working directory.

Optional argument package is a Python package or the name of a Python package whose directory should be
used as the base directory for module-relative filenames in paths. If no package is specified, then the calling
module’s directory is used as the base directory for module-relative filenames. It is an error to specify
package if module_relative is False.

Optional argument setUp specifies a set-up function for the test suite. This is called before running the tests
in each file. The setUp function will be passed a DocTest object. The setUp function can access the test
globals as the globs attribute of the test passed.

Optional argument tearDown specifies a tear-down function for the test suite. This is called after running
the tests in each file. The tearDown function will be passed a DocTest object. The setUp function can
access the test globals as the globs attribute of the test passed.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of
this dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument optionflags specifies the default doctest options for the tests, created by or-
ing together individual option flags. See section Option Flags and Directives. See function
set_unittest_reportflags() below for a better way to set reporting options.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests
from the files. It defaults to a normal parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to convert the file to unicode.

The global __file__ is added to the globals provided to doctests loaded from a text file using
DocFileSuite().

doctest.DocTestSuite(module=None, globs=None, extraglobs=None, test_finder=None,
setUp=None, tearDown=None, checker=None)

Convert doctest tests for a module to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs each doctest in
the module. If any of the doctests fail, then the synthesized unit test fails, and a failureException
exception is raised showing the name of the file containing the test and a (sometimes approximate) line
number.

Optional argument module provides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of
this dictionary is created for each test. By default, globs is a new empty dictionary.

976 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

Optional argument extraglobs specifies an extra set of global variables, which is merged into globs. By
default, no extra globals are used.

Optional argument test_finder is the DocTestFinder object (or a drop-in replacement) that is used to
extract doctests from the module.

Optional arguments setUp, tearDown, and optionflags are the same as for function DocFileSuite()
above.

This function uses the same search technique as testmod().

Under the covers, DocTestSuite() creates a unittest.TestSuite out of doctest.DocTestCase
instances, and DocTestCase is a subclass of unittest.TestCase. DocTestCase isn’t documented
here (it’s an internal detail), but studying its code can answer questions about the exact details of unittest
integration.

Similarly, DocFileSuite() creates a unittest.TestSuite out of doctest.DocFileCase instances,
and DocFileCase is a subclass of DocTestCase.

So both ways of creating a unittest.TestSuite run instances of DocTestCase. This is important for a
subtle reason: when you run doctest functions yourself, you can control the doctest options in use directly,
by passing option flags to doctest functions. However, if you’re writing a unittest framework, unittest
ultimately controls when and how tests get run. The framework author typically wants to control doctest
reporting options (perhaps, e.g., specified by command line options), but there’s no way to pass options through
unittest to doctest test runners.

For this reason, doctest also supports a notion of doctest reporting flags specific to unittest support, via
this function:

doctest.set_unittest_reportflags(flags)
Set the doctest reporting flags to use.

Argument flags or’s together option flags. See section Option Flags and Directives. Only “reporting flags”
can be used.

This is a module-global setting, and affects all future doctests run by module unittest: the runTest()
method of DocTestCase looks at the option flags specified for the test case when the DocTestCase
instance was constructed. If no reporting flags were specified (which is the typical and expected case),
doctest‘s unittest reporting flags are or’ed into the option flags, and the option flags so augmented
are passed to the DocTestRunner instance created to run the doctest. If any reporting flags were specified
when the DocTestCase instance was constructed, doctest‘s unittest reporting flags are ignored.

The value of the unittest reporting flags in effect before the function was called is returned by the
function.

25.2.6 Advanced API

The basic API is a simple wrapper that’s intended to make doctest easy to use. It is fairly flexible, and should
meet most users’ needs; however, if you require more fine-grained control over testing, or wish to extend doctest’s
capabilities, then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples ex-
tracted from doctest cases:

• Example: A single Python statement, paired with its expected output.

• DocTest: A collection of Examples, typically extracted from a single docstring or text file.

Additional processing classes are defined to find, parse, and run, and check doctest examples:

• DocTestFinder: Finds all docstrings in a given module, and uses a DocTestParser to create a
DocTest from every docstring that contains interactive examples.

• DocTestParser: Creates a DocTest object from a string (such as an object’s docstring).

25.2. doctest — Test interactive Python examples 977

The Python Library Reference, Release 3.2

• DocTestRunner: Executes the examples in a DocTest, and uses an OutputChecker to verify their
output.

• OutputChecker: Compares the actual output from a doctest example with the expected output, and
decides whether they match.

The relationships among these processing classes are summarized in the following diagram:

list of:
+------+ +---------+
|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results
+------+ | ^ +---------+ | ^ (printed)

| | | Example | | |
v | | ... | v |

DocTestParser | Example | OutputChecker
+---------+

DocTest Objects

class doctest.DocTest(examples, globs, name, filename, lineno, docstring)
A collection of doctest examples that should be run in a single namespace. The constructor arguments are
used to initialize the member variables of the same names.

DocTest defines the following member variables. They are initialized by the constructor, and should not
be modified directly.

examples
A list of Example objects encoding the individual interactive Python examples that should be run by
this test.

globs
The namespace (aka globals) that the examples should be run in. This is a dictionary mapping names
to values. Any changes to the namespace made by the examples (such as binding new variables) will
be reflected in globs after the test is run.

name
A string name identifying the DocTest. Typically, this is the name of the object or file that the test
was extracted from.

filename
The name of the file that this DocTest was extracted from; or None if the filename is unknown, or
if the DocTest was not extracted from a file.

lineno
The line number within filename where this DocTest begins, or None if the line number is
unavailable. This line number is zero-based with respect to the beginning of the file.

docstring
The string that the test was extracted from, or ‘None’ if the string is unavailable, or if the test was not
extracted from a string.

Example Objects

class doctest.Example(source, want, exc_msg=None, lineno=0, indent=0, options=None)
A single interactive example, consisting of a Python statement and its expected output. The constructor
arguments are used to initialize the member variables of the same names.

Example defines the following member variables. They are initialized by the constructor, and should not
be modified directly.

source
A string containing the example’s source code. This source code consists of a single Python statement,
and always ends with a newline; the constructor adds a newline when necessary.

978 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

want
The expected output from running the example’s source code (either from stdout, or a traceback in
case of exception). want ends with a newline unless no output is expected, in which case it’s an
empty string. The constructor adds a newline when necessary.

exc_msg
The exception message generated by the example, if the example is expected to generate an exception;
or None if it is not expected to generate an exception. This exception message is compared against
the return value of traceback.format_exception_only(). exc_msg ends with a newline
unless it’s None. The constructor adds a newline if needed.

lineno
The line number within the string containing this example where the example begins. This line number
is zero-based with respect to the beginning of the containing string.

indent
The example’s indentation in the containing string, i.e., the number of space characters that precede
the example’s first prompt.

options
A dictionary mapping from option flags to True or False, which is used to override default options
for this example. Any option flags not contained in this dictionary are left at their default value (as
specified by the DocTestRunner‘s optionflags). By default, no options are set.

DocTestFinder objects

class doctest.DocTestFinder(verbose=False, parser=DocTestParser(), recurse=True, ex-
clude_empty=True)

A processing class used to extract the DocTests that are relevant to a given object, from its docstring and
the docstrings of its contained objects. DocTests can currently be extracted from the following object
types: modules, functions, classes, methods, staticmethods, classmethods, and properties.

The optional argument verbose can be used to display the objects searched by the finder. It defaults to
False (no output).

The optional argument parser specifies the DocTestParser object (or a drop-in replacement) that is used
to extract doctests from docstrings.

If the optional argument recurse is false, then DocTestFinder.find() will only examine the given
object, and not any contained objects.

If the optional argument exclude_empty is false, then DocTestFinder.find() will include tests for
objects with empty docstrings.

DocTestFinder defines the following method:

find(obj[, name][, module][, globs][, extraglobs])
Return a list of the DocTests that are defined by obj‘s docstring, or by any of its contained objects’
docstrings.

The optional argument name specifies the object’s name; this name will be used to construct names
for the returned DocTests. If name is not specified, then obj.__name__ is used.

The optional parameter module is the module that contains the given object. If the module is not
specified or is None, then the test finder will attempt to automatically determine the correct module.
The object’s module is used:

•As a default namespace, if globs is not specified.

•To prevent the DocTestFinder from extracting DocTests from objects that are imported from other
modules. (Contained objects with modules other than module are ignored.)

•To find the name of the file containing the object.

•To help find the line number of the object within its file.

25.2. doctest — Test interactive Python examples 979

The Python Library Reference, Release 3.2

If module is False, no attempt to find the module will be made. This is obscure, of use mostly in
testing doctest itself: if module is False, or is None but cannot be found automatically, then all ob-
jects are considered to belong to the (non-existent) module, so all contained objects will (recursively)
be searched for doctests.

The globals for each DocTest is formed by combining globs and extraglobs (bindings in extra-
globs override bindings in globs). A new shallow copy of the globals dictionary is created for each
DocTest. If globs is not specified, then it defaults to the module’s __dict__, if specified, or {}
otherwise. If extraglobs is not specified, then it defaults to {}.

DocTestParser objects

class doctest.DocTestParser
A processing class used to extract interactive examples from a string, and use them to create a DocTest
object.

DocTestParser defines the following methods:

get_doctest(string, globs, name, filename, lineno)
Extract all doctest examples from the given string, and collect them into a DocTest object.

globs, name, filename, and lineno are attributes for the new DocTest object. See the documentation
for DocTest for more information.

get_examples(string, name=’<string>’)
Extract all doctest examples from the given string, and return them as a list of Example objects. Line
numbers are 0-based. The optional argument name is a name identifying this string, and is only used
for error messages.

parse(string, name=’<string>’)
Divide the given string into examples and intervening text, and return them as a list of alternating
Examples and strings. Line numbers for the Examples are 0-based. The optional argument name
is a name identifying this string, and is only used for error messages.

DocTestRunner objects

class doctest.DocTestRunner(checker=None, verbose=None, optionflags=0)
A processing class used to execute and verify the interactive examples in a DocTest.

The comparison between expected outputs and actual outputs is done by an OutputChecker. This com-
parison may be customized with a number of option flags; see section Option Flags and Directives for more
information. If the option flags are insufficient, then the comparison may also be customized by passing a
subclass of OutputChecker to the constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be passed
to TestRunner.run(); this function will be called with strings that should be displayed. It de-
faults to sys.stdout.write. If capturing the output is not sufficient, then the display output can
be also customized by subclassing DocTestRunner, and overriding the methods report_start(),
report_success(), report_unexpected_exception(), and report_failure().

The optional keyword argument checker specifies the OutputChecker object (or drop-in replacement)
that should be used to compare the expected outputs to the actual outputs of doctest examples.

The optional keyword argument verbose controls the DocTestRunner‘s verbosity. If verbose is True,
then information is printed about each example, as it is run. If verbose is False, then only failures are
printed. If verbose is unspecified, or None, then verbose output is used iff the command-line switch -v is
used.

The optional keyword argument optionflags can be used to control how the test runner compares expected
output to actual output, and how it displays failures. For more information, see section Option Flags and
Directives.

DocTestParser defines the following methods:

980 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

report_start(out, test, example)
Report that the test runner is about to process the given example. This method is provided to allow
subclasses of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. test is the test containing example. out is the output
function that was passed to DocTestRunner.run().

report_success(out, test, example, got)
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is the
test containing example. out is the output function that was passed to DocTestRunner.run().

report_failure(out, test, example, got)
Report that the given example failed. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is the
test containing example. out is the output function that was passed to DocTestRunner.run().

report_unexpected_exception(out, test, example, exc_info)
Report that the given example raised an unexpected exception. This method is provided to allow
subclasses of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. exc_info is a tuple containing information about the
unexpected exception (as returned by sys.exc_info()). test is the test containing example. out is
the output function that was passed to DocTestRunner.run().

run(test, compileflags=None, out=None, clear_globs=True)
Run the examples in test (a DocTest object), and display the results using the writer function out.

The examples are run in the namespace test.globs. If clear_globs is true (the default), then this
namespace will be cleared after the test runs, to help with garbage collection. If you would like to
examine the namespace after the test completes, then use clear_globs=False.

compileflags gives the set of flags that should be used by the Python compiler when running the
examples. If not specified, then it will default to the set of future-import flags that apply to globs.

The output of each example is checked using the DocTestRunner‘s output checker, and the results
are formatted by the DocTestRunner.report_*() methods.

summarize(verbose=None)
Print a summary of all the test cases that have been run by this DocTestRunner, and return a named
tuple TestResults(failed, attempted).

The optional verbose argument controls how detailed the summary is. If the verbosity is not specified,
then the DocTestRunner‘s verbosity is used.

OutputChecker objects

class doctest.OutputChecker
A class used to check the whether the actual output from a doctest example matches the expected output.
OutputChecker defines two methods: check_output(), which compares a given pair of outputs, and
returns true if they match; and output_difference(), which returns a string describing the differences
between two outputs.

OutputChecker defines the following methods:

check_output(want, got, optionflags)
Return True iff the actual output from an example (got) matches the expected output (want). These
strings are always considered to match if they are identical; but depending on what option flags the
test runner is using, several non-exact match types are also possible. See section Option Flags and
Directives for more information about option flags.

25.2. doctest — Test interactive Python examples 981

The Python Library Reference, Release 3.2

output_difference(example, got, optionflags)
Return a string describing the differences between the expected output for a given example (example)
and the actual output (got). optionflags is the set of option flags used to compare want and got.

25.2.7 Debugging

Doctest provides several mechanisms for debugging doctest examples:

• Several functions convert doctests to executable Python programs, which can be run under the Python
debugger, pdb.

• The DebugRunner class is a subclass of DocTestRunner that raises an exception for the first failing
example, containing information about that example. This information can be used to perform post-mortem
debugging on the example.

• The unittest cases generated by DocTestSuite() support the debug() method defined by
unittest.TestCase.

• You can add a call to pdb.set_trace() in a doctest example, and you’ll drop into the Python debugger
when that line is executed. Then you can inspect current values of variables, and so on. For example,
suppose a.py contains just this module docstring:

"""
>>> def f(x):
... g(x*2)
>>> def g(x):
... print(x+3)
... import pdb; pdb.set_trace()
>>> f(3)
9
"""

Then an interactive Python session may look like this:

>>> import a, doctest
>>> doctest.testmod(a)
--Return--
> <doctest a[1]>(3)g()->None
-> import pdb; pdb.set_trace()
(Pdb) list

1 def g(x):
2 print(x+3)
3 -> import pdb; pdb.set_trace()

[EOF]
(Pdb) p x
6
(Pdb) step
--Return--
> <doctest a[0]>(2)f()->None
-> g(x*2)
(Pdb) list

1 def f(x):
2 -> g(x*2)

[EOF]
(Pdb) p x
3
(Pdb) step
--Return--
> <doctest a[2]>(1)?()->None
-> f(3)
(Pdb) cont

982 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

(0, 3)
>>>

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

doctest.script_from_examples(s)
Convert text with examples to a script.

Argument s is a string containing doctest examples. The string is converted to a Python script, where
doctest examples in s are converted to regular code, and everything else is converted to Python comments.
The generated script is returned as a string. For example,

import doctest
print(doctest.script_from_examples(r"""

Set x and y to 1 and 2.
>>> x, y = 1, 2

Print their sum:
>>> print(x+y)
3

"""))

displays:

Set x and y to 1 and 2.
x, y = 1, 2
#
Print their sum:
print(x+y)
Expected:
3

This function is used internally by other functions (see below), but can also be useful when you want to
transform an interactive Python session into a Python script.

doctest.testsource(module, name)
Convert the doctest for an object to a script.

Argument module is a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argument name is the name (within the module) of the object with the doctests of inter-
est. The result is a string, containing the object’s docstring converted to a Python script, as described for
script_from_examples() above. For example, if module a.py contains a top-level function f(),
then

import a, doctest
print(doctest.testsource(a, "a.f"))

prints a script version of function f()‘s docstring, with doctests converted to code, and the rest placed in
comments.

doctest.debug(module, name, pm=False)
Debug the doctests for an object.

The module and name arguments are the same as for function testsource() above. The synthesized
Python script for the named object’s docstring is written to a temporary file, and then that file is run under
the control of the Python debugger, pdb.

A shallow copy of module.__dict__ is used for both local and global execution context.

Optional argument pm controls whether post-mortem debugging is used. If pm has a true value, the script
file is run directly, and the debugger gets involved only if the script terminates via raising an unhandled
exception. If it does, then post-mortem debugging is invoked, via pdb.post_mortem(), passing the

25.2. doctest — Test interactive Python examples 983

The Python Library Reference, Release 3.2

traceback object from the unhandled exception. If pm is not specified, or is false, the script is run under the
debugger from the start, via passing an appropriate exec() call to pdb.run().

doctest.debug_src(src, pm=False, globs=None)
Debug the doctests in a string.

This is like function debug() above, except that a string containing doctest examples is specified directly,
via the src argument.

Optional argument pm has the same meaning as in function debug() above.

Optional argument globs gives a dictionary to use as both local and global execution context. If not specified,
or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used.

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework
authors, and will only be sketched here. See the source code, and especially DebugRunner‘s docstring (which
is a doctest!) for more details:

class doctest.DebugRunner(checker=None, verbose=None, optionflags=0)
A subclass of DocTestRunner that raises an exception as soon as a failure is encountered. If an unex-
pected exception occurs, an UnexpectedException exception is raised, containing the test, the exam-
ple, and the original exception. If the output doesn’t match, then a DocTestFailure exception is raised,
containing the test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentation for
DocTestRunner in section Advanced API.

There are two exceptions that may be raised by DebugRunner instances:

exception doctest.DocTestFailure(test, example, got)
An exception raised by DocTestRunner to signal that a doctest example’s actual output did not match its
expected output. The constructor arguments are used to initialize the member variables of the same names.

DocTestFailure defines the following member variables:

DocTestFailure.test
The DocTest object that was being run when the example failed.

DocTestFailure.example
The Example that failed.

DocTestFailure.got
The example’s actual output.

exception doctest.UnexpectedException(test, example, exc_info)
An exception raised by DocTestRunner to signal that a doctest example raised an unexpected exception.
The constructor arguments are used to initialize the member variables of the same names.

UnexpectedException defines the following member variables:

UnexpectedException.test
The DocTest object that was being run when the example failed.

UnexpectedException.example
The Example that failed.

UnexpectedException.exc_info
A tuple containing information about the unexpected exception, as returned by sys.exc_info().

25.2.8 Soapbox

As mentioned in the introduction, doctest has grown to have three primary uses:

1. Checking examples in docstrings.

2. Regression testing.

3. Executable documentation / literate testing.

984 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

These uses have different requirements, and it is important to distinguish them. In particular, filling your docstrings
with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be learned—it
may not be natural at first. Examples should add genuine value to the documentation. A good example can often
be worth many words. If done with care, the examples will be invaluable for your users, and will pay back the
time it takes to collect them many times over as the years go by and things change. I’m still amazed at how often
one of my doctest examples stops working after a “harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory text. By
interleaving prose and examples, it becomes much easier to keep track of what’s actually being tested, and why.
When a test fails, good prose can make it much easier to figure out what the problem is, and how it should be
fixed. It’s true that you could write extensive comments in code-based testing, but few programmers do. Many
have found that using doctest approaches instead leads to much clearer tests. Perhaps this is simply because
doctest makes writing prose a little easier than writing code, while writing comments in code is a little harder. I
think it goes deeper than just that: the natural attitude when writing a doctest-based test is that you want to explain
the fine points of your software, and illustrate them with examples. This in turn naturally leads to test files that
start with the simplest features, and logically progress to complications and edge cases. A coherent narrative is
the result, instead of a collection of isolated functions that test isolated bits of functionality seemingly at random.
It’s a different attitude, and produces different results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing tests:

• Write text files containing test cases as interactive examples, and test the files using testfile() or
DocFileSuite(). This is recommended, although is easiest to do for new projects, designed from the
start to use doctest.

• Define functions named _regrtest_topic that consist of single docstrings, containing test cases for
the named topics. These functions can be included in the same file as the module, or separated out into a
separate test file.

• Define a __test__ dictionary mapping from regression test topics to docstrings containing test cases.

25.3 unittest — Unit testing framework

(If you are already familiar with the basic concepts of testing, you might want to skip to the list of assert methods.)

The Python unit testing framework, sometimes referred to as “PyUnit,” is a Python language version of JUnit, by
Kent Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’s Smalltalk testing framework. Each is the
de facto standard unit testing framework for its respective language.

unittest supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into
collections, and independence of the tests from the reporting framework. The unittestmodule provides classes
that make it easy to support these qualities for a set of tests.

To achieve this, unittest supports some important concepts:

test fixture A test fixture represents the preparation needed to perform one or more tests, and any associate
cleanup actions. This may involve, for example, creating temporary or proxy databases, directories, or
starting a server process.

test case A test case is the smallest unit of testing. It checks for a specific response to a particular set of inputs.
unittest provides a base class, TestCase, which may be used to create new test cases.

test suite A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that should be
executed together.

test runner A test runner is a component which orchestrates the execution of tests and provides the outcome to
the user. The runner may use a graphical interface, a textual interface, or return a special value to indicate
the results of executing the tests.

The test case and test fixture concepts are supported through the TestCase and FunctionTestCase classes;
the former should be used when creating new tests, and the latter can be used when integrating existing test

25.3. unittest — Unit testing framework 985

The Python Library Reference, Release 3.2

code with a unittest-driven framework. When building test fixtures using TestCase, the setUp()
and tearDown() methods can be overridden to provide initialization and cleanup for the fixture. With
FunctionTestCase, existing functions can be passed to the constructor for these purposes. When the test
is run, the fixture initialization is run first; if it succeeds, the cleanup method is run after the test has been exe-
cuted, regardless of the outcome of the test. Each instance of the TestCase will only be used to run a single test
method, so a new fixture is created for each test.

Test suites are implemented by the TestSuite class. This class allows individual tests and test suites to be
aggregated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single method, run(), which accepts a TestCase or TestSuite
object as a parameter, and returns a result object. The class TestResult is provided for use as the result
object. unittest provides the TextTestRunner as an example test runner which reports test results on the
standard error stream by default. Alternate runners can be implemented for other environments (such as graphical
environments) without any need to derive from a specific class.

See Also:

Module doctest Another test-support module with a very different flavor.

unittest2: A backport of new unittest features for Python 2.4-2.6 Many new features were added to unittest
in Python 2.7, including test discovery. unittest2 allows you to use these features with earlier versions of
Python.

Simple Smalltalk Testing: With Patterns Kent Beck’s original paper on testing frameworks using the pattern
shared by unittest.

Nose and py.test Third-party unittest frameworks with a lighter-weight syntax for writing tests. For example,
assert func(10) == 42.

The Python Testing Tools Taxonomy An extensive list of Python testing tools including functional testing
frameworks and mock object libraries.

Testing in Python Mailing List A special-interest-group for discussion of testing, and testing tools, in Python.

The script Tools/unittestgui/unittestgui.py in the Python source distribution is a GUI tool for test
discovery and execution. This is intended largely for ease of use for those new to unit testing. For production en-
vironments it is recommended that tests be driven by a continuous integration system such as Hudson or Buildbot.

25.3.1 Basic example

The unittest module provides a rich set of tools for constructing and running tests. This section demonstrates
that a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three functions from the random module:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = list(range(10))

def test_shuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, list(range(10)))

should raise an exception for an immutable sequence
self.assertRaises(TypeError, random.shuffle, (1,2,3))

986 Chapter 25. Development Tools

http://pypi.python.org/pypi/unittest2
http://www.XProgramming.com/testfram.htm
http://code.google.com/p/python-nose/
http://pytest.org
http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy
http://lists.idyll.org/listinfo/testing-in-python
http://hudson-ci.org/
http://buildbot.net/trac

The Python Library Reference, Release 3.2

def test_choice(self):
element = random.choice(self.seq)
self.assertTrue(element in self.seq)

def test_sample(self):
with self.assertRaises(ValueError):

random.sample(self.seq, 20)
for element in random.sample(self.seq, 5):

self.assertTrue(element in self.seq)

if __name__ == ’__main__’:
unittest.main()

A testcase is created by subclassing unittest.TestCase. The three individual tests are defined with methods
whose names start with the letters test. This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call to assertEqual() to check for an expected result; assertTrue() to verify
a condition; or assertRaises() to verify that an expected exception gets raised. These methods are used
instead of the assert statement so the test runner can accumulate all test results and produce a report.

When a setUp() method is defined, the test runner will run that method prior to each test. Likewise, if
a tearDown() method is defined, the test runner will invoke that method after each test. In the example,
setUp() was used to create a fresh sequence for each test.

The final block shows a simple way to run the tests. unittest.main() provides a command-line interface to
the test script. When run from the command line, the above script produces an output that looks like this:

...
--
Ran 3 tests in 0.000s

OK

Instead of unittest.main(), there are other ways to run the tests with a finer level of control, less terse
output, and no requirement to be run from the command line. For example, the last two lines may be replaced
with:

suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)
unittest.TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

test_choice (__main__.TestSequenceFunctions) ... ok
test_sample (__main__.TestSequenceFunctions) ... ok
test_shuffle (__main__.TestSequenceFunctions) ... ok

--
Ran 3 tests in 0.110s

OK

The above examples show the most commonly used unittest features which are sufficient to meet many
everyday testing needs. The remainder of the documentation explores the full feature set from first principles.

25.3.2 Command-Line Interface

The unittest module can be used from the command line to run tests from modules, classes or even individual test
methods:

python -m unittest test_module1 test_module2
python -m unittest test_module.TestClass
python -m unittest test_module.TestClass.test_method

25.3. unittest — Unit testing framework 987

The Python Library Reference, Release 3.2

You can pass in a list with any combination of module names, and fully qualified class or method names.

Test modules can be specified by file path as well:

python -m unittest tests/test_something.py

This allows you to use the shell filename completion to specify the test module. The file specified must still be
importable as a module. The path is converted to a module name by removing the ‘.py’ and converting path
separators into ‘.’. If you want to execute a test file that isn’t importable as a module you should execute the file
directly instead.

You can run tests with more detail (higher verbosity) by passing in the -v flag:

python -m unittest -v test_module

When executed without arguments Test Discovery is started:

python -m unittest

For a list of all the command-line options:

python -m unittest -h

Changed in version 3.2: In earlier versions it was only possible to run individual test methods and not modules or
classes.

Command-line options

unittest supports these command-line options:

-b, -buffer
The standard output and standard error streams are buffered during the test run. Output during a passing test
is discarded. Output is echoed normally on test fail or error and is added to the failure messages.

-c, -catch
Control-C during the test run waits for the current test to end and then reports all the results so far. A second
control-C raises the normal KeyboardInterrupt exception.

See Signal Handling for the functions that provide this functionality.

-f, -failfast
Stop the test run on the first error or failure.

New in version 3.2: The command-line options -b, -c and -f were added. The command line can also be used
for test discovery, for running all of the tests in a project or just a subset.

25.3.3 Test Discovery

New in version 3.2. Unittest supports simple test discovery. For a project’s tests to be compatible with test
discovery they must all be importable from the top level directory of the project (in other words, they must all be
in Python packages).

Test discovery is implemented in TestLoader.discover(), but can also be used from the command line.
The basic command-line usage is:

cd project_directory
python -m unittest discover

Note: As a shortcut, python -m unittest is the equivalent of python -m unittest discover. If
you want to pass arguments to test discovery the discover sub-command must be used explicitly.

The discover sub-command has the following options:

-v, -verbose
Verbose output

988 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

-s directory
Directory to start discovery (‘.’ default)

-p pattern
Pattern to match test files (‘test*.py’ default)

-t directory
Top level directory of project (defaults to start directory)

The -s, -p, and -t options can be passed in as positional arguments in that order. The following two command
lines are equivalent:

python -m unittest discover -s project_directory -p ’*_test.py’
python -m unittest discover project_directory ’*_test.py’

As well as being a path it is possible to pass a package name, for example myproject.subpackage.test,
as the start directory. The package name you supply will then be imported and its location on the filesystem will
be used as the start directory.

Caution: Test discovery loads tests by importing them. Once test discovery has found all the test files from the
start directory you specify it turns the paths into package names to import. For example foo/bar/baz.py
will be imported as foo.bar.baz.
If you have a package installed globally and attempt test discovery on a different copy of the package then the
import could happen from the wrong place. If this happens test discovery will warn you and exit.
If you supply the start directory as a package name rather than a path to a directory then discover assumes that
whichever location it imports from is the location you intended, so you will not get the warning.

Test modules and packages can customize test loading and discovery by through the load_tests protocol.

25.3.4 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be set up and checked for
correctness. In unittest, test cases are represented by unittest.TestCase instances. To make your own
test cases you must write subclasses of TestCase or use FunctionTestCase.

An instance of a TestCase-derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of a TestCase instance should be entirely self contained, such that it can be run either in
isolation or in arbitrary combination with any number of other test cases.

The simplest TestCase subclass will simply override the runTest() method in order to perform specific
testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def runTest(self):

widget = Widget(’The widget’)
self.assertEqual(widget.size(), (50, 50), ’incorrect default size’)

Note that in order to test something, we use the one of the assert*() methods provided by the TestCase
base class. If the test fails, an exception will be raised, and unittest will identify the test case as a failure. Any
other exceptions will be treated as errors. This helps you identify where the problem is: failures are caused by
incorrect results - a 5 where you expected a 6. Errors are caused by incorrect code - e.g., a TypeError caused
by an incorrect function call.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case,
we call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

25.3. unittest — Unit testing framework 989

The Python Library Reference, Release 3.2

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a Widget
in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method called setUp(), which the testing frame-
work will automatically call for us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget(’The widget’)

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.assertEqual(self.widget.size(), (50,50),
’incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.widget.resize(100,150)
self.assertEqual(self.widget.size(), (100,150),

’wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and the runTest() method will not be executed.

Similarly, we can provide a tearDown() method that tidies up after the runTest() method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget(’The widget’)

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, the tearDown() method will be run whether runTest() succeeded or not.

Such a working environment for the testing code is called a fixture.

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes such as DefaultWidgetSizeTestCase.
This is time-consuming and discouraging, so in the same vein as JUnit, unittest provides a simpler mecha-
nism:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget(’The widget’)

def tearDown(self):
self.widget.dispose()
self.widget = None

def test_default_size(self):
self.assertEqual(self.widget.size(), (50,50),

’incorrect default size’)

def test_resize(self):
self.widget.resize(100,150)

990 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

self.assertEqual(self.widget.size(), (100,150),
’wrong size after resize’)

Here we have not provided a runTest() method, but have instead provided two different test methods. Class
instances will now each run one of the test_*() methods, with self.widget created and destroyed sepa-
rately for each instance. When creating an instance we must specify the test method it is to run. We do this by
passing the method name in the constructor:

defaultSizeTestCase = WidgetTestCase(’test_default_size’)
resizeTestCase = WidgetTestCase(’test_resize’)

Test case instances are grouped together according to the features they test. unittest provides a mechanism
for this: the test suite, represented by unittest‘s TestSuite class:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase(’test_default_size’))
widgetTestSuite.addTest(WidgetTestCase(’test_resize’))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object
that returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase(’test_default_size’))
suite.addTest(WidgetTestCase(’test_resize’))
return suite

or even:

def suite():
tests = [’test_default_size’, ’test_resize’]

return unittest.TestSuite(map(WidgetTestCase, tests))

Since it is a common pattern to create a TestCase subclass with many similarly named test functions,
unittest provides a TestLoader class that can be used to automate the process of creating a test suite
and populating it with individual tests. For example,

suite = unittest.TestLoader().loadTestsFromTestCase(WidgetTestCase)

will create a test suite that will run WidgetTestCase.test_default_size() and
WidgetTestCase.test_resize. TestLoader uses the ’test’ method name prefix to identify
test methods automatically.

Note that the order in which the various test cases will be run is determined by sorting the test function names
with respect to the built-in ordering for strings.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, since TestSuite instances can be added to a TestSuite just as TestCase instances can be added to
a TestSuite:

suite1 = module1.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest.TestSuite([suite1, suite2])

You can place the definitions of test cases and test suites in the same modules as the code they are to test
(such as widget.py), but there are several advantages to placing the test code in a separate module, such as
test_widget.py:

• The test module can be run standalone from the command line.

• The test code can more easily be separated from shipped code.

• There is less temptation to change test code to fit the code it tests without a good reason.

• Test code should be modified much less frequently than the code it tests.

• Tested code can be refactored more easily.

25.3. unittest — Unit testing framework 991

The Python Library Reference, Release 3.2

• Tests for modules written in C must be in separate modules anyway, so why not be consistent?

• If the testing strategy changes, there is no need to change the source code.

25.3.5 Re-using old test code

Some users will find that they have existing test code that they would like to run from unittest, without
converting every old test function to a TestCase subclass.

For this reason, unittest provides a FunctionTestCase class. This subclass of TestCase can be used
to wrap an existing test function. Set-up and tear-down functions can also be provided.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
...

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they
can also be provided like so:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

To make migrating existing test suites easier, unittest supports tests raising AssertionError to in-
dicate test failure. However, it is recommended that you use the explicit TestCase.fail*() and
TestCase.assert*() methods instead, as future versions of unittest may treat AssertionError
differently.

Note: Even though FunctionTestCase can be used to quickly convert an existing test base over to a
unittest-based system, this approach is not recommended. Taking the time to set up proper TestCase
subclasses will make future test refactorings infinitely easier.

In some cases, the existing tests may have been written using the doctest module. If so, doctest pro-
vides a DocTestSuite class that can automatically build unittest.TestSuite instances from the existing
doctest-based tests.

25.3.6 Skipping tests and expected failures

New in version 3.1. Unittest supports skipping individual test methods and even whole classes of tests. In addition,
it supports marking a test as a “expected failure,” a test that is broken and will fail, but shouldn’t be counted as a
failure on a TestResult.

Skipping a test is simply a matter of using the skip() decorator or one of its conditional variants.

Basic skipping looks like this:

class MyTestCase(unittest.TestCase):

@unittest.skip("demonstrating skipping")
def test_nothing(self):

self.fail("shouldn’t happen")

@unittest.skipIf(mylib.__version__ < (1, 3),
"not supported in this library version")

def test_format(self):

992 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

Tests that work for only a certain version of the library.
pass

@unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")
def test_windows_support(self):

windows specific testing code
pass

This is the output of running the example above in verbose mode:

test_format (__main__.MyTestCase) ... skipped ’not supported in this library version’
test_nothing (__main__.MyTestCase) ... skipped ’demonstrating skipping’
test_windows_support (__main__.MyTestCase) ... skipped ’requires Windows’

--
Ran 3 tests in 0.005s

OK (skipped=3)

Classes can be skipped just like methods:

@skip("showing class skipping")
class MySkippedTestCase(unittest.TestCase):

def test_not_run(self):
pass

TestCase.setUp() can also skip the test. This is useful when a resource that needs to be set up is not
available.

Expected failures use the expectedFailure() decorator.

class ExpectedFailureTestCase(unittest.TestCase):
@unittest.expectedFailure
def test_fail(self):

self.assertEqual(1, 0, "broken")

It’s easy to roll your own skipping decorators by making a decorator that calls skip() on the test when it wants
it to be skipped. This decorator skips the test unless the passed object has a certain attribute:

def skipUnlessHasattr(obj, attr):
if hasattr(obj, attr):

return lambda func: func
return unittest.skip("{0!r} doesn’t have {1!r}".format(obj, attr))

The following decorators implement test skipping and expected failures:

@unittest.skip(reason)
Unconditionally skip the decorated test. reason should describe why the test is being skipped.

@unittest.skipIf(condition, reason)
Skip the decorated test if condition is true.

@unittest.skipUnless(condition, reason)
Skip the decorated test unless condition is true.

@unittest.expectedFailure
Mark the test as an expected failure. If the test fails when run, the test is not counted as a failure.

Skipped tests will not have setUp() or tearDown() run around them. Skipped classes will not have
setUpClass() or tearDownClass() run.

25.3.7 Classes and functions

This section describes in depth the API of unittest.

25.3. unittest — Unit testing framework 993

The Python Library Reference, Release 3.2

Test cases

class unittest.TestCase(methodName=’runTest’)
Instances of the TestCase class represent the smallest testable units in the unittest universe. This
class is intended to be used as a base class, with specific tests being implemented by concrete subclasses.
This class implements the interface needed by the test runner to allow it to drive the test, and methods that
the test code can use to check for and report various kinds of failure.

Each instance of TestCase will run a single test method: the method named methodName. If you remem-
ber, we had an earlier example that went something like this:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase(’test_default_size’))
suite.addTest(WidgetTestCase(’test_resize’))
return suite

Here, we create two instances of WidgetTestCase, each of which runs a single test. Changed in version
‘TestCase‘: can be instantiated successfully without providing a method name. This makes it easier to
experiment with TestCase from the interactive interpreter. methodName defaults to runTest().

TestCase instances provide three groups of methods: one group used to run the test, another used by the
test implementation to check conditions and report failures, and some inquiry methods allowing information
about the test itself to be gathered.

Methods in the first group (running the test) are:

setUp()
Method called to prepare the test fixture. This is called immediately before calling the test method;
any exception raised by this method will be considered an error rather than a test failure. The default
implementation does nothing.

tearDown()
Method called immediately after the test method has been called and the result recorded. This is
called even if the test method raised an exception, so the implementation in subclasses may need
to be particularly careful about checking internal state. Any exception raised by this method will
be considered an error rather than a test failure. This method will only be called if the setUp()
succeeds, regardless of the outcome of the test method. The default implementation does nothing.

setUpClass()
A class method called before tests in an individual class run. setUpClass is called with the class as
the only argument and must be decorated as a classmethod():

@classmethod
def setUpClass(cls):

...

See Class and Module Fixtures for more details. New in version 3.2.

tearDownClass()
A class method called after tests in an individual class have run. tearDownClass is called with the
class as the only argument and must be decorated as a classmethod():

@classmethod
def tearDownClass(cls):

...

See Class and Module Fixtures for more details. New in version 3.2.

run(result=None)
Run the test, collecting the result into the test result object passed as result. If result is omitted or

994 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

None, a temporary result object is created (by calling the defaultTestResult() method) and
used. The result object is not returned to run()‘s caller.

The same effect may be had by simply calling the TestCase instance.

skipTest(reason)
Calling this during a test method or setUp() skips the current test. See Skipping tests and expected
failures for more information. New in version 3.1.

debug()
Run the test without collecting the result. This allows exceptions raised by the test to be propagated to
the caller, and can be used to support running tests under a debugger.

The TestCase class provides a number of methods to check for and report failures, such as:

Method Checks that New in
assertEqual(a, b) a == b
assertNotEqual(a, b) a != b
assertTrue(x) bool(x) is True
assertFalse(x) bool(x) is False
assertIs(a, b) a is b 3.1
assertIsNot(a, b) a is not b 3.1
assertIsNone(x) x is None 3.1
assertIsNotNone(x) x is not None 3.1
assertIn(a, b) a in b 3.1
assertNotIn(a, b) a not in b 3.1
assertIsInstance(a, b) isinstance(a, b) 3.2
assertNotIsInstance(a, b) not isinstance(a, b) 3.2

All the assert methods (except assertRaises(), assertRaisesRegex(), assertWarns(),
assertWarnsRegex()) accept a msg argument that, if specified, is used as the error message on failure
(see also longMessage).

assertEqual(first, second, msg=None)
Test that first and second are equal. If the values do not compare equal, the test will fail.

In addition, if first and second are the exact same type and one of list, tuple, dict, set, frozenset or
str or any type that a subclass registers with addTypeEqualityFunc() the type specific equality
function will be called in order to generate a more useful default error message (see also the list of
type-specific methods). Changed in version 3.1: Added the automatic calling of type specific equality
function.Changed in version 3.2: assertMultiLineEqual() added as the default type equality
function for comparing strings.

assertNotEqual(first, second, msg=None)
Test that first and second are not equal. If the values do compare equal, the test will fail.

assertTrue(expr, msg=None)
assertFalse(expr, msg=None)

Test that expr is true (or false).

Note that this is equivalent to bool(expr) is True and not to expr is True (use
assertIs(expr, True) for the latter). This method should also be avoided when more specific
methods are available (e.g. assertEqual(a, b) instead of assertTrue(a == b)), because
they provide a better error message in case of failure.

assertIs(first, second, msg=None)
assertIsNot(first, second, msg=None)

Test that first and second evaluate (or don’t evaluate) to the same object. New in version 3.1.

assertIsNone(expr, msg=None)
assertIsNotNone(expr, msg=None)

Test that expr is (or is not) None. New in version 3.1.

assertIn(first, second, msg=None)

25.3. unittest — Unit testing framework 995

The Python Library Reference, Release 3.2

assertNotIn(first, second, msg=None)
Test that first is (or is not) in second. New in version 3.1.

assertIsInstance(obj, cls, msg=None)
assertNotIsInstance(obj, cls, msg=None)

Test that obj is (or is not) an instance of cls (which can be a class or a tuple of classes, as supported by
isinstance()). New in version 3.2.

It is also possible to check that exceptions and warnings are raised using the following methods:

Method Checks that New
in

assertRaises(exc, fun, *args,

**kwds)
fun(*args, **kwds) raises exc

assertRaisesRegex(exc, re, fun,

*args, **kwds)
fun(*args, **kwds) raises exc and the
message matches re

3.1

assertWarns(warn, fun, *args,

**kwds)
fun(*args, **kwds) raises warn 3.2

assertWarnsRegex(warn, re, fun,

*args, **kwds)
fun(*args, **kwds) raises warn and
the message matches re

3.2

assertRaises(exception, callable, *args, **kwds)
assertRaises(exception)

Test that an exception is raised when callable is called with any positional or keyword arguments that
are also passed to assertRaises(). The test passes if exception is raised, is an error if another
exception is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple
containing the exception classes may be passed as exception.

If only the exception argument is given, returns a context manager so that the code under test can be
written inline rather than as a function:

with self.assertRaises(SomeException):
do_something()

The context manager will store the caught exception object in its exception attribute. This can be
useful if the intention is to perform additional checks on the exception raised:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

Changed in version 3.1: Added the ability to use assertRaises() as a context manager.Changed
in version 3.2: Added the exception attribute.

assertRaisesRegex(exception, regex, callable, *args, **kwds)
assertRaisesRegex(exception, regex)

Like assertRaises() but also tests that regex matches on the string representation of the raised
exception. regex may be a regular expression object or a string containing a regular expression suitable
for use by re.search(). Examples:

self.assertRaisesRegex(ValueError, ’invalid literal for.*XYZ$’,
int, ’XYZ’)

or:

with self.assertRaisesRegex(ValueError, ’literal’):
int(’XYZ’)

996 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

New in version 3.1: under the name assertRaisesRegexp.Changed in version 3.2: Renamed to
assertRaisesRegex().

assertWarns(warning, callable, *args, **kwds)
assertWarns(warning)

Test that a warning is triggered when callable is called with any positional or keyword arguments that
are also passed to assertWarns(). The test passes if warning is triggered and fails if it isn’t. Also,
any unexpected exception is an error. To catch any of a group of warnings, a tuple containing the
warning classes may be passed as warnings.

If only the warning argument is given, returns a context manager so that the code under test can be
written inline rather than as a function:

with self.assertWarns(SomeWarning):
do_something()

The context manager will store the caught warning object in its warning attribute, and the source
line which triggered the warnings in the filename and lineno attributes. This can be useful if the
intention is to perform additional checks on the exception raised:

with self.assertWarns(SomeWarning) as cm:
do_something()

self.assertIn(’myfile.py’, cm.filename)
self.assertEqual(320, cm.lineno)

This method works regardless of the warning filters in place when it is called. New in version 3.2.

assertWarnsRegex(warning, regex, callable, *args, **kwds)
assertWarnsRegex(warning, regex)

Like assertWarns() but also tests that regex matches on the message of the triggered warning.
regex may be a regular expression object or a string containing a regular expression suitable for use by
re.search(). Example:

self.assertWarnsRegex(DeprecationWarning,
r’legacy_function\(\) is deprecated’,
legacy_function, ’XYZ’)

or:

with self.assertWarnsRegex(RuntimeWarning, ’unsafe frobnicating’):
frobnicate(’/etc/passwd’)

New in version 3.2.

There are also other methods used to perform more specific checks, such as:

25.3. unittest — Unit testing framework 997

The Python Library Reference, Release 3.2

Method Checks that New
in

assertAlmostEqual(a,
b)

round(a-b, 7) == 0

assertNotAlmostEqual(a,
b)

round(a-b, 7) != 0

assertGreater(a, b) a > b 3.1
assertGreaterEqual(a,
b)

a >= b 3.1

assertLess(a, b) a < b 3.1
assertLessEqual(a,
b)

a <= b 3.1

assertRegex(s, re) regex.search(s) 3.1
assertNotRegex(s,
re)

not regex.search(s) 3.2

assertCountEqual(a,
b)

a and b have the same elements in the same number,
regardless of their order

3.2

assertAlmostEqual(first, second, places=7, msg=None, delta=None)
assertNotAlmostEqual(first, second, places=7, msg=None, delta=None)

Test that first and second are approximately (or not approximately) equal by computing the difference,
rounding to the given number of decimal places (default 7), and comparing to zero. Note that these
methods round the values to the given number of decimal places (i.e. like the round() function) and
not significant digits.

If delta is supplied instead of places then the difference between first and second must be less (or
more) than delta.

Supplying both delta and places raises a TypeError. Changed in version 3.2:
assertAlmostEqual() automatically considers almost equal objects that compare equal.
assertNotAlmostEqual() automatically fails if the objects compare equal. Added the delta
keyword argument.

assertGreater(first, second, msg=None)
assertGreaterEqual(first, second, msg=None)
assertLess(first, second, msg=None)
assertLessEqual(first, second, msg=None)

Test that first is respectively >, >=, < or <= than second depending on the method name. If not, the
test will fail:

>>> self.assertGreaterEqual(3, 4)
AssertionError: "3" unexpectedly not greater than or equal to "4"

New in version 3.1.

assertRegex(text, regex, msg=None)
assertNotRegex(text, regex, msg=None)

Test that a regex search matches (or does not match) text. In case of failure, the error message will
include the pattern and the text (or the pattern and the part of text that unexpectedly matched). regex
may be a regular expression object or a string containing a regular expression suitable for use by
re.search(). New in version 3.1: under the name assertRegexpMatches.Changed in ver-
sion 3.2: The method assertRegexpMatches() has been renamed to assertRegex().New
in version 3.2: assertNotRegex().

assertDictContainsSubset(subset, dictionary, msg=None)
Tests whether the key/value pairs in dictionary are a superset of those in subset. If not, an error
message listing the missing keys and mismatched values is generated.

Note, the arguments are in the opposite order of what the method name dictates. Instead, consider us-
ing the set-methods on dictionary views, for example: d.keys() <= e.keys() or d.items()
<= d.items(). New in version 3.1.Deprecated since version 3.2.

998 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they
don’t, an error message listing the differences between the sequences will be generated.

Duplicate elements are not ignored when comparing first and second. It veri-
fies whether each element has the same count in both sequences. Equivalent to:
assertEqual(Counter(list(first)), Counter(list(second))) but works
with sequences of unhashable objects as well. New in version 3.2.

assertSameElements(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they
don’t, an error message listing the differences between the sequences will be generated.

Duplicate elements are ignored when comparing first and second. It is the equivalent of
assertEqual(set(first), set(second)) but it works with sequences of unhashable ob-
jects as well. Because duplicates are ignored, this method has been deprecated in favour of
assertCountEqual(). New in version 3.1.Deprecated since version 3.2.

The assertEqual() method dispatches the equality check for objects of the same type to different
type-specific methods. These methods are already implemented for most of the built-in types, but it’s also
possible to register new methods using addTypeEqualityFunc():

addTypeEqualityFunc(typeobj, function)
Registers a type-specific method called by assertEqual() to check if two objects of ex-
actly the same typeobj (not subclasses) compare equal. function must take two positional argu-
ments and a third msg=None keyword argument just as assertEqual() does. It must raise
self.failureException(msg) when inequality between the first two parameters is detected –
possibly providing useful information and explaining the inequalities in details in the error message.
New in version 3.1.

The list of type-specific methods automatically used by assertEqual() are summarized in the following
table. Note that it’s usually not necessary to invoke these methods directly.

Method Used to compare New in
assertMultiLineEqual(a, b) strings 3.1
assertSequenceEqual(a, b) sequences 3.1
assertListEqual(a, b) lists 3.1
assertTupleEqual(a, b) tuples 3.1
assertSetEqual(a, b) sets or frozensets 3.1
assertDictEqual(a, b) dicts 3.1

assertMultiLineEqual(first, second, msg=None)
Test that the multiline string first is equal to the string second. When not equal a diff of the two strings
highlighting the differences will be included in the error message. This method is used by default
when comparing strings with assertEqual(). New in version 3.1.

assertSequenceEqual(first, second, msg=None, seq_type=None)
Tests that two sequences are equal. If a seq_type is supplied, both first and second must be instances
of seq_type or a failure will be raised. If the sequences are different an error message is constructed
that shows the difference between the two.

This method is not called directly by assertEqual(), but it’s used to implement
assertListEqual() and assertTupleEqual(). New in version 3.1.

assertListEqual(first, second, msg=None)
assertTupleEqual(first, second, msg=None)

Tests that two lists or tuples are equal. If not an error message is constructed that shows only the
differences between the two. An error is also raised if either of the parameters are of the wrong type.
These methods are used by default when comparing lists or tuples with assertEqual(). New in
version 3.1.

assertSetEqual(first, second, msg=None)
Tests that two sets are equal. If not, an error message is constructed that lists the differences between
the sets. This method is used by default when comparing sets or frozensets with assertEqual().

25.3. unittest — Unit testing framework 999

The Python Library Reference, Release 3.2

Fails if either of first or second does not have a set.difference() method. New in version 3.1.

assertDictEqual(first, second, msg=None)
Test that two dictionaries are equal. If not, an error message is constructed that shows the differ-
ences in the dictionaries. This method will be used by default to compare dictionaries in calls to
assertEqual(). New in version 3.1.

Finally the TestCase provides the following methods and attributes:

fail(msg=None)
Signals a test failure unconditionally, with msg or None for the error message.

failureException
This class attribute gives the exception raised by the test method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order
to “play fair” with the framework. The initial value of this attribute is AssertionError.

longMessage
If set to True then any explicit failure message you pass in to the assert methods will be appended
to the end of the normal failure message. The normal messages contain useful information about the
objects involved, for example the message from assertEqual shows you the repr of the two unequal
objects. Setting this attribute to True allows you to have a custom error message in addition to the
normal one.

This attribute defaults to True. If set to False then a custom message passed to an assert method will
silence the normal message.

The class setting can be overridden in individual tests by assigning an instance attribute to True or
False before calling the assert methods. New in version 3.1.

maxDiff
This attribute controls the maximum length of diffs output by assert methods that report diffs
on failure. It defaults to 80*8 characters. Assert methods affected by this attribute are
assertSequenceEqual() (including all the sequence comparison methods that delegate to it),
assertDictEqual() and assertMultiLineEqual().

Setting maxDiff to None means that there is no maximum length of diffs. New in version 3.2.

Testing frameworks can use the following methods to collect information on the test:

countTestCases()
Return the number of tests represented by this test object. For TestCase instances, this will always
be 1.

defaultTestResult()
Return an instance of the test result class that should be used for this test case class (if no other result
instance is provided to the run() method).

For TestCase instances, this will always be an instance of TestResult; subclasses of TestCase
should override this as necessary.

id()
Return a string identifying the specific test case. This is usually the full name of the test method,
including the module and class name.

shortDescription()
Returns a description of the test, or None if no description has been provided. The default imple-
mentation of this method returns the first line of the test method’s docstring, if available, or None.
Changed in version 3.1: In 3.1 this was changed to add the test name to the short description even in
the presence of a docstring. This caused compatibility issues with unittest extensions and adding the
test name was moved to the TextTestResult in Python 3.2.

addCleanup(function, *args, **kwargs)
Add a function to be called after tearDown() to cleanup resources used during the test. Functions
will be called in reverse order to the order they are added (LIFO). They are called with any arguments
and keyword arguments passed into addCleanup() when they are added.

1000 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

If setUp() fails, meaning that tearDown() is not called, then any cleanup functions added will
still be called. New in version 3.2.

doCleanups()
This method is called unconditionally after tearDown(), or after setUp() if setUp() raises an
exception.

It is responsible for calling all the cleanup functions added by addCleanup(). If you need cleanup
functions to be called prior to tearDown() then you can call doCleanups() yourself.

doCleanups() pops methods off the stack of cleanup functions one at a time, so it can be called at
any time. New in version 3.2.

class unittest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)
This class implements the portion of the TestCase interface which allows the test runner to drive the test,
but does not provide the methods which test code can use to check and report errors. This is used to create
test cases using legacy test code, allowing it to be integrated into a unittest-based test framework.

Deprecated aliases

For historical reasons, some of the TestCase methods had one or more aliases that are now deprecated. The
following table lists the correct names along with their deprecated aliases:

Method Name Deprecated alias Deprecated alias
assertEqual() failUnlessEqual assertEquals
assertNotEqual() failIfEqual assertNotEquals
assertTrue() failUnless assert_
assertFalse() failIf
assertRaises() failUnlessRaises
assertAlmostEqual() failUnlessAlmostEqual assertAlmostEquals
assertNotAlmostEqual() failIfAlmostEqual assertNotAlmostEquals
assertRegex() assertRegexpMatches
assertRaisesRegex() assertRaisesRegexp

Deprecated since version 3.1, will be removed in version 3.3: the fail* aliases listed in the sec-
ond column.Deprecated since version 3.2: the assert* aliases listed in the third column.Deprecated
since version 3.2: assertRegexpMatches and assertRaisesRegexp have been renamed to
assertRegex() and assertRaisesRegex()

Grouping tests

class unittest.TestSuite(tests=())
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case. Running a TestSuite instance is the
same as iterating over the suite, running each test individually.

If tests is given, it must be an iterable of individual test cases or other test suites that will be used to build
the suite initially. Additional methods are provided to add test cases and suites to the collection later on.

TestSuite objects behave much like TestCase objects, except they do not actually implement a test.
Instead, they are used to aggregate tests into groups of tests that should be run together. Some additional
methods are available to add tests to TestSuite instances:

addTest(test)
Add a TestCase or TestSuite to the suite.

addTests(tests)
Add all the tests from an iterable of TestCase and TestSuite instances to this test suite.

This is equivalent to iterating over tests, calling addTest() for each element.

TestSuite shares the following methods with TestCase:

25.3. unittest — Unit testing framework 1001

The Python Library Reference, Release 3.2

run(result)
Run the tests associated with this suite, collecting the result into the test result object passed as result.
Note that unlike TestCase.run(), TestSuite.run() requires the result object to be passed
in.

debug()
Run the tests associated with this suite without collecting the result. This allows exceptions raised by
the test to be propagated to the caller and can be used to support running tests under a debugger.

countTestCases()
Return the number of tests represented by this test object, including all individual tests and sub-suites.

__iter__()
Tests grouped by a TestSuite are always accessed by iteration. Subclasses can lazily provide tests
by overriding __iter__(). Note that this method maybe called several times on a single suite
(for example when counting tests or comparing for equality) so the tests returned must be the same for
repeated iterations. Changed in version 3.2: In earlier versions the TestSuite accessed tests directly
rather than through iteration, so overriding __iter__() wasn’t sufficient for providing tests.

In the typical usage of a TestSuite object, the run() method is invoked by a TestRunner rather than
by the end-user test harness.

Loading and running tests

class unittest.TestLoader
The TestLoader class is used to create test suites from classes and modules. Normally, there is no
need to create an instance of this class; the unittest module provides an instance that can be shared
as unittest.defaultTestLoader. Using a subclass or instance, however, allows customization of
some configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase(testCaseClass)
Return a suite of all tests cases contained in the TestCase-derived testCaseClass.

loadTestsFromModule(module)
Return a suite of all tests cases contained in the given module. This method searches module for
classes derived from TestCase and creates an instance of the class for each test method defined for
the class.

Note: While using a hierarchy of TestCase-derived classes can be convenient in sharing fixtures
and helper functions, defining test methods on base classes that are not intended to be instantiated
directly does not play well with this method. Doing so, however, can be useful when the fixtures are
different and defined in subclasses.

If a module provides a load_tests function it will be called to load the tests. This allows mod-
ules to customize test loading. This is the load_tests protocol. Changed in version 3.2: Support for
load_tests added.

loadTestsFromName(name, module=None)
Return a suite of all tests cases given a string specifier.

The specifier name is a “dotted name” that may resolve either to a module, a test case class, a
test method within a test case class, a TestSuite instance, or a callable object which returns a
TestCase or TestSuite instance. These checks are applied in the order listed here; that is, a
method on a possible test case class will be picked up as “a test method within a test case class”, rather
than “a callable object”.

For example, if you have a module SampleTests containing a TestCase-derived
class SampleTestCase with three test methods (test_one(), test_two(), and
test_three()), the specifier ’SampleTests.SampleTestCase’ would cause this
method to return a suite which will run all three test methods. Using the specifier

1002 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

’SampleTests.SampleTestCase.test_two’ would cause it to return a test suite which will
run only the test_two() test method. The specifier can refer to modules and packages which have
not been imported; they will be imported as a side-effect.

The method optionally resolves name relative to the given module.

loadTestsFromNames(names, module=None)
Similar to loadTestsFromName(), but takes a sequence of names rather than a single name. The
return value is a test suite which supports all the tests defined for each name.

getTestCaseNames(testCaseClass)
Return a sorted sequence of method names found within testCaseClass; this should be a subclass of
TestCase.

discover(start_dir, pattern=’test*.py’, top_level_dir=None)
Find and return all test modules from the specified start directory, recursing into subdirectories to find
them. Only test files that match pattern will be loaded. (Using shell style pattern matching.) Only
module names that are importable (i.e. are valid Python identifiers) will be loaded.

All test modules must be importable from the top level of the project. If the start directory is not the
top level directory then the top level directory must be specified separately.

If importing a module fails, for example due to a syntax error, then this will be recorded as a single
error and discovery will continue.

If a test package name (directory with __init__.py) matches the pattern then the package will be
checked for a load_tests function. If this exists then it will be called with loader, tests, pattern.

If load_tests exists then discovery does not recurse into the package, load_tests is responsible for
loading all tests in the package.

The pattern is deliberately not stored as a loader attribute so that packages can continue discovery
themselves. top_level_dir is stored so load_tests does not need to pass this argument in to
loader.discover().

start_dir can be a dotted module name as well as a directory. New in version 3.2.

The following attributes of a TestLoader can be configured either by subclassing or assignment on an
instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value
is ’test’.

This affects getTestCaseNames() and all the loadTestsFrom*() methods.

sortTestMethodsUsing
Function to be used to compare method names when sorting them in getTestCaseNames() and
all the loadTestsFrom*() methods.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are
needed. The default value is the TestSuite class.

This affects all the loadTestsFrom*() methods.

class unittest.TestResult
This class is used to compile information about which tests have succeeded and which have failed.

A TestResult object stores the results of a set of tests. The TestCase and TestSuite classes ensure
that results are properly recorded; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top of unittest may want access to the TestResult object gen-
erated by running a set of tests for reporting purposes; a TestResult instance is returned by the
TestRunner.run() method for this purpose.

TestResult instances have the following attributes that will be of interest when inspecting the results of
running a set of tests:

25.3. unittest — Unit testing framework 1003

The Python Library Reference, Release 3.2

errors
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each
tuple represents a test which raised an unexpected exception.

failures
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each
tuple represents a test where a failure was explicitly signalled using the TestCase.fail*() or
TestCase.assert*() methods.

skipped
A list containing 2-tuples of TestCase instances and strings holding the reason for skipping the test.
New in version 3.1.

expectedFailures
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each
tuple represents an expected failure of the test case.

unexpectedSuccesses
A list containing TestCase instances that were marked as expected failures, but succeeded.

shouldStop
Set to True when the execution of tests should stop by stop().

testsRun
The total number of tests run so far.

buffer
If set to true, sys.stdout and sys.stderr will be buffered in between startTest() and
stopTest() being called. Collected output will only be echoed onto the real sys.stdout and
sys.stderr if the test fails or errors. Any output is also attached to the failure / error message. New
in version 3.2.

failfast
If set to true stop() will be called on the first failure or error, halting the test run. New in version
3.2.

wasSuccessful()
Return True if all tests run so far have passed, otherwise returns False.

stop()
This method can be called to signal that the set of tests being run should be aborted by setting the
shouldStop attribute to True. TestRunner objects should respect this flag and return without
running any additional tests.

For example, this feature is used by the TextTestRunner class to stop the test framework when
the user signals an interrupt from the keyboard. Interactive tools which provide TestRunner imple-
mentations can use this in a similar manner.

The following methods of the TestResult class are used to maintain the internal data structures, and
may be extended in subclasses to support additional reporting requirements. This is particularly useful in
building tools which support interactive reporting while tests are being run.

startTest(test)
Called when the test case test is about to be run.

stopTest(test)
Called after the test case test has been executed, regardless of the outcome.

startTestRun(test)
Called once before any tests are executed. New in version 3.2.

stopTestRun(test)
Called once after all tests are executed. New in version 3.2.

addError(test, err)
Called when the test case test raises an unexpected exception err is a tuple of the form returned by
sys.exc_info(): (type, value, traceback).

1004 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

The default implementation appends a tuple (test, formatted_err) to the instance’s errors
attribute, where formatted_err is a formatted traceback derived from err.

addFailure(test, err)
Called when the test case test signals a failure. err is a tuple of the form returned by
sys.exc_info(): (type, value, traceback).

The default implementation appends a tuple (test, formatted_err) to the instance’s
failures attribute, where formatted_err is a formatted traceback derived from err.

addSuccess(test)
Called when the test case test succeeds.

The default implementation does nothing.

addSkip(test, reason)
Called when the test case test is skipped. reason is the reason the test gave for skipping.

The default implementation appends a tuple (test, reason) to the instance’s skipped attribute.

addExpectedFailure(test, err)
Called when the test case test fails, but was marked with the expectedFailure() decorator.

The default implementation appends a tuple (test, formatted_err) to the instance’s
expectedFailures attribute, where formatted_err is a formatted traceback derived from err.

addUnexpectedSuccess(test)
Called when the test case test was marked with the expectedFailure() decorator, but succeeded.

The default implementation appends the test to the instance’s unexpectedSuccesses attribute.

class unittest.TextTestResult(stream, descriptions, verbosity)
A concrete implementation of TestResult used by the TextTestRunner. New in version 3.2: This
class was previously named _TextTestResult. The old name still exists as an alias but is deprecated.

unittest.defaultTestLoader
Instance of the TestLoader class intended to be shared. If no customization of the TestLoader is
needed, this instance can be used instead of repeatedly creating new instances.

class unittest.TextTestRunner(stream=None, descriptions=True, verbosity=1, runner-
class=None, warnings=None)

A basic test runner implementation that outputs results to a stream. If stream is None, the default, sys.stderr
is used as the output stream. This class has a few configurable parameters, but is essentially very simple.
Graphical applications which run test suites should provide alternate implementations.

By default this runner shows DeprecationWarning, PendingDeprecationWarning, and
ImportWarning even if they are ignored by default. Deprecation warnings caused by deprecated unittest
methods are also special-cased and, when the warning filters are ’default’ or ’always’, they will
appear only once per-module, in order to avoid too many warning messages. This behavior can be over-
ridden using the -Wd or -Wa options and leaving warnings to None. Changed in version 3.2: Added the
warnings argument.Changed in version 3.2: The default stream is set to sys.stderr at instantiation time
rather than import time.

_makeResult()
This method returns the instance of TestResult used by run(). It is not intended to be called
directly, but can be overridden in subclasses to provide a custom TestResult.

_makeResult() instantiates the class or callable passed in the TextTestRunner constructor as
the resultclass argument. It defaults to TextTestResult if no resultclass is provided.
The result class is instantiated with the following arguments:

stream, descriptions, verbosity

unittest.main(module=’__main__’, defaultTest=None, argv=None, testRunner=None, test-
Loader=unittest.loader.defaultTestLoader, exit=True, verbosity=1, failfast=None,
catchbreak=None, buffer=None, warnings=None)

25.3. unittest — Unit testing framework 1005

The Python Library Reference, Release 3.2

A command-line program that runs a set of tests; this is primarily for making test modules conveniently
executable. The simplest use for this function is to include the following line at the end of a test script:

if __name__ == ’__main__’:
unittest.main()

You can run tests with more detailed information by passing in the verbosity argument:

if __name__ == ’__main__’:
unittest.main(verbosity=2)

The testRunner argument can either be a test runner class or an already created instance of it. By default
main calls sys.exit() with an exit code indicating success or failure of the tests run.

main supports being used from the interactive interpreter by passing in the argument exit=False. This
displays the result on standard output without calling sys.exit():

>>> from unittest import main
>>> main(module=’test_module’, exit=False)

The failfast, catchbreak and buffer parameters have the same effect as the same-name command-
line options.

The warning argument specifies the warning filter that should be used while running the tests. If it’s not
specified, it will remain None if a -W option is passed to python, otherwise it will be set to ’default’.

Calling main actually returns an instance of the TestProgram class. This stores the result of the tests
run as the result attribute. Changed in version 3.1: The exit parameter was added.Changed in version
3.2: The verbosity, failfast, catchbreak, buffer and warnings parameters were added.

load_tests Protocol

New in version 3.2. Modules or packages can customize how tests are loaded from them during normal test runs
or test discovery by implementing a function called load_tests.

If a test module defines load_tests it will be called by TestLoader.loadTestsFromModule() with
the following arguments:

load_tests(loader, standard_tests, None)

It should return a TestSuite.

loader is the instance of TestLoader doing the loading. standard_tests are the tests that would be loaded by
default from the module. It is common for test modules to only want to add or remove tests from the standard set
of tests. The third argument is used when loading packages as part of test discovery.

A typical load_tests function that loads tests from a specific set of TestCase classes may look like:

test_cases = (TestCase1, TestCase2, TestCase3)

def load_tests(loader, tests, pattern):
suite = TestSuite()
for test_class in test_cases:

tests = loader.loadTestsFromTestCase(test_class)
suite.addTests(tests)

return suite

If discovery is started, either from the command line or by calling TestLoader.discover(), with a pattern
that matches a package name then the package __init__.py will be checked for load_tests.

Note: The default pattern is ‘test*.py’. This matches all Python files that start with ‘test’ but won’t match any
test directories.

1006 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

A pattern like ‘test*’ will match test packages as well as modules.

If the package __init__.py defines load_tests then it will be called and discovery not continued into the
package. load_tests is called with the following arguments:

load_tests(loader, standard_tests, pattern)

This should return a TestSuite representing all the tests from the package. (standard_tests will only
contain tests collected from __init__.py.)

Because the pattern is passed into load_tests the package is free to continue (and potentially modify) test
discovery. A ‘do nothing’ load_tests function for a test package would look like:

def load_tests(loader, standard_tests, pattern):
top level directory cached on loader instance
this_dir = os.path.dirname(__file__)
package_tests = loader.discover(start_dir=this_dir, pattern=pattern)
standard_tests.addTests(package_tests)
return standard_tests

25.3.8 Class and Module Fixtures

Class and module level fixtures are implemented in TestSuite. When the test suite encounters a test from a new
class then tearDownClass() from the previous class (if there is one) is called, followed by setUpClass()
from the new class.

Similarly if a test is from a different module from the previous test then tearDownModule from the previous
module is run, followed by setUpModule from the new module.

After all the tests have run the final tearDownClass and tearDownModule are run.

Note that shared fixtures do not play well with [potential] features like test parallelization and they break test
isolation. They should be used with care.

The default ordering of tests created by the unittest test loaders is to group all tests from the same modules and
classes together. This will lead to setUpClass / setUpModule (etc) being called exactly once per class and
module. If you randomize the order, so that tests from different modules and classes are adjacent to each other,
then these shared fixture functions may be called multiple times in a single test run.

Shared fixtures are not intended to work with suites with non-standard ordering. A BaseTestSuite still exists
for frameworks that don’t want to support shared fixtures.

If there are any exceptions raised during one of the shared fixture functions the test is reported as an error. Because
there is no corresponding test instance an _ErrorHolder object (that has the same interface as a TestCase) is
created to represent the error. If you are just using the standard unittest test runner then this detail doesn’t matter,
but if you are a framework author it may be relevant.

setUpClass and tearDownClass

These must be implemented as class methods:

import unittest

class Test(unittest.TestCase):
@classmethod
def setUpClass(cls):

cls._connection = createExpensiveConnectionObject()

@classmethod
def tearDownClass(cls):

cls._connection.destroy()

25.3. unittest — Unit testing framework 1007

The Python Library Reference, Release 3.2

If you want the setUpClass and tearDownClass on base classes called then you must call up to them
yourself. The implementations in TestCase are empty.

If an exception is raised during a setUpClass then the tests in the class are not run and the tearDownClass is
not run. Skipped classes will not have setUpClass or tearDownClass run. If the exception is a SkipTest
exception then the class will be reported as having been skipped instead of as an error.

setUpModule and tearDownModule

These should be implemented as functions:

def setUpModule():
createConnection()

def tearDownModule():
closeConnection()

If an exception is raised in a setUpModule then none of the tests in the module will be run and the
tearDownModule will not be run. If the exception is a SkipTest exception then the module will be reported
as having been skipped instead of as an error.

25.3.9 Signal Handling

New in version 3.2. The -c/--catch command-line option to unittest, along with the catchbreak parameter
to unittest.main(), provide more friendly handling of control-C during a test run. With catch break behavior
enabled control-C will allow the currently running test to complete, and the test run will then end and report all
the results so far. A second control-c will raise a KeyboardInterrupt in the usual way.

The control-c handling signal handler attempts to remain compatible with code or tests that install their own
signal.SIGINT handler. If the unittest handler is called but isn’t the installed signal.SIGINT handler,
i.e. it has been replaced by the system under test and delegated to, then it calls the default handler. This will
normally be the expected behavior by code that replaces an installed handler and delegates to it. For individual
tests that need unittest control-c handling disabled the removeHandler() decorator can be used.

There are a few utility functions for framework authors to enable control-c handling functionality within test
frameworks.

unittest.installHandler()
Install the control-c handler. When a signal.SIGINT is received (usually in response to the user pressing
control-c) all registered results have stop() called.

unittest.registerResult(result)
Register a TestResult object for control-c handling. Registering a result stores a weak reference to it,
so it doesn’t prevent the result from being garbage collected.

Registering a TestResult object has no side-effects if control-c handling is not enabled, so test frame-
works can unconditionally register all results they create independently of whether or not handling is en-
abled.

unittest.removeResult(result)
Remove a registered result. Once a result has been removed then stop() will no longer be called on that
result object in response to a control-c.

unittest.removeHandler(function=None)
When called without arguments this function removes the control-c handler if it has been installed. This
function can also be used as a test decorator to temporarily remove the handler whilst the test is being
executed:

@unittest.removeHandler
def test_signal_handling(self):

...

1008 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

25.4 2to3 - Automated Python 2 to 3 code translation

2to3 is a Python program that reads Python 2.x source code and applies a series of fixers to transform it into valid
Python 3.x code. The standard library contains a rich set of fixers that will handle almost all code. 2to3 supporting
library lib2to3 is, however, a flexible and generic library, so it is possible to write your own fixers for 2to3.
lib2to3 could also be adapted to custom applications in which Python code needs to be edited automatically.

25.4.1 Using 2to3

2to3 will usually be installed with the Python interpreter as a script. It is also located in the Tools/scripts
directory of the Python root.

2to3’s basic arguments are a list of files or directories to transform. The directories are to recursively traversed for
Python sources.

Here is a sample Python 2.x source file, example.py:

def greet(name):
print "Hello, {0}!".format(name)

print "What’s your name?"
name = raw_input()
greet(name)

It can be converted to Python 3.x code via 2to3 on the command line:

$ 2to3 example.py

A diff against the original source file is printed. 2to3 can also write the needed modifications right back to the
source file. (A backup of the original file is made unless -n is also given.) Writing the changes back is enabled
with the -w flag:

$ 2to3 -w example.py

After transformation, example.py looks like this:

def greet(name):
print("Hello, {0}!".format(name))

print("What’s your name?")
name = input()
greet(name)

Comments and exact indentation are preserved throughout the translation process.

By default, 2to3 runs a set of predefined fixers. The -l flag lists all available fixers. An explicit set of fixers to run
can be given with -f. Likewise the -x explicitly disables a fixer. The following example runs only the imports
and has_key fixers:

$ 2to3 -f imports -f has_key example.py

This command runs every fixer except the apply fixer:

$ 2to3 -x apply example.py

Some fixers are explicit, meaning they aren’t run by default and must be listed on the command line to be run.
Here, in addition to the default fixers, the idioms fixer is run:

$ 2to3 -f all -f idioms example.py

Notice how passing all enables all default fixers.

Sometimes 2to3 will find a place in your source code that needs to be changed, but 2to3 cannot fix automatically.
In this case, 2to3 will print a warning beneath the diff for a file. You should address the warning in order to have
compliant 3.x code.

25.4. 2to3 - Automated Python 2 to 3 code translation 1009

The Python Library Reference, Release 3.2

2to3 can also refactor doctests. To enable this mode, use the -d flag. Note that only doctests will be refactored.
This also doesn’t require the module to be valid Python. For example, doctest like examples in a reST document
could also be refactored with this option.

The -v option enables output of more information on the translation process.

Since some print statements can be parsed as function calls or statements, 2to3 cannot always read files containing
the print function. When 2to3 detects the presence of the from __future__ import print_function
compiler directive, it modifies its internal grammar to interpret print() as a function. This change can also
be enabled manually with the -p flag. Use -p to run fixers on code that already has had its print statements
converted.

25.4.2 Fixers

Each step of transforming code is encapsulated in a fixer. The command 2to3 -l lists them. As documented
above, each can be turned on and off individually. They are described here in more detail.

apply
Removes usage of apply(). For example apply(function, *args, **kwargs) is converted to
function(*args, **kwargs).

basestring
Converts basestring to str.

buffer
Converts buffer to memoryview. This fixer is optional because the memoryview API is similar but
not exactly the same as that of buffer.

callable
Converts callable(x) to isinstance(x, collections.Callable), adding an import to
collections if needed.

dict
Fixes dictionary iteration methods. dict.iteritems() is converted to dict.items(),
dict.iterkeys() to dict.keys(), and dict.itervalues() to dict.values(). Simi-
larly, dict.viewitems(), dict.viewkeys() and dict.viewvalues() are converted respec-
tively to dict.items(), dict.keys() and dict.values(). It also wraps existing usages of
dict.items(), dict.keys(), and dict.values() in a call to list.

except
Converts except X, T to except X as T.

exec
Converts the exec statement to the exec() function.

execfile
Removes usage of execfile(). The argument to execfile() is wrapped in calls to open(),
compile(), and exec().

exitfunc
Changes assignment of sys.exitfunc to use of the atexit module.

filter
Wraps filter() usage in a list call.

funcattrs
Fixes function attributes that have been renamed. For example, my_function.func_closure is con-
verted to my_function.__closure__.

future
Removes from __future__ import new_feature statements.

getcwdu
Renames os.getcwdu() to os.getcwd().

1010 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

has_key
Changes dict.has_key(key) to key in dict.

idioms
This optional fixer performs several transformations that make Python code more idiomatic. Type
comparisons like type(x) is SomeClass and type(x) == SomeClass are converted to
isinstance(x, SomeClass). while 1 becomes while True. This fixer also tries to make use
of sorted() in appropriate places. For example, this block

L = list(some_iterable)
L.sort()

is changed to

L = sorted(some_iterable)

import
Detects sibling imports and converts them to relative imports.

imports
Handles module renames in the standard library.

imports2
Handles other modules renames in the standard library. It is separate from the imports fixer only because
of technical limitations.

input
Converts input(prompt) to eval(input(prompt))

intern
Converts intern() to sys.intern().

isinstance
Fixes duplicate types in the second argument of isinstance(). For example, isinstance(x,
(int, int)) is converted to isinstance(x, (int)).

itertools_imports
Removes imports of itertools.ifilter(), itertools.izip(), and itertools.imap().
Imports of itertools.ifilterfalse() are also changed to itertools.filterfalse().

itertools
Changes usage of itertools.ifilter(), itertools.izip(), and itertools.imap()
to their built-in equivalents. itertools.ifilterfalse() is changed to
itertools.filterfalse().

long
Strips the L prefix on long literals and renames long to int.

map
Wraps map() in a list call. It also changes map(None, x) to list(x). Using from
future_builtins import map disables this fixer.

metaclass
Converts the old metaclass syntax (__metaclass__ = Meta in the class body) to the new (class
X(metaclass=Meta)).

methodattrs
Fixes old method attribute names. For example, meth.im_func is converted to meth.__func__.

ne
Converts the old not-equal syntax, <>, to !=.

next
Converts the use of iterator’s next() methods to the next() function. It also renames next() methods
to __next__().

25.4. 2to3 - Automated Python 2 to 3 code translation 1011

The Python Library Reference, Release 3.2

nonzero
Renames __nonzero__() to __bool__().

numliterals
Converts octal literals into the new syntax.

operator
Converts calls to various functions in the operator module to other, but equivalent, function calls. When
needed, the appropriate import statements are added, e.g. import collections. The following
mapping are made:

From To
operator.isCallable(obj) hasattr(obj, ’__call__’)
operator.sequenceIncludes(obj) operator.contains(obj)
operator.isSequenceType(obj) isinstance(obj, collections.Sequence)
operator.isMappingType(obj) isinstance(obj, collections.Mapping)
operator.isNumberType(obj) isinstance(obj, numbers.Number)
operator.repeat(obj, n) operator.mul(obj, n)
operator.irepeat(obj, n) operator.imul(obj, n)

paren
Add extra parenthesis where they are required in list comprehensions. For example, [x for x in 1,
2] becomes [x for x in (1, 2)].

print
Converts the print statement to the print() function.

raise
Converts raise E, V to raise E(V), and raise E, V, T to raise
E(V).with_traceback(T). If E is a tuple, the translation will be incorrect because substitut-
ing tuples for exceptions has been removed in 3.0.

raw_input
Converts raw_input() to input().

reduce
Handles the move of reduce() to functools.reduce().

renames
Changes sys.maxint to sys.maxsize.

repr
Replaces backtick repr with the repr() function.

set_literal
Replaces use of the set constructor with set literals. This fixer is optional.

standard_error
Renames StandardError to Exception.

sys_exc
Changes the deprecated sys.exc_value, sys.exc_type, sys.exc_traceback to use
sys.exc_info().

throw
Fixes the API change in generator’s throw() method.

tuple_params
Removes implicit tuple parameter unpacking. This fixer inserts temporary variables.

types
Fixes code broken from the removal of some members in the types module.

unicode
Renames unicode to str.

1012 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

urllib
Handles the rename of urllib and urllib2 to the urllib package.

ws_comma
Removes excess whitespace from comma separated items. This fixer is optional.

xrange
Renames xrange() to range() and wraps existing range() calls with list.

xreadlines
Changes for x in file.xreadlines() to for x in file.

zip
Wraps zip() usage in a list call. This is disabled when from future_builtins import zip
appears.

25.4.3 lib2to3 - 2to3’s library

Note: The lib2to3 API should be considered unstable and may change drastically in the future.

25.5 test — Regression tests package for Python

Note: The test package is meant for internal use by Python only. It is documented for the benefit of the
core developers of Python. Any use of this package outside of Python’s standard library is discouraged as code
mentioned here can change or be removed without notice between releases of Python.

The test package contains all regression tests for Python as well as the modules test.support and
test.regrtest. test.support is used to enhance your tests while test.regrtest drives the test-
ing suite.

Each module in the test package whose name starts with test_ is a testing suite for a specific module or
feature. All new tests should be written using the unittest or doctest module. Some older tests are written
using a “traditional” testing style that compares output printed to sys.stdout; this style of test is considered
deprecated.

See Also:

Module unittest Writing PyUnit regression tests.

Module doctest Tests embedded in documentation strings.

25.5.1 Writing Unit Tests for the test package

It is preferred that tests that use the unittestmodule follow a few guidelines. One is to name the test module by
starting it with test_ and end it with the name of the module being tested. The test methods in the test module
should start with test_ and end with a description of what the method is testing. This is needed so that the
methods are recognized by the test driver as test methods. Also, no documentation string for the method should be
included. A comment (such as # Tests function returns only True or False) should be used
to provide documentation for test methods. This is done because documentation strings get printed out if they
exist and thus what test is being run is not stated.

A basic boilerplate is often used:

import unittest
from test import support

class MyTestCase1(unittest.TestCase):

25.5. test — Regression tests package for Python 1013

The Python Library Reference, Release 3.2

Only use setUp() and tearDown() if necessary

def setUp(self):
... code to execute in preparation for tests ...

def tearDown(self):
... code to execute to clean up after tests ...

def test_feature_one(self):
Test feature one.
... testing code ...

def test_feature_two(self):
Test feature two.
... testing code ...

... more test methods ...

class MyTestCase2(unittest.TestCase):
... same structure as MyTestCase1 ...

... more test classes ...

def test_main():
support.run_unittest(MyTestCase1,

MyTestCase2,
... list other tests ...
)

if __name__ == ’__main__’:
test_main()

This boilerplate code allows the testing suite to be run by test.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

• The testing suite should exercise all classes, functions, and constants. This includes not just the external
API that is to be presented to the outside world but also “private” code.

• Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and
edge cases are tested.

• Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

• Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as
many different paths through the code are taken.

• Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not
crop up again if the code is changed in the future.

• Make sure to clean up after your tests (such as close and remove all temporary files).

• If a test is dependent on a specific condition of the operating system then verify the condition already exists
before attempting the test.

• Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of
tests and also minimizes possible anomalous behavior from side-effects of importing a module.

• Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is
used. Minimize code duplication by subclassing a basic test class with a class that specifies the input:

1014 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

class TestFuncAcceptsSequences(unittest.TestCase):

func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1, 2, 3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = ’abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1, 2, 3)

See Also:

Test Driven Development A book by Kent Beck on writing tests before code.

25.5.2 Running tests using the command-line interface

The test package can be run as a script to drive Python’s regression test suite, thanks to the -m option: python
-m test. Under the hood, it uses test.regrtest; the call python -m test.regrtest used in previous Python
versions still works). Running the script by itself automatically starts running all regression tests in the test
package. It does this by finding all modules in the package whose name starts with test_, importing them, and
executing the function test_main() if present. The names of tests to execute may also be passed to the script.
Specifying a single regression test (python -m test test_spam) will minimize output and only print whether the
test passed or failed and thus minimize output.

Running test directly allows what resources are available for tests to use to be set. You do this by using the
-u command-line option. Run python -m test -uall to turn on all resources; specifying all as an option for -u
enables all possible resources. If all but one resource is desired (a more common case), a comma-separated list of
resources that are not desired may be listed after all. The command python -m test -uall,-audio,-largefile will
run test with all resources except the audio and largefile resources. For a list of all resources and more
command-line options, run python -m test -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On
Unix, you can run make test at the top-level directory where Python was built. On Windows, executing rt.bat
from your PCBuild directory will run all regression tests.

25.6 test.support — Utility functions for tests

The test.support module provides support for Python’s regression tests.

This module defines the following exceptions:

exception test.support.TestFailed
Exception to be raised when a test fails. This is deprecated in favor of unittest-based tests and
unittest.TestCase‘s assertion methods.

exception test.support.ResourceDenied
Subclass of unittest.SkipTest. Raised when a resource (such as a network connection) is not avail-
able. Raised by the requires() function.

The test.support module defines the following constants:

test.support.verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about
a running test. verbose is set by test.regrtest.

25.6. test.support — Utility functions for tests 1015

The Python Library Reference, Release 3.2

test.support.is_jython
True if the running interpreter is Jython.

test.support.TESTFN
Set to a name that is safe to use as the name of a temporary file. Any temporary file that is created should
be closed and unlinked (removed).

The test.support module defines the following functions:

test.support.forget(module_name)
Remove the module named module_name from sys.modules and delete any byte-compiled files of the
module.

test.support.is_resource_enabled(resource)
Return True if resource is enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

test.support.requires(resource, msg=None)
Raise ResourceDenied if resource is not available. msg is the argument to ResourceDenied if it is
raised. Always returns True if called by a function whose __name__ is ’__main__’. Used when tests
are executed by test.regrtest.

test.support.findfile(filename)
Return the path to the file named filename. If no match is found filename is returned. This does not equal a
failure since it could be the path to the file.

test.support.run_unittest(*classes)
Execute unittest.TestCase subclasses passed to the function. The function scans the classes for
methods starting with the prefix test_ and executes the tests individually.

It is also legal to pass strings as parameters; these should be keys in sys.modules. Each associated
module will be scanned by unittest.TestLoader.loadTestsFromModule(). This is usually
seen in the following test_main() function:

def test_main():
support.run_unittest(__name__)

This will run all tests defined in the named module.

test.support.check_warnings(*filters, quiet=True)
A convenience wrapper for warnings.catch_warnings() that makes it easier to
test that a warning was correctly raised. It is approximately equivalent to calling
warnings.catch_warnings(record=True) with warnings.simplefilter() set to
always and with the option to automatically validate the results that are recorded.

check_warnings accepts 2-tuples of the form ("message regexp", WarningCategory) as
positional arguments. If one or more filters are provided, or if the optional keyword argument quiet is
False, it checks to make sure the warnings are as expected: each specified filter must match at least one of
the warnings raised by the enclosed code or the test fails, and if any warnings are raised that do not match
any of the specified filters the test fails. To disable the first of these checks, set quiet to True.

If no arguments are specified, it defaults to:

check_warnings(("", Warning), quiet=True)

In this case all warnings are caught and no errors are raised.

On entry to the context manager, a WarningRecorder instance is returned. The underlying warnings list
from catch_warnings() is available via the recorder object’s warnings attribute. As a convenience,
the attributes of the object representing the most recent warning can also be accessed directly through the
recorder object (see example below). If no warning has been raised, then any of the attributes that would
otherwise be expected on an object representing a warning will return None.

The recorder object also has a reset() method, which clears the warnings list.

1016 Chapter 25. Development Tools

The Python Library Reference, Release 3.2

The context manager is designed to be used like this:

with check_warnings(("assertion is always true", SyntaxWarning),
("", UserWarning)):

exec(’assert(False, "Hey!")’)
warnings.warn(UserWarning("Hide me!"))

In this case if either warning was not raised, or some other warning was raised, check_warnings()
would raise an error.

When a test needs to look more deeply into the warnings, rather than just checking whether or not they
occurred, code like this can be used:

with check_warnings(quiet=True) as w:
warnings.warn("foo")
assert str(w.args[0]) == "foo"
warnings.warn("bar")
assert str(w.args[0]) == "bar"
assert str(w.warnings[0].args[0]) == "foo"
assert str(w.warnings[1].args[0]) == "bar"
w.reset()
assert len(w.warnings) == 0

Here all warnings will be caught, and the test code tests the captured warnings directly. Changed in version
3.2: New optional arguments filters and quiet.

test.support.captured_stdout()
This is a context manager that runs the with statement body using a StringIO.StringIO object as
sys.stdout. That object can be retrieved using the as clause of the with statement.

