Exim's interfaces to mail filtering

1. Forwarding and filtering in EXIM ..o 1.
0 R [(Yo 18 [ox 1 o H TP PPPP T PPPPPPPPPPPP Lo,
1.2 FilEEI OPEIALIONeieieeeiiiiite ettt e e et e e e e e e e e e e e e e e e aeeeas Lo
1.3 Testing a New filter fileeeeiiiie e 1.
1.4 Installing @ filter fil@ee e 2
1.5 Testing an installed fiIltEr file ... I
1.6 Details Of filtering COMMEANTSooiiiiiiiiiiiiiie e 3.

2. SIEVE fITEI fIlES et 4.
2.1 Recognition Of SieVe filtErSooooiiiiiiiiece e B
2.2 Saving to SpecCified fTOIAEIScooiiiiiiiiiiiieee e B
2.3 Strings containing Neader NAIMESoooiiiiiiiiee e 4.....
2.4 Exists test with empty list Of hEAEIScceiiiiiiiiie e 4.....
2.5 Header test with invalid MIME encoding in headerccccccoeiiiiiiiiiiiiniiiieeee A
2.6 Address test for multiple addresses per header ... 5.
2.7 SEMANTICS OF KEEP ...eiieiiiiieiiii ittt e e e e e e e e e e e e e e e aannes B
2.8 SemantiCs Of fIEINTOoiiiiiiiie e e e S
2.9 SemMANTICS OF FEAINECTvieiiiiieie ettt e e e e ees 5.
2.10 SEINQ AIGUIMEITSeeiiiiiieiiiiiiiiie it e e e e e e e e e e e e e e e et e e e e e s nbb e e et e e e e e s aannbbnreeeeeeeeaannes B
2. 11 NUMDET UNIES ...ttt e e et e e e e e e e e e e e renes 5.
2.12 RFC COMPIANCE ...ttt ettt e e e e e e st e e e e e e e ana ST

3. EXIM FILEE fIlES oottt e e e e e e e e YA
3.1 Format of EXim filtEr filESooi e 7.
3.2 Data values in filter COMMANAScooiiiiiiiiiiiiie e I.....
3.3 SHING EXPANSION ...tiiiiiieeiiitt ettt e e et e e e e e et e e e e e e e e e e e e e e e e aannnnnees T
3.4 Some useful general variablesoooviiiiiiiiiiii e 8......
3.5 Header variables ... 9.
3.6 USEI VANTADIES ...ttt e e 10.......
3.7 CUITENT AIFECIONY ...ueiiiiiiiee e ettt e e e et e e e e e s r et e e e e e e e nnb e e e e e e eeeeaans 10......
3.8 SIgNIfICANT AEIVEIIESeeiiiieiiiie e e e e e e 10......
3.9 FIltEer COMMEANGS ...ttt e e e e e e s e eeeeeeas 10......
3.10 The add COMMANTuuiiiiiiiiiiiiii e e e e e e e e e e e eeeeens 11.....
3.11 The deliver COMMANTcoiiiiiiiiie et e e e e e e e e e 11....
3.12 The SAVe COMMANDcoiiiiiiiiiiie ettt e e e e e e e e e e e e e ennneees 11....
3.13 The PIPE COMIMEANToeiiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e e anbbrerreeeeeeaaas 12.....
3.14 Mail COMMEINTASeeiiiiiieee ettt e e e e e e r et e e e e e s e reeeeeeeaans 14.....
3.15 LOQgiNGg COMMEANTS ...eeeiiiiiiriiiiieeee ettt e e e e e e st e e e e e s e e e e e e e e e nnn e e e e e e e e e annneeees 16......
3.16 The finiSh COMMANTooiiiiiiiii e 16.....
3.17 The testprint COMMANTcc.uuiiiiiieeee e e e e e e e e 16.....
3.18 The fail COMMENGcooiiiiiiiii e e e e 16......
3.19 The fre€ze COMMEANGcoiiiiiiiiii ettt e e e e e e e e e e e 16.....
3.20 The headers COMMEANGccuuiiiiiieeee et e e e e e e e e e e e e e e 17.....
3.21 Obeying commands coNAitioNAlYocoiiiiiiiiiiiiiie e 17..
3.22 String teStiNg CONUITIONSviiiiieeiiiiiti e e e e e 17.....
3.23 Numeric testing CONTITIONSuiiiiiiieiiiiiitee e e e e e e e e 19....
3.24 Testing for significant deliVEIIESuviiiiiiiii e 19...
3.25 TesStiNg fOr ITOr MESSAYESuvveiiiiieeeiiiiiiie e e e e e et e e e e e e e e e e s e e eaeeeeas 19....
3.26 Testing @ liSt OF AUAIESSEScccoiiiiiiiiiiee e 19....
3.27 Testing for Personal Malooouiiiiiiii e 20.....
3.28 Alias addresses for the personal CONAItioNcccuviiiiiiiiiiiiiiiii e 21.
3.29 Details of the personal CONAITIONoiiiiiiiiiiie e 21...

