
Macintosh Library Modules
Release 2.0.1

Guido van Rossum
Fred L. Drake, Jr., editor

June 22, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright c© 2001 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This library reference manual documents Python’s extensions for the Macintosh. It should be used in conjunction with
thePython Library Reference, which documents the standard library and built-in types.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manualremains the highest authority on syntactic and semantic questions.
Finally, the manual entitledExtending and Embedding the Python Interpreterdescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Using Python on the Macintosh 1
1.1 Getting and Installing MacPython. 1
1.2 Entering the interactive Interpreter. 1
1.3 How to run a Python script. 1
1.4 Simulating command line arguments. 2
1.5 Creating a Python script. 2
1.6 The IDE . 3
1.7 Configuration . 4
1.8 Mac OS X . 5

2 MacPython Modules 7
2.1 mac — Implementations for theos module. 7
2.2 macpath — MacOS path manipulation functions. 7
2.3 ctb — Interface to the Communications Tool Box. 8
2.4 macdnr — Interface to the Macintosh Domain Name Resolver. 9
2.5 macfs — Various file system services. 11
2.6 ic — Access to Internet Config. 13
2.7 MacOS— Access to MacOS interpreter features. 15
2.8 macostools — Convenience routines for file manipulation. 16
2.9 findertools — Thefinder’s Apple Events interface. 16
2.10 mactcp — The MacTCP interfaces. 17
2.11 macspeech — Interface to the Macintosh Speech Manager. 19
2.12 EasyDialogs — Basic Macintosh dialogs. 20
2.13 FrameWork — Interactive application framework. 20
2.14 MiniAEFrame — Open Scripting Architecture server support. 24
2.15 aepack — Conversion between Python variables and AppleEvent data containers. 24
2.16 aetypes — AppleEvent objects. 25

3 MacOS Toolbox Modules 27
3.1 AE— Apple Events . 28
3.2 Cm— Component Manager. 28
3.3 Ctl — Control Manager . 28
3.4 Dlg — Dialog Manager. 28
3.5 Evt — Event Manager . 28
3.6 Fm— Font Manager. 28
3.7 List — List Manager. 28
3.8 Menu — Menu Manager. 28
3.9 Qd— QuickDraw . 28
3.10 Qt — QuickTime . 28

i

3.11 Res — Resource Manager and Handles. 28
3.12 Scrap — Scrap Manager. 28
3.13 Snd — Sound Manager. 28
3.14 TE — TextEdit . 28
3.15 waste — non-AppleTextEdit replacement . 28
3.16 Win — Window Manager . 28

4 Undocumented Modules 29
4.1 buildtools — Helper module for BuildApplet and Friends. 29
4.2 py resource — . 29
4.3 cfmfile — Code Fragment Resource module. 29
4.4 macerrors — MacOS Errors . 29
4.5 macfsn — NavServices calls. 29
4.6 icopen — Internet Config replacement foropen() . 30
4.7 mactty — . 30
4.8 nsremote — Wrapper around Netscape OSA modules. 30
4.9 PixMapWrapper — Wrapper for PixMap objects. 30
4.10 preferences — . 30
4.11 pythonprefs — . 30
4.12 quietconsole — non-visible stdout output. 30
4.13 W— Widgets built onFrameWork . 30

A History and License 31
A.1 History of the software. 31
A.2 Terms and conditions for accessing or otherwise using Python. 31

Module Index 35

Index 37

ii

CHAPTER

ONE

Using Python on the Macintosh

Using Python on the Macintosh can seem like something completely different than using it on a UNIX -like or Windows
system. Most of the Python documentation, both the “official” documentation and published books, describe only
how Python is used on these systems, causing confusion for the new user of MacPython. This chapter gives a brief
introduction to the specifics of using Python on a Macintosh.

1.1 Getting and Installing MacPython

The most recent release version as well as possible newer experimental versions are best found at the MacPython page
maintained by Jack Jansen:http://www.cwi.nl/ jack/macpython.html.

Please refer to the ‘README’ included with your distribution for the most up-to-date instructions.

1.2 Entering the interactive Interpreter

The interactive interpreter that you will see used in Python documentation is started by double-clicking thePython-
Interpreter icon, which looks like a 16-ton weight falling. You should see the version information and the ‘>>> ’
prompt. Use it exactly as described in the standard documentation.

1.3 How to run a Python script

There are several ways to run an existing Python script; two common ways to run a Python script are “drag and
drop” and “double clicking”. Other ways include running it from within the IDE (see Section 1.6), or launching via
AppleScript.

1.3.1 Drag and drop

One of the easiest ways to launch a Python script is via “Drag and Drop”. This is just like launching a text file in
the Finder by “dragging” it over your word processor’s icon and “dropping” it there. Make sure that you use an icon
referring to thePythonInterpreter , not theIDE or Idle icons which have different behaviour which is described
below.

Some things that might have gone wrong:

• A window flashes after dropping the script onto thePythonInterpreter , but then disappears. Most likely this
is a configuration issue; yourPythonInterpreter is setup to exit immediately upon completion, but your script
assumes that if it prints something that text will stick around for a while. To fix this, see section 1.7.3.

1

• After dropping the script onto thePythonInterpreter , a window appeared which said: “File contains\r char-
acters (incorrect line endings?)”. That script probably originated on a UNIX or Windows machine. You will
need to change the line endings to the standard Mac usage. One way to do this is to open the file inBBedit
(http://www.barebones.com/products/bbedit lite.html) which can easily change the line endings between Mac,
DOS, and UNIX styles.

• When you waved the script icon over thePythonInterpreter , thePythonInterpreter icon did not hilight. Most
likely the Creator code and document type is unset (or set incorrectly) – this often happens when a file originates
on a non-Mac computer. See section 1.3.2 for more details.

1.3.2 Set Creator and Double Click

If the script that you want to launch has the appropriate Creator Code and File Type you can simply double-click on
the script to launch it. To be “double-clickable” a file needs to be of type ‘TEXT’, with a creator code of ‘Pyth ’.

Setting the creator code and filetype can be done with the IDE (see sections 1.6.2 and 1.6.4), with an editor with a
Python mode (BBEdit) – see section 1.5.1, or with assorted other Mac utilities, but a script (‘fixfiletypes.py’) has been
included in the MacPython distribution, making it possible to set the proper Type and Creator Codes with Python.

The ‘fixfiletypes.py’ script will change the file type and creator codes for the indicated directory. To use ‘fixfiletypes.py’:

1. Locate it in the ‘scripts’ folder of the ‘Mac’ folder of the MacPython distribution.

2. Put all of the scripts that you want to fix in a folder with nothing else in it.

3. Double-click on the ‘fixfiletypes.py’ icon.

4. Navigate into the folder of files you want to fix, and press the “Select current folder” button.

1.4 Simulating command line arguments

There are two ways to simulate command-line arguments with MacPython.

1. via Interpreter options

• Hold the option-key down when launching your script. This will bring up a dialog box of Python Interpreter
options.

• Click “Set UNIX -style command line..” button.

• Type the arguments into the “Argument” field.

• Click “OK”

• Click “Run”.

2. via drag and drop If you save the script as an applet (see Section 1.6.4), you can also simulate some command-
line arguments via “Drag-and-Drop”. In this case, the names of the files that were dropped onto the applet will
be appended tosys.argv , so that it will appear to the script as though they had been typed on a command
line. As on UNIX systems, the first item insys.srgv is the path to the applet, and the rest are the files dropped
on the applet.

1.5 Creating a Python script

Since Python scripts are simply text files, they can be created in any way that text files can be created, but some special
tools also exist with extra features.

2 Chapter 1. Using Python on the Macintosh

1.5.1 In an editor

You can create a text file with any word processing program such asMSWord or AppleWorks but you need to make
sure that the file is saved as “ASCII” or “plain text”.

Editors with Python modes

Several text editors have additional features that add functionality when you are creating a Python script. These can
include coloring Python keywords to make your code easier to read, module browsing, or a built-in debugger. These
includeAlpha, Pepper, andBBedit, and the MacPython IDE (Section 1.6).

BBedit

If you useBBEdit to create your scripts you will want to tell it about the Python creator code so that you can simply
double click on the saved file to launch it.

• LaunchBBEdit .

• Select “Preferences” from the “Edit” menu.

• Select “File Types” from the scrolling list.

• click on the “Add...” button and navigate toPythonInterpreter in the main directory of the MacPython distri-
bution; click “open”.

• Click on the “Save” button in the Preferences panel.

1.6 The IDE

The Python IDE (Integrated Development Environment) is a separate application that acts as a text editor for your
Python code, a class browser, a graphical debugger, and more.

1.6.1 Using the “Python Interactive” window

Use this window like you would thePythonInterpreter , except that you cannot use the “Drag and drop” method
above. Instead, dropping a script onto thePython IDE icon will open the file in a seperate script window (which you
can then execute manually – see section 1.6.3).

1.6.2 Writing a Python Script

In addition to using thePython IDE interactively, you can also type out a complete Python program, saving it incre-
mentally, and execute it or smaller selections of it.

You can create a new script, open a previously saved script, and save your currently open script by selecting the
appropriate item in the “File” menu. Dropping a Python script onto thePython IDE will open it for editting.

If you try to open a script with thePython IDE but either can’t locate it from the “Open” dialog box, or you get an
error message like “Can’t open file of type ...” see section 1.3.2.