Example use:

with captured_stdout() as s:
print("hello")

assert s.getvalue() == "hello"

test.support.import_module(name, deprecated=False)
This function imports and returns the named module. Unlike a normal import, this function raises
unittest.SkipTest if the module cannot be imported.

Module and package deprecation messages are suppressed during this import if deprecated is True. New
in version 3.1.

test.support.import_fresh_module(name, fresh=(), blocked=(), deprecated=False)
This function imports and returns a fresh copy of the named Python module by removing the named module
from sys.modules before doing the import. Note that unlike reload(), the original module is not
affected by this operation.

fresh is an iterable of additional module names that are also removed from the sys.modules cache before
doing the import.

blocked is an iterable of module names that are replaced with 0 in the module cache during the import to
ensure that attempts to import them raise ImportError.

The named module and any modules named in the fresh and blocked parameters are saved before starting
the import and then reinserted into sys.modules when the fresh import is complete.

Module and package deprecation messages are suppressed during this import if deprecated is True.

This function will raise unittest.SkipTest is the named module cannot be imported.

Example use:

25.6. test.support — Utility functions for tests 1017

The Python Library Reference, Release 3.2

Get copies of the warnings module for testing without
affecting the version being used by the rest of the test suite
One copy uses the C implementation, the other is forced to use
the pure Python fallback implementation
py_warnings = import_fresh_module(’warnings’, blocked=[’_warnings’])
c_warnings = import_fresh_module(’warnings’, fresh=[’_warnings’])

New in version 3.1.

The test.support module defines the following classes:

class test.support.TransientResource(exc, **kwargs)
Instances are a context manager that raises ResourceDenied if the specified exception type is raised.
Any keyword arguments are treated as attribute/value pairs to be compared against any exception raised
within the with statement. Only if all pairs match properly against attributes on the exception is
ResourceDenied raised.

class test.support.EnvironmentVarGuard
Class used to temporarily set or unset environment variables. Instances can be used as a context manager
and have a complete dictionary interface for querying/modifying the underlying os.environ. After exit
from the context manager all changes to environment variables done through this instance will be rolled
back. Changed in version 3.1: Added dictionary interface.

EnvironmentVarGuard.set(envvar, value)
Temporarily set the environment variable envvar to the value of value.

EnvironmentVarGuard.unset(envvar)
Temporarily unset the environment variable envvar.

class test.support.WarningsRecorder
Class used to record warnings for unit tests. See documentation of check_warnings() above for more
details.

1018 Chapter 25. Development Tools

CHAPTER

TWENTYSIX

DEBUGGING AND PROFILING

These libraries help you with Python development: the debugger enables you to step through code, analyze stack
frames and set breakpoints etc., and the profilers run code and give you a detailed breakdown of execution times,
allowing you to identify bottlenecks in your programs.

26.1 bdb — Debugger framework

Source code: Lib/bdb.py

The bdb module handles basic debugger functions, like setting breakpoints or managing execution via the debug-
ger.

The following exception is defined:

exception bdb.BdbQuit
Exception raised by the Bdb class for quitting the debugger.

The bdb module also defines two classes:

class bdb.Breakpoint(self, file, line, temporary=0, cond=None, funcname=None)
This class implements temporary breakpoints, ignore counts, disabling and (re-)enabling, and conditionals.

Breakpoints are indexed by number through a list called bpbynumber and by (file, line) pairs
through bplist. The former points to a single instance of class Breakpoint. The latter points to a list
of such instances since there may be more than one breakpoint per line.

When creating a breakpoint, its associated filename should be in canonical form. If a funcname is defined,
a breakpoint hit will be counted when the first line of that function is executed. A conditional breakpoint
always counts a hit.

Breakpoint instances have the following methods:

deleteMe()
Delete the breakpoint from the list associated to a file/line. If it is the last breakpoint in that position,
it also deletes the entry for the file/line.

enable()
Mark the breakpoint as enabled.

disable()
Mark the breakpoint as disabled.

bpformat()
Return a string with all the information about the breakpoint, nicely formatted:

•The breakpoint number.

•If it is temporary or not.

1019

http://svn.python.org/view/python/branches/py3k/Lib/bdb.py?view=markup

The Python Library Reference, Release 3.2

•Its file,line position.

•The condition that causes a break.

•If it must be ignored the next N times.

•The breakpoint hit count.

New in version 3.2.

bpprint(out=None)
Print the output of bpformat() to the file out, or if it is None, to standard output.

class bdb.Bdb(skip=None)
The Bdb class acts as a generic Python debugger base class.

This class takes care of the details of the trace facility; a derived class should implement user interaction.
The standard debugger class (pdb.Pdb) is an example.

The skip argument, if given, must be an iterable of glob-style module name patterns. The debugger will not
step into frames that originate in a module that matches one of these patterns. Whether a frame is considered
to originate in a certain module is determined by the __name__ in the frame globals. New in version 3.1:
The skip argument. The following methods of Bdb normally don’t need to be overridden.

canonic(filename)
Auxiliary method for getting a filename in a canonical form, that is, as a case-normalized (on case-
insensitive filesystems) absolute path, stripped of surrounding angle brackets.

reset()
Set the botframe, stopframe, returnframe and quitting attributes with values ready to
start debugging.

trace_dispatch(frame, event, arg)
This function is installed as the trace function of debugged frames. Its return value is the new trace
function (in most cases, that is, itself).

The default implementation decides how to dispatch a frame, depending on the type of event (passed
as a string) that is about to be executed. event can be one of the following:

•"line": A new line of code is going to be executed.

•"call": A function is about to be called, or another code block entered.

•"return": A function or other code block is about to return.

•"exception": An exception has occurred.

•"c_call": A C function is about to be called.

•"c_return": A C function has returned.

•"c_exception": A C function has raised an exception.

For the Python events, specialized functions (see below) are called. For the C events, no action is
taken.

The arg parameter depends on the previous event.

See the documentation for sys.settrace() for more information on the trace function. For more
information on code and frame objects, refer to types.

dispatch_line(frame)
If the debugger should stop on the current line, invoke the user_line() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can
be set from user_line()). Return a reference to the trace_dispatch() method for further
tracing in that scope.

dispatch_call(frame, arg)
If the debugger should stop on this function call, invoke the user_call() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can

1020 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

be set from user_call()). Return a reference to the trace_dispatch() method for further
tracing in that scope.

dispatch_return(frame, arg)
If the debugger should stop on this function return, invoke the user_return() method (which
should be overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set
(which can be set from user_return()). Return a reference to the trace_dispatch()method
for further tracing in that scope.

dispatch_exception(frame, arg)
If the debugger should stop at this exception, invokes the user_exception() method (which
should be overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set
(which can be set from user_exception()). Return a reference to the trace_dispatch()
method for further tracing in that scope.

Normally derived classes don’t override the following methods, but they may if they want to redefine the
definition of stopping and breakpoints.

stop_here(frame)
This method checks if the frame is somewhere below botframe in the call stack. botframe is the
frame in which debugging started.

break_here(frame)
This method checks if there is a breakpoint in the filename and line belonging to frame or, at least, in
the current function. If the breakpoint is a temporary one, this method deletes it.

break_anywhere(frame)
This method checks if there is a breakpoint in the filename of the current frame.

Derived classes should override these methods to gain control over debugger operation.

user_call(frame, argument_list)
This method is called from dispatch_call() when there is the possibility that a break might be
necessary anywhere inside the called function.

user_line(frame)
This method is called from dispatch_line() when either stop_here() or break_here()
yields True.

user_return(frame, return_value)
This method is called from dispatch_return() when stop_here() yields True.

user_exception(frame, exc_info)
This method is called from dispatch_exception() when stop_here() yields True.

do_clear(arg)
Handle how a breakpoint must be removed when it is a temporary one.

This method must be implemented by derived classes.

Derived classes and clients can call the following methods to affect the stepping state.

set_step()
Stop after one line of code.

set_next(frame)
Stop on the next line in or below the given frame.

set_return(frame)
Stop when returning from the given frame.

set_until(frame)
Stop when the line with the line no greater than the current one is reached or when returning from
current frame

set_trace([frame])
Start debugging from frame. If frame is not specified, debugging starts from caller’s frame.

26.1. bdb — Debugger framework 1021

The Python Library Reference, Release 3.2

set_continue()
Stop only at breakpoints or when finished. If there are no breakpoints, set the system trace function to
None.

set_quit()
Set the quitting attribute to True. This raises BdbQuit in the next call to one of the
dispatch_*() methods.

Derived classes and clients can call the following methods to manipulate breakpoints. These methods return
a string containing an error message if something went wrong, or None if all is well.

set_break(filename, lineno, temporary=0, cond, funcname)
Set a new breakpoint. If the lineno line doesn’t exist for the filename passed as argument, return an
error message. The filename should be in canonical form, as described in the canonic() method.

clear_break(filename, lineno)
Delete the breakpoints in filename and lineno. If none were set, an error message is returned.

clear_bpbynumber(arg)
Delete the breakpoint which has the index arg in the Breakpoint.bpbynumber. If arg is not
numeric or out of range, return an error message.

clear_all_file_breaks(filename)
Delete all breakpoints in filename. If none were set, an error message is returned.

clear_all_breaks()
Delete all existing breakpoints.

get_bpbynumber(arg)
Return a breakpoint specified by the given number. If arg is a string, it will be converted to a number. If
arg is a non-numeric string, if the given breakpoint never existed or has been deleted, a ValueError
is raised. New in version 3.2.

get_break(filename, lineno)
Check if there is a breakpoint for lineno of filename.

get_breaks(filename, lineno)
Return all breakpoints for lineno in filename, or an empty list if none are set.

get_file_breaks(filename)
Return all breakpoints in filename, or an empty list if none are set.

get_all_breaks()
Return all breakpoints that are set.

Derived classes and clients can call the following methods to get a data structure representing a stack trace.

get_stack(f, t)
Get a list of records for a frame and all higher (calling) and lower frames, and the size of the higher
part.

format_stack_entry(frame_lineno, lprefix=’: ‘)
Return a string with information about a stack entry, identified by a (frame, lineno) tuple:

•The canonical form of the filename which contains the frame.

•The function name, or "<lambda>".

•The input arguments.

•The return value.

•The line of code (if it exists).

The following two methods can be called by clients to use a debugger to debug a statement, given as a
string.

1022 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

run(cmd, globals=None, locals=None)
Debug a statement executed via the exec() function. globals defaults to __main__.__dict__,
locals defaults to globals.

runeval(expr, globals=None, locals=None)
Debug an expression executed via the eval() function. globals and locals have the same meaning
as in run().

runctx(cmd, globals, locals)
For backwards compatibility. Calls the run() method.

runcall(func, *args, **kwds)
Debug a single function call, and return its result.

Finally, the module defines the following functions:

bdb.checkfuncname(b, frame)
Check whether we should break here, depending on the way the breakpoint b was set.

If it was set via line number, it checks if b.line is the same as the one in the frame also passed as argument.
If the breakpoint was set via function name, we have to check we are in the right frame (the right function)
and if we are in its first executable line.

bdb.effective(file, line, frame)
Determine if there is an effective (active) breakpoint at this line of code. Return a tuple of the breakpoint
and a boolean that indicates if it is ok to delete a temporary breakpoint. Return (None, None) if there is
no matching breakpoint.

bdb.set_trace()
Start debugging with a Bdb instance from caller’s frame.

26.2 pdb — The Python Debugger

The module pdb defines an interactive source code debugger for Python programs. It supports setting (condi-
tional) breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and
evaluation of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and
can be called under program control.

The debugger is extensible – it is actually defined as the class Pdb. This is currently undocumented but easily
understood by reading the source. The extension interface uses the modules bdb and cmd.

The debugger’s prompt is (Pdb). Typical usage to run a program under control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run(’mymodule.test()’)
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: ’spam’
> <string>(1)?()
(Pdb)

pdb.py can also be invoked as a script to debug other scripts. For example:

python3 -m pdb myscript.py

When invoked as a script, pdb will automatically enter post-mortem debugging if the program being debugged
exits abnormally. After post-mortem debugging (or after normal exit of the program), pdb will restart the program.
Automatic restarting preserves pdb’s state (such as breakpoints) and in most cases is more useful than quitting the
debugger upon program’s exit. New in version 3.2: pdb.py now accepts a -c option that executes commands as

26.2. pdb — The Python Debugger 1023

The Python Library Reference, Release 3.2

if given in a .pdbrc file, see Debugger Commands. The typical usage to break into the debugger from a running
program is to insert

import pdb; pdb.set_trace()

at the location you want to break into the debugger. You can then step through the code following this statement,
and continue running without the debugger using the continue command.

The typical usage to inspect a crashed program is:

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test

test2()
File "./mymodule.py", line 3, in test2

print(spam)
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print(spam)
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

pdb.run(statement, globals=None, locals=None)
Execute the statement (given as a string or a code object) under debugger control. The debugger prompt
appears before any code is executed; you can set breakpoints and type continue, or you can step through
the statement using step or next (all these commands are explained below). The optional globals and
locals arguments specify the environment in which the code is executed; by default the dictionary of the
module __main__ is used. (See the explanation of the built-in exec() or eval() functions.)

pdb.runeval(expression, globals=None, locals=None)
Evaluate the expression (given as a string or a code object) under debugger control. When runeval()
returns, it returns the value of the expression. Otherwise this function is similar to run().

pdb.runcall(function, *args, **kwds)
Call the function (a function or method object, not a string) with the given arguments. When runcall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function
is entered.

pdb.set_trace()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

pdb.post_mortem(traceback=None)
Enter post-mortem debugging of the given traceback object. If no traceback is given, it uses the one of the
exception that is currently being handled (an exception must be being handled if the default is to be used).

pdb.pm()
Enter post-mortem debugging of the traceback found in sys.last_traceback.

The run* functions and set_trace() are aliases for instantiating the Pdb class and calling the method of the
same name. If you want to access further features, you have to do this yourself:

class pdb.Pdb(completekey=’tab’, stdin=None, stdout=None, skip=None, nosigint=False)
Pdb is the debugger class.

The completekey, stdin and stdout arguments are passed to the underlying cmd.Cmd class; see the descrip-
tion there.

1024 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

The skip argument, if given, must be an iterable of glob-style module name patterns. The debugger will not
step into frames that originate in a module that matches one of these patterns. 1

By default, Pdb sets a handler for the SIGINT signal (which is sent when the user presses Ctrl-C on the
console) when you give a continue command. This allows you to break into the debugger again by
pressing Ctrl-C. If you want Pdb not to touch the SIGINT handler, set nosigint tot true.

Example call to enable tracing with skip:

import pdb; pdb.Pdb(skip=[’django.*’]).set_trace()

New in version 3.1: The skip argument.New in version 3.2: The nosigint argument. Previously, a SIGINT
handler was never set by Pdb.

run(statement, globals=None, locals=None)
runeval(expression, globals=None, locals=None)
runcall(function, *args, **kwds)
set_trace()

See the documentation for the functions explained above.

26.2.1 Debugger Commands

The commands recognized by the debugger are listed below. Most commands can be abbreviated to one or two
letters as indicated; e.g. h(elp) means that either h or help can be used to enter the help command (but not
he or hel, nor H or Help or HELP). Arguments to commands must be separated by whitespace (spaces or tabs).
Optional arguments are enclosed in square brackets ([]) in the command syntax; the square brackets must not be
typed. Alternatives in the command syntax are separated by a vertical bar (|).

Entering a blank line repeats the last command entered. Exception: if the last command was a list command,
the next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the
context of the program being debugged. Python statements can also be prefixed with an exclamation point (!).
This is a powerful way to inspect the program being debugged; it is even possible to change a variable or call a
function. When an exception occurs in such a statement, the exception name is printed but the debugger’s state is
not changed.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability to the
context under examination.

Multiple commands may be entered on a single line, separated by ;;. (A single ; is not used as it is the separator
for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to separating the
commands; the input is split at the first ;; pair, even if it is in the middle of a quoted string.

If a file .pdbrc exists in the user’s home directory or in the current directory, it is read in and executed as if it
had been typed at the debugger prompt. This is particularly useful for aliases. If both files exist, the one in the
home directory is read first and aliases defined there can be overridden by the local file. Changed in version 3.2:
.pdbrc can now contain commands that continue debugging, such as continue or next. Previously, these
commands had no effect.

h(elp) [command]
Without argument, print the list of available commands. With a command as argument, print help about
that command. help pdb displays the full documentation (the docstring of the pdb module). Since the
command argument must be an identifier, help exec must be entered to get help on the ! command.

w(here)
Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) [count]
Move the current frame count (default one) levels down in the stack trace (to a newer frame).

1 Whether a frame is considered to originate in a certain module is determined by the __name__ in the frame globals.

26.2. pdb — The Python Debugger 1025

The Python Library Reference, Release 3.2

u(p) [count]
Move the current frame count (default one) levels up in the stack trace (to an older frame).

b(reak) [([filename:]lineno | function) [, condition]]
With a lineno argument, set a break there in the current file. With a function argument, set a break at the first
executable statement within that function. The line number may be prefixed with a filename and a colon,
to specify a breakpoint in another file (probably one that hasn’t been loaded yet). The file is searched on
sys.path. Note that each breakpoint is assigned a number to which all the other breakpoint commands
refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint is
honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint has
been hit, the current ignore count, and the associated condition if any.

tbreak [([filename:]lineno | function) [, condition]]
Temporary breakpoint, which is removed automatically when it is first hit. The arguments are the same as
for break.

cl(ear) [filename:lineno | bpnumber [bpnumber ...]]
With a filename:lineno argument, clear all the breakpoints at this line. With a space separated list of break-
point numbers, clear those breakpoints. Without argument, clear all breaks (but first ask confirmation).

disable [bpnumber [bpnumber ...]]
Disable the breakpoints given as a space separated list of breakpoint numbers. Disabling a breakpoint
means it cannot cause the program to stop execution, but unlike clearing a breakpoint, it remains in the list
of breakpoints and can be (re-)enabled.

enable [bpnumber [bpnumber ...]]
Enable the breakpoints specified.

ignore bpnumber [count]
Set the ignore count for the given breakpoint number. If count is omitted, the ignore count is set to 0. A
breakpoint becomes active when the ignore count is zero. When non-zero, the count is decremented each
time the breakpoint is reached and the breakpoint is not disabled and any associated condition evaluates to
true.

condition bpnumber [condition]
Set a new condition for the breakpoint, an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

commands [bpnumber]
Specify a list of commands for breakpoint number bpnumber. The commands themselves appear on the
following lines. Type a line containing just end to terminate the commands. An example:

(Pdb) commands 1
(com) print some_variable
(com) end
(Pdb)

To remove all commands from a breakpoint, type commands and follow it immediately with end; that is,
give no commands.

With no bpnumber argument, commands refers to the last breakpoint set.

You can use breakpoint commands to start your program up again. Simply use the continue command, or
step, or any other command that resumes execution.

Specifying any command resuming execution (currently continue, step, next, return, jump, quit and their
abbreviations) terminates the command list (as if that command was immediately followed by end). This
is because any time you resume execution (even with a simple next or step), you may encounter another
breakpoint–which could have its own command list, leading to ambiguities about which list to execute.

1026 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

If you use the ‘silent’ command in the command list, the usual message about stopping at a breakpoint is
not printed. This may be desirable for breakpoints that are to print a specific message and then continue. If
none of the other commands print anything, you see no sign that the breakpoint was reached.

s(tep)
Execute the current line, stop at the first possible occasion (either in a function that is called or on the next
line in the current function).

n(ext)
Continue execution until the next line in the current function is reached or it returns. (The difference
between next and step is that step stops inside a called function, while next executes called functions
at (nearly) full speed, only stopping at the next line in the current function.)

unt(il) [lineno]
Without argument, continue execution until the line with a number greater than the current one is reached.

With a line number, continue execution until a line with a number greater or equal to that is reached. In
both cases, also stop when the current frame returns. Changed in version 3.2: Allow giving an explicit line
number.

r(eturn)
Continue execution until the current function returns.

c(ont(inue))
Continue execution, only stop when a breakpoint is encountered.

j(ump) lineno
Set the next line that will be executed. Only available in the bottom-most frame. This lets you jump back
and execute code again, or jump forward to skip code that you don’t want to run.

It should be noted that not all jumps are allowed – for instance it is not possible to jump into the middle of
a for loop or out of a finally clause.

l(ist) [first[, last]]
List source code for the current file. Without arguments, list 11 lines around the current line or continue the
previous listing. With . as argument, list 11 lines around the current line. With one argument, list 11 lines
around at that line. With two arguments, list the given range; if the second argument is less than the first, it
is interpreted as a count.

The current line in the current frame is indicated by ->. If an exception is being debugged, the line where
the exception was originally raised or propagated is indicated by >>, if it differs from the current line. New
in version 3.2: The >> marker.

ll | longlist
List all source code for the current function or frame. Interesting lines are marked as for list. New in
version 3.2.

a(rgs)
Print the argument list of the current function.

p(rint) expression
Evaluate the expression in the current context and print its value.

pp expression
Like the print command, except the value of the expression is pretty-printed using the pprint module.

whatis expression
Print the type of the expression.

source expression
Try to get source code for the given object and display it. New in version 3.2.

display [expression]
Display the value of the expression if it changed, each time execution stops in the current frame.

Without expression, list all display expressions for the current frame. New in version 3.2.

26.2. pdb — The Python Debugger 1027

The Python Library Reference, Release 3.2

undisplay [expression]
Do not display the expression any more in the current frame. Without expression, clear all display expres-
sions for the current frame. New in version 3.2.

interact
Start an interative interpreter (using the code module) whose global namespace contains all the (global and
local) names found in the current scope. New in version 3.2.

alias [name [command]]
Create an alias called name that executes command. The command must not be enclosed in quotes. Re-
placeable parameters can be indicated by %1, %2, and so on, while %* is replaced by all the parameters. If
no command is given, the current alias for name is shown. If no arguments are given, all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that
internal pdb commands can be overridden by aliases. Such a command is then hidden until the alias is
removed. Aliasing is recursively applied to the first word of the command line; all other words in the line
are left alone.

As an example, here are two useful aliases (especially when placed in the .pdbrc file):

Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print("%1.",k,"=",%1.__dict__[k])
Print instance variables in self
alias ps pi self

unalias name
Delete the specified alias.

! statement
Execute the (one-line) statement in the context of the current stack frame. The exclamation point can be
omitted unless the first word of the statement resembles a debugger command. To set a global variable, you
can prefix the assignment command with a global statement on the same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]
(Pdb)

run [args ...]
restart [args ...]

Restart the debugged Python program. If an argument is supplied, it is split with shlex and the result is
used as the new sys.argv. History, breakpoints, actions and debugger options are preserved. restart
is an alias for run.

q(uit)
Quit from the debugger. The program being executed is aborted.

26.3 The Python Profilers

Source code: Lib/profile.py and Lib/pstats.py

26.3.1 Introduction to the profilers

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modules cProfile, profile and pstats.
This profiler provides deterministic profiling of Python programs. It also provides a series of report generation
tools to allow users to rapidly examine the results of a profile operation.

The Python standard library provides two different profilers:

1028 Chapter 26. Debugging and Profiling

http://svn.python.org/view/python/branches/py3k/Lib/profile.py?view=markup
http://svn.python.org/view/python/branches/py3k/Lib/pstats.py?view=markup

The Python Library Reference, Release 3.2

1. cProfile is recommended for most users; it’s a C extension with reasonable overhead that makes it
suitable for profiling long-running programs. Based on lsprof, contributed by Brett Rosen and Ted
Czotter.

2. profile, a pure Python module whose interface is imitated by cProfile. Adds significant overhead
to profiled programs. If you’re trying to extend the profiler in some way, the task might be easier with this
module. Copyright © 1994, by InfoSeek Corporation.

The profile and cProfile modules export the same interface, so they are mostly interchangeable;
cProfile has a much lower overhead but is newer and might not be available on all systems. cProfile
is really a compatibility layer on top of the internal _lsprof module.

Note: The profiler modules are designed to provide an execution profile for a given program, not for benchmark-
ing purposes (for that, there is timeit for resonably accurate results). This particularly applies to benchmarking
Python code against C code: the profilers introduce overhead for Python code, but not for C-level functions, and
so the C code would seem faster than any Python one.

26.3.2 Instant User’s Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and
allows a user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of foo(), you would add the following to your module:

import cProfile
cProfile.run(’foo()’)

(Use profile instead of cProfile if the latter is not available on your system.)

The above action would cause foo() to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profile
into a file for later examination, you can supply a file name as the second argument to the run() function:

import cProfile
cProfile.run(’foo()’, ’fooprof’)

The file cProfile.py can also be invoked as a script to profile another script. For example:

python -m cProfile myscript.py

cProfile.py accepts two optional arguments on the command line:

cProfile.py [-o output_file] [-s sort_order]

-s only applies to standard output (-o is not supplied). Look in the Stats documentation for valid sort values.

When you wish to review the profile, you should use the methods in the pstats module. Typically you would
load the statistics data as follows:

import pstats
p = pstats.Stats(’fooprof’)

The class Stats (the above code just created an instance of this class) has a variety of methods for manipulating
and printing the data that was just read into p. When you ran cProfile.run() above, what was printed was
the result of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries
according to the standard module/line/name string that is printed. The third method printed out all the statistics.
You might try the following sort calls:

p.sort_stats(’name’)
p.print_stats()

26.3. The Python Profilers 1029

The Python Library Reference, Release 3.2

The first call will actually sort the list by function name, and the second call will print out the statistics. The
following are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you
want to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

This will sort all the statistics by file name, and then print out statistics for only the class init methods (since they
are spelled with __init__ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out
some of the statistics. To be specific, the list is first culled down to 50% (re: .5) of its original size, then only
lines containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (p is still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:

p.print_callees()
p.add(’fooprof’)

Invoked as a script, the pstats module is a statistics browser for reading and examining profile dumps. It has a
simple line-oriented interface (implemented using cmd) and interactive help.

26.3.3 What Is Deterministic Profiling?

Deterministic profiling is meant to reflect the fact that all function call, function return, and exception events are
monitored, and precise timings are made for the intervals between these events (during which time the user’s
code is executing). In contrast, statistical profiling (which is not done by this module) randomly samples the
effective instruction pointer, and deduces where time is being spent. The latter technique traditionally involves
less overhead (as the code does not need to be instrumented), but provides only relative indications of where time
is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required
to do deterministic profiling. Python automatically provides a hook (optional callback) for each event. In addition,
the interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to
only add small processing overhead in typical applications. The result is that deterministic profiling is not that
expensive, yet provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-
expansion points (high call counts). Internal time statistics can be used to identify “hot loops” that should be
carefully optimized. Cumulative time statistics should be used to identify high level errors in the selection of
algorithms. Note that the unusual handling of cumulative times in this profiler allows statistics for recursive
implementations of algorithms to be directly compared to iterative implementations.

1030 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

26.3.4 Reference Manual – profile and cProfile

The primary entry point for the profiler is the global function profile.run() (resp. cProfile.run()).
It is typically used to create any profile information. The reports are formatted and printed using methods of the
class pstats.Stats. The following is a description of all of these standard entry points and functions. For a
more in-depth view of some of the code, consider reading the later section on Profiler Extensions, which includes
discussion of how to derive “better” profilers from the classes presented, or reading the source code for these
modules.

cProfile.run(command, filename=None, sort=-1)
This function takes a single argument that can be passed to the exec() function, and an optional file
name. In all cases this routine attempts to exec() its first argument, and gather profiling statistics from
the execution. If no file name is present, then this function automatically prints a simple profiling report,
sorted by the standard name string (file/line/function-name) that is presented in each line. The following is
a typical output from such a call:

2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

The first line indicates that 2706 calls were monitored. Of those calls, 2004 were primitive. We define
primitive to mean that the call was not induced via recursion. The next line: Ordered by: standard
name, indicates that the text string in the far right column was used to sort the output. The column headings
include:

ncalls for the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),

percall is the quotient of tottime divided by ncalls

cumtime is the total time spent in this and all subfunctions (from invocation till exit). This figure is accurate
even for recursive functions.

percall is the quotient of cumtime divided by primitive calls

filename:lineno(function) provides the respective data of each function

When there are two numbers in the first column (for example, 43/3), then the latter is the number of
primitive calls, and the former is the actual number of calls. Note that when the function does not recurse,
these two values are the same, and only the single figure is printed.

If sort is given, it can be one of ’stdname’ (sort by filename:lineno), ’calls’ (sort by number of calls),
’time’ (sort by total time) or ’cumulative’ (sort by cumulative time). The default is ’stdname’.

cProfile.runctx(command, globals, locals, filename=None)
This function is similar to run(), with added arguments to supply the globals and locals dictionaries for
the command string.

Analysis of the profiler data is done using the pstats.Stats class.

class pstats.Stats(*filenames, stream=sys.stdout)
This class constructor creates an instance of a “statistics object” from a filename (or set of filenames).
Stats objects are manipulated by methods, in order to print useful reports. You may specify an alternate
output stream by giving the keyword argument, stream.

The file selected by the above constructor must have been created by the corresponding version of profile
or cProfile. To be specific, there is no file compatibility guaranteed with future versions of this profiler,
and there is no compatibility with files produced by other profilers. If several files are provided, all the

26.3. The Python Profilers 1031

The Python Library Reference, Release 3.2

statistics for identical functions will be coalesced, so that an overall view of several processes can be con-
sidered in a single report. If additional files need to be combined with data in an existing Stats object, the
add() method can be used.

The Stats Class

Stats objects have the following methods:

Stats.strip_dirs()
This method for the Stats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries
in a “random” order, as it was just after object initialization and loading. If strip_dirs() causes two
function names to be indistinguishable (they are on the same line of the same filename, and have the same
function name), then the statistics for these two entries are accumulated into a single entry.

Stats.add(*filenames)
This method of the Stats class accumulates additional profiling information into the current profiling
object. Its arguments should refer to filenames created by the corresponding version of profile.run()
or cProfile.run(). Statistics for identically named (re: file, line, name) functions are automatically
accumulated into single function statistics.

Stats.dump_stats(filename)
Save the data loaded into the Stats object to a file named filename. The file is created if it does not
exist, and is overwritten if it already exists. This is equivalent to the method of the same name on the
profile.Profile and cProfile.Profile classes.

Stats.sort_stats(*keys)
This method modifies the Stats object by sorting it according to the supplied criteria. The argument is
typically a string identifying the basis of a sort (example: ’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when there is
equality in all keys selected before them. For example, sort_stats(’name’, ’file’) will sort all
the entries according to their function name, and resolve all ties (identical function names) by sorting by file
name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following
are the keys currently defined:

Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as
name, file, and line number searches are in ascending order (alphabetical). The subtle distinction between
’nfl’ and ’stdname’ is that the standard name is a sort of the name as printed, which means that the
embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file
names were the same) appear in the string order 20, 3 and 40. In contrast, ’nfl’ does a numeric compare
of the line numbers. In fact, sort_stats(’nfl’) is the same as sort_stats(’name’, ’file’,
’line’).

For backward-compatibility reasons, the numeric arguments -1, 0, 1, and 2 are permitted. They are inter-
preted as ’stdname’, ’calls’, ’time’, and ’cumulative’ respectively. If this old style format

1032 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

(numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will be silently
ignored.

Stats.reverse_order()
This method for the Stats class reverses the ordering of the basic list within the object. Note that by
default ascending vs descending order is properly selected based on the sort key of choice.

Stats.print_stats(*restrictions)
This method for the Stats class prints out a report as described in the profile.run() definition.

The order of the printing is based on the last sort_stats() operation done on the object (subject to
caveats in add() and strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list
is taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count
of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular
expression (to pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style
regular expression syntax defined by the re module). If several restrictions are provided, then they are
applied sequentially. For example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename
.*foo:. In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names .*foo:, and then proceed to only print the first 10%
of them.

Stats.print_callers(*restrictions)
This method for the Stats class prints a list of all functions that called each function in the profiled
database. The ordering is identical to that provided by print_stats(), and the definition of the restrict-
ing argument is also identical. Each caller is reported on its own line. The format differs slightly depending
on the profiler that produced the stats:

•With profile, a number is shown in parentheses after each caller to show how many times this
specific call was made. For convenience, a second non-parenthesized number repeats the cumulative
time spent in the function at the right.

•With cProfile, each caller is preceded by three numbers: the number of times this specific call was
made, and the total and cumulative times spent in the current function while it was invoked by this
specific caller.

Stats.print_callees(*restrictions)
This method for the Stats class prints a list of all function that were called by the indicated function.
Aside from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are
identical to the print_callers() method.

26.3.5 Limitations

One limitation has to do with accuracy of timing information. There is a fundamental problem with deterministic
profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate than the underlying clock. If
enough measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error
induces a second source of error.

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the
time actually gets the state of the clock. Similarly, there is a certain lag when exiting the profiler event handler
from the time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again
executing. As a result, functions that are called many times, or call many functions, will typically accumulate this

26.3. The Python Profilers 1033

The Python Library Reference, Release 3.2

error. The error that accumulates in this fashion is typically less than the accuracy of the clock (less than one clock
tick), but it can accumulate and become very significant.

The problem is more important with profile than with the lower-overhead cProfile. For this reason,
profile provides a means of calibrating itself for a given platform so that this error can be probabilistically
(on the average) removed. After the profiler is calibrated, it will be more accurate (in a least square sense), but
it will sometimes produce negative numbers (when call counts are exceptionally low, and the gods of probability
work against you :-).) Do not be alarmed by negative numbers in the profile. They should only appear if you have
calibrated your profiler, and the results are actually better than without calibration.

26.3.6 Calibration

The profiler of the profile module subtracts a constant from each event handling time to compensate for the
overhead of calling the time function, and socking away the results. By default, the constant is 0. The following
procedure can be used to obtain a better constant for a given platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
for i in range(5):

print(pr.calibrate(10000))

The method executes the number of Python calls given by the argument, directly and again under the profiler,
measuring the time for both. It then computes the hidden overhead per profiler event, and returns that as a float.
For example, on an 800 MHz Pentium running Windows 2000, and using Python’s time.clock() as the timer, the
magical number is about 12.5e-6.

The object of this exercise is to get a fairly consistent result. If your computer is very fast, or your timer function
has poor resolution, you might have to pass 100000, or even 1000000, to get consistent results.

When you have a consistent answer, there are three ways you can use it:

import profile

1. Apply computed bias to all Profile instances created hereafter.
profile.Profile.bias = your_computed_bias

2. Apply computed bias to a specific Profile instance.
pr = profile.Profile()
pr.bias = your_computed_bias

3. Specify computed bias in instance constructor.
pr = profile.Profile(bias=your_computed_bias)

If you have a choice, you are better off choosing a smaller constant, and then your results will “less often” show
up as negative in profile statistics.

26.3.7 Extensions — Deriving Better Profilers

The Profile class of both modules, profile and cProfile, were written so that derived classes could be
developed to extend the profiler. The details are not described here, as doing this successfully requires an expert
understanding of how the Profile class works internally. Study the source code of the module carefully if you
want to pursue this.

If all you want to do is change how current time is determined (for example, to force use of wall-clock time or
elapsed process time), pass the timing function you want to the Profile class constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will then call your_time_func().

1034 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

profile.Profile your_time_func() should return a single number, or a list of numbers whose sum is
the current time (like what os.times() returns). If the function returns a single time number, or the list
of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function that you choose. For most
machines, a timer that returns a lone integer value will provide the best results in terms of low overhead
during profiling. (os.times() is pretty bad, as it returns a tuple of floating point values). If you want to
substitute a better timer in the cleanest fashion, derive a class and hardwire a replacement dispatch method
that best handles your timer call, along with the appropriate calibration constant.

cProfile.Profile your_time_func() should return a single number. If it returns integers, you can
also invoke the class constructor with a second argument specifying the real duration of one unit of time.
For example, if your_integer_time_func() returns times measured in thousands of seconds, you
would construct the Profile instance as follows:

pr = profile.Profile(your_integer_time_func, 0.001)

As the cProfile.Profile class cannot be calibrated, custom timer functions should be used with care
and should be as fast as possible. For the best results with a custom timer, it might be necessary to hard-code
it in the C source of the internal _lsprof module.

26.3.8 Copyright and License Notices

Copyright © 1994, by InfoSeek Corporation, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any
purpose (subject to the restriction in the following sentence) without fee is hereby granted, provided that the
above copyright notice appears in all copies, and that both that copyright notice and this permission notice appear
in supporting documentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. This permission is explicitly restricted to
the copying and modification of the software to remain in Python, compiled Python, or other languages (such as
C) wherein the modified or derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAM-
AGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

26.4 timeit — Measure execution time of small code snippets

Source code: Lib/timeit.py

This module provides a simple way to time small bits of Python code. It has both command line as well as callable
interfaces. It avoids a number of common traps for measuring execution times. See also Tim Peters’ introduction
to the “Algorithms” chapter in the Python Cookbook, published by O’Reilly.

The module defines the following public class:

class timeit.Timer(stmt=’pass’, setup=’pass’, timer=<timer function>)
Class for timing execution speed of small code snippets.

The constructor takes a statement to be timed, an additional statement used for setup, and a timer function.
Both statements default to ’pass’; the timer function is platform-dependent (see the module doc string).
stmt and setup may also contain multiple statements separated by ; or newlines, as long as they don’t
contain multi-line string literals.

To measure the execution time of the first statement, use the timeit() method. The repeat() method
is a convenience to call timeit() multiple times and return a list of results.

26.4. timeit — Measure execution time of small code snippets 1035

http://svn.python.org/view/python/branches/py3k/Lib/timeit.py?view=markup

The Python Library Reference, Release 3.2

The stmt and setup parameters can also take objects that are callable without arguments. This will embed
calls to them in a timer function that will then be executed by timeit(). Note that the timing overhead is
a little larger in this case because of the extra function calls.

Timer.print_exc(file=None)
Helper to print a traceback from the timed code.

Typical use:

t = Timer(...) # outside the try/except
try:

t.timeit(...) # or t.repeat(...)
except:

t.print_exc()

The advantage over the standard traceback is that source lines in the compiled template will be displayed.
The optional file argument directs where the traceback is sent; it defaults to sys.stderr.

Timer.repeat(repeat=3, number=1000000)
Call timeit() a few times.

This is a convenience function that calls the timeit() repeatedly, returning a list of results. The first ar-
gument specifies how many times to call timeit(). The second argument specifies the number argument
for timeit().

Note: It’s tempting to calculate mean and standard deviation from the result vector and report these.
However, this is not very useful. In a typical case, the lowest value gives a lower bound for how fast
your machine can run the given code snippet; higher values in the result vector are typically not caused by
variability in Python’s speed, but by other processes interfering with your timing accuracy. So the min()
of the result is probably the only number you should be interested in. After that, you should look at the
entire vector and apply common sense rather than statistics.

Timer.timeit(number=1000000)
Time number executions of the main statement. This executes the setup statement once, and then returns the
time it takes to execute the main statement a number of times, measured in seconds as a float. The argument
is the number of times through the loop, defaulting to one million. The main statement, the setup statement
and the timer function to be used are passed to the constructor.

Note: By default, timeit() temporarily turns off garbage collection during the timing. The advantage
of this approach is that it makes independent timings more comparable. This disadvantage is that GC may
be an important component of the performance of the function being measured. If so, GC can be re-enabled
as the first statement in the setup string. For example:

timeit.Timer(’for i in range(10): oct(i)’, ’gc.enable()’).timeit()

The module also defines two convenience functions:

timeit.repeat(stmt=’pass’, setup=’pass’, timer=<default timer>, repeat=3, number=1000000)
Create a Timer instance with the given statement, setup code and timer function and run its repeat()
method with the given repeat count and number executions.

timeit.timeit(stmt=’pass’, setup=’pass’, timer=<default timer>, number=1000000)
Create a Timer instance with the given statement, setup code and timer function and run its timeit()
method with number executions.

26.4.1 Command Line Interface

When called as a program from the command line, the following form is used:

1036 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 3.2

python -m timeit [-n N] [-r N] [-s S] [-t] [-c] [-h] [statement ...]

Where the following options are understood:

-n N, -number=N
how many times to execute ‘statement’

-r N, -repeat=N
how many times to repeat the timer (default 3)

-s S, -setup=S
statement to be executed once initially (default pass)

-t, -time
use time.time() (default on all platforms but Windows)

-c, -clock
use time.clock() (default on Windows)

-v, -verbose
print raw timing results; repeat for more digits precision

-h, -help
print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate statement argument; indented lines are
possible by enclosing an argument in quotes and using leading spaces. Multiple -s options are treated similarly.

If -n is not given, a suitable number of loops is calculated by trying successive powers of 10 until the total time is
at least 0.2 seconds.

The default timer function is platform dependent. On Windows, time.clock() has microsecond granularity
but time.time()‘s granularity is 1/60th of a second; on Unix, time.clock() has 1/100th of a second
granularity and time.time() is much more precise. On either platform, the default timer functions measure
wall clock time, not the CPU time. This means that other processes running on the same computer may interfere
with the timing. The best thing to do when accurate timing is necessary is to repeat the timing a few times and use
the best time. The -r option is good for this; the default of 3 repetitions is probably enough in most cases. On
Unix, you can use time.clock() to measure CPU time.

Note: There is a certain baseline overhead associated with executing a pass statement. The code here doesn’t try
to hide it, but you should be aware of it. The baseline overhead can be measured by invoking the program without
arguments.

The baseline overhead differs between Python versions! Also, to fairly compare older Python versions to Python
2.3, you may want to use Python’s -O option for the older versions to avoid timing SET_LINENO instructions.

26.4.2 Examples

Here are two example sessions (one using the command line, one using the module interface) that compare the
cost of using hasattr() vs. try/except to test for missing and present object attributes.

% timeit.py ’try:’ ’ str.__bool__’ ’except AttributeError:’ ’ pass’
100000 loops, best of 3: 15.7 usec per loop
% timeit.py ’if hasattr(str, "__bool__"): pass’
100000 loops, best of 3: 4.26 usec per loop
% timeit.py ’try:’ ’ int.__bool__’ ’except AttributeError:’ ’ pass’
1000000 loops, best of 3: 1.43 usec per loop
% timeit.py ’if hasattr(int, "__bool__"): pass’
100000 loops, best of 3: 2.23 usec per loop

>>> import timeit
>>> s = """\
... try:

26.4. timeit — Measure execution time of small code snippets 1037

The Python Library Reference, Release 3.2

... str.__bool__

... except AttributeError:

... pass

... """
>>> t = timeit.Timer(stmt=s)
>>> print("%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000))
17.09 usec/pass
>>> s = """\
... if hasattr(str, ’__bool__’): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print("%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000))
4.85 usec/pass
>>> s = """\
... try:
... int.__bool__
... except AttributeError:
... pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print("%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000))
1.97 usec/pass
>>> s = """\
... if hasattr(int, ’__bool__’): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print("%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000))
3.15 usec/pass

To give the timeit module access to functions you define, you can pass a setup parameter which contains an
import statement:

def test():
"Stupid test function"
L = [i for i in range(100)]

if __name__==’__main__’:
from timeit import Timer
t = Timer("test()", "from __main__ import test")
print(t.timeit())

26.5 trace — Trace or track Python statement execution

Source code: Lib/trace.py

The trace module allows you to trace program execution, generate annotated statement coverage listings, print
caller/callee relationships and list functions executed during a program run. It can be used in another program or
from the command line.

26.5.1 Command-Line Usage

The trace module can be invoked from the command line. It can be as simple as

python -m trace --count -C . somefile.py ...

The above will execute somefile.py and generate annotated listings of all Python modules imported during
the execution into the current directory.

1038 Chapter 26. Debugging and Profiling

http://svn.python.org/view/python/branches/py3k/Lib/trace.py?view=markup

The Python Library Reference, Release 3.2

-help
Display usage and exit.

-version
Display the version of the module and exit.

Main options

At least one of the following options must be specified when invoking trace. The --listfuncs option is
mutually exclusive with the --trace and --counts options . When --listfuncs is provided, neither
--counts nor --trace are accepted, and vice versa.

-c, -count
Produce a set of annotated listing files upon program completion that shows how many times each statement
was executed. See also --coverdir, --file and --no-report below.

-t, -trace
Display lines as they are executed.

-l, -listfuncs
Display the functions executed by running the program.

-r, -report
Produce an annotated list from an earlier program run that used the --count and --file option. This
does not execute any code.

-T, -trackcalls
Display the calling relationships exposed by running the program.

Modifiers

-f, -file=<file>
Name of a file to accumulate counts over several tracing runs. Should be used with the --count option.

-C, -coverdir=<dir>
Directory where the report files go. The coverage report for package.module is written to file
dir/package/module.cover.

-m, -missing
When generating annotated listings, mark lines which were not executed with >>>>>>.

-s, -summary
When using --count or --report, write a brief summary to stdout for each file processed.

-R, -no-report
Do not generate annotated listings. This is useful if you intend to make several runs with --count, and
then produce a single set of annotated listings at the end.

-g, -timing
Prefix each line with the time since the program started. Only used while tracing.

Filters

These options may be repeated multiple times.

-ignore-module=<mod>
Ignore each of the given module names and its submodules (if it is a package). The argument can be a list
of names separated by a comma.

-ignore-dir=<dir>
Ignore all modules and packages in the named directory and subdirectories. The argument can be a list of
directories separated by os.pathsep.

26.5. trace — Trace or track Python statement execution 1039

The Python Library Reference, Release 3.2

26.5.2 Programmatic Interface

class trace.Trace(count=1, trace=1, countfuncs=0, countcallers=0, ignoremods=(), ignoredirs=(),
infile=None, outfile=None, timing=False)

Create an object to trace execution of a single statement or expression. All parameters are optional. count
enables counting of line numbers. trace enables line execution tracing. countfuncs enables listing of the
functions called during the run. countcallers enables call relationship tracking. ignoremods is a list of
modules or packages to ignore. ignoredirs is a list of directories whose modules or packages should be
ignored. infile is the name of the file from which to read stored count information. outfile is the name of the
file in which to write updated count information. timing enables a timestamp relative to when tracing was
started to be displayed.

run(cmd)
Execute the command and gather statistics from the execution with the current tracing pa-
rameters. cmd must be a string or code object, suitable for passing into exec().

runctx(cmd, globals=None, locals=None)
Execute the command and gather statistics from the execution with the current tracing pa-
rameters, in the defined global and local environments. If not defined, globals and locals
default to empty dictionaries.

runfunc(func, *args, **kwds)
Call func with the given arguments under control of the Trace object with the current
tracing parameters.

results()
Return a CoverageResults object that contains the cumulative results of all previous
calls to run, runctx and runfunc for the given Trace instance. Does not reset the
accumulated trace results.

class trace.CoverageResults
A container for coverage results, created by Trace.results(). Should not be created directly by the
user.

update(other)
Merge in data from another CoverageResults object.

write_results(show_missing=True, summary=False, coverdir=None)
Write coverage results. Set show_missing to show lines that had no hits. Set summary to
include in the output the coverage summary per module. coverdir specifies the directory
into which the coverage result files will be output. If None, the results for each source file
are placed in its directory.

A simple example demonstrating the use of the programmatic interface:

import sys
import trace

create a Trace object, telling it what to ignore, and whether to
do tracing or line-counting or both.
tracer = trace.Trace(

ignoredirs=[sys.prefix, sys.exec_prefix],
trace=0,
count=1)

run the new command using the given tracer
tracer.run(’main()’)

make a report, placing output in /tmp
r = tracer.results()
r.write_results(show_missing=True, coverdir="/tmp")

1040 Chapter 26. Debugging and Profiling

CHAPTER

TWENTYSEVEN

PYTHON RUNTIME SERVICES

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

27.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

sys.abiflags
On POSIX systems where Python is build with the standard configure script, this contains the ABI flags
as specified by PEP 3149. New in version 3.2.

sys.argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the -c
command line option to the interpreter, argv[0] is set to the string ’-c’. If no script name was passed
to the Python interpreter, argv[0] is the empty string.

To loop over the standard input, or the list of files given on the command line, see the fileinput module.

sys.byteorder
An indicator of the native byte order. This will have the value ’big’ on big-endian (most-significant byte
first) platforms, and ’little’ on little-endian (least-significant byte first) platforms.

sys.subversion
A triple (repo, branch, version) representing the Subversion information of the Python interpreter. repo
is the name of the repository, ’CPython’. branch is a string of one of the forms ’trunk’,
’branches/name’ or ’tags/name’. version is the output of svnversion, if the interpreter was
built from a Subversion checkout; it contains the revision number (range) and possibly a trailing ‘M’ if
there were local modifications. If the tree was exported (or svnversion was not available), it is the revision
of Include/patchlevel.h if the branch is a tag. Otherwise, it is None.

sys.builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way — modules.keys() only lists the imported modules.)

sys.call_tracing(func, args)
Call func(*args), while tracing is enabled. The tracing state is saved, and restored afterwards. This is
intended to be called from a debugger from a checkpoint, to recursively debug some other code.

sys.copyright
A string containing the copyright pertaining to the Python interpreter.

sys._clear_type_cache()
Clear the internal type cache. The type cache is used to speed up attribute and method lookups. Use the
function only to drop unnecessary references during reference leak debugging.

This function should be used for internal and specialized purposes only.

1041

http://www.python.org/dev/peps/pep-3149

The Python Library Reference, Release 3.2

sys._current_frames()
Return a dictionary mapping each thread’s identifier to the topmost stack frame currently active in that
thread at the time the function is called. Note that functions in the traceback module can build the call
stack given such a frame.

This is most useful for debugging deadlock: this function does not require the deadlocked threads’ coopera-
tion, and such threads’ call stacks are frozen for as long as they remain deadlocked. The frame returned for
a non-deadlocked thread may bear no relationship to that thread’s current activity by the time calling code
examines the frame.

This function should be used for internal and specialized purposes only.

sys.dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

sys.displayhook(value)
If value is not None, this function prints repr(value) to sys.stdout, and saves
value in builtins._. If repr(value) is not encodable to sys.stdout.encoding
with sys.stdout.errors error handler (which is probably ’strict’), encode it to
sys.stdout.encoding with ’backslashreplace’ error handler.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook.

Pseudo-code:

def displayhook(value):
if value is None:

return
Set ’_’ to None to avoid recursion
builtins._ = None
text = repr(value)
try:

sys.stdout.write(text)
except UnicodeEncodeError:

bytes = text.encode(sys.stdout.encoding, ’backslashreplace’)
if hasattr(sys.stdout, ’buffer’):

sys.stdout.buffer.write(bytes)
else:

text = bytes.decode(sys.stdout.encoding, ’strict’)
sys.stdout.write(text)

sys.stdout.write("\n")
builtins._ = value

Changed in version 3.2: Use ’backslashreplace’ error handler on UnicodeEncodeError.

sys.excepthook(type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three arguments,
the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook.

sys.__displayhook__
sys.__excepthook__

These objects contain the original values of displayhook and excepthook at the start of the program.
They are saved so that displayhook and excepthook can be restored in case they happen to get
replaced with broken objects.

1042 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

sys.exc_info()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception”
is defined as “executing an except clause.” For any stack frame, only information about the exception being
currently handled is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is returned.
Otherwise, the values returned are (type, value, traceback). Their meaning is: type gets the
type of the exception being handled (a subclass of BaseException); value gets the exception instance
(an instance of the exception type); traceback gets a traceback object (see the Reference Manual) which
encapsulates the call stack at the point where the exception originally occurred.

Warning: Assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. Since most functions don’t need access to the traceback,
the best solution is to use something like exctype, value = sys.exc_info()[:2] to extract
only the exception type and value. If you do need the traceback, make sure to delete it after use (best
done with a try ... finally statement) or to call exc_info() in a function that does not itself
handle an exception.
Such cycles are normally automatically reclaimed when garbage collection is enabled and they become
unreachable, but it remains more efficient to avoid creating cycles.

sys.exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also ’/usr/local’. This can be set at build time with the --exec-prefix argument to
the configure script. Specifically, all configuration files (e.g. the pyconfig.h header file) are installed in
the directory exec_prefix + ’/lib/pythonversion/config’, and shared library modules are
installed in exec_prefix + ’/lib/pythonversion/lib-dynload’, where version is equal to
version[:3].

sys.executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes
sense.

sys.exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions specified
by finally clauses of try statements are honored, and it is possible to intercept the exit attempt at an outer
level.

The optional argument arg can be an integer giving the exit status (defaulting to zero), or another type of
object. If it is an integer, zero is considered “successful termination” and any nonzero value is consid-
ered “abnormal termination” by shells and the like. Most systems require it to be in the range 0-127, and
produce undefined results otherwise. Some systems have a convention for assigning specific meanings to
specific exit codes, but these are generally underdeveloped; Unix programs generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of object is passed, None is equivalent
to passing zero, and any other object is printed to stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

Since exit() ultimately “only” raises an exception, it will only exit the process when called from the main
thread, and the exception is not intercepted.

sys.flags
The struct sequence flags exposes the status of command line flags. The attributes are read only.

27.1. sys — System-specific parameters and functions 1043

The Python Library Reference, Release 3.2

attribute flag
debug -d
division_warning -Q
inspect -i
interactive -i
optimize -O or -OO
dont_write_bytecode -B
no_user_site -s
no_site -S
ignore_environment -E
verbose -v
bytes_warning -b
quiet -q

Changed in version 3.2: Added quiet attribute for the new -q flag.

sys.float_info
A structseq holding information about the float type. It contains low level information about the precision
and internal representation. The values correspond to the various floating-point constants defined in the
standard header file float.h for the ‘C’ programming language; see section 5.2.4.2.2 of the 1999 ISO/IEC
C standard [C99], ‘Characteristics of floating types’, for details.

attribute float.h macro explanation
epsilon DBL_EPSILON difference between 1 and the least value greater than 1 that is

representable as a float
dig DBL_DIG maximum number of decimal digits that can be faithfully represented

in a float; see below
mant_dig DBL_MANT_DIG float precision: the number of base-radix digits in the significand

of a float
max DBL_MAX maximum representable finite float
max_exp DBL_MAX_EXP maximum integer e such that radix**(e-1) is a representable

finite float
max_10_expDBL_MAX_10_EXPmaximum integer e such that 10**e is in the range of representable

finite floats
min DBL_MIN minimum positive normalized float
min_exp DBL_MIN_EXP minimum integer e such that radix**(e-1) is a normalized float
min_10_expDBL_MIN_10_EXPminimum integer e such that 10**e is a normalized float
radix FLT_RADIX radix of exponent representation
rounds FLT_ROUNDS constant representing rounding mode used for arithmetic operations

The attribute sys.float_info.dig needs further explanation. If s is any string representing a decimal
number with at most sys.float_info.dig significant digits, then converting s to a float and back
again will recover a string representing the same decimal value:

>>> import sys
>>> sys.float_info.dig
15
>>> s = ’3.14159265358979’ # decimal string with 15 significant digits
>>> format(float(s), ’.15g’) # convert to float and back -> same value
’3.14159265358979’

But for strings with more than sys.float_info.dig significant digits, this isn’t always true:

>>> s = ’9876543211234567’ # 16 significant digits is too many!
>>> format(float(s), ’.16g’) # conversion changes value
’9876543211234568’

sys.float_repr_style
A string indicating how the repr() function behaves for floats. If the string has value ’short’ then
for a finite float x, repr(x) aims to produce a short string with the property that float(repr(x))

1044 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

== x. This is the usual behaviour in Python 3.1 and later. Otherwise, float_repr_style has value
’legacy’ and repr(x) behaves in the same way as it did in versions of Python prior to 3.1. New in
version 3.1.

sys.getcheckinterval()
Return the interpreter’s “check interval”; see setcheckinterval(). Deprecated since version 3.2: Use
getswitchinterval() instead.

sys.getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation.

sys.getdlopenflags()
Return the current value of the flags that are used for dlopen() calls. The flag constants are defined in
the ctypes and DLFCN modules. Availability: Unix.

sys.getfilesystemencoding()
Return the name of the encoding used to convert Unicode filenames into system file names. The result value
depends on the operating system:

•On Mac OS X, the encoding is ’utf-8’.

•On Unix, the encoding is the user’s preference according to the result of nl_langinfo(CODESET), or
’utf-8’ if nl_langinfo(CODESET) failed.

•On Windows NT+, file names are Unicode natively, so no conversion is performed.
getfilesystemencoding() still returns ’mbcs’, as this is the encoding that applications
should use when they explicitly want to convert Unicode strings to byte strings that are equivalent
when used as file names.

•On Windows 9x, the encoding is ’mbcs’.

Changed in version 3.2: On Unix, use ’utf-8’ instead of None if nl_langinfo(CODESET) failed.
getfilesystemencoding() result cannot be None.

sys.getrefcount(object)
Return the reference count of the object. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument to getrefcount().

sys.getrecursionlimit()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This
limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set
by setrecursionlimit().

sys.getsizeof(object[, default])
Return the size of an object in bytes. The object can be any type of object. All built-in objects will return
correct results, but this does not have to hold true for third-party extensions as it is implementation specific.

If given, default will be returned if the object does not provide means to retrieve the size. Otherwise a
TypeError will be raised.

getsizeof() calls the object’s __sizeof__method and adds an additional garbage collector overhead
if the object is managed by the garbage collector.

See recursive sizeof recipe for an example of using getsizeof() recursively to find the size of containers
and all their contents.

sys.getswitchinterval()
Return the interpreter’s “thread switch interval”; see setswitchinterval(). New in version 3.2.

sys._getframe([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame object that
many calls below the top of the stack. If that is deeper than the call stack, ValueError is raised. The
default for depth is zero, returning the frame at the top of the call stack.

CPython implementation detail: This function should be used for internal and specialized purposes only.
It is not guaranteed to exist in all implementations of Python.

27.1. sys — System-specific parameters and functions 1045

http://code.activestate.com/recipes/577504

The Python Library Reference, Release 3.2

sys.getprofile()
Get the profiler function as set by setprofile().

sys.gettrace()
Get the trace function as set by settrace().

CPython implementation detail: The gettrace() function is intended only for implementing debug-
gers, profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than
part of the language definition, and thus may not be available in all Python implementations.

sys.getwindowsversion()
Return a named tuple describing the Windows version currently running. The named elements are
major, minor, build, platform, service_pack, service_pack_minor, service_pack_major, suite_mask,
and product_type. service_pack contains a string while all other values are integers. The com-
ponents can also be accessed by name, so sys.getwindowsversion()[0] is equivalent to
sys.getwindowsversion().major. For compatibility with prior versions, only the first 5 elements
are retrievable by indexing.

platform may be one of the following values:

Constant Platform
0 (VER_PLATFORM_WIN32s) Win32s on Windows 3.1
1 (VER_PLATFORM_WIN32_WINDOWS) Windows 95/98/ME
2 (VER_PLATFORM_WIN32_NT) Windows NT/2000/XP/x64
3 (VER_PLATFORM_WIN32_CE) Windows CE

product_type may be one of the following values:

Constant Meaning
1 (VER_NT_WORKSTATION) The system is a workstation.
2 (VER_NT_DOMAIN_CONTROLLER) The system is a domain controller.
3 (VER_NT_SERVER) The system is a server, but not a domain controller.

This function wraps the Win32 GetVersionEx() function; see the Microsoft documentation on
OSVERSIONINFOEX() for more information about these fields.

Availability: Windows. Changed in version 3.2: Changed to a named tuple and added service_pack_minor,
service_pack_major, suite_mask, and product_type.

sys.hash_info
A structseq giving parameters of the numeric hash implementation. For more details about hashing of
numeric types, see Hashing of numeric types.

attribute explanation
width width in bits used for hash values
modulus prime modulus P used for numeric hash scheme
inf hash value returned for a positive infinity
nan hash value returned for a nan
imag multiplier used for the imaginary part of a complex number

New in version 3.2.

sys.hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature
...

else:
use an alternative implementation or warn the user
...

1046 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

This is called hexversion since it only really looks meaningful when viewed as the result of passing it to
the built-in hex() function. The version_info value may be used for a more human-friendly encoding
of the same information.

sys.int_info
A struct sequence that holds information about Python’s internal representation of integers. The attributes
are read only.

attribute explanation
bits_per_digitnumber of bits held in each digit. Python integers are stored internally in base

2**int_info.bits_per_digit
sizeof_digit size in bytes of the C type used to represent a digit

New in version 3.1.

sys.intern(string)
Enter string in the table of “interned” strings and return the interned string – which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys.

Interned strings are not immortal; you must keep a reference to the return value of intern() around to
benefit from it.

sys.last_type
sys.last_value
sys.last_traceback

These three variables are not always defined; they are set when an exception is not handled and the inter-
preter prints an error message and a stack traceback. Their intended use is to allow an interactive user to
import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical use is import pdb; pdb.pm() to enter the post-mortem debugger; see
pdb module for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.

sys.maxsize
An integer giving the maximum value a variable of type Py_ssize_t can take. It’s usually 2**31 - 1
on a 32-bit platform and 2**63 - 1 on a 64-bit platform.

sys.maxunicode
An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

sys.meta_path
A list of finder objects that have their find_module() methods called to see if one of the objects can
find the module to be imported. The find_module() method is called at least with the absolute name of
the module being imported. If the module to be imported is contained in package then the parent package’s
__path__ attribute is passed in as a second argument. The method returns None if the module cannot be
found, else returns a loader.

sys.meta_path is searched before any implicit default finders or sys.path.

See PEP 302 for the original specification.

sys.modules
This is a dictionary that maps module names to modules which have already been loaded. This can be
manipulated to force reloading of modules and other tricks.

sys.path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this list, path[0], is the directory containing the script
that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard input), path[0] is the empty string, which

27.1. sys — System-specific parameters and functions 1047

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

directs Python to search modules in the current directory first. Notice that the script directory is inserted
before the entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.

See Also:

Module site This describes how to use .pth files to extend sys.path.

sys.path_hooks
A list of callables that take a path argument to try to create a finder for the path. If a finder can be created,
it is to be returned by the callable, else raise ImportError.

Originally specified in PEP 302.

sys.path_importer_cache
A dictionary acting as a cache for finder objects. The keys are paths that have been passed to
sys.path_hooks and the values are the finders that are found. If a path is a valid file system path
but no explicit finder is found on sys.path_hooks then None is stored to represent the implicit default
finder should be used. If the path is not an existing path then imp.NullImporter is set.

Originally specified in PEP 302.

sys.platform
This string contains a platform identifier that can be used to append platform-specific components to
sys.path, for instance.

For Unix systems, this is the lowercased OS name as returned by uname -s with the first part of the
version as returned by uname -r appended, e.g. ’sunos5’ or ’linux2’, at the time when Python was
built. For other systems, the values are:

System platform value
Windows ’win32’
Windows/Cygwin ’cygwin’
Mac OS X ’darwin’
OS/2 ’os2’
OS/2 EMX ’os2emx’

sys.prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the string ’/usr/local’. This can be set at build time with the --prefix argument
to the configure script. The main collection of Python library modules is installed in the directory prefix
+ ’/lib/pythonversion’ while the platform independent header files (all except pyconfig.h)
are stored in prefix + ’/include/pythonversion’, where version is equal to version[:3].

sys.ps1
sys.ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the
interpreter is in interactive mode. Their initial values in this case are ’>>> ’ and ’... ’. If a non-
string object is assigned to either variable, its str() is re-evaluated each time the interpreter prepares to
read a new interactive command; this can be used to implement a dynamic prompt.

sys.dont_write_bytecode
If this is true, Python won’t try to write .pyc or .pyo files on the import of source modules.
This value is initially set to True or False depending on the -B command line option and the
PYTHONDONTWRITEBYTECODE environment variable, but you can set it yourself to control bytecode
file generation.

sys.setcheckinterval(interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for peri-
odic things such as thread switches and signal handlers. The default is 100, meaning the check is performed
every 100 Python virtual instructions. Setting it to a larger value may increase performance for programs
using threads. Setting it to a value <= 0 checks every virtual instruction, maximizing responsiveness as well
as overhead. Deprecated since version 3.2: This function doesn’t have an effect anymore, as the internal

1048 Chapter 27. Python Runtime Services

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

logic for thread switching and asynchronous tasks has been rewritten. Use setswitchinterval()
instead.

sys.setdlopenflags(n)
Set the flags used by the interpreter for dlopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called as sys.setdlopenflags(0). To share symbols across extension modules, call as
sys.setdlopenflags(ctypes.RTLD_GLOBAL). Symbolic names for the flag modules can be ei-
ther found in the ctypes module, or in the DLFCN module. If DLFCN is not available, it can be generated
from /usr/include/dlfcn.h using the h2py script. Availability: Unix.

sys.setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.

See chapter The Python Profilers for more information on the Python profiler. The system’s profile function
is called similarly to the system’s trace function (see settrace()), but it isn’t called for each executed
line of code (only on call and return, but the return event is reported even when an exception has been set).
The function is thread-specific, but there is no way for the profiler to know about context switches between
threads, so it does not make sense to use this in the presence of multiple threads. Also, its return value is
not used, so it can simply return None.

sys.setrecursionlimit(limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

sys.setswitchinterval(interval)
Set the interpreter’s thread switch interval (in seconds). This floating-point value determines the ideal
duration of the “timeslices” allocated to concurrently running Python threads. Please note that the actual
value can be higher, especially if long-running internal functions or methods are used. Also, which thread
becomes scheduled at the end of the interval is the operating system’s decision. The interpreter doesn’t have
its own scheduler. New in version 3.2.

sys.settrace(tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.

The function is thread-specific; for a debugger to support multiple threads, it must be registered using
settrace() for each thread being debugged.

Trace functions should have three arguments: frame, event, and arg. frame is the current stack frame.
event is a string: ’call’, ’line’, ’return’, ’exception’, ’c_call’, ’c_return’, or
’c_exception’. arg depends on the event type.

The trace function is invoked (with event set to ’call’) whenever a new local scope is entered; it should
return a reference to a local trace function to be used that scope, or None if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that
scope), or None to turn off tracing in that scope.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called; arg
is None; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code or re-execute the condition of a loop. The
local trace function is called; arg is None; the return value specifies the new local trace function. See
Objects/lnotab_notes.txt for a detailed explanation of how this works.

’return’ A function (or other code block) is about to return. The local trace function is called; arg is
the value that will be returned, or None if the event is caused by an exception being raised. The trace
function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg is a tuple
(exception, value, traceback); the return value specifies the new local trace function.

27.1. sys — System-specific parameters and functions 1049

The Python Library Reference, Release 3.2

’c_call’ A C function is about to be called. This may be an extension function or a built-in. arg is the
C function object.

’c_return’ A C function has returned. arg is the C function object.

’c_exception’ A C function has raised an exception. arg is the C function object.

Note that as an exception is propagated down the chain of callers, an ’exception’ event is generated at
each level.

For more information on code and frame objects, refer to types.

CPython implementation detail: The settrace() function is intended only for implementing debug-
gers, profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than
part of the language definition, and thus may not be available in all Python implementations.

sys.settscdump(on_flag)
Activate dumping of VM measurements using the Pentium timestamp counter, if on_flag is true. Deactivate
these dumps if on_flag is off. The function is available only if Python was compiled with --with-tsc.
To understand the output of this dump, read Python/ceval.c in the Python sources.

CPython implementation detail: This function is intimately bound to CPython implementation details and
thus not likely to be implemented elsewhere.

sys.stdin
sys.stdout
sys.stderr

File objects corresponding to the interpreter’s standard input, output and error streams. stdin is used for
all interpreter input except for scripts but including calls to input(). stdout is used for the output of
print() and expression statements and for the prompts of input(). The interpreter’s own prompts and
(almost all of) its error messages go to stderr. stdout and stderr needn’t be built-in file objects:
any object is acceptable as long as it has a write() method that takes a string argument. (Changing these
objects doesn’t affect the standard I/O streams of processes executed by os.popen(), os.system()
or the exec*() family of functions in the os module.)

The standard streams are in text mode by default. To write or read binary data to these, use the underlying
binary buffer. For example, to write bytes to stdout, use sys.stdout.buffer.write(b’abc’).
Using io.TextIOBase.detach() streams can be made binary by default. This function sets stdin
and stdout to binary:

def make_streams_binary():
sys.stdin = sys.stdin.detach()
sys.stdout = sys.stdout.detach()

Note that the streams can be replaced with objects (like io.StringIO) that do not support the buffer at-
tribute or the detach() method and can raise AttributeError or io.UnsupportedOperation.

sys.__stdin__
sys.__stdout__
sys.__stderr__

These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to print to the actual standard stream no matter if the
sys.std* object has been redirected.

It can also be used to restore the actual files to known working file objects in case they have been overwritten
with a broken object. However, the preferred way to do this is to explicitly save the previous stream before
replacing it, and restore the saved object.

Note: Under some conditions stdin, stdout and stderr as well as the original values __stdin__,
__stdout__ and __stderr__ can be None. It is usually the case for Windows GUI apps that aren’t
connected to a console and Python apps started with pythonw.

1050 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

sys.tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback
information printed when an unhandled exception occurs. The default is 1000. When set to 0 or less, all
traceback information is suppressed and only the exception type and value are printed.

sys.version
A string containing the version number of the Python interpreter plus additional information on the build
number and compiler used. This string is displayed when the interactive interpreter is started. Do not extract
version information out of it, rather, use version_info and the functions provided by the platform
module.

sys.api_version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules.

sys.version_info
A tuple containing the five components of the version number: major, minor, micro, releaselevel, and se-
rial. All values except releaselevel are integers; the release level is ’alpha’, ’beta’, ’candidate’,
or ’final’. The version_info value corresponding to the Python version 2.0 is (2, 0, 0,
’final’, 0). The components can also be accessed by name, so sys.version_info[0] is equiv-
alent to sys.version_info.major and so on. Changed in version 3.1: Added named component
attributes.

sys.warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

sys.winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three characters of version. It is provided in
the sys module for informational purposes; modifying this value has no effect on the registry keys used by
Python. Availability: Windows.

sys._xoptions
A dictionary of the various implementation-specific flags passed through the -X command-line option.
Option names are either mapped to their values, if given explicitly, or to True. Example:

$./python -Xa=b -Xc
Python 3.2a3+ (py3k, Oct 16 2010, 20:14:50)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys._xoptions
{’a’: ’b’, ’c’: True}

CPython implementation detail: This is a CPython-specific way of accessing options passed through -X.
Other implementations may export them through other means, or not at all. New in version 3.2.

Citations

27.2 sysconfig — Provide access to Python’s configuration infor-
mation

Source code: Lib/sysconfig.py New in version 3.2.

The sysconfig module provides access to Python’s configuration information like the list of installation paths
and the configuration variables relevant for the current platform.

27.2. sysconfig — Provide access to Python’s configuration information 1051

http://svn.python.org/view/python/branches/py3k/Lib/sysconfig.py?view=markup

The Python Library Reference, Release 3.2

27.2.1 Configuration variables

A Python distribution contains a Makefile and a pyconfig.h header file that are necessary to build both the
Python binary itself and third-party C extensions compiled using distutils.

sysconfig puts all variables found in these files in a dictionary that can be accessed using
get_config_vars() or get_config_var().

Notice that on Windows, it’s a much smaller set.

sysconfig.get_config_vars(*args)
With no arguments, return a dictionary of all configuration variables relevant for the current platform.

With arguments, return a list of values that result from looking up each argument in the configuration
variable dictionary.

For each argument, if the value is not found, return None.

sysconfig.get_config_var(name)
Return the value of a single variable name. Equivalent to get_config_vars().get(name).

If name is not found, return None.

Example of usage:

>>> import sysconfig
>>> sysconfig.get_config_var(’Py_ENABLE_SHARED’)
0
>>> sysconfig.get_config_var(’LIBDIR’)
’/usr/local/lib’
>>> sysconfig.get_config_vars(’AR’, ’CXX’)
[’ar’, ’g++’]

27.2.2 Installation paths

Python uses an installation scheme that differs depending on the platform and on the installation options. These
schemes are stored in sysconfig under unique identifiers based on the value returned by os.name.

Every new component that is installed using distutils or a Distutils-based system will follow the same scheme
to copy its file in the right places.

Python currently supports seven schemes:

• posix_prefix: scheme for Posix platforms like Linux or Mac OS X. This is the default scheme used when
Python or a component is installed.

• posix_home: scheme for Posix platforms used when a home option is used upon installation. This scheme
is used when a component is installed through Distutils with a specific home prefix.

• posix_user: scheme for Posix platforms used when a component is installed through Distutils and the user
option is used. This scheme defines paths located under the user home directory.

• nt: scheme for NT platforms like Windows.

• nt_user: scheme for NT platforms, when the user option is used.

• os2: scheme for OS/2 platforms.

• os2_home: scheme for OS/2 patforms, when the user option is used.

Each scheme is itself composed of a series of paths and each path has a unique identifier. Python currently uses
eight paths:

• stdlib: directory containing the standard Python library files that are not platform-specific.

• platstdlib: directory containing the standard Python library files that are platform-specific.

• platlib: directory for site-specific, platform-specific files.

1052 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

• purelib: directory for site-specific, non-platform-specific files.

• include: directory for non-platform-specific header files.

• platinclude: directory for platform-specific header files.

• scripts: directory for script files.

• data: directory for data files.

sysconfig provides some functions to determine these paths.

sysconfig.get_scheme_names()
Return a tuple containing all schemes currently supported in sysconfig.

sysconfig.get_path_names()
Return a tuple containing all path names currently supported in sysconfig.

sysconfig.get_path(name[, scheme[, vars[, expand]]])
Return an installation path corresponding to the path name, from the install scheme named scheme.

name has to be a value from the list returned by get_path_names().

sysconfig stores installation paths corresponding to each path name, for each platform, with variables to
be expanded. For instance the stdlib path for the nt scheme is: {base}/Lib.

get_path() will use the variables returned by get_config_vars() to expand the path. All variables
have default values for each platform so one may call this function and get the default value.

If scheme is provided, it must be a value from the list returned by get_path_names(). Otherwise, the
default scheme for the current platform is used.

If vars is provided, it must be a dictionary of variables that will update the dictionary return by
get_config_vars().

If expand is set to False, the path will not be expanded using the variables.

If name is not found, return None.

sysconfig.get_paths([scheme[, vars[, expand]]])
Return a dictionary containing all installation paths corresponding to an installation scheme. See
get_path() for more information.

If scheme is not provided, will use the default scheme for the current platform.

If vars is provided, it must be a dictionary of variables that will update the dictionary used to expand the
paths.

If expand is set to False, the paths will not be expanded.

If scheme is not an existing scheme, get_paths() will raise a KeyError.

27.2.3 Other functions

sysconfig.get_python_version()
Return the MAJOR.MINOR Python version number as a string. Similar to sys.version[:3].

sysconfig.get_platform()
Return a string that identifies the current platform.

This is used mainly to distinguish platform-specific build directories and platform-specific built distribu-
tions. Typically includes the OS name and version and the architecture (as supplied by os.uname()),
although the exact information included depends on the OS; e.g. for IRIX the architecture isn’t particularly
important (IRIX only runs on SGI hardware), but for Linux the kernel version isn’t particularly important.

Examples of returned values:

•linux-i586

•linux-alpha (?)

27.2. sysconfig — Provide access to Python’s configuration information 1053

The Python Library Reference, Release 3.2

•solaris-2.6-sun4u

•irix-5.3

•irix64-6.2

Windows will return one of:

•win-amd64 (64bit Windows on AMD64 (aka x86_64, Intel64, EM64T, etc)

•win-ia64 (64bit Windows on Itanium)

•win32 (all others - specifically, sys.platform is returned)

Mac OS X can return:

•macosx-10.6-ppc

•macosx-10.4-ppc64

•macosx-10.3-i386

•macosx-10.4-fat

For other non-POSIX platforms, currently just returns sys.platform.

sysconfig.is_python_build()
Return True if the current Python installation was built from source.

sysconfig.parse_config_h(fp[, vars])
Parse a config.h-style file.

fp is a file-like object pointing to the config.h-like file.

A dictionary containing name/value pairs is returned. If an optional dictionary is passed in as the second
argument, it is used instead of a new dictionary, and updated with the values read in the file.

sysconfig.get_config_h_filename()
Return the path of pyconfig.h.

sysconfig.get_makefile_filename()
Return the path of Makefile.

27.2.4 Using sysconfig as a script

You can use sysconfig as a script with Python’s -m option:

$ python -m sysconfig
Platform: "macosx-10.4-i386"
Python version: "3.2"
Current installation scheme: "posix_prefix"

Paths:
data = "/usr/local"
include = "/Users/tarek/Dev/svn.python.org/py3k/Include"
platinclude = "."
platlib = "/usr/local/lib/python3.2/site-packages"
platstdlib = "/usr/local/lib/python3.2"
purelib = "/usr/local/lib/python3.2/site-packages"
scripts = "/usr/local/bin"
stdlib = "/usr/local/lib/python3.2"

Variables:
AC_APPLE_UNIVERSAL_BUILD = "0"
AIX_GENUINE_CPLUSPLUS = "0"
AR = "ar"
ARFLAGS = "rc"

1054 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

ASDLGEN = "./Parser/asdl_c.py"
...

This call will print in the standard output the information returned by get_platform(),
get_python_version(), get_path() and get_config_vars().

27.3 builtins — Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for example, builtins.open is the
full name for the built-in function open().

This module is not normally accessed explicitly by most applications, but can be useful in modules that provide
objects with the same name as a built-in value, but in which the built-in of that name is also needed. For example,
in a module that wants to implement an open() function that wraps the built-in open(), this module can be
used directly:

import builtins

def open(path):
f = builtins.open(path, ’r’)
return UpperCaser(f)

class UpperCaser:
’’’Wrapper around a file that converts output to upper-case.’’’

def __init__(self, f):
self._f = f

def read(self, count=-1):
return self._f.read(count).upper()

...

As an implementation detail, most modules have the name __builtins__ made available as part of their
globals. The value of __builtins__ is normally either this module or the value of this modules’s __dict__
attribute. Since this is an implementation detail, it may not be used by alternate implementations of Python.

27.4 __main__ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes —
commands read either from standard input, from a script file, or from an interactive prompt. It is this environment
in which the idiomatic “conditional script” stanza causes a script to run:

if __name__ == "__main__":
main()

27.5 warnings — Warning control

Source code: Lib/warnings.py

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a
program, where that condition (normally) doesn’t warrant raising an exception and terminating the program. For
example, one might want to issue a warning when a program uses an obsolete module.

27.3. builtins — Built-in objects 1055

http://svn.python.org/view/python/branches/py3k/Lib/warnings.py?view=markup

The Python Library Reference, Release 3.2

Python programmers issue warnings by calling the warn() function defined in this module. (C programmers use
PyErr_WarnEx(); see exceptionhandling for details).

Warning messages are normally written to sys.stderr, but their disposition can be changed flexibly, from
ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning
category (see below), the text of the warning message, and the source location where it is issued. Repetitions of a
particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence
of matching rules and actions. Rules can be added to the filter by calling filterwarnings() and reset to its
default state by calling resetwarnings().

The printing of warning messages is done by calling showwarning(), which may be overridden; the default
implementation of this function formats the message by calling formatwarning(), which is also available for
use by custom implementations.

27.5.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be
able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description
Warning This is the base class of all warning category classes. It is a subclass of

Exception.
UserWarning The default category for warn().
DeprecationWarning Base category for warnings about deprecated features (ignored by default).
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.
FutureWarning Base category for warnings about constructs that will change semantically in

the future.
PendingDeprecationWarningBase category for warnings about features that will be deprecated in the

future (ignored by default).
ImportWarning Base category for warnings triggered during the process of importing a

module (ignored by default).
UnicodeWarning Base category for warnings related to Unicode.
BytesWarning Base category for warnings related to bytes and buffer.
ResourceWarning Base category for warnings related to resource usage.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to
the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A
warning category must always be a subclass of the Warning class.

27.5.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of
the match. Each entry is a tuple of the form (action, message, category, module, lineno), where:

• action is one of the following strings:

1056 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

Value Disposition
"error" turn matching warnings into exceptions
"ignore" never print matching warnings
"always" always print matching warnings
"default" print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

• message is a string containing a regular expression that the warning message must match (the match is
compiled to always be case-insensitive).

• category is a class (a subclass of Warning) of which the warning category must be a subclass in order to
match.

• module is a string containing a regular expression that the module name must match (the match is compiled
to be case-sensitive).

• lineno is an integer that the line number where the warning occurred must match, or 0 to match all line
numbers.

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we simply
raise category(message).

The warnings filter is initialized by -W options passed to the Python interpreter command line. The interpreter
saves the arguments for all -W options without interpretation in sys.warnoptions; the warnings module
parses these when it is first imported (invalid options are ignored, after printing a message to sys.stderr).

Default Warning Filters

By default, Python installs several warning filters, which can be overridden by the command-line options passed
to -W and calls to filterwarnings().

• DeprecationWarning and PendingDeprecationWarning, and ImportWarning are ignored.

• BytesWarning is ignored unless the -b option is given once or twice; in this case this warning is either
printed (-b) or turned into an exception (-bb).

• ResourceWarning is ignored unless Python was built in debug mode.

Changed in version 3.2: DeprecationWarning is now ignored by default in addition to
PendingDeprecationWarning.

27.5.3 Temporarily Suppressing Warnings

If you are using code that you know will raise a warning, such as a deprecated function, but do not want to see the
warning, then it is possible to suppress the warning using the catch_warnings context manager:

import warnings

def fxn():
warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings():
warnings.simplefilter("ignore")
fxn()

While within the context manager all warnings will simply be ignored. This allows you to use known-deprecated
code without having to see the warning while not suppressing the warning for other code that might not be aware
of its use of deprecated code. Note: this can only be guaranteed in a single-threaded application. If two or more
threads use the catch_warnings context manager at the same time, the behavior is undefined.

27.5. warnings — Warning control 1057

The Python Library Reference, Release 3.2

27.5.4 Testing Warnings

To test warnings raised by code, use the catch_warnings context manager. With it you can temporarily mutate
the warnings filter to facilitate your testing. For instance, do the following to capture all raised warnings to check:

import warnings

def fxn():
warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings(record=True) as w:
Cause all warnings to always be triggered.
warnings.simplefilter("always")
Trigger a warning.
fxn()
Verify some things
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated" in str(w[-1].message)

One can also cause all warnings to be exceptions by using error instead of always. One thing to be aware of
is that if a warning has already been raised because of a once/default rule, then no matter what filters are set
the warning will not be seen again unless the warnings registry related to the warning has been cleared.

Once the context manager exits, the warnings filter is restored to its state when the context was entered. This
prevents tests from changing the warnings filter in unexpected ways between tests and leading to indeterminate
test results. The showwarning() function in the module is also restored to its original value. Note: this can
only be guaranteed in a single-threaded application. If two or more threads use the catch_warnings context
manager at the same time, the behavior is undefined.

When testing multiple operations that raise the same kind of warning, it is important to test them in a manner
that confirms each operation is raising a new warning (e.g. set warnings to be raised as exceptions and check the
operations raise exceptions, check that the length of the warning list continues to increase after each operation, or
else delete the previous entries from the warnings list before each new operation).

27.5.5 Updating Code For New Versions of Python

Warnings that are only of interest to the developer are ignored by default. As such you should make sure to test
your code with typically ignored warnings made visible. You can do this from the command-line by passing -Wd
to the interpreter (this is shorthand for -W default). This enables default handling for all warnings, including
those that are ignored by default. To change what action is taken for encountered warnings you simply change
what argument is passed to -W, e.g. -W error. See the -W flag for more details on what is possible.

To programmatically do the same as -Wd, use:

warnings.simplefilter(’default’)

Make sure to execute this code as soon as possible. This prevents the registering of what warnings have been
raised from unexpectedly influencing how future warnings are treated.

Having certain warnings ignored by default is done to prevent a user from seeing warnings that are only of interest
to the developer. As you do not necessarily have control over what interpreter a user uses to run their code, it is
possible that a new version of Python will be released between your release cycles. The new interpreter release
could trigger new warnings in your code that were not there in an older interpreter, e.g. DeprecationWarning
for a module that you are using. While you as a developer want to be notified that your code is using a deprecated
module, to a user this information is essentially noise and provides no benefit to them.

The unittest module has been also updated to use the ’default’ filter while running tests.

1058 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

27.5.6 Available Functions

warnings.warn(message, category=None, stacklevel=1)
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must be a warn-
ing category class (see above); it defaults to UserWarning. Alternatively message can be a Warning
instance, in which case category will be ignored and message.__class__ will be used. In this case the
message text will be str(message). This function raises an exception if the particular warning issued
is changed into an error by the warnings filter see above. The stacklevel argument can be used by wrapper
functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer to deprecation()‘s caller, rather than to the source of deprecation()
itself (since the latter would defeat the purpose of the warning message).

warnings.warn_explicit(message, category, filename, lineno, module=None, registry=None,
module_globals=None)

This is a low-level interface to the functionality of warn(), passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry__ dictionary of the module). The module name defaults to the filename with
.py stripped; if no registry is passed, the warning is never suppressed. message must be a string and cat-
egory a subclass of Warning or message may be a Warning instance, in which case category will be
ignored.

module_globals, if supplied, should be the global namespace in use by the code for which the warning is
issued. (This argument is used to support displaying source for modules found in zipfiles or other non-
filesystem import sources).

warnings.showwarning(message, category, filename, lineno, file=None, line=None)
Write a warning to a file. The default implementation calls formatwarning(message,
category, filename, lineno, line) and writes the resulting string to file, which defaults
to sys.stderr. You may replace this function with an alternative implementation by assigning to
warnings.showwarning. line is a line of source code to be included in the warning message; if line is
not supplied, showwarning() will try to read the line specified by filename and lineno.

warnings.formatwarning(message, category, filename, lineno, line=None)
Format a warning the standard way. This returns a string which may contain embedded newlines and ends
in a newline. line is a line of source code to be included in the warning message; if line is not supplied,
formatwarning() will try to read the line specified by filename and lineno.

warnings.filterwarnings(action, message=’‘, category=Warning, module=’‘, lineno=0, ap-
pend=False)

Insert an entry into the list of warnings filter specifications. The entry is inserted at the front by default;
if append is true, it is inserted at the end. This checks the types of the arguments, compiles the message
and module regular expressions, and inserts them as a tuple in the list of warnings filters. Entries closer to
the front of the list override entries later in the list, if both match a particular warning. Omitted arguments
default to a value that matches everything.

warnings.simplefilter(action, category=Warning, lineno=0, append=False)
Insert a simple entry into the list of warnings filter specifications. The meaning of the function parameters is
as for filterwarnings(), but regular expressions are not needed as the filter inserted always matches
any message in any module as long as the category and line number match.

warnings.resetwarnings()
Reset the warnings filter. This discards the effect of all previous calls to filterwarnings(), including
that of the -W command line options and calls to simplefilter().

27.5. warnings — Warning control 1059

The Python Library Reference, Release 3.2

27.5.7 Available Context Managers

class warnings.catch_warnings(*, record=False, module=None)
A context manager that copies and, upon exit, restores the warnings filter and the showwarning() func-
tion. If the record argument is False (the default) the context manager returns None on entry. If record is
True, a list is returned that is progressively populated with objects as seen by a custom showwarning()
function (which also suppresses output to sys.stdout). Each object in the list has attributes with the
same names as the arguments to showwarning().

The module argument takes a module that will be used instead of the module returned when you import
warnings whose filter will be protected. This argument exists primarily for testing the warnings mod-
ule itself.

Note: The catch_warnings manager works by replacing and then later restoring the module’s
showwarning() function and internal list of filter specifications. This means the context manager is
modifying global state and therefore is not thread-safe.