3.30 TeStiNG AEIVEIY STATUSuuuuiieeiiiiiiiiiiieiiieeteeeeeeeteeenes 21.....
3.31 Multiple personal MaIlDOXESuuuuuuuiuuiuiiiiiieiiiiiiieeieeeieeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeees 22....
3.32 1gNOring AeIIVEIY €ITOIS ... 22.....
3.33 Examples of Exim filter commands

1. Forwarding and filtering in Exim

This document describes the user interfaces to Exim’s in-built mail filtering facilities, and is copyright
© University of Cambridge 2010. It corresponds to Exim version 4.82.

1.1 Introduction

Most Unix mail transfer agents (programs that deliver mail) permit individual users to specify auto-
matic forwarding of their mail, usually by placing a list of forwarding addresses in a file called
forwardin their home directories. Exim extends this facility by allowing the forwarding instructions
to be a set of rules rather than just a list of addresses, in effect providorgvard with conditions”.
Operating the set of rules is calléitering, and the file that contains them is callddter file.

Exim supports two different kinds of filter file. ABxim filter contains instructions in a format that is
unique to Exim. ASieve filtercontains instructions in the Sieve format that is defined by RFC 3028.

As this is a standard format, Sieve filter files may already be familiar to some users. Sieve files should
also be portable between different environments. However, the Exim filtering facility contains more
features (such as variable expansion), and better integration with the host environment (such as the
use of external processes and pipes).

The choice of which kind of filter to use can be left to the end-user, provided that the system
administrator has configured Exim appropriately for both kinds of filter. However, if interoperability
is important, Sieve is the only choice.

The ability to use filtering or traditional forwarding has to be enabled by the system administrator,
and some of the individual facilities can be separately enabled or disabled. A local document should
be provided to describe exactly what has been enabled. In the absence of this, consult your system
administrator.

This document describes how to use a filter file and the format of its contents. It is intended for use by
end-users. Both Sieve filters and Exim filters are covered. However, for Sieve filters, only issues that
relate to the Exim implementation are discussed, since Sieve itself is described elsewhere.

The contents of traditionaforward files are not described here. They normally contain just a list of
addresses, file names, or pipe commands, separated by commas or newlines, but other types of item
are also available. The full details can be found in the chapter omettieect router in the Exim
specification, which also describes how the system administrator can set up and control the use of
filtering.

1.2 Filter operation

It is important to realize that, in Exim, no deliveries are actually made while a filter or traditional
forwardfile is being processed. Running a filter or processing a traditibmavard file sets up future
delivery operations, but does not carry them out.

The result of filter or.forward file processing is a list of destinations to which a message should be
delivered. The deliveries themselves take place later, along with all other deliveries for the message.
This means that it is not possible to test for successful deliveries while filtering. It also means that any
duplicate addresses that are generated are dropped, because Exim never delivers the same message to
the same address more than once.