When thePython IDE saves a script, it uses the creator code settings which are available by clicking on the small
black triangle on the top right of the document window, and selecting “save options”. The default is to save the file
with thePython IDE as the creator, this means that you can open the file for editing by simply double-clicking on its

1.6. The IDE 3

icon. You might want to change this behaviour so that it will be opened by thePythonInterpreter , and run. To do
this simply choose “Python Interpreter” from the “save options”. Note that these options are associated with thefile
not the application.

1.6.3 Executing a script from within the IDE

You can run the script in the frontmost window of thePython IDE by hitting the run all button. You should be
aware, however that if you use the Python convention ‘if name == " main ": ’ the script will not be
“ main ” by default. To get that behaviour you must select the “Run asmain ” option from the small black
triangle on the top right of the document window. Note that this option is associated with thefile not the application.
It will stay active after a save, however; to shut this feature off simply select it again.

1.6.4 “Save as” versus “Save as Applet”

When you are done writing your Python script you have the option of saving it as an “applet” (by selecting “Save as
applet” from the “File” menu). This has a significant advantage in that you can drop files or folders onto it, to pass
them to the applet the way command-line users would type them onto the command-line to pass them as arguments
to the script. However, you should make sure to save the applet as a seperate file, do not overwrite the script you are
writing, because you will not be able to edit it again.

Accessing the items passed to the applet via “drag-and-drop” is done using the standardsys.argv mechanism. See
the general documentation for more

Note that saving a script as an applet will not make it runnable on a system without a Python installation.

1.7 Configuration

The MacPython distribution comes withEditPythonPrefs, an applet which will help you to customize the MacPython
environment for your working habits.

1.7.1 EditPythonPrefs

EditPythonPrefs gives you the capability to configure Python to behave the way you want it to. There are two ways
to useEditPythonPrefs, you can use it to set the preferences in general, or you can drop a particular Python engine
onto it to customize only that version. The latter can be handy if, for example, you want to have a second copy of the
PythonInterpreter that keeps the output window open on a normal exit even though you prefer to normally not work
that way.

To change the default preferences, simply double-click onEditPythonPrefs. To change the preferences only for one
copy of the Interpreter, drop the icon for that copy ontoEditPythonPrefs. You can also useEditPythonPrefs in this
fashion to set the preferences of thePython IDE and any applets you create – see section 1.6.4.

1.7.2 Adding modules to the Module Search Path

When executing animport statement, Python looks for modules in places defined by thesys.path To edit the
sys.path on a Mac, launchEditPythonPrefs, and enter them into the largish field at the top (one per line).

Since MacPython defines a main Python directory, the easiest thing is to add folders to search within the main Python
directory. To add a folder of scripts that you created called “My Folder” located in the main Python Folder, enter
‘$(PYTHON):My Folder ’ onto a new line.

To add the Desktop under OS 9 or below, add ‘StartupDriveName:Desktop Folder ’ on a new line.

4 Chapter 1. Using Python on the Macintosh

1.7.3 Default startup options

The “Default startup options...” button in theEditPythonPrefs dialog box gives you many options including the
ability to keep the “Output” window open after the script terminates, and the ability to enter interactive mode after the
termination of the run script. The latter can be very helpful if you want to examine the objects that were created during
your script.

1.8 Mac OS X

At the time of this writing Mac OS X had just been released as a Public Beta. Efforts are under way to bring MacPython
to Mac OS X. The MacPython release 2.0.11.5.2c1 runs quite well within the “Classic” environment. A “Carbon” port
of the MacPython code is being prepared for release, and several people have made a command line version available
to the “Darwin” layer (which is accessible via Terminal.app).

1.8. Mac OS X 5

6

CHAPTER

TWO

MacPython Modules

The following modules are only available on the Macintosh, and are documented here:

mac Implementations for theos module.
macpath MacOS path manipulation functions.
ctb Interfaces to the Communications Tool Box. Only the Connection Manager is supported.
macdnr Interfaces to the Macintosh Domain Name Resolver.
macfs Support for FSSpec, the Alias Manager,finder aliases, and the Standard File package.
ic Access to Internet Config.
MacOS Access to MacOS specific interpreter features.
macostools Convenience routines for file manipulation.
findertools Wrappers around thefinder’s Apple Events interface.
mactcp The MacTCP interfaces.
macspeech Interface to the Macintosh Speech Manager.
EasyDialogs Basic Macintosh dialogs.
FrameWork Interactive application framework.
MiniAEFrame Support to act as an Open Scripting Architecture (OSA) server (“Apple Events”).
aepack Conversion between Python variables and AppleEvent data containers.
aetypes Python representation of the Apple Event Object Model.

2.1 mac — Implementations for the os module

This module implements the operating system dependent functionality provided by the standard moduleos . It is best
accessed through theos module.

The following functions are available in this module:chdir() , close() , dup() , fdopen() , getcwd() ,
lseek() , listdir() , mkdir() , open() , read() , rename() , rmdir() , stat() , sync() , unlink() ,
write() , as well as the exceptionerror . Note that the times returned bystat() are floating-point values, like
all time values in MacPython.

One additional function is available:

xstat (path)
This function returns the same information asstat() , but with three additional values appended: the size of
the resource fork of the file and its 4-character creator and type.

2.2 macpath — MacOS path manipulation functions

This module is the Macintosh implementation of theos.path module. It is most portably accessed asos.path .
Refer to thePython Library Referencefor documentation ofos.path .

7

The following functions are available in this module:normcase() , normpath() , isabs() , join() ,
split() , isdir() , isfile() , walk() , exists() . For other functions available inos.path dummy coun-
terparts are available.

2.3 ctb — Interface to the Communications Tool Box

This module provides a partial interface to the Macintosh Communications Toolbox. Currently, only Connection
Manager tools are supported. It may not be available in all Mac Python versions.

error
The exception raised on errors.

cmData
cmCntl
cmAttn

Flags for thechannelargument of theRead() andWrite() methods.

cmFlagsEOM
End-of-message flag forRead() andWrite() .

choose*
Values returned byChoose() .

cmStatus*
Bits in the status as returned byStatus() .

available ()
Return1 if the Communication Toolbox is available, zero otherwise.

CMNew(name, sizes)
Create a connection object using the connection tool namedname. sizesis a 6-tuple given buffer sizes for data
in, data out, control in, control out, attention in and attention out. Alternatively, passingNone for sizeswill
result in default buffer sizes.

2.3.1 Connection Objects

For all connection methods that take atimeoutargument, a value of-1 is indefinite, meaning that the command runs
to completion.

callback
If this member is set to a value other thanNone it should point to a function accepting a single argument
(the connection object). This will make all connection object methods work asynchronously, with the callback
routine being called upon completion.

Note: for reasons beyond my understanding the callback routine is currently never called. You are advised
against using asynchronous calls for the time being.

Open(timeout)
Open an outgoing connection, waiting at mosttimeoutseconds for the connection to be established.

Listen (timeout)
Wait for an incoming connection. Stop waiting aftertimeoutseconds. This call is only meaningful to some
tools.

accept (yesno)
Accept (whenyesnois non-zero) or reject an incoming call afterListen() returned.

Close (timeout, now)
Close a connection. Whennowis zero, the close is orderly (i.e. outstanding output is flushed, etc.) with a timeout

8 Chapter 2. MacPython Modules

of timeoutseconds. Whennow is non-zero the close is immediate, discarding output.

Read(len, chan, timeout)
Readlenbytes, or untiltimeoutseconds have passed, from the channelchan(which is one ofcmData , cmCntl
or cmAttn). Return a 2-tuple: the data read and the end-of-message flag,cmFlagsEOM.

Write (buf, chan, timeout, eom)
Write buf to channelchan, aborting aftertimeoutseconds. Wheneomhas the valuecmFlagsEOM, an end-of-
message indicator will be written after the data (if this concept has a meaning for this communication tool). The
method returns the number of bytes written.

Status ()
Return connection status as the 2-tuple(sizes, flags) . sizesis a 6-tuple giving the actual buffer sizes used (see
CMNew()), flagsis a set of bits describing the state of the connection.

GetConfig ()
Return the configuration string of the communication tool. These configuration strings are tool-dependent, but
usually easily parsed and modified.

SetConfig (str)
Set the configuration string for the tool. The strings are parsed left-to-right, with later values taking precedence.
This means individual configuration parameters can be modified by simply appending something like’baud
4800’ to the end of the string returned byGetConfig() and passing that to this method. The method returns
the number of characters actually parsed by the tool before it encountered an error (or completed successfully).

Choose ()
Present the user with a dialog to choose a communication tool and configure it. If there is an outstanding
connection some choices (like selecting a different tool) may cause the connection to be aborted. The return
value (one of thechoose* constants) will indicate this.

Idle ()
Give the tool a chance to use the processor. You should call this method regularly.

Abort ()
Abort an outstanding asynchronousOpen() or Listen() .

Reset ()
Reset a connection. Exact meaning depends on the tool.

Break (length)
Send a break. Whether this means anything, what it means and interpretation of thelengthparameter depends
on the tool in use.

2.4 macdnr — Interface to the Macintosh Domain Name Resolver

This module provides an interface to the Macintosh Domain Name Resolver. It is usually used in conjunction with the
mactcp module, to map hostnames to IP addresses. It may not be available in all Mac Python versions.

Themacdnr module defines the following functions:

Open([filename])
Open the domain name resolver extension. Iffilenameis given it should be the pathname of the extension,
otherwise a default is used. Normally, this call is not needed since the other calls will open the extension
automatically.