27.6 contextlib — Utilities for with-statement contexts

Source code: Lib/contextlib.py

This module provides utilities for common tasks involving the with statement. For more information see also
Context Manager Types and context-managers.

Functions provided:

@contextlib.contextmanager
This function is a decorator that can be used to define a factory function for with statement context man-
agers, without needing to create a class or separate __enter__() and __exit__() methods.

A simple example (this is not recommended as a real way of generating HTML!):

from contextlib import contextmanager

@contextmanager
def tag(name):

print("<%s>" % name)
yield
print("</%s>" % name)

>>> with tag("h1"):
... print("foo")
...
<h1>
foo
</h1>

The function being decorated must return a generator-iterator when called. This iterator must yield exactly
one value, which will be bound to the targets in the with statement’s as clause, if any.

At the point where the generator yields, the block nested in the with statement is executed. The generator is
then resumed after the block is exited. If an unhandled exception occurs in the block, it is reraised inside the
generator at the point where the yield occurred. Thus, you can use a try...except...finally statement
to trap the error (if any), or ensure that some cleanup takes place. If an exception is trapped merely in
order to log it or to perform some action (rather than to suppress it entirely), the generator must reraise that
exception. Otherwise the generator context manager will indicate to the with statement that the exception
has been handled, and execution will resume with the statement immediately following the with statement.

1060 Chapter 27. Python Runtime Services

http://svn.python.org/view/python/branches/py3k/Lib/contextlib.py?view=markup

The Python Library Reference, Release 3.2

contextmanager uses ContextDecorator so the context managers it creates can be used as decorators
as well as in with statements. Changed in version 3.2: Use of ContextDecorator.

contextlib.closing(thing)
Return a context manager that closes thing upon completion of the block. This is basically equivalent to:

from contextlib import contextmanager

@contextmanager
def closing(thing):

try:
yield thing

finally:
thing.close()

And lets you write code like this:

from contextlib import closing
from urllib.request import urlopen

with closing(urlopen(’http://www.python.org’)) as page:
for line in page:

print(line)

without needing to explicitly close page. Even if an error occurs, page.close() will be called when
the with block is exited.

class contextlib.ContextDecorator
A base class that enables a context manager to also be used as a decorator.

Context managers inheriting from ContextDecorator have to implement __enter__ and
__exit__ as normal. __exit__ retains its optional exception handling even when used as a decora-
tor.

ContextDecorator is used by contextmanager(), so you get this functionality automatically.

Example of ContextDecorator:

from contextlib import ContextDecorator

class mycontext(ContextDecorator):
def __enter__(self):

print(’Starting’)
return self

def __exit__(self, *exc):
print(’Finishing’)
return False

>>> @mycontext()
... def function():
... print(’The bit in the middle’)
...
>>> function()
Starting
The bit in the middle
Finishing

>>> with mycontext():
... print(’The bit in the middle’)
...

27.6. contextlib — Utilities for with-statement contexts 1061

The Python Library Reference, Release 3.2

Starting
The bit in the middle
Finishing

This change is just syntactic sugar for any construct of the following form:

def f():
with cm():

Do stuff

ContextDecorator lets you instead write:

@cm()
def f():

Do stuff

It makes it clear that the cm applies to the whole function, rather than just a piece of it (and saving an
indentation level is nice, too).

Existing context managers that already have a base class can be extended by using ContextDecorator
as a mixin class:

from contextlib import ContextDecorator

class mycontext(ContextBaseClass, ContextDecorator):
def __enter__(self):

return self

def __exit__(self, *exc):
return False

New in version 3.2.

See Also:

PEP 0343 - The “with” statement The specification, background, and examples for the Python with state-
ment.

27.7 abc — Abstract Base Classes

Source code: Lib/abc.py

This module provides the infrastructure for defining an abstract base class (ABCs) in Python, as outlined in PEP
3119; see the PEP for why this was added to Python. (See also PEP 3141 and the numbers module regarding a
type hierarchy for numbers based on ABCs.)

The collections module has some concrete classes that derive from ABCs; these can, of course, be further
derived. In addition the collections module has some ABCs that can be used to test whether a class or
instance provides a particular interface, for example, is it hashable or a mapping.

This module provides the following class:

class abc.ABCMeta
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC. An ABC can be subclassed directly, and then acts as a mix-in class.
You can also register unrelated concrete classes (even built-in classes) and unrelated ABCs as “virtual sub-
classes” – these and their descendants will be considered subclasses of the registering ABC by the built-in

1062 Chapter 27. Python Runtime Services

http://www.python.org/dev/peps/pep-0343
http://svn.python.org/view/python/branches/py3k/Lib/abc.py?view=markup
http://www.python.org/dev/peps/pep-3119
http://www.python.org/dev/peps/pep-3119
http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.2

issubclass() function, but the registering ABC won’t show up in their MRO (Method Resolution Or-
der) nor will method implementations defined by the registering ABC be callable (not even via super()).
1

Classes created with a metaclass of ABCMeta have the following method:

register(subclass)
Register subclass as a “virtual subclass” of this ABC. For example:

from abc import ABCMeta

class MyABC(metaclass=ABCMeta):
pass

MyABC.register(tuple)

assert issubclass(tuple, MyABC)
assert isinstance((), MyABC)

You can also override this method in an abstract base class:

__subclasshook__(subclass)
(Must be defined as a class method.)

Check whether subclass is considered a subclass of this ABC. This means that you can customize the
behavior of issubclass further without the need to call register() on every class you want
to consider a subclass of the ABC. (This class method is called from the __subclasscheck__()
method of the ABC.)

This method should return True, False or NotImplemented. If it returns True, the subclass is
considered a subclass of this ABC. If it returns False, the subclass is not considered a subclass of
this ABC, even if it would normally be one. If it returns NotImplemented, the subclass check is
continued with the usual mechanism.

For a demonstration of these concepts, look at this example ABC definition:

class Foo:
def __getitem__(self, index):

...
def __len__(self):

...
def get_iterator(self):

return iter(self)

class MyIterable(metaclass=ABCMeta):

@abstractmethod
def __iter__(self):

while False:
yield None

def get_iterator(self):
return self.__iter__()

@classmethod
def __subclasshook__(cls, C):

if cls is MyIterable:
if any("__iter__" in B.__dict__ for B in C.__mro__):

return True
return NotImplemented

1 C++ programmers should note that Python’s virtual base class concept is not the same as C++’s.

27.7. abc — Abstract Base Classes 1063

The Python Library Reference, Release 3.2

MyIterable.register(Foo)

The ABC MyIterable defines the standard iterable method, __iter__(), as an abstract method. The
implementation given here can still be called from subclasses. The get_iterator() method is also
part of the MyIterable abstract base class, but it does not have to be overridden in non-abstract derived
classes.

The __subclasshook__() class method defined here says that any class that has an __iter__()
method in its __dict__ (or in that of one of its base classes, accessed via the __mro__ list) is considered
a MyIterable too.

Finally, the last line makes Foo a virtual subclass of MyIterable, even though it does not define
an __iter__() method (it uses the old-style iterable protocol, defined in terms of __len__() and
__getitem__()). Note that this will not make get_iterator available as a method of Foo, so it is
provided separately.

It also provides the following decorators:

@abc.abstractmethod(function)
A decorator indicating abstract methods.

Using this decorator requires that the class’s metaclass is ABCMeta or is derived from it. A class that has
a metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods and properties
are overridden. The abstract methods can be called using any of the normal ‘super’ call mechanisms.

Dynamically adding abstract methods to a class, or attempting to modify the abstraction status of a method
or class once it is created, are not supported. The abstractmethod() only affects subclasses derived
using regular inheritance; “virtual subclasses” registered with the ABC’s register() method are not
affected.

Usage:

class C(metaclass=ABCMeta):
@abstractmethod
def my_abstract_method(self, ...):

...

Note: Unlike Java abstract methods, these abstract methods may have an implementation. This implemen-
tation can be called via the super() mechanism from the class that overrides it. This could be useful as
an end-point for a super-call in a framework that uses cooperative multiple-inheritance.

@abc.abstractclassmethod(function)
A subclass of the built-in classmethod(), indicating an abstract classmethod. Otherwise it is similar to
abstractmethod().

Usage:

class C(metaclass=ABCMeta):
@abstractclassmethod
def my_abstract_classmethod(cls, ...):

...

New in version 3.2.

@abc.abstractstaticmethod(function)
A subclass of the built-in staticmethod(), indicating an abstract staticmethod. Otherwise it is similar
to abstractmethod().

Usage:

1064 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

class C(metaclass=ABCMeta):
@abstractstaticmethod
def my_abstract_staticmethod(...):

...

New in version 3.2.

abc.abstractproperty(fget=None, fset=None, fdel=None, doc=None)
A subclass of the built-in property(), indicating an abstract property.

Using this function requires that the class’s metaclass is ABCMeta or is derived from it. A class that has
a metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods and properties
are overridden. The abstract properties can be called using any of the normal ‘super’ call mechanisms.

Usage:

class C(metaclass=ABCMeta):
@abstractproperty
def my_abstract_property(self):

...

This defines a read-only property; you can also define a read-write abstract property using the ‘long’ form
of property declaration:

class C(metaclass=ABCMeta):
def getx(self): ...
def setx(self, value): ...
x = abstractproperty(getx, setx)

27.8 atexit — Exit handlers

The atexit module defines functions to register and unregister cleanup functions. Functions thus registered are
automatically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal not handled
by Python, when a Python fatal internal error is detected, or when os._exit() is called.

atexit.register(func, *args, **kargs)
Register func as a function to be executed at termination. Any optional arguments that are to be passed to
func must be passed as arguments to register().

At normal program termination (for instance, if sys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower level
modules will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed (unless SystemExit
is raised) and the exception information is saved. After all exit handlers have had a chance to run the last
exception to be raised is re-raised.

This function returns func which makes it possible to use it as a decorator without binding the original name
to None.

atexit.unregister(func)
Remove a function func from the list of functions to be run at interpreter- shutdown. After calling
unregister(), func is guaranteed not to be called when the interpreter shuts down.

See Also:

Module readline Useful example of atexit to read and write readline history files.

27.8. atexit — Exit handlers 1065

The Python Library Reference, Release 3.2

27.8.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:
_count = int(open("/tmp/counter").read())

except IOError:
_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passed to register() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print(’Goodbye, %s, it was %s to meet you.’ % (name, adjective))

import atexit
atexit.register(goodbye, ’Donny’, ’nice’)

or:
atexit.register(goodbye, adjective=’nice’, name=’Donny’)

Usage as a decorator:

import atexit

@atexit.register
def goodbye():

print("You are now leaving the Python sector.")

This obviously only works with functions that don’t take arguments.

27.9 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the sys.last_traceback variable
and returned as the third item from sys.exc_info().

The module defines the following functions:

traceback.print_tb(traceback, limit=None, file=None)
Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are printed. If file
is omitted or None, the output goes to sys.stderr; otherwise it should be an open file or file-like object
to receive the output.

1066 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

traceback.print_exception(type, value, traceback, limit=None, file=None, chain=True)
Print exception information and up to limit stack trace entries from traceback to file. This differs from
print_tb() in the following ways:

•if traceback is not None, it prints a header Traceback (most recent call last):

•it prints the exception type and value after the stack trace

•if type is SyntaxError and value has the appropriate format, it prints the line where the syntax error
occurred with a caret indicating the approximate position of the error.

If chain is true (the default), then chained exceptions (the __cause__ or __context__ attributes of the
exception) will be printed as well, like the interpreter itself does when printing an unhandled exception.

traceback.print_exc(limit=None, file=None, chain=True)
This is a shorthand for print_exception(*sys.exc_info()).

traceback.print_last(limit=None, file=None, chain=True)
This is a shorthand for print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit, file). In general it will work only after an exception has
reached an interactive prompt (see sys.last_type).

traceback.print_stack(f=None, limit=None, file=None)
This function prints a stack trace from its invocation point. The optional f argument can be used to spec-
ify an alternate stack frame to start. The optional limit and file arguments have the same meaning as for
print_exception().

traceback.extract_tb(traceback, limit=None)
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object traceback.
It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries are extracted. A
“pre-processed” stack trace entry is a quadruple (filename, line number, function name, text) representing the
information that is usually printed for a stack trace. The text is a string with leading and trailing whitespace
stripped; if the source is not available it is None.

traceback.extract_stack(f=None, limit=None)
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

traceback.format_list(list)
Given a list of tuples as returned by extract_tb() or extract_stack(), return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items whose
source text line is not None.

traceback.format_exception_only(type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last_type and sys.last_value. The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, for SyntaxError exceptions, it contains several
lines that (when printed) display detailed information about where the syntax error occurred. The message
indicating which exception occurred is the always last string in the list.

traceback.format_exception(type, value, tb, limit=None, chain=True)
Format a stack trace and the exception information. The arguments have the same meaning as the cor-
responding arguments to print_exception(). The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as does print_exception().

traceback.format_exc(limit=None, chain=True)
This is like print_exc(limit) but returns a string instead of printing to a file.

traceback.format_tb(tb, limit=None)
A shorthand for format_list(extract_tb(tb, limit)).

traceback.format_stack(f=None, limit=None)
A shorthand for format_list(extract_stack(f, limit)).

27.9. traceback — Print or retrieve a stack traceback 1067

The Python Library Reference, Release 3.2

27.9.1 Traceback Examples

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to the codemodule.

import sys, traceback

def run_user_code(envdir):
source = input(">>> ")
try:

exec(source, envdir)
except:

print("Exception in user code:")
print("-"*60)
traceback.print_exc(file=sys.stdout)
print("-"*60)

envdir = {}
while True:

run_user_code(envdir)

The following example demonstrates the different ways to print and format the exception and traceback:

import sys, traceback

def lumberjack():
bright_side_of_death()

def bright_side_of_death():
return tuple()[0]

try:
lumberjack()

except IndexError:
exc_type, exc_value, exc_traceback = sys.exc_info()
print("*** print_tb:")
traceback.print_tb(exc_traceback, limit=1, file=sys.stdout)
print("*** print_exception:")
traceback.print_exception(exc_type, exc_value, exc_traceback,

limit=2, file=sys.stdout)
print("*** print_exc:")
traceback.print_exc()
print("*** format_exc, first and last line:")
formatted_lines = traceback.format_exc().splitlines()
print(formatted_lines[0])
print(formatted_lines[-1])
print("*** format_exception:")
print(repr(traceback.format_exception(exc_type, exc_value,

exc_traceback)))
print("*** extract_tb:")
print(repr(traceback.extract_tb(exc_traceback)))
print("*** format_tb:")
print(repr(traceback.format_tb(exc_traceback)))
print("*** tb_lineno:", exc_traceback.tb_lineno)

The output for the example would look similar to this:

*** print_tb:
File "<doctest...>", line 10, in <module>

lumberjack()

*** print_exception:

1068 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

Traceback (most recent call last):
File "<doctest...>", line 10, in <module>

lumberjack()
File "<doctest...>", line 4, in lumberjack

bright_side_of_death()
IndexError: tuple index out of range

*** print_exc:
Traceback (most recent call last):

File "<doctest...>", line 10, in <module>
lumberjack()

File "<doctest...>", line 4, in lumberjack
bright_side_of_death()

IndexError: tuple index out of range

*** format_exc, first and last line:
Traceback (most recent call last):
IndexError: tuple index out of range

*** format_exception:
[’Traceback (most recent call last):\n’,
’ File "<doctest...>", line 10, in <module>\n lumberjack()\n’,
’ File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n’,
’ File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n’,
’IndexError: tuple index out of range\n’]

*** extract_tb:
[(’<doctest...>’, 10, ’<module>’, ’lumberjack()’),
(’<doctest...>’, 4, ’lumberjack’, ’bright_side_of_death()’),
(’<doctest...>’, 7, ’bright_side_of_death’, ’return tuple()[0]’)]

*** format_tb:
[’ File "<doctest...>", line 10, in <module>\n lumberjack()\n’,
’ File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n’,
’ File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n’]

*** tb_lineno: 10

The following example shows the different ways to print and format the stack:

>>> import traceback
>>> def another_function():
... lumberstack()
...
>>> def lumberstack():
... traceback.print_stack()
... print(repr(traceback.extract_stack()))
... print(repr(traceback.format_stack()))
...
>>> another_function()

File "<doctest>", line 10, in <module>
another_function()

File "<doctest>", line 3, in another_function
lumberstack()

File "<doctest>", line 6, in lumberstack
traceback.print_stack()

[(’<doctest>’, 10, ’<module>’, ’another_function()’),
(’<doctest>’, 3, ’another_function’, ’lumberstack()’),
(’<doctest>’, 7, ’lumberstack’, ’print(repr(traceback.extract_stack()))’)]

[’ File "<doctest>", line 10, in <module>\n another_function()\n’,
’ File "<doctest>", line 3, in another_function\n lumberstack()\n’,
’ File "<doctest>", line 8, in lumberstack\n print(repr(traceback.format_stack()))\n’]

This last example demonstrates the final few formatting functions:

27.9. traceback — Print or retrieve a stack traceback 1069

The Python Library Reference, Release 3.2

>>> import traceback
>>> traceback.format_list([(’spam.py’, 3, ’<module>’, ’spam.eggs()’),
... (’eggs.py’, 42, ’eggs’, ’return "bacon"’)])
[’ File "spam.py", line 3, in <module>\n spam.eggs()\n’,
’ File "eggs.py", line 42, in eggs\n return "bacon"\n’]

>>> an_error = IndexError(’tuple index out of range’)
>>> traceback.format_exception_only(type(an_error), an_error)
[’IndexError: tuple index out of range\n’]

27.10 __future__ — Future statement definitions

Source code: Lib/__future__.py

__future__ is a real module, and serves three purposes:

• To avoid confusing existing tools that analyze import statements and expect to find the modules they’re
importing.

• To ensure that future statements run under releases prior to 2.1 at least yield runtime exceptions (the import
of __future__ will fail, because there was no module of that name prior to 2.1).

• To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programmatically via import-
ing __future__ and examining its contents.

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,
CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as
sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int
PY_MICRO_VERSION, # the 0; an int
PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int

)

OptionalRelease records the first release in which the feature was accepted.

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which the
feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules
no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped.

Instances of class _Feature have two corresponding methods, getOptionalRelease() and
getMandatoryRelease().

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the built-in function
compile() to enable the feature in dynamically compiled code. This flag is stored in the compiler_flag
attribute on _Feature instances.

No feature description will ever be deleted from __future__. Since its introduction in Python 2.1 the following
features have found their way into the language using this mechanism:

1070 Chapter 27. Python Runtime Services

http://svn.python.org/view/python/branches/py3k/Lib/__future__.py?view=markup

The Python Library Reference, Release 3.2

feature optional in mandatory in effect
nested_scopes 2.1.0b1 2.2

PEP 227: Statically Nested Scopes
generators 2.2.0a1 2.3

PEP 255: Simple Generators
division 2.2.0a2 3.0

PEP 238: Changing the Division Operator
absolute_import 2.5.0a1 2.7

PEP 328: Imports: Multi-Line and Absolute/Relative
with_statement 2.5.0a1 2.6

PEP 343: The “with” Statement
print_function 2.6.0a2 3.0

PEP 3105: Make print a function
unicode_literals 2.6.0a2 3.0

PEP 3112: Bytes literals in Python 3000

See Also:

future How the compiler treats future imports.

27.11 gc — Garbage Collector interface

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by calling gc.disable(). To debug a leaking program call gc.set_debug(gc.DEBUG_LEAK).
Notice that this includes gc.DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for
inspection.

The gc module provides the following functions:

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection.

gc.isenabled()
Returns true if automatic collection is enabled.

gc.collect(generations=2)
With no arguments, run a full collection. The optional argument generation may be an integer specifying
which generation to collect (from 0 to 2). A ValueError is raised if the generation number is invalid.
The number of unreachable objects found is returned.

The free lists maintained for a number of built-in types are cleared whenever a full collection or collection
of the highest generation (2) is run. Not all items in some free lists may be freed due to the particular
implementation, in particular float.

gc.set_debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr. See
below for a list of debugging flags which can be combined using bit operations to control debugging.

gc.get_debug()
Return the debugging flags currently set.

gc.get_objects()
Returns a list of all objects tracked by the collector, excluding the list returned.

gc.set_threshold(threshold0[, threshold1[, threshold2]])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables collec-
tion.

The GC classifies objects into three generations depending on how many collection sweeps they have sur-
vived. New objects are placed in the youngest generation (generation 0). If an object survives a collection

27.11. gc — Garbage Collector interface 1071

http://www.python.org/dev/peps/pep-0227
http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0328
http://www.python.org/dev/peps/pep-0343
http://www.python.org/dev/peps/pep-3105
http://www.python.org/dev/peps/pep-3112

The Python Library Reference, Release 3.2

it is moved into the next older generation. Since generation 2 is the oldest generation, objects in that gener-
ation remain there after a collection. In order to decide when to run, the collector keeps track of the number
object allocations and deallocations since the last collection. When the number of allocations minus the
number of deallocations exceeds threshold0, collection starts. Initially only generation 0 is examined. If
generation 0 has been examined more than threshold1 times since generation 1 has been examined, then
generation 1 is examined as well. Similarly, threshold2 controls the number of collections of generation 1
before collecting generation 2.

gc.get_count()
Return the current collection counts as a tuple of (count0, count1, count2).

gc.get_threshold()
Return the current collection thresholds as a tuple of (threshold0, threshold1, threshold2).

gc.get_referrers(*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently live
objects, call collect() before calling get_referrers().

Care must be taken when using objects returned by get_referrers() because some of them could still
be under construction and hence in a temporarily invalid state. Avoid using get_referrers() for any
purpose other than debugging.

gc.get_referents(*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-level tp_traverse methods (if any), and may not be all objects actually
directly reachable. tp_traverse methods are supported only by objects that support garbage collection,
and are only required to visit objects that may be involved in a cycle. So, for example, if an integer is
directly reachable from an argument, that integer object may or may not appear in the result list.

gc.is_tracked(obj)
Returns True if the object is currently tracked by the garbage collector, False otherwise. As a general
rule, instances of atomic types aren’t tracked and instances of non-atomic types (containers, user-defined
objects...) are. However, some type-specific optimizations can be present in order to suppress the garbage
collector footprint of simple instances (e.g. dicts containing only atomic keys and values):

>>> gc.is_tracked(0)
False
>>> gc.is_tracked("a")
False
>>> gc.is_tracked([])
True
>>> gc.is_tracked({})
False
>>> gc.is_tracked({"a": 1})
False
>>> gc.is_tracked({"a": []})
True

New in version 3.1.

The following variable is provided for read-only access (you can mutate its value but should not rebind it):

gc.garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
By default, this list contains only objects with __del__()methods. Objects that have __del__()meth-
ods and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects
not necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically

1072 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

because, in general, it isn’t possible for Python to guess a safe order in which to run the __del__() meth-
ods. If you know a safe order, you can force the issue by examining the garbage list, and explicitly breaking
cycles due to your objects within the list. Note that these objects are kept alive even so by virtue of being
in the garbage list, so they should be removed from garbage too. For example, after breaking cycles, do
del gc.garbage[:] to empty the list. It’s generally better to avoid the issue by not creating cycles
containing objects with __del__() methods, and garbage can be examined in that case to verify that no
such cycles are being created.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to this list rather than freed. Changed
in version 3.2: If this list is non-empty at interpreter shutdown, a ResourceWarning is emitted, which
is silent by default. If DEBUG_UNCOLLECTABLE is set, in addition all uncollectable objects are printed.

The following constants are provided for use with set_debug():

gc.DEBUG_STATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

gc.DEBUG_COLLECTABLE
Print information on collectable objects found.

gc.DEBUG_UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by
the collector). These objects will be added to the garbage list. Changed in version 3.2: Also print the
contents of the garbage list at interpreter shutdown, if it isn’t empty.

gc.DEBUG_SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This can be
useful for debugging a leaking program.

gc.DEBUG_LEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_SAVEALL).

27.12 inspect — Inspect live objects

Source code: Lib/inspect.py

The inspect module provides several useful functions to help get information about live objects such as mod-
ules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

27.12.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The sixteen
functions whose names begin with “is” are mainly provided as convenient choices for the second argument to
getmembers(). They also help you determine when you can expect to find the following special attributes:

Type Attribute Description
module __doc__ documentation string

__file__ filename (missing for built-in modules)
class __doc__ documentation string

__module__ name of module in which this class was defined
method __doc__ documentation string

Continued on next page

27.12. inspect — Inspect live objects 1073

http://svn.python.org/view/python/branches/py3k/Lib/inspect.py?view=markup

The Python Library Reference, Release 3.2

Table 27.1 – continued from previous page
__name__ name with which this method was defined
__func__ function object containing implementation of method
__self__ instance to which this method is bound, or None

function __doc__ documentation string
__name__ name with which this function was defined
__code__ code object containing compiled function bytecode
__defaults__ tuple of any default values for arguments
__globals__ global namespace in which this function was defined

traceback tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)

frame f_back next outer frame object (this frame’s caller)
f_builtins builtins namespace seen by this frame
f_code code object being executed in this frame
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, or None

code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables

builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound, or None

inspect.getmembers(object[, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional predicate
argument is supplied, only members for which the predicate returns a true value are included.

Note: getmembers() does not return metaclass attributes when the argument is a class (this behavior is
inherited from the dir() function).

inspect.getmoduleinfo(path)
Returns a named tuple ModuleInfo(name, suffix, mode, module_type) of values that de-
scribe how Python will interpret the file identified by path if it is a module, or None if it would not be
identified as a module. In that tuple, name is the name of the module without the name of any enclosing
package, suffix is the trailing part of the file name (which may not be a dot-delimited extension), mode is
the open() mode that would be used (’r’ or ’rb’), and module_type is an integer giving the type of the
module. module_type will have a value which can be compared to the constants defined in the imp module;
see the documentation for that module for more information on module types.

inspect.getmodulename(path)
Return the name of the module named by the file path, without including the names of enclosing packages.
This uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be

1074 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

matched according to the interpreter’s rules, None is returned.

inspect.ismodule(object)
Return true if the object is a module.

inspect.isclass(object)
Return true if the object is a class, whether built-in or created in Python code.

inspect.ismethod(object)
Return true if the object is a bound method written in Python.

inspect.isfunction(object)
Return true if the object is a Python function, which includes functions created by a lambda expression.

inspect.isgeneratorfunction(object)
Return true if the object is a Python generator function.

inspect.isgenerator(object)
Return true if the object is a generator.

inspect.istraceback(object)
Return true if the object is a traceback.

inspect.isframe(object)
Return true if the object is a frame.

inspect.iscode(object)
Return true if the object is a code.

inspect.isbuiltin(object)
Return true if the object is a built-in function or a bound built-in method.

inspect.isroutine(object)
Return true if the object is a user-defined or built-in function or method.

inspect.isabstract(object)
Return true if the object is an abstract base class.

inspect.ismethoddescriptor(object)
Return true if the object is a method descriptor, but not if ismethod(), isclass(), isfunction()
or isbuiltin() are true.

This, for example, is true of int.__add__. An object passing this test has a __get__ attribute but
not a __set__ attribute, but beyond that the set of attributes varies. __name__ is usually sensible, and
__doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the
ismethoddescriptor() test, simply because the other tests promise more – you can, e.g., count on
having the __func__ attribute (etc) when an object passes ismethod().

inspect.isdatadescriptor(object)
Return true if the object is a data descriptor.

Data descriptors have both a __get__ and a __set__ attribute. Examples are properties (defined in
Python), getsets, and members. The latter two are defined in C and there are more specific tests available
for those types, which is robust across Python implementations. Typically, data descriptors will also have
__name__ and __doc__ attributes (properties, getsets, and members have both of these attributes), but
this is not guaranteed.

inspect.isgetsetdescriptor(object)
Return true if the object is a getset descriptor.

CPython implementation detail: getsets are attributes defined in extension modules via PyGetSetDef
structures. For Python implementations without such types, this method will always return False.

inspect.ismemberdescriptor(object)
Return true if the object is a member descriptor.

27.12. inspect — Inspect live objects 1075

The Python Library Reference, Release 3.2

CPython implementation detail: Member descriptors are attributes defined in extension modules via
PyMemberDef structures. For Python implementations without such types, this method will always return
False.

27.12.2 Retrieving source code

inspect.getdoc(object)
Get the documentation string for an object, cleaned up with cleandoc().

inspect.getcomments(object)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

inspect.getfile(object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a TypeError
if the object is a built-in module, class, or function.

inspect.getmodule(object)
Try to guess which module an object was defined in.

inspect.getsourcefile(object)
Return the name of the Python source file in which an object was defined. This will fail with a TypeError
if the object is a built-in module, class, or function.

inspect.getsourcelines(object)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code
was found. An IOError is raised if the source code cannot be retrieved.

inspect.getsource(object)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single string. An IOError is raised if
the source code cannot be retrieved.

inspect.cleandoc(doc)
Clean up indentation from docstrings that are indented to line up with blocks of code. Any whitespace that
can be uniformly removed from the second line onwards is removed. Also, all tabs are expanded to spaces.

27.12.3 Classes and functions

inspect.getclasstree(classes, unique=False)
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains
classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing
a class and a tuple of its base classes. If the unique argument is true, exactly one entry appears in the
returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their
descendants will appear multiple times.

inspect.getargspec(func)
Get the names and default values of a Python function’s arguments. A named tuple ArgSpec(args,
varargs, keywords, defaults) is returned. args is a list of the argument names. varargs and
keywords are the names of the * and ** arguments or None. defaults is a tuple of default argument
values or None if there are no default arguments; if this tuple has n elements, they correspond to the last n
elements listed in args. Deprecated since version 3.0: Use getfullargspec() instead, which provides
information about keyword-only arguments and annotations.

inspect.getfullargspec(func)
Get the names and default values of a Python function’s arguments. A named tuple is returned:

FullArgSpec(args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults,
annotations)

1076 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

args is a list of the argument names. varargs and varkw are the names of the * and ** arguments or None.
defaults is an n-tuple of the default values of the last n arguments. kwonlyargs is a list of keyword-only
argument names. kwonlydefaults is a dictionary mapping names from kwonlyargs to defaults. annotations
is a dictionary mapping argument names to annotations.

The first four items in the tuple correspond to getargspec().

inspect.getargvalues(frame)
Get information about arguments passed into a particular frame. A named tuple ArgInfo(args,
varargs, keywords, locals) is returned. args is a list of the argument names. varargs and key-
words are the names of the * and ** arguments or None. locals is the locals dictionary of the given frame.

inspect.formatargspec(args[, varargs, varkw, defaults, formatarg, formatvarargs, formatvarkw,
formatvalue])

Format a pretty argument spec from the four values returned by getargspec(). The format* arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

inspect.formatargvalues(args[, varargs, varkw, locals, formatarg, formatvarargs, formatvarkw,
formatvalue])

Format a pretty argument spec from the four values returned by getargvalues(). The format* argu-
ments are the corresponding optional formatting functions that are called to turn names and values into
strings.

inspect.getmro(cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

inspect.getcallargs(func[, *args][, **kwds])
Bind the args and kwds to the argument names of the Python function or method func, as if it was called with
them. For bound methods, bind also the first argument (typically named self) to the associated instance.
A dict is returned, mapping the argument names (including the names of the * and ** arguments, if any)
to their values from args and kwds. In case of invoking func incorrectly, i.e. whenever func(*args,
**kwds) would raise an exception because of incompatible signature, an exception of the same type and
the same or similar message is raised. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3)
{’a’: 1, ’named’: {}, ’b’: 2, ’pos’: (3,)}
>>> getcallargs(f, a=2, x=4)
{’a’: 2, ’named’: {’x’: 4}, ’b’: 1, ’pos’: ()}
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() takes at least 1 argument (0 given)

New in version 3.2.

27.12.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the
filename, the line number of the current line, the function name, a list of lines of context from the source code,
and the index of the current line within that list.

Note: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, the lifespan of
all objects which can be accessed from the objects which form the cycle can become much longer even if Python’s

27.12. inspect — Inspect live objects 1077

The Python Library Reference, Release 3.2

optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are explicitly
broken to avoid the delayed destruction of objects and increased memory consumption which occurs.

Though the cycle detector will catch these, destruction of the frames (and local variables) can be made determin-
istic by removing the cycle in a finally clause. This is also important if the cycle detector was disabled when
Python was compiled or using gc.disable(). For example:

def handle_stackframe_without_leak():
frame = inspect.currentframe()
try:

do something with the frame
finally:

del frame

The optional context argument supported by most of these functions specifies the number of lines of context to
return, which are centered around the current line.

inspect.getframeinfo(frame, context=1)
Get information about a frame or traceback object. A named tuple Traceback(filename, lineno,
function, code_context, index) is returned.

inspect.getouterframes(frame, context=1)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation of frame. The first entry in the returned list represents frame; the last entry represents the outermost
call on frame‘s stack.

inspect.getinnerframes(traceback, context=1)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence of frame. The first entry in the list represents traceback; the last entry represents where
the exception was raised.

inspect.currentframe()
Return the frame object for the caller’s stack frame.

CPython implementation detail: This function relies on Python stack frame support in the interpreter,
which isn’t guaranteed to exist in all implementations of Python. If running in an implementation without
Python stack frame support this function returns None.

inspect.stack(context=1)
Return a list of frame records for the caller’s stack. The first entry in the returned list represents the caller;
the last entry represents the outermost call on the stack.

inspect.trace(context=1)
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

27.12.5 Fetching attributes statically

Both getattr() and hasattr() can trigger code execution when fetching or checking for the existence of
attributes. Descriptors, like properties, will be invoked and __getattr__() and __getattribute__()
may be called.

For cases where you want passive introspection, like documentation tools, this can be inconvenient. getattr_static
has the same signature as getattr() but avoids executing code when it fetches attributes.

inspect.getattr_static(obj, attr, default=None)
Retrieve attributes without triggering dynamic lookup via the descriptor protocol, __getattr__ or __getat-
tribute__.

Note: this function may not be able to retrieve all attributes that getattr can fetch (like dynamically created
attributes) and may find attributes that getattr can’t (like descriptors that raise AttributeError). It can also
return descriptors objects instead of instance members. New in version 3.2.

1078 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

The only known case that can cause getattr_static to trigger code execution, and cause it to return incorrect results
(or even break), is where a class uses __slots__ and provides a __dict__ member using a property or descriptor.
If you find other cases please report them so they can be fixed or documented.

getattr_static does not resolve descriptors, for example slot descriptors or getset descriptors on objects imple-
mented in C. The descriptor object is returned instead of the underlying attribute.

You can handle these with code like the following. Note that for arbitrary getset descriptors invoking these may
trigger code execution:

example code for resolving the builtin descriptor types
class _foo:

__slots__ = [’foo’]

slot_descriptor = type(_foo.foo)
getset_descriptor = type(type(open(__file__)).name)
wrapper_descriptor = type(str.__dict__[’__add__’])
descriptor_types = (slot_descriptor, getset_descriptor, wrapper_descriptor)

result = getattr_static(some_object, ’foo’)
if type(result) in descriptor_types:

try:
result = result.__get__()

except AttributeError:
descriptors can raise AttributeError to
indicate there is no underlying value
in which case the descriptor itself will
have to do
pass

27.12.6 Current State of a Generator

When implementing coroutine schedulers and for other advanced uses of generators, it is useful to determine
whether a generator is currently executing, is waiting to start or resume or execution, or has already terminated.
getgeneratorstate() allows the current state of a generator to be determined easily.

inspect.getgeneratorstate(generator)
Get current state of a generator-iterator.

Possible states are:

• GEN_CREATED: Waiting to start execution.

• GEN_RUNNING: Currently being executed by the interpreter.

• GEN_SUSPENDED: Currently suspended at a yield expression.

• GEN_CLOSED: Execution has completed.

New in version 3.2.

27.13 site — Site-specific configuration hook

Source code: Lib/site.py

This module is automatically imported during initialization. The automatic import can be suppressed using
the interpreter’s -S option.

Importing this module will append site-specific paths to the module search path.

27.13. site — Site-specific configuration hook 1079

http://svn.python.org/view/python/branches/py3k/Lib/site.py?view=markup

The Python Library Reference, Release 3.2

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses
sys.prefix and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty string
and then lib/site-packages (on Windows) or lib/python|version|/site-packages and then
lib/site-python (on Unix and Macintosh). For each of the distinct head-tail combinations, it sees if it refers
to an existing directory, and if so, adds it to sys.path and also inspects the newly added path for configuration
files.

A path configuration file is a file whose name has the form package.pth and exists in one of the four directories
mentioned above; its contents are additional items (one per line) to be added to sys.path. Non-existing items
are never added to sys.path, but no check is made that the item refers to a directory (rather than a file). No
item is added to sys.path more than once. Blank lines and lines beginning with # are skipped. Lines starting
with import (followed by space or tab) are executed.

For example, suppose sys.prefix and sys.exec_prefix are set to /usr/local. The Python
X.Y library is then installed in /usr/local/lib/pythonX.Y (where only the first three charac-
ters of sys.version are used to form the installation path name). Suppose this has a subdirectory
/usr/local/lib/pythonX.Y/site-packages with three subsubdirectories, foo, bar and spam, and
two path configuration files, foo.pth and bar.pth. Assume foo.pth contains the following:

foo package configuration

foo
bar
bletch

and bar.pth contains:

bar package configuration

bar

Then the following version-specific directories are added to sys.path, in this order:

/usr/local/lib/pythonX.Y/site-packages/bar
/usr/local/lib/pythonX.Y/site-packages/foo

Note that bletch is omitted because it doesn’t exist; the bar directory precedes the foo directory because
bar.pth comes alphabetically before foo.pth; and spam is omitted because it is not mentioned in either path
configuration file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which can
perform arbitrary site-specific customizations. If this import fails with an ImportError exception, it is silently
ignored.

Note that for some non-Unix systems, sys.prefix and sys.exec_prefix are empty, and the path manip-
ulations are skipped; however the import of sitecustomize is still attempted.

site.PREFIXES
A list of prefixes for site package directories

site.ENABLE_USER_SITE
Flag showing the status of the user site directory. True means the user site directory is enabled and added to
sys.path. When the flag is None the user site directory is disabled for security reasons.

site.USER_SITE
Path to the user site directory for the current Python version or None

site.USER_BASE
Path to the base directory for user site directories

PYTHONNOUSERSITE

PYTHONUSERBASE

site.addsitedir(sitedir, known_paths=None)
Adds a directory to sys.path and processes its pth files.

1080 Chapter 27. Python Runtime Services

The Python Library Reference, Release 3.2

site.getsitepackages()
Returns a list containing all global site-packages directories (and possibly site-python). New in version 3.2.

site.getuserbase()
Returns the “user base” directory path.

The “user base” directory can be used to store data. If the global variable USER_BASE is not initialized yet,
this function will also set it. New in version 3.2.

site.getusersitepackages()
Returns the user-specific site-packages directory path.

If the global variable USER_SITE is not initialized yet, this function will also set it. New in version 3.2.

27.14 fpectl — Floating point exception control

Platforms: Unix

Note: The fpectl module is not built by default, and its usage is discouraged and may be dangerous except in
the hands of experts. See also the section Limitations and other considerations on limitations for more details.

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any
real computer, some floating point operations produce results that cannot be expressed as a normal floating point
value. For example, try

>>> import math
>>> math.exp(1000)
inf
>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) “Inf” is a special, non-
numeric value in IEEE-754 that stands for “infinity”, and “nan” means “not a number.” Note that, other than the
non-numeric results, nothing special happened when you asked Python to carry out those calculations. That is in
fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. The fpectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generation of SIGFPE whenever
any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair
of wrapper macros that are inserted into the C code comprising your python system, SIGFPE is trapped and
converted into the Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

fpectl.turnon_sigfpe()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

fpectl.turnoff_sigfpe()
Reset default handling of floating point exceptions.

exception fpectl.FloatingPointError
After turnon_sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

27.14.1 Example

The following example demonstrates how to start up and test operation of the fpectl module.

27.14. fpectl — Floating point exception control 1081

The Python Library Reference, Release 3.2

>>> import fpectl
>>> import fpetest
>>> fpectl.turnon_sigfpe()
>>> fpetest.test()
overflow PASS
FloatingPointError: Overflow

div by 0 PASS
FloatingPointError: Division by zero

[more output from test elided]
>>> import math
>>> math.exp(1000)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
FloatingPointError: in math_1

27.14.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-
architecture basis. You may have to modify fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted into your code in an appropriate fashion.
Python itself has been modified to support the fpectl module, but many other codes of interest to numerical
analysts have not.

The fpectl module is not thread-safe.

See Also:

Some files in the source distribution may be interesting in learning more about how this module oper-
ates. The include file Include/pyfpe.h discusses the implementation of this module at some length.
Modules/fpetestmodule.c gives several examples of use. Many additional examples can be found in
Objects/floatobject.c.

27.15 distutils — Building and installing Python modules

The distutils package provides support for building and installing additional modules into a Python installa-
tion. The new modules may be either 100%-pure Python, or may be extension modules written in C, or may be
collections of Python packages which include modules coded in both Python and C.

This package is discussed in two separate chapters:

See Also:

distutils-index The manual for developers and packagers of Python modules. This describes how to prepare
distutils-based packages so that they may be easily installed into an existing Python installation.

install-index An “administrators” manual which includes information on installing modules into an existing
Python installation. You do not need to be a Python programmer to read this manual.

1082 Chapter 27. Python Runtime Services

CHAPTER

TWENTYEIGHT

CUSTOM PYTHON INTERPRETERS

The modules described in this chapter allow writing interfaces similar to Python’s interactive interpreter. If you
want a Python interpreter that supports some special feature in addition to the Python language, you should look at
the code module. (The codeop module is lower-level, used to support compiling a possibly-incomplete chunk
of Python code.)

The full list of modules described in this chapter is:

28.1 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

class code.InteractiveInterpreter(locals=None)
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffer-
ing or prompting or input file naming (the filename is always passed in explicitly). The optional locals
argument specifies the dictionary in which code will be executed; it defaults to a newly created dictionary
with key ’__name__’ set to ’__console__’ and key ’__doc__’ set to None.

class code.InteractiveConsole(locals=None, filename=”<console>”)
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and in-
put buffering.

code.interact(banner=None, readfunc=None, local=None)
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and sets readfunc to be used as the raw_input() method, if provided.
If local is provided, it is passed to the InteractiveConsole constructor for use as the default
namespace for the interpreter loop. The interact() method of the instance is then run with banner
passed as the banner to use, if provided. The console object is discarded after use.

code.compile_command(source, filename=”<input>”, symbol=”single”)
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-
eval-print loop). The tricky part is to determine when the user has entered an incomplete command that can
be completed by entering more text (as opposed to a complete command or a syntax error). This function
almost always makes the same decision as the real interpreter main loop.

source is the source string; filename is the optional filename from which source was read, defaulting to
’<input>’; and symbol is the optional grammar start symbol, which should be either ’single’ (the
default) or ’eval’.

Returns a code object (the same as compile(source, filename, symbol)) if the command is
complete and valid; None if the command is incomplete; raises SyntaxError if the command is com-
plete and contains a syntax error, or raises OverflowError or ValueError if the command contains
an invalid literal.

1083

The Python Library Reference, Release 3.2

28.1.1 Interactive Interpreter Objects

InteractiveInterpreter.runsource(source, filename=”<input>”, symbol=”single”)
Compile and run some source in the interpreter. Arguments are the same as for compile_command();
the default for filename is ’<input>’, and for symbol is ’single’. One several things can happen:

•The input is incorrect; compile_command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror()
method. runsource() returns False.

•The input is incomplete, and more input is required; compile_command() returned None.
runsource() returns True.

•The input is complete; compile_command() returned a code object. The code is executed
by calling the runcode() (which also handles run-time exceptions, except for SystemExit).
runsource() returns False.

The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next line.

InteractiveInterpreter.runcode(code)
Execute a code object. When an exception occurs, showtraceback() is called to display a traceback.
All exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

InteractiveInterpreter.showsyntaxerror(filename=None)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for
syntax errors. If filename is given, it is stuffed into the exception instead of the default filename provided
by Python’s parser, because it always uses ’<string>’ when reading from a string. The output is written
by the write() method.

InteractiveInterpreter.showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter
object implementation. The output is written by the write() method.

InteractiveInterpreter.write(data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to provide
the appropriate output handling as needed.

28.1.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the meth-
ods of the interpreter objects as well as the following additions.

InteractiveConsole.interact(banner=None)
Closely emulate the interactive Python console. The optional banner argument specify the banner to print
before the first interaction; by default it prints a banner similar to the one printed by the standard Python
interpreter, followed by the class name of the console object in parentheses (so as not to confuse this with
the real interpreter – since it’s so close!).

InteractiveConsole.push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreter’s runsource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return value is True if more input is required, False if the line was dealt with in some
way (this is the same as runsource()).

InteractiveConsole.resetbuffer()
Remove any unhandled source text from the input buffer.

InteractiveConsole.raw_input(prompt=”“)
Write a prompt and read a line. The returned line does not include the trailing newline. When the user

1084 Chapter 28. Custom Python Interpreters

The Python Library Reference, Release 3.2

enters the EOF key sequence, EOFError is raised. The base implementation reads from sys.stdin; a
subclass may replace this with a different implementation.

28.2 codeop — Compile Python code

The codeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in
the code module. As a result, you probably don’t want to use the module directly; if you want to include such a
loop in your program you probably want to use the code module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to print ‘>>>‘ or
‘...‘ next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these
in effect.

The codeop module provides a way of doing each of these things, and a way of doing them both.

To do just the former:

codeop.compile_command(source, filename=”<input>”, symbol=”single”)
Tries to compile source, which should be a string of Python code and return a code object if source is
valid Python code. In that case, the filename attribute of the code object will be filename, which defaults to
’<input>’. Returns None if source is not valid Python code, but is a prefix of valid Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is invalid
Python syntax, and OverflowError or ValueError if there is an invalid literal.

The symbol argument determines whether source is compiled as a statement (’single’, the default) or as
an expression (’eval’). Any other value will cause ValueError to be raised.

Note: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example,
a backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the
API for the parser is better.

class codeop.Compile
Instances of this class have __call__() methods identical in signature to the built-in function
compile(), but with the difference that if the instance compiles program text containing a __future__
statement, the instance ‘remembers’ and compiles all subsequent program texts with the statement in force.

class codeop.CommandCompiler
Instances of this class have __call__() methods identical in signature to compile_command(); the
difference is that if the instance compiles program text containing a __future__ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

28.2. codeop — Compile Python code 1085

The Python Library Reference, Release 3.2

1086 Chapter 28. Custom Python Interpreters

CHAPTER

TWENTYNINE

IMPORTING MODULES

The modules described in this chapter provide new ways to import other Python modules and hooks for customiz-
ing the import process.

The full list of modules described in this chapter is:

29.1 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines the
following constants and functions:

imp.get_magic()
Return the magic string value used to recognize byte-compiled code files (.pyc files). (This value may be
different for each Python version.)

imp.get_suffixes()
Return a list of 3-element tuples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the
filename to search for, mode is the mode string to pass to the built-in open() function to open the file (this
can be ’r’ for text files or ’rb’ for binary files), and type is the file type, which has one of the values
PY_SOURCE, PY_COMPILED, or C_EXTENSION, described below.

imp.find_module(name[, path])
Try to find the module name. If path is omitted or None, the list of directory names given by sys.path
is searched, but first a few special places are searched: the function tries to find a built-in module with the
given name (C_BUILTIN), then a frozen module (PY_FROZEN), and on some systems some other places
are looked in as well (on Windows, it looks in the registry which may point to a specific file).

Otherwise, path must be a list of directory names; each directory is searched for files with any of the suffixes
returned by get_suffixes() above. Invalid names in the list are silently ignored (but all list items must
be strings).

If search is successful, the return value is a 3-element tuple (file, pathname, description):

file is an open file object positioned at the beginning, pathname is the pathname of the file found, and
description is a 3-element tuple as contained in the list returned by get_suffixes() describing the kind
of module found.

If the module does not live in a file, the returned file is None, pathname is the empty string, and the
description tuple contains empty strings for its suffix and mode; the module type is indicated as given
in parentheses above. If the search is unsuccessful, ImportError is raised. Other exceptions indicate
problems with the arguments or environment.

If the module is a package, file is None, pathname is the package path and the last item in the description
tuple is PKG_DIRECTORY.

This function does not handle hierarchical module names (names containing dots). In order to find P.*M*,
that is, submodule M of package P, use find_module() and load_module() to find and load package

1087

The Python Library Reference, Release 3.2

P, and then use find_module()with the path argument set to P.__path__. When P itself has a dotted
name, apply this recipe recursively.

imp.load_module(name, file, pathname, description)
Load a module that was previously found by find_module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module was already
imported, it will reload the module! The name argument indicates the full module name (including the
package name, if this is a submodule of a package). The file argument is an open file, and pathname is
the corresponding file name; these can be None and ”, respectively, when the module is a package or not
being loaded from a file. The description argument is a tuple, as would be returned by get_suffixes(),
describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when an excep-
tion is raised. This is best done using a try ... finally statement.

imp.new_module(name)
Return a new empty module object called name. This object is not inserted in sys.modules.

imp.lock_held()
Return True if the import lock is currently held, else False. On platforms without threads, always return
False.

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn
prevents other threads from seeing incomplete module objects constructed by the original thread while in
the process of completing its import (and the imports, if any, triggered by that).

imp.acquire_lock()
Acquire the interpreter’s import lock for the current thread. This lock should be used by import hooks to
ensure thread-safety when importing modules.

Once a thread has acquired the import lock, the same thread may acquire it again without blocking; the
thread must release it once for each time it has acquired it.

On platforms without threads, this function does nothing.

imp.release_lock()
Release the interpreter’s import lock. On platforms without threads, this function does nothing.

imp.reload(module)
Reload a previously imported module. The argument must be a module object, so it must have been suc-
cessfully imported before. This is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as the module argument).

When reload(module) is executed:

•Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of
objects which are bound to names in the module’s dictionary. The init function of extension modules
is not called a second time.

•As with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

•The names in the module namespace are updated to point to any new or changed objects.

•Other references to the old objects (such as names external to the module) are not rebound to refer to
the new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the

1088 Chapter 29. Importing Modules

The Python Library Reference, Release 3.2

module you must first import it again (this will bind the name to the partially initialized module object)
before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys, __main__ and __builtin__. In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

The following functions are conveniences for handling PEP 3147 byte-compiled file paths. New in version 3.2.

imp.cache_from_source(path, debug_override=None)
Return the PEP 3147 path to the byte-compiled file associated with the source path. For example, if path is
/foo/bar/baz.py the return value would be /foo/bar/__pycache__/baz.cpython-32.pyc
for Python 3.2. The cpython-32 string comes from the current magic tag (see get_tag()). The
returned path will end in .pyc when __debug__ is True or .pyo for an optimized Python (i.e.
__debug__ is False). By passing in True or False for debug_override you can override the system’s
value for __debug__ for extension selection.

path need not exist.

imp.source_from_cache(path)
Given the path to a PEP 3147 file name, return the associated source code file path. For ex-
ample, if path is /foo/bar/__pycache__/baz.cpython-32.pyc the returned path would be
/foo/bar/baz.py. path need not exist, however if it does not conform to PEP 3147 format, a
ValueError is raised.

imp.get_tag()
Return the PEP 3147 magic tag string matching this version of Python’s magic number, as returned by
get_magic().

The following constants with integer values, defined in this module, are used to indicate the search result of
find_module().

imp.PY_SOURCE
The module was found as a source file.

imp.PY_COMPILED
The module was found as a compiled code object file.

imp.C_EXTENSION
The module was found as dynamically loadable shared library.

imp.PKG_DIRECTORY
The module was found as a package directory.

imp.C_BUILTIN
The module was found as a built-in module.

29.1. imp — Access the import internals 1089

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.2

imp.PY_FROZEN
The module was found as a frozen module (see init_frozen()).

class imp.NullImporter(path_string)
The NullImporter type is a PEP 302 import hook that handles non-directory path strings by failing
to find any modules. Calling this type with an existing directory or empty string raises ImportError.
Otherwise, a NullImporter instance is returned.

Python adds instances of this type to sys.path_importer_cache for any path entries that are not
directories and are not handled by any other path hooks on sys.path_hooks. Instances have only one
method:

find_module(fullname[, path])
This method always returns None, indicating that the requested module could not be found.

29.1.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical module
names). (This implementation wouldn’t work in that version, since find_module() has been extended and
load_module() has been added in 1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:

pass

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)

finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

29.2 zipimport — Import modules from Zip archives

This module adds the ability to import Python modules (*.py, *.py[co]) and packages from ZIP-format
archives. It is usually not needed to use the zipimport module explicitly; it is automatically used by the built-in
import mechanism for sys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an item of sys.path to
be a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package
imports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
/tmp/example.zip/lib/ would only import from the lib/ subdirectory within the archive.

Any files may be present in the ZIP archive, but only files .py and .py[co] are available for import. ZIP import
of dynamic modules (.pyd, .so) is disallowed. Note that if an archive only contains .py files, Python will
not attempt to modify the archive by adding the corresponding .pyc or .pyo file, meaning that if a ZIP archive
doesn’t contain .pyc files, importing may be rather slow.

1090 Chapter 29. Importing Modules

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

ZIP archives with an archive comment are currently not supported.

See Also:

PKZIP Application Note Documentation on the ZIP file format by Phil Katz, the creator of the format and
algorithms used.

PEP 273 - Import Modules from Zip Archives Written by James C. Ahlstrom, who also provided an imple-
mentation. Python 2.3 follows the specification in PEP 273, but uses an implementation written by Just van
Rossum that uses the import hooks described in PEP 302.

PEP 302 - New Import Hooks The PEP to add the import hooks that help this module work.

This module defines an exception:

exception zipimport.ZipImportError
Exception raised by zipimporter objects. It’s a subclass of ImportError, so it can be caught as
ImportError, too.

29.2.1 zipimporter Objects

zipimporter is the class for importing ZIP files.

class zipimport.zipimporter(archivepath)
Create a new zipimporter instance. archivepath must be a path to a ZIP file, or to a specific path within a
ZIP file. For example, an archivepath of foo/bar.zip/lib will look for modules in the lib directory
inside the ZIP file foo/bar.zip (provided that it exists).

ZipImportError is raised if archivepath doesn’t point to a valid ZIP archive.

find_module(fullname[, path])
Search for a module specified by fullname. fullname must be the fully qualified (dotted) module name.
It returns the zipimporter instance itself if the module was found, or None if it wasn’t. The optional
path argument is ignored—it’s there for compatibility with the importer protocol.

get_code(fullname)
Return the code object for the specified module. Raise ZipImportError if the module couldn’t be
found.

get_data(pathname)
Return the data associated with pathname. Raise IOError if the file wasn’t found.

get_filename(fullname)
Return the value __file__ would be set to if the specified module was imported. Raise
ZipImportError if the module couldn’t be found. New in version 3.1.

get_source(fullname)
Return the source code for the specified module. Raise ZipImportError if the module couldn’t be
found, return None if the archive does contain the module, but has no source for it.

is_package(fullname)
Return True if the module specified by fullname is a package. Raise ZipImportError if the module
couldn’t be found.

load_module(fullname)
Load the module specified by fullname. fullname must be the fully qualified (dotted) module name. It
returns the imported module, or raises ZipImportError if it wasn’t found.

archive
The file name of the importer’s associated ZIP file, without a possible subpath.

prefix
The subpath within the ZIP file where modules are searched. This is the empty string for zipimporter
objects which point to the root of the ZIP file.

29.2. zipimport — Import modules from Zip archives 1091

http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.python.org/dev/peps/pep-0273
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

The archive and prefix attributes, when combined with a slash, equal the original archivepath argu-
ment given to the zipimporter constructor.

29.2.2 Examples

Here is an example that imports a module from a ZIP archive - note that the zipimport module is not explicitly
used.

$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip

Length Date Time Name
-------- ---- ---- ----

8467 11-26-02 22:30 jwzthreading.py
-------- -------

8467 1 file
$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, ’/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
’/tmp/example.zip/jwzthreading.py’

29.3 pkgutil — Package extension utility

Source code: Lib/pkgutil.py

This module provides utilities for the import system, in particular package support.

pkgutil.extend_path(path, name)
Extend the search path for the modules which comprise a package. Intended use is to place the following
code in a package’s __init__.py:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

This will add to the package’s __path__ all subdirectories of directories on sys.path named after the
package. This is useful if one wants to distribute different parts of a single logical package as multiple
directories.

It also looks for *.pkg files beginning where * matches the name argument. This feature is similar to
*.pth files (see the site module for more information), except that it doesn’t special-case lines starting
with import. A *.pkg file is trusted at face value: apart from checking for duplicates, all entries found
in a *.pkg file are added to the path, regardless of whether they exist on the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is
not modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed that sys.path is a sequence. Items of sys.path that are not strings referring to existing
directories are ignored. Unicode items on sys.path that cause errors when used as filenames may cause
this function to raise an exception (in line with os.path.isdir() behavior).

class pkgutil.ImpImporter(dirname=None)
PEP 302 Importer that wraps Python’s “classic” import algorithm.

If dirname is a string, a PEP 302 importer is created that searches that directory. If dirname is None, a PEP
302 importer is created that searches the current sys.path, plus any modules that are frozen or built-in.

Note that ImpImporter does not currently support being used by placement on sys.meta_path.

1092 Chapter 29. Importing Modules

http://svn.python.org/view/python/branches/py3k/Lib/pkgutil.py?view=markup
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

class pkgutil.ImpLoader(fullname, file, filename, etc)
PEP 302 Loader that wraps Python’s “classic” import algorithm.

pkgutil.find_loader(fullname)
Find a PEP 302 “loader” object for fullname.

If fullname contains dots, path must be the containing package’s __path__. Returns None if the module
cannot be found or imported. This function uses iter_importers(), and is thus subject to the same
limitations regarding platform-specific special import locations such as the Windows registry.

pkgutil.get_importer(path_item)
Retrieve a PEP 302 importer for the given path_item.

The returned importer is cached in sys.path_importer_cache if it was newly created by a path hook.

If there is no importer, a wrapper around the basic import machinery is returned. This wrapper is never
inserted into the importer cache (None is inserted instead).

The cache (or part of it) can be cleared manually if a rescan of sys.path_hooks is necessary.

pkgutil.get_loader(module_or_name)
Get a PEP 302 “loader” object for module_or_name.

If the module or package is accessible via the normal import mechanism, a wrapper around the relevant
part of that machinery is returned. Returns None if the module cannot be found or imported. If the named
module is not already imported, its containing package (if any) is imported, in order to establish the package
__path__.

This function uses iter_importers(), and is thus subject to the same limitations regarding platform-
specific special import locations such as the Windows registry.

pkgutil.iter_importers(fullname=’‘)
Yield PEP 302 importers for the given module name.

If fullname contains a ‘.’, the importers will be for the package containing fullname, otherwise they will be
importers for sys.meta_path, sys.path, and Python’s “classic” import machinery, in that order. If
the named module is in a package, that package is imported as a side effect of invoking this function.

Non- PEP 302 mechanisms (e.g. the Windows registry) used by the standard import machinery to find files
in alternative locations are partially supported, but are searched after sys.path. Normally, these locations
are searched before sys.path, preventing sys.path entries from shadowing them.

For this to cause a visible difference in behaviour, there must be a module or package name that is accessible
via both sys.path and one of the non- PEP 302 file system mechanisms. In this case, the emulation will
find the former version, while the builtin import mechanism will find the latter.

Items of the following types can be affected by this discrepancy: imp.C_EXTENSION,
imp.PY_SOURCE, imp.PY_COMPILED, imp.PKG_DIRECTORY.

pkgutil.iter_modules(path=None, prefix=’‘)
Yields (module_loader, name, ispkg) for all submodules on path, or, if path is None, all top-
level modules on sys.path.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

pkgutil.walk_packages(path=None, prefix=’‘, onerror=None)
Yields (module_loader, name, ispkg) for all modules recursively on path, or, if path is None,
all accessible modules.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

Note that this function must import all packages (not all modules!) on the given path, in order to access the
__path__ attribute to find submodules.

29.3. pkgutil — Package extension utility 1093

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

onerror is a function which gets called with one argument (the name of the package which was being
imported) if any exception occurs while trying to import a package. If no onerror function is supplied,
ImportErrors are caught and ignored, while all other exceptions are propagated, terminating the search.

Examples:

list all modules python can access
walk_packages()

list all submodules of ctypes
walk_packages(ctypes.__path__, ctypes.__name__ + ’.’)

pkgutil.get_data(package, resource)
Get a resource from a package.

This is a wrapper for the PEP 302 loader get_data() API. The package argument should be the name
of a package, in standard module format (foo.bar). The resource argument should be in the form of a
relative filename, using / as the path separator. The parent directory name .. is not allowed, and nor is a
rooted name (starting with a /).

The function returns a binary string that is the contents of the specified resource.

For packages located in the filesystem, which have already been imported, this is the rough equivalent of:

d = os.path.dirname(sys.modules[package].__file__)
data = open(os.path.join(d, resource), ’rb’).read()

If the package cannot be located or loaded, or it uses a PEP 302 loader which does not support
get_data(), then None is returned.

29.4 modulefinder — Find modules used by a script

Source code: Lib/modulefinder.py

This module provides a ModuleFinder class that can be used to determine the set of modules imported by a
script. modulefinder.py can also be run as a script, giving the filename of a Python script as its argument,
after which a report of the imported modules will be printed.

modulefinder.AddPackagePath(pkg_name, path)
Record that the package named pkg_name can be found in the specified path.

modulefinder.ReplacePackage(oldname, newname)
Allows specifying that the module named oldname is in fact the package named newname. The most
common usage would be to handle how the _xmlplus package replaces the xml package.

class modulefinder.ModuleFinder(path=None, debug=0, excludes=[], replace_paths=[])
This class provides run_script() and report()methods to determine the set of modules imported by
a script. path can be a list of directories to search for modules; if not specified, sys.path is used. debug
sets the debugging level; higher values make the class print debugging messages about what it’s doing.
excludes is a list of module names to exclude from the analysis. replace_paths is a list of (oldpath,
newpath) tuples that will be replaced in module paths.

report()
Print a report to standard output that lists the modules imported by the script and their paths, as well
as modules that are missing or seem to be missing.

run_script(pathname)
Analyze the contents of the pathname file, which must contain Python code.

modules
A dictionary mapping module names to modules. See Example usage of ModuleFinder

1094 Chapter 29. Importing Modules

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://svn.python.org/view/python/branches/py3k/Lib/modulefinder.py?view=markup

The Python Library Reference, Release 3.2

29.4.1 Example usage of ModuleFinder

The script that is going to get analyzed later on (bacon.py):

import re, itertools

try:
import baconhameggs

except ImportError:
pass

try:
import guido.python.ham

except ImportError:
pass

The script that will output the report of bacon.py:

from modulefinder import ModuleFinder

finder = ModuleFinder()
finder.run_script(’bacon.py’)

print(’Loaded modules:’)
for name, mod in finder.modules.items():

print(’%s: ’ % name, end=’’)
print(’,’.join(list(mod.globalnames.keys())[:3]))

print(’-’*50)
print(’Modules not imported:’)
print(’\n’.join(finder.badmodules.keys()))

Sample output (may vary depending on the architecture):

Loaded modules:
_types:
copyreg: _inverted_registry,_slotnames,__all__
sre_compile: isstring,_sre,_optimize_unicode
_sre:
sre_constants: REPEAT_ONE,makedict,AT_END_LINE
sys:
re: __module__,finditer,_expand
itertools:
__main__: re,itertools,baconhameggs
sre_parse: __getslice__,_PATTERNENDERS,SRE_FLAG_UNICODE
array:
types: __module__,IntType,TypeType

Modules not imported:
guido.python.ham
baconhameggs

29.5 runpy — Locating and executing Python modules

Source code: Lib/runpy.py

The runpy module is used to locate and run Python modules without importing them first. Its main use is to
implement the -m command line switch that allows scripts to be located using the Python module namespace

29.5. runpy — Locating and executing Python modules 1095

http://svn.python.org/view/python/branches/py3k/Lib/runpy.py?view=markup

The Python Library Reference, Release 3.2

rather than the filesystem.

The runpy module provides two functions:

runpy.run_module(mod_name, init_globals=None, run_name=None, alter_sys=False)
Execute the code of the specified module and return the resulting module globals dictionary. The module’s
code is first located using the standard import mechanism (refer to PEP 302 for details) and then executed
in a fresh module namespace.

If the supplied module name refers to a package rather than a normal module, then that package is imported
and the __main__ submodule within that package is then executed and the resulting module globals dic-
tionary returned.

The optional dictionary argument init_globals may be used to pre-populate the module’s globals dictionary
before the code is executed. The supplied dictionary will not be modified. If any of the special global
variables below are defined in the supplied dictionary, those definitions are overridden by run_module().

The special global variables __name__, __file__, __cached__, __loader__ and __package__
are set in the globals dictionary before the module code is executed (Note that this is a minimal set of
variables - other variables may be set implicitly as an interpreter implementation detail).

__name__ is set to run_name if this optional argument is not None, to mod_name + ’.__main__’
if the named module is a package and to the mod_name argument otherwise.

__file__ is set to the name provided by the module loader. If the loader does not make filename infor-
mation available, this variable is set to None.

__cached__ will be set to None.

__loader__ is set to the PEP 302 module loader used to retrieve the code for the module (This loader
may be a wrapper around the standard import mechanism).

__package__ is set to mod_name if the named module is a package and to
mod_name.rpartition(’.’)[0] otherwise.

If the argument alter_sys is supplied and evaluates to True, then sys.argv[0] is updated with the
value of __file__ and sys.modules[__name__] is updated with a temporary module object for
the module being executed. Both sys.argv[0] and sys.modules[__name__] are restored to their
original values before the function returns.

Note that this manipulation of sys is not thread-safe. Other threads may see the partially initialised module,
as well as the altered list of arguments. It is recommended that the sys module be left alone when invoking
this function from threaded code. Changed in version 3.1: Added ability to execute packages by looking for
a __main__ submodule.Changed in version 3.2: Added __cached__ global variable (see PEP 3147).

runpy.run_path(file_path, init_globals=None, run_name=None)
Execute the code at the named filesystem location and return the resulting module globals dictionary. As
with a script name supplied to the CPython command line, the supplied path may refer to a Python source
file, a compiled bytecode file or a valid sys.path entry containing a __main__ module (e.g. a zipfile
containing a top-level __main__.py file).

For a simple script, the specified code is simply executed in a fresh module namespace. For a valid sys.path
entry (typically a zipfile or directory), the entry is first added to the beginning of sys.path. The function
then looks for and executes a __main__ module using the updated path. Note that there is no special
protection against invoking an existing __main__ entry located elsewhere on sys.path if there is no
such module at the specified location.

The optional dictionary argument init_globals may be used to pre-populate the module’s globals dictionary
before the code is executed. The supplied dictionary will not be modified. If any of the special global
variables below are defined in the supplied dictionary, those definitions are overridden by run_path().

The special global variables __name__, __file__, __loader__ and __package__ are set in the
globals dictionary before the module code is executed (Note that this is a minimal set of variables - other
variables may be set implicitly as an interpreter implementation detail).

__name__ is set to run_name if this optional argument is not None and to ’<run_path>’ otherwise.

1096 Chapter 29. Importing Modules

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.2

__file__ is set to the name provided by the module loader. If the loader does not make filename infor-
mation available, this variable is set to None. For a simple script, this will be set to file_path.

__loader__ is set to the PEP 302 module loader used to retrieve the code for the module (This loader
may be a wrapper around the standard import mechanism). For a simple script, this will be set to None.

__package__ is set to __name__.rpartition(’.’)[0].

A number of alterations are also made to the sys module. Firstly, sys.path may be altered as described
above. sys.argv[0] is updated with the value of file_path and sys.modules[__name__] is
updated with a temporary module object for the module being executed. All modifications to items in sys
are reverted before the function returns.

Note that, unlike run_module(), the alterations made to sys are not optional in this function as these
adjustments are essential to allowing the execution of sys.path entries. As the thread-safety limitations still
apply, use of this function in threaded code should be either serialised with the import lock or delegated to
a separate process. New in version 3.2.

See Also:

PEP 338 - Executing modules as scripts PEP written and implemented by Nick Coghlan.

PEP 366 - Main module explicit relative imports PEP written and implemented by Nick Coghlan.

using-on-general - CPython command line details

29.6 importlib – An implementation of import

New in version 3.1.

29.6.1 Introduction

The purpose of the importlib package is two-fold. One is to provide an implementation of the import
statement (and thus, by extension, the __import__() function) in Python source code. This provides an imple-
mentation of import which is portable to any Python interpreter. This also provides a reference implementation
which is easier to comprehend than one implemented in a programming language other than Python.

Two, the components to implement import are exposed in this package, making it easier for users to create their
own custom objects (known generically as an importer) to participate in the import process. Details on custom
importers can be found in PEP 302.

See Also:

import The language reference for the import statement.

Packages specification Original specification of packages. Some semantics have changed since the writing of
this document (e.g. redirecting based on None in sys.modules).

The __import__() function The import statement is syntactic sugar for this function.

PEP 235 Import on Case-Insensitive Platforms

PEP 263 Defining Python Source Code Encodings

PEP 302 New Import Hooks

PEP 328 Imports: Multi-Line and Absolute/Relative

PEP 366 Main module explicit relative imports

PEP 3120 Using UTF-8 as the Default Source Encoding

PEP 3147 PYC Repository Directories

29.6. importlib – An implementation of import 1097

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0338
http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-0302
http://www.python.org/doc/essays/packages.html
http://www.python.org/dev/peps/pep-0235
http://www.python.org/dev/peps/pep-0263
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0328
http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-3120
http://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.2

29.6.2 Functions

importlib.__import__(name, globals={}, locals={}, fromlist=list(), level=0)
An implementation of the built-in __import__() function.

importlib.import_module(name, package=None)
Import a module. The name argument specifies what module to import in absolute or relative terms (e.g.
either pkg.mod or ..mod). If the name is specified in relative terms, then the package argument must
be set to the name of the package which is to act as the anchor for resolving the package name (e.g.
import_module(’..mod’, ’pkg.subpkg’) will import pkg.mod).

The import_module() function acts as a simplifying wrapper around importlib.__import__().
This means all semantics of the function are derived from importlib.__import__(), including re-
quiring the package from which an import is occurring to have been previously imported (i.e., package
must already be imported). The most important difference is that import_module() returns the most
nested package or module that was imported (e.g. pkg.mod), while __import__() returns the top-level
package or module (e.g. pkg).

29.6.3 importlib.abc – Abstract base classes related to import

The importlib.abc module contains all of the core abstract base classes used by import. Some subclasses
of the core abstract base classes are also provided to help in implementing the core ABCs.

class importlib.abc.Finder
An abstract base class representing a finder. See PEP 302 for the exact definition for a finder.

find_module(fullname, path=None)
An abstract method for finding a loader for the specified module. If the finder is found on
sys.meta_path and the module to be searched for is a subpackage or module then path will be the
value of __path__ from the parent package. If a loader cannot be found, None is returned.

class importlib.abc.Loader
An abstract base class for a loader. See PEP 302 for the exact definition for a loader.

load_module(fullname)
An abstract method for loading a module. If the module cannot be loaded, ImportError is raised,
otherwise the loaded module is returned.

If the requested module already exists in sys.modules, that module should be used and reloaded.
Otherwise the loader should create a new module and insert it into sys.modules before any loading
begins, to prevent recursion from the import. If the loader inserted a module and the load fails, it
must be removed by the loader from sys.modules; modules already in sys.modules before the
loader began execution should be left alone. The importlib.util.module_for_loader()
decorator handles all of these details.

The loader should set several attributes on the module. (Note that some of these attributes can change
when a module is reloaded.)

•__name__ The name of the module.

•__file__ The path to where the module data is stored (not set for built-in modules).

•__path__ A list of strings specifying the search path within a package. This attribute is not set
on modules.

•__package__ The parent package for the module/package. If the module is top-level then it
has a value of the empty string. The importlib.util.set_package() decorator can
handle the details for __package__.

•__loader__ The loader used to load the module. (This is not set by the built-in import ma-
chinery, but it should be set whenever a loader is used.)

class importlib.abc.ResourceLoader
An abstract base class for a loader which implements the optional

1098 Chapter 29. Importing Modules

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

PEP 302 protocol for loading arbitrary resources from the storage back-end.

get_data(path)
An abstract method to return the bytes for the data located at path. Loaders that have a file-like storage
back-end that allows storing arbitrary data can implement this abstract method to give direct access
to the data stored. IOError is to be raised if the path cannot be found. The path is expected to be
constructed using a module’s __file__ attribute or an item from a package’s __path__.

class importlib.abc.InspectLoader
An abstract base class for a loader which implements the optional

PEP 302 protocol for loaders that inspect modules.

get_code(fullname)
An abstract method to return the code object for a module. None is returned if the module does not
have a code object (e.g. built-in module). ImportError is raised if loader cannot find the requested
module.

get_source(fullname)
An abstract method to return the source of a module. It is returned as a text string with universal
newlines. Returns None if no source is available (e.g. a built-in module). Raises ImportError if
the loader cannot find the module specified.

is_package(fullname)
An abstract method to return a true value if the module is a package, a false value otherwise.
ImportError is raised if the loader cannot find the module.

class importlib.abc.ExecutionLoader
An abstract base class which inherits from InspectLoader that, when implemented, helps a module to
be executed as a script. The ABC represents an optional PEP 302 protocol.

get_filename(fullname)
An abstract method that is to return the value of __file__ for the specified module. If no path is
available, ImportError is raised.

If source code is available, then the method should return the path to the source file, regardless of
whether a bytecode was used to load the module.

class importlib.abc.SourceLoader
An abstract base class for implementing source (and optionally bytecode) file loading. The class inherits
from both ResourceLoader and ExecutionLoader, requiring the implementation of:

•ResourceLoader.get_data()

•ExecutionLoader.get_filename() Should only return the path to the source file; sourceless
loading is not supported.

The abstract methods defined by this class are to add optional bytecode file support. Not implementing these
optional methods causes the loader to only work with source code. Implementing the methods allows the
loader to work with source and bytecode files; it does not allow for sourceless loading where only bytecode
is provided. Bytecode files are an optimization to speed up loading by removing the parsing step of Python’s
compiler, and so no bytecode-specific API is exposed.

path_mtime(self, path)
Optional abstract method which returns the modification time for the specified path.

set_data(self, path, data)
Optional abstract method which writes the specified bytes to a file path. Any intermediate directories
which do not exist are to be created automatically.

When writing to the path fails because the path is read-only (errno.EACCES), do not propagate the
exception.

get_code(self, fullname)
Concrete implementation of InspectLoader.get_code().

29.6. importlib – An implementation of import 1099

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2

load_module(self, fullname)
Concrete implementation of Loader.load_module().

get_source(self, fullname)
Concrete implementation of InspectLoader.get_source().

is_package(self, fullname)
Concrete implementation of InspectLoader.is_package(). A module is determined to be a
package if its file path is a file named __init__ when the file extension is removed.

class importlib.abc.PyLoader
An abstract base class inheriting from ExecutionLoader and ResourceLoader designed to ease the
loading of Python source modules (bytecode is not handled; see SourceLoader for a source/bytecode
ABC). A subclass implementing this ABC will only need to worry about exposing how the source
code is stored; all other details for loading Python source code will be handled by the concrete imple-
mentations of key methods. Deprecated since version 3.2: This class has been deprecated in favor of
SourceLoader and is slated for removal in Python 3.4. See below for how to create a subclass that
is compatible with Python 3.1 onwards. If compatibility with Python 3.1 is required, then use the fol-
lowing idiom to implement a subclass that will work with Python 3.1 onwards (make sure to implement
ExecutionLoader.get_filename()):

try:
from importlib.abc import SourceLoader

except ImportError:
from importlib.abc import PyLoader as SourceLoader

class CustomLoader(SourceLoader):
def get_filename(self, fullname):

"""Return the path to the source file."""
Implement ...

def source_path(self, fullname):
"""Implement source_path in terms of get_filename."""
try:

return self.get_filename(fullname)
except ImportError:

return None

def is_package(self, fullname):
"""Implement is_package by looking for an __init__ file
name as returned by get_filename."""
filename = os.path.basename(self.get_filename(fullname))
return os.path.splitext(filename)[0] == ’__init__’

source_path(fullname)
An abstract method that returns the path to the source code for a module. Should return None if there
is no source code. Raises ImportError if the loader knows it cannot handle the module.

get_filename(fullname)
A concrete implementation of importlib.abc.ExecutionLoader.get_filename() that
relies on source_path(). If source_path() returns None, then ImportError is raised.

load_module(fullname)
A concrete implementation of importlib.abc.Loader.load_module() that loads Python
source code. All needed information comes from the abstract methods required by this ABC. The
only pertinent assumption made by this method is that when loading a package __path__ is set to
[os.path.dirname(__file__)].

get_code(fullname)
A concrete implementation of importlib.abc.InspectLoader.get_code() that creates

1100 Chapter 29. Importing Modules

The Python Library Reference, Release 3.2

code objects from Python source code, by requesting the source code (using source_path() and
get_data()) and compiling it with the built-in compile() function.

get_source(fullname)
A concrete implementation of importlib.abc.InspectLoader.get_source(). Uses
importlib.abc.ResourceLoader.get_data() and source_path() to get the source
code. It tries to guess the source encoding using tokenize.detect_encoding().

class importlib.abc.PyPycLoader
An abstract base class inheriting from PyLoader. This ABC is meant to help in creating loaders that
support both Python source and bytecode. Deprecated since version 3.2: This class has been deprecated in
favor of SourceLoader and to properly support PEP 3147. If compatibility is required with Python 3.1,
implement both SourceLoader and PyLoader; instructions on how to do so are included in the doc-
umentation for PyLoader. Do note that this solution will not support sourceless/bytecode-only loading;
only source and bytecode loading.

source_mtime(fullname)
An abstract method which returns the modification time for the source code of the specified module.
The modification time should be an integer. If there is no source code, return None. If the module
cannot be found then ImportError is raised.

bytecode_path(fullname)
An abstract method which returns the path to the bytecode for the specified module, if it exists. It
returns None if no bytecode exists (yet). Raises ImportError if the loader knows it cannot handle
the module.

get_filename(fullname)
A concrete implementation of ExecutionLoader.get_filename() that relies on
PyLoader.source_path() and bytecode_path(). If source_path() returns a
path, then that value is returned. Else if bytecode_path() returns a path, that path will be
returned. If a path is not available from both methods, ImportError is raised.

write_bytecode(fullname, bytecode)
An abstract method which has the loader write bytecode for future use. If the bytecode is written,
return True. Return False if the bytecode could not be written. This method should not be called
if sys.dont_write_bytecode is true. The bytecode argument should be a bytes string or bytes
array.

29.6.4 importlib.machinery – Importers and path hooks

This module contains the various objects that help import find and load modules.

class importlib.machinery.BuiltinImporter
An importer for built-in modules. All known built-in modules are listed in
sys.builtin_module_names. This class implements the importlib.abc.Finder and
importlib.abc.InspectLoader ABCs.

Only class methods are defined by this class to alleviate the need for instantiation.

class importlib.machinery.FrozenImporter
An importer for frozen modules. This class implements the importlib.abc.Finder and
importlib.abc.InspectLoader ABCs.

Only class methods are defined by this class to alleviate the need for instantiation.

class importlib.machinery.PathFinder
Finder for sys.path. This class implements the importlib.abc.Finder ABC.

This class does not perfectly mirror the semantics of import in terms of sys.path. No implicit path
hooks are assumed for simplification of the class and its semantics.

Only class methods are defined by this class to alleviate the need for instantiation.

29.6. importlib – An implementation of import 1101

http://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.2

classmethod find_module(fullname, path=None)
Class method that attempts to find a loader for the module specified by fullname on sys.path or, if
defined, on path. For each path entry that is searched, sys.path_importer_cache is checked.
If an non-false object is found then it is used as the finder to look for the module being searched for.
If no entry is found in sys.path_importer_cache, then sys.path_hooks is searched for a
finder for the path entry and, if found, is stored in sys.path_importer_cache along with being
queried about the module. If no finder is ever found then None is returned.

29.6.5 importlib.util – Utility code for importers

This module contains the various objects that help in the construction of an importer.

@importlib.util.module_for_loader
A decorator for a loader method, to handle selecting the proper module object to load with. The decorated
method is expected to have a call signature taking two positional arguments (e.g. load_module(self,
module)) for which the second argument will be the module object to be used by the loader. Note that the
decorator will not work on static methods because of the assumption of two arguments.

The decorated method will take in the name of the module to be loaded as expected for a loader. If the
module is not found in sys.modules then a new one is constructed with its __name__ attribute set.
Otherwise the module found in sys.modules will be passed into the method. If an exception is raised by
the decorated method and a module was added to sys.modules it will be removed to prevent a partially
initialized module from being in left in sys.modules. If the module was already in sys.modules then
it is left alone.

Use of this decorator handles all the details of which module object a loader should initialize as specified
by PEP 302.

@importlib.util.set_loader
A decorator for a loader method, to set the __loader__ attribute on loaded modules. If the attribute
is already set the decorator does nothing. It is assumed that the first positional argument to the wrapped
method is what __loader__ should be set to.

@importlib.util.set_package
A decorator for a loader to set the __package__ attribute on the module returned by the loader. If
__package__ is set and has a value other than None it will not be changed. Note that the module
returned by the loader is what has the attribute set on and not the module found in sys.modules.

Reliance on this decorator is discouraged when it is possible to set __package__ before the execution of
the code is possible. By setting it before the code for the module is executed it allows the attribute to be
used at the global level of the module during initialization.

1102 Chapter 29. Importing Modules

http://www.python.org/dev/peps/pep-0302

CHAPTER

THIRTY

PYTHON LANGUAGE SERVICES

Python provides a number of modules to assist in working with the Python language. These modules support
tokenizing, parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:

30.1 parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and byte-code compiler. The primary
purpose for this interface is to allow Python code to edit the parse tree of a Python expression and create executable
code from this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because
parsing is performed in a manner identical to the code forming the application. It is also faster.

Note: From Python 2.5 onward, it’s much more convenient to cut in at the Abstract Syntax Tree (AST) generation
and compilation stage, using the ast module.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of using the parser module
are presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to reference-index. The parser itself is created from a grammar
specification defined in the file Grammar/Grammar in the standard Python distribution. The parse trees stored
in the ST objects created by this module are the actual output from the internal parser when created by the expr()
or suite() functions, described below. The ST objects created by sequence2st() faithfully simulate those
structures. Be aware that the values of the sequences which are considered “correct” will vary from one version of
Python to another as the formal grammar for the language is revised. However, transporting code from one Python
version to another as source text will always allow correct parse trees to be created in the target version, with the
only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has
always been forward-compatible.

Each element of the sequences returned by st2list() or st2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an
integer which identifies a production in the grammar. These integers are given symbolic names in the C header file
Include/graminit.h and the Python module symbol. Each additional element of the sequence represents
a component of the production as recognized in the input string: these are always sequences which have the same
form as the parent. An important aspect of this structure which should be noted is that keywords used to identify
the parent node type, such as the keyword if in an if_stmt, are included in the node tree without any special
treatment. For example, the if keyword is represented by the tuple (1, ’if’), where 1 is the numeric value
associated with all NAME tokens, including variable and function names defined by the user. In an alternate form
returned when line number information is requested, the same token might be represented as (1, ’if’, 12),
where the 12 represents the line number at which the terminal symbol was found.

1103

The Python Library Reference, Release 3.2

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of the if keyword above is representative. The various types of
terminal symbols are defined in the C header file Include/token.h and the Python module token.

The ST objects are not required to support the functionality of this module, but are provided for three purposes: to
allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation
of additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to
hide the use of ST objects.

The parser module defines functions for a few distinct purposes. The most important purposes are to create ST
objects and to convert ST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an ST object.

See Also:

Module symbol Useful constants representing internal nodes of the parse tree.

Module token Useful constants representing leaf nodes of the parse tree and functions for testing node values.

30.1.1 Creating ST Objects

ST objects may be created from source code or from a parse tree. When creating an ST object from source,
different functions are used to create the ’eval’ and ’exec’ forms.

parser.expr(source)
The expr() function parses the parameter source as if it were an input to compile(source,
’file.py’, ’eval’). If the parse succeeds, an ST object is created to hold the internal parse tree
representation, otherwise an appropriate exception is raised.

parser.suite(source)
The suite() function parses the parameter source as if it were an input to compile(source,
’file.py’, ’exec’). If the parse succeeds, an ST object is created to hold the internal parse tree
representation, otherwise an appropriate exception is raised.

parser.sequence2st(sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an ST object is created from the internal representation and returned to the called. If
there is a problem creating the internal representation, or if the tree cannot be validated, a ParserError
exception is raised. An ST object created this way should not be assumed to compile correctly; normal
exceptions raised by compilation may still be initiated when the ST object is passed to compilest().
This may indicate problems not related to syntax (such as a MemoryError exception), but may also be
due to constructs such as the result of parsing del f(0), which escapes the Python parser but is checked
by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form (1,
’name’) or as three-element lists of the form (1, ’name’, 56). If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols
in the input tree.

parser.tuple2st(sequence)
This is the same function as sequence2st(). This entry point is maintained for backward compatibility.

30.1.2 Converting ST Objects

ST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or
tuple- trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line
numbering information.

parser.st2list(st, line_info=False, col_info=False)
This function accepts an ST object from the caller in st and returns a Python list representing the equivalent

1104 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree
in list form. This function does not fail so long as memory is available to build the list representation. If
the parse tree will only be used for inspection, st2tuple() should be used instead to reduce memory
consumption and fragmentation. When the list representation is required, this function is significantly faster
than retrieving a tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which the token ends.
This information is omitted if the flag is false or omitted.

parser.st2tuple(st, line_info=False, col_info=False)
This function accepts an ST object from the caller in st and returns a Python tuple representing the equivalent
parse tree. Other than returning a tuple instead of a list, this function is identical to st2list().

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. This information is omitted if the flag is false or omitted.

parser.compilest(st, filename=’<syntax-tree>’)
The Python byte compiler can be invoked on an ST object to produce code objects which can be used

as part of a call to the built-in exec() or eval() functions. This function provides the interface to the
compiler, passing the internal parse tree from st to the parser, using the source file name specified by the
filename parameter. The default value supplied for filename indicates that the source was an ST object.

Compiling an ST object may result in exceptions related to compilation; an example would be a
SyntaxError caused by the parse tree for del f(0): this statement is considered legal within the
formal grammar for Python but is not a legal language construct. The SyntaxError raised for this con-
dition is actually generated by the Python byte-compiler normally, which is why it can be raised at this
point by the parser module. Most causes of compilation failure can be diagnosed programmatically by
inspection of the parse tree.

30.1.3 Queries on ST Objects

Two functions are provided which allow an application to determine if an ST was created as an expression or a
suite. Neither of these functions can be used to determine if an ST was created from source code via expr() or
suite() or from a parse tree via sequence2st().

parser.isexpr(st)
When st represents an ’eval’ form, this function returns true, otherwise it returns false. This is useful,

since code objects normally cannot be queried for this information using existing built-in functions. Note
that the code objects created by compilest() cannot be queried like this either, and are identical to those
created by the built-in compile() function.

parser.issuite(st)
This function mirrors isexpr() in that it reports whether an ST object represents an ’exec’ form, com-
monly known as a “suite.” It is not safe to assume that this function is equivalent to not isexpr(st),
as additional syntactic fragments may be supported in the future.