1.3 Testing a new filter file

Filter files, especially the more complicated ones, should always be tested, as it is easy to make
mistakes. Exim provides a facility for preliminary testing of a filter file before installing it. This tests
the syntax of the file and its basic operation, and can also be used with tradiiovead files.

Because a filter can do tests on the content of messages, a test message is required. Suppose you have
a new filter file calledmyfilter and a test message in a file calkedt-messageAssuming that Exim

is installed with the conventional path namndesr/sbin/sendmail(some operating systems use
{usr/lib/sendmay), the following command can be used:

1 Forwarding and filtering in Exim

/usr/sbin/sendmail -bf myfilter <test-message

The -bf option tells Exim that the following item on the command line is the name of a filter file that
is to be tested. There is alsalaF option, which is similar, but which is used for testing system filter
files, as opposed to user filter files, and which is therefore of use only to the system administrator.

The test message is supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file {dev/nul) can be used. A supplied message must start with header lines or the
“From " message separator line that is found in many multi-message folder files. Note that blank lines

at the start terminate the header lines. A warning is given if no header lines are read.

The result of running this command, provided no errors are detected in the filter file, is a list of the
actions that Exim would try to take if presented with the message for real. For example, for an Exim
filter, the output

Deliver message to: gulliver@lilliput.fict.example
Save message to: /home/lemuel/mail/archive

means that one copy of the message would be seguliiver@lilliput.fict.example and another
would be added to the filaome/lemuel/mail/archivef all went well.

The actions themselves are not attempted while testing a filter file in this way; there is no check, for
example, that any forwarding addresses are valid. For an Exim filter, if you want to know why a
particular action is being taken, add theoption to the command. This causes Exim to output the
results of any conditional tests and to indent its output according to the depth of nestihg of
commands. Further additional output from a filter test can be generated hgstipeint command,
which is described below.

When Exim is outputting a list of the actions it would take, if any text strings are included in the
output, non-printing characters therein are converted to escape sequences. In particular, if any text
string contains a newline character, this is shown as “\n” in the testing output.

When testing a filter in this way, Exim makes up an “envelope” for the message. The recipient is by
default the user running the command, and so is the sender, but the command can be run-ith the
option to supply a different sender. For example,

lusr/sbin/sendmail -bf myfilter \
-f islington@never.where <test-message

Alternatively, if the -f option is not used, but the first line of the supplied message is a “From ”
separator from a message folder file (not the same thingFasra: header line), the sender is taken
from there. If-f is present, the contents of any “From ” line are ignored.

The “return path” is the same as the envelope sender, unless the message coR&insgath:
header, in which case it is taken from there. You need not worry about any of this unless you want to
test out features of a filter file that rely on the sender address or the return path.

It is possible to change the envelope recipient by specifying further optionsbitheption changes
the domain of the recipient address, while thél option changes the “local part”, that is, the part
before the @ sign. An adviser could make use of these to test someone else’s filter file.

The-bfp and-bfs options specify the prefix or suffix for the local part. These are relevant only when
support for multiple personal mailboxes is implemented; see the description in ion 3.31 below.

1.4 Installing a filter file

A filter file is normally installed under the nam#rward in your home directory — it is distinguished

from a conventionalforward file by its first line (described below). However, the file name is con-
figurable, and some system administrators may choose to use some different name or location for
filter files.

2 Forwarding and filtering in Exim

1.5 Testing an installed filter file

Testing a filter file before installation cannot find every potential problem; for example, it does not
actually run commands to which messages are piped. Some “live” tests should therefore also be done
once a filter is installed.

If at all possible, test your filter file by sending messages from some other account. If you send a
message to yourself from the filtered account, and delivery fails, the error message will be sent back

to the same account, which may cause another delivery failure. It won’t cause an infinite sequence

of such messages, because delivery failure messages do not themselves generate further messages.
However, it does mean that the failure won't be returned to you, and also that the postmaster will have

to investigate the stuck message.