Close ()
Close the resolver extension. Again, not needed for normal use.

StrToAddr (hostname)
Look up the IP address forhostname. This call returns a dnr result object of the “address” variation.

2.4. macdnr — Interface to the Macintosh Domain Name Resolver 9

AddrToName(addr)
Do a reverse lookup on the 32-bit integer IP-addressaddr. Returns a dnr result object of the “address” variation.

AddrToStr (addr)
Convert the 32-bit integer IP-addressaddr to a dotted-decimal string. Returns the string.

HInfo (hostname)
Query the nameservers for aHInfo record for hosthostname. These records contain hardware and software
information about the machine in question (if they are available in the first place). Returns a dnr result object of
the “hinfo” variety.

MXInfo (domain)
Query the nameservers for a mail exchanger fordomain. This is the hostname of a host willing to accept SMTP
mail for the given domain. Returns a dnr result object of the “mx” variety.

2.4.1 DNR Result Objects

Since the DNR calls all execute asynchronously you do not get the results back immediately. Instead, you get a dnr
result object. You can check this object to see whether the query is complete, and access its attributes to obtain the
information when it is.

Alternatively, you can also reference the result attributes directly, this will result in an implicit wait for the query to
complete.

The rtnCode andcname attributes are always available, the others depend on the type of query (address, hinfo or
mx).

wait ()
Wait for the query to complete.

isdone ()
Return1 if the query is complete.

rtnCode
The error code returned by the query.

cname
The canonical name of the host that was queried.

ip0
ip1
ip2
ip3

At most four integer IP addresses for this host. Unused entries are zero. Valid only for address queries.

cpuType
osType

Textual strings giving the machine type an OS name. Valid for “hinfo” queries.

exchange
The name of a mail-exchanger host. Valid for “mx” queries.

preference
The preference of this mx record. Not too useful, since the Macintosh will only return a single mx record. Valid
for “mx” queries only.

The simplest way to use the module to convert names to dotted-decimal strings, without worrying about idle time, etc:

10 Chapter 2. MacPython Modules

>>> def gethostname(name):
... import macdnr
... dnrr = macdnr.StrToAddr(name)
... return macdnr.AddrToStr(dnrr.ip0)

2.5 macfs — Various file system services

This module provides access to Macintosh FSSpec handling, the Alias Manager,finder aliases and the Standard File
package.

Whenever a function or method expects afile argument, this argument can be one of three things: (1) a full or partial
Macintosh pathname, (2) an FSSpec object or (3) a 3-tuple(wdRefNum, parID, name) as described inInside
Macintosh: Files. A description of aliases and the Standard File package can also be found there.

Note: A module,macfsn , is auto-imported to replace StandardFile calls in macfs with NavServices calls.

FSSpec(file)
Create an FSSpec object for the specified file.

RawFSSpec(data)
Create an FSSpec object given the raw data for the C structure for the FSSpec as a string. This is mainly useful
if you have obtained an FSSpec structure over a network.

RawAlias (data)
Create an Alias object given the raw data for the C structure for the alias as a string. This is mainly useful if you
have obtained an FSSpec structure over a network.

FInfo ()
Create a zero-filled FInfo object.

ResolveAliasFile (file)
Resolve an alias file. Returns a 3-tuple(fsspec, isfolder, aliased) where fsspecis the resulting FSSpec
object, isfolder is true if fsspecpoints to a folder andaliased is true if the file was an alias in the first place
(otherwise the FSSpec object for the file itself is returned).

StandardGetFile ([type, ...])
Present the user with a standard “open input file” dialog. Optionally, you can pass up to four 4-character file
types to limit the files the user can choose from. The function returns an FSSpec object and a flag indicating
that the user completed the dialog without cancelling.

PromptGetFile (prompt[, type, ...])
Similar toStandardGetFile() but allows you to specify a prompt which will be displayed at the top of the
dialog.

StandardPutFile (prompt[, default])
Present the user with a standard “open output file” dialog.promptis the prompt string, and the optionaldefault
argument initializes the output file name. The function returns an FSSpec object and a flag indicating that the
user completed the dialog without cancelling.

GetDirectory ([prompt])
Present the user with a non-standard “select a directory” dialog. You have to first open the directory before
clicking on the “select current directory” button.promptis the prompt string which will be displayed at the top
of the dialog. Return an FSSpec object and a success-indicator.

SetFolder ([fsspec])
Set the folder that is initially presented to the user when one of the file selection dialogs is presented.fsspec

2.5. macfs — Various file system services 11

should point to a file in the folder, not the folder itself (the file need not exist, though). If no argument is passed
the folder will be set to the current directory, i.e. whatos.getcwd() returns.

Note that starting with system 7.5 the user can change Standard File behaviour with the “general controls”
control panel, thereby making this call inoperative.

FindFolder (where, which, create)
Locates one of the “special” folders that MacOS knows about, such as the trash or the Preferences folder.where
is the disk to search,which is the 4-character string specifying which folder to locate. Settingcreatecauses the
folder to be created if it does not exist. Returns a(vrefnum, dirid) tuple.

NewAliasMinimalFromFullPath (pathname)
Return a minimal alias object that points to the given file, which must be specified as a full pathname. This is
the only way to create an Alias pointing to a non-existing file.

The constants forwhereandwhichcan be obtained from the standard moduleMACFS.

FindApplication (creator)
Locate the application with 4-character creator codecreator. The function returns an FSSpec object pointing to
the application.

2.5.1 FSSpec objects

data
The raw data from the FSSpec object, suitable for passing to other applications, for instance.

as pathname ()
Return the full pathname of the file described by the FSSpec object.

as tuple ()
Return the(wdRefNum, parID, name) tuple of the file described by the FSSpec object.

NewAlias ([file])
Create an Alias object pointing to the file described by this FSSpec. If the optionalfile parameter is present the
alias will be relative to that file, otherwise it will be absolute.

NewAliasMinimal ()
Create a minimal alias pointing to this file.

GetCreatorType ()
Return the 4-character creator and type of the file.

SetCreatorType (creator, type)
Set the 4-character creator and type of the file.

GetFInfo ()
Return a FInfo object describing the finder info for the file.

SetFInfo (finfo)
Set the finder info for the file to the values given asfinfo (an FInfo object).

GetDates ()
Return a tuple with three floating point values representing the creation date, modification date and backup date
of the file.

SetDates (crdate, moddate, backupdate)
Set the creation, modification and backup date of the file. The values are in the standard floating point format
used for times throughout Python.

12 Chapter 2. MacPython Modules

2.5.2 Alias Objects

data
The raw data for the Alias record, suitable for storing in a resource or transmitting to other programs.

Resolve ([file])
Resolve the alias. If the alias was created as a relative alias you should pass the file relative to which it is. Return
the FSSpec for the file pointed to and a flag indicating whether the Alias object itself was modified during the
search process. If the file does not exist but the path leading up to it does exist a valid fsspec is returned.

GetInfo (num)
An interface to the C routineGetAliasInfo() .

Update (file[, file2])
Update the alias to point to thefile given. If file2 is present a relative alias will be created.

Note that it is currently not possible to directly manipulate a resource as an Alias object. Hence, after callingUp-
date() or afterResolve() indicates that the alias has changed the Python program is responsible for getting the
data value from the Alias object and modifying the resource.

2.5.3 FInfo Objects

SeeInside Macintosh: Filesfor a complete description of what the various fields mean.

Creator
The 4-character creator code of the file.

Type
The 4-character type code of the file.

Flags
The finder flags for the file as 16-bit integer. The bit values inFlagsare defined in standard moduleMACFS.

Location
A Point giving the position of the file’s icon in its folder.

Fldr
The folder the file is in (as an integer).

2.6 ic — Access to Internet Config

This module provides access to Macintosh Internet Config package, which stores preferences for Internet programs
such as mail address, default homepage, etc. Also, Internet Config contains an elaborate set of mappings from Mac-
intosh creator/type codes to foreign filename extensions plus information on how to transfer files (binary, ascii, etc.).
Since MacOS 9, this module is a control panel named Internet.

There is a low-level companion moduleicglue which provides the basic Internet Config access functionality. This
low-level module is not documented, but the docstrings of the routines document the parameters and the routine names
are the same as for the Pascal or C API to Internet Config, so the standard IC programmers’ documentation can be
used if this module is needed.

The ic module defines theerror exception and symbolic names for all error codes Internet Config can produce; see
the source for details.

error
Exception raised on errors in theic module.

The ic module defines the following class and function:

2.6. ic — Access to Internet Config 13

IC ([signature[, ic]])
Create an internet config object. The signature is a 4-character creator code of the current application
(default ’Pyth’) which may influence some of ICs settings. The optionalic argument is a low-level
icglue.icinstance created beforehand, this may be useful if you want to get preferences from a different
config file, etc.

launchurl (url[, hint])
parseurl (data[, start[, end[, hint]]])
mapfile (file)
maptypecreator (type, creator[, filename])
settypecreator (file)

These functions are “shortcuts” to the methods of the same name, described below.

2.6.1 IC Objects

IC objects have a mapping interface, hence to obtain the mail address you simply getic[’MailAddress’] . As-
signment also works, and changes the option in the configuration file.

The module knows about various datatypes, and converts the internal IC representation to a “logical” Python data
structure. Running theic module standalone will run a test program that lists all keys and values in your IC database,
this will have to serve as documentation.

If the module does not know how to represent the data it returns an instance of theICOpaqueData type, with the
raw data in itsdata attribute. Objects of this type are also acceptable values for assignment.