30.1.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of
the Python runtime environment. See each function for information about the exceptions it can raise.

exception parser.ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built-in SyntaxError raised during normal parsing. The exception argument is
either a string describing the reason of the failure or a tuple containing a sequence causing the failure from
a parse tree passed to sequence2st() and an explanatory string. Calls to sequence2st() need to
be able to handle either type of exception, while calls to other functions in the module will only need to be
aware of the simple string values.

30.1. parser — Access Python parse trees 1105

The Python Library Reference, Release 3.2

Note that the functions compilest(), expr(), and suite() may raise exceptions which are nor-
mally raised by the parsing and compilation process. These include the built in exceptions MemoryError,
OverflowError, SyntaxError, and SystemError. In these cases, these exceptions carry all the meaning
normally associated with them. Refer to the descriptions of each function for detailed information.

30.1.5 ST Objects

Ordered and equality comparisons are supported between ST objects. Pickling of ST objects (using the pickle
module) is also supported.

parser.STType
The type of the objects returned by expr(), suite() and sequence2st().

ST objects have the following methods:

ST.compile(filename=’<syntax-tree>’)
Same as compilest(st, filename).

ST.isexpr()
Same as isexpr(st).

ST.issuite()
Same as issuite(st).

ST.tolist(line_info=False, col_info=False)
Same as st2list(st, line_info, col_info).

ST.totuple(line_info=False, col_info=False)
Same as st2tuple(st, line_info, col_info).

30.1.6 Example: Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is
to do nothing. For this purpose, using the parser module to produce an intermediate data structure is equivalent
to the code

>>> code = compile(’a + 5’, ’file.py’, ’eval’)
>>> a = 5
>>> eval(code)
10

The equivalent operation using the parser module is somewhat longer, and allows the intermediate internal
parse tree to be retained as an ST object:

>>> import parser
>>> st = parser.expr(’a + 5’)
>>> code = st.compile(’file.py’)
>>> a = 5
>>> eval(code)
10

An application which needs both ST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
st = parser.suite(source_string)
return st, st.compile()

def load_expression(source_string):
st = parser.expr(source_string)
return st, st.compile()

1106 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

30.2 ast — Abstract Syntax Trees

Source code: Lib/ast.py

The ast module helps Python applications to process trees of the Python abstract syntax grammar. The abstract
syntax itself might change with each Python release; this module helps to find out programmatically what the
current grammar looks like.

An abstract syntax tree can be generated by passing ast.PyCF_ONLY_AST as a flag to the compile() built-in
function, or using the parse() helper provided in this module. The result will be a tree of objects whose classes
all inherit from ast.AST. An abstract syntax tree can be compiled into a Python code object using the built-in
compile() function.

30.2.1 Node classes

class ast.AST
This is the base of all AST node classes. The actual node classes are derived from the
Parser/Python.asdl file, which is reproduced below. They are defined in the _ast C module and
re-exported in ast.

There is one class defined for each left-hand side symbol in the abstract grammar (for example, ast.stmt
or ast.expr). In addition, there is one class defined for each constructor on the right-hand side; these
classes inherit from the classes for the left-hand side trees. For example, ast.BinOp inherits from
ast.expr. For production rules with alternatives (aka “sums”), the left-hand side class is abstract: only
instances of specific constructor nodes are ever created.

_fields
Each concrete class has an attribute _fields which gives the names of all child nodes.

Each instance of a concrete class has one attribute for each child node, of the type as defined in the
grammar. For example, ast.BinOp instances have an attribute left of type ast.expr.

If these attributes are marked as optional in the grammar (using a question mark), the value might be
None. If the attributes can have zero-or-more values (marked with an asterisk), the values are repre-
sented as Python lists. All possible attributes must be present and have valid values when compiling
an AST with compile().

lineno
col_offset

Instances of ast.expr and ast.stmt subclasses have lineno and col_offset attributes. The
lineno is the line number of source text (1-indexed so the first line is line 1) and the col_offset is
the UTF-8 byte offset of the first token that generated the node. The UTF-8 offset is recorded because
the parser uses UTF-8 internally.

The constructor of a class ast.T parses its arguments as follows:

•If there are positional arguments, there must be as many as there are items in T._fields; they will
be assigned as attributes of these names.

•If there are keyword arguments, they will set the attributes of the same names to the given values.

For example, to create and populate an ast.UnaryOp node, you could use

node = ast.UnaryOp()
node.op = ast.USub()
node.operand = ast.Num()
node.operand.n = 5
node.operand.lineno = 0
node.operand.col_offset = 0
node.lineno = 0
node.col_offset = 0

30.2. ast — Abstract Syntax Trees 1107

http://svn.python.org/view/python/branches/py3k/Lib/ast.py?view=markup

The Python Library Reference, Release 3.2

or the more compact

node = ast.UnaryOp(ast.USub(), ast.Num(5, lineno=0, col_offset=0),
lineno=0, col_offset=0)

30.2.2 Abstract Grammar

The module defines a string constant __version__ which is the decimal Subversion revision number of the file
shown below.

The abstract grammar is currently defined as follows:

-- ASDL’s four builtin types are identifier, int, string, object

module Python version "$Revision: 82163 $"
{

mod = Module(stmt* body)
| Interactive(stmt* body)
| Expression(expr body)

-- not really an actual node but useful in Jython’s typesystem.
| Suite(stmt* body)

stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns)

| ClassDef(identifier name,
expr* bases,
keyword* keywords,
expr? starargs,
expr? kwargs,
stmt* body,
expr* decorator_list)

| Return(expr? value)

| Delete(expr* targets)
| Assign(expr* targets, expr value)
| AugAssign(expr target, operator op, expr value)

-- use ’orelse’ because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse)
| While(expr test, stmt* body, stmt* orelse)
| If(expr test, stmt* body, stmt* orelse)
| With(expr context_expr, expr? optional_vars, stmt* body)

| Raise(expr? exc, expr? cause)
| TryExcept(stmt* body, excepthandler* handlers, stmt* orelse)
| TryFinally(stmt* body, stmt* finalbody)
| Assert(expr test, expr? msg)

| Import(alias* names)
| ImportFrom(identifier? module, alias* names, int? level)

| Global(identifier* names)
| Nonlocal(identifier* names)
| Expr(expr value)
| Pass | Break | Continue

-- XXX Jython will be different

1108 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset)

-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)

| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Yield(expr? value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords,

expr? starargs, expr? kwargs)
| Num(object n) -- a number as a PyObject.
| Str(string s) -- need to specify raw, unicode, etc?
| Bytes(string s)
| Ellipsis
-- other literals? bools?

-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, slice slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)

-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset)

expr_context = Load | Store | Del | AugLoad | AugStore | Param

slice = Slice(expr? lower, expr? upper, expr? step)
| ExtSlice(slice* dims)
| Index(expr value)

boolop = And | Or

operator = Add | Sub | Mult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv

unaryop = Invert | Not | UAdd | USub

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

comprehension = (expr target, expr iter, expr* ifs)

-- not sure what to call the first argument for raise and except
excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)

30.2. ast — Abstract Syntax Trees 1109

The Python Library Reference, Release 3.2

attributes (int lineno, int col_offset)

arguments = (arg* args, identifier? vararg, expr? varargannotation,
arg* kwonlyargs, identifier? kwarg,
expr? kwargannotation, expr* defaults,
expr* kw_defaults)

arg = (identifier arg, expr? annotation)

-- keyword arguments supplied to call
keyword = (identifier arg, expr value)

-- import name with optional ’as’ alias.
alias = (identifier name, identifier? asname)

}

30.2.3 ast Helpers

Apart from the node classes, ast module defines these utility functions and classes for traversing abstract syntax
trees:

ast.parse(source, filename=’<unknown>’, mode=’exec’)
Parse the source into an AST node. Equivalent to compile(source, filename, mode,
ast.PyCF_ONLY_AST).

ast.literal_eval(node_or_string)
Safely evaluate an expression node or a string containing a Python expression. The string or node provided
may only consist of the following Python literal structures: strings, bytes, numbers, tuples, lists, dicts, sets,
booleans, and None.

This can be used for safely evaluating strings containing Python expressions from untrusted sources without
the need to parse the values oneself. Changed in version 3.2: Now allows bytes and set literals.

ast.get_docstring(node, clean=True)
Return the docstring of the given node (which must be a FunctionDef, ClassDef or Module
node), or None if it has no docstring. If clean is true, clean up the docstring’s indentation with
inspect.cleandoc().

ast.fix_missing_locations(node)
When you compile a node tree with compile(), the compiler expects lineno and col_offset at-
tributes for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper
adds these attributes recursively where not already set, by setting them to the values of the parent node. It
works recursively starting at node.

ast.increment_lineno(node, n=1)
Increment the line number of each node in the tree starting at node by n. This is useful to “move code” to a
different location in a file.

ast.copy_location(new_node, old_node)
Copy source location (lineno and col_offset) from old_node to new_node if possible, and return
new_node.

ast.iter_fields(node)
Yield a tuple of (fieldname, value) for each field in node._fields that is present on node.

ast.iter_child_nodes(node)
Yield all direct child nodes of node, that is, all fields that are nodes and all items of fields that are lists of
nodes.

ast.walk(node)
Recursively yield all descendant nodes in the tree starting at node (including node itself), in no specified
order. This is useful if you only want to modify nodes in place and don’t care about the context.

1110 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

class ast.NodeVisitor
A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node found.
This function may return a value which is forwarded by the visit() method.

This class is meant to be subclassed, with the subclass adding visitor methods.

visit(node)
Visit a node. The default implementation calls the method called ‘self.visit_classname’
where classname is the name of the node class, or generic_visit() if that method doesn’t exist.

generic_visit(node)
This visitor calls visit() on all children of the node.

Note that child nodes of nodes that have a custom visitor method won’t be visited unless the visitor
calls generic_visit() or visits them itself.

Don’t use the NodeVisitor if you want to apply changes to nodes during traversal. For this a special
visitor exists (NodeTransformer) that allows modifications.

class ast.NodeTransformer
A NodeVisitor subclass that walks the abstract syntax tree and allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of the visitor methods to replace or
remove the old node. If the return value of the visitor method is None, the node will be removed from its
location, otherwise it is replaced with the return value. The return value may be the original node in which
case no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups (foo) to data[’foo’]:

class RewriteName(NodeTransformer):

def visit_Name(self, node):
return copy_location(Subscript(

value=Name(id=’data’, ctx=Load()),
slice=Index(value=Str(s=node.id)),
ctx=node.ctx

), node)

Keep in mind that if the node you’re operating on has child nodes you must either transform the child nodes
yourself or call the generic_visit() method for the node first.

For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor may
also return a list of nodes rather than just a single node.

Usually you use the transformer like this:

node = YourTransformer().visit(node)

ast.dump(node, annotate_fields=True, include_attributes=False)
Return a formatted dump of the tree in node. This is mainly useful for debugging purposes. The returned
string will show the names and the values for fields. This makes the code impossible to evaluate, so if
evaluation is wanted annotate_fields must be set to False. Attributes such as line numbers and column
offsets are not dumped by default. If this is wanted, include_attributes can be set to True.

30.3 symtable — Access to the compiler’s symbol tables

Symbol tables are generated by the compiler from AST just before bytecode is generated. The symbol table is
responsible for calculating the scope of every identifier in the code. symtable provides an interface to examine
these tables.

30.3. symtable — Access to the compiler’s symbol tables 1111

The Python Library Reference, Release 3.2

30.3.1 Generating Symbol Tables

symtable.symtable(code, filename, compile_type)
Return the toplevel SymbolTable for the Python source code. filename is the name of the file containing
the code. compile_type is like the mode argument to compile().

30.3.2 Examining Symbol Tables

class symtable.SymbolTable
A namespace table for a block. The constructor is not public.

get_type()
Return the type of the symbol table. Possible values are ’class’, ’module’, and ’function’.

get_id()
Return the table’s identifier.

get_name()
Return the table’s name. This is the name of the class if the table is for a class, the name of the function
if the table is for a function, or ’top’ if the table is global (get_type() returns ’module’).

get_lineno()
Return the number of the first line in the block this table represents.

is_optimized()
Return True if the locals in this table can be optimized.

is_nested()
Return True if the block is a nested class or function.

has_children()
Return True if the block has nested namespaces within it. These can be obtained with
get_children().

has_exec()
Return True if the block uses exec.

has_import_star()
Return True if the block uses a starred from-import.

get_identifiers()
Return a list of names of symbols in this table.

lookup(name)
Lookup name in the table and return a Symbol instance.

get_symbols()
Return a list of Symbol instances for names in the table.

get_children()
Return a list of the nested symbol tables.

class symtable.Function
A namespace for a function or method. This class inherits SymbolTable.

get_parameters()
Return a tuple containing names of parameters to this function.

get_locals()
Return a tuple containing names of locals in this function.

get_globals()
Return a tuple containing names of globals in this function.

get_frees()
Return a tuple containing names of free variables in this function.

1112 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

class symtable.Class
A namespace of a class. This class inherits SymbolTable.

get_methods()
Return a tuple containing the names of methods declared in the class.

class symtable.Symbol
An entry in a SymbolTable corresponding to an identifier in the source. The constructor is not public.

get_name()
Return the symbol’s name.

is_referenced()
Return True if the symbol is used in its block.

is_imported()
Return True if the symbol is created from an import statement.

is_parameter()
Return True if the symbol is a parameter.

is_global()
Return True if the symbol is global.

is_declared_global()
Return True if the symbol is declared global with a global statement.

is_local()
Return True if the symbol is local to its block.

is_free()
Return True if the symbol is referenced in its block, but not assigned to.

is_assigned()
Return True if the symbol is assigned to in its block.

is_namespace()
Return True if name binding introduces new namespace.

If the name is used as the target of a function or class statement, this will be true.

For example:

>>> table = symtable.symtable("def some_func(): pass", "string", "exec")
>>> table.lookup("some_func").is_namespace()
True

Note that a single name can be bound to multiple objects. If the result is True, the name may also be
bound to other objects, like an int or list, that does not introduce a new namespace.

get_namespaces()
Return a list of namespaces bound to this name.

get_namespace()
Return the namespace bound to this name. If more than one namespace is bound, a ValueError is
raised.

30.4 symbol — Constants used with Python parse trees

Source code: Lib/symbol.py

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to the file Grammar/Grammar in the Python distribution

30.4. symbol — Constants used with Python parse trees 1113

http://svn.python.org/view/python/branches/py3k/Lib/symbol.py?view=markup

The Python Library Reference, Release 3.2

for the definitions of the names in the context of the language grammar. The specific numeric values which the
names map to may change between Python versions.

This module also provides one additional data object:

symbol.sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allow-
ing more human-readable representation of parse trees to be generated.

See Also:

Module parser The second example for the parser module shows how to use the symbol module.

30.5 token — Constants used with Python parse trees

Source code: Lib/token.py

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal
tokens). Refer to the file Grammar/Grammar in the Python distribution for the definitions of the names in the
context of the language grammar. The specific numeric values which the names map to may change between
Python versions.

The module also provides a mapping from numeric codes to names and some functions. The functions mirror
definitions in the Python C header files.

token.tok_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allow-
ing more human-readable representation of parse trees to be generated.

token.ISTERMINAL(x)
Return true for terminal token values.

token.ISNONTERMINAL(x)
Return true for non-terminal token values.

token.ISEOF(x)
Return true if x is the marker indicating the end of input.

The token constants are:

token.ENDMARKER
token.NAME
token.NUMBER
token.STRING
token.NEWLINE
token.INDENT
token.DEDENT
token.LPAR
token.RPAR
token.LSQB
token.RSQB
token.COLON
token.COMMA
token.SEMI
token.PLUS
token.MINUS
token.STAR
token.SLASH
token.VBAR
token.AMPER
token.LESS

1114 Chapter 30. Python Language Services

http://svn.python.org/view/python/branches/py3k/Lib/token.py?view=markup

The Python Library Reference, Release 3.2

token.GREATER
token.EQUAL
token.DOT
token.PERCENT
token.BACKQUOTE
token.LBRACE
token.RBRACE
token.EQEQUAL
token.NOTEQUAL
token.LESSEQUAL
token.GREATEREQUAL
token.TILDE
token.CIRCUMFLEX
token.LEFTSHIFT
token.RIGHTSHIFT
token.DOUBLESTAR
token.PLUSEQUAL
token.MINEQUAL
token.STAREQUAL
token.SLASHEQUAL
token.PERCENTEQUAL
token.AMPEREQUAL
token.VBAREQUAL
token.CIRCUMFLEXEQUAL
token.LEFTSHIFTEQUAL
token.RIGHTSHIFTEQUAL
token.DOUBLESTAREQUAL
token.DOUBLESLASH
token.DOUBLESLASHEQUAL
token.AT
token.OP
token.ERRORTOKEN
token.N_TOKENS
token.NT_OFFSET

See Also:

Module parser The second example for the parser module shows how to use the symbol module.

30.6 keyword — Testing for Python keywords

Source code: Lib/keyword.py

This module allows a Python program to determine if a string is a keyword.

keyword.iskeyword(s)
Return true if s is a Python keyword.

keyword.kwlist
Sequence containing all the keywords defined for the interpreter. If any keywords are defined to only be
active when particular __future__ statements are in effect, these will be included as well.

30.7 tokenize — Tokenizer for Python source

Source code: Lib/tokenize.py

30.6. keyword — Testing for Python keywords 1115

http://svn.python.org/view/python/branches/py3k/Lib/keyword.py?view=markup
http://svn.python.org/view/python/branches/py3k/Lib/tokenize.py?view=markup

The Python Library Reference, Release 3.2

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The primary entry point is a generator:

tokenize.tokenize(readline)
The tokenize() generator requires one argument, readline, which must be a callable object which pro-
vides the same interface as the io.IOBase.readline() method of file objects. Each call to the func-
tion should return one line of input as bytes.

The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow,
scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow,
ecol) of ints specifying the row and column where the token ends in the source; and the line on which the
token was found. The line passed (the last tuple item) is the logical line; continuation lines are included. The
5 tuple is returned as a named tuple with the field names: type string start end line. Changed
in version 3.1: Added support for named tuples. tokenize() determines the source encoding of the file
by looking for a UTF-8 BOM or encoding cookie, according to PEP 263.

All constants from the token module are also exported from tokenize, as are three additional token type
values:

tokenize.COMMENT
Token value used to indicate a comment.

tokenize.NL
Token value used to indicate a non-terminating newline. The NEWLINE token indicates the end of a logical
line of Python code; NL tokens are generated when a logical line of code is continued over multiple physical
lines.

tokenize.ENCODING
Token value that indicates the encoding used to decode the source bytes into text. The first token returned
by tokenize() will always be an ENCODING token.

Another function is provided to reverse the tokenization process. This is useful for creating tools that tokenize a
script, modify the token stream, and write back the modified script.

tokenize.untokenize(iterable)
Converts tokens back into Python source code. The iterable must return sequences with at least two ele-
ments, the token type and the token string. Any additional sequence elements are ignored.

The reconstructed script is returned as a single string. The result is guaranteed to tokenize back to match the
input so that the conversion is lossless and round-trips are assured. The guarantee applies only to the token
type and token string as the spacing between tokens (column positions) may change.

It returns bytes, encoded using the ENCODING token, which is the first token sequence output by
tokenize().

tokenize() needs to detect the encoding of source files it tokenizes. The function it uses to do this is available:

tokenize.detect_encoding(readline)
The detect_encoding() function is used to detect the encoding that should be used to decode a Python
source file. It requires one argument, readline, in the same way as the tokenize() generator.

It will call readline a maximum of twice, and return the encoding used (as a string) and a list of any lines
(not decoded from bytes) it has read in.

It detects the encoding from the presence of a UTF-8 BOM or an encoding cookie as specified in PEP 263.
If both a BOM and a cookie are present, but disagree, a SyntaxError will be raised. Note that if the BOM is
found, ’utf-8-sig’ will be returned as an encoding.

If no encoding is specified, then the default of ’utf-8’ will be returned.

Use open() to open Python source files: it uses detect_encoding() to detect the file encoding.

1116 Chapter 30. Python Language Services

http://www.python.org/dev/peps/pep-0263
http://www.python.org/dev/peps/pep-0263

The Python Library Reference, Release 3.2

tokenize.open(filename)
Open a file in read only mode using the encoding detected by detect_encoding(). New in version
3.2.

Example of a script rewriter that transforms float literals into Decimal objects:

from tokenize import tokenize, untokenize, NUMBER, STRING, NAME, OP
from io import BytesIO

def decistmt(s):
"""Substitute Decimals for floats in a string of statements.

>>> from decimal import Decimal
>>> s = ’print(+21.3e-5*-.1234/81.7)’
>>> decistmt(s)
"print (+Decimal (’21.3e-5’)*-Decimal (’.1234’)/Decimal (’81.7’))"

The format of the exponent is inherited from the platform C library.
Known cases are "e-007" (Windows) and "e-07" (not Windows). Since
we’re only showing 12 digits, and the 13th isn’t close to 5, the
rest of the output should be platform-independent.

>>> exec(s) #doctest: +ELLIPSIS
-3.21716034272e-0...7

Output from calculations with Decimal should be identical across all
platforms.

>>> exec(decistmt(s))
-3.217160342717258261933904529E-7
"""
result = []
g = tokenize(BytesIO(s.encode(’utf-8’)).readline) # tokenize the string
for toknum, tokval, _, _, _ in g:

if toknum == NUMBER and ’.’ in tokval: # replace NUMBER tokens
result.extend([

(NAME, ’Decimal’),
(OP, ’(’),
(STRING, repr(tokval)),
(OP, ’)’)

])
else:

result.append((toknum, tokval))
return untokenize(result).decode(’utf-8’)

30.8 tabnanny — Detection of ambiguous indentation

Source code: Lib/tabnanny.py

For the time being this module is intended to be called as a script. However it is possible to import it into an IDE
and use the function check() described below.

Note: The API provided by this module is likely to change in future releases; such changes may not be backward
compatible.

30.8. tabnanny — Detection of ambiguous indentation 1117

http://svn.python.org/view/python/branches/py3k/Lib/tabnanny.py?view=markup

The Python Library Reference, Release 3.2

tabnanny.check(file_or_dir)
If file_or_dir is a directory and not a symbolic link, then recursively descend the directory tree named by
file_or_dir, checking all .py files along the way. If file_or_dir is an ordinary Python source file, it is
checked for whitespace related problems. The diagnostic messages are written to standard output using the
print() function.

tabnanny.verbose
Flag indicating whether to print verbose messages. This is incremented by the -v option if called as a script.

tabnanny.filename_only
Flag indicating whether to print only the filenames of files containing whitespace related problems. This is
set to true by the -q option if called as a script.

exception tabnanny.NannyNag
Raised by tokeneater() if detecting an ambiguous indent. Captured and handled in check().

tabnanny.tokeneater(type, token, start, end, line)
This function is used by check() as a callback parameter to the function tokenize.tokenize().

See Also:

Module tokenize Lexical scanner for Python source code.

30.9 pyclbr — Python class browser support

Source code: Lib/pyclbr.py

The pyclbr module can be used to determine some limited information about the classes, methods and top-level
functions defined in a module. The information provided is sufficient to implement a traditional three-pane class
browser. The information is extracted from the source code rather than by importing the module, so this module
is safe to use with untrusted code. This restriction makes it impossible to use this module with modules not
implemented in Python, including all standard and optional extension modules.

pyclbr.readmodule(module, path=None)
Read a module and return a dictionary mapping class names to class descriptor objects. The parameter
module should be the name of a module as a string; it may be the name of a module within a package. The
path parameter should be a sequence, and is used to augment the value of sys.path, which is used to
locate module source code.

pyclbr.readmodule_ex(module, path=None)
Like readmodule(), but the returned dictionary, in addition to mapping class names to class descriptor
objects, also maps top-level function names to function descriptor objects. Moreover, if the module being
read is a package, the key ’__path__’ in the returned dictionary has as its value a list which contains the
package search path.

30.9.1 Class Objects

The Class objects used as values in the dictionary returned by readmodule() and readmodule_ex()
provide the following data members:

Class.module
The name of the module defining the class described by the class descriptor.

Class.name
The name of the class.

Class.super
A list of Class objects which describe the immediate base classes of the class being described. Classes
which are named as superclasses but which are not discoverable by readmodule() are listed as a string
with the class name instead of as Class objects.

1118 Chapter 30. Python Language Services

http://svn.python.org/view/python/branches/py3k/Lib/pyclbr.py?view=markup

The Python Library Reference, Release 3.2

Class.methods
A dictionary mapping method names to line numbers.

Class.file
Name of the file containing the class statement defining the class.

Class.lineno
The line number of the class statement within the file named by file.

30.9.2 Function Objects

The Function objects used as values in the dictionary returned by readmodule_ex() provide the following
data members:

Function.module
The name of the module defining the function described by the function descriptor.

Function.name
The name of the function.

Function.file
Name of the file containing the def statement defining the function.

Function.lineno
The line number of the def statement within the file named by file.

30.10 py_compile — Compile Python source files

Source code: Lib/py_compile.py

The py_compilemodule provides a function to generate a byte-code file from a source file, and another function
used when the module source file is invoked as a script.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of
the users may not have permission to write the byte-code cache files in the directory containing the source code.

exception py_compile.PyCompileError
Exception raised when an error occurs while attempting to compile the file.

py_compile.compile(file, cfile=None, dfile=None, doraise=False, optimize=-1)
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from
the file name file. The byte-code is written to cfile, which defaults to the PEP 3147 path, ending in .pyc
(.pyo if optimization is enabled in the current interpreter). For example, if file is /foo/bar/baz.py
cfile will default to /foo/bar/__pycache__/baz.cpython-32.pyc for Python 3.2. If dfile is
specified, it is used as the name of the source file in error messages when instead of file. If doraise is true,
a PyCompileError is raised when an error is encountered while compiling file. If doraise is false (the
default), an error string is written to sys.stderr, but no exception is raised. This function returns the
path to byte-compiled file, i.e. whatever cfile value was used.

optimize controls the optimization level and is passed to the built-in compile() function. The default of
-1 selects the optimization level of the current interpreter. Changed in version 3.2: Changed default value
of cfile to be PEP 3147-compliant. Previous default was file + ’c’ (’o’ if optimization was enabled). Also
added the optimize parameter.

py_compile.main(args=None)
Compile several source files. The files named in args (or on the command line, if args is None) are compiled
and the resulting bytecode is cached in the normal manner. This function does not search a directory
structure to locate source files; it only compiles files named explicitly. If ’-’ is the only parameter in args,
the list of files is taken from standard input. Changed in version 3.2: Added support for ’-’.

30.10. py_compile — Compile Python source files 1119

http://svn.python.org/view/python/branches/py3k/Lib/py_compile.py?view=markup
http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.2

When this module is run as a script, the main() is used to compile all the files named on the command line. The
exit status is nonzero if one of the files could not be compiled.

See Also:

Module compileall Utilities to compile all Python source files in a directory tree.

30.11 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree. This module can be used to create the cached byte-code files at library installation
time, which makes them available for use even by users who don’t have write permission to the library directories.

30.11.1 Command-line use

This module can work as a script (using python -m compileall) to compile Python sources.

[directory|file]...
Positional arguments are files to compile or directories that contain source files, traversed recursively. If no
argument is given, behave as if the command line was -l <directories from sys.path>.

-l
Do not recurse into subdirectories, only compile source code files directly contained in the named or implied
directories.

-f
Force rebuild even if timestamps are up-to-date.

-q
Do not print the list of files compiled, print only error messages.

-d destdir
Directory prepended to the path to each file being compiled. This will appear in compilation time tracebacks,
and is also compiled in to the byte-code file, where it will be used in tracebacks and other messages in cases
where the source file does not exist at the time the byte-code file is executed.

-x regex
regex is used to search the full path to each file considered for compilation, and if the regex produces a
match, the file is skipped.

-i list
Read the file list and add each line that it contains to the list of files and directories to compile. If list
is -, read lines from stdin.

-b
Write the byte-code files to their legacy locations and names, which may overwrite byte-code files created
by another version of Python. The default is to write files to their PEP 3147 locations and names, which
allows byte-code files from multiple versions of Python to coexist.

Changed in version 3.2: Added the -i, -b and -h options.

30.11.2 Public functions

compileall.compile_dir(dir, maxlevels=10, ddir=None, force=False, rx=None, quiet=False,
legacy=False, optimize=-1)

Recursively descend the directory tree named by dir, compiling all .py files along the way.

The maxlevels parameter is used to limit the depth of the recursion; it defaults to 10.

1120 Chapter 30. Python Language Services

http://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.2

If ddir is given, it is prepended to the path to each file being compiled for use in compilation time tracebacks,
and is also compiled in to the byte-code file, where it will be used in tracebacks and other messages in cases
where the source file does not exist at the time the byte-code file is executed.

If force is true, modules are re-compiled even if the timestamps are up to date.

If rx is given, its search method is called on the complete path to each file considered for compilation, and
if it returns a true value, the file is skipped.

If quiet is true, nothing is printed to the standard output unless errors occur.

If legacy is true, byte-code files are written to their legacy locations and names, which may overwrite byte-
code files created by another version of Python. The default is to write files to their PEP 3147 locations and
names, which allows byte-code files from multiple versions of Python to coexist.

optimize specifies the optimization level for the compiler. It is passed to the built-in compile() function.
Changed in version 3.2: Added the legacy and optimize parameter.

compileall.compile_file(fullname, ddir=None, force=False, rx=None, quiet=False,
legacy=False, optimize=-1)

Compile the file with path fullname.

If ddir is given, it is prepended to the path to the file being compiled for use in compilation time tracebacks,
and is also compiled in to the byte-code file, where it will be used in tracebacks and other messages in cases
where the source file does not exist at the time the byte-code file is executed.

If rx is given, its search method is passed the full path name to the file being compiled, and if it returns a
true value, the file is not compiled and True is returned.

If quiet is true, nothing is printed to the standard output unless errors occur.

If legacy is true, byte-code files are written to their legacy locations and names, which may overwrite byte-
code files created by another version of Python. The default is to write files to their PEP 3147 locations and
names, which allows byte-code files from multiple versions of Python to coexist.

optimize specifies the optimization level for the compiler. It is passed to the built-in compile() function.
New in version 3.2.

compileall.compile_path(skip_curdir=True, maxlevels=0, force=False, legacy=False,
optimize=-1)

Byte-compile all the .py files found along sys.path. If skip_curdir is true (the default), the current
directory is not included in the search. All other parameters are passed to the compile_dir() function.
Note that unlike the other compile functions, maxlevels defaults to 0. Changed in version 3.2: Added
the legacy and optimize parameter.

To force a recompile of all the .py files in the Lib/ subdirectory and all its subdirectories:

import compileall

compileall.compile_dir(’Lib/’, force=True)

Perform same compilation, excluding files in .svn directories.
import re
compileall.compile_dir(’Lib/’, rx=re.compile(’/[.]svn’), force=True)

See Also:

Module py_compile Byte-compile a single source file.

30.12 dis — Disassembler for Python bytecode

Source code: Lib/dis.py

30.12. dis — Disassembler for Python bytecode 1121

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147
http://svn.python.org/view/python/branches/py3k/Lib/dis.py?view=markup

The Python Library Reference, Release 3.2

The dis module supports the analysis of CPython bytecode by disassembling it. The CPython bytecode which
this module takes as an input is defined in the file Include/opcode.h and used by the compiler and the
interpreter.

CPython implementation detail: Bytecode is an implementation detail of the CPython interpreter. No guarantees
are made that bytecode will not be added, removed, or changed between versions of Python. Use of this module
should not be considered to work across Python VMs or Python releases.

Example: Given the function myfunc():

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembly of myfunc():

>>> dis.dis(myfunc)
2 0 LOAD_GLOBAL 0 (len)

3 LOAD_FAST 0 (alist)
6 CALL_FUNCTION 1
9 RETURN_VALUE

(The “2” is a line number).

The dis module defines the following functions and constants:

dis.code_info(x)
Return a formatted multi-line string with detailed code object information for the supplied function, method,
source code string or code object.

Note that the exact contents of code info strings are highly implementation dependent and they may change
arbitrarily across Python VMs or Python releases. New in version 3.2.

dis.show_code(x)
Print detailed code object information for the supplied function, method, source code string or code object
to stdout.

This is a convenient shorthand for print(code_info(x)), intended for interactive exploration at the
interpreter prompt. New in version 3.2.

dis.dis(x=None)
Disassemble the x object. x can denote either a module, a class, a method, a function, a code object, a string
of source code or a byte sequence of raw bytecode. For a module, it disassembles all functions. For a class,
it disassembles all methods. For a code object or sequence of raw bytecode, it prints one line per bytecode
instruction. Strings are first compiled to code objects with the compile() built-in function before being
disassembled. If no object is provided, this function disassembles the last traceback.

dis.distb(tb=None)
Disassemble the top-of-stack function of a traceback, using the last traceback if none was passed. The
instruction causing the exception is indicated.

dis.disassemble(code, lasti=-1)
dis.disco(code, lasti=-1)

Disassemble a code object, indicating the last instruction if lasti was provided. The output is divided in the
following columns:

1.the line number, for the first instruction of each line

2.the current instruction, indicated as -->,

3.a labelled instruction, indicated with >>,

4.the address of the instruction,

5.the operation code name,

6.operation parameters, and

7.interpretation of the parameters in parentheses.

1122 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

The parameter interpretation recognizes local and global variable names, constant values, branch targets,
and compare operators.

dis.findlinestarts(code)
This generator function uses the co_firstlineno and co_lnotab attributes of the code object code
to find the offsets which are starts of lines in the source code. They are generated as (offset, lineno)
pairs.

dis.findlabels(code)
Detect all offsets in the code object code which are jump targets, and return a list of these offsets.

dis.opname
Sequence of operation names, indexable using the bytecode.

dis.opmap
Dictionary mapping operation names to bytecodes.

dis.cmp_op
Sequence of all compare operation names.

dis.hasconst
Sequence of bytecodes that have a constant parameter.

dis.hasfree
Sequence of bytecodes that access a free variable.

dis.hasname
Sequence of bytecodes that access an attribute by name.

dis.hasjrel
Sequence of bytecodes that have a relative jump target.

dis.hasjabs
Sequence of bytecodes that have an absolute jump target.

dis.haslocal
Sequence of bytecodes that access a local variable.

dis.hascompare
Sequence of bytecodes of Boolean operations.

30.12.1 Python Bytecode Instructions

The Python compiler currently generates the following bytecode instructions.

General instructions

STOP_CODE
Indicates end-of-code to the compiler, not used by the interpreter.

NOP
Do nothing code. Used as a placeholder by the bytecode optimizer.

POP_TOP
Removes the top-of-stack (TOS) item.

ROT_TWO
Swaps the two top-most stack items.

ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP_TOP
Duplicates the reference on top of the stack.

DUP_TOP_TWO
Duplicates the two references on top of the stack, leaving them in the same order.

30.12. dis — Disassembler for Python bytecode 1123

The Python Library Reference, Release 3.2

Unary operations

Unary operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARY_POSITIVE
Implements TOS = +TOS.

UNARY_NEGATIVE
Implements TOS = -TOS.

UNARY_NOT
Implements TOS = not TOS.

UNARY_INVERT
Implements TOS = ~TOS.

GET_ITER
Implements TOS = iter(TOS).

Binary operations

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack.
They perform the operation, and put the result back on the stack.

BINARY_POWER
Implements TOS = TOS1 ** TOS.

BINARY_MULTIPLY
Implements TOS = TOS1 * TOS.

BINARY_FLOOR_DIVIDE
Implements TOS = TOS1 // TOS.

BINARY_TRUE_DIVIDE
Implements TOS = TOS1 / TOS.

BINARY_MODULO
Implements TOS = TOS1 % TOS.

BINARY_ADD
Implements TOS = TOS1 + TOS.

BINARY_SUBTRACT
Implements TOS = TOS1 - TOS.

BINARY_SUBSCR
Implements TOS = TOS1[TOS].

BINARY_LSHIFT
Implements TOS = TOS1 << TOS.

BINARY_RSHIFT
Implements TOS = TOS1 >> TOS.

BINARY_AND
Implements TOS = TOS1 & TOS.

BINARY_XOR
Implements TOS = TOS1 ^ TOS.

BINARY_OR
Implements TOS = TOS1 | TOS.

In-place operations

In-place operations are like binary operations, in that they remove TOS and TOS1, and push the result back on the
stack, but the operation is done in-place when TOS1 supports it, and the resulting TOS may be (but does not have
to be) the original TOS1.

1124 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

INPLACE_POWER
Implements in-place TOS = TOS1 ** TOS.

INPLACE_MULTIPLY
Implements in-place TOS = TOS1 * TOS.

INPLACE_FLOOR_DIVIDE
Implements in-place TOS = TOS1 // TOS.

INPLACE_TRUE_DIVIDE
Implements in-place TOS = TOS1 / TOS.

INPLACE_MODULO
Implements in-place TOS = TOS1 % TOS.

INPLACE_ADD
Implements in-place TOS = TOS1 + TOS.

INPLACE_SUBTRACT
Implements in-place TOS = TOS1 - TOS.

INPLACE_LSHIFT
Implements in-place TOS = TOS1 << TOS.

INPLACE_RSHIFT
Implements in-place TOS = TOS1 >> TOS.

INPLACE_AND
Implements in-place TOS = TOS1 & TOS.

INPLACE_XOR
Implements in-place TOS = TOS1 ^ TOS.

INPLACE_OR
Implements in-place TOS = TOS1 | TOS.

STORE_SUBSCR
Implements TOS1[TOS] = TOS2.

DELETE_SUBSCR
Implements del TOS1[TOS].

Miscellaneous opcodes

PRINT_EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and printed.
In non-interactive mode, an expression statement is terminated with POP_STACK.

BREAK_LOOP
Terminates a loop due to a break statement.

CONTINUE_LOOP(target)
Continues a loop due to a continue statement. target is the address to jump to (which should be a
FOR_ITER instruction).

SET_ADD(i)
Calls set.add(TOS1[-i], TOS). Used to implement set comprehensions.

LIST_APPEND(i)
Calls list.append(TOS[-i], TOS). Used to implement list comprehensions.

MAP_ADD(i)
Calls dict.setitem(TOS1[-i], TOS, TOS1). Used to implement dict comprehensions.

For all of the SET_ADD, LIST_APPEND and MAP_ADD instructions, while the added value or key/value pair
is popped off, the container object remains on the stack so that it is available for further iterations of the loop.

RETURN_VALUE
Returns with TOS to the caller of the function.

30.12. dis — Disassembler for Python bytecode 1125

The Python Library Reference, Release 3.2

YIELD_VALUE
Pops TOS and yields it from a generator.

IMPORT_STAR
Loads all symbols not starting with ’_’ directly from the module TOS to the local namespace. The module
is popped after loading all names. This opcode implements from module import *.

POP_BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

POP_EXCEPT
Removes one block from the block stack. The popped block must be an exception handler block, as im-
plicitly created when entering an except handler. In addition to popping extraneous values from the frame
stack, the last three popped values are used to restore the exception state.

END_FINALLY
Terminates a finally clause. The interpreter recalls whether the exception has to be re-raised, or whether
the function returns, and continues with the outer-next block.

LOAD_BUILD_CLASS
Pushes builtins.__build_class__() onto the stack. It is later called by CALL_FUNCTION to
construct a class.

SETUP_WITH(delta)
This opcode performs several operations before a with block starts. First, it loads __exit__() from the
context manager and pushes it onto the stack for later use by WITH_CLEANUP. Then, __enter__()
is called, and a finally block pointing to delta is pushed. Finally, the result of calling the enter method
is pushed onto the stack. The next opcode will either ignore it (POP_TOP), or store it in (a) variable(s)
(STORE_FAST, STORE_NAME, or UNPACK_SEQUENCE).

WITH_CLEANUP
Cleans up the stack when a with statement block exits. TOS is the context manager’s __exit__()
bound method. Below TOS are 1–3 values indicating how/why the finally clause was entered:

•SECOND = None

•(SECOND, THIRD) = (WHY_{RETURN,CONTINUE}), retval

•SECOND = WHY_*; no retval below it

•(SECOND, THIRD, FOURTH) = exc_info()

In the last case, TOS(SECOND, THIRD, FOURTH) is called, otherwise TOS(None, None, None).
In addition, TOS is removed from the stack.

If the stack represents an exception, and the function call returns a ‘true’ value, this information is “zapped”
and replaced with a single WHY_SILENCED to prevent END_FINALLY from re-raising the exception. (But
non-local gotos will still be resumed.)

STORE_LOCALS
Pops TOS from the stack and stores it as the current frame’s f_locals. This is used in class construction.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORE_NAME(namei)
Implements name = TOS. namei is the index of name in the attribute co_names of the code object. The
compiler tries to use STORE_FAST or STORE_GLOBAL if possible.

DELETE_NAME(namei)
Implements del name, where namei is the index into co_names attribute of the code object.

UNPACK_SEQUENCE(count)
Unpacks TOS into count individual values, which are put onto the stack right-to-left.

UNPACK_EX(counts)
Implements assignment with a starred target: Unpacks an iterable in TOS into individual values, where the

1126 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

total number of values can be smaller than the number of items in the iterable: one the new values will be a
list of all leftover items.

The low byte of counts is the number of values before the list value, the high byte of counts the number of
values after it. The resulting values are put onto the stack right-to-left.

STORE_ATTR(namei)
Implements TOS.name = TOS1, where namei is the index of name in co_names.

DELETE_ATTR(namei)
Implements del TOS.name, using namei as index into co_names.

STORE_GLOBAL(namei)
Works as STORE_NAME, but stores the name as a global.

DELETE_GLOBAL(namei)
Works as DELETE_NAME, but deletes a global name.

LOAD_CONST(consti)
Pushes co_consts[consti] onto the stack.

LOAD_NAME(namei)
Pushes the value associated with co_names[namei] onto the stack.

BUILD_TUPLE(count)
Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST(count)
Works as BUILD_TUPLE, but creates a list.

BUILD_SET(count)
Works as BUILD_TUPLE, but creates a set.

BUILD_MAP(count)
Pushes a new dictionary object onto the stack. The dictionary is pre-sized to hold count entries.

LOAD_ATTR(namei)
Replaces TOS with getattr(TOS, co_names[namei]).

COMPARE_OP(opname)
Performs a Boolean operation. The operation name can be found in cmp_op[opname].

IMPORT_NAME(namei)
Imports the module co_names[namei]. TOS and TOS1 are popped and provide the fromlist and level
arguments of __import__(). The module object is pushed onto the stack. The current namespace is not
affected: for a proper import statement, a subsequent STORE_FAST instruction modifies the namespace.

IMPORT_FROM(namei)
Loads the attribute co_names[namei] from the module found in TOS. The resulting object is pushed
onto the stack, to be subsequently stored by a STORE_FAST instruction.

JUMP_FORWARD(delta)
Increments bytecode counter by delta.

POP_JUMP_IF_TRUE(target)
If TOS is true, sets the bytecode counter to target. TOS is popped.

POP_JUMP_IF_FALSE(target)
If TOS is false, sets the bytecode counter to target. TOS is popped.

JUMP_IF_TRUE_OR_POP(target)
If TOS is true, sets the bytecode counter to target and leaves TOS on the stack. Otherwise (TOS is false),
TOS is popped.

JUMP_IF_FALSE_OR_POP(target)
If TOS is false, sets the bytecode counter to target and leaves TOS on the stack. Otherwise (TOS is true),
TOS is popped.

30.12. dis — Disassembler for Python bytecode 1127

The Python Library Reference, Release 3.2

JUMP_ABSOLUTE(target)
Set bytecode counter to target.

FOR_ITER(delta)
TOS is an iterator. Call its __next__() method. If this yields a new value, push it on the stack (leaving
the iterator below it). If the iterator indicates it is exhausted TOS is popped, and the byte code counter is
incremented by delta.

LOAD_GLOBAL(namei)
Loads the global named co_names[namei] onto the stack.

SETUP_LOOP(delta)
Pushes a block for a loop onto the block stack. The block spans from the current instruction with a size of
delta bytes.

SETUP_EXCEPT(delta)
Pushes a try block from a try-except clause onto the block stack. delta points to the first except block.

SETUP_FINALLY(delta)
Pushes a try block from a try-except clause onto the block stack. delta points to the finally block.

STORE_MAP
Store a key and value pair in a dictionary. Pops the key and value while leaving the dictionary on the stack.

LOAD_FAST(var_num)
Pushes a reference to the local co_varnames[var_num] onto the stack.

STORE_FAST(var_num)
Stores TOS into the local co_varnames[var_num].

DELETE_FAST(var_num)
Deletes local co_varnames[var_num].

LOAD_CLOSURE(i)
Pushes a reference to the cell contained in slot i of the cell and free variable storage. The name of the
variable is co_cellvars[i] if i is less than the length of co_cellvars. Otherwise it is co_freevars[i
- len(co_cellvars)].

LOAD_DEREF(i)
Loads the cell contained in slot i of the cell and free variable storage. Pushes a reference to the object the
cell contains on the stack.

STORE_DEREF(i)
Stores TOS into the cell contained in slot i of the cell and free variable storage.

DELETE_DEREF(i)
Empties the cell contained in slot i of the cell and free variable storage. Used by the del statement.

RAISE_VARARGS(argc)
Raises an exception. argc indicates the number of parameters to the raise statement, ranging from 0 to 3.
The handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL_FUNCTION(argc)
Calls a function. The low byte of argc indicates the number of positional parameters, the high byte the
number of keyword parameters. On the stack, the opcode finds the keyword parameters first. For each
keyword argument, the value is on top of the key. Below the keyword parameters, the positional parameters
are on the stack, with the right-most parameter on top. Below the parameters, the function object to call is
on the stack. Pops all function arguments, and the function itself off the stack, and pushes the return value.

MAKE_FUNCTION(argc)
Pushes a new function object on the stack. TOS is the code associated with the function. The function
object is defined to have argc default parameters, which are found below TOS.

MAKE_CLOSURE(argc)
Creates a new function object, sets its __closure__ slot, and pushes it on the stack. TOS is the code asso-
ciated with the function, TOS1 the tuple containing cells for the closure’s free variables. The function also
has argc default parameters, which are found below the cells.

1128 Chapter 30. Python Language Services

The Python Library Reference, Release 3.2

BUILD_SLICE(argc)
Pushes a slice object on the stack. argc must be 2 or 3. If it is 2, slice(TOS1, TOS) is pushed; if it is

3, slice(TOS2, TOS1, TOS) is pushed. See the slice() built-in function for more information.

EXTENDED_ARG(ext)
Prefixes any opcode which has an argument too big to fit into the default two bytes. ext holds two additional
bytes which, taken together with the subsequent opcode’s argument, comprise a four-byte argument, ext
being the two most-significant bytes.

CALL_FUNCTION_VAR(argc)
Calls a function. argc is interpreted as in CALL_FUNCTION. The top element on the stack contains the
variable argument list, followed by keyword and positional arguments.

CALL_FUNCTION_KW(argc)
Calls a function. argc is interpreted as in CALL_FUNCTION. The top element on the stack contains the
keyword arguments dictionary, followed by explicit keyword and positional arguments.

CALL_FUNCTION_VAR_KW(argc)
Calls a function. argc is interpreted as in CALL_FUNCTION. The top element on the stack contains the
keyword arguments dictionary, followed by the variable-arguments tuple, followed by explicit keyword and
positional arguments.

HAVE_ARGUMENT
This is not really an opcode. It identifies the dividing line between opcodes which don’t take arguments <
HAVE_ARGUMENT and those which do >= HAVE_ARGUMENT.

30.13 pickletools — Tools for pickle developers

Source code: Lib/pickletools.py

This module contains various constants relating to the intimate details of the pickle module, some lengthy
comments about the implementation, and a few useful functions for analyzing pickled data. The contents of this
module are useful for Python core developers who are working on the pickle; ordinary users of the pickle
module probably won’t find the pickletools module relevant.

30.13.1 Command line usage

New in version 3.2. When invoked from the command line, python -m pickletools will disassemble the
contents of one or more pickle files. Note that if you want to see the Python object stored in the pickle rather
than the details of pickle format, you may want to use -m pickle instead. However, when the pickle file that
you want to examine comes from an untrusted source, -m pickletools is a safer option because it does not
execute pickle bytecode.

For example, with a tuple (1, 2) pickled in file x.pickle:

$ python -m pickle x.pickle
(1, 2)

$ python -m pickletools x.pickle
0: \x80 PROTO 3
2: K BININT1 1
4: K BININT1 2
6: \x86 TUPLE2
7: q BINPUT 0
9: . STOP

highest protocol among opcodes = 2

30.13. pickletools — Tools for pickle developers 1129

http://svn.python.org/view/python/branches/py3k/Lib/pickletools.py?view=markup

The Python Library Reference, Release 3.2

Command line options

-a, -annotate
Annotate each line with a short opcode description.

-o, -output=<file>
Name of a file where the output should be written.

-l, -indentlevel=<num>
The number of blanks by which to indent a new MARK level.

-m, -memo
When multiple objects are disassembled, preserve memo between disassemblies.

-p, -preamble=<preamble>
When more than one pickle file are specified, print given preamble before each disassembly.

30.13.2 Programmatic Interface

pickletools.dis(pickle, out=None, memo=None, indentlevel=4, annotate=0)

Outputs a symbolic disassembly of the pickle to the file-like object out, defaulting to
sys.stdout. pickle can be a string or a file-like object. memo can be a Python dictionary
that will be used as the pickle’s memo; it can be used to perform disassemblies across multi-
ple pickles created by the same pickler. Successive levels, indicated by MARK opcodes in the
stream, are indented by indentlevel spaces. If a nonzero value is given to annotate, each opcode
in the output is annotated with a short description. The value of annotate is used as a hint for the
column where annotation should start.

New in version 3.2: The annotate argument.

pickletools.genops(pickle)
Provides an iterator over all of the opcodes in a pickle, returning a sequence of (opcode, arg, pos)
triples. opcode is an instance of an OpcodeInfo class; arg is the decoded value, as a Python object, of the
opcode’s argument; pos is the position at which this opcode is located. pickle can be a string or a file-like
object.

pickletools.optimize(picklestring)
Returns a new equivalent pickle string after eliminating unused PUT opcodes. The optimized pickle is
shorter, takes less transmission time, requires less storage space, and unpickles more efficiently.

1130 Chapter 30. Python Language Services

CHAPTER

THIRTYONE

MISCELLANEOUS SERVICES

The modules described in this chapter provide miscellaneous services that are available in all Python versions.
Here’s an overview:

31.1 formatter — Generic output formatting

This module supports two interface definitions, each with multiple implementations: The formatter interface, and
the writer interface which is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects.
Formatters manage several stack structures to allow various properties of a writer object to be changed and re-
stored; writers need not be able to handle relative changes nor any sort of “change back” operation. Specific
writer properties which may be controlled via formatter objects are horizontal alignment, font, and left margin
indentations. A mechanism is provided which supports providing arbitrary, non-exclusive style settings to a writer
as well. Additional interfaces facilitate formatting events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as
physical devices. The provided implementations all work with abstract devices. The interface makes available
mechanisms for setting the properties which formatter objects manage and inserting data into the output.

31.1.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces
described below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

formatter.AS_IS
Value which can be used in the font specification passed to the push_font() method described below,
or as the new value to any other push_property() method. Pushing the AS_IS value allows the
corresponding pop_property() method to be called without having to track whether the property was
changed.

The following attributes are defined for formatter instance objects:

formatter.writer
The writer instance with which the formatter interacts.

formatter.end_paragraph(blanklines)
Close any open paragraphs and insert at least blanklines before the next paragraph.

formatter.add_line_break()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

formatter.add_hor_rule(*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph,

1131

The Python Library Reference, Release 3.2

but the logical paragraph is not broken. The arguments and keywords are passed on to the writer’s
send_line_break() method.

formatter.add_flowing_data(data)
Provide data which should be formatted with collapsed whitespace. Whitespace from preceding and succes-
sive calls to add_flowing_data() is considered as well when the whitespace collapse is performed.
The data which is passed to this method is expected to be word-wrapped by the output device. Note that
any word-wrapping still must be performed by the writer object due to the need to rely on device and font
information.

formatter.add_literal_data(data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab
characters, are considered legal in the value of data.

formatter.add_label_data(format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used for con-
structing bulleted or numbered lists. If the format value is a string, it is interpreted as a format specification
for counter, which should be an integer. The result of this formatting becomes the value of the label; if
format is not a string it is used as the label value directly. The label value is passed as the only argument to
the writer’s send_label_data() method. Interpretation of non-string label values is dependent on the
associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute label
values. Each character in the format string is copied to the label value, with some characters recognized
to indicate a transform on the counter value. Specifically, the character ’1’ represents the counter value
formatter as an Arabic number, the characters ’A’ and ’a’ represent alphabetic representations of the
counter value in upper and lower case, respectively, and ’I’ and ’i’ represent the counter value in Roman
numerals, in upper and lower case. Note that the alphabetic and roman transforms require that the counter
value be greater than zero.

formatter.flush_softspace()
Send any pending whitespace buffered from a previous call to add_flowing_data() to the associated
writer object. This should be called before any direct manipulation of the writer object.

formatter.push_alignment(align)
Push a new alignment setting onto the alignment stack. This may be AS_IS if no change is desired. If the
alignment value is changed from the previous setting, the writer’s new_alignment() method is called
with the align value.

formatter.pop_alignment()
Restore the previous alignment.

formatter.push_font((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set to AS_IS are set to the
values passed in while others are maintained at their current settings. The writer’s new_font() method
is called with the fully resolved font specification.

formatter.pop_font()
Restore the previous font.

formatter.push_margin(margin)
Increase the number of left margin indentations by one, associating the logical tag margin with the new
indentation. The initial margin level is 0. Changed values of the logical tag must be true values; false values
other than AS_IS are not sufficient to change the margin.

formatter.pop_margin()
Restore the previous margin.

formatter.push_style(*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A
tuple representing the entire stack, including AS_IS values, is passed to the writer’s new_styles()
method.

formatter.pop_style(n=1)
Pop the last n style specifications passed to push_style(). A tuple representing the revised stack,

1132 Chapter 31. Miscellaneous Services

The Python Library Reference, Release 3.2

including AS_IS values, is passed to the writer’s new_styles() method.

formatter.set_spacing(spacing)
Set the spacing style for the writer.

formatter.assert_line_data(flag=1)
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used
when the writer has been manipulated directly. The optional flag argument can be set to false if the writer
manipulations produced a hard line break at the end of the output.

31.1.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these
classes without modification or subclassing.

class formatter.NullFormatter(writer=None)
A formatter which does nothing. If writer is omitted, a NullWriter instance is created. No methods
of the writer are called by NullFormatter instances. Implementations should inherit from this class if
implementing a writer interface but don’t need to inherit any implementation.

class formatter.AbstractFormatter(writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may
be used directly in most circumstances. It has been used to implement a full-featured World Wide Web
browser.

31.1.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described
below are the required interfaces which all writers must support once initialized. Note that while most applications
can use the AbstractFormatter class as a formatter, the writer must typically be provided by the application.

writer.flush()
Flush any buffered output or device control events.

writer.new_alignment(align)
Set the alignment style. The align value can be any object, but by convention is a string or None, where
None indicates that the writer’s “preferred” alignment should be used. Conventional align values are
’left’, ’center’, ’right’, and ’justify’.

writer.new_font(font)
Set the font style. The value of font will be None, indicating that the device’s default font should be used,
or a tuple of the form (size, italic, bold, teletype). Size will be a string indicating the size
of font that should be used; specific strings and their interpretation must be defined by the application. The
italic, bold, and teletype values are Boolean values specifying which of those font attributes should be used.

writer.new_margin(margin, level)
Set the margin level to the integer level and the logical tag to margin. Interpretation of the logical tag is at
the writer’s discretion; the only restriction on the value of the logical tag is that it not be a false value for
non-zero values of level.

writer.new_spacing(spacing)
Set the spacing style to spacing.

writer.new_styles(styles)
Set additional styles. The styles value is a tuple of arbitrary values; the value AS_IS should be ignored. The
styles tuple may be interpreted either as a set or as a stack depending on the requirements of the application
and writer implementation.

writer.send_line_break()
Break the current line.

31.1. formatter — Generic output formatting 1133

The Python Library Reference, Release 3.2

writer.send_paragraph(blankline)
Produce a paragraph separation of at least blankline blank lines, or the equivalent. The blankline value will
be an integer. Note that the implementation will receive a call to send_line_break() before this call
if a line break is needed; this method should not include ending the last line of the paragraph. It is only
responsible for vertical spacing between paragraphs.

writer.send_hor_rule(*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application- and
writer-specific, and should be interpreted with care. The method implementation may assume that a line
break has already been issued via send_line_break().

writer.send_flowing_data(data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls
to this method, the writer may assume that spans of multiple whitespace characters have been collapsed to
single space characters.

writer.send_literal_data(data)
Output character data which has already been formatted for display. Generally, this should be interpreted to
mean that line breaks indicated by newline characters should be preserved and no new line breaks should
be introduced. The data may contain embedded newline and tab characters, unlike data provided to the
send_formatted_data() interface.

writer.send_label_data(data)
Set data to the left of the current left margin, if possible. The value of data is not restricted; treatment
of non-string values is entirely application- and writer-dependent. This method will only be called at the
beginning of a line.

31.1.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most applications
will need to derive new writer classes from the NullWriter class.

class formatter.NullWriter
A writer which only provides the interface definition; no actions are taken on any methods. This should be
the base class for all writers which do not need to inherit any implementation methods.

class formatter.AbstractWriter
A writer which can be used in debugging formatters, but not much else. Each method simply announces
itself by printing its name and arguments on standard output.

class formatter.DumbWriter(file=None, maxcol=72)
Simple writer class which writes output on the file object passed in as file or, if file is omitted, on standard
output. The output is simply word-wrapped to the number of columns specified by maxcol. This class is
suitable for reflowing a sequence of paragraphs.

1134 Chapter 31. Miscellaneous Services

CHAPTER

THIRTYTWO

MS WINDOWS SPECIFIC SERVICES

This chapter describes modules that are only available on MS Windows platforms.

32.1 msilib — Read and write Microsoft Installer files

Platforms: Windows

The msilib supports the creation of Microsoft Installer (.msi) files. Because these files often contain an
embedded “cabinet” file (.cab), it also exposes an API to create CAB files. Support for reading .cab files is
currently not implemented; read support for the .msi database is possible.

This package aims to provide complete access to all tables in an .msi file, therefore, it is a fairly low-level
API. Two primary applications of this package are the distutils command bdist_msi, and the creation of
Python installer package itself (although that currently uses a different version of msilib).

The package contents can be roughly split into four parts: low-level CAB routines, low-level MSI routines, higher-
level MSI routines, and standard table structures.

msilib.FCICreate(cabname, files)
Create a new CAB file named cabname. files must be a list of tuples, each containing the name of the file
on disk, and the name of the file inside the CAB file.

The files are added to the CAB file in the order they appear in the list. All files are added into a single CAB
file, using the MSZIP compression algorithm.

Callbacks to Python for the various steps of MSI creation are currently not exposed.

msilib.UuidCreate()
Return the string representation of a new unique identifier. This wraps the Windows API functions
UuidCreate() and UuidToString().

msilib.OpenDatabase(path, persist)
Return a new database object by calling MsiOpenDatabase. path is the file name of the MSI
file; persist can be one of the constants MSIDBOPEN_CREATEDIRECT, MSIDBOPEN_CREATE,
MSIDBOPEN_DIRECT, MSIDBOPEN_READONLY, or MSIDBOPEN_TRANSACT, and may include the
flag MSIDBOPEN_PATCHFILE. See the Microsoft documentation for the meaning of these flags; depend-
ing on the flags, an existing database is opened, or a new one created.

msilib.CreateRecord(count)
Return a new record object by calling MSICreateRecord(). count is the number of fields of the record.

msilib.init_database(name, schema, ProductName, ProductCode, ProductVersion, Manufac-
turer)

Create and return a new database name, initialize it with schema, and set the properties ProductName,
ProductCode, ProductVersion, and Manufacturer.

schema must be a module object containing tables and _Validation_records attributes; typically,
msilib.schema should be used.

The database will contain just the schema and the validation records when this function returns.

1135

The Python Library Reference, Release 3.2

msilib.add_data(database, table, records)
Add all records to the table named table in database.

The table argument must be one of the predefined tables in the MSI schema, e.g. ’Feature’, ’File’,
’Component’, ’Dialog’, ’Control’, etc.

records should be a list of tuples, each one containing all fields of a record according to the schema of the
table. For optional fields, None can be passed.

Field values can be int or long numbers, strings, or instances of the Binary class.

class msilib.Binary(filename)
Represents entries in the Binary table; inserting such an object using add_data() reads the file named
filename into the table.

msilib.add_tables(database, module)
Add all table content from module to database. module must contain an attribute tables listing all tables for
which content should be added, and one attribute per table that has the actual content.

This is typically used to install the sequence tables.

msilib.add_stream(database, name, path)
Add the file path into the _Stream table of database, with the stream name name.

msilib.gen_uuid()
Return a new UUID, in the format that MSI typically requires (i.e. in curly braces, and with all hexdigits in
upper-case).

See Also:

FCICreateFile UuidCreate UuidToString

32.1.1 Database Objects

Database.OpenView(sql)
Return a view object, by calling MSIDatabaseOpenView(). sql is the SQL statement to execute.

Database.Commit()
Commit the changes pending in the current transaction, by calling MSIDatabaseCommit().

Database.GetSummaryInformation(count)
Return a new summary information object, by calling MsiGetSummaryInformation(). count is the
maximum number of updated values.

See Also:

MSIDatabaseOpenView MSIDatabaseCommit MSIGetSummaryInformation

32.1.2 View Objects

View.Execute(params)
Execute the SQL query of the view, through MSIViewExecute(). If params is not None, it is a record
describing actual values of the parameter tokens in the query.

View.GetColumnInfo(kind)
Return a record describing the columns of the view, through calling MsiViewGetColumnInfo(). kind
can be either MSICOLINFO_NAMES or MSICOLINFO_TYPES.

View.Fetch()
Return a result record of the query, through calling MsiViewFetch().

View.Modify(kind, data)
Modify the view, by calling MsiViewModify(). kind can be one of
MSIMODIFY_SEEK, MSIMODIFY_REFRESH, MSIMODIFY_INSERT, MSIMODIFY_UPDATE,
MSIMODIFY_ASSIGN, MSIMODIFY_REPLACE, MSIMODIFY_MERGE, MSIMODIFY_DELETE,

1136 Chapter 32. MS Windows Specific Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devnotes/winprog/fcicreate.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidcreate.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidtostring.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabaseopenview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabasecommit.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msigetsummaryinformation.asp

The Python Library Reference, Release 3.2

MSIMODIFY_INSERT_TEMPORARY, MSIMODIFY_VALIDATE, MSIMODIFY_VALIDATE_NEW,
MSIMODIFY_VALIDATE_FIELD, or MSIMODIFY_VALIDATE_DELETE.

data must be a record describing the new data.

View.Close()
Close the view, through MsiViewClose().

See Also:

MsiViewExecute MSIViewGetColumnInfo MsiViewFetch MsiViewModify MsiViewClose

32.1.3 Summary Information Objects

SummaryInformation.GetProperty(field)
Return a property of the summary, through MsiSummaryInfoGetProperty(). field is the name
of the property, and can be one of the constants PID_CODEPAGE, PID_TITLE, PID_SUBJECT,
PID_AUTHOR, PID_KEYWORDS, PID_COMMENTS, PID_TEMPLATE, PID_LASTAUTHOR,
PID_REVNUMBER, PID_LASTPRINTED, PID_CREATE_DTM, PID_LASTSAVE_DTM,
PID_PAGECOUNT, PID_WORDCOUNT, PID_CHARCOUNT, PID_APPNAME, or PID_SECURITY.

SummaryInformation.GetPropertyCount()
Return the number of summary properties, through MsiSummaryInfoGetPropertyCount().

SummaryInformation.SetProperty(field, value)
Set a property through MsiSummaryInfoSetProperty(). field can have the same values as in
GetProperty(), value is the new value of the property. Possible value types are integer and string.

SummaryInformation.Persist()
Write the modified properties to the summary information stream, using MsiSummaryInfoPersist().

See Also:

MsiSummaryInfoGetProperty MsiSummaryInfoGetPropertyCount MsiSummaryInfoSetProperty MsiSummary-
InfoPersist

32.1.4 Record Objects

Record.GetFieldCount()
Return the number of fields of the record, through MsiRecordGetFieldCount().

Record.GetInteger(field)
Return the value of field as an integer where possible. field must be an integer.

Record.GetString(field)
Return the value of field as a string where possible. field must be an integer.

Record.SetString(field, value)
Set field to value through MsiRecordSetString(). field must be an integer; value a string.

Record.SetStream(field, value)
Set field to the contents of the file named value, through MsiRecordSetStream(). field must be an
integer; value a string.

Record.SetInteger(field, value)
Set field to value through MsiRecordSetInteger(). Both field and value must be an integer.

Record.ClearData()
Set all fields of the record to 0, through MsiRecordClearData().

See Also:

MsiRecordGetFieldCount MsiRecordSetString MsiRecordSetStream MsiRecordSetInteger MsiRecordClear

32.1. msilib — Read and write Microsoft Installer files 1137

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewexecute.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewgetcolumninfo.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewfetch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewmodify.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewclose.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetproperty.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetpropertycount.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfosetproperty.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfopersist.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfopersist.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordgetfieldcount.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstring.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstream.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetinteger.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordclear.asp

The Python Library Reference, Release 3.2

32.1.5 Errors

All wrappers around MSI functions raise MsiError; the string inside the exception will contain more detail.

32.1.6 CAB Objects

class msilib.CAB(name)
The class CAB represents a CAB file. During MSI construction, files will be added simultaneously to the
Files table, and to a CAB file. Then, when all files have been added, the CAB file can be written, then
added to the MSI file.

name is the name of the CAB file in the MSI file.

append(full, file, logical)
Add the file with the pathname full to the CAB file, under the name logical. If there is already a file
named logical, a new file name is created.

Return the index of the file in the CAB file, and the new name of the file inside the CAB file.

commit(database)
Generate a CAB file, add it as a stream to the MSI file, put it into the Media table, and remove the
generated file from the disk.

32.1.7 Directory Objects

class msilib.Directory(database, cab, basedir, physical, logical, default[, componentflags])
Create a new directory in the Directory table. There is a current component at each point in time for the
directory, which is either explicitly created through start_component(), or implicitly when files are
added for the first time. Files are added into the current component, and into the cab file. To create a
directory, a base directory object needs to be specified (can be None), the path to the physical directory,
and a logical directory name. default specifies the DefaultDir slot in the directory table. componentflags
specifies the default flags that new components get.

start_component(component=None, feature=None, flags=None, keyfile=None, uuid=None)
Add an entry to the Component table, and make this component the current component for this direc-
tory. If no component name is given, the directory name is used. If no feature is given, the current
feature is used. If no flags are given, the directory’s default flags are used. If no keyfile is given, the
KeyPath is left null in the Component table.

add_file(file, src=None, version=None, language=None)
Add a file to the current component of the directory, starting a new one if there is no current component.
By default, the file name in the source and the file table will be identical. If the src file is specified, it
is interpreted relative to the current directory. Optionally, a version and a language can be specified
for the entry in the File table.

glob(pattern, exclude=None)
Add a list of files to the current component as specified in the glob pattern. Individual files can be
excluded in the exclude list.

remove_pyc()
Remove .pyc/.pyo files on uninstall.

See Also:

Directory Table File Table Component Table FeatureComponents Table

32.1.8 Features

class msilib.Feature(db, id, title, desc, display, level=1, parent=None, directory=None, at-
tributes=0)

Add a new record to the Feature table, using the values id, parent.id, title, desc, display, level, direc-

1138 Chapter 32. MS Windows Specific Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/directory_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/file_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/component_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/featurecomponents_table.asp

The Python Library Reference, Release 3.2

tory, and attributes. The resulting feature object can be passed to the start_component() method of
Directory.

set_current()
Make this feature the current feature of msilib. New components are automatically added to the
default feature, unless a feature is explicitly specified.

See Also:

Feature Table

32.1.9 GUI classes

msilib provides several classes that wrap the GUI tables in an MSI database. However, no standard user inter-
face is provided; use bdist_msi to create MSI files with a user-interface for installing Python packages.

class msilib.Control(dlg, name)
Base class of the dialog controls. dlg is the dialog object the control belongs to, and name is the control’s
name.

event(event, argument, condition=1, ordering=None)
Make an entry into the ControlEvent table for this control.

mapping(event, attribute)
Make an entry into the EventMapping table for this control.

condition(action, condition)
Make an entry into the ControlCondition table for this control.

class msilib.RadioButtonGroup(dlg, name, property)
Create a radio button control named name. property is the installer property that gets set when a radio button
is selected.

add(name, x, y, width, height, text, value=None)
Add a radio button named name to the group, at the coordinates x, y, width, height, and with the label
text. If value is None, it defaults to name.

class msilib.Dialog(db, name, x, y, w, h, attr, title, first, default, cancel)
Return a new Dialog object. An entry in the Dialog table is made, with the specified coordinates, dialog
attributes, title, name of the first, default, and cancel controls.

control(name, type, x, y, width, height, attributes, property, text, control_next, help)
Return a new Control object. An entry in the Control table is made with the specified parameters.

This is a generic method; for specific types, specialized methods are provided.

text(name, x, y, width, height, attributes, text)
Add and return a Text control.

bitmap(name, x, y, width, height, text)
Add and return a Bitmap control.

line(name, x, y, width, height)
Add and return a Line control.

pushbutton(name, x, y, width, height, attributes, text, next_control)
Add and return a PushButton control.

radiogroup(name, x, y, width, height, attributes, property, text, next_control)
Add and return a RadioButtonGroup control.

checkbox(name, x, y, width, height, attributes, property, text, next_control)
Add and return a CheckBox control.

See Also:

32.1. msilib — Read and write Microsoft Installer files 1139

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/feature_table.asp

The Python Library Reference, Release 3.2

Dialog Table Control Table Control Types ControlCondition Table ControlEvent Table EventMapping Table Ra-
dioButton Table

32.1.10 Precomputed tables

msilib provides a few subpackages that contain only schema and table definitions. Currently, these definitions
are based on MSI version 2.0.

msilib.schema
This is the standard MSI schema for MSI 2.0, with the tables variable providing a list of table definitions,
and _Validation_records providing the data for MSI validation.

msilib.sequence
This module contains table contents for the standard sequence tables: AdminExecuteSequence, AdminUISe-
quence, AdvtExecuteSequence, InstallExecuteSequence, and InstallUISequence.

msilib.text
This module contains definitions for the UIText and ActionText tables, for the standard installer actions.

32.2 msvcrt – Useful routines from the MS VC++ runtime

Platforms: Windows

These functions provide access to some useful capabilities on Windows platforms. Some higher-level modules
use these functions to build the Windows implementations of their services. For example, the getpass module
uses this in the implementation of the getpass() function.

Further documentation on these functions can be found in the Platform API documentation.

The module implements both the normal and wide char variants of the console I/O api. The normal API deals
only with ASCII characters and is of limited use for internationalized applications. The wide char API should be
used where ever possible

32.2.1 File Operations

msvcrt.locking(fd, mode, nbytes)
Lock part of a file based on file descriptor fd from the C runtime. Raises IOError on failure. The locked
region of the file extends from the current file position for nbytes bytes, and may continue beyond the end of
the file. mode must be one of the LK_* constants listed below. Multiple regions in a file may be locked at
the same time, but may not overlap. Adjacent regions are not merged; they must be unlocked individually.

msvcrt.LK_LOCK
msvcrt.LK_RLCK

Locks the specified bytes. If the bytes cannot be locked, the program immediately tries again after 1 second.
If, after 10 attempts, the bytes cannot be locked, IOError is raised.

msvcrt.LK_NBLCK
msvcrt.LK_NBRLCK

Locks the specified bytes. If the bytes cannot be locked, IOError is raised.

msvcrt.LK_UNLCK
Unlocks the specified bytes, which must have been previously locked.

msvcrt.setmode(fd, flags)
Set the line-end translation mode for the file descriptor fd. To set it to text mode, flags should be
os.O_TEXT; for binary, it should be os.O_BINARY.

msvcrt.open_osfhandle(handle, flags)
Create a C runtime file descriptor from the file handle handle. The flags parameter should be a bitwise

1140 Chapter 32. MS Windows Specific Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controls.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlcondition_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlevent_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/eventmapping_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp

The Python Library Reference, Release 3.2

OR of os.O_APPEND, os.O_RDONLY, and os.O_TEXT. The returned file descriptor may be used as a
parameter to os.fdopen() to create a file object.

msvcrt.get_osfhandle(fd)
Return the file handle for the file descriptor fd. Raises IOError if fd is not recognized.

32.2.2 Console I/O

msvcrt.kbhit()
Return true if a keypress is waiting to be read.

msvcrt.getch()
Read a keypress and return the resulting character as a byte string. Nothing is echoed to the console. This
call will block if a keypress is not already available, but will not wait for Enter to be pressed. If the pressed
key was a special function key, this will return ’\000’ or ’\xe0’; the next call will return the keycode.
The Control-C keypress cannot be read with this function.

msvcrt.getwch()
Wide char variant of getch(), returning a Unicode value.

msvcrt.getche()
Similar to getch(), but the keypress will be echoed if it represents a printable character.

msvcrt.getwche()
Wide char variant of getche(), returning a Unicode value.

msvcrt.putch(char)
Print the byte string char to the console without buffering.

msvcrt.putwch(unicode_char)
Wide char variant of putch(), accepting a Unicode value.

msvcrt.ungetch(char)
Cause the byte string char to be “pushed back” into the console buffer; it will be the next character read by
getch() or getche().

msvcrt.ungetwch(unicode_char)
Wide char variant of ungetch(), accepting a Unicode value.

32.2.3 Other Functions

msvcrt.heapmin()
Force the malloc() heap to clean itself up and return unused blocks to the operating system. On failure,
this raises IOError.

32.3 winreg – Windows registry access

Platforms: Windows

These functions expose the Windows registry API to Python. Instead of using an integer as the registry handle, a
handle object is used to ensure that the handles are closed correctly, even if the programmer neglects to explicitly
close them.

This module offers the following functions:

winreg.CloseKey(hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note: If hkey is not closed using this method (or via hkey.Close()), it is closed when the hkey object
is destroyed by Python.

32.3. winreg – Windows registry access 1141

The Python Library Reference, Release 3.2

winreg.ConnectRegistry(computer_name, key)
Establishes a connection to a predefined registry handle on another computer, and returns a handle object.

computer_name is the name of the remote computer, of the form r"\\computername". If None, the
local computer is used.

key is the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, a WindowsError exception is
raised.

winreg.CreateKey(key, sub_key)
Creates or opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

If key is one of the predefined keys, sub_key may be None. In that case, the handle returned is the same key
handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, a WindowsError exception is
raised.

winreg.CreateKeyEx(key, sub_key, reserved=0, access=KEY_ALL_ACCESS)
Creates or opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired security access for the key. Default
is KEY_ALL_ACCESS. See Access Rights for other allowed values.

If key is one of the predefined keys, sub_key may be None. In that case, the handle returned is the same key
handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, a WindowsError exception is
raised. New in version 3.2.

winreg.DeleteKey(key, sub_key)
Deletes the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key parameter. This value must not be
None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, a
WindowsError exception is raised.

winreg.DeleteKeyEx(key, sub_key, access=KEY_ALL_ACCESS, reserved=0)
Deletes the specified key.

Note: The DeleteKeyEx() function is implemented with the RegDeleteKeyEx Windows API function,
which is specific to 64-bit versions of Windows. See the RegDeleteKeyEx documentation.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key parameter. This value must not be
None, and the key may not have subkeys.

1142 Chapter 32. MS Windows Specific Services

http://msdn.microsoft.com/en-us/library/ms724847%28VS.85%29.aspx

The Python Library Reference, Release 3.2

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired security access for the key. Default
is KEY_ALL_ACCESS. See Access Rights for other allowed values.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, a
WindowsError exception is raised.

On unsupported Windows versions, NotImplementedError is raised. New in version 3.2.

winreg.DeleteValue(key, value)
Removes a named value from a registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value is a string that identifies the value to remove.

winreg.EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

key is an already open key, or one of the predefined HKEY_* constants.

index is an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly until a
WindowsError exception is raised, indicating, no more values are available.

winreg.EnumValue(key, index)
Enumerates values of an open registry key, returning a tuple.

key is an already open key, or one of the predefined HKEY_* constants.

index is an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly, until a
WindowsError exception is raised, indicating no more values.

The result is a tuple of 3 items:

Index Meaning
0 A string that identifies the value name
1 An object that holds the value data, and whose type depends on the underlying registry type
2 An integer that identifies the type of the value data (see table in docs for SetValueEx())

winreg.ExpandEnvironmentStrings(str)
Expands environment variable placeholders %NAME% in strings like REG_EXPAND_SZ:

>>> ExpandEnvironmentStrings(’%windir%’)
’C:\\Windows’

winreg.FlushKey(key)
Writes all the attributes of a key to the registry.

key is an already open key, or one of the predefined HKEY_* constants.

It is not necessary to call FlushKey() to change a key. Registry changes are flushed to disk by the registry
using its lazy flusher. Registry changes are also flushed to disk at system shutdown. Unlike CloseKey(),
the FlushKey() method returns only when all the data has been written to the registry. An application
should only call FlushKey() if it requires absolute certainty that registry changes are on disk.

Note: If you don’t know whether a FlushKey() call is required, it probably isn’t.

winreg.LoadKey(key, sub_key, file_name)
Creates a subkey under the specified key and stores registration information from a specified file into that
subkey.

32.3. winreg – Windows registry access 1143

The Python Library Reference, Release 3.2

key is a handle returned by ConnectRegistry() or one of the constants HKEY_USERS or
HKEY_LOCAL_MACHINE.

sub_key is a string that identifies the subkey to load.

file_name is the name of the file to load registry data from. This file must have been created with the
SaveKey() function. Under the file allocation table (FAT) file system, the filename may not have an
extension.

A call to LoadKey() fails if the calling process does not have the SE_RESTORE_PRIVILEGE privilege.
Note that privileges are different from permissions – see the RegLoadKey documentation for more details.

If key is a handle returned by ConnectRegistry(), then the path specified in file_name is relative to
the remote computer.

winreg.OpenKey(key, sub_key, reserved=0, access=KEY_ALL_ACCESS)
Opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that identifies the sub_key to open.

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired security access for the key. Default
is KEY_READ. See Access Rights for other allowed values.

The result is a new handle to the specified key.

If the function fails, WindowsError is raised. Changed in version 3.2: Allow the use of named arguments.

winreg.OpenKeyEx()
The functionality of OpenKeyEx() is provided via OpenKey(), by the use of default arguments.

winreg.QueryInfoKey(key)
Returns information about a key, as a tuple.

key is an already open key, or one of the predefined HKEY_* constants.

The result is a tuple of 3 items:

Index Meaning
0 An integer giving the number of sub keys this key has.
1 An integer giving the number of values this key has.
2 An integer giving when the key was last modified (if available) as 100’s of nanoseconds since

Jan 1, 1600.

winreg.QueryValue(key, sub_key)
Retrieves the unnamed value for a key, as a string.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that holds the name of the subkey with which the value is associated. If this parameter is
None or empty, the function retrieves the value set by the SetValue() method for the key identified by
key.

Values in the registry have name, type, and data components. This method retrieves the data for a key’s
first value that has a NULL name. But the underlying API call doesn’t return the type, so always use
QueryValueEx() if possible.

winreg.QueryValueEx(key, value_name)
Retrieves the type and data for a specified value name associated with an open registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string indicating the value to query.

The result is a tuple of 2 items:

1144 Chapter 32. MS Windows Specific Services

http://msdn.microsoft.com/en-us/library/ms724889%28v=VS.85%29.aspx

The Python Library Reference, Release 3.2

Index Meaning
0 The value of the registry item.
1 An integer giving the registry type for this value (see table in docs for SetValueEx())

winreg.SaveKey(key, file_name)
Saves the specified key, and all its subkeys to the specified file.

key is an already open key, or one of the predefined HKEY_* constants.

file_name is the name of the file to save registry data to. This file cannot already exist. If this filename
includes an extension, it cannot be used on file allocation table (FAT) file systems by the LoadKey()
method.

If key represents a key on a remote computer, the path described by file_name is relative to the remote
computer. The caller of this method must possess the SeBackupPrivilege security privilege. Note
that privileges are different than permissions – see the Conflicts Between User Rights and Permissions
documentation for more details.

This function passes NULL for security_attributes to the API.

winreg.SetValue(key, sub_key, type, value)
Associates a value with a specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. Currently this must be REG_SZ, meaning only strings
are supported. Use the SetValueEx() function for support for other data types.

value is a string that specifies the new value.

If the key specified by the sub_key parameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as
files with the filenames stored in the configuration registry. This helps the registry perform efficiently.

The key identified by the key parameter must have been opened with KEY_SET_VALUE access.

winreg.SetValueEx(key, value_name, reserved, type, value)
Stores data in the value field of an open registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. See Value Types for the available types.

reserved can be anything – zero is always passed to the API.

value is a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key identified by
the key parameter must have been opened with KEY_SET_VALUE access.

To open the key, use the CreateKey() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as
files with the filenames stored in the configuration registry. This helps the registry perform efficiently.

winreg.DisableReflectionKey(key)
Disables registry reflection for 32-bit processes running on a 64-bit operating system.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit operating system.

If the key is not on the reflection list, the function succeeds but has no effect. Disabling reflection for a key
does not affect reflection of any subkeys.

32.3. winreg – Windows registry access 1145

http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx

The Python Library Reference, Release 3.2

winreg.EnableReflectionKey(key)
Restores registry reflection for the specified disabled key.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit operating system.

Restoring reflection for a key does not affect reflection of any subkeys.

winreg.QueryReflectionKey(key)
Determines the reflection state for the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

Returns True if reflection is disabled.

Will generally raise NotImplemented if executed on a 32-bit operating system.

32.3.1 Constants

The following constants are defined for use in many _winreg functions.

HKEY_* Constants

winreg.HKEY_CLASSES_ROOT
Registry entries subordinate to this key define types (or classes) of documents and the properties associated
with those types. Shell and COM applications use the information stored under this key.

winreg.HKEY_CURRENT_USER
Registry entries subordinate to this key define the preferences of the current user. These preferences include
the settings of environment variables, data about program groups, colors, printers, network connections, and
application preferences.

winreg.HKEY_LOCAL_MACHINE
Registry entries subordinate to this key define the physical state of the computer, including data about the
bus type, system memory, and installed hardware and software.

winreg.HKEY_USERS
Registry entries subordinate to this key define the default user configuration for new users on the local
computer and the user configuration for the current user.

winreg.HKEY_PERFORMANCE_DATA
Registry entries subordinate to this key allow you to access performance data. The data is not actually stored
in the registry; the registry functions cause the system to collect the data from its source.

winreg.HKEY_CURRENT_CONFIG
Contains information about the current hardware profile of the local computer system.

winreg.HKEY_DYN_DATA
This key is not used in versions of Windows after 98.

Access Rights

For more information, see Registry Key Security and Access.

winreg.KEY_ALL_ACCESS
Combines the STANDARD_RIGHTS_REQUIRED, KEY_QUERY_VALUE, KEY_SET_VALUE,
KEY_CREATE_SUB_KEY, KEY_ENUMERATE_SUB_KEYS, KEY_NOTIFY, and KEY_CREATE_LINK
access rights.

winreg.KEY_WRITE
Combines the STANDARD_RIGHTS_WRITE, KEY_SET_VALUE, and KEY_CREATE_SUB_KEY access
rights.

1146 Chapter 32. MS Windows Specific Services

http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx

The Python Library Reference, Release 3.2

winreg.KEY_READ
Combines the STANDARD_RIGHTS_READ, KEY_QUERY_VALUE, KEY_ENUMERATE_SUB_KEYS,
and KEY_NOTIFY values.

winreg.KEY_EXECUTE
Equivalent to KEY_READ.

winreg.KEY_QUERY_VALUE
Required to query the values of a registry key.

winreg.KEY_SET_VALUE
Required to create, delete, or set a registry value.

winreg.KEY_CREATE_SUB_KEY
Required to create a subkey of a registry key.

winreg.KEY_ENUMERATE_SUB_KEYS
Required to enumerate the subkeys of a registry key.

winreg.KEY_NOTIFY
Required to request change notifications for a registry key or for subkeys of a registry key.

winreg.KEY_CREATE_LINK
Reserved for system use.

64-bit Specific

For more information, see Accessing an Alternate Registry View.

winreg.KEY_WOW64_64KEY
Indicates that an application on 64-bit Windows should operate on the 64-bit registry view.

winreg.KEY_WOW64_32KEY
Indicates that an application on 64-bit Windows should operate on the 32-bit registry view.

Value Types

For more information, see Registry Value Types.

winreg.REG_BINARY
Binary data in any form.

winreg.REG_DWORD
32-bit number.

winreg.REG_DWORD_LITTLE_ENDIAN
A 32-bit number in little-endian format.

winreg.REG_DWORD_BIG_ENDIAN
A 32-bit number in big-endian format.

winreg.REG_EXPAND_SZ
Null-terminated string containing references to environment variables (%PATH%).

winreg.REG_LINK
A Unicode symbolic link.

winreg.REG_MULTI_SZ
A sequence of null-terminated strings, terminated by two null characters. (Python handles this termination
automatically.)

winreg.REG_NONE
No defined value type.

32.3. winreg – Windows registry access 1147

http://msdn.microsoft.com/en-us/library/aa384129(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724884%28v=VS.85%29.aspx

The Python Library Reference, Release 3.2

winreg.REG_RESOURCE_LIST
A device-driver resource list.

winreg.REG_FULL_RESOURCE_DESCRIPTOR
A hardware setting.

winreg.REG_RESOURCE_REQUIREMENTS_LIST
A hardware resource list.

winreg.REG_SZ
A null-terminated string.

32.3.2 Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To guarantee
cleanup, you can call either the Close() method on the object, or the CloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use of the
handle object is encouraged.

Handle objects provide semantics for __bool__() – thus

if handle:
print("Yes")

will print Yes if the handle is currently valid (has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference the same
underlying Windows handle value.

Handle objects can be converted to an integer (e.g., using the built-in int() function), in which case the under-
lying Windows handle value is returned. You can also use the Detach() method to return the integer handle,
and also disconnect the Windows handle from the handle object.

PyHKEY.Close()
Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

PyHKEY.Detach()
Detaches the Windows handle from the handle object.

The result is an integer that holds the value of the handle before it is detached. If the handle is already
detached or closed, this will return zero.

After calling this function, the handle is effectively invalidated, but the handle is not closed. You would call
this function when you need the underlying Win32 handle to exist beyond the lifetime of the handle object.