If you have to test an Exim filter from the same account, a sensible precaution is to include the line

if error_message then finish endif
as the first filter command, at least while testing. This causes filtering to be abandoned for a delivery
failure message, and since no destinations are generated, the message goes on to be delivered to the
original address. Unless there is a good reason for not doing so, it is recommended that the above test
be left in all Exim filter files. (This does not apply to Sieve files.)

1.6 Details of filtering commands

The filtering commands for Sieve and Exim filters are completely different in syntax and semantics.
The Sieve mechanism is defined in RFC 3028; in the next chapter we describe how it is integrated
into Exim. The subsequent chapter covers Exim filtering commands in detail.

3 Forwarding and filtering in Exim

2. Sieve filter files

The code for Sieve filtering in Exim was contributed by Michael Haardt, and most of the content of
this chapter is taken from the notes he provided. Since Sieve is an extensible language, it is important
to understand “Sieve” in this context as “the specific implementation of Sieve for Exim”.

This chapter does not contain a description of Sieve, since that can be found in RFC 3028, which
should be read in conjunction with these notes.

The Exim Sieve implementation offers the core as defined by RFC 3028, comparison tests, the
subaddress parameter, tt@py, envelope fileinto, notify, andvacation extensions, but not threject
extension. Exim does not support message delivery notifications (MDNs), so adding it just to the
Sieve filter (as required foeject) makes little sense.

In order for Sieve to work properly in Exim, the system administrator needs to make some adjust-
ments to the Exim configuration. These are described in the chapter oedirect router in the full
Exim specification.

2.1 Recognition of Sieve filters
A filter file is interpreted as a Sieve filter if its first line is
Sieve filter

This is what distinguishes it from a conventioriatward file or an Exim filter file.

2.2 Saving to specified folders

If the system administrator has set things up as suggested in the Exim specification, and keepuse
or fileinto to save a mail into a folder, absolute files are stored where specified, relative files are stored
relative tofhome andinbox goes to the standard mailbox location.

2.3 Strings containing header names

RFC 3028 does not specify what happens if a string denoting a header field does not contain a valid
header name, for example, it contains a colon. This implementation generates an error instead of
ignoring the header field in order to ease script debugging, which fits in with the common picture of
Sieve.

2.4 Exists test with empty list of headers

The existstest succeeds only if all the specified headers exist. RFC 3028 does not explicitly specify
what happens on an empty list of headers. This implementation evaluates that condition as true,
interpreting the RFC in a strict sense.

2.5 Header test with invalid MIME encoding in header

Some MUASs process invalid base64 encoded data, generating junk. Others ignore junk after seeing an
equal sign in base64 encoded data. RFC 2047 does not specify how to react in this case, other than
stating that a client must not forbid to process a message for that reason. RFC 2045 specifies that
invalid data should be ignored (apparently looking at end of line characters). It also specifies that
invalid data may lead to rejecting messages containing them (and there it appears to talk about true
encoding violations), which is a clear contradiction to ignoring them.

RFC 3028 does not specify how to process incorrect MIME words. This implementation treats them
literally, as it does if the word is correct but its character set cannot be converted to UTF-8.

4 Sieve filter files

2.6 Address test for multiple addresses per header

A header may contain multiple addresses. RFC 3028 does not explicitly specify how to deal with
them, but since the address test checks if anything matches anything else, matching one address
suffices to satisfy the condition. That makes it impossible to test if a header contains a certain set of
addresses and no more, but it is more logical than letting the test fail if the header contains an
additional address besides the one the test checks for.

2.7 Semantics of keep
Thekeepcommand is equivalent to
fileinto "inbox";

It saves the message and resets the implicit keep flag. It does not set the implicit keep flag; there is no
command to set it once it has been reset.

2.8 Semantics of fileinto

RFC 3028 does not specify whetHéeinto should try to create a mail folder if it does not exist. This
implementation allows the sysadmin to configure that aspect usingphendfiletransport options
create_directory, create_file andfile_must_exist See theappendfiletransport in the Exim specifi-
cation for details.