Besides the dictionary interface,IC objects have the following methods:

launchurl (url[, hint])
Parse the given URL, lauch the correct application and pass it the URL. The optionalhint can be a scheme name
such as’mailto:’ , in which case incomplete URLs are completed with this scheme. Ifhint is not provided,
incomplete URLs are invalid.

parseurl (data[, start[, end[, hint]]])
Find an URL somewhere indataand return start position, end position and the URL. The optionalstart andend
can be used to limit the search, so for instance if a user clicks in a long text field you can pass the whole text
field and the click-position instart and this routine will return the whole URL in which the user clicked. As
above,hint is an optional scheme used to complete incomplete URLs.

mapfile (file)
Return the mapping entry for the givenfile, which can be passed as either a filename or anmacfs.FSSpec()
result, and which need not exist.

The mapping entry is returned as a tuple(version, type, creator, postcreator, flags, extension, app-
name, postappname, mimetype, entryname) , whereversion is the entry version number,type is the 4-
character filetype,creator is the 4-character creator type,postcreatoris the 4-character creator code of an
optional application to post-process the file after downloading,flagsare various bits specifying whether to trans-
fer in binary or ascii and such,extensionis the filename extension for this file type,appnameis the printable
name of the application to which this file belongs,postappnameis the name of the postprocessing application,
mimetypeis the MIME type of this file andentrynameis the name of this entry.

maptypecreator (type, creator[, filename])
Return the mapping entry for files with given 4-charactertypeandcreatorcodes. The optionalfilenamemay be
specified to further help finding the correct entry (if the creator code is’????’ , for instance).

The mapping entry is returned in the same format as formapfile.

settypecreator (file)
Given an existingfile, specified either as a filename or as anmacfs.FSSpec() result, set its creator and type
correctly based on its extension. The finder is told about the change, so the finder icon will be updated quickly.

14 Chapter 2. MacPython Modules

2.7 MacOS— Access to MacOS interpreter features

This module provides access to MacOS specific functionality in the Python interpreter, such as how the interpreter
eventloop functions and the like. Use with care.

Note the capitalisation of the module name, this is a historical artifact.

Error
This exception is raised on MacOS generated errors, either from functions in this module or from other mac-
specific modules like the toolbox interfaces. The arguments are the integer error code (theOSErr value) and
a textual description of the error code. Symbolic names for all known error codes are defined in the standard
modulemacerrors .

SetEventHandler (handler)
In the inner interpreter loop Python will occasionally check for events, unless disabled withSched-
uleParams() . With this function you can pass a Python event-handler function that will be called if an event
is available. The event is passed as parameter and the function should return non-zero if the event has been
fully processed, otherwise event processing continues (by passing the event to the console window package, for
instance).

Call SetEventHandler() without a parameter to clear the event handler. Setting an event handler while
one is already set is an error.

SchedParams ([doint[, evtmask[, besocial[, interval[, bgyield]]]]])
Influence the interpreter inner loop event handling.Interval specifies how often (in seconds, floating point) the
interpreter should enter the event processing code. When true,doint causes interrupt (command-dot) checking
to be done.evtmasktells the interpreter to do event processing for events in the mask (redraws, mouseclicks
to switch to other applications, etc). Thebesocialflag gives other processes a chance to run. They are granted
minimal runtime when Python is in the foreground andbgyieldseconds perinterval when Python runs in the
background.

All parameters are optional, and default to the current value. The return value of this function is a tuple with
the old values of these options. Initial defaults are that all processing is enabled, checking is done every quarter
second and the CPU is given up for a quarter second when in the background.

HandleEvent (ev)
Pass the event recordevback to the Python event loop, or possibly to the handler for thesys.stdout window
(based on the compiler used to build Python). This allows Python programs that do their own event handling to
still have some command-period and window-switching capability.

If you attempt to call this function from an event handler set throughSetEventHandler() you will get an
exception.

GetErrorString (errno)
Return the textual description of MacOS error codeerrno.

splash (resid)
This function will put a splash window on-screen, with the contents of the DLOG resource specified byresid.
Calling with a zero argument will remove the splash screen. This function is useful if you want an applet to post
a splash screen early in initialization without first having to load numerous extension modules.

DebugStr (message[, object])
Drop to the low-level debugger with messagemessage. The optionalobjectargument is not used, but can easily
be inspected from the debugger.

Note that you should use this function with extreme care: if no low-level debugger like MacsBug is installed
this call will crash your system. It is intended mainly for developers of Python extension modules.

openrf (name[, mode])
Open the resource fork of a file. Arguments are the same as for the built-in functionopen() . The object
returned has file-like semantics, but it is not a Python file object, so there may be subtle differences.

2.7. MacOS— Access to MacOS interpreter features 15

2.8 macostools — Convenience routines for file manipulation

This module contains some convenience routines for file-manipulation on the Macintosh.

Themacostools module defines the following functions:

copy (src, dst[, createpath[, copytimes]])
Copy filesrc to dst. The files can be specified as pathnames or FSSpec objects. Ifcreatepathis non-zerodst
must be a pathname and the folders leading to the destination are created if necessary. The method copies data
and resource fork and some finder information (creator, type, flags) and optionally the creation, modification
and backup times (default is to copy them). Custom icons, comments and icon position are not copied.

If the source is an alias the original to which the alias points is copied, not the aliasfile.

copytree (src, dst)
Recursively copy a file tree fromsrc to dst, creating folders as needed.src and dst should be specified as
pathnames.

mkalias (src, dst)
Create a finder aliasdstpointing tosrc. Both may be specified as pathnames or FSSpec objects.

touched (dst)
Tell the finder that some bits of finder-information such as creator or type for filedsthas changed. The file can
be specified by pathname or fsspec. This call should tell the finder to redraw the files icon.

BUFSIZ
The buffer size forcopy , default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence, aliases created
with mkalias() could conceivably have incompatible behaviour in some cases.

2.9 findertools — The finder’s Apple Events interface

This module contains routines that give Python programs access to some functionality provided by the finder. They
are implemented as wrappers around the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnames or as FSSpec objects.

Thefindertools module defines the following functions:

launch (file)
Tell the finder to launchfile. What launching means depends on the file: applications are started, folders are
opened and documents are opened in the correct application.

Print (file)
Tell the finder to print a file (again specified by full pathname or FSSpec). The behaviour is identical to selecting
the file and using the print command in the finder’s file menu.

copy (file, destdir)
Tell the finder to copy a file or folderfile to folderdestdir. The function returns an Alias object pointing to the
new file.

move(file, destdir)
Tell the finder to move a file or folderfile to folderdestdir. The function returns an Alias object pointing to the
new file.

sleep ()
Tell the finder to put the Macintosh to sleep, if your machine supports it.

restart ()
Tell the finder to perform an orderly restart of the machine.

16 Chapter 2. MacPython Modules

shutdown ()
Tell the finder to perform an orderly shutdown of the machine.

2.10 mactcp — The MacTCP interfaces

This module provides an interface to the Macintosh TCP/IP driver MacTCP. There is an accompanying module,
macdnr , which provides an interface to the name-server (allowing you to translate hostnames to IP addresses), a
moduleMACTCPconst which has symbolic names for constants constants used by MacTCP. Since the built-in mod-
ule socket is also available on the Macintosh it is usually easier to use sockets instead of the Macintosh-specific
MacTCP API.

A complete description of the MacTCP interface can be found in the Apple MacTCP API documentation.

MTU()
Return the Maximum Transmit Unit (the packet size) of the network interface.

IPAddr ()
Return the 32-bit integer IP address of the network interface.

NetMask ()
Return the 32-bit integer network mask of the interface.

TCPCreate (size)
Create a TCP Stream object.sizeis the size of the receive buffer,4096 is suggested by various sources.

UDPCreate (size, port)
Create a UDP Stream object.sizeis the size of the receive buffer (and, hence, the size of the biggest datagram
you can receive on this port).port is the UDP port number you want to receive datagrams on, a value of zero
will make MacTCP select a free port.

2.10.1 TCP Stream Objects

asr
When set to a value different thanNone this should refer to a function with two integer parameters: an event
code and a detail. This function will be called upon network-generated events such as urgent data arrival.
Macintosh documentation calls this theasynchronous service routine. In addition, it is called with event-
codeMACTCP.PassiveOpenDone when aPassiveOpen() completes. This is a Python addition to the
MacTCP semantics. It is safe to do further calls fromasr.

PassiveOpen (port)
Wait for an incoming connection on TCP portport (zero makes the system pick a free port). The call returns
immediately, and you should usewait() to wait for completion. You should not issue any method calls other
thanwait() , isdone() or GetSockName() before the call completes.

wait ()
Wait for PassiveOpen() to complete.

isdone ()
Return1 if a PassiveOpen() has completed.

GetSockName()
Return the TCP address of this side of a connection as a 2-tuple(host, port) , both integers.

ActiveOpen (lport, host, rport)
Open an outgoing connection to TCP address(host, rport) . Use local portlport (zero makes the system pick
a free port). This call blocks until the connection has been established.

2.10. mactcp — The MacTCP interfaces 17

Send(buf, push, urgent)
Send databuf over the connection.pushandurgentare flags as specified by the TCP standard.

Rcv(timeout)
Receive data. The call returns whentimeoutseconds have passed or when (according to the MacTCP docu-
mentation) “a reasonable amount of data has been received”. The return value is a 3-tuple(data, urgent,
mark) . If urgent data is outstandingRcv will always return that before looking at any normal data. The first
call returning urgent data will have theurgentflag set, the last will have themarkflag set.