PyHKEY.__enter__()
PyHKEY.__exit__(*exc_info)

The HKEY object implements __enter__() and __exit__() and thus supports the context protocol
for the with statement:

with OpenKey(HKEY_LOCAL_MACHINE, "foo") as key:
... # work with key

will automatically close key when control leaves the with block.

32.4 winsound — Sound-playing interface for Windows

Platforms: Windows

1148 Chapter 32. MS Windows Specific Services

The Python Library Reference, Release 3.2

The winsound module provides access to the basic sound-playing machinery provided by Windows platforms.
It includes functions and several constants.

winsound.Beep(frequency, duration)
Beep the PC’s speaker. The frequency parameter specifies frequency, in hertz, of the sound, and must be in
the range 37 through 32,767. The duration parameter specifies the number of milliseconds the sound should
last. If the system is not able to beep the speaker, RuntimeError is raised.

winsound.PlaySound(sound, flags)
Call the underlying PlaySound() function from the Platform API. The sound parameter may be a file-
name, audio data as a string, or None. Its interpretation depends on the value of flags, which can be a
bitwise ORed combination of the constants described below. If the sound parameter is None, any currently
playing waveform sound is stopped. If the system indicates an error, RuntimeError is raised.

winsound.MessageBeep(type=MB_OK)
Call the underlying MessageBeep() function from the Platform API. This plays a sound as spec-
ified in the registry. The type argument specifies which sound to play; possible values are -1,
MB_ICONASTERISK, MB_ICONEXCLAMATION, MB_ICONHAND, MB_ICONQUESTION, and MB_OK,
all described below. The value -1 produces a “simple beep”; this is the final fallback if a sound cannot be
played otherwise.

winsound.SND_FILENAME
The sound parameter is the name of a WAV file. Do not use with SND_ALIAS.

winsound.SND_ALIAS
The sound parameter is a sound association name from the registry. If the registry contains no such name,
play the system default sound unless SND_NODEFAULT is also specified. If no default sound is registered,
raise RuntimeError. Do not use with SND_FILENAME.

All Win32 systems support at least the following; most systems support many more:

PlaySound() name Corresponding Control Panel Sound name
’SystemAsterisk’ Asterisk
’SystemExclamation’ Exclamation
’SystemExit’ Exit Windows
’SystemHand’ Critical Stop
’SystemQuestion’ Question

For example:

import winsound
Play Windows exit sound.
winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

Probably play Windows default sound, if any is registered (because
"*" probably isn’t the registered name of any sound).
winsound.PlaySound("*", winsound.SND_ALIAS)

winsound.SND_LOOP
Play the sound repeatedly. The SND_ASYNC flag must also be used to avoid blocking. Cannot be used with
SND_MEMORY.

winsound.SND_MEMORY
The sound parameter to PlaySound() is a memory image of a WAV file, as a string.

Note: This module does not support playing from a memory image asynchronously, so a combination of
this flag and SND_ASYNC will raise RuntimeError.

winsound.SND_PURGE
Stop playing all instances of the specified sound.

Note: This flag is not supported on modern Windows platforms.

32.4. winsound — Sound-playing interface for Windows 1149

The Python Library Reference, Release 3.2

winsound.SND_ASYNC
Return immediately, allowing sounds to play asynchronously.

winsound.SND_NODEFAULT
If the specified sound cannot be found, do not play the system default sound.

winsound.SND_NOSTOP
Do not interrupt sounds currently playing.

winsound.SND_NOWAIT
Return immediately if the sound driver is busy.

winsound.MB_ICONASTERISK
Play the SystemDefault sound.

winsound.MB_ICONEXCLAMATION
Play the SystemExclamation sound.

winsound.MB_ICONHAND
Play the SystemHand sound.

winsound.MB_ICONQUESTION
Play the SystemQuestion sound.

winsound.MB_OK
Play the SystemDefault sound.

1150 Chapter 32. MS Windows Specific Services

CHAPTER

THIRTYTHREE

UNIX SPECIFIC SERVICES

The modules described in this chapter provide interfaces to features that are unique to the Unix operating system,
or in some cases to some or many variants of it. Here’s an overview:

33.1 posix — The most common POSIX system calls

Platforms: Unix

This module provides access to operating system functionality that is standardized by the C Standard and the
POSIX standard (a thinly disguised Unix interface).

Do not import this module directly. Instead, import the module os, which provides a portable version of
this interface. On Unix, the os module provides a superset of the posix interface. On non-Unix operating
systems the posix module is not available, but a subset is always available through the os interface. Once os is
imported, there is no performance penalty in using it instead of posix. In addition, os provides some additional
functionality, such as automatically calling putenv() when an entry in os.environ is changed.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the
system calls raise OSError.

33.1.1 Large File Support

Several operating systems (including AIX, HP-UX, Irix and Solaris) provide support for files that are larger than
2 GB from a C programming model where int and long are 32-bit values. This is typically accomplished by
defining the relevant size and offset types as 64-bit values. Such files are sometimes referred to as large files.

Large file support is enabled in Python when the size of an off_t is larger than a long and the long long
type is available and is at least as large as an off_t. It may be necessary to configure and compile Python with
certain compiler flags to enable this mode. For example, it is enabled by default with recent versions of Irix, but
with Solaris 2.6 and 2.7 you need to do something like:

CFLAGS="‘getconf LFS_CFLAGS‘" OPT="-g -O2 $CFLAGS" \
./configure

On large-file-capable Linux systems, this might work:

CFLAGS=’-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64’ OPT="-g -O2 $CFLAGS" \
./configure

33.1.2 Notable Module Contents

In addition to many functions described in the os module documentation, posix defines the following data item:

posix.environ
A dictionary representing the string environment at the time the interpreter was started. Keys and values

1151

The Python Library Reference, Release 3.2

are bytes on Unix and str on Windows. For example, environ[b’HOME’] (environ[’HOME’] on
Windows) is the pathname of your home directory, equivalent to getenv("HOME") in C.

Modifying this dictionary does not affect the string environment passed on by execv(), popen() or
system(); if you need to change the environment, pass environ to execve() or add variable assign-
ments and export statements to the command string for system() or popen(). Changed in version 3.2:
On Unix, keys and values are bytes.

Note: The os module provides an alternate implementation of environ which updates the environment
on modification. Note also that updating os.environ will render this dictionary obsolete. Use of the os
module version of this is recommended over direct access to the posix module.

33.2 pwd — The password database

Platforms: Unix

This module provides access to the Unix user account and password database. It is available on all Unix versions.

Password database entries are reported as a tuple-like object, whose attributes correspond to the members of the
passwd structure (Attribute field below, see <pwd.h>):

Index Attribute Meaning
0 pw_name Login name
1 pw_passwd Optional encrypted password
2 pw_uid Numerical user ID
3 pw_gid Numerical group ID
4 pw_gecos User name or comment field
5 pw_dir User home directory
6 pw_shell User command interpreter

The uid and gid items are integers, all others are strings. KeyError is raised if the entry asked for cannot be
found.

Note: In traditional Unix the field pw_passwd usually contains a password encrypted with a DES derived
algorithm (see module crypt). However most modern unices use a so-called shadow password system. On
those unices the pw_passwd field only contains an asterisk (’*’) or the letter ’x’ where the encrypted password
is stored in a file /etc/shadow which is not world readable. Whether the pw_passwd field contains anything
useful is system-dependent. If available, the spwdmodule should be used where access to the encrypted password
is required.

It defines the following items:

pwd.getpwuid(uid)
Return the password database entry for the given numeric user ID.

pwd.getpwnam(name)
Return the password database entry for the given user name.

pwd.getpwall()
Return a list of all available password database entries, in arbitrary order.

See Also:

Module grp An interface to the group database, similar to this.

Module spwd An interface to the shadow password database, similar to this.

1152 Chapter 33. Unix Specific Services

The Python Library Reference, Release 3.2

33.3 spwd — The shadow password database

Platforms: Unix

This module provides access to the Unix shadow password database. It is available on various Unix versions.

You must have enough privileges to access the shadow password database (this usually means you have to be
root).

Shadow password database entries are reported as a tuple-like object, whose attributes correspond to the members
of the spwd structure (Attribute field below, see <shadow.h>):

Index Attribute Meaning
0 sp_nam Login name
1 sp_pwd Encrypted password
2 sp_lstchg Date of last change
3 sp_min Minimal number of days between changes
4 sp_max Maximum number of days between changes
5 sp_warn Number of days before password expires to warn user about it
6 sp_inact Number of days after password expires until account is blocked
7 sp_expire Number of days since 1970-01-01 until account is disabled
8 sp_flag Reserved

The sp_nam and sp_pwd items are strings, all others are integers. KeyError is raised if the entry asked for
cannot be found.

The following functions are defined:

spwd.getspnam(name)
Return the shadow password database entry for the given user name.

spwd.getspall()
Return a list of all available shadow password database entries, in arbitrary order.

See Also:

Module grp An interface to the group database, similar to this.

Module pwd An interface to the normal password database, similar to this.

33.4 grp — The group database

Platforms: Unix

This module provides access to the Unix group database. It is available on all Unix versions.

Group database entries are reported as a tuple-like object, whose attributes correspond to the members of the
group structure (Attribute field below, see <pwd.h>):

Index Attribute Meaning
0 gr_name the name of the group
1 gr_passwd the (encrypted) group password; often empty
2 gr_gid the numerical group ID
3 gr_mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that most
users are not explicitly listed as members of the group they are in according to the password database. Check both
databases to get complete membership information. Also note that a gr_name that starts with a + or - is likely
to be a YP/NIS reference and may not be accessible via getgrnam() or getgrgid().)

It defines the following items:

33.3. spwd — The shadow password database 1153

The Python Library Reference, Release 3.2

grp.getgrgid(gid)
Return the group database entry for the given numeric group ID. KeyError is raised if the entry asked for
cannot be found.

grp.getgrnam(name)
Return the group database entry for the given group name. KeyError is raised if the entry asked for cannot
be found.

grp.getgrall()
Return a list of all available group entries, in arbitrary order.

See Also:

Module pwd An interface to the user database, similar to this.

Module spwd An interface to the shadow password database, similar to this.

33.5 crypt — Function to check Unix passwords

Platforms: Unix

This module implements an interface to the crypt(3) routine, which is a one-way hash function based upon a
modified DES algorithm; see the Unix man page for further details. Possible uses include allowing Python scripts
to accept typed passwords from the user, or attempting to crack Unix passwords with a dictionary.

Notice that the behavior of this module depends on the actual implementation of the crypt(3) routine in the
running system. Therefore, any extensions available on the current implementation will also be available on this
module.

crypt.crypt(word, salt)
word will usually be a user’s password as typed at a prompt or in a graphical interface. salt is usually a
random two-character string which will be used to perturb the DES algorithm in one of 4096 ways. The
characters in salt must be in the set [./a-zA-Z0-9]. Returns the hashed password as a string, which
will be composed of characters from the same alphabet as the salt (the first two characters represent the salt
itself).

Since a few crypt(3) extensions allow different values, with different sizes in the salt, it is recommended
to use the full crypted password as salt when checking for a password.

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():
username = input(’Python login:’)
cryptedpasswd = pwd.getpwnam(username)[1]
if cryptedpasswd:

if cryptedpasswd == ’x’ or cryptedpasswd == ’*’:
raise "Sorry, currently no support for shadow passwords"

cleartext = getpass.getpass()
return crypt.crypt(cleartext, cryptedpasswd) == cryptedpasswd

else:
return 1

33.6 termios — POSIX style tty control

Platforms: Unix

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls,
see the POSIX or Unix manual pages. It is only available for those Unix versions that support POSIX termios
style tty I/O control (and then only if configured at installation time).

1154 Chapter 33. Unix Specific Services

The Python Library Reference, Release 3.2

All functions in this module take a file descriptor fd as their first argument. This can be an integer file descriptor,
such as returned by sys.stdin.fileno(), or a file object, such as sys.stdin itself.

This module also defines all the constants needed to work with the functions provided here; these have the same
name as their counterparts in C. Please refer to your system documentation for more information on using these
terminal control interfaces.

The module defines the following functions:

termios.tcgetattr(fd)
Return a list containing the tty attributes for file descriptor fd, as follows: [iflag, oflag, cflag,
lflag, ispeed, ospeed, cc] where cc is a list of the tty special characters (each a string of length
1, except the items with indices VMIN and VTIME, which are integers when these fields are defined). The
interpretation of the flags and the speeds as well as the indexing in the cc array must be done using the
symbolic constants defined in the termios module.

termios.tcsetattr(fd, when, attributes)
Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr(). The when argument determines when the attributes are changed: TCSANOW to change
immediately, TCSADRAIN to change after transmitting all queued output, or TCSAFLUSH to change after
transmitting all queued output and discarding all queued input.

termios.tcsendbreak(fd, duration)
Send a break on file descriptor fd. A zero duration sends a break for 0.25 –0.5 seconds; a nonzero duration
has a system dependent meaning.

termios.tcdrain(fd)
Wait until all output written to file descriptor fd has been transmitted.

termios.tcflush(fd, queue)
Discard queued data on file descriptor fd. The queue selector specifies which queue: TCIFLUSH for the
input queue, TCOFLUSH for the output queue, or TCIOFLUSH for both queues.

termios.tcflow(fd, action)
Suspend or resume input or output on file descriptor fd. The action argument can be TCOOFF to suspend
output, TCOON to restart output, TCIOFF to suspend input, or TCION to restart input.

See Also:

Module tty Convenience functions for common terminal control operations.

33.6.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separate
tcgetattr() call and a try ... finally statement to ensure that the old tty attributes are restored exactly no
matter what happens:

def getpass(prompt="Password: "):
import termios, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & ~termios.ECHO # lflags
try:

termios.tcsetattr(fd, termios.TCSADRAIN, new)
passwd = input(prompt)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old)

return passwd

33.6. termios — POSIX style tty control 1155

The Python Library Reference, Release 3.2

33.7 tty — Terminal control functions

Platforms: Unix

The tty module defines functions for putting the tty into cbreak and raw modes.

Because it requires the termios module, it will work only on Unix.

The tty module defines the following functions:

tty.setraw(fd, when=termios.TCSAFLUSH)
Change the mode of the file descriptor fd to raw. If when is omitted, it defaults to termios.TCSAFLUSH,
and is passed to termios.tcsetattr().

tty.setcbreak(fd, when=termios.TCSAFLUSH)
Change the mode of file descriptor fd to cbreak. If when is omitted, it defaults to termios.TCSAFLUSH,
and is passed to termios.tcsetattr().

See Also:

Module termios Low-level terminal control interface.

33.8 pty — Pseudo-terminal utilities

Platforms: Linux

The pty module defines operations for handling the pseudo-terminal concept: starting another process and being
able to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependent, there is code to do it only for Linux. (The Linux
code is supposed to work on other platforms, but hasn’t been tested yet.)

The pty module defines the following functions:

pty.fork()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is (pid, fd). Note
that the child gets pid 0, and the fd is invalid. The parent’s return value is the pid of the child, and fd is a file
descriptor connected to the child’s controlling terminal (and also to the child’s standard input and output).

pty.openpty()
Open a new pseudo-terminal pair, using os.openpty() if possible, or emulation code for generic Unix
systems. Return a pair of file descriptors (master, slave), for the master and the slave end, respec-
tively.

pty.spawn(argv[, master_read[, stdin_read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often
used to baffle programs which insist on reading from the controlling terminal.

The functions master_read and stdin_read should be functions which read from a file descriptor. The
defaults try to read 1024 bytes each time they are called.

33.8.1 Example

The following program acts like the Unix command script(1), using a pseudo-terminal to record all input and
output of a terminal session in a “typescript”.

import sys, os, time, getopt
import pty

mode = ’wb’
shell = ’sh’
filename = ’typescript’

1156 Chapter 33. Unix Specific Services

The Python Library Reference, Release 3.2

if ’SHELL’ in os.environ:
shell = os.environ[’SHELL’]

try:
opts, args = getopt.getopt(sys.argv[1:], ’ap’)

except getopt.error as msg:
print(’%s: %s’ % (sys.argv[0], msg))
sys.exit(2)

for opt, arg in opts:
option -a: append to typescript file
if opt == ’-a’:

mode = ’ab’
option -p: use a Python shell as the terminal command
elif opt == ’-p’:

shell = sys.executable
if args:

filename = args[0]

script = open(filename, mode)

def read(fd):
data = os.read(fd, 1024)
script.write(data)
return data

sys.stdout.write(’Script started, file is %s\n’ % filename)
script.write((’Script started on %s\n’ % time.asctime()).encode())
pty.spawn(shell, read)
script.write((’Script done on %s\n’ % time.asctime()).encode())
sys.stdout.write(’Script done, file is %s\n’ % filename)

33.9 fcntl — The fcntl() and ioctl() system calls

Platforms: Unix

This module performs file control and I/O control on file descriptors. It is an interface to the fcntl() and
ioctl() Unix routines.

All functions in this module take a file descriptor fd as their first argument. This can be an integer file descriptor,
such as returned by sys.stdin.fileno(), or a io.IOBase object, such as sys.stdin itself, which
provides a fileno() that returns a genuine file descriptor.

The module defines the following functions:

fcntl.fcntl(fd, op[, arg])
Perform the requested operation on file descriptor fd (file objects providing a fileno() method are ac-
cepted as well). The operation is defined by op and is operating system dependent. These codes are also
found in the fcntl module. The argument arg is optional, and defaults to the integer value 0. When
present, it can either be an integer value, or a string. With the argument missing or an integer value, the re-
turn value of this function is the integer return value of the C fcntl() call. When the argument is a string
it represents a binary structure, e.g. created by struct.pack(). The binary data is copied to a buffer
whose address is passed to the C fcntl() call. The return value after a successful call is the contents of
the buffer, converted to a string object. The length of the returned string will be the same as the length of
the arg argument. This is limited to 1024 bytes. If the information returned in the buffer by the operating
system is larger than 1024 bytes, this is most likely to result in a segmentation violation or a more subtle
data corruption.

If the fcntl() fails, an IOError is raised.

33.9. fcntl — The fcntl() and ioctl() system calls 1157

The Python Library Reference, Release 3.2

fcntl.ioctl(fd, op[, arg[, mutate_flag]])
This function is identical to the fcntl() function, except that the argument handling is even more com-
plicated.

The op parameter is limited to values that can fit in 32-bits.

The parameter arg can be one of an integer, absent (treated identically to the integer 0), an object supporting
the read-only buffer interface (most likely a plain Python string) or an object supporting the read-write buffer
interface.

In all but the last case, behaviour is as for the fcntl() function.

If a mutable buffer is passed, then the behaviour is determined by the value of the mutate_flag parameter.

If it is false, the buffer’s mutability is ignored and behaviour is as for a read-only buffer, except that the
1024 byte limit mentioned above is avoided – so long as the buffer you pass is as least as long as what the
operating system wants to put there, things should work.

If mutate_flag is true (the default), then the buffer is (in effect) passed to the underlying ioctl() system
call, the latter’s return code is passed back to the calling Python, and the buffer’s new contents reflect the
action of the ioctl(). This is a slight simplification, because if the supplied buffer is less than 1024 bytes
long it is first copied into a static buffer 1024 bytes long which is then passed to ioctl() and copied back
into the supplied buffer.

An example:

>>> import array, fcntl, struct, termios, os
>>> os.getpgrp()
13341
>>> struct.unpack(’h’, fcntl.ioctl(0, termios.TIOCGPGRP, " "))[0]
13341
>>> buf = array.array(’h’, [0])
>>> fcntl.ioctl(0, termios.TIOCGPGRP, buf, 1)
0
>>> buf
array(’h’, [13341])

fcntl.flock(fd, op)
Perform the lock operation op on file descriptor fd (file objects providing a fileno() method are accepted
as well). See the Unix manual flock(2) for details. (On some systems, this function is emulated using
fcntl().)

fcntl.lockf(fd, operation[, length[, start[, whence]]])
This is essentially a wrapper around the fcntl() locking calls. fd is the file descriptor of the file to lock
or unlock, and operation is one of the following values:

•LOCK_UN – unlock

•LOCK_SH – acquire a shared lock

•LOCK_EX – acquire an exclusive lock

When operation is LOCK_SH or LOCK_EX, it can also be bitwise ORed with LOCK_NB to avoid blocking
on lock acquisition. If LOCK_NB is used and the lock cannot be acquired, an IOError will be raised and
the exception will have an errno attribute set to EACCES or EAGAIN (depending on the operating system;
for portability, check for both values). On at least some systems, LOCK_EX can only be used if the file
descriptor refers to a file opened for writing.

length is the number of bytes to lock, start is the byte offset at which the lock starts, relative to whence, and
whence is as with fileobj.seek(), specifically:

•0 – relative to the start of the file (SEEK_SET)

•1 – relative to the current buffer position (SEEK_CUR)

•2 – relative to the end of the file (SEEK_END)

1158 Chapter 33. Unix Specific Services

The Python Library Reference, Release 3.2

The default for start is 0, which means to start at the beginning of the file. The default for length is 0 which
means to lock to the end of the file. The default for whence is also 0.

Examples (all on a SVR4 compliant system):

import struct, fcntl, os

f = open(...)
rv = fcntl.fcntl(f, fcntl.F_SETFL, os.O_NDELAY)

lockdata = struct.pack(’hhllhh’, fcntl.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl.fcntl(f, fcntl.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an integer value; in the second example it will
hold a string value. The structure lay-out for the lockdata variable is system dependent — therefore using the
flock() call may be better.

See Also:

Module os If the locking flags O_SHLOCK and O_EXLOCK are present in the os module (on BSD only), the
os.open() function provides an alternative to the lockf() and flock() functions.

33.10 pipes — Interface to shell pipelines

Platforms: Unix

Source code: Lib/pipes.py

The pipes module defines a class to abstract the concept of a pipeline — a sequence of converters from one file
to another.

Because the module uses /bin/sh command lines, a POSIX or compatible shell for os.system() and
os.popen() is required.

The pipes module defines the following class:

class pipes.Template
An abstraction of a pipeline.

Example:

>>> import pipes
>>> t=pipes.Template()
>>> t.append(’tr a-z A-Z’, ’--’)
>>> f=t.open(’/tmp/1’, ’w’)
>>> f.write(’hello world’)
>>> f.close()
>>> open(’/tmp/1’).read()
’HELLO WORLD’

33.10.1 Template Objects

Template objects following methods:

Template.reset()
Restore a pipeline template to its initial state.

Template.clone()
Return a new, equivalent, pipeline template.

33.10. pipes — Interface to shell pipelines 1159

http://svn.python.org/view/python/branches/py3k/Lib/pipes.py?view=markup

The Python Library Reference, Release 3.2

Template.debug(flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands to be
executed are printed, and the shell is given set -x command to be more verbose.

Template.append(cmd, kind)
Append a new action at the end. The cmd variable must be a valid bourne shell command. The kind variable
consists of two letters.

The first letter can be either of ’-’ (which means the command reads its standard input), ’f’ (which means
the commands reads a given file on the command line) or ’.’ (which means the commands reads no input,
and hence must be first.)

Similarly, the second letter can be either of ’-’ (which means the command writes to standard output),
’f’ (which means the command writes a file on the command line) or ’.’ (which means the command
does not write anything, and hence must be last.)

Template.prepend(cmd, kind)
Add a new action at the beginning. See append() for explanations of the arguments.

Template.open(file, mode)
Return a file-like object, open to file, but read from or written to by the pipeline. Note that only one of ’r’,
’w’ may be given.

Template.copy(infile, outfile)
Copy infile to outfile through the pipe.

33.11 resource — Resource usage information

Platforms: Unix

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either
the current process or its children.

A single exception is defined for errors:

exception resource.error
The functions described below may raise this error if the underlying system call failures unexpectedly.

33.11.1 Resource Limits

Resources usage can be limited using the setrlimit() function described below. Each resource is controlled
by a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised
by a process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value
greater than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard
limit.)

The specific resources that can be limited are system dependent. They are described in the getrlimit(2) man
page. The resources listed below are supported when the underlying operating system supports them; resources
which cannot be checked or controlled by the operating system are not defined in this module for those platforms.

resource.getrlimit(resource)
Returns a tuple (soft, hard) with the current soft and hard limits of resource. Raises ValueError
if an invalid resource is specified, or error if the underlying system call fails unexpectedly.

resource.setrlimit(resource, limits)
Sets new limits of consumption of resource. The limits argument must be a tuple (soft, hard) of two
integers describing the new limits. A value of -1 can be used to specify the maximum possible upper limit.

Raises ValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit (unless the process has an effective UID of super-user). Can also raise
error if the underlying system call fails.

1160 Chapter 33. Unix Specific Services

The Python Library Reference, Release 3.2

These symbols define resources whose consumption can be controlled using the setrlimit() and
getrlimit() functions described below. The values of these symbols are exactly the constants used by C
programs.

The Unix man page for getrlimit(2) lists the available resources. Note that not all systems use the same
symbol or same value to denote the same resource. This module does not attempt to mask platform differences —
symbols not defined for a platform will not be available from this module on that platform.

resource.RLIMIT_CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation
of a partial core file if a larger core would be required to contain the entire process image.

resource.RLIMIT_CPU
The maximum amount of processor time (in seconds) that a process can use. If this limit is exceeded, a
SIGXCPU signal is sent to the process. (See the signal module documentation for information about
how to catch this signal and do something useful, e.g. flush open files to disk.)

resource.RLIMIT_FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in
a multi-threaded process.

resource.RLIMIT_DATA
The maximum size (in bytes) of the process’s heap.

resource.RLIMIT_STACK
The maximum size (in bytes) of the call stack for the current process.

resource.RLIMIT_RSS
The maximum resident set size that should be made available to the process.

resource.RLIMIT_NPROC
The maximum number of processes the current process may create.

resource.RLIMIT_NOFILE
The maximum number of open file descriptors for the current process.

resource.RLIMIT_OFILE
The BSD name for RLIMIT_NOFILE.

resource.RLIMIT_MEMLOCK
The maximum address space which may be locked in memory.

resource.RLIMIT_VMEM
The largest area of mapped memory which the process may occupy.

resource.RLIMIT_AS
The maximum area (in bytes) of address space which may be taken by the process.

33.11.2 Resource Usage

These functions are used to retrieve resource usage information:

resource.getrusage(who)
This function returns an object that describes the resources consumed by either the current process or its
children, as specified by the who parameter. The who parameter should be specified using one of the
RUSAGE_* constants described below.

The fields of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some
values are dependent on the clock tick internal, e.g. the amount of memory the process is using.

For backward compatibility, the return value is also accessible as a tuple of 16 elements.

The fields ru_utime and ru_stime of the return value are floating point values representing the amount
of time spent executing in user mode and the amount of time spent executing in system mode, respectively.

33.11. resource — Resource usage information 1161

The Python Library Reference, Release 3.2

The remaining values are integers. Consult the getrusage(2) man page for detailed information about
these values. A brief summary is presented here:

Index Field Resource
0 ru_utime time in user mode (float)
1 ru_stime time in system mode (float)
2 ru_maxrss maximum resident set size
3 ru_ixrss shared memory size
4 ru_idrss unshared memory size
5 ru_isrss unshared stack size
6 ru_minflt page faults not requiring I/O
7 ru_majflt page faults requiring I/O
8 ru_nswap number of swap outs
9 ru_inblock block input operations
10 ru_oublock block output operations
11 ru_msgsnd messages sent
12 ru_msgrcv messages received
13 ru_nsignals signals received
14 ru_nvcsw voluntary context switches
15 ru_nivcsw involuntary context switches

This function will raise a ValueError if an invalid who parameter is specified. It may also raise error
exception in unusual circumstances.

resource.getpagesize()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of
the tuple returned by getrusage() describes memory usage in pages; multiplying by page size produces
number of bytes.

The following RUSAGE_* symbols are passed to the getrusage() function to specify which processes infor-
mation should be provided for.

resource.RUSAGE_SELF
Pass to getrusage() to request resources consumed by the calling process, which is the sum of resources
used by all threads in the process.

resource.RUSAGE_CHILDREN
Pass to getrusage() to request resources consumed by child processes of the calling process which have
been terminated and waited for.

resource.RUSAGE_BOTH
Pass to getrusage() to request resources consumed by both the current process and child processes.
May not be available on all systems.

resource.RUSAGE_THREAD
Pass to getrusage() to request resources consumed by the current thread. May not be available on all
systems. New in version 3.2.

33.12 nis — Interface to Sun’s NIS (Yellow Pages)

Platforms: Unix

The nis module gives a thin wrapper around the NIS library, useful for central administration of several hosts.

Because NIS exists only on Unix systems, this module is only available for Unix.

The nis module defines the following functions:

nis.match(key, mapname[, domain=default_domain])
Return the match for key in map mapname, or raise an error (nis.error) if there is none. Both should be
strings, key is 8-bit clean. Return value is an arbitrary array of bytes (may contain NULL and other joys).

1162 Chapter 33. Unix Specific Services

The Python Library Reference, Release 3.2

Note that mapname is first checked if it is an alias to another name.

The domain argument allows to override the NIS domain used for the lookup. If unspecified, lookup is in
the default NIS domain.

nis.cat(mapname[, domain=default_domain])
Return a dictionary mapping key to value such that match(key, mapname)==value. Note that both
keys and values of the dictionary are arbitrary arrays of bytes.

Note that mapname is first checked if it is an alias to another name.

The domain argument allows to override the NIS domain used for the lookup. If unspecified, lookup is in
the default NIS domain.

nis.maps([domain=default_domain])
Return a list of all valid maps.

The domain argument allows to override the NIS domain used for the lookup. If unspecified, lookup is in
the default NIS domain.

nis.get_default_domain()
Return the system default NIS domain.

The nis module defines the following exception:

exception nis.error
An error raised when a NIS function returns an error code.

33.13 syslog — Unix syslog library routines

Platforms: Unix

This module provides an interface to the Unix syslog library routines. Refer to the Unix manual pages for a
detailed description of the syslog facility.

This module wraps the system syslog family of routines. A pure Python library that can speak to a syslog server
is available in the logging.handlers module as SysLogHandler.

The module defines the following functions:

syslog.syslog([priority], message)
Send the string message to the system logger. A trailing newline is added if necessary. Each message is
tagged with a priority composed of a facility and a level. The optional priority argument, which defaults
to LOG_INFO, determines the message priority. If the facility is not encoded in priority using logical-or
(LOG_INFO | LOG_USER), the value given in the openlog() call is used.

If openlog() has not been called prior to the call to syslog(), openlog() will be called with no
arguments.

syslog.openlog([ident[, logopt[, facility]]])
Logging options of subsequent syslog() calls can be set by calling openlog(). syslog() will call
openlog() with no arguments if the log is not currently open.

The optional ident keyword argument is a string which is prepended to every message, and defaults to
sys.argv[0] with leading path components stripped. The optional logopt keyword argument (default is
0) is a bit field – see below for possible values to combine. The optional facility keyword argument (default is
LOG_USER) sets the default facility for messages which do not have a facility explicitly encoded. Changed
in version 3.2: In previous versions, keyword arguments were not allowed, and ident was required. The
default for ident was dependent on the system libraries, and often was python instead of the name of the
python program file.

syslog.closelog()
Reset the syslog module values and call the system library closelog().

33.13. syslog — Unix syslog library routines 1163

The Python Library Reference, Release 3.2

This causes the module to behave as it does when initially imported. For example, openlog() will
be called on the first syslog() call (if openlog() hasn’t already been called), and ident and other
openlog() parameters are reset to defaults.

syslog.setlogmask(maskpri)
Set the priority mask to maskpri and return the previous mask value. Calls to syslog() with a priority
level not set in maskpri are ignored. The default is to log all priorities. The function LOG_MASK(pri)
calculates the mask for the individual priority pri. The function LOG_UPTO(pri) calculates the mask for
all priorities up to and including pri.

The module defines the following constants:

Priority levels (high to low): LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING,
LOG_NOTICE, LOG_INFO, LOG_DEBUG.

Facilities: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR, LOG_NEWS,
LOG_UUCP, LOG_CRON and LOG_LOCAL0 to LOG_LOCAL7.

Log options: LOG_PID, LOG_CONS, LOG_NDELAY, LOG_NOWAIT and LOG_PERROR if defined in
<syslog.h>.

33.13.1 Examples

Simple example

A simple set of examples:

import syslog

syslog.syslog(’Processing started’)
if error:

syslog.syslog(syslog.LOG_ERR, ’Processing started’)

An example of setting some log options, these would include the process ID in logged messages, and write the
messages to the destination facility used for mail logging:

syslog.openlog(logopt=syslog.LOG_PID, facility=syslog.LOG_MAIL)
syslog.syslog(’E-mail processing initiated...’)

1164 Chapter 33. Unix Specific Services

CHAPTER

THIRTYFOUR

UNDOCUMENTED MODULES

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel free to
contribute documentation for them! (Send via email to docs@python.org.)

The idea and original contents for this chapter were taken from a posting by Fredrik Lundh; the specific contents
of this chapter have been substantially revised.

34.1 Platform specific modules

These modules are used to implement the os.path module, and are not documented beyond this mention.
There’s little need to document these.

ntpath — Implementation of os.path on Win32, Win64, WinCE, and OS/2 platforms.

posixpath — Implementation of os.path on POSIX.

1165

mailto:docs@python.org

The Python Library Reference, Release 3.2

1166 Chapter 34. Undocumented Modules

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation.

abstract base class ABCs - abstract base classes complement duck-typing by providing a way to define inter-
faces when other techniques like hasattr() would be clumsy. Python comes with many built-in ABCs
for data structures (in the collections module), numbers (in the numbers module), and streams (in
the io module). You can create your own ABC with the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-length: * accepts or passes (if in the function definition or call)
several positional arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in
the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same
file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each bytecode.
Do note that bytecodes are not expected to work between different Python virtual machines, nor to be stable
between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5
rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often written i in mathematics or j in engineering. Python has built-in support for complex

1167

http://www.python.org/~guido/

The Python Library Reference, Release 3.2

numbers, which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j.
To get access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely
ignore them.

context manager An object which controls the environment seen in a with statement by defining
__enter__() and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term “CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a
class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally,
using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a
deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() function and __eq__() methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored
when the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the
enclosing class, function or module. Since it is available via introspection, it is the canonical place for
documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right in-
terface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like
a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code im-
proves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or
isinstance(). (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employs hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of many try and except statements. The technique contrasts with the
LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There
are also statements which cannot be used as expressions, such as if. Assignments are also statements, not
expressions.

1168 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
http://python.org

The Python Library Reference, Release 3.2

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or
to another other type of storage or communication device (for example standard input/output, in-memory
buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named
find_module(). See PEP 302 for details and importlib.abc.Finder for an abstract base class.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division.
Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo-module which programmers can use to enable new language features which are not com-
patible with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature was
first added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series a values usable in a for-loop or that can be retrieved one at a time with
the next() function. Each yield temporarily suspends processing, remembering the location execution
state (including local variables and pending try-statements). When the generator resumes, it picks-up where
it left-off (in contrast to functions which start fresh on every invocation.

generator expression An expression that returns an iterator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (in-
cluding critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire
interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism
afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released
when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granular-
ity) have not been successful because performance suffered in the common single-processor case. It is
believed that overcoming this performance issue would make the implementation much more complicated
and therefore costlier to maintain.

1169

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0238

The Python Library Reference, Release 3.2

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() method). Hash-
able objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects
of any classes you define with an __iter__() or __getitem__() method. Iterables can be used in
a for loop and in many other places where a sequence is needed (zip(), map(), ...). When an iterable
object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call
iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence,
and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or
passing it to the built-in function next()) return successive items in the stream. When no more data are
available a StopIteration exception is raised instead. At this point, the iterator object is exhausted and
any further calls to its __next__() method just raise StopIteration again. Iterators are required to
have an __iter__() method that returns the iterator object itself so every iterator is also iterable and may
be used in most places where other iterables are accepted. One notable exception is code which attempts
multiple iteration passes. A container object (such as a list) produces a fresh new iterator each time you
pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return the
same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in Iterator Types.

key function A key function or collation function is a callable that returns a value used for sorting or ordering.
For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(),
and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve
as a key function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a
lambda expression such as lambda r: (r[0], r[2]). Also, the operator module provides

1170 Appendix A. Glossary

The Python Library Reference, Release 3.2

three key function constuctors: attrgetter(), itemgetter(), and methodcaller(). See the
Sorting HOW TO for examples of how to create and use key functions.

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name
designates the local name in the function to which the value is assigned. ** is used to accept or pass a
dictionary of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition be-
tween “the looking” and “the leaping”. For example, the code, if key in mapping: return
mapping[key] can fail if another thread removes key from mapping after the test, but before the lookup.
This issue can be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list
with the results. result = [’{:#04x}’.format(x) for x in range(256) if x % 2
== 0] generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The
if clause is optional. If omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

mapping A container object that supports arbitrary key lookups and implements the methods spec-
ified in the Mapping or MutableMapping abstract base classes. Examples include dict,
collections.defaultdict, collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and
nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime() returns a tuple-like object where the year is accessible either with an
index such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a
self-documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functions builtins.open() and
os.open() are distinguished by their namespaces. Namespaces also aid readability and maintainabil-
ity by making it clear which module implements a function. For instance, writing random.seed()

1171

http://www.python.org/dev/peps/pep-0302
http://www.python.org/download/releases/2.3/mro/

The Python Library Reference, Release 3.2

or itertools.izip() makes it clear that those functions are implemented by the random and
itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only
for reference and not for assignment. Local variables both read and write in the innermost scope. Likewise,
global variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
any new-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call. * is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable using a for statement. Many other languages don’t
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. The sys module defines a getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a len() method that returns the length of the sequence. Some built-in se-
quence types are list, str, tuple, and bytes. Note that dict also supports __getitem__()
and __len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, []
with colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented in specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of
several constructs with a keyword, such as if, while or for.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

1172 Appendix A. Glossary

The Python Library Reference, Release 3.2

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type
is accessible as its __class__ attribute or can be retrieved with type(obj).

view The objects returned from dict.keys(), dict.values(), and dict.items() are called dictio-
nary views. They are lazy sequences that will see changes in the underlying dictionary. To force the
dictionary view to become a full list use list(dictview). See Dictionary view objects.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emit-
ted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typing “import this” at the interactive prompt.

1173

The Python Library Reference, Release 3.2

1174 Appendix A. Glossary

BIBLIOGRAPHY

[C99] ISO/IEC 9899:1999. “Programming languages – C.” A public draft of this standard is available at
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf .

1175

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

The Python Library Reference, Release 3.2

1176 Bibliography

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See reporting-bugs for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete – if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.org), and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver An-
drich, Heidi Annexstad, Jesús Cea Avión, Manuel Balsera, Daniel Barclay, Chris Barker, Don Bashford, Anthony
Baxter, Alexander Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti,
Georg Brandl, Keith Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles
Civario, Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L.
Peter Deutsch, Robert Donohue, Fred L. Drake, Jr., Jacques Ducasse, Josip Dzolonga, Jeff Epler, Michael Ernst,
Blame Andy Eskilsson, Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Ste-
fan Franke, Jim Fulton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim
Ghaznavi, Jonathan Giddy, Matt Giuca, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders
Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand, Gerhard Häring, Travis B. Hartwell, Tim
Hatch, Janko Hauser, Thomas Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister,
Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Ran-
dall Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz
Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido
Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela, Ross Lagerwall,
Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross
Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh, Jeff MacDonald, John
Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Westley Martínez, Laura Matson, Daniel
May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mul-
lender, Dale Nagata, Michal Nowikowski, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach,
Zooko O’Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Pe-
ters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, François Pinard, Paul Prescod, Eric
S. Raymond, Edward K. Ream, Terry J. Reedy, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,

1177

http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python Library Reference, Release 3.2

Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse II, Mark Russell, Nick Russo, Chris
Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, SilentGhost, Michael Simcich, Ionel Simionescu, Michael Sloan, Gregory
P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein,
Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Mar-
tijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy
Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Paul Winkler, Collin Winter, Blake
Winton, Dan Wolfe, Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal,
Cheng Zhang, Trent Nelson, Michael Foord.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

1178 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes

Continued on next page

1179

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python Library Reference, Release 3.2

Table C.1 – continued from previous page
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
2.6.2 2.6.1 2009 PSF yes
2.6.3 2.6.2 2009 PSF yes
2.6.4 2.6.3 2009 PSF yes
3.0 2.6 2008 PSF yes
3.0.1 3.0 2009 PSF yes
3.1 3.0.1 2009 PSF yes
3.1.1 3.1 2009 PSF yes
3.1.2 3.1 2010 PSF yes
3.2 3.1 2011 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 3.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 3.2 software in source or binary form and
its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 3.2 alone or in any derivative version, provided, how-
ever, that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2011 Python
Software Foundation; All Rights Reserved” are retained in Python 3.2 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.2 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 3.2.

4. PSF is making Python 3.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
3.2 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.2 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODI-
FYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.2, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

1180 Appendix C. History and License

The Python Library Reference, Release 3.2

8. By copying, installing or otherwise using Python 3.2, Licensee agrees to be bound by the terms and condi-
tions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

C.2. Terms and conditions for accessing or otherwise using Python 1181

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

The Python Library Reference, Release 3.2

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)

1182 Appendix C. History and License

http://www.math.keio.ac.jp/

The Python Library Reference, Release 3.2

or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socketmodule uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND

C.3. Licenses and Acknowledgements for Incorporated Software 1183

http://www.wide.ad.jp/

The Python Library Reference, Release 3.2

GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

1184 Appendix C. History and License

The Python Library Reference, Release 3.2

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in

C.3. Licenses and Acknowledgements for Incorporated Software 1185

The Python Library Reference, Release 3.2

supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that

1186 Appendix C. History and License

The Python Library Reference, Release 3.2

both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

C.3. Licenses and Acknowledgements for Incorporated Software 1187

The Python Library Reference, Release 3.2

"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to
and from strings, is derived from the file of the same name by David M. Gay, currently available from
http://www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

/**
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

1188 Appendix C. History and License

http://www.netlib.org/fp/

The Python Library Reference, Release 3.2

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows installers for Python include a copy of the OpenSSL libraries,
so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*
* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*
* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*
* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*
* 5. Products derived from this software may not be called "OpenSSL"

C.3. Licenses and Acknowledgements for Incorporated Software 1189

The Python Library Reference, Release 3.2

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*
* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

* ==

*
* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*
* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*
* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*
* Copyright remains Eric Young’s, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

1190 Appendix C. History and License

The Python Library Reference, Release 3.2

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word ’cryptographic’ can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 1191

The Python Library Reference, Release 3.2

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘‘Software’’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources unless the zlib version found on the system
is too old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

1192 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2011 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

1193

The Python Library Reference, Release 3.2

1194 Appendix D. Copyright

PYTHON MODULE INDEX

_
__future__, 1070
__main__, 1055
_dummy_thread, 601
_thread, 600

a
abc, 1062
aifc, 856
argparse, 388
array, 164
ast, 1107
asynchat, 641
asyncore, 637
atexit, 1065
audioop, 853

b
base64, 699
bdb, 1019
binascii, 701
binhex, 701
bisect, 162
builtins, 1055
bz2, 303

c
calendar, 142
cgi, 751
cgitb, 757
chunk, 862
cmath, 188
cmd, 917
code, 1083
codecs, 102
codeop, 1085
collections, 145
colorsys, 863
compileall, 1120
concurrent.futures, 589
configparser, 324
contextlib, 1060
copy, 174
copyreg, 273
cProfile, 1031

crypt (Unix), 1154
csv, 319
ctypes, 497
curses (Unix), 469
curses.ascii, 485
curses.panel, 487
curses.textpad, 483
curses.wrapper, 485

d
datetime, 119
dbm, 277
dbm.dumb, 280
dbm.gnu (Unix), 278
dbm.ndbm (Unix), 279
decimal, 190
difflib, 90
dis, 1121
distutils, 1082
doctest, 964
dummy_threading, 599

e
email, 645
email.charset, 660
email.encoders, 662
email.errors, 663
email.generator, 654
email.header, 658
email.iterators, 665
email.message, 645
email.mime, 656
email.parser, 651
email.utils, 664
encodings.idna, 114
encodings.mbcs, 114
encodings.utf_8_sig, 114
errno, 491

f
fcntl (Unix), 1157
filecmp, 249
fileinput, 244
fnmatch, 254
formatter, 1131
fpectl (Unix), 1081

1195

The Python Library Reference, Release 3.2

fractions, 213
ftplib, 792
functools, 230

g
gc, 1071
getopt, 437
getpass, 469
gettext, 871
glob, 254
grp (Unix), 1153
gzip, 301

h
hashlib, 345
heapq, 158
hmac, 347
html, 705
html.entities, 707
html.parser, 705
http.client, 787
http.cookiejar, 834
http.cookies, 831
http.server, 827

i
imaplib, 798
imghdr, 864
imp, 1087
importlib, 1097
importlib.abc, 1098
importlib.machinery, 1101
importlib.util, 1102
inspect, 1073
io, 373
itertools, 219

j
json, 675

k
keyword, 1115

l
lib2to3, 1013
linecache, 255
locale, 879
logging, 439
logging.config, 452
logging.handlers, 460

m
macpath, 260
mailbox, 681
mailcap, 680
marshal, 276
math, 184
mimetypes, 696

mmap, 593
modulefinder, 1094
msilib (Windows), 1135
msvcrt (Windows), 1140
multiprocessing, 542
multiprocessing.connection, 563
multiprocessing.dummy, 566
multiprocessing.managers, 555
multiprocessing.pool, 561
multiprocessing.sharedctypes, 553

n
netrc, 340
nis (Unix), 1162
nntplib, 803
numbers, 181

o
operator, 234
optparse, 413
os, 349
os.path, 241
ossaudiodev (Linux, FreeBSD), 865

p
parser, 1103
pdb, 1023
pickle, 263
pickletools, 1129
pipes (Unix), 1159
pkgutil, 1092
platform, 488
plistlib, 343
poplib, 796
posix (Unix), 1151
pprint, 175
profile, 1028
pstats, 1031
pty (Linux), 1156
pwd (Unix), 1152
py_compile, 1119
pyclbr, 1118
pydoc, 963

q
queue, 168
quopri, 703

r
random, 215
re, 70
readline (Unix), 596
reprlib, 178
resource (Unix), 1160
rlcompleter, 598
runpy, 1095

s
sched, 166

1196 Python Module Index

The Python Library Reference, Release 3.2

select, 527
shelve, 274
shlex, 922
shutil, 256
signal, 634
site, 1079
smtpd, 813
smtplib, 809
sndhdr, 865
socket, 611
socketserver, 820
spwd (Unix), 1153
sqlite3, 280
ssl, 622
stat, 246
string, 61
stringprep, 116
struct, 86
subprocess, 603
sunau, 858
symbol, 1113
symtable, 1111
sys, 1041
sysconfig, 1051
syslog (Unix), 1163

t
tabnanny, 1117
tarfile, 310
telnetlib, 815
tempfile, 251
termios (Unix), 1154
test, 1013
test.support, 1015
textwrap, 99
threading, 531
time, 383
timeit, 1035
tkinter, 927
tkinter.scrolledtext (Tk), 957
tkinter.tix, 952
tkinter.ttk, 936
token, 1114
tokenize, 1115
trace, 1038
traceback, 1066
tty (Unix), 1156
turtle, 885
types, 174

u
unicodedata, 114
unittest, 985
urllib.error, 785
urllib.parse, 780
urllib.request, 766
urllib.response, 779
urllib.robotparser, 786

uu, 704
uuid, 817

w
warnings, 1055
wave, 860
weakref, 170
webbrowser, 749
winreg (Windows), 1141
winsound (Windows), 1148
wsgiref, 757
wsgiref.handlers, 762
wsgiref.headers, 759
wsgiref.simple_server, 760
wsgiref.util, 758
wsgiref.validate, 762

x
xdrlib, 341
xml.dom, 716
xml.dom.minidom, 726
xml.dom.pulldom, 730
xml.etree.ElementTree, 741
xml.parsers.expat, 708
xml.parsers.expat.errors, 714
xml.parsers.expat.model, 713
xml.sax, 730
xml.sax.handler, 732
xml.sax.saxutils, 736
xml.sax.xmlreader, 737
xmlrpc.client, 842
xmlrpc.server, 848

z
zipfile, 305
zipimport, 1090
zlib, 299

Python Module Index 1197

The Python Library Reference, Release 3.2

1198 Python Module Index

INDEX

Symbols
*

operator, 26
**

operator, 26
+

operator, 26
-

operator, 26
–help

trace command line option, 1038
–ignore-dir=<dir>

trace command line option, 1039
–ignore-module=<mod>

trace command line option, 1039
–version

trace command line option, 1039
-C, –coverdir=<dir>

trace command line option, 1039
-R, –no-report

trace command line option, 1039
-T, –trackcalls

trace command line option, 1039
-a, –annotate

pickletools command line option, 1130
-b

compileall command line option, 1120
-b, –buffer

unittest command line option, 988
-c, –catch

unittest command line option, 988
-c, –clock

timeit command line option, 1037
-c, –count

trace command line option, 1039
-d destdir

compileall command line option, 1120
-f

compileall command line option, 1120
-f, –failfast

unittest command line option, 988
-f, –file=<file>

trace command line option, 1039
-g, –timing

trace command line option, 1039

-h, –help
timeit command line option, 1037

-i list
compileall command line option, 1120

-l
compileall command line option, 1120

-l, –indentlevel=<num>
pickletools command line option, 1130

-l, –listfuncs
trace command line option, 1039

-m, –memo
pickletools command line option, 1130

-m, –missing
trace command line option, 1039

-n N, –number=N
timeit command line option, 1037

-o, –output=<file>
pickletools command line option, 1130

-p pattern
unittest-discover command line option, 989

-p, –preamble=<preamble>
pickletools command line option, 1130

-q
compileall command line option, 1120

-r N, –repeat=N
timeit command line option, 1037

-r, –report
trace command line option, 1039

-s S, –setup=S
timeit command line option, 1037

-s directory
unittest-discover command line option, 988

-s, –summary
trace command line option, 1039

-t directory
unittest-discover command line option, 989

-t, –time
timeit command line option, 1037

-t, –trace
trace command line option, 1039

-v, –verbose
timeit command line option, 1037
unittest-discover command line option, 988

-x regex
compileall command line option, 1120

..., 1167

1199

The Python Library Reference, Release 3.2

.ini
file, 324

.pdbrc
file, 1025

/
operator, 26

//
operator, 26

==
operator, 26

%
operator, 26

% formatting, 38
% interpolation, 38
&

operator, 27
_CData (class in ctypes), 521
_FuncPtr (class in ctypes), 516
_SimpleCData (class in ctypes), 522
__abs__() (in module operator), 235
__add__() (in module operator), 235
__and__() (in module operator), 235
__bases__ (class attribute), 52
__ceil__() (fractions.Fraction method), 214
__class__ (instance attribute), 52
__code__ (function object attribute), 51
__concat__() (in module operator), 236
__contains__() (email.message.Message method), 647,

648
__contains__() (in module operator), 236
__contains__() (mailbox.Mailbox method), 683
__copy__() (copy protocol), 175
__debug__ (built-in variable), 23
__deepcopy__() (copy protocol), 175
__delitem__() (email.message.Message method), 648
__delitem__() (in module operator), 236
__delitem__() (mailbox.MH method), 686
__delitem__() (mailbox.Mailbox method), 682
__dict__ (object attribute), 52
__displayhook__ (in module sys), 1042
__enter__() (contextmanager method), 50
__enter__() (winreg.PyHKEY method), 1148
__eq__() (email.charset.Charset method), 661
__eq__() (email.header.Header method), 660
__eq__() (in module operator), 234
__eq__() (instance method), 26
__excepthook__ (in module sys), 1042
__exit__() (contextmanager method), 50
__exit__() (winreg.PyHKEY method), 1148
__floor__() (fractions.Fraction method), 214
__floordiv__() (in module operator), 235
__format__, 10
__future__, 1169
__future__ (module), 1070
__ge__() (in module operator), 234
__ge__() (instance method), 26
__getitem__() (email.message.Message method), 647
__getitem__() (in module operator), 236

__getitem__() (mailbox.Mailbox method), 682
__getnewargs__() (pickle.object method), 268
__getstate__() (copy protocol), 271
__getstate__() (pickle.object method), 268
__gt__() (in module operator), 234
__gt__() (instance method), 26
__iadd__() (in module operator), 239
__iand__() (in module operator), 239
__iconcat__() (in module operator), 239
__ifloordiv__() (in module operator), 239
__ilshift__() (in module operator), 239
__imod__() (in module operator), 239
__import__() (built-in function), 20
__import__() (in module importlib), 1098
__imul__() (in module operator), 239
__index__() (in module operator), 235
__init__() (difflib.HtmlDiff method), 91
__init__() (logging.Handler method), 442
__inv__() (in module operator), 235
__invert__() (in module operator), 235
__ior__() (in module operator), 239
__ipow__() (in module operator), 239
__irshift__() (in module operator), 239
__isub__() (in module operator), 239
__iter__() (container method), 31
__iter__() (iterator method), 32
__iter__() (mailbox.Mailbox method), 682
__iter__() (unittest.TestSuite method), 1002
__itruediv__() (in module operator), 239
__ixor__() (in module operator), 239
__le__() (in module operator), 234
__le__() (instance method), 26
__len__() (email.message.Message method), 647
__len__() (mailbox.Mailbox method), 683
__lshift__() (in module operator), 235
__lt__() (in module operator), 234
__lt__() (instance method), 26
__main__ (module), 1055
__missing__() (collections.defaultdict method), 150
__mod__() (in module operator), 235
__mro__ (class attribute), 53
__mul__() (in module operator), 235
__name__ (class attribute), 53
__ne__() (email.charset.Charset method), 662
__ne__() (email.header.Header method), 660
__ne__() (in module operator), 234
__ne__() (instance method), 26
__neg__() (in module operator), 235
__next__() (csv.csvreader method), 322
__next__() (iterator method), 32
__not__() (in module operator), 234
__or__() (in module operator), 235
__pos__() (in module operator), 235
__pow__() (in module operator), 235
__reduce__() (pickle.object method), 268
__reduce_ex__() (pickle.object method), 269
__repr__() (multiprocessing.managers.BaseProxy

method), 561

1200 Index

The Python Library Reference, Release 3.2

__repr__() (netrc.netrc method), 340
__round__() (fractions.Fraction method), 214
__rshift__() (in module operator), 235
__setitem__() (email.message.Message method), 647
__setitem__() (in module operator), 236
__setitem__() (mailbox.Mailbox method), 682
__setitem__() (mailbox.Maildir method), 684
__setstate__() (copy protocol), 271
__setstate__() (pickle.object method), 268
__slots__, 1172
__stderr__ (in module sys), 1050
__stdin__ (in module sys), 1050
__stdout__ (in module sys), 1050
__str__() (datetime.date method), 125
__str__() (datetime.datetime method), 130
__str__() (datetime.time method), 133
__str__() (email.charset.Charset method), 661
__str__() (email.header.Header method), 659
__str__() (email.message.Message method), 646
__str__() (multiprocessing.managers.BaseProxy

method), 561
__sub__() (in module operator), 235
__subclasses__() (class method), 53
__subclasshook__() (abc.ABCMeta method), 1063
__truediv__() (in module operator), 236
__xor__() (in module operator), 236
anonymous (ctypes.Structure attribute), 525
_asdict() (collections.somenamedtuple method), 153
_b_base_ (ctypes._CData attribute), 522
_b_needsfree_ (ctypes._CData attribute), 522
_callmethod() (multiprocessing.managers.BaseProxy

method), 560
_clear_type_cache() (in module sys), 1041
_current_frames() (in module sys), 1042
_dummy_thread (module), 601
_exit() (in module os), 366
_fields (ast.AST attribute), 1107
_fields (collections.somenamedtuple attribute), 154
fields (ctypes.Structure attribute), 525
_flush() (wsgiref.handlers.BaseHandler method), 763
_getframe() (in module sys), 1045
_getvalue() (multiprocessing.managers.BaseProxy

method), 561
_handle (ctypes.PyDLL attribute), 516
_locale

module, 879
_make() (collections.somenamedtuple class method),

153
_makeResult() (unittest.TextTestRunner method), 1005
_name (ctypes.PyDLL attribute), 516
_objects (ctypes._CData attribute), 522
pack (ctypes.Structure attribute), 525
_parse() (gettext.NullTranslations method), 873
_replace() (collections.somenamedtuple method), 154
_setroot() (xml.etree.ElementTree.ElementTree

method), 745
_structure() (in module email.iterators), 666
_thread (module), 600

_write() (wsgiref.handlers.BaseHandler method), 763
_xoptions (in module sys), 1051
^

operator, 27
>

operator, 26
>=

operator, 26
>>

operator, 27
>>>, 1167
<

operator, 26
<=

operator, 26
<<

operator, 27
<protocol>_proxy, 768
2to3, 1167

A
A (in module re), 75
A-LAW, 857, 865
a-LAW, 853
a2b_base64() (in module binascii), 701
a2b_hex() (in module binascii), 703
a2b_hqx() (in module binascii), 702
a2b_qp() (in module binascii), 702
a2b_uu() (in module binascii), 701
abc (module), 1062
ABCMeta (class in abc), 1062
abiflags (in module sys), 1041
abort() (ftplib.FTP method), 794
abort() (in module os), 365
abort() (threading.Barrier method), 541
above() (curses.panel.Panel method), 487
abs() (built-in function), 5
abs() (decimal.Context method), 202
abs() (in module operator), 235
abspath() (in module os.path), 241
abstract base class, 1167
AbstractBasicAuthHandler (class in urllib.request), 768
abstractclassmethod() (in module abc), 1064
AbstractDigestAuthHandler (class in urllib.request),

769
AbstractFormatter (class in formatter), 1133
abstractmethod() (in module abc), 1064
abstractproperty() (in module abc), 1065
abstractstaticmethod() (in module abc), 1064
AbstractWriter (class in formatter), 1134
accept() (asyncore.dispatcher method), 639
accept() (multiprocessing.connection.Listener method),

564
accept() (socket.socket method), 616
accept2dyear (in module time), 384
access() (in module os), 358
accumulate() (in module itertools), 220
acos() (in module cmath), 189

Index 1201

The Python Library Reference, Release 3.2

acos() (in module math), 186
acosh() (in module cmath), 189
acosh() (in module math), 187
acquire() (_thread.lock method), 600
acquire() (logging.Handler method), 442
acquire() (threading.Condition method), 537
acquire() (threading.Lock method), 535
acquire() (threading.RLock method), 536
acquire() (threading.Semaphore method), 538
acquire_lock() (in module imp), 1088
action (optparse.Option attribute), 425
ACTIONS (optparse.Option attribute), 436
active_children() (in module multiprocessing), 550
active_count() (in module threading), 531
add() (decimal.Context method), 202
add() (in module audioop), 853
add() (in module operator), 235
add() (mailbox.Mailbox method), 681
add() (mailbox.Maildir method), 684
add() (msilib.RadioButtonGroup method), 1139
add() (pstats.Stats method), 1032
add() (set method), 44
add() (tarfile.TarFile method), 313
add() (tkinter.ttk.Notebook method), 942
add_alias() (in module email.charset), 662
add_argument() (argparse.ArgumentParser method),

396
add_argument_group() (argparse.ArgumentParser

method), 410
add_cgi_vars() (wsgiref.handlers.BaseHandler

method), 764
add_charset() (in module email.charset), 662
add_codec() (in module email.charset), 662
add_cookie_header() (http.cookiejar.CookieJar

method), 835
add_data() (in module msilib), 1135
add_data() (urllib.request.Request method), 769
add_done_callback() (concurrent.futures.Future

method), 592
add_fallback() (gettext.NullTranslations method), 873
add_file() (msilib.Directory method), 1138
add_flag() (mailbox.MaildirMessage method), 689
add_flag() (mailbox.mboxMessage method), 691
add_flag() (mailbox.MMDFMessage method), 694
add_flowing_data() (formatter.formatter method), 1132
add_folder() (mailbox.Maildir method), 684
add_folder() (mailbox.MH method), 686
add_handler() (urllib.request.OpenerDirector method),

770
add_header() (email.message.Message method), 648
add_header() (urllib.request.Request method), 770
add_header() (wsgiref.headers.Headers method), 760
add_history() (in module readline), 598
add_hor_rule() (formatter.formatter method), 1131
add_label() (mailbox.BabylMessage method), 693
add_label_data() (formatter.formatter method), 1132
add_line_break() (formatter.formatter method), 1131
add_literal_data() (formatter.formatter method), 1132

add_mutually_exclusive_group() (in module argparse),
411

add_option() (optparse.OptionParser method), 424
add_parent() (urllib.request.BaseHandler method), 771
add_password() (urllib.request.HTTPPasswordMgr

method), 773
add_section() (configparser.ConfigParser method), 336
add_section() (configparser.RawConfigParser method),

339
add_sequence() (mailbox.MHMessage method), 692
add_stream() (in module msilib), 1136
add_subparsers() (argparse.ArgumentParser method),

407
add_tables() (in module msilib), 1136
add_type() (in module mimetypes), 697
add_unredirected_header() (urllib.request.Request

method), 770
addch() (curses.window method), 475
addCleanup() (unittest.TestCase method), 1000
addcomponent() (turtle.Shape method), 912
addError() (unittest.TestResult method), 1004
addExpectedFailure() (unittest.TestResult method),

1005
addFailure() (unittest.TestResult method), 1005
addfile() (tarfile.TarFile method), 313
addFilter() (logging.Handler method), 443
addFilter() (logging.Logger method), 442
addHandler() (logging.Logger method), 442
addLevelName() (in module logging), 450
addnstr() (curses.window method), 475
AddPackagePath() (in module modulefinder), 1094
addr (smtpd.SMTPChannel attribute), 814
address (multiprocessing.connection.Listener at-

tribute), 564
address (multiprocessing.managers.BaseManager at-

tribute), 557
address_family (socketserver.BaseServer attribute), 822
address_string() (http.server.BaseHTTPRequestHandler

method), 829
addressof() (in module ctypes), 519
addshape() (in module turtle), 910
addsitedir() (in module site), 1080
addSkip() (unittest.TestResult method), 1005
addstr() (curses.window method), 475
addSuccess() (unittest.TestResult method), 1005
addTest() (unittest.TestSuite method), 1001
addTests() (unittest.TestSuite method), 1001
addTypeEqualityFunc() (unittest.TestCase method),

999
addUnexpectedSuccess() (unittest.TestResult method),

1005
adjusted() (decimal.Decimal method), 195
adler32() (in module zlib), 299
ADPCM, Intel/DVI, 853
adpcm2lin() (in module audioop), 853
AES

algorithm, 347
AF_INET (in module socket), 612

1202 Index

The Python Library Reference, Release 3.2

AF_INET6 (in module socket), 612
AF_UNIX (in module socket), 612
aifc (module), 856
aifc() (aifc.aifc method), 857
AIFF, 856, 862
aiff() (aifc.aifc method), 857
AIFF-C, 856, 862
alarm() (in module signal), 636
alaw2lin() (in module audioop), 853
algorithm

AES, 347
algorithms_available (in module hashlib), 346
algorithms_guaranteed (in module hashlib), 346
alias (pdb command), 1028
alignment() (in module ctypes), 519
all() (built-in function), 5
all_errors (in module ftplib), 793
all_features (in module xml.sax.handler), 733
all_properties (in module xml.sax.handler), 733
allocate_lock() (in module _thread), 600
allow_reuse_address (socketserver.BaseServer at-

tribute), 822
allowed_domains() (http.cookiejar.DefaultCookiePolicy

method), 839
alt() (in module curses.ascii), 487
ALT_DIGITS (in module locale), 881
altsep (in module os), 373
altzone (in module time), 384
ALWAYS_TYPED_ACTIONS (optparse.Option

attribute), 436
AMPER (in module token), 1114
AMPEREQUAL (in module token), 1114
and

operator, 25
and_() (in module operator), 235
answerChallenge() (in module multiprocess-

ing.connection), 563
any() (built-in function), 5
api_version (in module sys), 1051
apop() (poplib.POP3 method), 797
append() (array.array method), 165
append() (collections.deque method), 148
append() (email.header.Header method), 659
append() (imaplib.IMAP4 method), 799
append() (msilib.CAB method), 1138
append() (pipes.Template method), 1160
append() (sequence method), 40
append() (xml.etree.ElementTree.Element method),

743
appendChild() (xml.dom.Node method), 719
appendleft() (collections.deque method), 148
application_uri() (in module wsgiref.util), 758
apply (2to3 fixer), 1010
apply() (multiprocessing.pool.multiprocessing.Pool

method), 561
apply_async() (multiprocess-

ing.pool.multiprocessing.Pool method),
561

architecture() (in module platform), 488
archive (zipimport.zipimporter attribute), 1091
aRepr (in module reprlib), 178
argparse (module), 388
args (BaseException attribute), 55
args (functools.partial attribute), 234
args (pdb command), 1027
argtypes (ctypes._FuncPtr attribute), 517
argument, 1167
ArgumentError, 517
ArgumentParser (class in argparse), 390
argv (in module sys), 1041
arithmetic, 26
ArithmeticError, 55
array (class in array), 164
array (module), 164
Array() (in module multiprocessing), 553
Array() (in module multiprocessing.sharedctypes), 554
Array() (multiprocessing.managers.SyncManager

method), 557
arrays, 164
article() (nntplib.NNTP method), 807
as_completed() (in module concurrent.futures), 593
as_integer_ratio() (float method), 29
AS_IS (in module formatter), 1131
as_string() (email.message.Message method), 646
as_tuple() (decimal.Decimal method), 195
ASCII (in module re), 75
ascii() (built-in function), 5
ascii() (in module curses.ascii), 486
ascii_letters (in module string), 61
ascii_lowercase (in module string), 61
ascii_uppercase (in module string), 61
asctime() (in module time), 384
asin() (in module cmath), 189
asin() (in module math), 186
asinh() (in module cmath), 189
asinh() (in module math), 187
assert

statement, 56
assert_line_data() (formatter.formatter method), 1133
assertAlmostEqual() (unittest.TestCase method), 998
assertCountEqual() (unittest.TestCase method), 998
assertDictContainsSubset() (unittest.TestCase method),

998
assertDictEqual() (unittest.TestCase method), 1000
assertEqual() (unittest.TestCase method), 995
assertFalse() (unittest.TestCase method), 995
assertGreater() (unittest.TestCase method), 998
assertGreaterEqual() (unittest.TestCase method), 998
assertIn() (unittest.TestCase method), 995
AssertionError, 56
assertIs() (unittest.TestCase method), 995
assertIsInstance() (unittest.TestCase method), 996
assertIsNone() (unittest.TestCase method), 995
assertIsNot() (unittest.TestCase method), 995
assertIsNotNone() (unittest.TestCase method), 995
assertLess() (unittest.TestCase method), 998

Index 1203

The Python Library Reference, Release 3.2

assertLessEqual() (unittest.TestCase method), 998
assertListEqual() (unittest.TestCase method), 999
assertMultiLineEqual() (unittest.TestCase method), 999
assertNotAlmostEqual() (unittest.TestCase method),

998
assertNotEqual() (unittest.TestCase method), 995
assertNotIn() (unittest.TestCase method), 995
assertNotIsInstance() (unittest.TestCase method), 996
assertNotRegex() (unittest.TestCase method), 998
assertRaises() (unittest.TestCase method), 996
assertRaisesRegex() (unittest.TestCase method), 996
assertRegex() (unittest.TestCase method), 998
assertSameElements() (unittest.TestCase method), 999
assertSequenceEqual() (unittest.TestCase method), 999
assertSetEqual() (unittest.TestCase method), 999
assertTrue() (unittest.TestCase method), 995
assertTupleEqual() (unittest.TestCase method), 999
assertWarns() (unittest.TestCase method), 997
assertWarnsRegex() (unittest.TestCase method), 997
assignment

slice, 40
subscript, 40

AST (class in ast), 1107
ast (module), 1107
astimezone() (datetime.datetime method), 129
async_chat (class in asynchat), 641
async_chat.ac_in_buffer_size (in module asynchat),

641
async_chat.ac_out_buffer_size (in module asynchat),

641
asynchat (module), 641
asyncore (module), 637
AsyncResult (class in multiprocessing.pool), 562
AT (in module token), 1114
atan() (in module cmath), 189
atan() (in module math), 186
atan2() (in module math), 186
atanh() (in module cmath), 189
atanh() (in module math), 187
atexit (module), 1065
atof() (in module locale), 883
atoi() (in module locale), 883
attach() (email.message.Message method), 646
AttlistDeclHandler() (xml.parsers.expat.xmlparser

method), 711
attrgetter() (in module operator), 236
attrib (xml.etree.ElementTree.Element attribute), 743
attribute, 1167
AttributeError, 56
attributes (xml.dom.Node attribute), 718
AttributesImpl (class in xml.sax.xmlreader), 738
AttributesNSImpl (class in xml.sax.xmlreader), 738
attroff() (curses.window method), 475
attron() (curses.window method), 475
attrset() (curses.window method), 475
Audio Interchange File Format, 856, 862
AUDIO_FILE_ENCODING_ADPCM_G721 (in mod-

ule sunau), 859

AUDIO_FILE_ENCODING_ADPCM_G722 (in mod-
ule sunau), 859

AUDIO_FILE_ENCODING_ADPCM_G723_3 (in
module sunau), 859

AUDIO_FILE_ENCODING_ADPCM_G723_5 (in
module sunau), 859

AUDIO_FILE_ENCODING_ALAW_8 (in module
sunau), 858

AUDIO_FILE_ENCODING_DOUBLE (in module
sunau), 859

AUDIO_FILE_ENCODING_FLOAT (in module
sunau), 859

AUDIO_FILE_ENCODING_LINEAR_16 (in module
sunau), 858

AUDIO_FILE_ENCODING_LINEAR_24 (in module
sunau), 858

AUDIO_FILE_ENCODING_LINEAR_32 (in module
sunau), 858

AUDIO_FILE_ENCODING_LINEAR_8 (in module
sunau), 858

AUDIO_FILE_ENCODING_MULAW_8 (in module
sunau), 858

AUDIO_FILE_MAGIC (in module sunau), 858
AUDIODEV, 866
audioop (module), 853
auth() (ftplib.FTP_TLS method), 796
authenticate() (imaplib.IMAP4 method), 799
AuthenticationError, 564
authenticators() (netrc.netrc method), 340
authkey (multiprocessing.Process attribute), 547
avg() (in module audioop), 853
avgpp() (in module audioop), 853

B
b16decode() (in module base64), 700
b16encode() (in module base64), 700
b2a_base64() (in module binascii), 702
b2a_hex() (in module binascii), 702
b2a_hqx() (in module binascii), 702
b2a_qp() (in module binascii), 702
b2a_uu() (in module binascii), 701
b32decode() (in module base64), 699
b32encode() (in module base64), 699
b64decode() (in module base64), 699
b64encode() (in module base64), 699
Babyl (class in mailbox), 687
BabylMessage (class in mailbox), 692
back() (in module turtle), 890
BACKQUOTE (in module token), 1114
backslashreplace_errors() (in module codecs), 104
backward() (in module turtle), 890
BadStatusLine, 788
BadZipFile, 305
BadZipfile, 305
Balloon (class in tkinter.tix), 953
Barrier (class in threading), 540
base64

encoding, 699

1204 Index

The Python Library Reference, Release 3.2

module, 701
base64 (module), 699
BaseCGIHandler (class in wsgiref.handlers), 763
BaseCookie (class in http.cookies), 831
BaseException, 55
BaseHandler (class in urllib.request), 768
BaseHandler (class in wsgiref.handlers), 763
BaseHTTPRequestHandler (class in http.server), 827
BaseManager (class in multiprocessing.managers), 555
basename() (in module os.path), 241
BaseProxy (class in multiprocessing.managers), 560
BaseServer (class in socketserver), 822
basestring (2to3 fixer), 1010
basicConfig() (in module logging), 450
BasicContext (class in decimal), 200
BasicInterpolation (class in configparser), 328
baudrate() (in module curses), 470
bbox() (tkinter.ttk.Treeview method), 946
bdb

module, 1023
Bdb (class in bdb), 1020
bdb (module), 1019
BdbQuit, 1019
BDFL, 1167
beep() (in module curses), 470
Beep() (in module winsound), 1149
begin_fill() (in module turtle), 899
begin_poly() (in module turtle), 904
below() (curses.panel.Panel method), 487
Benchmarking, 1035
benchmarking, 384
betavariate() (in module random), 216
bgcolor() (in module turtle), 905
bgpic() (in module turtle), 906
bias() (in module audioop), 853
bidirectional() (in module unicodedata), 115
BigEndianStructure (class in ctypes), 524
bin() (built-in function), 5
binary

data, packing, 86
literals, 26

Binary (class in msilib), 1136
binary mode, 15
binary semaphores, 600
BINARY_ADD (opcode), 1124
BINARY_AND (opcode), 1124
BINARY_FLOOR_DIVIDE (opcode), 1124
BINARY_LSHIFT (opcode), 1124
BINARY_MODULO (opcode), 1124
BINARY_MULTIPLY (opcode), 1124
BINARY_OR (opcode), 1124
BINARY_POWER (opcode), 1124
BINARY_RSHIFT (opcode), 1124
BINARY_SUBSCR (opcode), 1124
BINARY_SUBTRACT (opcode), 1124
BINARY_TRUE_DIVIDE (opcode), 1124
BINARY_XOR (opcode), 1124
binascii (module), 701

bind (widgets), 935
bind() (asyncore.dispatcher method), 639
bind() (socket.socket method), 616
bind_textdomain_codeset() (in module gettext), 871
bindtextdomain() (in module gettext), 871
binhex

module, 701
binhex (module), 701
binhex() (in module binhex), 701
bisect (module), 162
bisect() (in module bisect), 162
bisect_left() (in module bisect), 162
bisect_right() (in module bisect), 162
bit-string

operations, 27
bit_length() (int method), 28
bitmap() (msilib.Dialog method), 1139
bk() (in module turtle), 890
bkgd() (curses.window method), 475
bkgdset() (curses.window method), 475
blocked_domains() (http.cookiejar.DefaultCookiePolicy

method), 839
BlockingIOError, 374
body() (nntplib.NNTP method), 808
body_encode() (email.charset.Charset method), 661
body_encoding (email.charset.Charset attribute), 661
body_line_iterator() (in module email.iterators), 665
BOM (in module codecs), 104
BOM_BE (in module codecs), 104
BOM_LE (in module codecs), 104
BOM_UTF16 (in module codecs), 104
BOM_UTF16_BE (in module codecs), 104
BOM_UTF16_LE (in module codecs), 104
BOM_UTF32 (in module codecs), 104
BOM_UTF32_BE (in module codecs), 104
BOM_UTF32_LE (in module codecs), 104
BOM_UTF8 (in module codecs), 104
bool() (built-in function), 6
Boolean

object, 26
operations, 25
type, 6
values, 52

BOOLEAN_STATES (in module configparser), 333
border() (curses.window method), 475
bottom() (curses.panel.Panel method), 488
bottom_panel() (in module curses.panel), 487
BoundaryError, 663
BoundedSemaphore (class in multiprocessing), 552
BoundedSemaphore() (in module threading), 532
BoundedSemaphore() (multiprocess-

ing.managers.SyncManager method), 557
box() (curses.window method), 476
bpformat() (bdb.Breakpoint method), 1019
bpprint() (bdb.Breakpoint method), 1020
break (pdb command), 1026
break_anywhere() (bdb.Bdb method), 1021
break_here() (bdb.Bdb method), 1021

Index 1205

The Python Library Reference, Release 3.2

break_long_words (textwrap.TextWrapper attribute),
101

BREAK_LOOP (opcode), 1125
break_on_hyphens (textwrap.TextWrapper attribute),

101
Breakpoint (class in bdb), 1019
broken (threading.Barrier attribute), 541
BrokenBarrierError, 541
BROWSER, 749, 750
BsdDbShelf (class in shelve), 275
buffer (2to3 fixer), 1010
buffer (io.TextIOBase attribute), 380
buffer (unittest.TestResult attribute), 1004
buffer size, I/O, 15
buffer_info() (array.array method), 165
buffer_size (xml.parsers.expat.xmlparser attribute), 710
buffer_text (xml.parsers.expat.xmlparser attribute), 710
buffer_used (xml.parsers.expat.xmlparser attribute),

710
BufferedIOBase (class in io), 377
BufferedRandom (class in io), 380
BufferedReader (class in io), 379
BufferedRWPair (class in io), 380
BufferedWriter (class in io), 379
BufferError, 55
BufferingHandler (class in logging.handlers), 466
BufferTooShort, 548
bufsize() (ossaudiodev.oss_audio_device method), 868
BUILD_LIST (opcode), 1127
BUILD_MAP (opcode), 1127
build_opener() (in module urllib.request), 767
BUILD_SET (opcode), 1127
BUILD_SLICE (opcode), 1129
BUILD_TUPLE (opcode), 1127
built-in

types, 25
built-in function

compile, 51, 174, 1105
complex, 26
eval, 52, 177, 1105
exec, 52, 1105
float, 26
int, 26
len, 33, 45
max, 33
min, 33
slice, 1129
type, 52

builtin_module_names (in module sys), 1041
BuiltinFunctionType (in module types), 174
BuiltinImporter (class in importlib.machinery), 1101
BuiltinMethodType (in module types), 174
builtins (module), 1055
ButtonBox (class in tkinter.tix), 953
bye() (in module turtle), 911
byref() (in module ctypes), 519
byte-code

file, 1087, 1119

bytearray
methods, 41
object, 32, 40

bytearray() (built-in function), 6
bytecode, 1167
bytecode_path() (importlib.abc.PyPycLoader method),

1101
byteorder (in module sys), 1041
bytes

methods, 41
object, 32

bytes (uuid.UUID attribute), 818
bytes() (built-in function), 6
bytes_le (uuid.UUID attribute), 818
BytesFeedParser (class in email.parser), 652
BytesGenerator (class in email.generator), 655
BytesIO (class in io), 379
BytesParser (class in email.parser), 653
byteswap() (array.array method), 165
BytesWarning, 59
bz2 (module), 303
BZ2Compressor (class in bz2), 304
BZ2Decompressor (class in bz2), 304
BZ2File (class in bz2), 303

C
C

language, 26, 27
structures, 86

c_bool (class in ctypes), 524
C_BUILTIN (in module imp), 1089
c_byte (class in ctypes), 523
c_char (class in ctypes), 523
c_char_p (class in ctypes), 523
c_double (class in ctypes), 523
C_EXTENSION (in module imp), 1089
c_float (class in ctypes), 523
c_int (class in ctypes), 523
c_int16 (class in ctypes), 523
c_int32 (class in ctypes), 523
c_int64 (class in ctypes), 523
c_int8 (class in ctypes), 523
c_long (class in ctypes), 523
c_longdouble (class in ctypes), 523
c_longlong (class in ctypes), 523
c_short (class in ctypes), 523
c_size_t (class in ctypes), 523
c_ssize_t (class in ctypes), 523
c_ubyte (class in ctypes), 523
c_uint (class in ctypes), 523
c_uint16 (class in ctypes), 524
c_uint32 (class in ctypes), 524
c_uint64 (class in ctypes), 524
c_uint8 (class in ctypes), 524
c_ulong (class in ctypes), 524
c_ulonglong (class in ctypes), 524
c_ushort (class in ctypes), 524
c_void_p (class in ctypes), 524

1206 Index

The Python Library Reference, Release 3.2

c_wchar (class in ctypes), 524
c_wchar_p (class in ctypes), 524
CAB (class in msilib), 1138
cache_from_source() (in module imp), 1089
CacheFTPHandler (class in urllib.request), 769
calcsize() (in module struct), 86
Calendar (class in calendar), 142
calendar (module), 142
calendar() (in module calendar), 144
call() (in module subprocess), 606
CALL_FUNCTION (opcode), 1128
CALL_FUNCTION_KW (opcode), 1129
CALL_FUNCTION_VAR (opcode), 1129
CALL_FUNCTION_VAR_KW (opcode), 1129
call_tracing() (in module sys), 1041
callable (2to3 fixer), 1010
callable() (built-in function), 6
CallableProxyType (in module weakref), 172
callback (optparse.Option attribute), 426
callback_args (optparse.Option attribute), 426
callback_kwargs (optparse.Option attribute), 426
can_change_color() (in module curses), 470
can_fetch() (urllib.robotparser.RobotFileParser

method), 786
cancel() (concurrent.futures.Future method), 591
cancel() (sched.scheduler method), 167
cancel() (threading.Timer method), 540
cancel_join_thread() (multiprocessing.Queue method),

549
cancelled() (concurrent.futures.Future method), 592
CannotSendHeader, 788
CannotSendRequest, 788
canonic() (bdb.Bdb method), 1020
canonical() (decimal.Context method), 202
canonical() (decimal.Decimal method), 195
capitalize() (str method), 34
captured_stdout() (in module test.support), 1017
captureWarnings() (in module logging), 451
capwords() (in module string), 70
cast() (in module ctypes), 519
cat() (in module nis), 1163
catch_warnings (class in warnings), 1060
category() (in module unicodedata), 115
cbreak() (in module curses), 470
CDLL (class in ctypes), 514
ceil() (in module math), 27, 184
center() (str method), 34
CERT_NONE (in module ssl), 625
CERT_OPTIONAL (in module ssl), 625
CERT_REQUIRED (in module ssl), 625
cert_time_to_seconds() (in module ssl), 625
CertificateError, 623
certificates, 629
CFUNCTYPE() (in module ctypes), 517
CGI

debugging, 756
exceptions, 757
protocol, 751

security, 755
tracebacks, 757

cgi (module), 751
cgi_directories (http.server.CGIHTTPRequestHandler

attribute), 831
CGIHandler (class in wsgiref.handlers), 762
CGIHTTPRequestHandler (class in http.server), 830
cgitb (module), 757
CGIXMLRPCRequestHandler (class in xmlrpc.server),

849
chain() (in module itertools), 221
chaining

comparisons, 26
channel_class (smtpd.SMTPServer attribute), 814
channels() (ossaudiodev.oss_audio_device method),

867
CHAR_MAX (in module locale), 883
character, 114
CharacterDataHandler() (xml.parsers.expat.xmlparser

method), 711
characters() (xml.sax.handler.ContentHandler method),

735
characters_written (io.BlockingIOError attribute), 374
Charset (class in email.charset), 660
charset() (gettext.NullTranslations method), 874
chdir() (in module os), 358
check() (imaplib.IMAP4 method), 800
check() (in module tabnanny), 1117
check_call() (in module subprocess), 606
check_output() (doctest.OutputChecker method), 981
check_output() (in module subprocess), 606
check_unused_args() (string.Formatter method), 63
check_warnings() (in module test.support), 1016
checkbox() (msilib.Dialog method), 1139
checkcache() (in module linecache), 256
checkfuncname() (in module bdb), 1023
CheckList (class in tkinter.tix), 954
checksum

Cyclic Redundancy Check, 300
chflags() (in module os), 358
chgat() (curses.window method), 476
childNodes (xml.dom.Node attribute), 719
chmod() (in module os), 359
choice() (in module random), 216
choices (optparse.Option attribute), 426
chown() (in module os), 359
chr() (built-in function), 6
chroot() (in module os), 359
Chunk (class in chunk), 863
chunk (module), 862
cipher

DES, 1154
cipher() (ssl.SSLSocket method), 628
circle() (in module turtle), 892
CIRCUMFLEX (in module token), 1114
CIRCUMFLEXEQUAL (in module token), 1114
Clamped (class in decimal), 205
class, 1167

Index 1207

The Python Library Reference, Release 3.2

Class (class in symtable), 1112
Class browser, 957
classmethod() (built-in function), 6
clean() (mailbox.Maildir method), 684
cleandoc() (in module inspect), 1076
clear (pdb command), 1026
clear() (collections.deque method), 148
clear() (curses.window method), 476
clear() (dict method), 46
clear() (http.cookiejar.CookieJar method), 836
clear() (in module turtle), 899, 906
clear() (mailbox.Mailbox method), 683
clear() (set method), 44
clear() (threading.Event method), 539
clear() (xml.etree.ElementTree.Element method), 743
clear_all_breaks() (bdb.Bdb method), 1022
clear_all_file_breaks() (bdb.Bdb method), 1022
clear_bpbynumber() (bdb.Bdb method), 1022
clear_break() (bdb.Bdb method), 1022
clear_flags() (decimal.Context method), 201
clear_history() (in module readline), 596
clear_session_cookies() (http.cookiejar.CookieJar

method), 836
clearcache() (in module linecache), 256
ClearData() (msilib.Record method), 1137
clearok() (curses.window method), 476
clearscreen() (in module turtle), 906
clearstamp() (in module turtle), 893
clearstamps() (in module turtle), 893
Client() (in module multiprocessing.connection), 563
client_address (http.server.BaseHTTPRequestHandler

attribute), 827
clock() (in module time), 384
clone() (email.generator.BytesGenerator method), 656
clone() (email.generator.Generator method), 655
clone() (in module turtle), 904
clone() (pipes.Template method), 1159
cloneNode() (xml.dom.Node method), 720
close() (aifc.aifc method), 857, 858
close() (asyncore.dispatcher method), 639
close() (bz2.BZ2File method), 303
close() (chunk.Chunk method), 863
close() (email.parser.FeedParser method), 652
close() (ftplib.FTP method), 795
close() (html.parser.HTMLParser method), 706
close() (http.client.HTTPConnection method), 790
close() (imaplib.IMAP4 method), 800
close() (in module fileinput), 245
close() (in module mmap), 595
close() (in module os), 354
close() (io.IOBase method), 376
close() (logging.FileHandler method), 461
close() (logging.Handler method), 443
close() (logging.handlers.MemoryHandler method),

467
close() (logging.handlers.NTEventLogHandler

method), 465
close() (logging.handlers.SocketHandler method), 463

close() (logging.handlers.SysLogHandler method), 464
close() (mailbox.Mailbox method), 683
close() (mailbox.Maildir method), 685
close() (mailbox.MH method), 687
Close() (msilib.View method), 1137
close() (multiprocessing.Connection method), 551
close() (multiprocessing.connection.Listener method),

564
close() (multiprocessing.pool.multiprocessing.Pool

method), 562
close() (multiprocessing.Queue method), 549
close() (ossaudiodev.oss_audio_device method), 866
close() (ossaudiodev.oss_mixer_device method), 868
close() (select.epoll method), 528
close() (select.kqueue method), 530
close() (shelve.Shelf method), 274
close() (socket.socket method), 617
close() (sqlite3.Connection method), 284
close() (sunau.AU_read method), 859
close() (sunau.AU_write method), 860
close() (tarfile.TarFile method), 314
close() (telnetlib.Telnet method), 816
close() (urllib.request.BaseHandler method), 771
close() (wave.Wave_read method), 861
close() (wave.Wave_write method), 862
Close() (winreg.PyHKEY method), 1148
close() (xml.etree.ElementTree.TreeBuilder method),