2.9 Semantics of redirect

Sieve scripts are supposed to be interoperable between servers, so this implementation does not allow
mail to be redirected to unqualified addresses, because the domain would depend on the system being
used. On systems with virtual mail domains, the default domain is probably not what the user expects
it to be.

2.10 String arguments

There has been confusion if the string argumentetmire are to be matched case-sensitively or not.
This implementation matches them with the match typédefault, see section 2.7.1 of the RFC) and
the comparator,ascii-casemap(default, see section 2.7.3 of the RFC). The RFC defines the com-
mand defaults clearly, so any different implementations violate RFC 3028. The same is valid for
comparator names, also specified as strings.

2.11 Number units

There is a mistake in RFC 3028: the suffix G denotes gibi-, not tebibyte. The mistake is obvious,
because RFC 3028 specifies G to denote 2*30 (which is gibi, not tebi), and that is what this
implementation uses as the scaling factor for the suffix G.

2.12 RFC compliance
Exim requires the first line of a Sieve filter to be
Sieve filter

Of course the RFC does not specify that line. Do not expect examples to work without adding it,
though.

RFC 3028 requires the use of CRLF to terminate a line. The rationale was that CRLF is universally
used in network protocols to mark the end of the line. This implementation does not embed Sieve in a
network protocol, but uses Sieve scripts as part of the Exim MTA. Since all parts of Exim use LF as
the newline character, this implementation does, too, by default, though the system administrator may
choose (at Exim compile time) to use CRLF instead.

5 Sieve filter files

Exim violates RFC 2822, section 3.6.8, by accepting 8-bit header names, so this implementation
repeats this violation to stay consistent with Exim. This is in preparation for UTF-8 data.

Sieve scripts cannot contain NUL characters in strings, but mail headers could contain MIME
encoded NUL characters, which could never be matched by Sieve scripts using exact comparisons.
For that reason, this implementation extends the Sieve quoted string syntax with \0 to describe a NUL
character, violating \O being the same as 0 in RFC 3028. Even without using \0, the following tests are
all true in this implementation. Implementations that use C-style strings will only evaluate the first
test as true.

Subject: =?is0-8859-1?7q?abc=00def

header :contains "Subject" ['abc"]
header :contains "Subject” ["def"]
header :matches "Subject" ["abc?def"]

Note that by considering Sieve to be an MUA, RFC 2047 can be interpreted in a way that NUL
characters truncating strings is allowed for Sieve implementations, although not recommended. It is
further allowed to use encoded NUL characters in headers, but that's not recommended either. The
above example shows why.

RFC 3028 states that if an implementation fails to convert a character set to UTF-8, two strings
cannot be equal if one contains octets greater than 127. Assuming that all unknown character sets are
one-byte character sets with the lower 128 octets being US-ASCII is not sound, so this implemen-
tation violates RFC 3028 and treats such MIME words literally. That way at least something could be
matched.

The folder specified byileinto must not contain the character sequence “..” to avoid security prob-
lems. RFC 3028 does not specify the syntax of folders apartkeepbeing equivalent to

fileinto "INBOX";
This implementation usasboxinstead.
Sieve script errors currently cause messages to be silently filethidea RFC 3028 requires that the

user is notified of that condition. This may be implemented in the future by adding a header line to
mails that are filed intmboxdue to an error in the filter.

6 Sieve filter files

3. Exim filter files

This chapter contains a full description of the contents of Exim filter files.

3.1 Format of Exim filter files
Apart from leading white space, the first text in an Exim filter file must be
Exim filter

This is what distinguishes it from a conventionfalrward file or a Sieve filter file. If the file does not

have this initial line (or the equivalent for a Sieve filter), it is treated as a conventiomadard file,

both when delivering mail and when using thd testing mechanism. The white space in the line is
optional, and any capitalization may be used. Further text on the same line is treated as a comment.
For example, you could have

Exim filter <<== do not edit or remove this line!