Close ()
Tell MacTCP that no more data will be transmitted on this connection. The call returns when all data has been
acknowledged by the receiving side.

Abort ()
Forcibly close both sides of a connection, ignoring outstanding data.

Status ()
Return a TCP status object for this stream giving the current status (see below).

2.10.2 TCP Status Objects

This object has no methods, only some members holding information on the connection. A complete description of
all fields in this objects can be found in the Apple documentation. The most interesting ones are:

localHost
localPort
remoteHost
remotePort

The integer IP-addresses and port numbers of both endpoints of the connection.

sendWindow
The current window size.

amtUnackedData
The number of bytes sent but not yet acknowledged.sendWindow - amtUnackedData is what you can
pass toSend() without blocking.

amtUnreadData
The number of bytes received but not yet read (what you canRecv() without blocking).

2.10.3 UDP Stream Objects

Note that, unlike the name suggests, there is nothing stream-like about UDP.

asr
The asynchronous service routine to be called on events such as datagram arrival without outstandingRead
call. Theasr has a single argument, the event code.

port
A read-only member giving the port number of this UDP Stream.

Read(timeout)
Read a datagram, waiting at mosttimeoutseconds (-1 is infinite). Return the data.

Write (host, port, buf)
Sendbuf as a datagram to IP-addresshost, portport.

18 Chapter 2. MacPython Modules

2.11 macspeech — Interface to the Macintosh Speech Manager

This module provides an interface to the Macintosh Speech Manager, allowing you to let the Macintosh utter phrases.
You need a version of the Speech Manager extension (version 1 and 2 have been tested) in your ‘Extensions’ folder
for this to work. The module does not provide full access to all features of the Speech Manager yet. It may not be
available in all Mac Python versions.

Available ()
Test availability of the Speech Manager extension (and, on the PowerPC, the Speech Manager shared library).
Return0 or 1.

Version ()
Return the (integer) version number of the Speech Manager.

SpeakString (str)
Utter the stringstr using the default voice, asynchronously. This aborts any speech that may still be active from
prior SpeakString() invocations.

Busy ()
Return the number of speech channels busy, system-wide.

CountVoices ()
Return the number of different voices available.

GetIndVoice (num)
Return a Voice object for voice numbernum.

2.11.1 Voice Objects

Voice objects contain the description of a voice. It is currently not yet possible to access the parameters of a voice.

GetGender ()
Return the gender of the voice:0 for male,1 for female and-1 for neuter.

NewChannel ()
Return a new Speech Channel object using this voice.

2.11.2 Speech Channel Objects

A Speech Channel object allows you to speak strings with slightly more control thanSpeakString() , and allows
you to use multiple speakers at the same time. Please note that channel pitch and rate are interrelated in some way, so
that to make your Macintosh sing you will have to adjust both.

SpeakText (str)
Start uttering the given string.

Stop ()
Stop babbling.

GetPitch ()
Return the current pitch of the channel, as a floating-point number.

SetPitch (pitch)
Set the pitch of the channel.

GetRate ()
Get the speech rate (utterances per minute) of the channel as a floating point number.

SetRate (rate)

2.11. macspeech — Interface to the Macintosh Speech Manager 19

Set the speech rate of the channel.

2.12 EasyDialogs — Basic Macintosh dialogs

TheEasyDialogs module contains some simple dialogs for the Macintosh. All routines have an optional parameter
id with which you can override the DLOG resource used for the dialog, as long as the item numbers correspond. See
the source for details.

TheEasyDialogs module defines the following functions:

Message (str)
A modal dialog with the message textstr, which should be at most 255 characters long, is displayed. Control is
returned when the user clicks “OK”.

AskString (prompt[, default])
Ask the user to input a string value, in a modal dialog.prompt is the prompt message, the optionaldefaultarg
is the initial value for the string. All strings can be at most 255 bytes long.AskString() returns the string
entered orNone in case the user cancelled.

AskPassword (prompt[, default])
Ask the user to input a string value, in a modal dialog. LikeAskString , but with the text shown as bullets.
prompt is the prompt message, the optionaldefaultarg is the initial value for the string. All strings can be at
most 255 bytes long.AskString() returns the string entered orNone in case the user cancelled.

AskYesNoCancel (question[, default])
Present a dialog with textquestionand three buttons labelled “yes”, “no” and “cancel”. Return1 for yes,0
for no and-1 for cancel. The default return value chosen by hitting return is0. This can be changed with the
optionaldefaultargument.

ProgressBar ([title [, maxval[,label]]])
Display a modeless progress dialog with a thermometer bar.title is the text string displayed (default “Work-
ing...”), maxvalis the value at which progress is complete (default100). label is the text that is displayed over
the progress bar itself. The returned object has two methods,set(value) , which sets the value of the progress
bar, andlabel(text) , which sets the text of the label. The bar remains visible until the object returned is
discarded.

The progress bar has a “cancel” button. [NOTE: how does the cancel button behave?]

2.13 FrameWork — Interactive application framework

TheFrameWork module contains classes that together provide a framework for an interactive Macintosh application.
The programmer builds an application by creating subclasses that override various methods of the bases classes,
thereby implementing the functionality wanted. Overriding functionality can often be done on various different levels,
i.e. to handle clicks in a single dialog window in a non-standard way it is not necessary to override the complete event
handling.

TheFrameWork is still very much work-in-progress, and the documentation describes only the most important func-
tionality, and not in the most logical manner at that. Examine the source or the examples for more details. The
following are some comments posted on the MacPython newsgroup about the strengths and limitations ofFrame-
Work:

The strong point ofFrameWork is that it allows you to break into the control-flow at many different
places.W, for instance, uses a different way to enable/disable menus and that plugs right in leaving the rest
intact. The weak points ofFrameWork are that it has no abstract command interface (but that shouldn’t
be difficult), that it’s dialog support is minimal and that it’s control/toolbar support is non-existent.

20 Chapter 2. MacPython Modules

TheFrameWork module defines the following functions:

Application ()
An object representing the complete application. See below for a description of the methods. The default

init () routine creates an empty window dictionary and a menu bar with an apple menu.

MenuBar ()
An object representing the menubar. This object is usually not created by the user.

Menu(bar, title[, after])
An object representing a menu. Upon creation you pass theMenuBar the menu appears in, thetitle string and
a position (1-based)after where the menu should appear (default: at the end).

MenuItem (menu, title[, shortcut, callback])
Create a menu item object. The arguments are the menu to create, the item item title string and optionally
the keyboard shortcut and a callback routine. The callback is called with the arguments menu-id, item number
within menu (1-based), current front window and the event record.

Instead of a callable object the callback can also be a string. In this case menu selection causes the lookup of a
method in the topmost window and the application. The method name is the callback string with’domenu ’
prepended.

Calling theMenuBar fixmenudimstate() method sets the correct dimming for all menu items based on
the current front window.

Separator (menu)
Add a separator to the end of a menu.

SubMenu(menu, label)
Create a submenu namedlabelunder menumenu. The menu object is returned.

Window(parent)
Creates a (modeless) window.Parentis the application object to which the window belongs. The window is not
displayed until later.

DialogWindow (parent)
Creates a modeless dialog window.

windowbounds (width, height)
Return a(left, top, right, bottom) tuple suitable for creation of a window of given width and height. The
window will be staggered with respect to previous windows, and an attempt is made to keep the whole window
on-screen. However, the window will however always be the exact size given, so parts may be offscreen.

setwatchcursor ()
Set the mouse cursor to a watch.

setarrowcursor ()
Set the mouse cursor to an arrow.

2.13.1 Application Objects

Application objects have the following methods, among others:

makeusermenus ()
Override this method if you need menus in your application. Append the menus to the attributemenubar .

getabouttext ()
Override this method to return a text string describing your application. Alternatively, override the
do about() method for more elaborate “about” messages.

mainloop ([mask[, wait]])
This routine is the main event loop, call it to set your application rolling.Maskis the mask of events you want

2.13. FrameWork — Interactive application framework 21

to handle,wait is the number of ticks you want to leave to other concurrent application (default 0, which is
probably not a good idea). While raisingself to exit the mainloop is still supported it is not recommended: call
self. quit() instead.

The event loop is split into many small parts, each of which can be overridden. The default methods take
care of dispatching events to windows and dialogs, handling drags and resizes, Apple Events, events for non-
FrameWork windows, etc.

In general, all event handlers should return1 if the event is fully handled and0 otherwise (because the front
window was not a FrameWork window, for instance). This is needed so that update events and such can be
passed on to other windows like the Sioux console window. CallingMacOS.HandleEvent() is not allowed
within our dispatchor its callees, since this may result in an infinite loop if the code is called through the
Python inner-loop event handler.

asyncevents (onoff)
Call this method with a nonzero parameter to enable asynchronous event handling. This will tell the inner
interpreter loop to call the application event handlerasync dispatchwhenever events are available. This will
cause FrameWork window updates and the user interface to remain working during long computations, but will
slow the interpreter down and may cause surprising results in non-reentrant code (such as FrameWork itself).
By defaultasync dispatchwill immedeately callour dispatchbut you may override this to handle only certain
events asynchronously. Events you do not handle will be passed to Sioux and such.