746
close() (xml.etree.ElementTree.XMLParser method),

746
close() (xml.sax.xmlreader.IncrementalParser method),

739
close() (zipfile.ZipFile method), 306
close_when_done() (asynchat.async_chat method), 641
closed (in module mmap), 595
closed (io.IOBase attribute), 376
closed (ossaudiodev.oss_audio_device attribute), 868
CloseKey() (in module winreg), 1141
closelog() (in module syslog), 1163
closerange() (in module os), 354
closing() (in module contextlib), 1061
clrtobot() (curses.window method), 476
clrtoeol() (curses.window method), 476
cmath (module), 188
cmd

module, 1023
Cmd (class in cmd), 917
cmd (module), 917
cmdloop() (cmd.Cmd method), 918
cmp() (in module filecmp), 249
cmp_op (in module dis), 1123
cmp_to_key() (in module functools), 230
cmpfiles() (in module filecmp), 249
code

object, 51, 276
code (module), 1083
code (urllib.error.HTTPError attribute), 786
code (xml.parsers.expat.ExpatError attribute), 712

1208 Index

The Python Library Reference, Release 3.2

code_info() (in module dis), 1122
Codecs, 102

decode, 102
encode, 102

codecs (module), 102
coded_value (http.cookies.Morsel attribute), 832
codeop (module), 1085
codepoint2name (in module html.entities), 708
codes (in module xml.parsers.expat.errors), 714
CODESET (in module locale), 880
CodeType (in module types), 174
coercion, 1167
col_offset (ast.AST attribute), 1107
collapse_rfc2231_value() (in module email.utils), 665
collect() (in module gc), 1071
collect_incoming_data() (asynchat.async_chat

method), 641
collections (module), 145
COLON (in module token), 1114
color() (in module turtle), 898
color_content() (in module curses), 470
color_pair() (in module curses), 470
colormode() (in module turtle), 910
colorsys (module), 863
column() (tkinter.ttk.Treeview method), 946
COLUMNS, 475
combinations() (in module itertools), 221
combinations_with_replacement() (in module iter-

tools), 222
combine() (datetime.datetime class method), 127
combining() (in module unicodedata), 115
ComboBox (class in tkinter.tix), 953
Combobox (class in tkinter.ttk), 940
COMMA (in module token), 1114
command (http.server.BaseHTTPRequestHandler at-

tribute), 827
CommandCompiler (class in codeop), 1085
commands (pdb command), 1026
comment (http.cookiejar.Cookie attribute), 840
COMMENT (in module tokenize), 1116
comment (zipfile.ZipFile attribute), 308
comment (zipfile.ZipInfo attribute), 309
Comment() (in module xml.etree.ElementTree), 741
comment_url (http.cookiejar.Cookie attribute), 841
commenters (shlex.shlex attribute), 923
CommentHandler() (xml.parsers.expat.xmlparser

method), 712
commit() (msilib.CAB method), 1138
Commit() (msilib.Database method), 1136
commit() (sqlite3.Connection method), 284
common (filecmp.dircmp attribute), 250
Common Gateway Interface, 751
common_dirs (filecmp.dircmp attribute), 250
common_files (filecmp.dircmp attribute), 250
common_funny (filecmp.dircmp attribute), 250
common_types (in module mimetypes), 698
common_types (mimetypes.MimeTypes attribute), 698
commonprefix() (in module os.path), 241

communicate() (subprocess.Popen method), 607
compare() (decimal.Context method), 202
compare() (decimal.Decimal method), 195
compare() (difflib.Differ method), 97
COMPARE_OP (opcode), 1127
compare_signal() (decimal.Context method), 202
compare_signal() (decimal.Decimal method), 195
compare_total() (decimal.Context method), 202
compare_total() (decimal.Decimal method), 195
compare_total_mag() (decimal.Context method), 202
compare_total_mag() (decimal.Decimal method), 195
comparing

objects, 26
comparison

operator, 26
COMPARISON_FLAGS (in module doctest), 971
comparisons

chaining, 26
compile

built-in function, 51, 174, 1105
Compile (class in codeop), 1085
compile() (built-in function), 7
compile() (in module py_compile), 1119
compile() (in module re), 75
compile() (parser.ST method), 1106
compile_command() (in module code), 1083
compile_command() (in module codeop), 1085
compile_dir() (in module compileall), 1120
compile_file() (in module compileall), 1121
compile_path() (in module compileall), 1121
compileall (module), 1120
compileall command line option

-b, 1120
-d destdir, 1120
-f, 1120
-i list, 1120
-l, 1120
-q, 1120
-x regex, 1120

compilest() (in module parser), 1105
complete() (rlcompleter.Completer method), 599
complete_statement() (in module sqlite3), 283
completedefault() (cmd.Cmd method), 918
complex

built-in function, 26
Complex (class in numbers), 181
complex number, 1167

literals, 26
object, 26

complex() (built-in function), 7
compress() (bz2.BZ2Compressor method), 304
compress() (in module bz2), 305
compress() (in module gzip), 302
compress() (in module itertools), 222
compress() (in module zlib), 299
compress() (zlib.Compress method), 300
compress_size (zipfile.ZipInfo attribute), 309
compress_type (zipfile.ZipInfo attribute), 309

Index 1209

The Python Library Reference, Release 3.2

CompressionError, 311
compressobj() (in module zlib), 299
COMSPEC, 370, 604
concat() (in module operator), 236
concatenation

operation, 33
concurrent.futures (module), 589
Condition (class in multiprocessing), 552
Condition (class in threading), 537
condition (pdb command), 1026
condition() (msilib.Control method), 1139
Condition() (multiprocessing.managers.SyncManager

method), 557
ConfigParser (class in configparser), 336
configparser (module), 324
configuration

file, 324
file, debugger, 1025
file, path, 1080

configuration information, 1051
configure() (tkinter.ttk.Style method), 949
confstr() (in module os), 372
confstr_names (in module os), 372
conjugate() (complex number method), 27
conjugate() (decimal.Decimal method), 195
conjugate() (numbers.Complex method), 181
conn (smtpd.SMTPChannel attribute), 814
connect() (asyncore.dispatcher method), 639
connect() (ftplib.FTP method), 794
connect() (http.client.HTTPConnection method), 790
connect() (in module sqlite3), 282
connect() (multiprocessing.managers.BaseManager

method), 556
connect() (smtplib.SMTP method), 810
connect() (socket.socket method), 617
connect_ex() (socket.socket method), 617
Connection (class in multiprocessing), 551
Connection (class in sqlite3), 283
ConnectRegistry() (in module winreg), 1141
const (optparse.Option attribute), 425
constructor() (in module copyreg), 273
container

iteration over, 31
contains() (in module operator), 236
content type

MIME, 696
ContentHandler (class in xml.sax.handler), 732
ContentTooShortError, 786
Context (class in decimal), 200
context (ssl.SSLSocket attribute), 628
context management protocol, 50
context manager, 50, 1168
context_diff() (in module difflib), 91
ContextDecorator (class in contextlib), 1061
contextlib (module), 1060
contextmanager() (in module contextlib), 1060
continue (pdb command), 1027
CONTINUE_LOOP (opcode), 1125

Control (class in msilib), 1139
Control (class in tkinter.tix), 953
control() (msilib.Dialog method), 1139
control() (select.kqueue method), 530
controlnames (in module curses.ascii), 487
controls() (ossaudiodev.oss_mixer_device method),

868
ConversionError, 343
conversions

numeric, 27
convert_arg_line_to_args() (argparse.ArgumentParser

method), 412
convert_field() (string.Formatter method), 63
Cookie (class in http.cookiejar), 835
CookieError, 831
CookieJar (class in http.cookiejar), 834
cookiejar (urllib.request.HTTPCookieProcessor at-

tribute), 773
CookiePolicy (class in http.cookiejar), 835
Coordinated Universal Time, 383
copy

module, 273
protocol, 268

copy (module), 174
copy() (decimal.Context method), 201
copy() (dict method), 46
copy() (hashlib.hash method), 346
copy() (hmac.hmac method), 347
copy() (imaplib.IMAP4 method), 800
copy() (in module copy), 175
copy() (in module multiprocessing.sharedctypes), 554
copy() (in module shutil), 257
copy() (pipes.Template method), 1160
copy() (set method), 43
copy() (zlib.Compress method), 300
copy() (zlib.Decompress method), 301
copy2() (in module shutil), 257
copy_abs() (decimal.Context method), 202
copy_abs() (decimal.Decimal method), 195
copy_decimal() (decimal.Context method), 201
copy_location() (in module ast), 1110
copy_negate() (decimal.Context method), 202
copy_negate() (decimal.Decimal method), 195
copy_sign() (decimal.Context method), 202
copy_sign() (decimal.Decimal method), 195
copyfile() (in module shutil), 256
copyfileobj() (in module shutil), 256
copying files, 256
copymode() (in module shutil), 256
copyreg (module), 273
copyright (built-in variable), 23
copyright (in module sys), 1041
copysign() (in module math), 184
copystat() (in module shutil), 257
copytree() (in module shutil), 257
cos() (in module cmath), 189
cos() (in module math), 186
cosh() (in module cmath), 189

1210 Index

The Python Library Reference, Release 3.2

cosh() (in module math), 187
count() (array.array method), 165
count() (collections.deque method), 148
count() (in module itertools), 222
count() (range method), 40
count() (sequence method), 40
count() (str method), 34
Counter (class in collections), 145
countOf() (in module operator), 236
countTestCases() (unittest.TestCase method), 1000
countTestCases() (unittest.TestSuite method), 1002
CoverageResults (class in trace), 1040
cProfile (module), 1031
CPU time, 384
cpu_count() (in module multiprocessing), 550
CPython, 1168
CRC (zipfile.ZipInfo attribute), 309
crc32() (in module binascii), 702
crc32() (in module zlib), 300
crc_hqx() (in module binascii), 702
create() (imaplib.IMAP4 method), 800
create_aggregate() (sqlite3.Connection method), 284
create_collation() (sqlite3.Connection method), 285
create_connection() (in module socket), 613
create_decimal() (decimal.Context method), 201
create_decimal_from_float() (decimal.Context

method), 201
create_function() (sqlite3.Connection method), 284
create_socket() (asyncore.dispatcher method), 639
create_string_buffer() (in module ctypes), 520
create_system (zipfile.ZipInfo attribute), 309
create_unicode_buffer() (in module ctypes), 520
create_version (zipfile.ZipInfo attribute), 309
createAttribute() (xml.dom.Document method), 721
createAttributeNS() (xml.dom.Document method), 721
createComment() (xml.dom.Document method), 721
createDocument() (xml.dom.DOMImplementation

method), 718
createDocumentType()

(xml.dom.DOMImplementation method),
718

createElement() (xml.dom.Document method), 721
createElementNS() (xml.dom.Document method), 721
CreateKey() (in module winreg), 1142
CreateKeyEx() (in module winreg), 1142
createLock() (logging.Handler method), 442
createLock() (logging.NullHandler method), 461
createProcessingInstruction() (xml.dom.Document

method), 721
CreateRecord() (in module msilib), 1135
createSocket() (logging.handlers.SocketHandler

method), 463
createTextNode() (xml.dom.Document method), 721
credits (built-in variable), 23
critical() (in module logging), 449
critical() (logging.Logger method), 442
CRNCYSTR (in module locale), 881
cross() (in module audioop), 853

crypt
module, 1152

crypt (module), 1154
crypt() (in module crypt), 1154
crypt(3), 1154
cryptography, 345, 347
csv, 319
csv (module), 319
ctermid() (in module os), 351
ctime() (datetime.date method), 125
ctime() (datetime.datetime method), 130
ctime() (in module time), 384
ctrl() (in module curses.ascii), 487
CTRL_BREAK_EVENT (in module signal), 635
CTRL_C_EVENT (in module signal), 635
ctypes (module), 497
curdir (in module os), 372
currency() (in module locale), 882
current() (tkinter.ttk.Combobox method), 940
current_process() (in module multiprocessing), 550
current_thread() (in module threading), 532
CurrentByteIndex (xml.parsers.expat.xmlparser at-

tribute), 710
CurrentColumnNumber (xml.parsers.expat.xmlparser

attribute), 710
currentframe() (in module inspect), 1078
CurrentLineNumber (xml.parsers.expat.xmlparser at-

tribute), 710
curs_set() (in module curses), 470
curses (module), 469
curses.ascii (module), 485
curses.panel (module), 487
curses.textpad (module), 483
curses.wrapper (module), 485
Cursor (class in sqlite3), 288
cursor() (sqlite3.Connection method), 283
cursyncup() (curses.window method), 476
cwd() (ftplib.FTP method), 795
cycle() (in module itertools), 223
Cyclic Redundancy Check, 300

D
D_FMT (in module locale), 880
D_T_FMT (in module locale), 880
daemon (multiprocessing.Process attribute), 547
daemon (threading.Thread attribute), 535
data

packing binary, 86
tabular, 319

Data (class in plistlib), 344
data (collections.UserDict attribute), 156
data (collections.UserList attribute), 156
data (select.kevent attribute), 531
data (urllib.request.Request attribute), 769
data (xml.dom.Comment attribute), 723
data (xml.dom.ProcessingInstruction attribute), 723
data (xml.dom.Text attribute), 723
data (xmlrpc.client.Binary attribute), 844

Index 1211

The Python Library Reference, Release 3.2

data() (xml.etree.ElementTree.TreeBuilder method),
746

database
Unicode, 114

databases, 280
DatagramHandler (class in logging.handlers), 464
date (class in datetime), 123
date() (datetime.datetime method), 129
date() (nntplib.NNTP method), 808
date_time (zipfile.ZipInfo attribute), 309
date_time_string() (http.server.BaseHTTPRequestHandler

method), 829
datetime (class in datetime), 126
datetime (module), 119
day (datetime.date attribute), 124
day (datetime.datetime attribute), 127
day_abbr (in module calendar), 145
day_name (in module calendar), 144
daylight (in module time), 384
Daylight Saving Time, 383
DbfilenameShelf (class in shelve), 275
dbm (module), 277
dbm.dumb (module), 280
dbm.gnu

module, 275
dbm.gnu (module), 278
dbm.ndbm

module, 275
dbm.ndbm (module), 279
debug (imaplib.IMAP4 attribute), 803
debug (shlex.shlex attribute), 924
debug (zipfile.ZipFile attribute), 308
debug() (in module doctest), 983
debug() (in module logging), 448
debug() (logging.Logger method), 441
debug() (pipes.Template method), 1159
debug() (unittest.TestCase method), 995
debug() (unittest.TestSuite method), 1002
DEBUG_COLLECTABLE (in module gc), 1073
DEBUG_LEAK (in module gc), 1073
DEBUG_SAVEALL (in module gc), 1073
debug_src() (in module doctest), 984
DEBUG_STATS (in module gc), 1073
DEBUG_UNCOLLECTABLE (in module gc), 1073
debugger, 958, 1046, 1049

configuration file, 1025
debugging, 1023

CGI, 756
DebuggingServer (class in smtpd), 814
debuglevel (http.client.HTTPResponse attribute), 791
DebugRunner (class in doctest), 984
Decimal (class in decimal), 194
decimal (module), 190
decimal() (in module unicodedata), 115
DecimalException (class in decimal), 205
decode

Codecs, 102
decode() (bytearray method), 42

decode() (bytes method), 42
decode() (codecs.Codec method), 105
decode() (codecs.IncrementalDecoder method), 107
decode() (in module base64), 700
decode() (in module quopri), 703
decode() (in module uu), 704
decode() (json.JSONDecoder method), 678
decode() (xmlrpc.client.Binary method), 845
decode() (xmlrpc.client.DateTime method), 844
decode_header() (in module email.header), 660
decode_header() (in module nntplib), 809
decode_params() (in module email.utils), 665
decode_rfc2231() (in module email.utils), 665
decodebytes() (in module base64), 700
DecodedGenerator (class in email.generator), 656
decodestring() (in module base64), 700
decodestring() (in module quopri), 703
decomposition() (in module unicodedata), 115
decompress() (bz2.BZ2Decompressor method), 304
decompress() (in module bz2), 305
decompress() (in module gzip), 302
decompress() (in module zlib), 300
decompress() (zlib.Decompress method), 301
decompressobj() (in module zlib), 300
decorator, 1168
DEDENT (in module token), 1114
dedent() (in module textwrap), 100
deepcopy() (in module copy), 175
def_prog_mode() (in module curses), 470
def_shell_mode() (in module curses), 470
default (optparse.Option attribute), 425
default() (cmd.Cmd method), 918
default() (json.JSONEncoder method), 679
DEFAULT_BUFFER_SIZE (in module io), 374
default_bufsize (in module xml.dom.pulldom), 730
default_factory (collections.defaultdict attribute), 151
DEFAULT_FORMAT (in module tarfile), 311
default_open() (urllib.request.BaseHandler method),

771
DEFAULT_PROTOCOL (in module pickle), 264
DefaultContext (class in decimal), 200
DefaultCookiePolicy (class in http.cookiejar), 835
defaultdict (class in collections), 150
DefaultHandler() (xml.parsers.expat.xmlparser

method), 712
DefaultHandlerExpand() (xml.parsers.expat.xmlparser

method), 712
defaults() (configparser.ConfigParser method), 336
defaultTestLoader (in module unittest), 1005
defaultTestResult() (unittest.TestCase method), 1000
defects (email.message.Message attribute), 651
defpath (in module os), 373
DefragResult (class in urllib.parse), 783
DefragResultBytes (class in urllib.parse), 784
degrees() (in module math), 186
degrees() (in module turtle), 895
del

statement, 40, 45

1212 Index

The Python Library Reference, Release 3.2

del_param() (email.message.Message method), 650
delattr() (built-in function), 7
delay() (in module turtle), 907
delay_output() (in module curses), 470
delayload (http.cookiejar.FileCookieJar attribute), 837
delch() (curses.window method), 476
dele() (poplib.POP3 method), 797
delete() (ftplib.FTP method), 795
delete() (imaplib.IMAP4 method), 800
delete() (tkinter.ttk.Treeview method), 947
DELETE_ATTR (opcode), 1127
DELETE_DEREF (opcode), 1128
DELETE_FAST (opcode), 1128
DELETE_GLOBAL (opcode), 1127
DELETE_NAME (opcode), 1126
DELETE_SUBSCR (opcode), 1125
deleteacl() (imaplib.IMAP4 method), 800
DeleteKey() (in module winreg), 1142
DeleteKeyEx() (in module winreg), 1142
deleteln() (curses.window method), 476
deleteMe() (bdb.Breakpoint method), 1019
DeleteValue() (in module winreg), 1143
delimiter (csv.Dialect attribute), 322
delitem() (in module operator), 236
deliver_challenge() (in module multiprocess-

ing.connection), 563
demo_app() (in module wsgiref.simple_server), 761
denominator (numbers.Rational attribute), 182
DeprecationWarning, 58
deque (class in collections), 148
dequeue() (logging.handlers.QueueListener method),

468
DER_cert_to_PEM_cert() (in module ssl), 625
derwin() (curses.window method), 476
DES

cipher, 1154
description (sqlite3.Cursor attribute), 291
description() (nntplib.NNTP method), 806
descriptions() (nntplib.NNTP method), 806
descriptor, 1168
dest (optparse.Option attribute), 425
detach() (io.BufferedIOBase method), 377
detach() (io.TextIOBase method), 381
detach() (socket.socket method), 617
detach() (tkinter.ttk.Treeview method), 947
Detach() (winreg.PyHKEY method), 1148
detect_encoding() (in module tokenize), 1116
deterministic profiling, 1028
device_encoding() (in module os), 354
devnull (in module os), 373
dgettext() (in module gettext), 872
Dialect (class in csv), 321
dialect (csv.csvreader attribute), 323
dialect (csv.csvwriter attribute), 323
Dialog (class in msilib), 1139
dict (2to3 fixer), 1010
dict (built-in class), 45

dict() (multiprocessing.managers.SyncManager
method), 557

dictConfig() (in module logging.config), 452
dictionary, 1168

object, 45
type, operations on, 45

DictReader (class in csv), 320
DictWriter (class in csv), 320
diff_files (filecmp.dircmp attribute), 251
Differ (class in difflib), 90, 97
difference() (set method), 43
difference_update() (set method), 44
difflib (module), 90
digest() (hashlib.hash method), 346
digest() (hmac.hmac method), 347
digit() (in module unicodedata), 115
digits (in module string), 61
dir() (built-in function), 8
dir() (ftplib.FTP method), 795
dircmp (class in filecmp), 250
directory

changing, 358
creating, 361
deleting, 257, 361
site-packages, 1079
site-python, 1079
traversal, 364
walking, 364

Directory (class in msilib), 1138
DirList (class in tkinter.tix), 954
dirname() (in module os.path), 241
DirSelectBox (class in tkinter.tix), 954
DirSelectDialog (class in tkinter.tix), 954
DirTree (class in tkinter.tix), 954
dis (module), 1121
dis() (in module dis), 1122
dis() (in module pickletools), 1130
disable (pdb command), 1026
disable() (bdb.Breakpoint method), 1019
disable() (in module gc), 1071
disable() (in module logging), 450
disable_interspersed_args() (optparse.OptionParser

method), 429
DisableReflectionKey() (in module winreg), 1145
disassemble() (in module dis), 1122
discard (http.cookiejar.Cookie attribute), 840
discard() (mailbox.Mailbox method), 682
discard() (mailbox.MH method), 686
discard() (set method), 44
discard_buffers() (asynchat.async_chat method), 642
disco() (in module dis), 1122
discover() (unittest.TestLoader method), 1003
dispatch_call() (bdb.Bdb method), 1020
dispatch_exception() (bdb.Bdb method), 1021
dispatch_line() (bdb.Bdb method), 1020
dispatch_return() (bdb.Bdb method), 1021
dispatcher (class in asyncore), 638
dispatcher_with_send (class in asyncore), 639

Index 1213

The Python Library Reference, Release 3.2

display (pdb command), 1027
displayhook() (in module sys), 1042
dist() (in module platform), 491
distance() (in module turtle), 895
distb() (in module dis), 1122
distutils (module), 1082
divide() (decimal.Context method), 202
divide_int() (decimal.Context method), 202
DivisionByZero (class in decimal), 205
divmod() (built-in function), 8
divmod() (decimal.Context method), 202
DllCanUnloadNow() (in module ctypes), 520
DllGetClassObject() (in module ctypes), 520
dllhandle (in module sys), 1042
dngettext() (in module gettext), 872
do_clear() (bdb.Bdb method), 1021
do_command() (curses.textpad.Textbox method), 484
do_GET() (http.server.SimpleHTTPRequestHandler

method), 830
do_handshake() (ssl.SSLSocket method), 627
do_HEAD() (http.server.SimpleHTTPRequestHandler

method), 830
do_POST() (http.server.CGIHTTPRequestHandler

method), 831
doc_header (cmd.Cmd attribute), 919
DocCGIXMLRPCRequestHandler (class in xml-

rpc.server), 851
DocFileSuite() (in module doctest), 975
doCleanups() (unittest.TestCase method), 1001
docmd() (smtplib.SMTP method), 810
docstring, 1168
docstring (doctest.DocTest attribute), 978
DocTest (class in doctest), 978
doctest (module), 964
DocTestFailure, 984
DocTestFinder (class in doctest), 979
DocTestParser (class in doctest), 980
DocTestRunner (class in doctest), 980
DocTestSuite() (in module doctest), 976
doctype() (xml.etree.ElementTree.TreeBuilder

method), 746
doctype() (xml.etree.ElementTree.XMLParser

method), 746
documentation

generation, 963
online, 963

documentElement (xml.dom.Document attribute), 721
DocXMLRPCRequestHandler (class in xmlrpc.server),

851
DocXMLRPCServer (class in xmlrpc.server), 851
domain_initial_dot (http.cookiejar.Cookie attribute),

841
domain_return_ok() (http.cookiejar.CookiePolicy

method), 838
domain_specified (http.cookiejar.Cookie attribute), 841
DomainLiberal (http.cookiejar.DefaultCookiePolicy at-

tribute), 840
DomainRFC2965Match

(http.cookiejar.DefaultCookiePolicy at-
tribute), 840

DomainStrict (http.cookiejar.DefaultCookiePolicy at-
tribute), 840

DomainStrictNoDots (http.cookiejar.DefaultCookiePolicy
attribute), 840

DomainStrictNonDomain
(http.cookiejar.DefaultCookiePolicy at-
tribute), 840

DOMEventStream (class in xml.dom.pulldom), 730
DOMException, 723
DomstringSizeErr, 724
done() (concurrent.futures.Future method), 592
done() (xdrlib.Unpacker method), 342
DONT_ACCEPT_BLANKLINE (in module doctest),

970
DONT_ACCEPT_TRUE_FOR_1 (in module doctest),

970
dont_write_bytecode (in module sys), 1048
doRollover() (logging.handlers.RotatingFileHandler

method), 462
doRollover() (logging.handlers.TimedRotatingFileHandler

method), 462
DOT (in module token), 1114
dot() (in module turtle), 892
DOTALL (in module re), 75
doublequote (csv.Dialect attribute), 322
DOUBLESLASH (in module token), 1114
DOUBLESLASHEQUAL (in module token), 1114
DOUBLESTAR (in module token), 1114
DOUBLESTAREQUAL (in module token), 1114
doupdate() (in module curses), 470
down (pdb command), 1025
down() (in module turtle), 896
drop_whitespace (textwrap.TextWrapper attribute), 101
dropwhile() (in module itertools), 223
dst() (datetime.datetime method), 129
dst() (datetime.time method), 134
dst() (datetime.timezone method), 140
dst() (datetime.tzinfo method), 135
DTDHandler (class in xml.sax.handler), 732
duck-typing, 1168
DumbWriter (class in formatter), 1134
dummy_threading (module), 599
dump() (in module ast), 1111
dump() (in module json), 677
dump() (in module marshal), 276
dump() (in module pickle), 264
dump() (in module xml.etree.ElementTree), 741
dump() (pickle.Pickler method), 266
dump_stats() (pstats.Stats method), 1032
dumps() (in module json), 677
dumps() (in module marshal), 277
dumps() (in module pickle), 265
dumps() (in module xmlrpc.client), 847
dup() (in module os), 355
dup2() (in module os), 355
DUP_TOP (opcode), 1123

1214 Index

The Python Library Reference, Release 3.2

DUP_TOP_TWO (opcode), 1123
DuplicateOptionError, 339
DuplicateSectionError, 339

E
e (in module cmath), 190
e (in module math), 187
E2BIG (in module errno), 491
EACCES (in module errno), 492
EADDRINUSE (in module errno), 495
EADDRNOTAVAIL (in module errno), 495
EADV (in module errno), 494
EAFNOSUPPORT (in module errno), 495
EAFP, 1168
EAGAIN (in module errno), 492
EALREADY (in module errno), 496
east_asian_width() (in module unicodedata), 115
EBADE (in module errno), 493
EBADF (in module errno), 492
EBADFD (in module errno), 494
EBADMSG (in module errno), 494
EBADR (in module errno), 493
EBADRQC (in module errno), 494
EBADSLT (in module errno), 494
EBFONT (in module errno), 494
EBUSY (in module errno), 492
ECHILD (in module errno), 492
echo() (in module curses), 471
echochar() (curses.window method), 476
ECHRNG (in module errno), 493
ECOMM (in module errno), 494
ECONNABORTED (in module errno), 496
ECONNREFUSED (in module errno), 496
ECONNRESET (in module errno), 496
EDEADLK (in module errno), 493
EDEADLOCK (in module errno), 494
EDESTADDRREQ (in module errno), 495
edit() (curses.textpad.Textbox method), 484
EDOM (in module errno), 493
EDOTDOT (in module errno), 494
EDQUOT (in module errno), 496
EEXIST (in module errno), 492
EFAULT (in module errno), 492
EFBIG (in module errno), 492
effective() (in module bdb), 1023
ehlo() (smtplib.SMTP method), 811
ehlo_or_helo_if_needed() (smtplib.SMTP method),

811
EHOSTDOWN (in module errno), 496
EHOSTUNREACH (in module errno), 496
EIDRM (in module errno), 493
EILSEQ (in module errno), 495
EINPROGRESS (in module errno), 496
EINTR (in module errno), 491
EINVAL (in module errno), 492
EIO (in module errno), 491
EISCONN (in module errno), 496
EISDIR (in module errno), 492

EISNAM (in module errno), 496
EL2HLT (in module errno), 493
EL2NSYNC (in module errno), 493
EL3HLT (in module errno), 493
EL3RST (in module errno), 493
Element (class in xml.etree.ElementTree), 743
element_create() (tkinter.ttk.Style method), 951
element_names() (tkinter.ttk.Style method), 951
element_options() (tkinter.ttk.Style method), 951
ElementDeclHandler() (xml.parsers.expat.xmlparser

method), 711
elements() (collections.Counter method), 146
ElementTree (class in xml.etree.ElementTree), 744
ELIBACC (in module errno), 495
ELIBBAD (in module errno), 495
ELIBEXEC (in module errno), 495
ELIBMAX (in module errno), 495
ELIBSCN (in module errno), 495
Ellinghouse, Lance, 704
Ellipsis (built-in variable), 23
ELLIPSIS (in module doctest), 971
ELNRNG (in module errno), 493
ELOOP (in module errno), 493
email (module), 645
email.charset (module), 660
email.encoders (module), 662
email.errors (module), 663
email.generator (module), 654
email.header (module), 658
email.iterators (module), 665
email.message (module), 645
email.mime (module), 656
email.parser (module), 651
email.utils (module), 664
EMFILE (in module errno), 492
emit() (logging.FileHandler method), 461
emit() (logging.Handler method), 443
emit() (logging.handlers.BufferingHandler method),

466
emit() (logging.handlers.DatagramHandler method),

464
emit() (logging.handlers.HTTPHandler method), 467
emit() (logging.handlers.NTEventLogHandler

method), 466
emit() (logging.handlers.QueueHandler method), 467
emit() (logging.handlers.RotatingFileHandler method),

462
emit() (logging.handlers.SMTPHandler method), 466
emit() (logging.handlers.SocketHandler method), 463
emit() (logging.handlers.SysLogHandler method), 464
emit() (logging.handlers.TimedRotatingFileHandler

method), 463
emit() (logging.handlers.WatchedFileHandler method),

461
emit() (logging.NullHandler method), 461
emit() (logging.StreamHandler method), 460
EMLINK (in module errno), 492
Empty, 168

Index 1215

The Python Library Reference, Release 3.2

empty() (multiprocessing.Queue method), 549
empty() (queue.Queue method), 169
empty() (sched.scheduler method), 168
EMPTY_NAMESPACE (in module xml.dom), 717
emptyline() (cmd.Cmd method), 918
EMSGSIZE (in module errno), 495
EMULTIHOP (in module errno), 494
enable (pdb command), 1026
enable() (bdb.Breakpoint method), 1019
enable() (in module cgitb), 757
enable() (in module gc), 1071
enable_callback_tracebacks() (in module sqlite3), 283
enable_interspersed_args() (optparse.OptionParser

method), 429
enable_load_extension() (sqlite3.Connection method),

286
enable_traversal() (tkinter.ttk.Notebook method), 942
ENABLE_USER_SITE (in module site), 1080
EnableReflectionKey() (in module winreg), 1145
ENAMETOOLONG (in module errno), 493
ENAVAIL (in module errno), 496
enclose() (curses.window method), 476
encode

Codecs, 102
encode() (codecs.Codec method), 105
encode() (codecs.IncrementalEncoder method), 106
encode() (email.header.Header method), 659
encode() (in module base64), 700
encode() (in module quopri), 703
encode() (in module uu), 704
encode() (json.JSONEncoder method), 680
encode() (str method), 34
encode() (xmlrpc.client.Binary method), 845
encode() (xmlrpc.client.DateTime method), 844
encode_7or8bit() (in module email.encoders), 662
encode_base64() (in module email.encoders), 662
encode_noop() (in module email.encoders), 663
encode_quopri() (in module email.encoders), 662
encode_rfc2231() (in module email.utils), 665
encodebytes() (in module base64), 700
EncodedFile() (in module codecs), 104
encodePriority() (logging.handlers.SysLogHandler

method), 464
encodestring() (in module base64), 700
encodestring() (in module quopri), 703
encoding

base64, 699
quoted-printable, 703

ENCODING (in module tarfile), 311
ENCODING (in module tokenize), 1116
encoding (io.TextIOBase attribute), 380
encodings.idna (module), 114
encodings.mbcs (module), 114
encodings.utf_8_sig (module), 114
encodings_map (in module mimetypes), 698
encodings_map (mimetypes.MimeTypes attribute), 698
end() (re.match method), 80

end() (xml.etree.ElementTree.TreeBuilder method),
746

end_fill() (in module turtle), 899
END_FINALLY (opcode), 1126
end_headers() (http.server.BaseHTTPRequestHandler

method), 829
end_paragraph() (formatter.formatter method), 1131
end_poly() (in module turtle), 904
EndCdataSectionHandler()

(xml.parsers.expat.xmlparser method),
712

EndDoctypeDeclHandler()
(xml.parsers.expat.xmlparser method),
711

endDocument() (xml.sax.handler.ContentHandler
method), 734

endElement() (xml.sax.handler.ContentHandler
method), 734

EndElementHandler() (xml.parsers.expat.xmlparser
method), 711

endElementNS() (xml.sax.handler.ContentHandler
method), 735

endheaders() (http.client.HTTPConnection method),
790

ENDMARKER (in module token), 1114
EndNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method),
712

endpos (re.match attribute), 81
endPrefixMapping() (xml.sax.handler.ContentHandler

method), 734
endswith() (str method), 34
endwin() (in module curses), 471
ENETDOWN (in module errno), 495
ENETRESET (in module errno), 496
ENETUNREACH (in module errno), 496
ENFILE (in module errno), 492
ENOANO (in module errno), 494
ENOBUFS (in module errno), 496
ENOCSI (in module errno), 493
ENODATA (in module errno), 494
ENODEV (in module errno), 492
ENOENT (in module errno), 491
ENOEXEC (in module errno), 491
ENOLCK (in module errno), 493
ENOLINK (in module errno), 494
ENOMEM (in module errno), 492
ENOMSG (in module errno), 493
ENONET (in module errno), 494
ENOPKG (in module errno), 494
ENOPROTOOPT (in module errno), 495
ENOSPC (in module errno), 492
ENOSR (in module errno), 494
ENOSTR (in module errno), 494
ENOSYS (in module errno), 493
ENOTBLK (in module errno), 492
ENOTCONN (in module errno), 496
ENOTDIR (in module errno), 492

1216 Index

The Python Library Reference, Release 3.2

ENOTEMPTY (in module errno), 493
ENOTNAM (in module errno), 496
ENOTSOCK (in module errno), 495
ENOTTY (in module errno), 492
ENOTUNIQ (in module errno), 494
enqueue() (logging.handlers.QueueHandler method),

468
enter() (sched.scheduler method), 167
enterabs() (sched.scheduler method), 167
entities (xml.dom.DocumentType attribute), 720
EntityDeclHandler() (xml.parsers.expat.xmlparser

method), 711
entitydefs (in module html.entities), 708
EntityResolver (class in xml.sax.handler), 732
enumerate() (built-in function), 8
enumerate() (in module threading), 532
EnumKey() (in module winreg), 1143
EnumValue() (in module winreg), 1143
environ (in module os), 350
environ (in module posix), 1151
environb (in module os), 350
environment variable

<protocol>_proxy, 768
AUDIODEV, 866
BROWSER, 749, 750
COLUMNS, 475
COMSPEC, 370, 604
HOME, 242
HOMEDRIVE, 242
HOMEPATH, 242
http_proxy, 776
IDLESTARTUP, 959
KDEDIR, 750
LANG, 871, 873, 879, 881, 882
LANGUAGE, 871, 873
LC_ALL, 871, 873
LC_MESSAGES, 871, 873
LINES, 475
LNAME, 469
LOGNAME, 351, 469
MIXERDEV, 866
PATH, 366, 369, 373, 749, 755, 757
POSIXLY_CORRECT, 438
PYTHON_DOM, 717
PYTHONDOCS, 964
PYTHONNOUSERSITE, 1080
PYTHONPATH, 755, 1047, 1048
PYTHONSTARTUP, 598, 599, 959
PYTHONUSERBASE, 1080
PYTHONY2K, 384
SystemRoot, 605
TEMP, 253
TIX_LIBRARY, 953
TMP, 253
TMPDIR, 253
TZ, 387, 388
USER, 469
USERNAME, 351, 469

USERPROFILE, 242
environment variables

deleting, 354
setting, 352

EnvironmentError, 56
EnvironmentVarGuard (class in test.support), 1018
ENXIO (in module errno), 491
eof (shlex.shlex attribute), 924
EOFError, 56
EOPNOTSUPP (in module errno), 495
EOVERFLOW (in module errno), 494
EPERM (in module errno), 491
EPFNOSUPPORT (in module errno), 495
epilogue (email.message.Message attribute), 651
EPIPE (in module errno), 493
epoch, 383
epoll() (in module select), 527
EPROTO (in module errno), 494
EPROTONOSUPPORT (in module errno), 495
EPROTOTYPE (in module errno), 495
eq() (in module operator), 234
EQEQUAL (in module token), 1114
EQUAL (in module token), 1114
ERA (in module locale), 881
ERA_D_FMT (in module locale), 881
ERA_D_T_FMT (in module locale), 881
ERANGE (in module errno), 493
erase() (curses.window method), 476
erasechar() (in module curses), 471
EREMCHG (in module errno), 495
EREMOTE (in module errno), 494
EREMOTEIO (in module errno), 496
ERESTART (in module errno), 495
erf() (in module math), 187
erfc() (in module math), 187
EROFS (in module errno), 492
ERR (in module curses), 480
errcheck (ctypes._FuncPtr attribute), 517
errcode (xmlrpc.client.ProtocolError attribute), 846
errmsg (xmlrpc.client.ProtocolError attribute), 846
errno

module, 57, 612
errno (module), 491
Error, 258, 322, 339, 343, 695, 701, 703, 704, 749, 858,

861, 879
error, 78, 86, 175, 277–280, 299, 349, 438, 470, 527,

600, 612, 708, 853, 1160, 1163
error() (argparse.ArgumentParser method), 413
error() (in module logging), 449
error() (logging.Logger method), 442
error() (urllib.request.OpenerDirector method), 771
error() (xml.sax.handler.ErrorHandler method), 736
error_body (wsgiref.handlers.BaseHandler attribute),

765
error_content_type (http.server.BaseHTTPRequestHandler

attribute), 828
error_headers (wsgiref.handlers.BaseHandler at-

tribute), 765

Index 1217

The Python Library Reference, Release 3.2

error_leader() (shlex.shlex method), 923
error_message_format (http.server.BaseHTTPRequestHandler

attribute), 828
error_output() (wsgiref.handlers.BaseHandler method),

765
error_perm, 793
error_proto, 793, 796
error_reply, 793
error_status (wsgiref.handlers.BaseHandler attribute),

765
error_temp, 793
ErrorByteIndex (xml.parsers.expat.xmlparser at-

tribute), 710
errorcode (in module errno), 491
ErrorCode (xml.parsers.expat.xmlparser attribute), 710
ErrorColumnNumber (xml.parsers.expat.xmlparser at-

tribute), 710
ErrorHandler (class in xml.sax.handler), 732
ErrorLineNumber (xml.parsers.expat.xmlparser at-

tribute), 710
Errors

logging, 439
errors (io.TextIOBase attribute), 380
errors (unittest.TestResult attribute), 1003
ErrorString() (in module xml.parsers.expat), 708
ERRORTOKEN (in module token), 1114
escape (shlex.shlex attribute), 923
escape() (in module cgi), 755
escape() (in module html), 705
escape() (in module re), 77
escape() (in module xml.sax.saxutils), 736
escapechar (csv.Dialect attribute), 322
escapedquotes (shlex.shlex attribute), 924
ESHUTDOWN (in module errno), 496
ESOCKTNOSUPPORT (in module errno), 495
ESPIPE (in module errno), 492
ESRCH (in module errno), 491
ESRMNT (in module errno), 494
ESTALE (in module errno), 496
ESTRPIPE (in module errno), 495
ETIME (in module errno), 494
ETIMEDOUT (in module errno), 496
Etiny() (decimal.Context method), 202
ETOOMANYREFS (in module errno), 496
Etop() (decimal.Context method), 202
ETXTBSY (in module errno), 492
EUCLEAN (in module errno), 496
EUNATCH (in module errno), 493
EUSERS (in module errno), 495
eval

built-in function, 52, 177, 1105
eval() (built-in function), 9
Event (class in multiprocessing), 552
Event (class in threading), 539
event scheduling, 166
event() (msilib.Control method), 1139
Event() (multiprocessing.managers.SyncManager

method), 557

events (widgets), 935
EWOULDBLOCK (in module errno), 493
EX_CANTCREAT (in module os), 367
EX_CONFIG (in module os), 367
EX_DATAERR (in module os), 366
EX_IOERR (in module os), 367
EX_NOHOST (in module os), 367
EX_NOINPUT (in module os), 367
EX_NOPERM (in module os), 367
EX_NOTFOUND (in module os), 367
EX_NOUSER (in module os), 367
EX_OK (in module os), 366
EX_OSERR (in module os), 367
EX_OSFILE (in module os), 367
EX_PROTOCOL (in module os), 367
EX_SOFTWARE (in module os), 367
EX_TEMPFAIL (in module os), 367
EX_UNAVAILABLE (in module os), 367
EX_USAGE (in module os), 366
Example (class in doctest), 978
example (doctest.DocTestFailure attribute), 984
example (doctest.UnexpectedException attribute), 984
examples (doctest.DocTest attribute), 978
exc_info (doctest.UnexpectedException attribute), 984
exc_info() (in module sys), 1042
exc_msg (doctest.Example attribute), 979
excel (class in csv), 321
excel_tab (class in csv), 321
except

statement, 55
except (2to3 fixer), 1010
excepthook() (in module sys), 757, 1042
Exception, 55
exception() (concurrent.futures.Future method), 592
exception() (in module logging), 449
exception() (logging.Logger method), 442
exceptions

in CGI scripts, 757
EXDEV (in module errno), 492
exec

built-in function, 52, 1105
exec (2to3 fixer), 1010
exec() (built-in function), 9
exec_prefix (in module sys), 1043
execfile (2to3 fixer), 1010
execl() (in module os), 365
execle() (in module os), 365
execlp() (in module os), 365
execlpe() (in module os), 365
executable (in module sys), 1043
Execute() (msilib.View method), 1136
execute() (sqlite3.Connection method), 284
execute() (sqlite3.Cursor method), 288
executemany() (sqlite3.Connection method), 284
executemany() (sqlite3.Cursor method), 289
executescript() (sqlite3.Connection method), 284
executescript() (sqlite3.Cursor method), 290
ExecutionLoader (class in importlib.abc), 1099

1218 Index

The Python Library Reference, Release 3.2

Executor (class in concurrent.futures), 589
execv() (in module os), 365
execve() (in module os), 365
execvp() (in module os), 365
execvpe() (in module os), 365
ExFileSelectBox (class in tkinter.tix), 954
EXFULL (in module errno), 493
exists() (in module os.path), 242
exists() (tkinter.ttk.Treeview method), 947
exit (built-in variable), 23
exit() (argparse.ArgumentParser method), 413
exit() (in module _thread), 600
exit() (in module sys), 1043
exitcode (multiprocessing.Process attribute), 547
exitfunc (2to3 fixer), 1010
exitonclick() (in module turtle), 911
exp() (decimal.Context method), 202
exp() (decimal.Decimal method), 196
exp() (in module cmath), 188
exp() (in module math), 185
expand() (re.match method), 79
expand_tabs (textwrap.TextWrapper attribute), 100
ExpandEnvironmentStrings() (in module winreg), 1143
expandNode() (xml.dom.pulldom.DOMEventStream

method), 730
expandtabs() (str method), 34
expanduser() (in module os.path), 242
expandvars() (in module os.path), 242
Expat, 708
ExpatError, 708
expect() (telnetlib.Telnet method), 817
expectedFailure() (in module unittest), 993
expectedFailures (unittest.TestResult attribute), 1004
expires (http.cookiejar.Cookie attribute), 840
expm1() (in module math), 185
expovariate() (in module random), 217
expr() (in module parser), 1104
expression, 1168
expunge() (imaplib.IMAP4 method), 800
extend() (array.array method), 165
extend() (collections.deque method), 148
extend() (sequence method), 40
extend() (xml.etree.ElementTree.Element method), 743
extend_path() (in module pkgutil), 1092
EXTENDED_ARG (opcode), 1129
ExtendedContext (class in decimal), 200
ExtendedInterpolation (class in configparser), 328
extendleft() (collections.deque method), 148
extension module, 1168
extensions_map (http.server.SimpleHTTPRequestHandler

attribute), 830
External Data Representation, 264, 341
external_attr (zipfile.ZipInfo attribute), 309
ExternalClashError, 695
ExternalEntityParserCreate()

(xml.parsers.expat.xmlparser method),
709

ExternalEntityRefHandler()

(xml.parsers.expat.xmlparser method),
712

extra (zipfile.ZipInfo attribute), 309
extract() (tarfile.TarFile method), 313
extract() (zipfile.ZipFile method), 307
extract_cookies() (http.cookiejar.CookieJar method),

836
extract_stack() (in module traceback), 1067
extract_tb() (in module traceback), 1067
extract_version (zipfile.ZipInfo attribute), 309
extractall() (tarfile.TarFile method), 313
extractall() (zipfile.ZipFile method), 307
ExtractError, 311
extractfile() (tarfile.TarFile method), 313
extsep (in module os), 373

F
F_OK (in module os), 358
fabs() (in module math), 184
factorial() (in module math), 184
fail() (unittest.TestCase method), 1000
failfast (unittest.TestResult attribute), 1004
failureException (unittest.TestCase attribute), 1000
failures (unittest.TestResult attribute), 1004
False, 25, 52
false, 25
False (Built-in object), 25
False (built-in variable), 23
family (socket.socket attribute), 619
FancyURLopener (class in urllib.request), 778
fast (pickle.Pickler attribute), 266
fatalError() (xml.sax.handler.ErrorHandler method),

736
faultCode (xmlrpc.client.Fault attribute), 845
faultString (xmlrpc.client.Fault attribute), 845
fchdir() (in module os), 358
fchmod() (in module os), 355
fchown() (in module os), 355
FCICreate() (in module msilib), 1135
fcntl (module), 1157
fcntl() (in module fcntl), 1157
fd() (in module turtle), 889
fdatasync() (in module os), 355
fdopen() (in module os), 354
Feature (class in msilib), 1138
feature_external_ges (in module xml.sax.handler), 733
feature_external_pes (in module xml.sax.handler), 733
feature_namespace_prefixes (in module

xml.sax.handler), 732
feature_namespaces (in module xml.sax.handler), 732
feature_string_interning (in module xml.sax.handler),

732
feature_validation (in module xml.sax.handler), 732
feed() (email.parser.FeedParser method), 652
feed() (html.parser.HTMLParser method), 706
feed() (xml.etree.ElementTree.XMLParser method),

747

Index 1219

The Python Library Reference, Release 3.2

feed() (xml.sax.xmlreader.IncrementalParser method),
739

FeedParser (class in email.parser), 652
fetch() (imaplib.IMAP4 method), 800
Fetch() (msilib.View method), 1136
fetchall() (sqlite3.Cursor method), 291
fetchmany() (sqlite3.Cursor method), 290
fetchone() (sqlite3.Cursor method), 290
fflags (select.kevent attribute), 530
field_size_limit() (in module csv), 320
fieldnames (csv.csvreader attribute), 323
fields (uuid.UUID attribute), 818
fifo (class in asynchat), 642
file

.ini, 324

.pdbrc, 1025
byte-code, 1087, 1119
configuration, 324
copying, 256
debugger configuration, 1025
large files, 1151
mime.types, 697
path configuration, 1080
plist, 343
temporary, 251

file (pyclbr.Class attribute), 1119
file (pyclbr.Function attribute), 1119
file control

UNIX, 1157
file name

temporary, 251
file object, 1169
file-like object, 1169
file_dispatcher (class in asyncore), 639
file_open() (urllib.request.FileHandler method), 774
file_size (zipfile.ZipInfo attribute), 310
file_wrapper (class in asyncore), 639
filecmp (module), 249
fileConfig() (in module logging.config), 452
FileCookieJar (class in http.cookiejar), 834
FileEntry (class in tkinter.tix), 954
FileHandler (class in logging), 461
FileHandler (class in urllib.request), 769
FileInput (class in fileinput), 245
fileinput (module), 244
FileIO (class in io), 378
filelineno() (in module fileinput), 245
filename (doctest.DocTest attribute), 978
filename (http.cookiejar.FileCookieJar attribute), 837
filename (zipfile.ZipInfo attribute), 309
filename() (in module fileinput), 245
filename_only (in module tabnanny), 1118
filenames

pathname expansion, 254
wildcard expansion, 254

fileno() (http.client.HTTPResponse method), 790
fileno() (in module fileinput), 245
fileno() (io.IOBase method), 376

fileno() (multiprocessing.Connection method), 551
fileno() (ossaudiodev.oss_audio_device method), 866
fileno() (ossaudiodev.oss_mixer_device method), 868
fileno() (select.epoll method), 528
fileno() (select.kqueue method), 530
fileno() (socket.socket method), 617
fileno() (socketserver.BaseServer method), 822
fileno() (telnetlib.Telnet method), 816
FileSelectBox (class in tkinter.tix), 954
FileType (class in argparse), 410
FileWrapper (class in wsgiref.util), 759
fill() (in module textwrap), 100
fill() (textwrap.TextWrapper method), 102
fillcolor() (in module turtle), 898
filling() (in module turtle), 899
filter (2to3 fixer), 1010
Filter (class in logging), 444
filter (select.kevent attribute), 530
filter() (built-in function), 10
filter() (in module curses), 471
filter() (in module fnmatch), 255
filter() (logging.Filter method), 444
filter() (logging.Handler method), 443
filter() (logging.Logger method), 442
filterfalse() (in module itertools), 223
filterwarnings() (in module warnings), 1059
find() (doctest.DocTestFinder method), 979
find() (in module gettext), 872
find() (in module mmap), 595
find() (str method), 34
find() (xml.etree.ElementTree.Element method), 743
find() (xml.etree.ElementTree.ElementTree method),

745
find_class() (pickle protocol), 272
find_class() (pickle.Unpickler method), 266
find_library() (in module ctypes.util), 520
find_loader() (in module pkgutil), 1093
find_longest_match() (difflib.SequenceMatcher

method), 94
find_module() (imp.NullImporter method), 1090
find_module() (importlib.abc.Finder method), 1098
find_module() (importlib.machinery.PathFinder class

method), 1101
find_module() (in module imp), 1087
find_module() (zipimport.zipimporter method), 1091
find_msvcrt() (in module ctypes.util), 520
find_user_password() (url-

lib.request.HTTPPasswordMgr method),
773

findall() (in module re), 77
findall() (re.regex method), 78
findall() (xml.etree.ElementTree.Element method), 744
findall() (xml.etree.ElementTree.ElementTree method),

745
findCaller() (logging.Logger method), 442
finder, 1169
Finder (class in importlib.abc), 1098
findfactor() (in module audioop), 853

1220 Index

The Python Library Reference, Release 3.2

findfile() (in module test.support), 1016
findfit() (in module audioop), 854
finditer() (in module re), 77
finditer() (re.regex method), 78
findlabels() (in module dis), 1123
findlinestarts() (in module dis), 1123
findmatch() (in module mailcap), 680
findmax() (in module audioop), 854
findtext() (xml.etree.ElementTree.Element method),

744
findtext() (xml.etree.ElementTree.ElementTree

method), 745
finish() (socketserver.RequestHandler method), 823
finish_request() (socketserver.BaseServer method), 822
first() (asynchat.fifo method), 642
firstChild (xml.dom.Node attribute), 719
firstkey() (dbm.gnu.gdbm method), 279
firstweekday() (in module calendar), 144
fix_missing_locations() (in module ast), 1110
fix_sentence_endings (textwrap.TextWrapper at-

tribute), 101
flag_bits (zipfile.ZipInfo attribute), 309
flags (in module sys), 1043
flags (re.regex attribute), 79
flags (select.kevent attribute), 530
flash() (in module curses), 471
flatten() (email.generator.BytesGenerator method), 655
flatten() (email.generator.Generator method), 655
flattening

objects, 263
float

built-in function, 26
float() (built-in function), 10
float_info (in module sys), 1044
float_repr_style (in module sys), 1044
floating point

literals, 26
object, 26

FloatingPointError, 56, 1081
flock() (in module fcntl), 1158
floor division, 1169
floor() (in module math), 27, 184
floordiv() (in module operator), 235
flush() (bz2.BZ2Compressor method), 304
flush() (formatter.writer method), 1133
flush() (in module mmap), 595
flush() (io.BufferedWriter method), 380
flush() (io.IOBase method), 376
flush() (logging.Handler method), 443
flush() (logging.handlers.BufferingHandler method),

466
flush() (logging.handlers.MemoryHandler method),

467
flush() (logging.StreamHandler method), 460
flush() (mailbox.Mailbox method), 683
flush() (mailbox.Maildir method), 685
flush() (mailbox.MH method), 687
flush() (zlib.Compress method), 300

flush() (zlib.Decompress method), 301
flush_softspace() (formatter.formatter method), 1132
flushinp() (in module curses), 471
FlushKey() (in module winreg), 1143
fma() (decimal.Context method), 203
fma() (decimal.Decimal method), 196
fmod() (in module math), 184
fnmatch (module), 254
fnmatch() (in module fnmatch), 255
fnmatchcase() (in module fnmatch), 255
focus() (tkinter.ttk.Treeview method), 947
FOR_ITER (opcode), 1128
forget() (in module test.support), 1016
forget() (tkinter.ttk.Notebook method), 942
fork() (in module os), 368
fork() (in module pty), 1156
forkpty() (in module os), 368
Form (class in tkinter.tix), 955
format

str, 10
format (memoryview attribute), 49
format (struct.Struct attribute), 90
format() (built-in function), 10
format() (in module locale), 882
format() (logging.Formatter method), 444
format() (logging.Handler method), 443
format() (pprint.PrettyPrinter method), 177
format() (str method), 34
format() (string.Formatter method), 62
format_exc() (in module traceback), 1067
format_exception() (in module traceback), 1067
format_exception_only() (in module traceback), 1067
format_field() (string.Formatter method), 63
format_help() (argparse.ArgumentParser method), 412
format_list() (in module traceback), 1067
format_map() (str method), 35
format_stack() (in module traceback), 1067
format_stack_entry() (bdb.Bdb method), 1022
format_string() (in module locale), 882
format_tb() (in module traceback), 1067
format_usage() (argparse.ArgumentParser method),

412
formataddr() (in module email.utils), 664
formatargspec() (in module inspect), 1077
formatargvalues() (in module inspect), 1077
formatdate() (in module email.utils), 664
FormatError, 695
FormatError() (in module ctypes), 520
formatException() (logging.Formatter method), 444
formatmonth() (calendar.HTMLCalendar method), 143
formatmonth() (calendar.TextCalendar method), 143
formatStack() (logging.Formatter method), 444
Formatter (class in logging), 443
Formatter (class in string), 62
formatter (module), 1131
formatTime() (logging.Formatter method), 444
formatting, string (%), 38
formatwarning() (in module warnings), 1059

Index 1221

The Python Library Reference, Release 3.2

formatyear() (calendar.HTMLCalendar method), 143
formatyear() (calendar.TextCalendar method), 143
formatyearpage() (calendar.HTMLCalendar method),

143
forward() (in module turtle), 889
found_terminator() (asynchat.async_chat method), 642
fpathconf() (in module os), 355
fpectl (module), 1081
fqdn (smtpd.SMTPChannel attribute), 815
Fraction (class in fractions), 213
fractions (module), 213
frame (tkinter.scrolledtext.ScrolledText attribute), 957
FrameType (in module types), 174
freeze_support() (in module multiprocessing), 550
frexp() (in module math), 184
from_address() (ctypes._CData method), 522
from_buffer() (ctypes._CData method), 521
from_buffer_copy() (ctypes._CData method), 522
from_bytes() (int class method), 29
from_decimal() (fractions.Fraction method), 214
from_float() (decimal.Decimal method), 196
from_float() (fractions.Fraction method), 214
from_iterable() (itertools.chain class method), 221
from_param() (ctypes._CData method), 522
frombuf() (tarfile.TarInfo method), 314
frombytes() (array.array method), 165
fromfd() (in module socket), 615
fromfd() (select.epoll method), 528
fromfd() (select.kqueue method), 530
fromfile() (array.array method), 165
fromhex() (bytearray class method), 42
fromhex() (bytes class method), 42
fromhex() (float class method), 29
fromkeys() (collections.Counter method), 146
fromkeys() (dict class method), 46
fromlist() (array.array method), 165
fromordinal() (datetime.date class method), 123
fromordinal() (datetime.datetime class method), 127
fromstring() (array.array method), 165
fromstring() (in module xml.etree.ElementTree), 741
fromstringlist() (in module xml.etree.ElementTree),

741
fromtarfile() (tarfile.TarInfo method), 314
fromtimestamp() (datetime.date class method), 123
fromtimestamp() (datetime.datetime class method), 127
fromunicode() (array.array method), 165
fromutc() (datetime.timezone method), 140
fromutc() (datetime.tzinfo method), 136
FrozenImporter (class in importlib.machinery), 1101
frozenset (built-in class), 43
fsdecode() (in module os), 350
fsencode() (in module os), 350
fstat() (in module os), 355
fstatvfs() (in module os), 355
fsum() (in module math), 184
fsync() (in module os), 355
FTP, 779

ftplib (standard module), 792

protocol, 779, 792
FTP (class in ftplib), 792
ftp_open() (urllib.request.FTPHandler method), 774
FTP_TLS (class in ftplib), 792
FTPHandler (class in urllib.request), 769
ftplib (module), 792
ftpmirror.py, 793
ftruncate() (in module os), 355
Full, 168
full() (multiprocessing.Queue method), 549
full() (queue.Queue method), 169
full_url (urllib.request.Request attribute), 769
func (functools.partial attribute), 234
funcattrs (2to3 fixer), 1010
function, 1169
Function (class in symtable), 1112
FunctionTestCase (class in unittest), 1001
FunctionType (in module types), 174
functools (module), 230
funny_files (filecmp.dircmp attribute), 251
future (2to3 fixer), 1010
Future (class in concurrent.futures), 591
FutureWarning, 59

G
G.722, 857
gaierror, 612
gamma() (in module math), 187
gammavariate() (in module random), 217
garbage (in module gc), 1072
garbage collection, 1169
gather() (curses.textpad.Textbox method), 484
gauss() (in module random), 217
gc (module), 1071
gcd() (in module fractions), 214
ge() (in module operator), 234
gen_uuid() (in module msilib), 1136
generator, 1169
Generator (class in email.generator), 654
generator expression, 1169
GeneratorExit, 56
GeneratorType (in module types), 174
generic_visit() (ast.NodeVisitor method), 1111
genops() (in module pickletools), 1130
get() (configparser.ConfigParser method), 337
get() (dict method), 46
get() (email.message.Message method), 648
get() (in module webbrowser), 750
get() (mailbox.Mailbox method), 682
get() (multiprocessing.pool.AsyncResult method), 562
get() (multiprocessing.Queue method), 549
get() (ossaudiodev.oss_mixer_device method), 869
get() (queue.Queue method), 169
get() (tkinter.ttk.Combobox method), 940
get() (xml.etree.ElementTree.Element method), 743
get_all() (email.message.Message method), 648
get_all() (wsgiref.headers.Headers method), 760
get_all_breaks() (bdb.Bdb method), 1022

1222 Index

The Python Library Reference, Release 3.2

get_app() (wsgiref.simple_server.WSGIServer
method), 761

get_archive_formats() (in module shutil), 259
get_begidx() (in module readline), 597
get_body_encoding() (email.charset.Charset method),

661
get_boundary() (email.message.Message method), 650
get_bpbynumber() (bdb.Bdb method), 1022
get_break() (bdb.Bdb method), 1022
get_breaks() (bdb.Bdb method), 1022
get_buffer() (xdrlib.Packer method), 341
get_buffer() (xdrlib.Unpacker method), 342
get_bytes() (mailbox.Mailbox method), 682
get_charset() (email.message.Message method), 647
get_charsets() (email.message.Message method), 650
get_children() (symtable.SymbolTable method), 1112
get_children() (tkinter.ttk.Treeview method), 946
get_close_matches() (in module difflib), 92
get_code() (importlib.abc.InspectLoader method), 1099
get_code() (importlib.abc.PyLoader method), 1100
get_code() (importlib.abc.SourceLoader method), 1099
get_code() (zipimport.zipimporter method), 1091
get_completer() (in module readline), 597
get_completer_delims() (in module readline), 597
get_completion_type() (in module readline), 597
get_config_h_filename() (in module sysconfig), 1054
get_config_var() (in module sysconfig), 1052
get_config_vars() (in module sysconfig), 1052
get_content_charset() (email.message.Message

method), 650
get_content_maintype() (email.message.Message

method), 649
get_content_subtype() (email.message.Message

method), 649
get_content_type() (email.message.Message method),

649
get_count() (in module gc), 1072
get_current_history_length() (in module readline), 597
get_data() (importlib.abc.ResourceLoader method),

1099
get_data() (in module pkgutil), 1094
get_data() (urllib.request.Request method), 770
get_data() (zipimport.zipimporter method), 1091
get_date() (mailbox.MaildirMessage method), 689
get_debug() (in module gc), 1071
get_default() (argparse.ArgumentParser method), 412
get_default_domain() (in module nis), 1163
get_default_type() (email.message.Message method),

649
get_dialect() (in module csv), 320
get_docstring() (in module ast), 1110
get_doctest() (doctest.DocTestParser method), 980
get_endidx() (in module readline), 597
get_environ() (wsgiref.simple_server.WSGIRequestHandler

method), 761
get_errno() (in module ctypes), 520
get_examples() (doctest.DocTestParser method), 980
get_exec_path() (in module os), 351

get_field() (string.Formatter method), 62
get_file() (mailbox.Babyl method), 687
get_file() (mailbox.Mailbox method), 683
get_file() (mailbox.Maildir method), 685
get_file() (mailbox.mbox method), 685
get_file() (mailbox.MH method), 687
get_file() (mailbox.MMDF method), 688
get_file_breaks() (bdb.Bdb method), 1022
get_filename() (email.message.Message method), 650
get_filename() (importlib.abc.ExecutionLoader

method), 1099
get_filename() (importlib.abc.PyLoader method), 1100
get_filename() (importlib.abc.PyPycLoader method),

1101
get_filename() (zipimport.zipimporter method), 1091
get_flags() (mailbox.MaildirMessage method), 689
get_flags() (mailbox.mboxMessage method), 691
get_flags() (mailbox.MMDFMessage method), 694
get_folder() (mailbox.Maildir method), 684
get_folder() (mailbox.MH method), 686
get_frees() (symtable.Function method), 1112
get_from() (mailbox.mboxMessage method), 690
get_from() (mailbox.MMDFMessage method), 694
get_full_url() (urllib.request.Request method), 770
get_globals() (symtable.Function method), 1112
get_grouped_opcodes() (difflib.SequenceMatcher

method), 96
get_history_item() (in module readline), 597
get_history_length() (in module readline), 597
get_host() (urllib.request.Request method), 770
get_id() (symtable.SymbolTable method), 1112
get_ident() (in module _thread), 600
get_identifiers() (symtable.SymbolTable method), 1112
get_importer() (in module pkgutil), 1093
get_info() (mailbox.MaildirMessage method), 689
GET_ITER (opcode), 1124
get_labels() (mailbox.Babyl method), 687
get_labels() (mailbox.BabylMessage method), 693
get_last_error() (in module ctypes), 520
get_line_buffer() (in module readline), 596
get_lineno() (symtable.SymbolTable method), 1112
get_loader() (in module pkgutil), 1093
get_locals() (symtable.Function method), 1112
get_logger() (in module multiprocessing), 565
get_magic() (in module imp), 1087
get_makefile_filename() (in module sysconfig), 1054
get_matching_blocks() (difflib.SequenceMatcher

method), 95
get_message() (mailbox.Mailbox method), 682
get_method() (urllib.request.Request method), 769
get_methods() (symtable.Class method), 1113
get_name() (symtable.Symbol method), 1113
get_name() (symtable.SymbolTable method), 1112
get_namespace() (symtable.Symbol method), 1113
get_namespaces() (symtable.Symbol method), 1113
get_no_wait() (multiprocessing.Queue method), 549
get_nonstandard_attr() (http.cookiejar.Cookie method),

841

Index 1223

The Python Library Reference, Release 3.2

get_nowait() (multiprocessing.Queue method), 549
get_nowait() (queue.Queue method), 169
get_objects() (in module gc), 1071
get_opcodes() (difflib.SequenceMatcher method), 95
get_option() (optparse.OptionParser method), 429
get_option_group() (optparse.OptionParser method),

421
get_origin_req_host() (urllib.request.Request method),

770
get_osfhandle() (in module msvcrt), 1141
get_output_charset() (email.charset.Charset method),

661
get_param() (email.message.Message method), 649
get_parameters() (symtable.Function method), 1112
get_params() (email.message.Message method), 649
get_path() (in module sysconfig), 1053
get_path_names() (in module sysconfig), 1053
get_paths() (in module sysconfig), 1053
get_payload() (email.message.Message method), 646
get_platform() (in module sysconfig), 1053
get_poly() (in module turtle), 904
get_position() (xdrlib.Unpacker method), 342
get_python_version() (in module sysconfig), 1053
get_recsrc() (ossaudiodev.oss_mixer_device method),

869
get_referents() (in module gc), 1072
get_referrers() (in module gc), 1072
get_request() (socketserver.BaseServer method), 822
get_scheme() (wsgiref.handlers.BaseHandler method),

764
get_scheme_names() (in module sysconfig), 1053
get_selector() (urllib.request.Request method), 770
get_sequences() (mailbox.MH method), 686
get_sequences() (mailbox.MHMessage method), 692
get_server() (multiprocessing.managers.BaseManager

method), 556
get_server_certificate() (in module ssl), 625
get_shapepoly() (in module turtle), 903
get_socket() (telnetlib.Telnet method), 816
get_source() (importlib.abc.InspectLoader method),

1099
get_source() (importlib.abc.PyLoader method), 1101
get_source() (importlib.abc.SourceLoader method),

1100
get_source() (zipimport.zipimporter method), 1091
get_stack() (bdb.Bdb method), 1022
get_starttag_text() (html.parser.HTMLParser method),

706
get_stderr() (wsgiref.handlers.BaseHandler method),

764
get_stderr() (wsgiref.simple_server.WSGIRequestHandler

method), 761
get_stdin() (wsgiref.handlers.BaseHandler method),

764
get_string() (mailbox.Mailbox method), 682
get_subdir() (mailbox.MaildirMessage method), 689
get_suffixes() (in module imp), 1087
get_symbols() (symtable.SymbolTable method), 1112

get_tag() (in module imp), 1089
get_terminator() (asynchat.async_chat method), 642
get_threshold() (in module gc), 1072
get_token() (shlex.shlex method), 922
get_type() (symtable.SymbolTable method), 1112
get_type() (urllib.request.Request method), 770
get_unixfrom() (email.message.Message method), 646
get_unpack_formats() (in module shutil), 260
get_usage() (optparse.OptionParser method), 431
get_value() (string.Formatter method), 62
get_version() (optparse.OptionParser method), 422
get_visible() (mailbox.BabylMessage method), 693
getacl() (imaplib.IMAP4 method), 800
getaddresses() (in module email.utils), 664
getaddrinfo() (in module socket), 613
getannotation() (imaplib.IMAP4 method), 800
getargspec() (in module inspect), 1076
getargvalues() (in module inspect), 1077
getatime() (in module os.path), 242
getattr() (built-in function), 11
getattr_static() (in module inspect), 1078
getAttribute() (xml.dom.Element method), 722
getAttributeNode() (xml.dom.Element method), 722
getAttributeNodeNS() (xml.dom.Element method), 722
getAttributeNS() (xml.dom.Element method), 722
GetBase() (xml.parsers.expat.xmlparser method), 709
getbegyx() (curses.window method), 477
getboolean() (configparser.ConfigParser method), 337
getbuffer() (io.BytesIO method), 379
getByteStream() (xml.sax.xmlreader.InputSource

method), 740
getcallargs() (in module inspect), 1077
getcanvas() (in module turtle), 910
getcapabilities() (nntplib.NNTP method), 805
getcaps() (in module mailcap), 680
getch() (curses.window method), 477
getch() (in module msvcrt), 1141
getCharacterStream() (xml.sax.xmlreader.InputSource

method), 740
getche() (in module msvcrt), 1141
getcheckinterval() (in module sys), 1045
getChild() (logging.Logger method), 440
getchildren() (xml.etree.ElementTree.Element

method), 744
getclasstree() (in module inspect), 1076
GetColumnInfo() (msilib.View method), 1136
getColumnNumber() (xml.sax.xmlreader.Locator

method), 739
getcomments() (in module inspect), 1076
getcompname() (aifc.aifc method), 856
getcompname() (sunau.AU_read method), 859
getcompname() (wave.Wave_read method), 861
getcomptype() (aifc.aifc method), 856
getcomptype() (sunau.AU_read method), 859
getcomptype() (wave.Wave_read method), 861
getContentHandler() (xml.sax.xmlreader.XMLReader

method), 738
getcontext() (in module decimal), 199

1224 Index

The Python Library Reference, Release 3.2

getctime() (in module os.path), 242
getcwd() (in module os), 358
getcwdb() (in module os), 358
getcwdu (2to3 fixer), 1010
getdecoder() (in module codecs), 103
getdefaultencoding() (in module sys), 1045
getdefaultlocale() (in module locale), 881
getdefaulttimeout() (in module socket), 616
getdlopenflags() (in module sys), 1045
getdoc() (in module inspect), 1076
getDOMImplementation() (in module xml.dom), 717
getDTDHandler() (xml.sax.xmlreader.XMLReader

method), 738
getEffectiveLevel() (logging.Logger method), 440
getegid() (in module os), 351
getElementsByTagName() (xml.dom.Document

method), 721
getElementsByTagName() (xml.dom.Element method),

721
getElementsByTagNameNS() (xml.dom.Document

method), 721
getElementsByTagNameNS() (xml.dom.Element

method), 721
getencoder() (in module codecs), 103
getEncoding() (xml.sax.xmlreader.InputSource

method), 740
getEntityResolver() (xml.sax.xmlreader.XMLReader

method), 738
getenv() (in module os), 352
getenvb() (in module os), 352
getErrorHandler() (xml.sax.xmlreader.XMLReader

method), 738
geteuid() (in module os), 351
getEvent() (xml.dom.pulldom.DOMEventStream

method), 730
getEventCategory() (log-

ging.handlers.NTEventLogHandler method),
466

getEventType() (logging.handlers.NTEventLogHandler
method), 466

getException() (xml.sax.SAXException method), 732
getFeature() (xml.sax.xmlreader.XMLReader method),

739
GetFieldCount() (msilib.Record method), 1137
getfile() (in module inspect), 1076
getfilesystemencoding() (in module sys), 1045
getfirst() (cgi.FieldStorage method), 753
getfloat() (configparser.ConfigParser method), 337
getfmts() (ossaudiodev.oss_audio_device method), 867
getfqdn() (in module socket), 614
getframeinfo() (in module inspect), 1078
getframerate() (aifc.aifc method), 856
getframerate() (sunau.AU_read method), 859
getframerate() (wave.Wave_read method), 861
getfullargspec() (in module inspect), 1076
getgeneratorstate() (in module inspect), 1079
getgid() (in module os), 351
getgrall() (in module grp), 1154

getgrgid() (in module grp), 1153
getgrnam() (in module grp), 1154
getgroups() (in module os), 351
getheader() (http.client.HTTPResponse method), 790
getheaders() (http.client.HTTPResponse method), 790
gethostbyaddr() (in module socket), 353, 614
gethostbyname() (in module socket), 614
gethostbyname_ex() (in module socket), 614
gethostname() (in module socket), 353, 614
getincrementaldecoder() (in module codecs), 103
getincrementalencoder() (in module codecs), 103
getinfo() (zipfile.ZipFile method), 306
getinnerframes() (in module inspect), 1078
GetInputContext() (xml.parsers.expat.xmlparser

method), 709
getint() (configparser.ConfigParser method), 337
GetInteger() (msilib.Record method), 1137
getitem() (in module operator), 236
getiterator() (xml.etree.ElementTree.Element method),

744
getiterator() (xml.etree.ElementTree.ElementTree

method), 745
getitimer() (in module signal), 636
getkey() (curses.window method), 477
GetLastError() (in module ctypes), 520
getLength() (xml.sax.xmlreader.Attributes method),

740
getLevelName() (in module logging), 450
getline() (in module linecache), 256
getLineNumber() (xml.sax.xmlreader.Locator method),

739
getlist() (cgi.FieldStorage method), 754
getloadavg() (in module os), 372
getlocale() (in module locale), 882
getLogger() (in module logging), 448
getLoggerClass() (in module logging), 448
getlogin() (in module os), 351
getLogRecordFactory() (in module logging), 448
getmark() (aifc.aifc method), 857
getmark() (sunau.AU_read method), 860
getmark() (wave.Wave_read method), 861
getmarkers() (aifc.aifc method), 857
getmarkers() (sunau.AU_read method), 859
getmarkers() (wave.Wave_read method), 861
getmaxyx() (curses.window method), 477
getmember() (tarfile.TarFile method), 312
getmembers() (in module inspect), 1074
getmembers() (tarfile.TarFile method), 312
getMessage() (logging.LogRecord method), 445
getMessage() (xml.sax.SAXException method), 731
getMessageID() (log-

ging.handlers.NTEventLogHandler method),
466

getmodule() (in module inspect), 1076
getmoduleinfo() (in module inspect), 1074
getmodulename() (in module inspect), 1074
getmouse() (in module curses), 471
getmro() (in module inspect), 1077

Index 1225

The Python Library Reference, Release 3.2

getmtime() (in module os.path), 242
getname() (chunk.Chunk method), 863
getName() (threading.Thread method), 534
getNameByQName() (xml.sax.xmlreader.AttributesNS

method), 741
getnameinfo() (in module socket), 615
getnames() (tarfile.TarFile method), 313
getNames() (xml.sax.xmlreader.Attributes method),

740
getnchannels() (aifc.aifc method), 856
getnchannels() (sunau.AU_read method), 859
getnchannels() (wave.Wave_read method), 861
getnframes() (aifc.aifc method), 856
getnframes() (sunau.AU_read method), 859
getnframes() (wave.Wave_read method), 861
getnode, 819
getnode() (in module uuid), 818
getopt (module), 437
getopt() (in module getopt), 437
GetoptError, 438
getouterframes() (in module inspect), 1078
getoutput() (in module subprocess), 607
getpagesize() (in module resource), 1162
getparams() (aifc.aifc method), 857
getparams() (sunau.AU_read method), 859
getparams() (wave.Wave_read method), 861
getparyx() (curses.window method), 477
getpass (module), 469
getpass() (in module getpass), 469
GetPassWarning, 469
getpeercert() (ssl.SSLSocket method), 627
getpeername() (socket.socket method), 617
getpen() (in module turtle), 904
getpgid() (in module os), 351
getpgrp() (in module os), 351
getpid() (in module os), 351
getpos() (html.parser.HTMLParser method), 706
getppid() (in module os), 351
getpreferredencoding() (in module locale), 882
getprofile() (in module sys), 1045
GetProperty() (msilib.SummaryInformation method),

1137
getProperty() (xml.sax.xmlreader.XMLReader

method), 739
GetPropertyCount() (msilib.SummaryInformation

method), 1137
getprotobyname() (in module socket), 615
getproxies() (in module urllib.request), 767
getPublicId() (xml.sax.xmlreader.InputSource method),

739
getPublicId() (xml.sax.xmlreader.Locator method), 739
getpwall() (in module pwd), 1152
getpwnam() (in module pwd), 1152
getpwuid() (in module pwd), 1152
getQNameByName() (xml.sax.xmlreader.AttributesNS

method), 741
getQNames() (xml.sax.xmlreader.AttributesNS

method), 741

getquota() (imaplib.IMAP4 method), 800
getquotaroot() (imaplib.IMAP4 method), 800
getrandbits() (in module random), 215
getreader() (in module codecs), 103
getrecursionlimit() (in module sys), 1045
getrefcount() (in module sys), 1045
getresgid() (in module os), 352
getresponse() (http.client.HTTPConnection method),

789
getresuid() (in module os), 352
getrlimit() (in module resource), 1160
getroot() (xml.etree.ElementTree.ElementTree

method), 745
getrusage() (in module resource), 1161
getsample() (in module audioop), 854
getsampwidth() (aifc.aifc method), 856
getsampwidth() (sunau.AU_read method), 859
getsampwidth() (wave.Wave_read method), 861
getscreen() (in module turtle), 904
getservbyname() (in module socket), 615
getservbyport() (in module socket), 615
GetSetDescriptorType (in module types), 174
getshapes() (in module turtle), 910
getsid() (in module os), 353
getsignal() (in module signal), 636
getsitepackages() (in module site), 1080
getsize() (chunk.Chunk method), 863
getsize() (in module os.path), 242
getsizeof() (in module sys), 1045
getsockname() (socket.socket method), 617
getsockopt() (socket.socket method), 617
getsource() (in module inspect), 1076
getsourcefile() (in module inspect), 1076
getsourcelines() (in module inspect), 1076
getspall() (in module spwd), 1153
getspnam() (in module spwd), 1153
getstate() (codecs.IncrementalDecoder method), 107
getstate() (codecs.IncrementalEncoder method), 106
getstate() (in module random), 215
getstatusoutput() (in module subprocess), 606
getstr() (curses.window method), 477
GetString() (msilib.Record method), 1137
getSubject() (logging.handlers.SMTPHandler method),

466
GetSummaryInformation() (msilib.Database method),

1136
getswitchinterval() (in module sys), 1045
getSystemId() (xml.sax.xmlreader.InputSource

method), 740
getSystemId() (xml.sax.xmlreader.Locator method),

739
getsyx() (in module curses), 471
gettarinfo() (tarfile.TarFile method), 314
gettempdir() (in module tempfile), 253
gettempprefix() (in module tempfile), 253
getTestCaseNames() (unittest.TestLoader method),

1003
gettext (module), 871

1226 Index

The Python Library Reference, Release 3.2

gettext() (gettext.GNUTranslations method), 875
gettext() (gettext.NullTranslations method), 874
gettext() (in module gettext), 872
gettimeout() (socket.socket method), 617
gettrace() (in module sys), 1046
getturtle() (in module turtle), 904
getType() (xml.sax.xmlreader.Attributes method), 740
getuid() (in module os), 352
geturl() (urllib.parse.urllib.parse.SplitResult method),

783
getuser() (in module getpass), 469
getuserbase() (in module site), 1081
getusersitepackages() (in module site), 1081
getvalue() (io.BytesIO method), 379
getvalue() (io.StringIO method), 381
getValue() (xml.sax.xmlreader.Attributes method), 740
getValueByQName() (xml.sax.xmlreader.AttributesNS

method), 741
getwch() (in module msvcrt), 1141
getwche() (in module msvcrt), 1141
getweakrefcount() (in module weakref), 171
getweakrefs() (in module weakref), 171
getwelcome() (ftplib.FTP method), 794
getwelcome() (nntplib.NNTP method), 805
getwelcome() (poplib.POP3 method), 797
getwin() (in module curses), 471
getwindowsversion() (in module sys), 1046
getwriter() (in module codecs), 103
getyx() (curses.window method), 477
gid (tarfile.TarInfo attribute), 314
GIL, 1169
glob

module, 255
glob (module), 254
glob() (in module glob), 254
glob() (msilib.Directory method), 1138
global interpreter lock, 1169
globals() (built-in function), 11
globs (doctest.DocTest attribute), 978
gmtime() (in module time), 384
gname (tarfile.TarInfo attribute), 315
GNOME, 875
GNU_FORMAT (in module tarfile), 311
gnu_getopt() (in module getopt), 438
got (doctest.DocTestFailure attribute), 984
goto() (in module turtle), 890
Graphical User Interface, 927
GREATER (in module token), 1114
GREATEREQUAL (in module token), 1114
Greenwich Mean Time, 383
group() (nntplib.NNTP method), 806
group() (re.match method), 79
groupby() (in module itertools), 224
groupdict() (re.match method), 80
groupindex (re.regex attribute), 79
groups (re.regex attribute), 79
groups() (re.match method), 80
grp (module), 1153

gt() (in module operator), 234
guess_all_extensions() (in module mimetypes), 697
guess_extension() (in module mimetypes), 697
guess_extension() (mimetypes.MimeTypes method),

698
guess_scheme() (in module wsgiref.util), 758
guess_type() (in module mimetypes), 697
guess_type() (mimetypes.MimeTypes method), 698
GUI, 927
gzip (module), 301
GzipFile (class in gzip), 301

H
halfdelay() (in module curses), 472
handle() (http.server.BaseHTTPRequestHandler

method), 828
handle() (logging.Handler method), 443
handle() (logging.handlers.QueueListener method),

468
handle() (logging.Logger method), 442
handle() (logging.NullHandler method), 461
handle() (socketserver.RequestHandler method), 823
handle() (wsgiref.simple_server.WSGIRequestHandler

method), 761
handle_accept() (asyncore.dispatcher method), 638
handle_accepted() (asyncore.dispatcher method), 638
handle_charref() (html.parser.HTMLParser method),

706
handle_close() (asyncore.dispatcher method), 638
handle_comment() (html.parser.HTMLParser method),

707
handle_connect() (asyncore.dispatcher method), 638
handle_data() (html.parser.HTMLParser method), 706
handle_decl() (html.parser.HTMLParser method), 707
handle_endtag() (html.parser.HTMLParser method),

706
handle_entityref() (html.parser.HTMLParser method),

706
handle_error() (asyncore.dispatcher method), 638
handle_error() (socketserver.BaseServer method), 823
handle_expect_100() (http.server.BaseHTTPRequestHandler

method), 828
handle_expt() (asyncore.dispatcher method), 638
handle_one_request() (http.server.BaseHTTPRequestHandler

method), 828
handle_pi() (html.parser.HTMLParser method), 707
handle_read() (asyncore.dispatcher method), 638
handle_request() (socketserver.BaseServer method),

822
handle_request() (xml-

rpc.server.CGIXMLRPCRequestHandler
method), 851

handle_startendtag() (html.parser.HTMLParser
method), 706

handle_starttag() (html.parser.HTMLParser method),
706

handle_timeout() (socketserver.BaseServer method),
823

Index 1227

The Python Library Reference, Release 3.2

handle_write() (asyncore.dispatcher method), 638
handleError() (logging.Handler method), 443
handleError() (logging.handlers.SocketHandler

method), 463
handler() (in module cgitb), 757
has_children() (symtable.SymbolTable method), 1112
has_colors() (in module curses), 471
has_data() (urllib.request.Request method), 770
has_exec() (symtable.SymbolTable method), 1112
has_extn() (smtplib.SMTP method), 811
has_header() (csv.Sniffer method), 321
has_header() (urllib.request.Request method), 770
has_ic() (in module curses), 471
has_il() (in module curses), 471
has_import_star() (symtable.SymbolTable method),

1112
has_ipv6 (in module socket), 613
has_key (2to3 fixer), 1010
has_key() (in module curses), 471
has_nonstandard_attr() (http.cookiejar.Cookie method),

841
has_option() (configparser.ConfigParser method), 336
has_option() (optparse.OptionParser method), 430
has_section() (configparser.ConfigParser method), 336
HAS_SNI (in module ssl), 626
hasattr() (built-in function), 11
hasAttribute() (xml.dom.Element method), 721
hasAttributeNS() (xml.dom.Element method), 722
hasAttributes() (xml.dom.Node method), 719
hasChildNodes() (xml.dom.Node method), 719
hascompare (in module dis), 1123
hasconst (in module dis), 1123
hasFeature() (xml.dom.DOMImplementation method),

718
hasfree (in module dis), 1123
hash() (built-in function), 11
hash.block_size (in module hashlib), 346
hash.digest_size (in module hashlib), 346
hash_info (in module sys), 1046
hashable, 1169
hasHandlers() (logging.Logger method), 442
hashlib (module), 345
hasjabs (in module dis), 1123
hasjrel (in module dis), 1123
haslocal (in module dis), 1123
hasname (in module dis), 1123
HAVE_ARGUMENT (opcode), 1129
head() (nntplib.NNTP method), 808
Header (class in email.header), 659
header_encode() (email.charset.Charset method), 661
header_encode_lines() (email.charset.Charset method),

661
header_encoding (email.charset.Charset attribute), 661
header_offset (zipfile.ZipInfo attribute), 309
HeaderError, 311
HeaderParseError, 663
headers

MIME, 697, 751

Headers (class in wsgiref.headers), 759
headers (http.server.BaseHTTPRequestHandler at-

tribute), 828
headers (xmlrpc.client.ProtocolError attribute), 846
heading() (in module turtle), 895
heading() (tkinter.ttk.Treeview method), 947
heapify() (in module heapq), 159
heapmin() (in module msvcrt), 1141
heappop() (in module heapq), 159
heappush() (in module heapq), 159
heappushpop() (in module heapq), 159
heapq (module), 158
heapreplace() (in module heapq), 159
helo() (smtplib.SMTP method), 811
help

online, 963
help (optparse.Option attribute), 426
help (pdb command), 1025
help() (built-in function), 11
help() (nntplib.NNTP method), 807
herror, 612
hex (uuid.UUID attribute), 818
hex() (built-in function), 11
hex() (float method), 29
hexadecimal

literals, 26
hexbin() (in module binhex), 701
hexdigest() (hashlib.hash method), 346
hexdigest() (hmac.hmac method), 347
hexdigits (in module string), 61
hexlify() (in module binascii), 702
hexversion (in module sys), 1046
hidden() (curses.panel.Panel method), 488
hide() (curses.panel.Panel method), 488
hide() (tkinter.ttk.Notebook method), 942
hide_cookie2 (http.cookiejar.CookiePolicy attribute),

838
hideturtle() (in module turtle), 900
HierarchyRequestErr, 724
HIGHEST_PROTOCOL (in module pickle), 264
HKEY_CLASSES_ROOT (in module winreg), 1146
HKEY_CURRENT_CONFIG (in module winreg),

1146
HKEY_CURRENT_USER (in module winreg), 1146
HKEY_DYN_DATA (in module winreg), 1146
HKEY_LOCAL_MACHINE (in module winreg), 1146
HKEY_PERFORMANCE_DATA (in module winreg),

1146
HKEY_USERS (in module winreg), 1146
hline() (curses.window method), 477
HList (class in tkinter.tix), 954
hls_to_rgb() (in module colorsys), 864
hmac (module), 347
HOME, 242
home() (in module turtle), 891
HOMEDRIVE, 242
HOMEPATH, 242
hook_compressed() (in module fileinput), 246