The remainder of the file is a sequence of filtering commands, which consist of keywords and data
values. For example, in the command

deliver gulliver@lilliput.fict.example

the keyword isdeliver and the data value igulliver@lilliput.fict.example . White

space or line breaks separate the components of a command, except in the case of conditioifs for the
command, where round brackets (parentheses) also act as separators. Complete commands are separ-
ated from each other by white space or line breaks; there are no special terminators. Thus, several
commands may appear on one line, or one command may be spread over a number of lines.

If the character # follows a separator anywhere in a command, everything from # up to the next
newline is ignored. This provides a way of including comments in a filter file.

3.2 Data values in filter commands
There are two ways in which a data value can be input:

« If the text contains no white space, it can be typed verbatim. However, if it is part of a condition, it
must also be free of round brackets (parentheses), as these are used for grouping in conditions.

» Otherwise, text must be enclosed in double quotation marks. In this case, the character \
(backslash) is treated as an “escape character” within the string, causing the following character or
characters to be treated specially:

\n is replaced by a newline
\r is replaced by a carriage return
\t isreplaced by a tab

Backslash followed by up to three octal digits is replaced by the character specified by those digits,
and\x followed by up to two hexadecimal digits is treated similarly. Backslash followed by any other
character is replaced by the second character, so that in partlulaecomes and\\ becomes .

A data item enclosed in double quotes can be continued onto the next line by ending the first line with
a backslash. Any leading white space at the start of the continuation line is ignored.

In addition to the escape character processing that occurs when strings are enclosed in quotes, most
data values are also subjectgring expansior(as described in the next section), in which case the
characterss and\ are also significant. This means that if a single backslash is actually required in
such a string, and the string is also quotéd, has to be entered.

The maximum permitted length of a data string, before expansion, is 1024 characters.

3.3 String expansion

Most data values are expanded before use. Expansion consists of replacing substrings beginning with
$ with other text. The full expansion facilities available in Exim are extensive. If you want to know

7 Exim filter files

everything that Exim can do with strings, you should consult the chapter on string expansion in the
Exim documentation.

In filter files, by far the most common use of string expansion is the substitution of the contents of a
variable. For example, the substring

$reply_address

is replaced by the address to which replies to the message should be sent. If such a variable name is
followed by a letter or digit or underscore, it must be enclosed in curly brackets (braces), for example,

${reply_address}

If a $ character is actually required in an expanded string, it must be escaped with a backslash, and
because backslash is also an escape character in quoted input strings, it must be doubled in that case.
The following two examples illustrate two different ways of testing fBrcaaracter in a message:

if message_body contains \$ then ...
if $message_body contains "\$" then ...

You can prevent part of a string from being expanded by enclosing it between two occurrekides of
For example,

if $message_body contains \N$$$$\N then ...

tests for a run of four dollar characters.

3.4 Some useful general variables

A complete list of the available variables is given in the Exim documentation. This shortened list
contains the ones that are most likely to be useful in personal filter files:

$body_linecountThe number of lines in the body of the message.

$body_zerocouniThe number of binary zero characters in the body of the message.

$home In conventional configurations, this variable normally contains the user’s home directory. The
system administrator can, however, change this.

$local_part The part of the email address that precedes the @ sign — normally the user’s login name.
If support for multiple personal mailboxes is enabled (see segtion 3.31 below) and a prefix or suffix
for the local part was recognized, it is removed from the string in this variable.

$local_part_prefix If support for multiple personal mailboxes is enabled (see se 3.31 below),
and a local part prefix was recognized, this variable contains the prefix. Otherwise it contains an
empty string.

$local_part_suffixIf support for multiple personal mailboxes is enabled (see se 3.31 below), and
a local part suffix was recognized, this variable contains the suffix. Otherwise it contains an empty
string.

$message_ bodyhe initial portion of the body of the message. By default, up to 500 characters are
read into this variable, but the system administrator can configure this to some other value. Newlines
in the body are converted into single spaces.