The old on/off value is returned.

quit ()
Terminate the runningmainloop() call at the next convenient moment.

do char (c, event)
The user typed characterc. The complete details of the event can be found in theeventstructure. This method
can also be provided in aWindow object, which overrides the application-wide handler if the window is front-
most.

do dialogevent (event)
Called early in the event loop to handle modeless dialog events. The default method simply dispatches the event
to the relevant dialog (not through the theDialogWindow object involved). Override if you need special
handling of dialog events (keyboard shortcuts, etc).

idle (event)
Called by the main event loop when no events are available. The null-event is passed (so you can look at mouse
position, etc).

2.13.2 Window Objects

Window objects have the following methods, among others:

open ()
Override this method to open a window. Store the MacOS window-id inself.wid and call the
do postopen() method to register the window with the parent application.

close ()
Override this method to do any special processing on window close. Call thedo postclose() method to
cleanup the parent state.

do postresize (width, height, macoswindowid)
Called after the window is resized. Override if more needs to be done than callingInvalRect .

do contentclick (local, modifiers, event)
The user clicked in the content part of a window. The arguments are the coordinates (window-relative), the key
modifiers and the raw event.

22 Chapter 2. MacPython Modules

do update (macoswindowid, event)
An update event for the window was received. Redraw the window.

do activate (activate, event)
The window was activated (activate == 1) or deactivated (activate == 0). Handle things like focus high-
lighting, etc.

2.13.3 ControlsWindow Object

ControlsWindow objects have the following methods besides those ofWindow objects:

do controlhit (window, control, pcode, event)
Partpcodeof controlcontrolwas hit by the user. Tracking and such has already been taken care of.

2.13.4 ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra methods:

scrollbars ([wantx[, wanty]])
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which you want (default: both).
The scrollbars always have minimum0 and maximum32767 .

getscrollbarvalues ()
You must supply this method. It should return a tuple(x, y) giving the current position of the scrollbars
(between0 and32767). You can returnNone for either to indicate the whole document is visible in that
direction.

updatescrollbars ()
Call this method when the document has changed. It will callgetscrollbarvalues() and update the
scrollbars.

scrollbar callback (which, what, value)
Supplied by you and called after user interaction.whichwill be ’x’ or ’y’ , whatwill be ’-’ , ’--’ , ’set’ ,
’++’ or ’+’ . For ’set’ , valuewill contain the new scrollbar position.

scalebarvalues (absmin, absmax, curmin, curmax)
Auxiliary method to help you calculate values to return fromgetscrollbarvalues() . You pass document
minimum and maximum value and topmost (leftmost) and bottommost (rightmost) visible values and it returns
the correct number orNone.

do activate (onoff, event)
Takes care of dimming/highlighting scrollbars when a window becomes frontmost. If you override this method,
call this one at the end of your method.

do postresize (width, height, window)
Moves scrollbars to the correct position. Call this method initially if you override it.

do controlhit (window, control, pcode, event)
Handles scrollbar interaction. If you override it call this method first, a nonzero return value indicates the hit
was in the scrollbars and has been handled.

2.13.5 DialogWindow Objects

DialogWindow objects have the following methods besides those ofWindow objects:

open (resid)
Create the dialog window, from the DLOG resource with idresid. The dialog object is stored inself.wid .

2.13. FrameWork — Interactive application framework 23

do itemhit (item, event)
Item numberitemwas hit. You are responsible for redrawing toggle buttons, etc.

2.14 MiniAEFrame — Open Scripting Architecture server support

The moduleMiniAEFrame provides a framework for an application that can function as an Open Scripting Ar-
chitecture (OSA) server, i.e. receive and process AppleEvents. It can be used in conjunction withFrameWork or
standalone. As an example, it is used inPythonCGISlave.

TheMiniAEFrame module defines the following classes:

AEServer ()
A class that handles AppleEvent dispatch. Your application should subclass this class together with ei-
ther MiniApplication or FrameWork.Application . Your init () method should call the

init () method for both classes.

MiniApplication ()
A class that is more or less compatible withFrameWork.Application but with less functionality. Its
event loop supports the apple menu, command-dot and AppleEvents; other events are passed on to the Python
interpreter and/or Sioux. Useful if your application wants to useAEServer but does not provide its own
windows, etc.

2.14.1 AEServer Objects

installaehandler (classe, type, callback)
Installs an AppleEvent handler.classeandtypeare the four-character OSA Class and Type designators,’****’
wildcards are allowed. When a matching AppleEvent is received the parameters are decoded and your callback
is invoked.

callback (object, **kwargs)
Your callback is called with the OSA Direct Object as first positional parameter. The other parameters are
passed as keyword arguments, with the 4-character designator as name. Three extra keyword parameters are
passed: class and type are the Class and Type designators andattributes is a dictionary with the
AppleEvent attributes.

The return value of your method is packed withaetools.packevent() and sent as reply.

Note that there are some serious problems with the current design. AppleEvents which have non-identifier 4-character
designators for arguments are not implementable, and it is not possible to return an error to the originator. This will
be addressed in a future release.

2.15 aepack — Conversion between Python variables and AppleEvent
data containers

Theaepack module defines functions for converting (packing) Python variables to AppleEvent descriptors and back
(unpacking). Within Python the AppleEvent descriptor is handled by Python objects of built-in type AEDesc, defined
in moduleAE.

Theaepack module defines the following functions:

pack (x[, forcetype])
Returns anAEDesc object containing a conversion of Python value x. Ifforcetypeis provided it specifies the
descriptor type of the result. Otherwise, a default mapping of Python types to Apple Event descriptor types is
used, as follows:

24 Chapter 2. MacPython Modules

Python type descriptor type
FSSpec typeFSS
Alias typeAlias
integer typeLong (32 bit integer)
float typeFloat (64 bit floating point)
string typeText
list typeAEList
dictionary typeAERecord
instance see below

FSSpec and Alias are built-in object types defined in the modulemacfs .

If x is a Python instance then this function attempts to call anaepack () method. This method should
return an AE.AEDesc object.

If the conversionx is not defined above, this function returns the Python string representation of a value (the
repr() function) encoded as a text descriptor.

unpack (x)
xmust be an object of typeAEDesc. This function returns a Python object representation of the data in the Apple
Event descriptorx. Simple AppleEvent data types (integer, text, float) are returned as their obvious Python coun-
terparts. Apple Event lists are returned as Python lists, and the list elements are recursively unpacked. Object
references (ex.line 3 of document 1) are returned as instances ofaetypes.ObjectSpecifier .
AppleEvent descriptors with descriptor type typeFSS are returned asFSSpec objects. AppleEvent record de-
scriptors are returned as Python dictionaries, with keys of type? and elements recursively unpacked.

See Also:

ModuleAE (section 3.1):
Built-in access to Apple Event Manager routines.

Moduleaetypes (section 2.16):
Python definitions of codes for Apple Event descriptor types.

Inside Macintosh: Interapplication Communication
(http://developer.apple.com/techpubs/mac/IAC/IAC-2.html)

Information about inter-process communications on the Macintosh.

2.16 aetypes — AppleEvent objects

The aetypes defines classes used to represent Apple Event object specifiers. An object specifier is essentially an
address of an object implemented in a Apple Event server. An Apple Event specifier is used as the direct object for an
Apple Event or as the argument of an optional parameter. In AppleScript an object specifier is represented by a phrase
such as:character 23 of document "Semprini" . The classes defined in this module allow this specifier
to be represented by a Python object which is initialized as follows:res = Document(1).Character(23)

TheAEObjects module defines the following class:

ObjectSpecifier (want, form, seld, from)
This is the base class for representing object specifiers and is generally not constructed directly by the user.
Its important functionality is to define an aepack () function, which returns the Apple Event descriptor
containing the object specifier. Its data members, set directly from the constructor arguments, are:

want
A four character string representing the class code of the object. These class codes are specified in Apple Event
Suites; for example the standard code for a character object is the 4 bytes ‘char ’.

2.16. aetypes — AppleEvent objects 25

26

CHAPTER

THREE

MacOS Toolbox Modules

There are a set of modules that provide interfaces to various MacOS toolboxes. If applicable the module will define
a number of Python objects for the various structures declared by the toolbox, and operations will be implemented as
methods of the object. Other operations will be implemented as functions in the module. Not all operations possible
in C will also be possible in Python (callbacks are often a problem), and parameters will occasionally be different
in Python (input and output buffers, especially). All methods and functions have adoc string describing their
arguments and return values, and for additional description you are referred toInside Macintoshor similar works.

Warning! These modules are not yet documented. If you wish to contribute documentation of any of these modules,
please get in touch withpython-docs@python.org.

AE Interface to the Apple Events toolbox
Cm Interface to the Component Manager
Ctl Interface to the Control Manager
Dlg Interface to the Dialog Manager
Evt Interface to the Event Manager
Fm Interface to the Font Manager
List Interface to the List Manager
Menu Interface to the Menu Manager
Qd Interface to the QuickDraw toolbox
Qt Interface to the QuickTime toolbox
Res Interface to the Resource Manager and Handles
Scrap Interface to the Scrap Manager
Snd Interface to the Sound Manager
TE Interface to TextEdit
waste Interface to the “WorldScript-Aware Styled Text Engine.”
Win Interface to the Window Manager

27

3.1 AE — Apple Events

3.2 Cm— Component Manager

3.3 Ctl — Control Manager

3.4 Dlg — Dialog Manager

3.5 Evt — Event Manager

3.6 Fm— Font Manager

3.7 List — List Manager

3.8 Menu — Menu Manager

3.9 Qd — QuickDraw

3.10 Qt — QuickTime

3.11 Res — Resource Manager and Handles

3.12 Scrap — Scrap Manager

3.13 Snd — Sound Manager

3.14 TE — TextEdit

3.15 waste — non-Apple TextEdit replacement

See Also:

About WASTE
(http://www.merzwaren.com/waste/)

Information about the WASTE widget and library, including documentation and downloads.