1228 Index

The Python Library Reference, Release 3.2

hook_encoded() (in module fileinput), 246
host (urllib.request.Request attribute), 769
hosts (netrc.netrc attribute), 340
hour (datetime.datetime attribute), 128
hour (datetime.time attribute), 133
HRESULT (class in ctypes), 524
hsv_to_rgb() (in module colorsys), 864
ht() (in module turtle), 900
HTML, 705, 779
html (module), 705
html.entities (module), 707
html.parser (module), 705
HTMLCalendar (class in calendar), 143
HtmlDiff (class in difflib), 91
HTMLParseError, 706
HTMLParser (class in html.parser), 705
htonl() (in module socket), 615
htons() (in module socket), 615
HTTP

http.client (standard module), 787
protocol, 751, 779, 787, 827

http.client (module), 787
http.cookiejar (module), 834
http.cookies (module), 831
http.server (module), 827
http_error_301() (urllib.request.HTTPRedirectHandler

method), 773
http_error_302() (urllib.request.HTTPRedirectHandler

method), 773
http_error_303() (urllib.request.HTTPRedirectHandler

method), 773
http_error_307() (urllib.request.HTTPRedirectHandler

method), 773
http_error_401() (url-

lib.request.HTTPBasicAuthHandler method),
774

http_error_401() (url-
lib.request.HTTPDigestAuthHandler
method), 774

http_error_407() (url-
lib.request.ProxyBasicAuthHandler method),
774

http_error_407() (url-
lib.request.ProxyDigestAuthHandler
method), 774

http_error_auth_reqed() (url-
lib.request.AbstractBasicAuthHandler
method), 773

http_error_auth_reqed() (url-
lib.request.AbstractDigestAuthHandler
method), 774

http_error_default() (urllib.request.BaseHandler
method), 772

http_error_nnn() (urllib.request.BaseHandler method),
772

http_open() (urllib.request.HTTPHandler method), 774
HTTP_PORT (in module http.client), 788
http_proxy, 776

http_version (wsgiref.handlers.BaseHandler attribute),
765

HTTPBasicAuthHandler (class in urllib.request), 768
HTTPConnection (class in http.client), 787
HTTPCookieProcessor (class in urllib.request), 768
httpd, 827
HTTPDefaultErrorHandler (class in urllib.request), 768
HTTPDigestAuthHandler (class in urllib.request), 769
HTTPError, 786
HTTPException, 787
HTTPHandler (class in logging.handlers), 467
HTTPHandler (class in urllib.request), 769
HTTPPasswordMgr (class in urllib.request), 768
HTTPPasswordMgrWithDefaultRealm (class in url-

lib.request), 768
HTTPRedirectHandler (class in urllib.request), 768
HTTPResponse (class in http.client), 787
https_open() (urllib.request.HTTPSHandler method),

774
HTTPS_PORT (in module http.client), 788
HTTPSConnection (class in http.client), 787
HTTPServer (class in http.server), 827
HTTPSHandler (class in urllib.request), 769
hypot() (in module math), 186

I
I (in module re), 75
I/O control

buffering, 15, 354, 618
POSIX, 1154
tty, 1154
UNIX, 1157

iadd() (in module operator), 239
iand() (in module operator), 239
iconcat() (in module operator), 239
id() (built-in function), 11
id() (unittest.TestCase method), 1000
idcok() (curses.window method), 477
ident (select.kevent attribute), 530
ident (threading.Thread attribute), 534
identchars (cmd.Cmd attribute), 919
identify() (tkinter.ttk.Notebook method), 942
identify() (tkinter.ttk.Treeview method), 947
identify() (tkinter.ttk.Widget method), 939
identify_column() (tkinter.ttk.Treeview method), 947
identify_element() (tkinter.ttk.Treeview method), 947
identify_region() (tkinter.ttk.Treeview method), 947
identify_row() (tkinter.ttk.Treeview method), 947
idioms (2to3 fixer), 1011
IDLE, 957, 1170
IDLESTARTUP, 959
idlok() (curses.window method), 477
IEEE-754, 1081
if

statement, 25
ifloordiv() (in module operator), 239
iglob() (in module glob), 254

Index 1229

The Python Library Reference, Release 3.2

ignorableWhitespace() (xml.sax.handler.ContentHandler
method), 735

ignore (pdb command), 1026
ignore_errors() (in module codecs), 104
IGNORE_EXCEPTION_DETAIL (in module doctest),

971
ignore_patterns() (in module shutil), 257
IGNORECASE (in module re), 75
ihave() (nntplib.NNTP method), 808
IISCGIHandler (class in wsgiref.handlers), 763
ilshift() (in module operator), 239
imag (numbers.Complex attribute), 181
imap() (multiprocessing.pool.multiprocessing.Pool

method), 562
IMAP4

protocol, 798
IMAP4 (class in imaplib), 798
IMAP4.abort, 798
IMAP4.error, 798
IMAP4.readonly, 798
IMAP4_SSL

protocol, 798
IMAP4_SSL (class in imaplib), 798
IMAP4_stream

protocol, 798
IMAP4_stream (class in imaplib), 799
imap_unordered() (multiprocess-

ing.pool.multiprocessing.Pool method),
562

imaplib (module), 798
imghdr (module), 864
immedok() (curses.window method), 477
immutable, 1170
imod() (in module operator), 239
imp

module, 21
imp (module), 1087
ImpImporter (class in pkgutil), 1092
ImpLoader (class in pkgutil), 1093
import

statement, 21, 1087
import (2to3 fixer), 1011
Import module, 958
import_fresh_module() (in module test.support), 1017
IMPORT_FROM (opcode), 1127
import_module() (in module importlib), 1098
import_module() (in module test.support), 1017
IMPORT_NAME (opcode), 1127
IMPORT_STAR (opcode), 1126
importer, 1170
ImportError, 56
importlib (module), 1097
importlib.abc (module), 1098
importlib.machinery (module), 1101
importlib.util (module), 1102
imports (2to3 fixer), 1011
imports2 (2to3 fixer), 1011
ImportWarning, 59

ImproperConnectionState, 788
imul() (in module operator), 239
in

operator, 26, 33
in_dll() (ctypes._CData method), 522
in_table_a1() (in module stringprep), 116
in_table_b1() (in module stringprep), 116
in_table_c11() (in module stringprep), 117
in_table_c11_c12() (in module stringprep), 117
in_table_c12() (in module stringprep), 117
in_table_c21() (in module stringprep), 117
in_table_c21_c22() (in module stringprep), 117
in_table_c22() (in module stringprep), 117
in_table_c3() (in module stringprep), 117
in_table_c4() (in module stringprep), 117
in_table_c5() (in module stringprep), 117
in_table_c6() (in module stringprep), 117
in_table_c7() (in module stringprep), 117
in_table_c8() (in module stringprep), 117
in_table_c9() (in module stringprep), 117
in_table_d1() (in module stringprep), 117
in_table_d2() (in module stringprep), 117
in_transaction (sqlite3.Connection attribute), 283
inch() (curses.window method), 477
Incomplete, 703
IncompleteRead, 788
increment_lineno() (in module ast), 1110
IncrementalDecoder (class in codecs), 107
IncrementalEncoder (class in codecs), 106
IncrementalNewlineDecoder (class in io), 382
IncrementalParser (class in xml.sax.xmlreader), 737
indent (doctest.Example attribute), 979
INDENT (in module token), 1114
indentation, 959
IndentationError, 57
index() (array.array method), 165
index() (in module operator), 235
index() (range method), 40
index() (sequence method), 40
index() (str method), 35
index() (tkinter.ttk.Notebook method), 942
index() (tkinter.ttk.Treeview method), 947
IndexError, 56
indexOf() (in module operator), 236
IndexSizeErr, 724
inet_aton() (in module socket), 615
inet_ntoa() (in module socket), 616
inet_ntop() (in module socket), 616
inet_pton() (in module socket), 616
Inexact (class in decimal), 205
infile (shlex.shlex attribute), 924
Infinity, 10
info() (gettext.NullTranslations method), 874
info() (in module logging), 449
info() (logging.Logger method), 441
infolist() (zipfile.ZipFile method), 306
ini file, 324
init() (in module mimetypes), 697

1230 Index

The Python Library Reference, Release 3.2

init_color() (in module curses), 472
init_database() (in module msilib), 1135
init_pair() (in module curses), 472
inited (in module mimetypes), 697
initgroups() (in module os), 351
initial_indent (textwrap.TextWrapper attribute), 101
initscr() (in module curses), 472
INPLACE_ADD (opcode), 1125
INPLACE_AND (opcode), 1125
INPLACE_FLOOR_DIVIDE (opcode), 1125
INPLACE_LSHIFT (opcode), 1125
INPLACE_MODULO (opcode), 1125
INPLACE_MULTIPLY (opcode), 1125
INPLACE_OR (opcode), 1125
INPLACE_POWER (opcode), 1124
INPLACE_RSHIFT (opcode), 1125
INPLACE_SUBTRACT (opcode), 1125
INPLACE_TRUE_DIVIDE (opcode), 1125
INPLACE_XOR (opcode), 1125
input (2to3 fixer), 1011
input() (built-in function), 11
input() (in module fileinput), 245
input_charset (email.charset.Charset attribute), 661
input_codec (email.charset.Charset attribute), 661
InputOnly (class in tkinter.tix), 955
InputSource (class in xml.sax.xmlreader), 737
insch() (curses.window method), 477
insdelln() (curses.window method), 477
insert() (array.array method), 165
insert() (sequence method), 40
insert() (tkinter.ttk.Notebook method), 942
insert() (tkinter.ttk.Treeview method), 948
insert() (xml.etree.ElementTree.Element method), 744
insert_text() (in module readline), 596
insertBefore() (xml.dom.Node method), 719
insertln() (curses.window method), 477
insnstr() (curses.window method), 477
insort() (in module bisect), 162
insort_left() (in module bisect), 162
insort_right() (in module bisect), 162
inspect (module), 1073
InspectLoader (class in importlib.abc), 1099
insstr() (curses.window method), 477
install() (gettext.NullTranslations method), 874
install() (in module gettext), 873
install_opener() (in module urllib.request), 767
installHandler() (in module unittest), 1008
instate() (tkinter.ttk.Widget method), 939
instr() (curses.window method), 478
instream (shlex.shlex attribute), 924
int

built-in function, 26
int (uuid.UUID attribute), 818
int() (built-in function), 11
Int2AP() (in module imaplib), 799
int_info (in module sys), 1047
integer

literals, 26

object, 26
types, operations on, 27

Integral (class in numbers), 182
Integrated Development Environment, 957
Intel/DVI ADPCM, 853
interact (pdb command), 1028
interact() (code.InteractiveConsole method), 1084
interact() (in module code), 1083
interact() (telnetlib.Telnet method), 817
interactive, 1170
InteractiveConsole (class in code), 1083
InteractiveInterpreter (class in code), 1083
intern (2to3 fixer), 1011
intern() (in module sys), 1047
internal_attr (zipfile.ZipInfo attribute), 309
Internaldate2tuple() (in module imaplib), 799
internalSubset (xml.dom.DocumentType attribute), 720
Internet, 749
interpolation, string (%), 38
InterpolationDepthError, 339
InterpolationError, 339
InterpolationMissingOptionError, 339
InterpolationSyntaxError, 340
interpreted, 1170
interpreter prompts, 1048
interrupt() (sqlite3.Connection method), 285
interrupt_main() (in module _thread), 600
intersection() (set method), 43
intersection_update() (set method), 44
intro (cmd.Cmd attribute), 919
InuseAttributeErr, 724
inv() (in module operator), 235
InvalidAccessErr, 724
InvalidCharacterErr, 724
InvalidModificationErr, 724
InvalidOperation (class in decimal), 205
InvalidStateErr, 724
InvalidURL, 788
invert() (in module operator), 235
io (module), 373
IOBase (class in io), 375
ioctl() (in module fcntl), 1157
ioctl() (socket.socket method), 617
IOError, 56
ior() (in module operator), 239
ipow() (in module operator), 239
irshift() (in module operator), 239
is

operator, 26
is not

operator, 26
is_() (in module operator), 234
is_alive() (multiprocessing.Process method), 547
is_alive() (threading.Thread method), 535
is_assigned() (symtable.Symbol method), 1113
is_blocked() (http.cookiejar.DefaultCookiePolicy

method), 839
is_canonical() (decimal.Context method), 203

Index 1231

The Python Library Reference, Release 3.2

is_canonical() (decimal.Decimal method), 196
IS_CHARACTER_JUNK() (in module difflib), 94
is_declared_global() (symtable.Symbol method), 1113
is_empty() (asynchat.fifo method), 642
is_expired() (http.cookiejar.Cookie method), 841
is_finite() (decimal.Context method), 203
is_finite() (decimal.Decimal method), 196
is_free() (symtable.Symbol method), 1113
is_global() (symtable.Symbol method), 1113
is_hop_by_hop() (in module wsgiref.util), 759
is_imported() (symtable.Symbol method), 1113
is_infinite() (decimal.Context method), 203
is_infinite() (decimal.Decimal method), 196
is_integer() (float method), 29
is_jython (in module test.support), 1015
IS_LINE_JUNK() (in module difflib), 94
is_linetouched() (curses.window method), 478
is_local() (symtable.Symbol method), 1113
is_multipart() (email.message.Message method), 646
is_namespace() (symtable.Symbol method), 1113
is_nan() (decimal.Context method), 203
is_nan() (decimal.Decimal method), 196
is_nested() (symtable.SymbolTable method), 1112
is_normal() (decimal.Context method), 203
is_normal() (decimal.Decimal method), 196
is_not() (in module operator), 235
is_not_allowed() (http.cookiejar.DefaultCookiePolicy

method), 839
is_optimized() (symtable.SymbolTable method), 1112
is_package() (importlib.abc.InspectLoader method),

1099
is_package() (importlib.abc.SourceLoader method),

1100
is_package() (zipimport.zipimporter method), 1091
is_parameter() (symtable.Symbol method), 1113
is_python_build() (in module sysconfig), 1054
is_qnan() (decimal.Context method), 203
is_qnan() (decimal.Decimal method), 196
is_referenced() (symtable.Symbol method), 1113
is_resource_enabled() (in module test.support), 1016
is_set() (threading.Event method), 539
is_signed() (decimal.Context method), 203
is_signed() (decimal.Decimal method), 197
is_snan() (decimal.Context method), 203
is_snan() (decimal.Decimal method), 197
is_subnormal() (decimal.Context method), 203
is_subnormal() (decimal.Decimal method), 197
is_tarfile() (in module tarfile), 311
is_tracked() (in module gc), 1072
is_unverifiable() (urllib.request.Request method), 770
is_wintouched() (curses.window method), 478
is_zero() (decimal.Context method), 203
is_zero() (decimal.Decimal method), 197
is_zipfile() (in module zipfile), 305
isabs() (in module os.path), 242
isabstract() (in module inspect), 1075
isalnum() (in module curses.ascii), 486
isalnum() (str method), 35

isalpha() (in module curses.ascii), 486
isalpha() (str method), 35
isascii() (in module curses.ascii), 486
isatty() (chunk.Chunk method), 863
isatty() (in module os), 356
isatty() (io.IOBase method), 376
isblank() (in module curses.ascii), 486
isblk() (tarfile.TarInfo method), 315
isbuiltin() (in module inspect), 1075
ischr() (tarfile.TarInfo method), 315
isclass() (in module inspect), 1075
iscntrl() (in module curses.ascii), 486
iscode() (in module inspect), 1075
isctrl() (in module curses.ascii), 486
isDaemon() (threading.Thread method), 535
isdatadescriptor() (in module inspect), 1075
isdecimal() (str method), 35
isdev() (tarfile.TarInfo method), 315
isdigit() (in module curses.ascii), 486
isdigit() (str method), 35
isdir() (in module os.path), 242
isdir() (tarfile.TarInfo method), 315
isdisjoint() (set method), 43
isdown() (in module turtle), 897
iselement() (in module xml.etree.ElementTree), 742
isenabled() (in module gc), 1071
isEnabledFor() (logging.Logger method), 440
isendwin() (in module curses), 472
ISEOF() (in module token), 1114
isexpr() (in module parser), 1105
isexpr() (parser.ST method), 1106
isfifo() (tarfile.TarInfo method), 315
isfile() (in module os.path), 242
isfile() (tarfile.TarInfo method), 315
isfinite() (in module cmath), 189
isfinite() (in module math), 185
isfirstline() (in module fileinput), 245
isframe() (in module inspect), 1075
isfunction() (in module inspect), 1075
isgenerator() (in module inspect), 1075
isgeneratorfunction() (in module inspect), 1075
isgetsetdescriptor() (in module inspect), 1075
isgraph() (in module curses.ascii), 486
isidentifier() (str method), 35
isinf() (in module cmath), 189
isinf() (in module math), 185
isinstance (2to3 fixer), 1011
isinstance() (built-in function), 12
iskeyword() (in module keyword), 1115
isleap() (in module calendar), 144
islice() (in module itertools), 224
islink() (in module os.path), 242
islnk() (tarfile.TarInfo method), 315
islower() (in module curses.ascii), 486
islower() (str method), 35
ismemberdescriptor() (in module inspect), 1075
ismeta() (in module curses.ascii), 486
ismethod() (in module inspect), 1075

1232 Index

The Python Library Reference, Release 3.2

ismethoddescriptor() (in module inspect), 1075
ismodule() (in module inspect), 1075
ismount() (in module os.path), 243
isnan() (in module cmath), 190
isnan() (in module math), 185
ISNONTERMINAL() (in module token), 1114
isnumeric() (str method), 35
isocalendar() (datetime.date method), 125
isocalendar() (datetime.datetime method), 130
isoformat() (datetime.date method), 125
isoformat() (datetime.datetime method), 130
isoformat() (datetime.time method), 133
isolation_level (sqlite3.Connection attribute), 283
isoweekday() (datetime.date method), 125
isoweekday() (datetime.datetime method), 130
isprint() (in module curses.ascii), 486
isprintable() (str method), 35
ispunct() (in module curses.ascii), 486
isreadable() (in module pprint), 176
isreadable() (pprint.PrettyPrinter method), 177
isrecursive() (in module pprint), 177
isrecursive() (pprint.PrettyPrinter method), 177
isreg() (tarfile.TarInfo method), 315
isReservedKey() (http.cookies.Morsel method), 833
isroutine() (in module inspect), 1075
isSameNode() (xml.dom.Node method), 719
isspace() (in module curses.ascii), 486
isspace() (str method), 36
isstdin() (in module fileinput), 245
issubclass() (built-in function), 12
issubset() (set method), 43
issuite() (in module parser), 1105
issuite() (parser.ST method), 1106
issuperset() (set method), 43
issym() (tarfile.TarInfo method), 315
ISTERMINAL() (in module token), 1114
istitle() (str method), 36
istraceback() (in module inspect), 1075
isub() (in module operator), 239
isupper() (in module curses.ascii), 486
isupper() (str method), 36
isvisible() (in module turtle), 900
isxdigit() (in module curses.ascii), 486
item() (tkinter.ttk.Treeview method), 948
item() (xml.dom.NamedNodeMap method), 723
item() (xml.dom.NodeList method), 720
itemgetter() (in module operator), 237
items() (configparser.ConfigParser method), 338
items() (dict method), 46
items() (email.message.Message method), 648
items() (mailbox.Mailbox method), 682
items() (xml.etree.ElementTree.Element method), 743
itemsize (array.array attribute), 164
itemsize (memoryview attribute), 49
iter() (built-in function), 12
iter() (xml.etree.ElementTree.Element method), 744
iter() (xml.etree.ElementTree.ElementTree method),

745

iter_child_nodes() (in module ast), 1110
iter_fields() (in module ast), 1110
iter_importers() (in module pkgutil), 1093
iter_modules() (in module pkgutil), 1093
iterable, 1170
iterator, 1170
iterator protocol, 31
iterdecode() (in module codecs), 104
iterdump (sqlite3.Connection attribute), 288
iterencode() (in module codecs), 104
iterencode() (json.JSONEncoder method), 680
iterfind() (xml.etree.ElementTree.Element method),

744
iterfind() (xml.etree.ElementTree.ElementTree

method), 745
iteritems() (mailbox.Mailbox method), 682
iterkeys() (mailbox.Mailbox method), 682
itermonthdates() (calendar.Calendar method), 142
itermonthdays() (calendar.Calendar method), 142
itermonthdays2() (calendar.Calendar method), 142
iterparse() (in module xml.etree.ElementTree), 742
itertext() (xml.etree.ElementTree.Element method),

744
itertools (2to3 fixer), 1011
itertools (module), 219
itertools_imports (2to3 fixer), 1011
itervalues() (mailbox.Mailbox method), 682
iterweekdays() (calendar.Calendar method), 142
ITIMER_PROF (in module signal), 635
ITIMER_REAL (in module signal), 635
ITIMER_VIRTUAL (in module signal), 635
ItimerError, 635
itruediv() (in module operator), 239
ixor() (in module operator), 239

J
Jansen, Jack, 704
java_ver() (in module platform), 490
join() (in module os.path), 243
join() (multiprocessing.JoinableQueue method), 550
join() (multiprocessing.pool.multiprocessing.Pool

method), 562
join() (multiprocessing.Process method), 546
join() (queue.Queue method), 169
join() (str method), 36
join() (threading.Thread method), 534
join_thread() (multiprocessing.Queue method), 549
JoinableQueue (class in multiprocessing), 550
js_output() (http.cookies.BaseCookie method), 832
js_output() (http.cookies.Morsel method), 833
json (module), 675
JSONDecoder (class in json), 678
JSONEncoder (class in json), 679
jump (pdb command), 1027
JUMP_ABSOLUTE (opcode), 1127
JUMP_FORWARD (opcode), 1127
JUMP_IF_FALSE_OR_POP (opcode), 1127
JUMP_IF_TRUE_OR_POP (opcode), 1127

Index 1233

The Python Library Reference, Release 3.2

K
kbhit() (in module msvcrt), 1141
KDEDIR, 750
kevent() (in module select), 527
key (http.cookies.Morsel attribute), 833
key function, 1170
KEY_ALL_ACCESS (in module winreg), 1146
KEY_CREATE_LINK (in module winreg), 1147
KEY_CREATE_SUB_KEY (in module winreg), 1147
KEY_ENUMERATE_SUB_KEYS (in module win-

reg), 1147
KEY_EXECUTE (in module winreg), 1147
KEY_NOTIFY (in module winreg), 1147
KEY_QUERY_VALUE (in module winreg), 1147
KEY_READ (in module winreg), 1146
KEY_SET_VALUE (in module winreg), 1147
KEY_WOW64_32KEY (in module winreg), 1147
KEY_WOW64_64KEY (in module winreg), 1147
KEY_WRITE (in module winreg), 1146
KeyboardInterrupt, 56
KeyError, 56
keyname() (in module curses), 472
keypad() (curses.window method), 478
keyrefs() (weakref.WeakKeyDictionary method), 172
keys() (dict method), 46
keys() (email.message.Message method), 648
keys() (mailbox.Mailbox method), 682
keys() (sqlite3.Row method), 291
keys() (xml.etree.ElementTree.Element method), 743
keyword (module), 1115
keyword argument, 1171
keywords (functools.partial attribute), 234
kill() (in module os), 368
kill() (subprocess.Popen method), 608
killchar() (in module curses), 472
killpg() (in module os), 368
knownfiles (in module mimetypes), 697
kqueue() (in module select), 527
Kuchling, Andrew, 347
kwlist (in module keyword), 1115

L
L (in module re), 75
LabelEntry (class in tkinter.tix), 953
LabelFrame (class in tkinter.tix), 953
lambda, 1171
LambdaType (in module types), 174
LANG, 871, 873, 879, 881, 882
LANGUAGE, 871, 873
language

C, 26, 27
large files, 1151
LargeZipFile, 305
last() (nntplib.NNTP method), 807
last_accepted (multiprocessing.connection.Listener at-

tribute), 564
last_traceback (in module sys), 1047
last_type (in module sys), 1047

last_value (in module sys), 1047
lastChild (xml.dom.Node attribute), 719
lastcmd (cmd.Cmd attribute), 919
lastgroup (re.match attribute), 81
lastindex (re.match attribute), 81
lastrowid (sqlite3.Cursor attribute), 291
layout() (tkinter.ttk.Style method), 950
LBRACE (in module token), 1114
LBYL, 1171
LC_ALL, 871, 873
LC_ALL (in module locale), 883
LC_COLLATE (in module locale), 883
LC_CTYPE (in module locale), 883
LC_MESSAGES, 871, 873
LC_MESSAGES (in module locale), 883
LC_MONETARY (in module locale), 883
LC_NUMERIC (in module locale), 883
LC_TIME (in module locale), 883
lchflags() (in module os), 359
lchmod() (in module os), 360
lchown() (in module os), 360
ldexp() (in module math), 185
ldgettext() (in module gettext), 872
ldngettext() (in module gettext), 872
le() (in module operator), 234
leapdays() (in module calendar), 144
leaveok() (curses.window method), 478
left() (in module turtle), 890
left_list (filecmp.dircmp attribute), 250
left_only (filecmp.dircmp attribute), 250
LEFTSHIFT (in module token), 1114
LEFTSHIFTEQUAL (in module token), 1114
len

built-in function, 33, 45
len() (built-in function), 12
length (xml.dom.NamedNodeMap attribute), 723
length (xml.dom.NodeList attribute), 720
LESS (in module token), 1114
LESSEQUAL (in module token), 1114
lexists() (in module os.path), 242
lgamma() (in module math), 187
lgettext() (gettext.GNUTranslations method), 875
lgettext() (gettext.NullTranslations method), 874
lgettext() (in module gettext), 872
lib2to3 (module), 1013
libc_ver() (in module platform), 491
library (in module dbm.ndbm), 279
LibraryLoader (class in ctypes), 516
license (built-in variable), 23
LifoQueue (class in queue), 168
light-weight processes, 600
limit_denominator() (fractions.Fraction method), 214
lin2adpcm() (in module audioop), 854
lin2alaw() (in module audioop), 854
lin2lin() (in module audioop), 854
lin2ulaw() (in module audioop), 854
line() (msilib.Dialog method), 1139
line-buffered I/O, 15

1234 Index

The Python Library Reference, Release 3.2

line_buffering (io.TextIOWrapper attribute), 381
line_num (csv.csvreader attribute), 323
linecache (module), 255
lineno (ast.AST attribute), 1107
lineno (doctest.DocTest attribute), 978
lineno (doctest.Example attribute), 979
lineno (pyclbr.Class attribute), 1119
lineno (pyclbr.Function attribute), 1119
lineno (shlex.shlex attribute), 924
lineno (xml.parsers.expat.ExpatError attribute), 713
lineno() (in module fileinput), 245
LINES, 475
linesep (in module os), 373
lineterminator (csv.Dialect attribute), 322
link() (in module os), 360
linkname (tarfile.TarInfo attribute), 314
linux_distribution() (in module platform), 491
list, 1171

object, 32, 40
type, operations on, 40

list (pdb command), 1027
list comprehension, 1171
list() (built-in function), 12
list() (imaplib.IMAP4 method), 800
list() (multiprocessing.managers.SyncManager

method), 557
list() (nntplib.NNTP method), 806
list() (poplib.POP3 method), 797
list() (tarfile.TarFile method), 313
LIST_APPEND (opcode), 1125
list_dialects() (in module csv), 320
list_folders() (mailbox.Maildir method), 684
list_folders() (mailbox.MH method), 686
listdir() (in module os), 360
listen() (asyncore.dispatcher method), 639
listen() (in module logging.config), 453
listen() (in module turtle), 908
listen() (socket.socket method), 617
Listener (class in multiprocessing.connection), 563
listMethods() (xmlrpc.client.ServerProxy.system

method), 843
ListNoteBook (class in tkinter.tix), 955
literal_eval() (in module ast), 1110
literals

binary, 26
complex number, 26
floating point, 26
hexadecimal, 26
integer, 26
numeric, 26
octal, 26

LittleEndianStructure (class in ctypes), 524
ljust() (str method), 36
LK_LOCK (in module msvcrt), 1140
LK_NBLCK (in module msvcrt), 1140
LK_NBRLCK (in module msvcrt), 1140
LK_RLCK (in module msvcrt), 1140
LK_UNLCK (in module msvcrt), 1140

ll (pdb command), 1027
LMTP (class in smtplib), 809
ln() (decimal.Context method), 203
ln() (decimal.Decimal method), 197
LNAME, 469
lngettext() (gettext.GNUTranslations method), 875
lngettext() (gettext.NullTranslations method), 874
lngettext() (in module gettext), 872
load() (http.cookiejar.FileCookieJar method), 836
load() (http.cookies.BaseCookie method), 832
load() (in module json), 677
load() (in module marshal), 276
load() (in module pickle), 265
load() (pickle.Unpickler method), 266
LOAD_ATTR (opcode), 1127
LOAD_BUILD_CLASS (opcode), 1126
load_cert_chain() (ssl.SSLContext method), 628
LOAD_CLOSURE (opcode), 1128
LOAD_CONST (opcode), 1127
LOAD_DEREF (opcode), 1128
load_extension() (sqlite3.Connection method), 286
LOAD_FAST (opcode), 1128
LOAD_GLOBAL (opcode), 1128
load_module() (importlib.abc.Loader method), 1098
load_module() (importlib.abc.PyLoader method), 1100
load_module() (importlib.abc.SourceLoader method),

1099
load_module() (in module imp), 1088
load_module() (zipimport.zipimporter method), 1091
LOAD_NAME (opcode), 1127
load_verify_locations() (ssl.SSLContext method), 628
loader, 1171
Loader (class in importlib.abc), 1098
LoadError, 834
LoadKey() (in module winreg), 1143
LoadLibrary() (ctypes.LibraryLoader method), 516
loads() (in module json), 678
loads() (in module marshal), 277
loads() (in module pickle), 265
loads() (in module xmlrpc.client), 847
loadTestsFromModule() (unittest.TestLoader method),

1002
loadTestsFromName() (unittest.TestLoader method),

1002
loadTestsFromNames() (unittest.TestLoader method),

1003
loadTestsFromTestCase() (unittest.TestLoader

method), 1002
local (class in threading), 532
localcontext() (in module decimal), 200
LOCALE (in module re), 75
locale (module), 879
localeconv() (in module locale), 879
LocaleHTMLCalendar (class in calendar), 144
LocaleTextCalendar (class in calendar), 143
localName (xml.dom.Attr attribute), 722
localName (xml.dom.Node attribute), 719
locals() (built-in function), 12

Index 1235

The Python Library Reference, Release 3.2

localtime() (in module time), 384
Locator (class in xml.sax.xmlreader), 737
Lock (class in multiprocessing), 552
Lock() (in module threading), 532
lock() (mailbox.Babyl method), 687
lock() (mailbox.Mailbox method), 683
lock() (mailbox.Maildir method), 685
lock() (mailbox.mbox method), 685
lock() (mailbox.MH method), 686
lock() (mailbox.MMDF method), 688
Lock() (multiprocessing.managers.SyncManager

method), 557
lock_held() (in module imp), 1088
locked() (_thread.lock method), 601
lockf() (in module fcntl), 1158
locking() (in module msvcrt), 1140
LockType (in module _thread), 600
log() (in module cmath), 188
log() (in module logging), 449
log() (in module math), 185
log() (logging.Logger method), 442
log10() (decimal.Context method), 203
log10() (decimal.Decimal method), 197
log10() (in module cmath), 189
log10() (in module math), 186
log1p() (in module math), 186
log_date_time_string()

(http.server.BaseHTTPRequestHandler
method), 829

log_error() (http.server.BaseHTTPRequestHandler
method), 829

log_exception() (wsgiref.handlers.BaseHandler
method), 764

log_message() (http.server.BaseHTTPRequestHandler
method), 829

log_request() (http.server.BaseHTTPRequestHandler
method), 829

log_to_stderr() (in module multiprocessing), 566
logb() (decimal.Context method), 203
logb() (decimal.Decimal method), 197
Logger (class in logging), 440
LoggerAdapter (class in logging), 447
logging

Errors, 439
logging (module), 439
logging.config (module), 452
logging.handlers (module), 460
logical_and() (decimal.Context method), 203
logical_and() (decimal.Decimal method), 197
logical_invert() (decimal.Context method), 203
logical_invert() (decimal.Decimal method), 197
logical_or() (decimal.Context method), 203
logical_or() (decimal.Decimal method), 197
logical_xor() (decimal.Context method), 203
logical_xor() (decimal.Decimal method), 197
login() (ftplib.FTP method), 794
login() (imaplib.IMAP4 method), 800
login() (nntplib.NNTP method), 805

login() (smtplib.SMTP method), 811
login_cram_md5() (imaplib.IMAP4 method), 800
LOGNAME, 351, 469
lognormvariate() (in module random), 217
logout() (imaplib.IMAP4 method), 800
LogRecord (class in logging), 445
long (2to3 fixer), 1011
longMessage (unittest.TestCase attribute), 1000
longname() (in module curses), 472
lookup() (in module codecs), 103
lookup() (in module unicodedata), 115
lookup() (symtable.SymbolTable method), 1112
lookup() (tkinter.ttk.Style method), 950
lookup_error() (in module codecs), 103
LookupError, 56
loop() (in module asyncore), 637
lower() (str method), 36
LPAR (in module token), 1114
lru_cache() (in module functools), 231
lseek() (in module os), 356
lshift() (in module operator), 235
LSQB (in module token), 1114
lstat() (in module os), 360
lstrip() (str method), 36
lsub() (imaplib.IMAP4 method), 800
lt() (in module operator), 234
lt() (in module turtle), 890
LWPCookieJar (class in http.cookiejar), 837

M
M (in module re), 75
mac_ver() (in module platform), 490
machine() (in module platform), 489
macpath (module), 260
macros (netrc.netrc attribute), 340
Mailbox (class in mailbox), 681
mailbox (module), 681
mailcap (module), 680
Maildir (class in mailbox), 684
MaildirMessage (class in mailbox), 689
mailfrom (smtpd.SMTPChannel attribute), 814
MailmanProxy (class in smtpd), 814
main() (in module py_compile), 1119
main() (in module unittest), 1005
mainloop() (in module turtle), 909
major() (in module os), 360
make_archive() (in module shutil), 259
MAKE_CLOSURE (opcode), 1128
make_cookies() (http.cookiejar.CookieJar method),

836
make_file() (difflib.HtmlDiff method), 91
MAKE_FUNCTION (opcode), 1128
make_header() (in module email.header), 660
make_msgid() (in module email.utils), 665
make_parser() (in module xml.sax), 730
make_server() (in module wsgiref.simple_server), 760
make_table() (difflib.HtmlDiff method), 91
makedev() (in module os), 360

1236 Index

The Python Library Reference, Release 3.2

makedirs() (in module os), 361
makeelement() (xml.etree.ElementTree.Element

method), 744
makefile() (socket.socket method), 618
makeLogRecord() (in module logging), 450
makePickle() (logging.handlers.SocketHandler

method), 463
makeRecord() (logging.Logger method), 442
makeSocket() (logging.handlers.DatagramHandler

method), 464
makeSocket() (logging.handlers.SocketHandler

method), 463
maketrans() (bytearray static method), 42
maketrans() (bytes static method), 42
maketrans() (str static method), 36
map (2to3 fixer), 1011
map() (built-in function), 12
map() (concurrent.futures.Executor method), 589
map() (multiprocessing.pool.multiprocessing.Pool

method), 561
map() (tkinter.ttk.Style method), 949
MAP_ADD (opcode), 1125
map_async() (multiprocess-

ing.pool.multiprocessing.Pool method),
562

map_table_b2() (in module stringprep), 116
map_table_b3() (in module stringprep), 117
mapping, 1171

object, 45
types, operations on, 45

mapping() (msilib.Control method), 1139
mapPriority() (logging.handlers.SysLogHandler

method), 465
maps() (in module nis), 1163
marshal (module), 276
marshalling

objects, 263
masking

operations, 27
match() (in module nis), 1162
match() (in module re), 76
match() (re.regex method), 78
match_hostname() (in module ssl), 624
math

module, 27, 190
math (module), 184
max

built-in function, 33
max (datetime.date attribute), 123
max (datetime.datetime attribute), 127
max (datetime.time attribute), 133
max (datetime.timedelta attribute), 121
max() (built-in function), 13
max() (decimal.Context method), 203
max() (decimal.Decimal method), 197
max() (in module audioop), 854
MAX_INTERPOLATION_DEPTH (in module config-

parser), 338

max_mag() (decimal.Context method), 203
max_mag() (decimal.Decimal method), 197
maxarray (reprlib.Repr attribute), 179
maxdeque (reprlib.Repr attribute), 179
maxdict (reprlib.Repr attribute), 179
maxDiff (unittest.TestCase attribute), 1000
maxfrozenset (reprlib.Repr attribute), 179
maxlen (collections.deque attribute), 149
maxlevel (reprlib.Repr attribute), 179
maxlist (reprlib.Repr attribute), 179
maxlong (reprlib.Repr attribute), 179
maxother (reprlib.Repr attribute), 179
maxpp() (in module audioop), 854
maxset (reprlib.Repr attribute), 179
maxsize (in module sys), 1047
maxstring (reprlib.Repr attribute), 179
maxtuple (reprlib.Repr attribute), 179
maxunicode (in module sys), 1047
MAXYEAR (in module datetime), 119
MB_ICONASTERISK (in module winsound), 1150
MB_ICONEXCLAMATION (in module winsound),

1150
MB_ICONHAND (in module winsound), 1150
MB_ICONQUESTION (in module winsound), 1150
MB_OK (in module winsound), 1150
mbox (class in mailbox), 685
mboxMessage (class in mailbox), 690
MemberDescriptorType (in module types), 174
memmove() (in module ctypes), 520
MemoryError, 56
MemoryHandler (class in logging.handlers), 467
memoryview (built-in class), 48
memset() (in module ctypes), 521
merge() (in module heapq), 159
Message (class in email.message), 646
Message (class in mailbox), 688
message digest, MD5, 345
message_from_binary_file() (in module email), 653
message_from_bytes() (in module email), 653
message_from_file() (in module email), 653
message_from_string() (in module email), 653
MessageBeep() (in module winsound), 1149
MessageClass (http.server.BaseHTTPRequestHandler

attribute), 828
MessageError, 663
MessageParseError, 663
messages (in module xml.parsers.expat.errors), 714
meta() (in module curses), 472
meta_path (in module sys), 1047
metaclass, 1171
metaclass (2to3 fixer), 1011
metavar (optparse.Option attribute), 426
Meter (class in tkinter.tix), 953
method, 1171

object, 51
method resolution order, 1171
methodattrs (2to3 fixer), 1011
methodcaller() (in module operator), 237

Index 1237

The Python Library Reference, Release 3.2

methodHelp() (xmlrpc.client.ServerProxy.system
method), 843

methods
bytearray, 41
bytes, 41
string, 34

methods (pyclbr.Class attribute), 1118
methodSignature() (xmlrpc.client.ServerProxy.system

method), 843
MethodType (in module types), 174
MH (class in mailbox), 686
MHMessage (class in mailbox), 692
microsecond (datetime.datetime attribute), 128
microsecond (datetime.time attribute), 133
MIME

base64 encoding, 699
content type, 696
headers, 697, 751
quoted-printable encoding, 703

MIMEApplication (class in email.mime.application),
657

MIMEAudio (class in email.mime.audio), 657
MIMEBase (class in email.mime.base), 656
MIMEImage (class in email.mime.image), 658
MIMEMessage (class in email.mime.message), 658
MIMEMultipart (class in email.mime.multipart), 657
MIMENonMultipart (class in

email.mime.nonmultipart), 657
MIMEText (class in email.mime.text), 658
MimeTypes (class in mimetypes), 698
mimetypes (module), 696
min

built-in function, 33
min (datetime.date attribute), 123
min (datetime.datetime attribute), 127
min (datetime.time attribute), 133
min (datetime.timedelta attribute), 121
min() (built-in function), 13
min() (decimal.Context method), 203
min() (decimal.Decimal method), 197
min_mag() (decimal.Context method), 203
min_mag() (decimal.Decimal method), 197
MINEQUAL (in module token), 1114
minmax() (in module audioop), 854
minor() (in module os), 360
MINUS (in module token), 1114
minus() (decimal.Context method), 203
minute (datetime.datetime attribute), 128
minute (datetime.time attribute), 133
MINYEAR (in module datetime), 119
mirrored() (in module unicodedata), 115
misc_header (cmd.Cmd attribute), 919
MissingSectionHeaderError, 340
MIXERDEV, 866
mkd() (ftplib.FTP method), 795
mkdir() (in module os), 360
mkdtemp() (in module tempfile), 252
mkfifo() (in module os), 360

mknod() (in module os), 360
mkstemp() (in module tempfile), 252
mktemp() (in module tempfile), 252
mktime() (in module time), 384
mktime_tz() (in module email.utils), 664
mmap (class in mmap), 593
mmap (module), 593
MMDF (class in mailbox), 688
MMDFMessage (class in mailbox), 694
mod() (in module operator), 235
mode (io.FileIO attribute), 378
mode (ossaudiodev.oss_audio_device attribute), 868
mode (tarfile.TarInfo attribute), 314
mode() (in module turtle), 910
modf() (in module math), 185
modified() (urllib.robotparser.RobotFileParser method),

786
Modify() (msilib.View method), 1136
modify() (select.epoll method), 529
modify() (select.poll method), 529
module

_locale, 879
base64, 701
bdb, 1023
binhex, 701
cmd, 1023
copy, 273
crypt, 1152
dbm.gnu, 275
dbm.ndbm, 275
errno, 57, 612
glob, 255
imp, 21
math, 27, 190
os, 1151
pickle, 175, 273, 274, 276
pty, 356
pwd, 242
pyexpat, 708
re, 40, 254
search path, 256, 1047, 1079
shelve, 276
signal, 601
sitecustomize, 1080
socket, 749
stat, 363
string, 40, 883
struct, 619
sys, 15
types, 52
urllib.request, 787
uu, 701

module (pyclbr.Class attribute), 1118
module (pyclbr.Function attribute), 1119
module_for_loader() (in module importlib.util), 1102
ModuleFinder (class in modulefinder), 1094
modulefinder (module), 1094
modules (in module sys), 1047

1238 Index

The Python Library Reference, Release 3.2

modules (modulefinder.ModuleFinder attribute), 1094
ModuleType (in module types), 174
month (datetime.date attribute), 124
month (datetime.datetime attribute), 127
month() (in module calendar), 144
month_abbr (in module calendar), 145
month_name (in module calendar), 145
monthcalendar() (in module calendar), 144
monthdatescalendar() (calendar.Calendar method), 142
monthdays2calendar() (calendar.Calendar method), 142
monthdayscalendar() (calendar.Calendar method), 143
monthrange() (in module calendar), 144
Morsel (class in http.cookies), 832
most_common() (collections.Counter method), 146
mouseinterval() (in module curses), 472
mousemask() (in module curses), 472
move() (curses.panel.Panel method), 488
move() (curses.window method), 478
move() (in module mmap), 595
move() (in module shutil), 257
move() (tkinter.ttk.Treeview method), 948
move_to_end() (collections.OrderedDict method), 155
MozillaCookieJar (class in http.cookiejar), 837
MRO, 1171
mro() (class method), 53
msg (http.client.HTTPResponse attribute), 790
msg() (telnetlib.Telnet method), 816
msi, 1135
msilib (module), 1135
msvcrt (module), 1140
mt_interact() (telnetlib.Telnet method), 817
mtime (tarfile.TarInfo attribute), 314
mtime() (urllib.robotparser.RobotFileParser method),

786
mul() (in module audioop), 854
mul() (in module operator), 235
MultiCall (class in xmlrpc.client), 846
MULTILINE (in module re), 75
MultipartConversionError, 663
multiply() (decimal.Context method), 204
multiprocessing (module), 542
multiprocessing.connection (module), 563
multiprocessing.dummy (module), 566
multiprocessing.Manager() (in module multiprocess-

ing.sharedctypes), 555
multiprocessing.managers (module), 555
multiprocessing.Pool (class in multiprocessing.pool),

561
multiprocessing.pool (module), 561
multiprocessing.sharedctypes (module), 553
mutable, 1171

sequence types, 40
mvderwin() (curses.window method), 478
mvwin() (curses.window method), 478
myrights() (imaplib.IMAP4 method), 800

N
N_TOKENS (in module token), 1114

n_waiting (threading.Barrier attribute), 541
name (doctest.DocTest attribute), 978
name (http.cookiejar.Cookie attribute), 840
name (in module os), 349
NAME (in module token), 1114
name (io.FileIO attribute), 378
name (multiprocessing.Process attribute), 547
name (ossaudiodev.oss_audio_device attribute), 868
name (pyclbr.Class attribute), 1118
name (pyclbr.Function attribute), 1119
name (tarfile.TarInfo attribute), 314
name (threading.Thread attribute), 534
name (xml.dom.Attr attribute), 722
name (xml.dom.DocumentType attribute), 720
name() (in module unicodedata), 115
name2codepoint (in module html.entities), 708
named tuple, 1171
NamedTemporaryFile() (in module tempfile), 251
namedtuple() (in module collections), 152
NameError, 57
namelist() (zipfile.ZipFile method), 306
nameprep() (in module encodings.idna), 114
namespace, 1171
namespace() (imaplib.IMAP4 method), 801
Namespace() (multiprocessing.managers.SyncManager

method), 557
NAMESPACE_DNS (in module uuid), 819
NAMESPACE_OID (in module uuid), 819
NAMESPACE_URL (in module uuid), 819
NAMESPACE_X500 (in module uuid), 819
NamespaceErr, 724
namespaceURI (xml.dom.Node attribute), 719
NaN, 10
NannyNag, 1118
napms() (in module curses), 472
nargs (optparse.Option attribute), 425
ndiff() (in module difflib), 92
ndim (memoryview attribute), 49
ne (2to3 fixer), 1011
ne() (in module operator), 234
neg() (in module operator), 235
nested scope, 1172
netrc (class in netrc), 340
netrc (module), 340
NetrcParseError, 340
netscape (http.cookiejar.CookiePolicy attribute), 838
Network News Transfer Protocol, 803
new() (in module hashlib), 346
new() (in module hmac), 347
new-style class, 1172
new_alignment() (formatter.writer method), 1133
new_font() (formatter.writer method), 1133
new_margin() (formatter.writer method), 1133
new_module() (in module imp), 1088
new_panel() (in module curses.panel), 487
new_spacing() (formatter.writer method), 1133
new_styles() (formatter.writer method), 1133
newgroups() (nntplib.NNTP method), 805

Index 1239

The Python Library Reference, Release 3.2

NEWLINE (in module token), 1114
newlines (io.TextIOBase attribute), 380
newnews() (nntplib.NNTP method), 806
newpad() (in module curses), 472
newwin() (in module curses), 473
next (2to3 fixer), 1011
next (pdb command), 1027
next() (built-in function), 13
next() (nntplib.NNTP method), 807
next() (tarfile.TarFile method), 313
next() (tkinter.ttk.Treeview method), 948
next_minus() (decimal.Context method), 204
next_minus() (decimal.Decimal method), 197
next_plus() (decimal.Context method), 204
next_plus() (decimal.Decimal method), 197
next_toward() (decimal.Context method), 204
next_toward() (decimal.Decimal method), 198
nextfile() (in module fileinput), 245
nextkey() (dbm.gnu.gdbm method), 279
nextSibling (xml.dom.Node attribute), 719
ngettext() (gettext.GNUTranslations method), 875
ngettext() (gettext.NullTranslations method), 874
ngettext() (in module gettext), 872
nice() (in module os), 368
nis (module), 1162
NL (in module tokenize), 1116
nl() (in module curses), 473
nl_langinfo() (in module locale), 880
nlargest() (in module heapq), 159
nlst() (ftplib.FTP method), 795
NNTP

protocol, 803
NNTP (class in nntplib), 804
nntp_implementation (nntplib.NNTP attribute), 805
NNTP_SSL (class in nntplib), 804
nntp_version (nntplib.NNTP attribute), 805
NNTPDataError, 804
NNTPError, 804
nntplib (module), 803
NNTPPermanentError, 804
NNTPProtocolError, 804
NNTPReplyError, 804
NNTPTemporaryError, 804
nocbreak() (in module curses), 473
NoDataAllowedErr, 724
node() (in module platform), 489
nodelay() (curses.window method), 478
nodeName (xml.dom.Node attribute), 719
NodeTransformer (class in ast), 1111
nodeType (xml.dom.Node attribute), 718
nodeValue (xml.dom.Node attribute), 719
NodeVisitor (class in ast), 1110
noecho() (in module curses), 473
NOEXPR (in module locale), 881
NoModificationAllowedErr, 724
nonblock() (ossaudiodev.oss_audio_device method),

867
None (Built-in object), 25

None (built-in variable), 23
nonl() (in module curses), 473
nonzero (2to3 fixer), 1011
noop() (imaplib.IMAP4 method), 801
noop() (poplib.POP3 method), 797
NoOptionError, 339
NOP (opcode), 1123
noqiflush() (in module curses), 473
noraw() (in module curses), 473
normalize() (decimal.Context method), 204
normalize() (decimal.Decimal method), 198
normalize() (in module locale), 882
normalize() (in module unicodedata), 115
normalize() (xml.dom.Node method), 720
NORMALIZE_WHITESPACE (in module doctest),

971
normalvariate() (in module random), 217
normcase() (in module os.path), 243
normpath() (in module os.path), 243
NoSectionError, 339
NoSuchMailboxError, 695
not

operator, 25
not in

operator, 26, 33
not_() (in module operator), 234
notationDecl() (xml.sax.handler.DTDHandler method),

736
NotationDeclHandler() (xml.parsers.expat.xmlparser

method), 711
notations (xml.dom.DocumentType attribute), 720
NotConnected, 788
NoteBook (class in tkinter.tix), 955
Notebook (class in tkinter.ttk), 942
NotEmptyError, 695
NOTEQUAL (in module token), 1114
NotFoundErr, 724
notify() (threading.Condition method), 538
notify_all() (threading.Condition method), 538
notimeout() (curses.window method), 478
NotImplemented (built-in variable), 23
NotImplementedError, 57
NotStandaloneHandler() (xml.parsers.expat.xmlparser

method), 712
NotSupportedErr, 724
noutrefresh() (curses.window method), 478
now() (datetime.datetime class method), 126
NSIG (in module signal), 635
nsmallest() (in module heapq), 159
NT_OFFSET (in module token), 1114
NTEventLogHandler (class in logging.handlers), 465
ntohl() (in module socket), 615
ntohs() (in module socket), 615
ntransfercmd() (ftplib.FTP method), 795
NullFormatter (class in formatter), 1133
NullHandler (class in logging), 461
NullImporter (class in imp), 1090
NullTranslations (class in gettext), 873

1240 Index

The Python Library Reference, Release 3.2

NullWriter (class in formatter), 1134
Number (class in numbers), 181
NUMBER (in module token), 1114
number_class() (decimal.Context method), 204
number_class() (decimal.Decimal method), 198
numbers (module), 181
numerator (numbers.Rational attribute), 181
numeric

conversions, 27
literals, 26
object, 26
types, operations on, 27

numeric() (in module unicodedata), 115
Numerical Python, 18
numinput() (in module turtle), 909
numliterals (2to3 fixer), 1012

O
O_APPEND (in module os), 357
O_ASYNC (in module os), 357
O_BINARY (in module os), 357
O_CREAT (in module os), 357
O_DIRECT (in module os), 357
O_DIRECTORY (in module os), 357
O_DSYNC (in module os), 357
O_EXCL (in module os), 357
O_EXLOCK (in module os), 357
O_NDELAY (in module os), 357
O_NOATIME (in module os), 357
O_NOCTTY (in module os), 357
O_NOFOLLOW (in module os), 357
O_NOINHERIT (in module os), 357
O_NONBLOCK (in module os), 357
O_RANDOM (in module os), 357
O_RDONLY (in module os), 357
O_RDWR (in module os), 357
O_RSYNC (in module os), 357
O_SEQUENTIAL (in module os), 357
O_SHLOCK (in module os), 357
O_SHORT_LIVED (in module os), 357
O_SYNC (in module os), 357
O_TEMPORARY (in module os), 357
O_TEXT (in module os), 357
O_TRUNC (in module os), 357
O_WRONLY (in module os), 357
object, 1172

Boolean, 26
bytearray, 32, 40
bytes, 32
code, 51, 276
complex number, 26
dictionary, 45
floating point, 26
integer, 26
list, 32, 40
mapping, 45
method, 51
numeric, 26

range, 32, 40
sequence, 32
set, 42
socket, 611
string, 32
traceback, 1043, 1066
tuple, 32
type, 19

object() (built-in function), 13
objects

comparing, 26
flattening, 263
marshalling, 263
persistent, 263
pickling, 263
serializing, 263

obufcount() (ossaudiodev.oss_audio_device method),
868

obuffree() (ossaudiodev.oss_audio_device method),
868

oct() (built-in function), 13
octal

literals, 26
octdigits (in module string), 61
offset (xml.parsers.expat.ExpatError attribute), 713
OK (in module curses), 480
OleDLL (class in ctypes), 515
onclick() (in module turtle), 903, 908
ondrag() (in module turtle), 903
onecmd() (cmd.Cmd method), 918
onkey() (in module turtle), 908
onkeypress() (in module turtle), 908
onkeyrelease() (in module turtle), 908
onrelease() (in module turtle), 903
onscreenclick() (in module turtle), 908
ontimer() (in module turtle), 909
OP (in module token), 1114
OP_ALL (in module ssl), 626
OP_NO_SSLv2 (in module ssl), 626
OP_NO_SSLv3 (in module ssl), 626
OP_NO_TLSv1 (in module ssl), 626
open() (built-in function), 13
open() (imaplib.IMAP4 method), 801
open() (in module aifc), 856
open() (in module codecs), 104
open() (in module dbm), 277
open() (in module dbm.dumb), 280
open() (in module dbm.gnu), 278
open() (in module dbm.ndbm), 279
open() (in module gzip), 302
open() (in module io), 374
open() (in module os), 356
open() (in module ossaudiodev), 865
open() (in module shelve), 274
open() (in module sunau), 858
open() (in module tarfile), 310
open() (in module tokenize), 1116
open() (in module wave), 860

Index 1241

The Python Library Reference, Release 3.2

open() (in module webbrowser), 749
open() (pipes.Template method), 1160
open() (tarfile.TarFile method), 312
open() (telnetlib.Telnet method), 816
open() (urllib.request.OpenerDirector method), 770
open() (urllib.request.URLopener method), 778
open() (webbrowser.controller method), 751
open() (zipfile.ZipFile method), 306
open_new() (in module webbrowser), 750
open_new() (webbrowser.controller method), 751
open_new_tab() (in module webbrowser), 750
open_new_tab() (webbrowser.controller method), 751
open_osfhandle() (in module msvcrt), 1140
open_unknown() (urllib.request.URLopener method),

778
OpenDatabase() (in module msilib), 1135
OpenerDirector (class in urllib.request), 768
openfp() (in module sunau), 858
openfp() (in module wave), 861
OpenKey() (in module winreg), 1144
OpenKeyEx() (in module winreg), 1144
openlog() (in module syslog), 1163
openmixer() (in module ossaudiodev), 866
openpty() (in module os), 356
openpty() (in module pty), 1156
OpenSSL

(use in module hashlib), 345
(use in module ssl), 622

OPENSSL_VERSION (in module ssl), 626
OPENSSL_VERSION_INFO (in module ssl), 626
OPENSSL_VERSION_NUMBER (in module ssl), 626
OpenView() (msilib.Database method), 1136
operation

concatenation, 33
repetition, 33
slice, 33
subscript, 33

operations
bit-string, 27
Boolean, 25
masking, 27
shifting, 27

operations on
dictionary type, 45
integer types, 27
list type, 40
mapping types, 45
numeric types, 27
sequence types, 33, 40

operator
*, 26
**, 26
+, 26
-, 26
/, 26
//, 26
==, 26
%, 26

&, 27
^, 27
>, 26
>=, 26
>>, 27
<, 26
<=, 26
<<, 27
and, 25
comparison, 26
in, 26, 33
is, 26
is not, 26
not, 25
not in, 26, 33
or, 25

operator (2to3 fixer), 1012
operator (module), 234
opmap (in module dis), 1123
opname (in module dis), 1123
optimize() (in module pickletools), 1130
OptionGroup (class in optparse), 420
OptionMenu (class in tkinter.tix), 954
OptionParser (class in optparse), 423
options (doctest.Example attribute), 979
options (ssl.SSLContext attribute), 629
options() (configparser.ConfigParser method), 336
optionxform() (configparser.ConfigParser method), 338
optionxform() (in module configparser), 333
optparse (module), 413
or

operator, 25
or_() (in module operator), 235
ord() (built-in function), 15
ordered_attributes (xml.parsers.expat.xmlparser at-

tribute), 710
OrderedDict (class in collections), 155
origin_req_host (urllib.request.Request attribute), 769
origin_server (wsgiref.handlers.BaseHandler attribute),

765
os

module, 1151
os (module), 349
os.path (module), 241
os_environ (wsgiref.handlers.BaseHandler attribute),

764
OSError, 57
ossaudiodev (module), 865
OSSAudioError, 865
output() (http.cookies.BaseCookie method), 832
output() (http.cookies.Morsel method), 833
output_charset (email.charset.Charset attribute), 661
output_charset() (gettext.NullTranslations method),

874
output_codec (email.charset.Charset attribute), 661
output_difference() (doctest.OutputChecker method),

981
OutputChecker (class in doctest), 981

1242 Index

The Python Library Reference, Release 3.2

OutputString() (http.cookies.Morsel method), 833
over() (nntplib.NNTP method), 806
Overflow (class in decimal), 206
OverflowError, 57
overlay() (curses.window method), 478
overwrite() (curses.window method), 478

P
P_DETACH (in module os), 369
P_NOWAIT (in module os), 369
P_NOWAITO (in module os), 369
P_OVERLAY (in module os), 369
P_WAIT (in module os), 369
pack() (in module struct), 86
pack() (mailbox.MH method), 686
pack() (struct.Struct method), 89
pack_array() (xdrlib.Packer method), 342
pack_bytes() (xdrlib.Packer method), 341
pack_double() (xdrlib.Packer method), 341
pack_farray() (xdrlib.Packer method), 342
pack_float() (xdrlib.Packer method), 341
pack_fopaque() (xdrlib.Packer method), 341
pack_fstring() (xdrlib.Packer method), 341
pack_into() (in module struct), 86
pack_into() (struct.Struct method), 90
pack_list() (xdrlib.Packer method), 342
pack_opaque() (xdrlib.Packer method), 341
pack_string() (xdrlib.Packer method), 341
package, 1080
Packer (class in xdrlib), 341
packing

binary data, 86
packing (widgets), 932
pair_content() (in module curses), 473
pair_number() (in module curses), 473
PanedWindow (class in tkinter.tix), 955
pardir (in module os), 372
paren (2to3 fixer), 1012
parent (urllib.request.BaseHandler attribute), 771
parent() (tkinter.ttk.Treeview method), 948
parentNode (xml.dom.Node attribute), 718
paretovariate() (in module random), 217
parse() (doctest.DocTestParser method), 980
parse() (email.parser.BytesParser method), 653
parse() (email.parser.Parser method), 653
parse() (in module ast), 1110
parse() (in module cgi), 754
parse() (in module xml.dom.minidom), 726
parse() (in module xml.dom.pulldom), 730
parse() (in module xml.etree.ElementTree), 742
parse() (in module xml.sax), 730
parse() (string.Formatter method), 62
parse() (urllib.robotparser.RobotFileParser method),

786
parse() (xml.etree.ElementTree.ElementTree method),

745
Parse() (xml.parsers.expat.xmlparser method), 709
parse() (xml.sax.xmlreader.XMLReader method), 738

parse_and_bind() (in module readline), 596
parse_args() (argparse.ArgumentParser method), 404
PARSE_COLNAMES (in module sqlite3), 282
parse_config_h() (in module sysconfig), 1054
PARSE_DECLTYPES (in module sqlite3), 282
parse_header() (in module cgi), 754
parse_known_args() (argparse.ArgumentParser

method), 412
parse_multipart() (in module cgi), 754
parse_qs() (in module cgi), 754
parse_qs() (in module urllib.parse), 781
parse_qsl() (in module cgi), 754
parse_qsl() (in module urllib.parse), 781
parseaddr() (in module email.utils), 664
parsebytes() (email.parser.BytesParser method), 653
parsedate() (in module email.utils), 664
parsedate_tz() (in module email.utils), 664
ParseFile() (xml.parsers.expat.xmlparser method), 709
ParseFlags() (in module imaplib), 799
Parser (class in email.parser), 652
parser (module), 1103
ParserCreate() (in module xml.parsers.expat), 708
ParserError, 1105
ParseResult (class in urllib.parse), 783
ParseResultBytes (class in urllib.parse), 784
parsestr() (email.parser.Parser method), 653
parseString() (in module xml.dom.minidom), 726
parseString() (in module xml.dom.pulldom), 730
parseString() (in module xml.sax), 731
parsing

Python source code, 1103
URL, 780

ParsingError, 340
partial() (imaplib.IMAP4 method), 801
partial() (in module functools), 232
parties (threading.Barrier attribute), 541
partition() (str method), 36
pass_() (poplib.POP3 method), 797
PATH, 366, 369, 373, 749, 755, 757
path

configuration file, 1080
module search, 256, 1047, 1079
operations, 241

path (http.cookiejar.Cookie attribute), 840
path (http.server.BaseHTTPRequestHandler attribute),

827
path (in module sys), 1047
Path browser, 957
path_hooks (in module sys), 1048
path_importer_cache (in module sys), 1048
path_mtime() (importlib.abc.SourceLoader method),

1099
path_return_ok() (http.cookiejar.CookiePolicy

method), 838
pathconf() (in module os), 361
pathconf_names (in module os), 361
PathFinder (class in importlib.machinery), 1101
pathname2url() (in module urllib.request), 767

Index 1243

The Python Library Reference, Release 3.2

pathsep (in module os), 373
pattern (re.regex attribute), 79
pause() (in module signal), 636
PAX_FORMAT (in module tarfile), 311
pax_headers (tarfile.TarFile attribute), 314
pax_headers (tarfile.TarInfo attribute), 315
pd() (in module turtle), 896
Pdb (class in pdb), 1023, 1024
pdb (module), 1023
peek() (gzip.GzipFile method), 302
peek() (io.BufferedReader method), 379
peer (smtpd.SMTPChannel attribute), 815
PEM_cert_to_DER_cert() (in module ssl), 625
pen() (in module turtle), 896
pencolor() (in module turtle), 897
PendingDeprecationWarning, 59
pendown() (in module turtle), 896
pensize() (in module turtle), 896
penup() (in module turtle), 896
PERCENT (in module token), 1114
PERCENTEQUAL (in module token), 1114
Performance, 1035
permutations() (in module itertools), 225
Persist() (msilib.SummaryInformation method), 1137
persistence, 263
persistent

objects, 263
persistent_id (pickle protocol), 269
persistent_id() (pickle.Pickler method), 266
persistent_load (pickle protocol), 269
persistent_load() (pickle.Unpickler method), 266
pformat() (in module pprint), 176
pformat() (pprint.PrettyPrinter method), 177
phase() (in module cmath), 188
pi (in module cmath), 190
pi (in module math), 187
pickle

module, 175, 273, 274, 276
pickle (module), 263
pickle() (in module copyreg), 273
PickleError, 265
Pickler (class in pickle), 265
pickletools (module), 1129
pickletools command line option

-a, –annotate, 1130
-l, –indentlevel=<num>, 1130
-m, –memo, 1130
-o, –output=<file>, 1130
-p, –preamble=<preamble>, 1130

pickling
objects, 263

PicklingError, 265
pid (multiprocessing.Process attribute), 547
pid (subprocess.Popen attribute), 608
PIPE (in module subprocess), 606
Pipe() (in module multiprocessing), 548
pipe() (in module os), 356
PIPE_BUF (in module select), 528

pipes (module), 1159
PKG_DIRECTORY (in module imp), 1089
pkgutil (module), 1092
platform (in module sys), 1048
platform (module), 488
platform() (in module platform), 489
PlaySound() (in module winsound), 1149
plist

file, 343
plistlib (module), 343
plock() (in module os), 368
PLUS (in module token), 1114
plus() (decimal.Context method), 204
PLUSEQUAL (in module token), 1114
pm() (in module pdb), 1024
POINTER() (in module ctypes), 521
pointer() (in module ctypes), 521
polar() (in module cmath), 188
poll() (in module select), 527
poll() (multiprocessing.Connection method), 551
poll() (select.epoll method), 529
poll() (select.poll method), 529
poll() (subprocess.Popen method), 607
pop() (array.array method), 165
pop() (asynchat.fifo method), 642
pop() (collections.deque method), 148
pop() (dict method), 46
pop() (mailbox.Mailbox method), 683
pop() (sequence method), 40
pop() (set method), 44
POP3

protocol, 796
POP3 (class in poplib), 796
POP3_SSL (class in poplib), 796
pop_alignment() (formatter.formatter method), 1132
POP_BLOCK (opcode), 1126
POP_EXCEPT (opcode), 1126
pop_font() (formatter.formatter method), 1132
POP_JUMP_IF_FALSE (opcode), 1127
POP_JUMP_IF_TRUE (opcode), 1127
pop_margin() (formatter.formatter method), 1132
pop_source() (shlex.shlex method), 923
pop_style() (formatter.formatter method), 1132
POP_TOP (opcode), 1123
Popen (class in subprocess), 603
popen() (in module os), 528
popen() (in module platform), 490
popitem() (collections.OrderedDict method), 155
popitem() (dict method), 46
popitem() (mailbox.Mailbox method), 683
popleft() (collections.deque method), 148
poplib (module), 796
PopupMenu (class in tkinter.tix), 954
port (http.cookiejar.Cookie attribute), 840
port_specified (http.cookiejar.Cookie attribute), 841
pos (re.match attribute), 81
pos() (in module operator), 235
pos() (in module turtle), 894

1244 Index

The Python Library Reference, Release 3.2

position() (in module turtle), 894
positional argument, 1172
POSIX

I/O control, 1154
threads, 600

posix (module), 1151
POSIXLY_CORRECT, 438
post() (nntplib.NNTP method), 808
post() (ossaudiodev.oss_audio_device method), 867
post_mortem() (in module pdb), 1024
postcmd() (cmd.Cmd method), 918
postloop() (cmd.Cmd method), 919
pow() (built-in function), 15
pow() (in module math), 186
pow() (in module operator), 235
power() (decimal.Context method), 204
pp (pdb command), 1027
pprint (module), 175
pprint() (in module pprint), 176
pprint() (pprint.PrettyPrinter method), 177
prcal() (in module calendar), 144
preamble (email.message.Message attribute), 651
precmd() (cmd.Cmd method), 918
prefix (in module sys), 1048
prefix (xml.dom.Attr attribute), 722
prefix (xml.dom.Node attribute), 719
prefix (zipimport.zipimporter attribute), 1091
PREFIXES (in module site), 1080
preloop() (cmd.Cmd method), 919
prepare() (logging.handlers.QueueHandler method),

467
prepare() (logging.handlers.QueueListener method),

468
prepare_input_source() (in module xml.sax.saxutils),

737
prepend() (pipes.Template method), 1160
PrettyPrinter (class in pprint), 176
prev() (tkinter.ttk.Treeview method), 948
previousSibling (xml.dom.Node attribute), 718
print (2to3 fixer), 1012
print (pdb command), 1027
print() (built-in function), 15
print_callees() (pstats.Stats method), 1033
print_callers() (pstats.Stats method), 1033
print_directory() (in module cgi), 754
print_environ() (in module cgi), 754
print_environ_usage() (in module cgi), 754
print_exc() (in module traceback), 1067
print_exc() (timeit.Timer method), 1036
print_exception() (in module traceback), 1066
PRINT_EXPR (opcode), 1125
print_form() (in module cgi), 754
print_help() (argparse.ArgumentParser method), 412
print_last() (in module traceback), 1067
print_stack() (in module traceback), 1067
print_stats() (pstats.Stats method), 1033
print_tb() (in module traceback), 1066
print_usage() (argparse.ArgumentParser method), 412

print_usage() (optparse.OptionParser method), 431
print_version() (optparse.OptionParser method), 422
printable (in module string), 61
printdir() (zipfile.ZipFile method), 307
printf-style formatting, 38
PriorityQueue (class in queue), 168
prmonth() (calendar.TextCalendar method), 143
prmonth() (in module calendar), 144
process

group, 351
id, 351
id of parent, 352
killing, 368
signalling, 368

Process (class in multiprocessing), 546
process() (logging.LoggerAdapter method), 447
process_message() (smtpd.SMTPServer method), 813
process_request() (socketserver.BaseServer method),

823
processes, light-weight, 600
ProcessingInstruction() (in module

xml.etree.ElementTree), 742
processingInstruction()

(xml.sax.handler.ContentHandler method),
735

ProcessingInstructionHandler()
(xml.parsers.expat.xmlparser method),
711

processor time, 384
processor() (in module platform), 489
ProcessPoolExecutor (class in concurrent.futures), 591
product() (in module itertools), 226
profile (module), 1028
profile function, 533, 1046, 1049
profiler, 1046, 1049
profiling, deterministic, 1028
Progressbar (class in tkinter.ttk), 943
prompt (cmd.Cmd attribute), 919
prompt_user_passwd() (url-

lib.request.FancyURLopener method),
779

prompts, interpreter, 1048
propagate (logging.Logger attribute), 440
property list, 343
property() (built-in function), 15
property_declaration_handler (in module

xml.sax.handler), 733
property_dom_node (in module xml.sax.handler), 733
property_lexical_handler (in module xml.sax.handler),

733
property_xml_string (in module xml.sax.handler), 733
prot_c() (ftplib.FTP_TLS method), 796
prot_p() (ftplib.FTP_TLS method), 796
proto (socket.socket attribute), 619
protocol

CGI, 751
context management, 50
copy, 268

Index 1245

The Python Library Reference, Release 3.2

FTP, 779, 792
HTTP, 751, 779, 787, 827
IMAP4, 798
IMAP4_SSL, 798
IMAP4_stream, 798
iterator, 31
NNTP, 803
POP3, 796
SMTP, 809
Telnet, 815

protocol (ssl.SSLContext attribute), 629
PROTOCOL_SSLv2 (in module ssl), 625
PROTOCOL_SSLv23 (in module ssl), 626
PROTOCOL_SSLv3 (in module ssl), 626
PROTOCOL_TLSv1 (in module ssl), 626
protocol_version (http.server.BaseHTTPRequestHandler

attribute), 828
PROTOCOL_VERSION (imaplib.IMAP4 attribute),

803
proxy() (in module weakref), 171
proxyauth() (imaplib.IMAP4 method), 801
ProxyBasicAuthHandler (class in urllib.request), 768
ProxyDigestAuthHandler (class in urllib.request), 769
ProxyHandler (class in urllib.request), 768
ProxyType (in module weakref), 172
ProxyTypes (in module weakref), 172
pryear() (calendar.TextCalendar method), 143
ps1 (in module sys), 1048
ps2 (in module sys), 1048
pstats (module), 1031
pthreads, 600
pty

module, 356
pty (module), 1156
pu() (in module turtle), 896
publicId (xml.dom.DocumentType attribute), 720
PullDOM (class in xml.dom.pulldom), 730
punctuation (in module string), 61
PureProxy (class in smtpd), 814
purge() (in module re), 77
push() (asynchat.async_chat method), 642
push() (asynchat.fifo method), 642
push() (code.InteractiveConsole method), 1084
push_alignment() (formatter.formatter method), 1132
push_font() (formatter.formatter method), 1132
push_margin() (formatter.formatter method), 1132
push_source() (shlex.shlex method), 923
push_style() (formatter.formatter method), 1132
push_token() (shlex.shlex method), 923
push_with_producer() (asynchat.async_chat method),

642
pushbutton() (msilib.Dialog method), 1139
put() (multiprocessing.Queue method), 549
put() (queue.Queue method), 169
put_nowait() (multiprocessing.Queue method), 549
put_nowait() (queue.Queue method), 169
putch() (in module msvcrt), 1141
putenv() (in module os), 352

putheader() (http.client.HTTPConnection method), 790
putp() (in module curses), 473
putrequest() (http.client.HTTPConnection method),

790
putwch() (in module msvcrt), 1141
putwin() (curses.window method), 479
pwd

module, 242
pwd (module), 1152
pwd() (ftplib.FTP method), 795
py_compile (module), 1119
PY_COMPILED (in module imp), 1089
PY_FROZEN (in module imp), 1089
py_object (class in ctypes), 524
PY_SOURCE (in module imp), 1089
pyclbr (module), 1118
PyCompileError, 1119
PyDLL (class in ctypes), 515
pydoc (module), 963
pyexpat

module, 708
PYFUNCTYPE() (in module ctypes), 517
PyLoader (class in importlib.abc), 1100
PyPycLoader (class in importlib.abc), 1101
Python 3000, 1172
Python Editor, 957
Python Enhancement Proposals

PEP 0205, 172
PEP 0343, 1062
PEP 227, 1071
PEP 235, 1097
PEP 236, 7
PEP 237, 40
PEP 238, 1071, 1169
PEP 246, 292
PEP 249, 280, 282
PEP 255, 1071
PEP 263, 1097, 1116
PEP 273, 1091
PEP 282, 451
PEP 292, 68
PEP 302, 21, 256, 1047, 1048, 1090–1094, 1096–

1099, 1102, 1169, 1171
PEP 305, 319
PEP 307, 264
PEP 3101, 62
PEP 3105, 1071
PEP 3112, 1071
PEP 3119, 158, 1062
PEP 3120, 1097
PEP 3141, 181, 1062
PEP 3147, 1089, 1096, 1097, 1101, 1119–1121
PEP 3148, 593
PEP 3149, 1041
PEP 324, 603
PEP 328, 1071, 1097
PEP 3333, 758–762, 765
PEP 338, 1097

1246 Index

The Python Library Reference, Release 3.2

PEP 343, 1071, 1168
PEP 366, 1097
PEP 378, 65
PEP 383, 103, 105
PEP 8, 672

python_branch() (in module platform), 489
python_build() (in module platform), 489
python_compiler() (in module platform), 489
PYTHON_DOM, 717
python_implementation() (in module platform), 489
python_revision() (in module platform), 489
python_version() (in module platform), 489
python_version_tuple() (in module platform), 489
PYTHONDOCS, 964
Pythonic, 1172
PYTHONPATH, 755, 1047, 1048
PYTHONSTARTUP, 598, 599, 959
PYTHONY2K, 384
PyZipFile (class in zipfile), 308

Q
qiflush() (in module curses), 473
QName (class in xml.etree.ElementTree), 746
qsize() (multiprocessing.Queue method), 549
qsize() (queue.Queue method), 169
quantize() (decimal.Context method), 204
quantize() (decimal.Decimal method), 198
QueryInfoKey() (in module winreg), 1144
QueryReflectionKey() (in module winreg), 1146
QueryValue() (in module winreg), 1144
QueryValueEx() (in module winreg), 1144
Queue (class in multiprocessing), 549
Queue (class in queue), 168
queue (module), 168
queue (sched.scheduler attribute), 168
Queue() (multiprocessing.managers.SyncManager

method), 557
QueueHandler (class in logging.handlers), 467
QueueListener (class in logging.handlers), 468
quick_ratio() (difflib.SequenceMatcher method), 96
quit (built-in variable), 23
quit (pdb command), 1028
quit() (ftplib.FTP method), 795
quit() (nntplib.NNTP method), 805
quit() (poplib.POP3 method), 797
quit() (smtplib.SMTP method), 812
quopri (module), 703
quote() (in module email.utils), 664
quote() (in module urllib.parse), 784
QUOTE_ALL (in module csv), 321
quote_from_bytes() (in module urllib.parse), 784
QUOTE_MINIMAL (in module csv), 321
QUOTE_NONE (in module csv), 321
QUOTE_NONNUMERIC (in module csv), 321
quote_plus() (in module urllib.parse), 784
quoteattr() (in module xml.sax.saxutils), 736
quotechar (csv.Dialect attribute), 322
quoted-printable

encoding, 703
quotes (shlex.shlex attribute), 923
quoting (csv.Dialect attribute), 322

R
R_OK (in module os), 358
radians() (in module math), 186
radians() (in module turtle), 896
RadioButtonGroup (class in msilib), 1139
radiogroup() (msilib.Dialog method), 1139
radix() (decimal.Context method), 204
radix() (decimal.Decimal method), 198
RADIXCHAR (in module locale), 881
raise

statement, 55
raise (2to3 fixer), 1012
RAISE_VARARGS (opcode), 1128
RAND_add() (in module ssl), 624
RAND_egd() (in module ssl), 624
RAND_status() (in module ssl), 624
randint() (in module random), 216
random (module), 215
random() (in module random), 216
randrange() (in module random), 216
range

object, 32, 40
range() (built-in function), 16
ratecv() (in module audioop), 855
ratio() (difflib.SequenceMatcher method), 96
Rational (class in numbers), 181
raw (io.BufferedIOBase attribute), 377
raw() (in module curses), 473
raw_decode() (json.JSONDecoder method), 678
raw_input (2to3 fixer), 1012
raw_input() (code.InteractiveConsole method), 1084
RawArray() (in module multiprocessing.sharedctypes),

554
RawConfigParser (class in configparser), 339
RawIOBase (class in io), 377
RawPen (class in turtle), 912
RawTurtle (class in turtle), 912
RawValue() (in module multiprocessing.sharedctypes),

554
RBRACE (in module token), 1114
rcpttos (smtpd.SMTPChannel attribute), 815
re

module, 40, 254
re (module), 70
re (re.match attribute), 81
read() (bz2.BZ2File method), 304
read() (chunk.Chunk method), 863
read() (codecs.StreamReader method), 108
read() (configparser.ConfigParser method), 337
read() (http.client.HTTPResponse method), 790
read() (imaplib.IMAP4 method), 801
read() (in module mmap), 595
read() (in module os), 356
read() (io.BufferedIOBase method), 378

Index 1247

The Python Library Reference, Release 3.2

read() (io.BufferedReader method), 379
read() (io.RawIOBase method), 377
read() (io.TextIOBase method), 381
read() (mimetypes.MimeTypes method), 699
read() (ossaudiodev.oss_audio_device method), 866
read() (urllib.robotparser.RobotFileParser method), 786
read() (zipfile.ZipFile method), 307
read1() (io.BufferedIOBase method), 378
read1() (io.BufferedReader method), 379
read1() (io.BytesIO method), 379
read_all() (telnetlib.Telnet method), 816
read_byte() (in module mmap), 595
read_dict() (configparser.ConfigParser method), 337
read_eager() (telnetlib.Telnet method), 816
read_environ() (in module wsgiref.handlers), 765
read_file() (configparser.ConfigParser method), 337
read_history_file() (in module readline), 596
read_init_file() (in module readline), 596
read_lazy() (telnetlib.Telnet method), 816
read_mime_types() (in module mimetypes), 697
read_sb_data() (telnetlib.Telnet method), 816
read_some() (telnetlib.Telnet method), 816
read_string() (configparser.ConfigParser method), 337
read_token() (shlex.shlex method), 923
read_until() (telnetlib.Telnet method), 816
read_very_eager() (telnetlib.Telnet method), 816
read_very_lazy() (telnetlib.Telnet method), 816
read_windows_registry() (mimetypes.MimeTypes

method), 699
readable() (asyncore.dispatcher method), 639
readable() (io.IOBase method), 376
readall() (io.RawIOBase method), 377
reader() (in module csv), 319
ReadError, 311
readfp() (configparser.ConfigParser method), 338
readfp() (mimetypes.MimeTypes method), 699
readframes() (aifc.aifc method), 857
readframes() (sunau.AU_read method), 859
readframes() (wave.Wave_read method), 861
readinto() (io.BufferedIOBase method), 378
readinto() (io.RawIOBase method), 377
readline (module), 596
readline() (bz2.BZ2File method), 304
readline() (codecs.StreamReader method), 109
readline() (imaplib.IMAP4 method), 801
readline() (in module mmap), 595
readline() (io.IOBase method), 376
readline() (io.TextIOBase method), 381
readlines() (bz2.BZ2File method), 304
readlines() (codecs.StreamReader method), 109
readlines() (io.IOBase method), 376
readlink() (in module os), 361
readmodule() (in module pyclbr), 1118
readmodule_ex() (in module pyclbr), 1118
readonly (memoryview attribute), 50
readPlist() (in module plistlib), 344
readPlistFromBytes() (in module plistlib), 344

ready() (multiprocessing.pool.AsyncResult method),
562

Real (class in numbers), 181
real (numbers.Complex attribute), 181
Real Media File Format, 862
real_quick_ratio() (difflib.SequenceMatcher method),

96
realpath() (in module os.path), 243
reason (http.client.HTTPResponse attribute), 791
reason (urllib.error.URLError attribute), 786
reattach() (tkinter.ttk.Treeview method), 948
reccontrols() (ossaudiodev.oss_mixer_device method),

869
received_data (smtpd.SMTPChannel attribute), 815
received_lines (smtpd.SMTPChannel attribute), 814
recent() (imaplib.IMAP4 method), 801
rect() (in module cmath), 188
rectangle() (in module curses.textpad), 483
recursive_repr() (in module reprlib), 178
recv() (asyncore.dispatcher method), 639
recv() (multiprocessing.Connection method), 551
recv() (socket.socket method), 618
recv_bytes() (multiprocessing.Connection method),

551
recv_bytes_into() (multiprocessing.Connection

method), 551
recv_into() (socket.socket method), 618
recvfrom() (socket.socket method), 618
recvfrom_into() (socket.socket method), 618
redirect_request() (url-

lib.request.HTTPRedirectHandler method),
772

redisplay() (in module readline), 597
redrawln() (curses.window method), 479
redrawwin() (curses.window method), 479
reduce (2to3 fixer), 1012
reduce() (in module functools), 232
ref (class in weakref), 171
reference count, 1172
ReferenceError, 57, 172
ReferenceType (in module weakref), 172
refresh() (curses.window method), 479
REG_BINARY (in module winreg), 1147
REG_DWORD (in module winreg), 1147
REG_DWORD_BIG_ENDIAN (in module winreg),

1147
REG_DWORD_LITTLE_ENDIAN (in module win-

reg), 1147
REG_EXPAND_SZ (in module winreg), 1147
REG_FULL_RESOURCE_DESCRIPTOR (in module

winreg), 1148
REG_LINK (in module winreg), 1147
REG_MULTI_SZ (in module winreg), 1147
REG_NONE (in module winreg), 1147
REG_RESOURCE_LIST (in module winreg), 1147
REG_RESOURCE_REQUIREMENTS_LIST (in mod-

ule winreg), 1148
REG_SZ (in module winreg), 1148

1248 Index

The Python Library Reference, Release 3.2

register() (abc.ABCMeta method), 1063
register() (in module atexit), 1065
register() (in module codecs), 102
register() (in module webbrowser), 750
register() (multiprocessing.managers.BaseManager

method), 556
register() (select.epoll method), 528
register() (select.poll method), 529
register_adapter() (in module sqlite3), 282
register_archive_format() (in module shutil), 259
register_converter() (in module sqlite3), 282
register_dialect() (in module csv), 320
register_error() (in module codecs), 103
register_function() (xml-

rpc.server.CGIXMLRPCRequestHandler
method), 850

register_function() (xml-
rpc.server.SimpleXMLRPCServer method),
849

register_instance() (xml-
rpc.server.CGIXMLRPCRequestHandler
method), 850

register_instance() (xml-
rpc.server.SimpleXMLRPCServer method),
849

register_introspection_functions() (xml-
rpc.server.CGIXMLRPCRequestHandler
method), 851

register_introspection_functions() (xml-
rpc.server.SimpleXMLRPCServer method),
849

register_multicall_functions() (xml-
rpc.server.CGIXMLRPCRequestHandler
method), 851

register_multicall_functions() (xml-
rpc.server.SimpleXMLRPCServer method),
849

register_namespace() (in module
xml.etree.ElementTree), 742

register_optionflag() (in module doctest), 973
register_shape() (in module turtle), 910
register_unpack_format() (in module shutil), 259
registerDOMImplementation() (in module xml.dom),

717
registerResult() (in module unittest), 1008
relative

URL, 780
release() (_thread.lock method), 601
release() (in module platform), 489
release() (logging.Handler method), 442
release() (memoryview method), 49
release() (threading.Condition method), 537
release() (threading.Lock method), 535
release() (threading.RLock method), 536
release() (threading.Semaphore method), 539
release_lock() (in module imp), 1088
reload() (in module imp), 1088
relpath() (in module os.path), 243

remainder() (decimal.Context method), 204
remainder_near() (decimal.Context method), 204
remainder_near() (decimal.Decimal method), 198
remove() (array.array method), 166
remove() (collections.deque method), 148
remove() (in module os), 361
remove() (mailbox.Mailbox method), 682
remove() (mailbox.MH method), 686
remove() (sequence method), 40
remove() (set method), 44
remove() (xml.etree.ElementTree.Element method),

744
remove_flag() (mailbox.MaildirMessage method), 689
remove_flag() (mailbox.mboxMessage method), 691
remove_flag() (mailbox.MMDFMessage method), 694
remove_folder() (mailbox.Maildir method), 684
remove_folder() (mailbox.MH method), 686
remove_history_item() (in module readline), 597
remove_label() (mailbox.BabylMessage method), 693
remove_option() (configparser.ConfigParser method),

338
remove_option() (optparse.OptionParser method), 430
remove_pyc() (msilib.Directory method), 1138
remove_section() (configparser.ConfigParser method),

338
remove_sequence() (mailbox.MHMessage method),

692
removeAttribute() (xml.dom.Element method), 722
removeAttributeNode() (xml.dom.Element method),

722
removeAttributeNS() (xml.dom.Element method), 722
removeChild() (xml.dom.Node method), 719
removedirs() (in module os), 361
removeFilter() (logging.Handler method), 443
removeFilter() (logging.Logger method), 442
removeHandler() (in module unittest), 1008
removeHandler() (logging.Logger method), 442
removeResult() (in module unittest), 1008
rename() (ftplib.FTP method), 795
rename() (imaplib.IMAP4 method), 801
rename() (in module os), 361
renames (2to3 fixer), 1012
renames() (in module os), 362
reorganize() (dbm.gnu.gdbm method), 279
repeat() (in module itertools), 226
repeat() (in module timeit), 1036
repeat() (timeit.Timer method), 1036
repetition

operation, 33
replace() (curses.panel.Panel method), 488
replace() (datetime.date method), 124
replace() (datetime.datetime method), 129
replace() (datetime.time method), 133
replace() (str method), 36
replace_errors() (in module codecs), 104
replace_header() (email.message.Message method),

649
replace_history_item() (in module readline), 597

Index 1249

The Python Library Reference, Release 3.2

replace_whitespace (textwrap.TextWrapper attribute),
101

replaceChild() (xml.dom.Node method), 719
ReplacePackage() (in module modulefinder), 1094
report() (filecmp.dircmp method), 250
report() (modulefinder.ModuleFinder method), 1094
REPORT_CDIFF (in module doctest), 971
report_failure() (doctest.DocTestRunner method), 981
report_full_closure() (filecmp.dircmp method), 250
REPORT_NDIFF (in module doctest), 972
REPORT_ONLY_FIRST_FAILURE (in module

doctest), 972
report_partial_closure() (filecmp.dircmp method), 250
report_start() (doctest.DocTestRunner method), 980
report_success() (doctest.DocTestRunner method), 981
REPORT_UDIFF (in module doctest), 971
report_unexpected_exception()

(doctest.DocTestRunner method), 981
REPORTING_FLAGS (in module doctest), 972
repr (2to3 fixer), 1012
Repr (class in reprlib), 178
repr() (built-in function), 17
repr() (in module reprlib), 178
repr() (reprlib.Repr method), 179
repr1() (reprlib.Repr method), 179
reprlib (module), 178
Request (class in urllib.request), 767
request() (http.client.HTTPConnection method), 789
request_queue_size (socketserver.BaseServer attribute),