3.16 Win — Window Manager

28 Chapter 3. MacOS Toolbox Modules

CHAPTER

FOUR

Undocumented Modules

The modules in this chapter are poorly documented (if at all). If you wish to contribute documentation of any of these
modules, please get in touch withpython-docs@python.org.

buildtools Helper module for BuildApple, BuildApplication and macfreeze
py resource
cfmfile Code Fragment Resource module
macerrors Constant definitions for many MacOS error codes
macfsn NavServices versions of StandardFile calls
icopen Internet Config replacement foropen()
mactty
nsremote Wrapper around Netscape OSA modules
PixMapWrapper Wrapper for PixMap objects
preferences
pythonprefs
quietconsole buffered, non-visible stdout output
W Widgets for the Mac, built on top ofFrameWork

4.1 buildtools — Helper module for BuildApplet and Friends

4.2 py resource —

4.3 cfmfile — Code Fragment Resource module

cfmfile is a module that understands Code Fragments and the accompanying “cfrg” resources. It can parse them
and merge them, and is used by BuildApplication to combine all plugin modules to a single executable.

4.4 macerrors — MacOS Errors

macerrors cotains constant definitions for many MacOS error codes.

4.5 macfsn — NavServices calls

macfsn contains wrapper functions that have the same API as the macfs StandardFile calls, but are implemented with
Navigation Services. Importing it will replace the methods in macfs with these, if Navigation Services is available on
your machine.

29

4.6 icopen — Internet Config replacement for open()

Importingicopen will replace the builtinopen() with a version that uses Internet Config to set file type and creator
for new files.

4.7 mactty —

4.8 nsremote — Wrapper around Netscape OSA modules

nsremote is a wrapper around the Netscape OSA modules that allows you to easily send your browser to a given
URL.

4.9 PixMapWrapper — Wrapper for PixMap objects

PixMapWrapper wraps a PixMap object with a Python object that allows access to the fields by name. It also has
methods to convert to and fromPIL images.

4.10 preferences —

4.11 pythonprefs —

4.12 quietconsole — non-visible stdout output

quietconsole allows you to keep stdio output in a buffer without displaying it (or without displaying the stdout
window altogether, if set withEditPythonPrefs) until you try to read from stdin or disable the buffering, at which
point all the saved output is sent to the window. Good for GUI programs that do want to display their output at a crash.

4.13 W— Widgets built on FrameWork

TheWwidgets are used extensively in theIDE .

30 Chapter 4. Undocumented Modules

APPENDIX

A

History and License

A.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI) in the Nether-
lands as a successor of a language called ABC. Guido is Python’s principal author, although it includes many con-
tributions from others. The last version released from CWI was Python 1.2. In 1995, Guido continued his work on
Python at the Corporation for National Research Initiatives (CNRI) in Reston, Virginia where he released several ver-
sions of the software. Python 1.6 was the last of the versions released by CNRI. In 2000, Guido and the Python core
development team moved to BeOpen.com to form the BeOpen PythonLabs team. Python 2.0 was the first and only
release from BeOpen.com.

Following the release of Python 1.6, and after Guido van Rossum left CNRI to work with commercial software
developers, it became clear that the ability to use Python with software available under the GNU Public License
(GPL) was very desirable. CNRI and the Free Software Foundation (FSF) interacted to develop enabling wording
changes to the Python license. Python 1.6.1 is essentially the same as Python 1.6, with a few minor bug fixes, and with
a different license that enables later versions to be GPL-compatible. Python 2.0.1 is a derivative work of Python 1.6.1,
as well as of Python 2.0.

After Python 2.0 was released by BeOpen.com, Guido van Rossum and the other PythonLabs developers joined Digital
Creations. All intellectual property added from this point on, including Python 2.0.1 and its alpha and beta releases,
is owned by the Python Software Foundation (PSF), a non-profit modeled after the Apache Software Foundation. See
http://www.python.org/psf/ for more information about the PSF.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

A.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.0.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 2.0.1 alone or in any derivative version, provided, however, that
PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyrightc© 2001 Python Software Foundation;
All Rights Reserved” are retained in Python 2.0.1 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.0.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.0.1.

31

4. PSF is making Python 2.0.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.0.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.0.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.0.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.0.1, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI OPEN SOURCE GPL-COMPATIBLE LICENSE AGREEMENT

32 Appendix A. History and License

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyrightc© 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL:http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT

A.2. Terms and conditions for accessing or otherwise using Python 33

SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

34 Appendix A. History and License

MODULE INDEX

A
AE, 28
aepack , 24
aetypes , 25

B
buildtools , 29

C
cfmfile , 29
Cm, 28
ctb , 8
Ctl , 28

D
Dlg , 28

E
EasyDialogs , 20
Evt , 28

F
findertools , 16
Fm, 28
FrameWork , 20

I
ic , 13
icopen , 30

L
List , 28

M
mac, 7
macdnr , 9
macerrors , 29
macfs , 11
macfsn , 29
MacOS, 15
macostools , 16

macpath , 7
macspeech , 19
mactcp , 17
mactty , 30
Menu, 28
MiniAEFrame , 24

N
nsremote , 30

P
PixMapWrapper , 30
preferences , 30
py resource , 29
pythonprefs , 30

Q
Qd, 28
Qt , 28
quietconsole , 30

R
Res, 28

S
Scrap , 28
Snd, 28

T
TE, 28

W
W, 30
waste , 28
Win, 28

35

36

INDEX

Symbols
quit() (in module FrameWork), 22

A
Abort() (in module ctb), 9
Abort() (in module mactcp), 18
accept() (in module ctb), 8
ActiveOpen() (in module mactcp), 17
AddrToName() (in module macdnr), 10
AddrToStr() (in module macdnr), 10
AE (standard module),28
aepack (standard module),24
AEServer (in module MiniAEFrame), 24
aetypes (standard module),25
Alias Manager, Macintosh, 11
amtUnackedData (in module mactcp), 18
amtUnreadData (in module mactcp), 18
AppleEvents, 16, 24
Application() (in module FrameWork), 21
as pathname() (in module macfs), 12
as tuple() (in module macfs), 12
AskPassword() (in module EasyDialogs), 20
AskString() (in module EasyDialogs), 20
AskYesNoCancel() (in module EasyDialogs), 20
asr (in module mactcp), 17, 18
asyncevents() (in module FrameWork), 22
asynchronous service routine, 17, 18
Available() (in module macspeech), 19
available() (in module ctb), 8

B
Break() (in module ctb), 9
BUFSIZ (in module macostools), 16
buildtools (standard module),29
Busy() (in module macspeech), 19

C
callback (in module ctb), 8
callback() (in module MiniAEFrame), 24
cfmfile (standard module),29
Choose() (in module ctb), 9

choose* (in module ctb), 8
Close() (in module ctb), 8
Close() (in module macdnr), 9
Close() (in module mactcp), 18
close() (Window method), 22
Cm(standard module),28
cmAttn (in module ctb), 8
cmCntl (in module ctb), 8
cmData (in module ctb), 8
cmFlagsEOM (in module ctb), 8
CMNew() (in module ctb), 8
cmStatus* (in module ctb), 8
cname (in module macdnr), 10
Communications Toolbox, Macintosh, 8
Connection Manager, 8
copy() (in module findertools), 16
copy() (in module macostools), 16
copytree() (in module macostools), 16
CountVoices() (in module macspeech), 19
cpuType (in module macdnr), 10
Creator (in module macfs), 13
ctb (built-in module),8
Ctl (standard module),28

D
data (in module macfs), 12, 13
DebugStr() (in module MacOS), 15
DialogWindow() (in module FrameWork), 21
Dlg (standard module),28
do activate() (Window method), 23
do char() (in module FrameWork), 22
do contentclick() (Window method), 22
do controlhit() (Window method), 23
do dialogevent() (in module FrameWork), 22
do itemhit() (Window method), 24
do postresize() (Window method), 22, 23
do update() (Window method), 23
Domain Name Resolver, Macintosh, 9

E
EasyDialogs (standard module),20
Error (in module MacOS), 15

37

error (in module ctb), 8
error (in module ic), 13
Evt (standard module),28
exchange (in module macdnr), 10

F
FindApplication() (in module macfs), 12
findertools (standard module),16
FindFolder() (in module macfs), 12
FInfo() (in module macfs), 11
Flags (in module macfs), 13
Fldr (in module macfs), 13
Fm(standard module),28
FrameWork (standard module),20, 24
FSSpec() (in module macfs), 11

G
getabouttext() (in module FrameWork), 21
GetConfig() (in module ctb), 9
GetCreatorType() (in module macfs), 12
GetDates() (in module macfs), 12
GetDirectory() (in module macfs), 11
GetErrorString() (in module MacOS), 15
GetFInfo() (in module macfs), 12
GetGender() (voice object method), 19
GetIndVoice() (in module macspeech), 19
GetInfo() (in module macfs), 13
GetPitch() (voice object method), 19
GetRate() (voice object method), 19
getscrollbarvalues() (Window method), 23
GetSockName() (in module mactcp), 17