822
request_uri() (in module wsgiref.util), 758
request_version (http.server.BaseHTTPRequestHandler

attribute), 827
RequestHandlerClass (socketserver.BaseServer at-

tribute), 822
requires() (in module test.support), 1016
reserved (zipfile.ZipInfo attribute), 309
RESERVED_FUTURE (in module uuid), 819
RESERVED_MICROSOFT (in module uuid), 819
RESERVED_NCS (in module uuid), 819
reset() (bdb.Bdb method), 1020
reset() (codecs.IncrementalDecoder method), 107
reset() (codecs.IncrementalEncoder method), 106
reset() (codecs.StreamReader method), 109
reset() (codecs.StreamWriter method), 108
reset() (html.parser.HTMLParser method), 706
reset() (in module turtle), 899, 906
reset() (ossaudiodev.oss_audio_device method), 867
reset() (pipes.Template method), 1159
reset() (threading.Barrier method), 541
reset() (xdrlib.Packer method), 341
reset() (xdrlib.Unpacker method), 342
reset() (xml.dom.pulldom.DOMEventStream method),

730
reset() (xml.sax.xmlreader.IncrementalParser method),

739
reset_prog_mode() (in module curses), 473
reset_shell_mode() (in module curses), 473

resetbuffer() (code.InteractiveConsole method), 1084
resetlocale() (in module locale), 882
resetscreen() (in module turtle), 906
resetwarnings() (in module warnings), 1059
resize() (in module ctypes), 521
resize() (in module mmap), 595
resizemode() (in module turtle), 901
resolution (datetime.date attribute), 123
resolution (datetime.datetime attribute), 127
resolution (datetime.time attribute), 133
resolution (datetime.timedelta attribute), 121
resolveEntity() (xml.sax.handler.EntityResolver

method), 736
resource (module), 1160
ResourceDenied, 1015
ResourceLoader (class in importlib.abc), 1098
ResourceWarning, 59
response (nntplib.NNTPError attribute), 804
response() (imaplib.IMAP4 method), 801
ResponseNotReady, 788
responses (http.server.BaseHTTPRequestHandler at-

tribute), 828
responses (in module http.client), 789
restart (pdb command), 1028
restore() (in module difflib), 93
restype (ctypes._FuncPtr attribute), 516
result() (concurrent.futures.Future method), 592
results() (trace.Trace method), 1040
retr() (poplib.POP3 method), 797
retrbinary() (ftplib.FTP method), 794
retrieve() (urllib.request.URLopener method), 778
retrlines() (ftplib.FTP method), 794
return (pdb command), 1027
return_ok() (http.cookiejar.CookiePolicy method), 837
RETURN_VALUE (opcode), 1125
returncode (subprocess.Popen attribute), 608
reverse() (array.array method), 166
reverse() (collections.deque method), 148
reverse() (in module audioop), 855
reverse() (sequence method), 40
reverse_order() (pstats.Stats method), 1033
reversed() (built-in function), 17
revert() (http.cookiejar.FileCookieJar method), 837
rewind() (aifc.aifc method), 857
rewind() (sunau.AU_read method), 859
rewind() (wave.Wave_read method), 861
RFC

RFC 1014, 341
RFC 1321, 345
RFC 1422, 630
RFC 1521, 701, 703
RFC 1522, 703
RFC 1524, 680
RFC 1725, 796
RFC 1730, 798
RFC 1738, 785
RFC 1750, 624
RFC 1766, 882

1250 Index

The Python Library Reference, Release 3.2

RFC 1808, 780, 785
RFC 1832, 341
RFC 1869, 809, 810
RFC 1894, 675
RFC 2045, 645, 649, 650, 658
RFC 2046, 645, 658
RFC 2047, 645, 655, 658, 659
RFC 2060, 798, 802
RFC 2068, 831
RFC 2104, 347
RFC 2109, 831, 832, 834, 835
RFC 2231, 645, 648–650, 658, 665, 673
RFC 2368, 785
RFC 2396, 782, 785
RFC 2616, 759, 772, 773, 778
RFC 2732, 785
RFC 2774, 789
RFC 2817, 789
RFC 2818, 624
RFC 2821, 645
RFC 2822, 386, 645, 647, 653, 655, 656, 658, 659,

663–665, 688, 814
RFC 2964, 835
RFC 2965, 768, 770, 834, 835
RFC 2980, 803, 808
RFC 3229, 788
RFC 3280, 627
RFC 3454, 116
RFC 3490, 113, 114
RFC 3492, 113, 114
RFC 3493, 622
RFC 3548, 699, 700
RFC 3977, 803, 805, 806, 808
RFC 3986, 785
RFC 4122, 817, 819
RFC 4158, 630
RFC 4217, 792
RFC 4366, 626
RFC 4642, 804
RFC 821, 809, 810
RFC 822, 386, 658, 790, 811–813, 874
RFC 854, 815
RFC 959, 792
RFC 977, 803

rfc2109 (http.cookiejar.Cookie attribute), 841
rfc2109_as_netscape (http.cookiejar.DefaultCookiePolicy

attribute), 839
rfc2965 (http.cookiejar.CookiePolicy attribute), 838
RFC_4122 (in module uuid), 819
rfile (http.server.BaseHTTPRequestHandler attribute),

828
rfind() (in module mmap), 595
rfind() (str method), 36
rgb_to_hls() (in module colorsys), 864
rgb_to_hsv() (in module colorsys), 864
rgb_to_yiq() (in module colorsys), 864
right() (in module turtle), 890
right_list (filecmp.dircmp attribute), 250

right_only (filecmp.dircmp attribute), 250
RIGHTSHIFT (in module token), 1114
RIGHTSHIFTEQUAL (in module token), 1114
rindex() (str method), 36
rjust() (str method), 37
rlcompleter (module), 598
rlecode_hqx() (in module binascii), 702
rledecode_hqx() (in module binascii), 702
RLIMIT_AS (in module resource), 1161
RLIMIT_CORE (in module resource), 1161
RLIMIT_CPU (in module resource), 1161
RLIMIT_DATA (in module resource), 1161
RLIMIT_FSIZE (in module resource), 1161
RLIMIT_MEMLOCK (in module resource), 1161
RLIMIT_NOFILE (in module resource), 1161
RLIMIT_NPROC (in module resource), 1161
RLIMIT_OFILE (in module resource), 1161
RLIMIT_RSS (in module resource), 1161
RLIMIT_STACK (in module resource), 1161
RLIMIT_VMEM (in module resource), 1161
RLock (class in multiprocessing), 552
RLock() (in module threading), 532
RLock() (multiprocessing.managers.SyncManager

method), 557
rmd() (ftplib.FTP method), 795
rmdir() (in module os), 362
RMFF, 862
rms() (in module audioop), 855
rmtree() (in module shutil), 257
RobotFileParser (class in urllib.robotparser), 786
robots.txt, 786
rollback() (sqlite3.Connection method), 284
ROT_THREE (opcode), 1123
ROT_TWO (opcode), 1123
rotate() (collections.deque method), 148
rotate() (decimal.Context method), 204
rotate() (decimal.Decimal method), 198
RotatingFileHandler (class in logging.handlers), 462
round() (built-in function), 17
Rounded (class in decimal), 206
Row (class in sqlite3), 291
row_factory (sqlite3.Connection attribute), 286
rowcount (sqlite3.Cursor attribute), 291
RPAR (in module token), 1114
rpartition() (str method), 37
rpc_paths (xmlrpc.server.SimpleXMLRPCRequestHandler

attribute), 849
rpop() (poplib.POP3 method), 797
rset() (poplib.POP3 method), 797
rshift() (in module operator), 235
rsplit() (str method), 37
RSQB (in module token), 1114
rstrip() (str method), 37
rt() (in module turtle), 890
ruler (cmd.Cmd attribute), 919
run (pdb command), 1028
Run script, 958
run() (bdb.Bdb method), 1022

Index 1251

The Python Library Reference, Release 3.2

run() (doctest.DocTestRunner method), 981
run() (in module cProfile), 1031
run() (in module pdb), 1024
run() (multiprocessing.Process method), 546
run() (pdb.Pdb method), 1025
run() (sched.scheduler method), 168
run() (threading.Thread method), 534
run() (trace.Trace method), 1040
run() (unittest.TestCase method), 994
run() (unittest.TestSuite method), 1001
run() (wsgiref.handlers.BaseHandler method), 763
run_docstring_examples() (in module doctest), 975
run_module() (in module runpy), 1096
run_path() (in module runpy), 1096
run_script() (modulefinder.ModuleFinder method),

1094
run_unittest() (in module test.support), 1016
runcall() (bdb.Bdb method), 1023
runcall() (in module pdb), 1024
runcall() (pdb.Pdb method), 1025
runcode() (code.InteractiveInterpreter method), 1084
runctx() (bdb.Bdb method), 1023
runctx() (in module cProfile), 1031
runctx() (trace.Trace method), 1040
runeval() (bdb.Bdb method), 1023
runeval() (in module pdb), 1024
runeval() (pdb.Pdb method), 1025
runfunc() (trace.Trace method), 1040
running() (concurrent.futures.Future method), 592
runpy (module), 1095
runsource() (code.InteractiveInterpreter method), 1084
RuntimeError, 57
RuntimeWarning, 59
RUSAGE_BOTH (in module resource), 1162
RUSAGE_CHILDREN (in module resource), 1162
RUSAGE_SELF (in module resource), 1162
RUSAGE_THREAD (in module resource), 1162

S
S (in module re), 75
S_ENFMT (in module stat), 249
S_IEXEC (in module stat), 249
S_IFBLK (in module stat), 248
S_IFCHR (in module stat), 248
S_IFDIR (in module stat), 248
S_IFIFO (in module stat), 248
S_IFLNK (in module stat), 247
S_IFMT (in module stat), 247
S_IFMT() (in module stat), 247
S_IFREG (in module stat), 248
S_IFSOCK (in module stat), 247
S_IMODE() (in module stat), 247
S_IREAD (in module stat), 249
S_IRGRP (in module stat), 248
S_IROTH (in module stat), 248
S_IRUSR (in module stat), 248
S_IRWXG (in module stat), 248
S_IRWXO (in module stat), 248

S_IRWXU (in module stat), 248
S_ISBLK() (in module stat), 246
S_ISCHR() (in module stat), 246
S_ISDIR() (in module stat), 246
S_ISFIFO() (in module stat), 246
S_ISGID (in module stat), 248
S_ISLNK() (in module stat), 246
S_ISREG() (in module stat), 246
S_ISSOCK() (in module stat), 247
S_ISUID (in module stat), 248
S_ISVTX (in module stat), 248
S_IWGRP (in module stat), 248
S_IWOTH (in module stat), 248
S_IWRITE (in module stat), 249
S_IWUSR (in module stat), 248
S_IXGRP (in module stat), 248
S_IXOTH (in module stat), 248
S_IXUSR (in module stat), 248
safe_substitute() (string.Template method), 69
saferepr() (in module pprint), 177
same_files (filecmp.dircmp attribute), 251
same_quantum() (decimal.Context method), 204
same_quantum() (decimal.Decimal method), 199
samefile() (in module os.path), 243
sameopenfile() (in module os.path), 243
samestat() (in module os.path), 243
sample() (in module random), 216
save() (http.cookiejar.FileCookieJar method), 836
SaveKey() (in module winreg), 1145
SAX2DOM (class in xml.dom.pulldom), 730
SAXException, 731
SAXNotRecognizedException, 731
SAXNotSupportedException, 731
SAXParseException, 731
scaleb() (decimal.Context method), 204
scaleb() (decimal.Decimal method), 199
scanf(), 82
sched (module), 166
scheduler (class in sched), 166
schema (in module msilib), 1140
Screen (class in turtle), 912
screensize() (in module turtle), 906
script_from_examples() (in module doctest), 983
scroll() (curses.window method), 479
ScrolledCanvas (class in turtle), 912
scrollok() (curses.window method), 479
search

path, module, 256, 1047, 1079
search() (imaplib.IMAP4 method), 801
search() (in module re), 76
search() (re.regex method), 78
second (datetime.datetime attribute), 128
second (datetime.time attribute), 133
SECTCRE (in module configparser), 333
sections() (configparser.ConfigParser method), 336
secure (http.cookiejar.Cookie attribute), 840
secure hash algorithm, SHA1, SHA224, SHA256,

SHA384, SHA512, 345

1252 Index

The Python Library Reference, Release 3.2

Secure Sockets Layer, 622
security

CGI, 755
see() (tkinter.ttk.Treeview method), 948
seed() (in module random), 215
seek() (bz2.BZ2File method), 304
seek() (chunk.Chunk method), 863
seek() (in module mmap), 596
seek() (io.IOBase method), 376
SEEK_CUR (in module os), 356
SEEK_END (in module os), 356
SEEK_SET (in module os), 356
seekable() (io.IOBase method), 376
seen_greeting (smtpd.SMTPChannel attribute), 814
Select (class in tkinter.tix), 954
select (module), 527
select() (imaplib.IMAP4 method), 801
select() (in module select), 527
select() (tkinter.ttk.Notebook method), 942
selection() (tkinter.ttk.Treeview method), 948
selection_add() (tkinter.ttk.Treeview method), 948
selection_remove() (tkinter.ttk.Treeview method), 948
selection_set() (tkinter.ttk.Treeview method), 948
selection_toggle() (tkinter.ttk.Treeview method), 948
selector (urllib.request.Request attribute), 769
Semaphore (class in multiprocessing), 552
Semaphore (class in threading), 538
Semaphore() (multiprocessing.managers.SyncManager

method), 557
semaphores, binary, 600
SEMI (in module token), 1114
send() (asyncore.dispatcher method), 639
send() (http.client.HTTPConnection method), 790
send() (imaplib.IMAP4 method), 801
send() (logging.handlers.DatagramHandler method),

464
send() (logging.handlers.SocketHandler method), 463
send() (multiprocessing.Connection method), 551
send() (socket.socket method), 618
send_bytes() (multiprocessing.Connection method),

551
send_error() (http.server.BaseHTTPRequestHandler

method), 829
send_flowing_data() (formatter.writer method), 1134
send_header() (http.server.BaseHTTPRequestHandler

method), 829
send_hor_rule() (formatter.writer method), 1134
send_label_data() (formatter.writer method), 1134
send_line_break() (formatter.writer method), 1133
send_literal_data() (formatter.writer method), 1134
send_message() (smtplib.SMTP method), 812
send_paragraph() (formatter.writer method), 1133
send_response() (http.server.BaseHTTPRequestHandler

method), 829
send_response_only() (http.server.BaseHTTPRequestHandler

method), 829
send_signal() (subprocess.Popen method), 608
sendall() (socket.socket method), 618

sendcmd() (ftplib.FTP method), 794
sendfile() (wsgiref.handlers.BaseHandler method), 765
sendmail() (smtplib.SMTP method), 811
sendto() (socket.socket method), 618
sep (in module os), 373
sequence, 1172

iteration, 31
object, 32
types, mutable, 40
types, operations on, 33, 40

sequence (in module msilib), 1140
sequence2st() (in module parser), 1104
SequenceMatcher (class in difflib), 90, 94
serializing

objects, 263
serve_forever() (socketserver.BaseServer method), 822
server

WWW, 751, 827
server (http.server.BaseHTTPRequestHandler at-

tribute), 827
server_activate() (socketserver.BaseServer method),

823
server_address (socketserver.BaseServer attribute), 822
server_bind() (socketserver.BaseServer method), 823
server_software (wsgiref.handlers.BaseHandler at-

tribute), 764
server_version (http.server.BaseHTTPRequestHandler

attribute), 828
server_version (http.server.SimpleHTTPRequestHandler

attribute), 830
ServerProxy (class in xmlrpc.client), 842
session_stats() (ssl.SSLContext method), 629
set

object, 42
set (built-in class), 43
set() (configparser.ConfigParser method), 338
set() (configparser.RawConfigParser method), 339
set() (http.cookies.Morsel method), 833
set() (ossaudiodev.oss_mixer_device method), 869
set() (test.support.EnvironmentVarGuard method),

1018
set() (threading.Event method), 539
set() (tkinter.ttk.Combobox method), 940
set() (tkinter.ttk.Treeview method), 948
set() (xml.etree.ElementTree.Element method), 743
SET_ADD (opcode), 1125
set_allowed_domains()

(http.cookiejar.DefaultCookiePolicy
method), 839

set_app() (wsgiref.simple_server.WSGIServer
method), 761

set_authorizer() (sqlite3.Connection method), 285
set_blocked_domains()

(http.cookiejar.DefaultCookiePolicy
method), 839

set_boundary() (email.message.Message method), 650
set_break() (bdb.Bdb method), 1022
set_charset() (email.message.Message method), 647

Index 1253

The Python Library Reference, Release 3.2

set_children() (tkinter.ttk.Treeview method), 946
set_ciphers() (ssl.SSLContext method), 629
set_completer() (in module readline), 597
set_completer_delims() (in module readline), 597
set_completion_display_matches_hook() (in module

readline), 597
set_continue() (bdb.Bdb method), 1021
set_cookie() (http.cookiejar.CookieJar method), 836
set_cookie_if_ok() (http.cookiejar.CookieJar method),

836
set_current() (msilib.Feature method), 1139
set_data() (importlib.abc.SourceLoader method), 1099
set_date() (mailbox.MaildirMessage method), 689
set_debug() (in module gc), 1071
set_debuglevel() (ftplib.FTP method), 793
set_debuglevel() (http.client.HTTPConnection

method), 790
set_debuglevel() (nntplib.NNTP method), 808
set_debuglevel() (poplib.POP3 method), 797
set_debuglevel() (smtplib.SMTP method), 810
set_debuglevel() (telnetlib.Telnet method), 816
set_default_type() (email.message.Message method),

649
set_default_verify_paths() (ssl.SSLContext method),

629
set_defaults() (argparse.ArgumentParser method), 411
set_defaults() (optparse.OptionParser method), 431
set_errno() (in module ctypes), 521
set_exception() (concurrent.futures.Future method),

592
set_executable() (in module multiprocessing), 550
set_flags() (mailbox.MaildirMessage method), 689
set_flags() (mailbox.mboxMessage method), 691
set_flags() (mailbox.MMDFMessage method), 694
set_from() (mailbox.mboxMessage method), 691
set_from() (mailbox.MMDFMessage method), 694
set_history_length() (in module readline), 597
set_info() (mailbox.MaildirMessage method), 690
set_labels() (mailbox.BabylMessage method), 693
set_last_error() (in module ctypes), 521
set_literal (2to3 fixer), 1012
set_loader() (in module importlib.util), 1102
set_next() (bdb.Bdb method), 1021
set_nonstandard_attr() (http.cookiejar.Cookie method),

841
set_ok() (http.cookiejar.CookiePolicy method), 837
set_option_negotiation_callback() (telnetlib.Telnet

method), 817
set_output_charset() (gettext.NullTranslations method),

874
set_package() (in module importlib.util), 1102
set_param() (email.message.Message method), 650
set_pasv() (ftplib.FTP method), 794
set_payload() (email.message.Message method), 647
set_policy() (http.cookiejar.CookieJar method), 836
set_position() (xdrlib.Unpacker method), 342
set_pre_input_hook() (in module readline), 597

set_progress_handler() (sqlite3.Connection method),
286

set_proxy() (urllib.request.Request method), 770
set_quit() (bdb.Bdb method), 1022
set_recsrc() (ossaudiodev.oss_mixer_device method),

869
set_result() (concurrent.futures.Future method), 592
set_return() (bdb.Bdb method), 1021
set_running_or_notify_cancel() (concur-

rent.futures.Future method), 592
set_seq1() (difflib.SequenceMatcher method), 94
set_seq2() (difflib.SequenceMatcher method), 94
set_seqs() (difflib.SequenceMatcher method), 94
set_sequences() (mailbox.MH method), 686
set_sequences() (mailbox.MHMessage method), 692
set_server_documentation() (xml-

rpc.server.DocCGIXMLRPCRequestHandler
method), 852

set_server_documentation() (xml-
rpc.server.DocXMLRPCServer method),
852

set_server_name() (xml-
rpc.server.DocCGIXMLRPCRequestHandler
method), 852

set_server_name() (xmlrpc.server.DocXMLRPCServer
method), 851

set_server_title() (xml-
rpc.server.DocCGIXMLRPCRequestHandler
method), 852

set_server_title() (xmlrpc.server.DocXMLRPCServer
method), 851

set_spacing() (formatter.formatter method), 1133
set_startup_hook() (in module readline), 597
set_step() (bdb.Bdb method), 1021
set_subdir() (mailbox.MaildirMessage method), 689
set_terminator() (asynchat.async_chat method), 642
set_threshold() (in module gc), 1071
set_trace() (bdb.Bdb method), 1021
set_trace() (in module bdb), 1023
set_trace() (in module pdb), 1024
set_trace() (pdb.Pdb method), 1025
set_tunnel() (http.client.HTTPConnection method),

790
set_type() (email.message.Message method), 650
set_unittest_reportflags() (in module doctest), 977
set_unixfrom() (email.message.Message method), 646
set_until() (bdb.Bdb method), 1021
set_url() (urllib.robotparser.RobotFileParser method),

786
set_usage() (optparse.OptionParser method), 431
set_userptr() (curses.panel.Panel method), 488
set_visible() (mailbox.BabylMessage method), 693
set_wakeup_fd() (in module signal), 636
setacl() (imaplib.IMAP4 method), 801
setannotation() (imaplib.IMAP4 method), 801
setattr() (built-in function), 17
setAttribute() (xml.dom.Element method), 722
setAttributeNode() (xml.dom.Element method), 722

1254 Index

The Python Library Reference, Release 3.2

setAttributeNodeNS() (xml.dom.Element method), 722
setAttributeNS() (xml.dom.Element method), 722
SetBase() (xml.parsers.expat.xmlparser method), 709
setblocking() (socket.socket method), 618
setByteStream() (xml.sax.xmlreader.InputSource

method), 740
setcbreak() (in module tty), 1156
setCharacterStream() (xml.sax.xmlreader.InputSource

method), 740
setcheckinterval() (in module sys), 1048
setcomptype() (aifc.aifc method), 857
setcomptype() (sunau.AU_write method), 860
setcomptype() (wave.Wave_write method), 862
setContentHandler() (xml.sax.xmlreader.XMLReader

method), 738
setcontext() (in module decimal), 199
setDaemon() (threading.Thread method), 535
setdefault() (dict method), 46
setdefaulttimeout() (in module socket), 616
setdlopenflags() (in module sys), 1049
setDocumentLocator() (xml.sax.handler.ContentHandler

method), 734
setDTDHandler() (xml.sax.xmlreader.XMLReader

method), 738
setegid() (in module os), 352
setEncoding() (xml.sax.xmlreader.InputSource

method), 740
setEntityResolver() (xml.sax.xmlreader.XMLReader

method), 738
setErrorHandler() (xml.sax.xmlreader.XMLReader

method), 738
seteuid() (in module os), 352
setFeature() (xml.sax.xmlreader.XMLReader method),

739
setfirstweekday() (in module calendar), 144
setfmt() (ossaudiodev.oss_audio_device method), 867
setFormatter() (logging.Handler method), 443
setframerate() (aifc.aifc method), 857
setframerate() (sunau.AU_write method), 860
setframerate() (wave.Wave_write method), 862
setgid() (in module os), 352
setgroups() (in module os), 352
seth() (in module turtle), 891
setheading() (in module turtle), 891
SetInteger() (msilib.Record method), 1137
setitem() (in module operator), 236
setitimer() (in module signal), 636
setLevel() (logging.Handler method), 443
setLevel() (logging.Logger method), 440
setlocale() (in module locale), 879
setLocale() (xml.sax.xmlreader.XMLReader method),

738
setLoggerClass() (in module logging), 450
setlogmask() (in module syslog), 1164
setLogRecordFactory() (in module logging), 451
setmark() (aifc.aifc method), 857
setMaxConns() (urllib.request.CacheFTPHandler

method), 775

setmode() (in module msvcrt), 1140
setName() (threading.Thread method), 534
setnchannels() (aifc.aifc method), 857
setnchannels() (sunau.AU_write method), 860
setnchannels() (wave.Wave_write method), 862
setnframes() (aifc.aifc method), 857
setnframes() (sunau.AU_write method), 860
setnframes() (wave.Wave_write method), 862
SetParamEntityParsing() (xml.parsers.expat.xmlparser

method), 709
setparameters() (ossaudiodev.oss_audio_device

method), 867
setparams() (aifc.aifc method), 857
setparams() (sunau.AU_write method), 860
setparams() (wave.Wave_write method), 862
setpassword() (zipfile.ZipFile method), 307
setpgid() (in module os), 353
setpgrp() (in module os), 353
setpos() (aifc.aifc method), 857
setpos() (in module turtle), 890
setpos() (sunau.AU_read method), 859
setpos() (wave.Wave_read method), 861
setposition() (in module turtle), 890
setprofile() (in module sys), 1049
setprofile() (in module threading), 533
SetProperty() (msilib.SummaryInformation method),

1137
setProperty() (xml.sax.xmlreader.XMLReader

method), 739
setPublicId() (xml.sax.xmlreader.InputSource method),

739
setquota() (imaplib.IMAP4 method), 801
setraw() (in module tty), 1156
setrecursionlimit() (in module sys), 1049
setregid() (in module os), 353
setresgid() (in module os), 353
setresuid() (in module os), 353
setreuid() (in module os), 353
setrlimit() (in module resource), 1160
setsampwidth() (aifc.aifc method), 857
setsampwidth() (sunau.AU_write method), 860
setsampwidth() (wave.Wave_write method), 862
setscrreg() (curses.window method), 479
setsid() (in module os), 353
setsockopt() (socket.socket method), 619
setstate() (codecs.IncrementalDecoder method), 107
setstate() (codecs.IncrementalEncoder method), 106
setstate() (in module random), 215
SetStream() (msilib.Record method), 1137
SetString() (msilib.Record method), 1137
setswitchinterval() (in module sys), 1049
setSystemId() (xml.sax.xmlreader.InputSource

method), 739
setsyx() (in module curses), 474
setTarget() (logging.handlers.MemoryHandler

method), 467
settiltangle() (in module turtle), 902
settimeout() (socket.socket method), 619

Index 1255

The Python Library Reference, Release 3.2

setTimeout() (urllib.request.CacheFTPHandler
method), 775

settrace() (in module sys), 1049
settrace() (in module threading), 533
settscdump() (in module sys), 1050
setuid() (in module os), 353
setundobuffer() (in module turtle), 905
setup() (in module turtle), 911
setup() (socketserver.RequestHandler method), 823
setUp() (unittest.TestCase method), 994
setup_environ() (wsgiref.handlers.BaseHandler

method), 764
SETUP_EXCEPT (opcode), 1128
SETUP_FINALLY (opcode), 1128
SETUP_LOOP (opcode), 1128
setup_testing_defaults() (in module wsgiref.util), 758
SETUP_WITH (opcode), 1126
setUpClass() (unittest.TestCase method), 994
setupterm() (in module curses), 474
SetValue() (in module winreg), 1145
SetValueEx() (in module winreg), 1145
setworldcoordinates() (in module turtle), 907
setx() (in module turtle), 891
sety() (in module turtle), 891
Shape (class in turtle), 912
shape (memoryview attribute), 49
shape() (in module turtle), 900
shapesize() (in module turtle), 901
shapetransform() (in module turtle), 902
shearfactor() (in module turtle), 901
Shelf (class in shelve), 275
shelve

module, 276
shelve (module), 274
shift() (decimal.Context method), 205
shift() (decimal.Decimal method), 199
shift_path_info() (in module wsgiref.util), 758
shifting

operations, 27
shlex (class in shlex), 922
shlex (module), 922
shortDescription() (unittest.TestCase method), 1000
shouldFlush() (logging.handlers.BufferingHandler

method), 467
shouldFlush() (logging.handlers.MemoryHandler

method), 467
shouldStop (unittest.TestResult attribute), 1004
show() (curses.panel.Panel method), 488
show_code() (in module dis), 1122
showsyntaxerror() (code.InteractiveInterpreter

method), 1084
showtraceback() (code.InteractiveInterpreter method),

1084
showturtle() (in module turtle), 900
showwarning() (in module warnings), 1059
shuffle() (in module random), 216
shutdown() (concurrent.futures.Executor method), 589
shutdown() (imaplib.IMAP4 method), 801

shutdown() (in module logging), 450
shutdown() (multiprocessing.managers.BaseManager

method), 556
shutdown() (socket.socket method), 619
shutdown() (socketserver.BaseServer method), 822
shutil (module), 256
SIG_DFL (in module signal), 635
SIG_IGN (in module signal), 635
siginterrupt() (in module signal), 636
signal

module, 601
signal (module), 634
signal() (in module signal), 636
Simple Mail Transfer Protocol, 809
SimpleCookie (class in http.cookies), 831
simplefilter() (in module warnings), 1059
SimpleHandler (class in wsgiref.handlers), 763
SimpleHTTPRequestHandler (class in http.server), 829
SimpleXMLRPCRequestHandler (class in xml-

rpc.server), 849
SimpleXMLRPCServer (class in xmlrpc.server), 848
sin() (in module cmath), 189
sin() (in module math), 186
sinh() (in module cmath), 189
sinh() (in module math), 187
site (module), 1079
site-packages

directory, 1079
site-python

directory, 1079
sitecustomize

module, 1080
size (struct.Struct attribute), 90
size (tarfile.TarInfo attribute), 314
size() (ftplib.FTP method), 795
size() (in module mmap), 596
sizeof() (in module ctypes), 521
SKIP (in module doctest), 971
skip() (chunk.Chunk method), 863
skip() (in module unittest), 993
skipIf() (in module unittest), 993
skipinitialspace (csv.Dialect attribute), 322
skipped (unittest.TestResult attribute), 1004
skippedEntity() (xml.sax.handler.ContentHandler

method), 735
skipTest() (unittest.TestCase method), 995
skipUnless() (in module unittest), 993
SLASH (in module token), 1114
SLASHEQUAL (in module token), 1114
slave() (nntplib.NNTP method), 808
sleep() (in module time), 385
slice, 1172

assignment, 40
built-in function, 1129
operation, 33

slice() (built-in function), 17
SMTP

protocol, 809

1256 Index

The Python Library Reference, Release 3.2

SMTP (class in smtplib), 809
smtp_server (smtpd.SMTPChannel attribute), 814
SMTP_SSL (class in smtplib), 809
smtp_state (smtpd.SMTPChannel attribute), 814
SMTPAuthenticationError, 810
SMTPChannel (class in smtpd), 814
SMTPConnectError, 810
smtpd (module), 813
SMTPDataError, 810
SMTPException, 809
SMTPHandler (class in logging.handlers), 466
SMTPHeloError, 810
smtplib (module), 809
SMTPRecipientsRefused, 810
SMTPResponseException, 810
SMTPSenderRefused, 810
SMTPServer (class in smtpd), 813
SMTPServerDisconnected, 810
SND_ALIAS (in module winsound), 1149
SND_ASYNC (in module winsound), 1150
SND_FILENAME (in module winsound), 1149
SND_LOOP (in module winsound), 1149
SND_MEMORY (in module winsound), 1149
SND_NODEFAULT (in module winsound), 1150
SND_NOSTOP (in module winsound), 1150
SND_NOWAIT (in module winsound), 1150
SND_PURGE (in module winsound), 1149
sndhdr (module), 865
sniff() (csv.Sniffer method), 321
Sniffer (class in csv), 321
SOCK_CLOEXEC (in module socket), 613
SOCK_DGRAM (in module socket), 613
SOCK_NONBLOCK (in module socket), 613
SOCK_RAW (in module socket), 613
SOCK_RDM (in module socket), 613
SOCK_SEQPACKET (in module socket), 613
SOCK_STREAM (in module socket), 613
socket

module, 749
object, 611

socket (module), 611
socket (socketserver.BaseServer attribute), 822
socket() (imaplib.IMAP4 method), 802
socket() (in module socket), 528, 615
socket_type (socketserver.BaseServer attribute), 822
SocketHandler (class in logging.handlers), 463
socketpair() (in module socket), 615
socketserver (module), 820
SocketType (in module socket), 616
SOMAXCONN (in module socket), 613
sort() (imaplib.IMAP4 method), 802
sort() (sequence method), 40
sort_stats() (pstats.Stats method), 1032
sorted() (built-in function), 18
sortTestMethodsUsing (unittest.TestLoader attribute),

1003
source (doctest.Example attribute), 978
source (pdb command), 1027

source (shlex.shlex attribute), 924
source_from_cache() (in module imp), 1089
source_mtime() (importlib.abc.PyPycLoader method),

1101
source_path() (importlib.abc.PyLoader method), 1100
sourcehook() (shlex.shlex method), 923
SourceLoader (class in importlib.abc), 1099
span() (re.match method), 80
spawn() (in module pty), 1156
spawnl() (in module os), 368
spawnle() (in module os), 368
spawnlp() (in module os), 368
spawnlpe() (in module os), 368
spawnv() (in module os), 368
spawnve() (in module os), 368
spawnvp() (in module os), 368
spawnvpe() (in module os), 368
special method, 1172
specified_attributes (xml.parsers.expat.xmlparser at-

tribute), 710
speed() (in module turtle), 893
speed() (ossaudiodev.oss_audio_device method), 867
split() (in module os.path), 243
split() (in module re), 76
split() (in module shlex), 922
split() (re.regex method), 78
split() (str method), 37
splitdrive() (in module os.path), 244
splitext() (in module os.path), 244
splitlines() (str method), 37
SplitResult (class in urllib.parse), 783
SplitResultBytes (class in urllib.parse), 784
splitunc() (in module os.path), 244
SpooledTemporaryFile() (in module tempfile), 251
sprintf-style formatting, 38
spwd (module), 1153
sqlite3 (module), 280
sqrt() (decimal.Context method), 205
sqrt() (decimal.Decimal method), 199
sqrt() (in module cmath), 189
sqrt() (in module math), 186
SSL, 622
ssl (module), 622
ssl_version (ftplib.FTP_TLS attribute), 796
SSLContext (class in ssl), 628
SSLError, 623
st() (in module turtle), 900
st2list() (in module parser), 1104
st2tuple() (in module parser), 1105
ST_ATIME (in module stat), 247
ST_CTIME (in module stat), 247
ST_DEV (in module stat), 247
ST_GID (in module stat), 247
ST_INO (in module stat), 247
ST_MODE (in module stat), 247
ST_MTIME (in module stat), 247
ST_NLINK (in module stat), 247
ST_SIZE (in module stat), 247

Index 1257

The Python Library Reference, Release 3.2

ST_UID (in module stat), 247
stack viewer, 958
stack() (in module inspect), 1078
stack_size() (in module _thread), 600
stack_size() (in module threading), 533
stackable

streams, 102
stamp() (in module turtle), 892
standard_b64decode() (in module base64), 699
standard_b64encode() (in module base64), 699
standard_error (2to3 fixer), 1012
standend() (curses.window method), 479
standout() (curses.window method), 479
STAR (in module token), 1114
STAREQUAL (in module token), 1114
starmap() (in module itertools), 226
start() (logging.handlers.QueueListener method), 468
start() (multiprocessing.managers.BaseManager

method), 556
start() (multiprocessing.Process method), 546
start() (re.match method), 80
start() (threading.Thread method), 534
start() (tkinter.ttk.Progressbar method), 943
start() (xml.etree.ElementTree.TreeBuilder method),

746
start_color() (in module curses), 474
start_component() (msilib.Directory method), 1138
start_new_thread() (in module _thread), 600
StartCdataSectionHandler()

(xml.parsers.expat.xmlparser method),
712

StartDoctypeDeclHandler()
(xml.parsers.expat.xmlparser method),
711

startDocument() (xml.sax.handler.ContentHandler
method), 734

startElement() (xml.sax.handler.ContentHandler
method), 734

StartElementHandler() (xml.parsers.expat.xmlparser
method), 711

startElementNS() (xml.sax.handler.ContentHandler
method), 735

startfile() (in module os), 369
StartNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method),
712

startPrefixMapping() (xml.sax.handler.ContentHandler
method), 734

startswith() (str method), 37
startTest() (unittest.TestResult method), 1004
startTestRun() (unittest.TestResult method), 1004
starttls() (imaplib.IMAP4 method), 802
starttls() (nntplib.NNTP method), 805
starttls() (smtplib.SMTP method), 811
stat

module, 363
stat (module), 246
stat() (in module os), 362

stat() (nntplib.NNTP method), 807
stat() (poplib.POP3 method), 797
stat_float_times() (in module os), 363
state() (tkinter.ttk.Widget method), 939
statement, 1172

assert, 56
del, 40, 45
except, 55
if, 25
import, 21, 1087
raise, 55
try, 55
while, 25

staticmethod() (built-in function), 18
Stats (class in pstats), 1031
status (http.client.HTTPResponse attribute), 791
status() (imaplib.IMAP4 method), 802
statvfs() (in module os), 363
StdButtonBox (class in tkinter.tix), 954
stderr (in module sys), 1050
stderr (subprocess.Popen attribute), 608
stdin (in module sys), 1050
stdin (subprocess.Popen attribute), 608
STDOUT (in module subprocess), 606
stdout (in module sys), 1050
stdout (subprocess.Popen attribute), 608
step (pdb command), 1027
step() (tkinter.ttk.Progressbar method), 943
stereocontrols() (ossaudiodev.oss_mixer_device

method), 868
stop() (logging.handlers.QueueListener method), 468
stop() (tkinter.ttk.Progressbar method), 943
stop() (unittest.TestResult method), 1004
STOP_CODE (opcode), 1123
stop_here() (bdb.Bdb method), 1021
StopIteration, 57
stopListening() (in module logging.config), 453
stopTest() (unittest.TestResult method), 1004
stopTestRun() (unittest.TestResult method), 1004
storbinary() (ftplib.FTP method), 794
store() (imaplib.IMAP4 method), 802
STORE_ACTIONS (optparse.Option attribute), 436
STORE_ATTR (opcode), 1127
STORE_DEREF (opcode), 1128
STORE_FAST (opcode), 1128
STORE_GLOBAL (opcode), 1127
STORE_LOCALS (opcode), 1126
STORE_MAP (opcode), 1128
STORE_NAME (opcode), 1126
STORE_SUBSCR (opcode), 1125
storlines() (ftplib.FTP method), 794
str

format, 10
str() (built-in function), 18
str() (in module locale), 882
strcoll() (in module locale), 882
StreamError, 311
StreamHandler (class in logging), 460

1258 Index

The Python Library Reference, Release 3.2

StreamReader (class in codecs), 108
StreamReaderWriter (class in codecs), 109
StreamRecoder (class in codecs), 109
streams, 102

stackable, 102
StreamWriter (class in codecs), 107
strerror() (in module os), 353
strftime() (datetime.date method), 125
strftime() (datetime.datetime method), 130
strftime() (datetime.time method), 133
strftime() (in module time), 385
strict_domain (http.cookiejar.DefaultCookiePolicy at-

tribute), 839
strict_errors() (in module codecs), 103
strict_ns_domain (http.cookiejar.DefaultCookiePolicy

attribute), 839
strict_ns_set_initial_dollar

(http.cookiejar.DefaultCookiePolicy at-
tribute), 839

strict_ns_set_path (http.cookiejar.DefaultCookiePolicy
attribute), 840

strict_ns_unverifiable (http.cookiejar.DefaultCookiePolicy
attribute), 839

strict_rfc2965_unverifiable
(http.cookiejar.DefaultCookiePolicy at-
tribute), 839

strides (memoryview attribute), 50
string

formatting, 38
interpolation, 38
methods, 34
module, 40, 883
object, 32

STRING (in module token), 1114
string (module), 61
string (re.match attribute), 81
string_at() (in module ctypes), 521
StringIO (class in io), 381
stringprep (module), 116
strip() (str method), 37
strip_dirs() (pstats.Stats method), 1032
stripspaces (curses.textpad.Textbox attribute), 484
strptime() (datetime.datetime class method), 127
strptime() (in module time), 386
struct

module, 619
Struct (class in struct), 89
struct (module), 86
struct_time (class in time), 386
Structure (class in ctypes), 525
structures

C, 86
strxfrm() (in module locale), 882
STType (in module parser), 1106
Style (class in tkinter.ttk), 949
sub() (in module operator), 235
sub() (in module re), 77
sub() (re.regex method), 78

subdirs (filecmp.dircmp attribute), 251
SubElement() (in module xml.etree.ElementTree), 742
submit() (concurrent.futures.Executor method), 589
subn() (in module re), 77
subn() (re.regex method), 78
Subnormal (class in decimal), 206
subpad() (curses.window method), 479
subprocess (module), 603
subscribe() (imaplib.IMAP4 method), 802
subscript

assignment, 40
operation, 33

subsequent_indent (textwrap.TextWrapper attribute),
101

substitute() (string.Template method), 69
subtract() (collections.Counter method), 146
subtract() (decimal.Context method), 205
subversion (in module sys), 1041
subwin() (curses.window method), 479
successful() (multiprocessing.pool.AsyncResult

method), 562
suffix_map (in module mimetypes), 697
suffix_map (mimetypes.MimeTypes attribute), 698
suite() (in module parser), 1104
suiteClass (unittest.TestLoader attribute), 1003
sum() (built-in function), 18
summarize() (doctest.DocTestRunner method), 981
sunau (module), 858
super (pyclbr.Class attribute), 1118
super() (built-in function), 19
supports_bytes_environ (in module os), 353
supports_unicode_filenames (in module os.path), 244
swapcase() (str method), 38
sym_name (in module symbol), 1114
Symbol (class in symtable), 1113
symbol (module), 1113
SymbolTable (class in symtable), 1112
symlink() (in module os), 363
symmetric_difference() (set method), 43
symmetric_difference_update() (set method), 44
symtable (module), 1111
symtable() (in module symtable), 1112
sync() (dbm.dumb.dumbdbm method), 280
sync() (dbm.gnu.gdbm method), 279
sync() (ossaudiodev.oss_audio_device method), 867
sync() (shelve.Shelf method), 274
syncdown() (curses.window method), 479
synchronized() (in module multiprocess-

ing.sharedctypes), 554
SyncManager (class in multiprocessing.managers), 557
syncok() (curses.window method), 479
syncup() (curses.window method), 479
SyntaxErr, 724
SyntaxError, 57
SyntaxWarning, 59
sys

module, 15
sys (module), 1041

Index 1259

The Python Library Reference, Release 3.2

sys_exc (2to3 fixer), 1012
sys_version (http.server.BaseHTTPRequestHandler at-

tribute), 828
sysconf() (in module os), 372
sysconf_names (in module os), 372
sysconfig (module), 1051
syslog (module), 1163
syslog() (in module syslog), 1163
SysLogHandler (class in logging.handlers), 464
system() (in module os), 370
system() (in module platform), 489
system_alias() (in module platform), 489
SystemError, 57
SystemExit, 58
systemId (xml.dom.DocumentType attribute), 720
SystemRandom (class in random), 217
SystemRoot, 605

T
T_FMT (in module locale), 880
T_FMT_AMPM (in module locale), 880
tab() (tkinter.ttk.Notebook method), 942
TabError, 57
tabnanny (module), 1117
tabs() (tkinter.ttk.Notebook method), 942
tabular

data, 319
tag (xml.etree.ElementTree.Element attribute), 743
tag_bind() (tkinter.ttk.Treeview method), 948
tag_configure() (tkinter.ttk.Treeview method), 949
tag_has() (tkinter.ttk.Treeview method), 949
tagName (xml.dom.Element attribute), 721
tail (xml.etree.ElementTree.Element attribute), 743
takewhile() (in module itertools), 226
tan() (in module cmath), 189
tan() (in module math), 186
tanh() (in module cmath), 189
tanh() (in module math), 187
TarError, 311
TarFile (class in tarfile), 311, 312
tarfile (module), 310
target (xml.dom.ProcessingInstruction attribute), 723
TarInfo (class in tarfile), 314
task_done() (multiprocessing.JoinableQueue method),

550
task_done() (queue.Queue method), 169
tbreak (pdb command), 1026
tcdrain() (in module termios), 1155
tcflow() (in module termios), 1155
tcflush() (in module termios), 1155
tcgetattr() (in module termios), 1155
tcgetpgrp() (in module os), 356
Tcl() (in module tkinter), 928
tcsendbreak() (in module termios), 1155
tcsetattr() (in module termios), 1155
tcsetpgrp() (in module os), 356
tearDown() (unittest.TestCase method), 994
tearDownClass() (unittest.TestCase method), 994

tee() (in module itertools), 227
tell() (aifc.aifc method), 857
tell() (bz2.BZ2File method), 304
tell() (chunk.Chunk method), 863
tell() (in module mmap), 596
tell() (io.IOBase method), 376
tell() (sunau.AU_read method), 859
tell() (sunau.AU_write method), 860
tell() (wave.Wave_read method), 861
tell() (wave.Wave_write method), 862
Telnet (class in telnetlib), 815
telnetlib (module), 815
TEMP, 253
tempdir (in module tempfile), 253
tempfile (module), 251
Template (class in pipes), 1159
Template (class in string), 69
template (string.Template attribute), 69
temporary

file, 251
file name, 251

TemporaryDirectory() (in module tempfile), 252
TemporaryFile() (in module tempfile), 251
termattrs() (in module curses), 474
terminate() (multiprocessing.pool.multiprocessing.Pool

method), 562
terminate() (multiprocessing.Process method), 547
terminate() (subprocess.Popen method), 608
termios (module), 1154
termname() (in module curses), 474
test (doctest.DocTestFailure attribute), 984
test (doctest.UnexpectedException attribute), 984
test (module), 1013
test() (in module cgi), 754
test.support (module), 1015
TestCase (class in unittest), 994
TestFailed, 1015
testfile() (in module doctest), 974
TESTFN (in module test.support), 1016
TestLoader (class in unittest), 1002
testMethodPrefix (unittest.TestLoader attribute), 1003
testmod() (in module doctest), 974
TestResult (class in unittest), 1003
tests (in module imghdr), 864
testsource() (in module doctest), 983
testsRun (unittest.TestResult attribute), 1004
TestSuite (class in unittest), 1001
testzip() (zipfile.ZipFile method), 307
text (in module msilib), 1140
text (xml.etree.ElementTree.Element attribute), 743
text mode, 15
text() (msilib.Dialog method), 1139
text_factory (sqlite3.Connection attribute), 287
Textbox (class in curses.textpad), 484
TextCalendar (class in calendar), 143
textdomain() (in module gettext), 871
textinput() (in module turtle), 909
TextIOBase (class in io), 380

1260 Index

The Python Library Reference, Release 3.2

TextIOWrapper (class in io), 381
TextTestResult (class in unittest), 1005
TextTestRunner (class in unittest), 1005
textwrap (module), 99
TextWrapper (class in textwrap), 100
theme_create() (tkinter.ttk.Style method), 951
theme_names() (tkinter.ttk.Style method), 952
theme_settings() (tkinter.ttk.Style method), 951
theme_use() (tkinter.ttk.Style method), 952
THOUSEP (in module locale), 881
Thread (class in threading), 534
thread() (imaplib.IMAP4 method), 802
threading (module), 531
ThreadPoolExecutor (class in concurrent.futures), 590
threads

POSIX, 600
throw (2to3 fixer), 1012
tigetflag() (in module curses), 474
tigetnum() (in module curses), 474
tigetstr() (in module curses), 474
TILDE (in module token), 1114
tilt() (in module turtle), 901
tiltangle() (in module turtle), 902
time (class in datetime), 132
time (module), 383
time() (datetime.datetime method), 129
time() (in module time), 387
Time2Internaldate() (in module imaplib), 799
timedelta (class in datetime), 120
TimedRotatingFileHandler (class in logging.handlers),

462
timegm() (in module calendar), 144
timeit (module), 1035
timeit command line option

-c, –clock, 1037
-h, –help, 1037
-n N, –number=N, 1037
-r N, –repeat=N, 1037
-s S, –setup=S, 1037
-t, –time, 1037
-v, –verbose, 1037

timeit() (in module timeit), 1036
timeit() (timeit.Timer method), 1036
timeout, 612
timeout (socketserver.BaseServer attribute), 822
timeout() (curses.window method), 479
TIMEOUT_MAX (in module _thread), 600
TIMEOUT_MAX (in module threading), 533
Timer (class in threading), 540
Timer (class in timeit), 1035
times() (in module os), 370
timetuple() (datetime.date method), 124
timetuple() (datetime.datetime method), 130
timetz() (datetime.datetime method), 129
timezone (class in datetime), 120, 140
timezone (in module time), 387
title() (in module turtle), 912
title() (str method), 38

Tix, 952
tix_addbitmapdir() (tkinter.tix.tixCommand method),

956
tix_cget() (tkinter.tix.tixCommand method), 956
tix_configure() (tkinter.tix.tixCommand method), 956
tix_filedialog() (tkinter.tix.tixCommand method), 956
tix_getbitmap() (tkinter.tix.tixCommand method), 956
tix_getimage() (tkinter.tix.tixCommand method), 956
TIX_LIBRARY, 953
tix_option_get() (tkinter.tix.tixCommand method), 956
tix_resetoptions() (tkinter.tix.tixCommand method),

956
tixCommand (class in tkinter.tix), 956
Tk, 927
Tk (class in tkinter), 928
Tk (class in tkinter.tix), 953
Tk Option Data Types, 934
Tkinter, 927
tkinter (module), 927
tkinter.scrolledtext (module), 957
tkinter.tix (module), 952
tkinter.ttk (module), 936
TList (class in tkinter.tix), 955
TLS, 622
TMP, 253
TMPDIR, 253
to_bytes() (int method), 28
to_eng_string() (decimal.Context method), 205
to_eng_string() (decimal.Decimal method), 199
to_integral() (decimal.Decimal method), 199
to_integral_exact() (decimal.Context method), 205
to_integral_exact() (decimal.Decimal method), 199
to_integral_value() (decimal.Decimal method), 199
to_sci_string() (decimal.Context method), 205
ToASCII() (in module encodings.idna), 114
tobuf() (tarfile.TarInfo method), 314
tobytes() (array.array method), 166
tobytes() (memoryview method), 48
today() (datetime.date class method), 123
today() (datetime.datetime class method), 126
tofile() (array.array method), 166
tok_name (in module token), 1114
token (module), 1114
token (shlex.shlex attribute), 924
tokeneater() (in module tabnanny), 1118
tokenize (module), 1115
tokenize() (in module tokenize), 1116
tolist() (array.array method), 166
tolist() (memoryview method), 49
tolist() (parser.ST method), 1106
tomono() (in module audioop), 855
toordinal() (datetime.date method), 124
toordinal() (datetime.datetime method), 130
top() (curses.panel.Panel method), 488
top() (poplib.POP3 method), 797
top_panel() (in module curses.panel), 487
toprettyxml() (xml.dom.minidom.Node method), 727
tostereo() (in module audioop), 855

Index 1261

The Python Library Reference, Release 3.2

tostring() (array.array method), 166
tostring() (in module xml.etree.ElementTree), 742
tostringlist() (in module xml.etree.ElementTree), 742
total_changes (sqlite3.Connection attribute), 288
total_ordering() (in module functools), 232
total_seconds() (datetime.timedelta method), 122
totuple() (parser.ST method), 1106
touchline() (curses.window method), 480
touchwin() (curses.window method), 480
tounicode() (array.array method), 166
ToUnicode() (in module encodings.idna), 114
towards() (in module turtle), 894
toxml() (xml.dom.minidom.Node method), 727
tparm() (in module curses), 474
Trace (class in trace), 1040
trace (module), 1038
trace command line option

–help, 1038
–ignore-dir=<dir>, 1039
–ignore-module=<mod>, 1039
–version, 1039
-C, –coverdir=<dir>, 1039
-R, –no-report, 1039
-T, –trackcalls, 1039
-c, –count, 1039
-f, –file=<file>, 1039
-g, –timing, 1039
-l, –listfuncs, 1039
-m, –missing, 1039
-r, –report, 1039
-s, –summary, 1039
-t, –trace, 1039

trace function, 533, 1046, 1049
trace() (in module inspect), 1078
trace_dispatch() (bdb.Bdb method), 1020
traceback

object, 1043, 1066
traceback (module), 1066
traceback_limit (wsgiref.handlers.BaseHandler at-

tribute), 764
tracebacklimit (in module sys), 1050
tracebacks

in CGI scripts, 757
TracebackType (in module types), 174
tracer() (in module turtle), 907
transfercmd() (ftplib.FTP method), 795
TransientResource (class in test.support), 1018
translate() (bytearray method), 42
translate() (bytes method), 42
translate() (in module fnmatch), 255
translate() (str method), 38
translation() (in module gettext), 873
Transport Layer Security, 622
Tree (class in tkinter.tix), 955
TreeBuilder (class in xml.etree.ElementTree), 746
Treeview (class in tkinter.ttk), 946
triangular() (in module random), 216
triple-quoted string, 1172

True, 25, 52
true, 25
True (built-in variable), 23
truediv() (in module operator), 236
trunc() (in module math), 27, 185
truncate() (io.IOBase method), 376
truth

value, 25
truth() (in module operator), 234
try

statement, 55
ttk, 936
tty

I/O control, 1154
tty (module), 1156
ttyname() (in module os), 357
tuple

object, 32
tuple() (built-in function), 19
tuple2st() (in module parser), 1104
tuple_params (2to3 fixer), 1012
turnoff_sigfpe() (in module fpectl), 1081
turnon_sigfpe() (in module fpectl), 1081
Turtle (class in turtle), 912
turtle (module), 885
turtles() (in module turtle), 911
TurtleScreen (class in turtle), 912
turtlesize() (in module turtle), 901
type, 1172

Boolean, 6
built-in function, 52
object, 19
operations on dictionary, 45
operations on list, 40

type (optparse.Option attribute), 425
type (socket.socket attribute), 619
type (tarfile.TarInfo attribute), 314
type (urllib.request.Request attribute), 769
type() (built-in function), 19
TYPE_CHECKER (optparse.Option attribute), 435
typeahead() (in module curses), 474
typecode (array.array attribute), 164
typecodes (in module array), 164
TYPED_ACTIONS (optparse.Option attribute), 436
typed_subpart_iterator() (in module email.iterators),

665
TypeError, 58
types

built-in, 25
module, 52
mutable sequence, 40
operations on integer, 27
operations on mapping, 45
operations on numeric, 27
operations on sequence, 33, 40

types (2to3 fixer), 1012
types (module), 174
TYPES (optparse.Option attribute), 435

1262 Index

The Python Library Reference, Release 3.2

types_map (in module mimetypes), 698
types_map (mimetypes.MimeTypes attribute), 698
TZ, 387, 388
tzinfo (class in datetime), 120
tzinfo (datetime.datetime attribute), 128
tzinfo (datetime.time attribute), 133
tzname (in module time), 387
tzname() (datetime.datetime method), 129
tzname() (datetime.time method), 134
tzname() (datetime.timezone method), 140
tzname() (datetime.tzinfo method), 135
tzset() (in module time), 387

U
u-LAW, 853, 857, 865
ucd_3_2_0 (in module unicodedata), 116
udata (select.kevent attribute), 531
uid (tarfile.TarInfo attribute), 314
uid() (imaplib.IMAP4 method), 802
uidl() (poplib.POP3 method), 797
ulaw2lin() (in module audioop), 855
umask() (in module os), 353
unalias (pdb command), 1028
uname (tarfile.TarInfo attribute), 315
uname() (in module os), 353
uname() (in module platform), 490
UNARY_INVERT (opcode), 1124
UNARY_NEGATIVE (opcode), 1124
UNARY_NOT (opcode), 1124
UNARY_POSITIVE (opcode), 1124
UnboundLocalError, 58
unbuffered I/O, 15
UNC paths

and os.makedirs(), 361
unconsumed_tail (zlib.Decompress attribute), 301
unctrl() (in module curses), 474
unctrl() (in module curses.ascii), 487
Underflow (class in decimal), 206
undisplay (pdb command), 1027
undo() (in module turtle), 893
undobufferentries() (in module turtle), 905
undoc_header (cmd.Cmd attribute), 919
unescape() (in module xml.sax.saxutils), 736
UnexpectedException, 984
unexpectedSuccesses (unittest.TestResult attribute),

1004
ungetch() (in module curses), 474
ungetch() (in module msvcrt), 1141
ungetmouse() (in module curses), 474
ungetwch() (in module msvcrt), 1141
unhexlify() (in module binascii), 703
Unicode, 102, 114

database, 114
unicode (2to3 fixer), 1012
unicodedata (module), 114
UnicodeDecodeError, 58
UnicodeEncodeError, 58
UnicodeError, 58

UnicodeTranslateError, 58
UnicodeWarning, 59
unidata_version (in module unicodedata), 116
unified_diff() (in module difflib), 93
uniform() (in module random), 216
UnimplementedFileMode, 788
Union (class in ctypes), 524
union() (set method), 43
unittest (module), 985
unittest command line option

-b, –buffer, 988
-c, –catch, 988
-f, –failfast, 988

unittest-discover command line option
-p pattern, 989
-s directory, 988
-t directory, 989
-v, –verbose, 988

UNIX
file control, 1157
I/O control, 1157

unix_dialect (class in csv), 321
unknown_decl() (html.parser.HTMLParser method),

707
unknown_open() (urllib.request.BaseHandler method),

772
unknown_open() (urllib.request.HTTPErrorProcessor

method), 775
unknown_open() (urllib.request.UnknownHandler

method), 775
UnknownHandler (class in urllib.request), 769
UnknownProtocol, 788
UnknownTransferEncoding, 788
unlink() (in module os), 364
unlink() (xml.dom.minidom.Node method), 727
unlock() (mailbox.Babyl method), 687
unlock() (mailbox.Mailbox method), 683
unlock() (mailbox.Maildir method), 685
unlock() (mailbox.mbox method), 685
unlock() (mailbox.MH method), 686
unlock() (mailbox.MMDF method), 688
unpack() (in module struct), 86
unpack() (struct.Struct method), 90
unpack_archive() (in module shutil), 259
unpack_array() (xdrlib.Unpacker method), 343
unpack_bytes() (xdrlib.Unpacker method), 343
unpack_double() (xdrlib.Unpacker method), 342
UNPACK_EX (opcode), 1126
unpack_farray() (xdrlib.Unpacker method), 343
unpack_float() (xdrlib.Unpacker method), 342
unpack_fopaque() (xdrlib.Unpacker method), 342
unpack_from() (in module struct), 86
unpack_from() (struct.Struct method), 90
unpack_fstring() (xdrlib.Unpacker method), 342
unpack_list() (xdrlib.Unpacker method), 343
unpack_opaque() (xdrlib.Unpacker method), 343
UNPACK_SEQUENCE (opcode), 1126
unpack_string() (xdrlib.Unpacker method), 342

Index 1263

The Python Library Reference, Release 3.2

Unpacker (class in xdrlib), 341
unparsedEntityDecl() (xml.sax.handler.DTDHandler

method), 736
UnparsedEntityDeclHandler()

(xml.parsers.expat.xmlparser method),
711

Unpickler (class in pickle), 266
UnpicklingError, 265
unquote() (in module email.utils), 664
unquote() (in module urllib.parse), 784
unquote_plus() (in module urllib.parse), 785
unquote_to_bytes() (in module urllib.parse), 785
unregister() (in module atexit), 1065
unregister() (select.epoll method), 529
unregister() (select.poll method), 529
unregister_archive_format() (in module shutil), 259
unregister_dialect() (in module csv), 320
unregister_unpack_format() (in module shutil), 260
unset() (test.support.EnvironmentVarGuard method),

1018
unsetenv() (in module os), 354
unsubscribe() (imaplib.IMAP4 method), 802
UnsupportedOperation, 375
until (pdb command), 1027
untokenize() (in module tokenize), 1116
untouchwin() (curses.window method), 480
unused_data (zlib.Decompress attribute), 300
unverifiable (urllib.request.Request attribute), 769
unwrap() (ssl.SSLSocket method), 628
up (pdb command), 1025
up() (in module turtle), 896
update() (collections.Counter method), 146
update() (dict method), 46
update() (hashlib.hash method), 346
update() (hmac.hmac method), 347
update() (in module turtle), 907
update() (mailbox.Mailbox method), 683
update() (mailbox.Maildir method), 684
update() (set method), 44
update() (trace.CoverageResults method), 1040
update_panels() (in module curses.panel), 487
update_visible() (mailbox.BabylMessage method), 693
update_wrapper() (in module functools), 233
upper() (str method), 38
urandom() (in module os), 373
URL, 751, 780, 786, 827

parsing, 780
relative, 780

url (xmlrpc.client.ProtocolError attribute), 846
url2pathname() (in module urllib.request), 767
urlcleanup() (in module urllib.request), 777
urldefrag() (in module urllib.parse), 782
urlencode() (in module urllib.parse), 785
URLError, 785
urljoin() (in module urllib.parse), 782
urllib (2to3 fixer), 1012
urllib.error (module), 785
urllib.parse (module), 780

urllib.request
module, 787

urllib.request (module), 766
urllib.response (module), 779
urllib.robotparser (module), 786
urlopen() (in module urllib.request), 766
URLopener (class in urllib.request), 777
urlparse() (in module urllib.parse), 780
urlretrieve() (in module urllib.request), 777
urlsafe_b64decode() (in module base64), 699
urlsafe_b64encode() (in module base64), 699
urlsplit() (in module urllib.parse), 781
urlunparse() (in module urllib.parse), 781
urlunsplit() (in module urllib.parse), 782
urn (uuid.UUID attribute), 818
use_default_colors() (in module curses), 475
use_env() (in module curses), 475
use_rawinput (cmd.Cmd attribute), 919
UseForeignDTD() (xml.parsers.expat.xmlparser

method), 709
USER, 469
user

effective id, 351
id, 352
id, setting, 353

user() (poplib.POP3 method), 797
USER_BASE (in module site), 1080
user_call() (bdb.Bdb method), 1021
user_exception() (bdb.Bdb method), 1021
user_line() (bdb.Bdb method), 1021
user_return() (bdb.Bdb method), 1021
USER_SITE (in module site), 1080
UserDict (class in collections), 156
UserList (class in collections), 156
USERNAME, 351, 469
USERPROFILE, 242
userptr() (curses.panel.Panel method), 488
UserString (class in collections), 157
UserWarning, 58
USTAR_FORMAT (in module tarfile), 311
UTC, 383
utc (datetime.timezone attribute), 140
utcfromtimestamp() (datetime.datetime class method),

127
utcnow() (datetime.datetime class method), 127
utcoffset() (datetime.datetime method), 129
utcoffset() (datetime.time method), 134
utcoffset() (datetime.timezone method), 140
utcoffset() (datetime.tzinfo method), 134
utctimetuple() (datetime.datetime method), 130
utime() (in module os), 364
uu

module, 701
uu (module), 704
UUID (class in uuid), 818
uuid (module), 817
uuid1, 819
uuid1() (in module uuid), 819

1264 Index

The Python Library Reference, Release 3.2

uuid3, 819
uuid3() (in module uuid), 819
uuid4, 819
uuid4() (in module uuid), 819
uuid5, 819
uuid5() (in module uuid), 819
UuidCreate() (in module msilib), 1135

V
validator() (in module wsgiref.validate), 762
value

truth, 25
value (ctypes._SimpleCData attribute), 522
value (http.cookiejar.Cookie attribute), 840
value (http.cookies.Morsel attribute), 832
value (xml.dom.Attr attribute), 722
Value() (in module multiprocessing), 553
Value() (in module multiprocessing.sharedctypes), 554
Value() (multiprocessing.managers.SyncManager

method), 557
value_decode() (http.cookies.BaseCookie method), 832
value_encode() (http.cookies.BaseCookie method), 832
ValueError, 58
valuerefs() (weakref.WeakValueDictionary method),

172
values

Boolean, 52
values() (dict method), 46
values() (email.message.Message method), 648
values() (mailbox.Mailbox method), 682
variant (uuid.UUID attribute), 818
vars() (built-in function), 20
VBAR (in module token), 1114
vbar (tkinter.scrolledtext.ScrolledText attribute), 957
VBAREQUAL (in module token), 1114
Vec2D (class in turtle), 913
VERBOSE (in module re), 76
verbose (in module tabnanny), 1118
verbose (in module test.support), 1015
verify() (smtplib.SMTP method), 811
verify_mode (ssl.SSLContext attribute), 629
verify_request() (socketserver.BaseServer method), 823
version (http.client.HTTPResponse attribute), 791
version (http.cookiejar.Cookie attribute), 840
version (in module curses), 480
version (in module marshal), 277
version (in module sys), 1051
version (urllib.request.URLopener attribute), 778
version (uuid.UUID attribute), 818
version() (in module platform), 490
version_info (in module sys), 1051
version_string() (http.server.BaseHTTPRequestHandler

method), 829
vformat() (string.Formatter method), 62
view, 1173
virtual machine, 1173
visit() (ast.NodeVisitor method), 1111
vline() (curses.window method), 480

VMSError, 58
voidcmd() (ftplib.FTP method), 794
volume (zipfile.ZipInfo attribute), 309
vonmisesvariate() (in module random), 217

W
W_OK (in module os), 358
wait() (in module concurrent.futures), 593
wait() (in module os), 370
wait() (multiprocessing.pool.AsyncResult method),

562
wait() (subprocess.Popen method), 607
wait() (threading.Barrier method), 541
wait() (threading.Condition method), 537
wait() (threading.Event method), 539
wait3() (in module os), 371
wait4() (in module os), 371
wait_for() (threading.Condition method), 538
waitpid() (in module os), 370
walk() (email.message.Message method), 651
walk() (in module ast), 1110
walk() (in module os), 364
walk_packages() (in module pkgutil), 1093
want (doctest.Example attribute), 979
warn() (in module warnings), 1059
warn_explicit() (in module warnings), 1059
Warning, 58
warning() (in module logging), 449
warning() (logging.Logger method), 441
warning() (xml.sax.handler.ErrorHandler method), 736
warnings, 1055
warnings (module), 1055
WarningsRecorder (class in test.support), 1018
warnoptions (in module sys), 1051
wasSuccessful() (unittest.TestResult method), 1004
WatchedFileHandler (class in logging.handlers), 461
wave (module), 860
WCONTINUED (in module os), 371
WCOREDUMP() (in module os), 371
WeakKeyDictionary (class in weakref), 171
weakref (module), 170
WeakSet (class in weakref), 172
WeakValueDictionary (class in weakref), 172
webbrowser (module), 749
weekday() (datetime.date method), 124
weekday() (datetime.datetime method), 130
weekday() (in module calendar), 144
weekheader() (in module calendar), 144
weibullvariate() (in module random), 217
WEXITSTATUS() (in module os), 371
wfile (http.server.BaseHTTPRequestHandler attribute),

828
what() (in module imghdr), 864
what() (in module sndhdr), 865
whathdr() (in module sndhdr), 865
whatis (pdb command), 1027
where (pdb command), 1025
whichdb() (in module dbm), 277

Index 1265

The Python Library Reference, Release 3.2

while
statement, 25

whitespace (in module string), 62
whitespace (shlex.shlex attribute), 923
whitespace_split (shlex.shlex attribute), 924
Widget (class in tkinter.ttk), 939
width (textwrap.TextWrapper attribute), 100
width() (in module turtle), 896
WIFCONTINUED() (in module os), 371
WIFEXITED() (in module os), 371
WIFSIGNALED() (in module os), 371
WIFSTOPPED() (in module os), 371
win32_ver() (in module platform), 490
WinDLL (class in ctypes), 515
window manager (widgets), 933
window() (curses.panel.Panel method), 488
window_height() (in module turtle), 911
window_width() (in module turtle), 911
Windows ini file, 324
WindowsError, 58
WinError() (in module ctypes), 521
WINFUNCTYPE() (in module ctypes), 517
winreg (module), 1141
WinSock, 528
winsound (module), 1148
winver (in module sys), 1051
WITH_CLEANUP (opcode), 1126
with_traceback() (BaseException method), 55
WNOHANG (in module os), 371
wordchars (shlex.shlex attribute), 923
World Wide Web, 749, 780, 786
wrap() (in module textwrap), 99
wrap() (textwrap.TextWrapper method), 102
wrap_socket() (in module ssl), 623
wrap_socket() (ssl.SSLContext method), 629
wrapper() (in module curses.wrapper), 485
wraps() (in module functools), 233
writable() (asyncore.dispatcher method), 639
writable() (io.IOBase method), 377
write() (bz2.BZ2File method), 304
write() (code.InteractiveInterpreter method), 1084
write() (codecs.StreamWriter method), 108
write() (configparser.ConfigParser method), 338
write() (email.generator.BytesGenerator method), 656
write() (email.generator.Generator method), 655
write() (in module mmap), 596
write() (in module os), 357
write() (in module turtle), 899
write() (io.BufferedIOBase method), 378
write() (io.BufferedWriter method), 380
write() (io.RawIOBase method), 377
write() (io.TextIOBase method), 381
write() (ossaudiodev.oss_audio_device method), 866
write() (telnetlib.Telnet method), 816
write() (xml.etree.ElementTree.ElementTree method),

745
write() (zipfile.ZipFile method), 307
write_byte() (in module mmap), 596

write_bytecode() (importlib.abc.PyPycLoader method),
1101

write_docstringdict() (in module turtle), 914
write_history_file() (in module readline), 596
write_results() (trace.CoverageResults method), 1040
writeall() (ossaudiodev.oss_audio_device method), 866
writeframes() (aifc.aifc method), 858
writeframes() (sunau.AU_write method), 860
writeframes() (wave.Wave_write method), 862
writeframesraw() (aifc.aifc method), 858
writeframesraw() (sunau.AU_write method), 860
writeframesraw() (wave.Wave_write method), 862
writeheader() (csv.DictWriter method), 323
writelines() (bz2.BZ2File method), 304
writelines() (codecs.StreamWriter method), 108
writelines() (io.IOBase method), 377
writePlist() (in module plistlib), 344
writePlistToBytes() (in module plistlib), 344
writepy() (zipfile.PyZipFile method), 308
writer (formatter.formatter attribute), 1131
writer() (in module csv), 320
writerow() (csv.csvwriter method), 323
writerows() (csv.csvwriter method), 323
writestr() (zipfile.ZipFile method), 308
writexml() (xml.dom.minidom.Node method), 727
WrongDocumentErr, 724
ws_comma (2to3 fixer), 1013
wsgi_file_wrapper (wsgiref.handlers.BaseHandler at-

tribute), 765
wsgi_multiprocess (wsgiref.handlers.BaseHandler at-

tribute), 764
wsgi_multithread (wsgiref.handlers.BaseHandler at-

tribute), 764
wsgi_run_once (wsgiref.handlers.BaseHandler at-

tribute), 764
wsgiref (module), 757
wsgiref.handlers (module), 762
wsgiref.headers (module), 759
wsgiref.simple_server (module), 760
wsgiref.util (module), 758
wsgiref.validate (module), 762
WSGIRequestHandler (class in wsgiref.simple_server),

761
WSGIServer (class in wsgiref.simple_server), 761
WSTOPSIG() (in module os), 372
wstring_at() (in module ctypes), 521
WTERMSIG() (in module os), 372
WUNTRACED (in module os), 371
WWW, 749, 780, 786

server, 751, 827

X
X (in module re), 76
X509 certificate, 629
X_OK (in module os), 358
xatom() (imaplib.IMAP4 method), 802
xcor() (in module turtle), 894
XDR, 264, 341

1266 Index

The Python Library Reference, Release 3.2

xdrlib (module), 341
xhdr() (nntplib.NNTP method), 808
XHTML, 705
XHTML_NAMESPACE (in module xml.dom), 717
XML() (in module xml.etree.ElementTree), 742
xml.dom (module), 716
xml.dom.minidom (module), 726
xml.dom.pulldom (module), 730
xml.etree.ElementTree (module), 741
xml.parsers.expat (module), 708
xml.parsers.expat.errors (module), 714
xml.parsers.expat.model (module), 713
xml.sax (module), 730
xml.sax.handler (module), 732
xml.sax.saxutils (module), 736
xml.sax.xmlreader (module), 737
XML_ERROR_ABORTED (in module

xml.parsers.expat.errors), 716
XML_ERROR_ASYNC_ENTITY (in module

xml.parsers.expat.errors), 714
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

(in module xml.parsers.expat.errors), 714
XML_ERROR_BAD_CHAR_REF (in module

xml.parsers.expat.errors), 714
XML_ERROR_BINARY_ENTITY_REF (in module

xml.parsers.expat.errors), 714
XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING

(in module xml.parsers.expat.errors), 715
XML_ERROR_DUPLICATE_ATTRIBUTE (in mod-

ule xml.parsers.expat.errors), 714
XML_ERROR_ENTITY_DECLARED_IN_PE (in

module xml.parsers.expat.errors), 715
XML_ERROR_EXTERNAL_ENTITY_HANDLING

(in module xml.parsers.expat.errors), 715
XML_ERROR_FEATURE_REQUIRES_XML_DTD

(in module xml.parsers.expat.errors), 715
XML_ERROR_FINISHED (in module

xml.parsers.expat.errors), 716
XML_ERROR_INCOMPLETE_PE (in module

xml.parsers.expat.errors), 715
XML_ERROR_INCORRECT_ENCODING (in mod-

ule xml.parsers.expat.errors), 714
XML_ERROR_INVALID_TOKEN (in module

xml.parsers.expat.errors), 714
XML_ERROR_JUNK_AFTER_DOC_ELEMENT (in

module xml.parsers.expat.errors), 714
XML_ERROR_MISPLACED_XML_PI (in module

xml.parsers.expat.errors), 715
XML_ERROR_NO_ELEMENTS (in module

xml.parsers.expat.errors), 715
XML_ERROR_NO_MEMORY (in module

xml.parsers.expat.errors), 715
XML_ERROR_NOT_STANDALONE (in module

xml.parsers.expat.errors), 715
XML_ERROR_NOT_SUSPENDED (in module

xml.parsers.expat.errors), 716
XML_ERROR_PARAM_ENTITY_REF (in module

xml.parsers.expat.errors), 715

XML_ERROR_PARTIAL_CHAR (in module
xml.parsers.expat.errors), 715

XML_ERROR_PUBLICID (in module
xml.parsers.expat.errors), 716

XML_ERROR_RECURSIVE_ENTITY_REF (in mod-
ule xml.parsers.expat.errors), 715

XML_ERROR_SUSPEND_PE (in module
xml.parsers.expat.errors), 716

XML_ERROR_SUSPENDED (in module
xml.parsers.expat.errors), 716

XML_ERROR_SYNTAX (in module
xml.parsers.expat.errors), 715

XML_ERROR_TAG_MISMATCH (in module
xml.parsers.expat.errors), 715

XML_ERROR_TEXT_DECL (in module
xml.parsers.expat.errors), 716

XML_ERROR_UNBOUND_PREFIX (in module
xml.parsers.expat.errors), 715

XML_ERROR_UNCLOSED_CDATA_SECTION (in
module xml.parsers.expat.errors), 715

XML_ERROR_UNCLOSED_TOKEN (in module
xml.parsers.expat.errors), 715

XML_ERROR_UNDECLARING_PREFIX (in mod-
ule xml.parsers.expat.errors), 715

XML_ERROR_UNDEFINED_ENTITY (in module
xml.parsers.expat.errors), 715

XML_ERROR_UNEXPECTED_STATE (in module
xml.parsers.expat.errors), 715

XML_ERROR_UNKNOWN_ENCODING (in module
xml.parsers.expat.errors), 715

XML_ERROR_XML_DECL (in module
xml.parsers.expat.errors), 715

XML_NAMESPACE (in module xml.dom), 717
xmlcharrefreplace_errors() (in module codecs), 104
XmlDeclHandler() (xml.parsers.expat.xmlparser

method), 711
XMLFilterBase (class in xml.sax.saxutils), 737
XMLGenerator (class in xml.sax.saxutils), 737
XMLID() (in module xml.etree.ElementTree), 742
XMLNS_NAMESPACE (in module xml.dom), 717
XMLParser (class in xml.etree.ElementTree), 746
XMLParserType (in module xml.parsers.expat), 708
XMLReader (class in xml.sax.xmlreader), 737
xmlrpc.client (module), 842
xmlrpc.server (module), 848
xor() (in module operator), 236
xover() (nntplib.NNTP method), 808
xpath() (nntplib.NNTP method), 808
xrange (2to3 fixer), 1013
xreadlines (2to3 fixer), 1013
xview() (tkinter.ttk.Treeview method), 949

Y
Y2K, 383
ycor() (in module turtle), 895
year (datetime.date attribute), 124
year (datetime.datetime attribute), 127
Year 2000, 383

Index 1267

The Python Library Reference, Release 3.2

Year 2038, 383
yeardatescalendar() (calendar.Calendar method), 143
yeardays2calendar() (calendar.Calendar method), 143
yeardayscalendar() (calendar.Calendar method), 143
YESEXPR (in module locale), 881
YIELD_VALUE (opcode), 1125
yiq_to_rgb() (in module colorsys), 864
yview() (tkinter.ttk.Treeview method), 949

Z
Zen of Python, 1173
ZeroDivisionError, 58
zfill() (str method), 38
zip (2to3 fixer), 1013
zip() (built-in function), 20
ZIP_DEFLATED (in module zipfile), 306
zip_longest() (in module itertools), 227
ZIP_STORED (in module zipfile), 305
ZipFile (class in zipfile), 306
zipfile (module), 305
zipimport (module), 1090
zipimporter (class in zipimport), 1091
ZipImportError, 1091
ZipInfo (class in zipfile), 305
zlib (module), 299

1268 Index

	Introduction
	Built-in Functions
	Built-in Constants
	Constants added by the site module

	Built-in Types
	Truth Value Testing
	Boolean Operations — and, or, not
	Comparisons
	Numeric Types — int, float, complex
	Iterator Types
	Sequence Types — str, bytes, bytearray, list, tuple, range
	Set Types — set, frozenset
	Mapping Types — dict
	memoryview type
	Context Manager Types
	Other Built-in Types
	Special Attributes

	Built-in Exceptions
	Exception hierarchy

	String Services
	string — Common string operations
	re — Regular expression operations
	struct — Interpret bytes as packed binary data
	difflib — Helpers for computing deltas
	textwrap — Text wrapping and filling
	codecs — Codec registry and base classes
	unicodedata — Unicode Database
	stringprep — Internet String Preparation

	Data Types
	datetime — Basic date and time types
	calendar — General calendar-related functions
	collections — Container datatypes
	heapq — Heap queue algorithm
	bisect — Array bisection algorithm
	array — Efficient arrays of numeric values
	sched — Event scheduler
	queue — A synchronized queue class
	weakref — Weak references
	types — Names for built-in types
	copy — Shallow and deep copy operations
	pprint — Data pretty printer
	reprlib — Alternate repr() implementation

	Numeric and Mathematical Modules
	numbers — Numeric abstract base classes
	math — Mathematical functions
	cmath — Mathematical functions for complex numbers
	decimal — Decimal fixed point and floating point arithmetic
	fractions — Rational numbers
	random — Generate pseudo-random numbers

	Functional Programming Modules
	itertools — Functions creating iterators for efficient looping
	functools — Higher order functions and operations on callable objects
	operator — Standard operators as functions
	Inplace Operators

	File and Directory Access
	os.path — Common pathname manipulations
	fileinput — Iterate over lines from multiple input streams
	stat — Interpreting stat() results
	filecmp — File and Directory Comparisons
	tempfile — Generate temporary files and directories
	glob — Unix style pathname pattern expansion
	fnmatch — Unix filename pattern matching
	linecache — Random access to text lines
	shutil — High-level file operations
	macpath — Mac OS 9 path manipulation functions

	Data Persistence
	pickle — Python object serialization
	copyreg — Register pickle support functions
	shelve — Python object persistence
	marshal — Internal Python object serialization
	dbm — Interfaces to Unix ``databases''
	sqlite3 — DB-API 2.0 interface for SQLite databases

	Data Compression and Archiving
	zlib — Compression compatible with gzip
	gzip — Support for gzip files
	bz2 — Compression compatible with bzip2
	zipfile — Work with ZIP archives
	tarfile — Read and write tar archive files

	File Formats
	csv — CSV File Reading and Writing
	configparser — Configuration file parser
	netrc — netrc file processing
	xdrlib — Encode and decode XDR data
	plistlib — Generate and parse Mac OS X .plist files

	Cryptographic Services
	hashlib — Secure hashes and message digests
	hmac — Keyed-Hashing for Message Authentication

	Generic Operating System Services
	os — Miscellaneous operating system interfaces
	io — Core tools for working with streams
	time — Time access and conversions
	argparse — Parser for command line options, arguments and sub-commands
	optparse — Parser for command line options
	getopt — C-style parser for command line options
	logging — Logging facility for Python
	logging.config — Logging configuration
	logging.handlers — Logging handlers
	getpass — Portable password input
	curses — Terminal handling for character-cell displays
	curses.textpad — Text input widget for curses programs
	curses.wrapper — Terminal handler for curses programs
	curses.ascii — Utilities for ASCII characters
	curses.panel — A panel stack extension for curses
	platform — Access to underlying platform's identifying data
	errno — Standard errno system symbols
	ctypes — A foreign function library for Python

	Optional Operating System Services
	select — Waiting for I/O completion
	threading — Thread-based parallelism
	multiprocessing — Process-based parallelism
	concurrent.futures — Launching parallel tasks
	mmap — Memory-mapped file support
	readline — GNU readline interface
	rlcompleter — Completion function for GNU readline
	dummy_threading — Drop-in replacement for the threading module
	_thread — Low-level threading API
	_dummy_thread — Drop-in replacement for the _thread module

	Interprocess Communication and Networking
	subprocess — Subprocess management
	socket — Low-level networking interface
	ssl — TLS/SSL wrapper for socket objects
	signal — Set handlers for asynchronous events
	asyncore — Asynchronous socket handler
	asynchat — Asynchronous socket command/response handler

	Internet Data Handling
	email — An email and MIME handling package
	json — JSON encoder and decoder
	mailcap — Mailcap file handling
	mailbox — Manipulate mailboxes in various formats
	mimetypes — Map filenames to MIME types
	base64 — RFC 3548: Base16, Base32, Base64 Data Encodings
	binhex — Encode and decode binhex4 files
	binascii — Convert between binary and ASCII
	quopri — Encode and decode MIME quoted-printable data
	uu — Encode and decode uuencode files

	Structured Markup Processing Tools
	html — HyperText Markup Language support
	html.parser — Simple HTML and XHTML parser
	html.entities — Definitions of HTML general entities
	xml.parsers.expat — Fast XML parsing using Expat
	xml.dom — The Document Object Model API
	xml.dom.minidom — Lightweight DOM implementation
	xml.dom.pulldom — Support for building partial DOM trees
	xml.sax — Support for SAX2 parsers
	xml.sax.handler — Base classes for SAX handlers
	xml.sax.saxutils — SAX Utilities
	xml.sax.xmlreader — Interface for XML parsers
	xml.etree.ElementTree — The ElementTree XML API

	Internet Protocols and Support
	webbrowser — Convenient Web-browser controller
	cgi — Common Gateway Interface support
	cgitb — Traceback manager for CGI scripts
	wsgiref — WSGI Utilities and Reference Implementation
	urllib.request — Extensible library for opening URLs
	urllib.response — Response classes used by urllib
	urllib.parse — Parse URLs into components
	urllib.error — Exception classes raised by urllib.request
	urllib.robotparser — Parser for robots.txt
	http.client — HTTP protocol client
	ftplib — FTP protocol client
	poplib — POP3 protocol client
	imaplib — IMAP4 protocol client
	nntplib — NNTP protocol client
	smtplib — SMTP protocol client
	smtpd — SMTP Server
	telnetlib — Telnet client
	uuid — UUID objects according to RFC 4122
	socketserver — A framework for network servers
	http.server — HTTP servers
	http.cookies — HTTP state management
	http.cookiejar — Cookie handling for HTTP clients
	xmlrpc.client — XML-RPC client access
	xmlrpc.server — Basic XML-RPC servers

	Multimedia Services
	audioop — Manipulate raw audio data
	aifc — Read and write AIFF and AIFC files
	sunau — Read and write Sun AU files
	wave — Read and write WAV files
	chunk — Read IFF chunked data
	colorsys — Conversions between color systems
	imghdr — Determine the type of an image
	sndhdr — Determine type of sound file
	ossaudiodev — Access to OSS-compatible audio devices

	Internationalization
	gettext — Multilingual internationalization services
	locale — Internationalization services

	Program Frameworks
	turtle — Turtle graphics
	cmd — Support for line-oriented command interpreters
	shlex — Simple lexical analysis

	Graphical User Interfaces with Tk
	tkinter — Python interface to Tcl/Tk
	tkinter.ttk — Tk themed widgets
	tkinter.tix — Extension widgets for Tk
	tkinter.scrolledtext — Scrolled Text Widget
	IDLE
	Other Graphical User Interface Packages

	Development Tools
	pydoc — Documentation generator and online help system
	doctest — Test interactive Python examples
	unittest — Unit testing framework
	2to3 - Automated Python 2 to 3 code translation
	test — Regression tests package for Python
	test.support — Utility functions for tests

	Debugging and Profiling
	bdb — Debugger framework
	pdb — The Python Debugger
	The Python Profilers
	timeit — Measure execution time of small code snippets
	trace — Trace or track Python statement execution

	Python Runtime Services
	sys — System-specific parameters and functions
	sysconfig — Provide access to Python's configuration information
	builtins — Built-in objects
	__main__ — Top-level script environment
	warnings — Warning control
	contextlib — Utilities for with-statement contexts
	abc — Abstract Base Classes
	atexit — Exit handlers
	traceback — Print or retrieve a stack traceback
	__future__ — Future statement definitions
	gc — Garbage Collector interface
	inspect — Inspect live objects
	site — Site-specific configuration hook
	fpectl — Floating point exception control
	distutils — Building and installing Python modules

	Custom Python Interpreters
	code — Interpreter base classes
	codeop — Compile Python code

	Importing Modules
	imp — Access the import internals
	zipimport — Import modules from Zip archives
	pkgutil — Package extension utility
	modulefinder — Find modules used by a script
	runpy — Locating and executing Python modules
	importlib – An implementation of import

	Python Language Services
	parser — Access Python parse trees
	ast — Abstract Syntax Trees
	symtable — Access to the compiler's symbol tables
	symbol — Constants used with Python parse trees
	token — Constants used with Python parse trees
	keyword — Testing for Python keywords
	tokenize — Tokenizer for Python source
	tabnanny — Detection of ambiguous indentation
	pyclbr — Python class browser support
	py_compile — Compile Python source files
	compileall — Byte-compile Python libraries
	dis — Disassembler for Python bytecode
	pickletools — Tools for pickle developers

	Miscellaneous Services
	formatter — Generic output formatting

	MS Windows Specific Services
	msilib — Read and write Microsoft Installer files
	msvcrt – Useful routines from the MS VC++ runtime
	winreg – Windows registry access
	winsound — Sound-playing interface for Windows

	Unix Specific Services
	posix — The most common POSIX system calls
	pwd — The password database
	spwd — The shadow password database
	grp — The group database
	crypt — Function to check Unix passwords
	termios — POSIX style tty control
	tty — Terminal control functions
	pty — Pseudo-terminal utilities
	fcntl — The fcntl() and ioctl() system calls
	pipes — Interface to shell pipelines
	resource — Resource usage information
	nis — Interface to Sun's NIS (Yellow Pages)
	syslog — Unix syslog library routines

	Undocumented Modules
	Platform specific modules

	Glossary
	Bibliography
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Python Module Index
	Index