H
HandleEvent() (in module MacOS), 15
HInfo() (in module macdnr), 10

I
IC (in module ic), 14
ic (built-in module),13
icglue (built-in module), 13
icopen (standard module),30
Idle() (in module ctb), 9
idle() (in module FrameWork), 22
installaehandler() (in module MiniAE-

Frame), 24
Internet Config, 13
ip0 (in module macdnr), 10
ip1 (in module macdnr), 10
ip2 (in module macdnr), 10
ip3 (in module macdnr), 10
IPAddr() (in module mactcp), 17
isdone() (in module macdnr), 10
isdone() (in module mactcp), 17

L
launch() (in module findertools), 16
launchurl() (in module ic), 14
List (standard module),28
Listen() (in module ctb), 8
localHost (in module mactcp), 18
localPort (in module mactcp), 18
Location (in module macfs), 13

M
mac (built-in module),7
macdnr (built-in module),9, 17
macerrors (standard module), 15,29
macfs (built-in module),11
macfsn (standard module),29
Macintosh Alias Manager, 11
Macintosh Communications Toolbox, 8
Macintosh Domain Name Resolver, 9
Macintosh Speech Manager, 19
MacOS(built-in module),15
macostools (standard module),16
macpath (standard module),7
macspeech (built-in module),19
MacTCP, 17
mactcp (built-in module),17
MACTCPconst (standard module), 17
mactty (standard module),30
mainloop() (in module FrameWork), 21
makeusermenus() (in module FrameWork), 21
mapfile() (in module ic), 14
maptypecreator() (in module ic), 14
Maximum Transmit Unit, 17
Menu (standard module),28
Menu() (in module FrameWork), 21
MenuBar() (in module FrameWork), 21
MenuItem() (in module FrameWork), 21
Message() (in module EasyDialogs), 20
MiniAEFrame (standard module),24
MiniApplication (in module MiniAEFrame), 24
mkalias() (in module macostools), 16
move() (in module findertools), 16
MTU() (in module mactcp), 17
MXInfo() (in module macdnr), 10

N
NetMask() (in module mactcp), 17
NewAlias() (in module macfs), 12
NewAliasMinimal() (in module macfs), 12
NewAliasMinimalFromFullPath() (in mod-

ule macfs), 12
NewChannel() (voice object method), 19
nsremote (standard module),30

38 Index

O
ObjectSpecifier (in module aetypes), 25
Open Scripting Architecture, 24
Open() (in module ctb), 8
Open() (in module macdnr), 9
open() (Window method), 22, 23
openrf() (in module MacOS), 15
os (standard module), 7
os.path (standard module), 7
osType (in module macdnr), 10

P
pack() (in module aepack), 24
parseurl() (in module ic), 14
PassiveOpen() (in module mactcp), 17
PixMapWrapper (standard module),30
port (in module mactcp), 18
preference (in module macdnr), 10
preferences (standard module),30
Print() (in module findertools), 16
ProgressBar() (in module EasyDialogs), 20
PromptGetFile() (in module macfs), 11
py resource (standard module),29
pythonprefs (standard module),30

Q
Qd (built-in module),28
Qt (standard module),28
quietconsole (standard module),30

R
RawAlias() (in module macfs), 11
RawFSSpec() (in module macfs), 11
Rcv() (in module mactcp), 18
Read() (in module ctb), 9
Read() (in module mactcp), 18
remoteHost (in module mactcp), 18
remotePort (in module mactcp), 18
Res (standard module),28
Reset() (in module ctb), 9
Resolve() (in module macfs), 13
ResolveAliasFile() (in module macfs), 11
restart() (in module findertools), 16
rtnCode (in module macdnr), 10

S
scalebarvalues() (Window method), 23
SchedParams() (in module MacOS), 15
Scrap (standard module),28
scrollbar callback() (Window method), 23
scrollbars() (Window method), 23
Send() (in module mactcp), 18
sendWindow (in module mactcp), 18

Separator() (in module FrameWork), 21
service routine, asynchronous, 17, 18
setarrowcursor() (in module FrameWork), 21
SetConfig() (in module ctb), 9
SetCreatorType() (in module macfs), 12
SetDates() (in module macfs), 12
SetEventHandler() (in module MacOS), 15
SetFInfo() (in module macfs), 12
SetFolder() (in module macfs), 11
SetPitch() (voice object method), 19
SetRate() (voice object method), 19
settypecreator() (in module ic), 14
setwatchcursor() (in module FrameWork), 21
shutdown() (in module findertools), 17
sleep() (in module findertools), 16
SMTP, 10
Snd (standard module),28
socket (built-in module), 17
SpeakString() (in module macspeech), 19
SpeakText() (voice object method), 19
Speech Manager, Macintosh, 19
splash() (in module MacOS), 15
Standard File, 11
StandardGetFile() (in module macfs), 11
StandardPutFile() (in module macfs), 11
Status() (in module ctb), 9
Status() (in module mactcp), 18
Stop() (voice object method), 19
StrToAddr() (in module macdnr), 9
SubMenu() (in module FrameWork), 21

T
TCPCreate() (in module mactcp), 17
TE (standard module),28
touched() (in module macostools), 16
Type (in module macfs), 13

U
UDPCreate() (in module mactcp), 17
unpack() (in module aepack), 25
Update() (in module macfs), 13
updatescrollbars() (Window method), 23

V
Version() (in module macspeech), 19

W
W(standard module),30
wait() (in module macdnr), 10
wait() (in module mactcp), 17
want (in module aetypes), 25
waste (standard module),28
Win (standard module),28

Index 39

Window() (in module FrameWork), 21
windowbounds() (in module FrameWork), 21
Write() (in module ctb), 9
Write() (in module mactcp), 18

X
xstat() (in module mac), 7

40 Index

	1 Using Python on the Macintosh
	1.1 Getting and Installing MacPython
	1.2 Entering the interactive Interpreter
	1.3 How to run a Python script
	1.3.1 Drag and drop
	1.3.2 Set Creator and Double Click

	1.4 Simulating command line arguments
	1.5 Creating a Python script
	1.5.1 In an editor
	Editors with Python modes
	BBedit

	1.6 The IDE
	1.6.1 Using the ``Python Interactive'' window
	1.6.2 Writing a Python Script
	1.6.3 Executing a script from within the IDE
	1.6.4 ``Save as'' versus ``Save as Applet''

	1.7 Configuration
	1.7.1 EditPythonPrefs
	1.7.2 Adding modules to the Module Search Path
	1.7.3 Default startup options

	1.8 Mac OS X

	2 MacPython Modules
	2.1 mac --- Implementations for the os module
	2.2 macpath --- MacOS path manipulation functions
	2.3 ctb --- Interface to the Communications Tool Box
	2.3.1 Connection Objects

	2.4 macdnr --- Interface to the Macintosh Domain Name Resolver
	2.4.1 DNR Result Objects

	2.5 macfs --- Various file system services
	2.5.1 FSSpec objects
	2.5.2 Alias Objects
	2.5.3 FInfo Objects

	2.6 ic --- Access to Internet Config
	2.6.1 IC Objects

	2.7 MacOS --- Access to MacOS interpreter features
	2.8 macostools --- Convenience routines for file manipulation
	2.9 findertools --- The finder's Apple Events interface
	2.10 mactcp --- The MacTCP interfaces
	2.10.1 TCP Stream Objects
	2.10.2 TCP Status Objects
	2.10.3 UDP Stream Objects

	2.11 macspeech --- Interface to the Macintosh Speech Manager
	2.11.1 Voice Objects
	2.11.2 Speech Channel Objects

	2.12 EasyDialogs --- Basic Macintosh dialogs
	2.13 FrameWork --- Interactive application framework
	2.13.1 Application Objects
	2.13.2 Window Objects
	2.13.3 ControlsWindow Object
	2.13.4 ScrolledWindow Object
	2.13.5 DialogWindow Objects

	2.14 MiniAEFrame --- Open Scripting Architecture server support
	2.14.1 AEServer Objects

	2.15 aepack --- Conversion between Python variables and AppleEvent data containers
	2.16 aetypes --- AppleEvent objects

	3 MacOS Toolbox Modules
	3.1 AE --- Apple Events
	3.2 Cm --- Component Manager
	3.3 Ctl --- Control Manager
	3.4 Dlg --- Dialog Manager
	3.5 Evt --- Event Manager
	3.6 Fm --- Font Manager
	3.7 List --- List Manager
	3.8 Menu --- Menu Manager
	3.9 Qd --- QuickDraw
	3.10 Qt --- QuickTime
	3.11 Res --- Resource Manager and Handles
	3.12 Scrap --- Scrap Manager
	3.13 Snd --- Sound Manager
	3.14 TE --- TextEdit
	3.15 waste --- non-Apple TextEdit replacement
	3.16 Win --- Window Manager

	4 Undocumented Modules
	4.1 buildtools --- Helper module for BuildApplet and Friends
	4.2 pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}resource ---
	4.3 cfmfile --- Code Fragment Resource module
	4.4 macerrors --- MacOS Errors
	4.5 macfsn --- NavServices calls
	4.6 icopen --- Internet Config replacement for open()
	4.7 mactty ---
	4.8 nsremote --- Wrapper around Netscape OSA modules
	4.9 PixMapWrapper --- Wrapper for PixMap objects
	4.10 preferences ---
	4.11 pythonprefs ---
	4.12 quietconsole --- non-visible stdout output
	4.13 W --- Widgets built on FrameWork

	A History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python

	Module Index
	Index