$message_body_enthe final portion of the body of the message, formatted and limited in the same
way as$message_body

$message_body_siZEhe size of the body of the message, in bytes.

$message_exim_idrhe message’s local identification string, which is unique for each message
handled by a single host.

$message headerthe header lines of the message, concatenated into a single string, with newline
characters between them.

$message_siz&he size of the entire message, in bytes.

8 Exim filter files

$original_local_part When an address that arrived with the message is being processed, this contains
the same value as the varialflmcal_part However, if an address generated by an alias, forward, or
filter file is being processed, this variable contains the local part of the original address.

$reply_addressThe contents of th®eply-to:header, if the message has one; otherwise the contents
of theFrom: header. It is the address to which normal replies to the message should be sent.

$return_path The return path — that is, the sender field that will be transmitted as part of the
message’s envelope if the message is sent to another host. This is the address to which delivery errors
are sent. In many cases, this variable has the same valbseader_addresdut if, for example, an
incoming message to a mailing list has been expan@iexturn_pathmay have been changed to
contain the address of the list maintainer.

$sender_addresShe sender address that was received in the envelope of the message. This is not
necessarily the same as the contents ofen: or Senderheader lines. For delivery error messages
(“bounce messages”) there is no sender address, and this variable is empty.

$tod_fult A full version of the time and date, for example: Wed, 18 Oct 1995 09:51:40 +0100. The
timezone is always given as a numerical offset from GMT.

$tod_log The time and date in the format used for writing Exim’s log files, without the timezone, for
example: 1995-10-12 15:32:29.

$tod_zoneThe local timezone offset, for example: +0100.

3.5 Header variables

There is a special set of expansion variables containing the header lines of the message being pro-
cessed. These variables have names beginning $tid¢ader_followed by the name of the header
line, terminated by a colon. For example,

$header_from:
$header_subject:

The whole item, including the terminating colon, is replaced by the contents of the message header
line. If there is more than one header line with the same name, their contents are concatenated. For
header lines whose data consists of a list of addresses (for exdenute, and To:), a comma and
newline is inserted between each set of data. For all other header lines, just a newline is used.

Leading and trailing white space is removed from header line data, and if there are any MIME
“words” that are encoded as defined by RFC 2047 (because they contain non-ASCII characters), they
are decoded and translated, if possible, to a local character set. Translation is attempted only on
operating systems that have fikenv() function. This makes the header line look the same as it would
when displayed by an MUA. The default character set is 1ISO-8859-1, but this can be changed by
means of théieaderscommand (see below).

If you want to see the actual characters that make up a header line, you can $peeéfgler_instead
of $header. This inserts the “raw” header line, unmodified.

There is also an intermediate form, requeste&hblyeader, which removes leading and trailing space

and decodes MIME “words”, but does not do any character translation. If an attempt to decode what
looks superficially like a MIME “word” fails, the raw string is returned. If decoding produces a binary
zero character, it is replaced by a question mark.

The capitalization of the name followirheader _is not significant. Because any printing character
except colon may appear in the name of a message’s header (this is a requirement of RFC 2822, the
document that describes the format of a mail message) curly bracketsotbstused in this case, as

they will be taken as part of the header name. Two shortcuts are allowed in naming header variables:

« The initiating $header, $rheader, or $bheader_can be abbreviated téh_, $rh_, or $bh
respectively.

» The terminating colon can be omitted if the next character is white space. The white space charac-
ter is retained in the expanded string. However, this is not recommended, because it makes it easy
to forget the colon when it really is needed.

9 Exim filter files

If the message does not contain a header of the given name, an empty string is substituted. Thus it is
important to spell the names of headers correctly. Do not$lssmader_Reply_tevhen you really
mean$header_Reply-to

3.6 User variables

There are ten user variables with narse® — $n9that can be incremented by tadd command (see
sectior] 3.1b). These can be used for “scoring” messages in various ways. If Exim is configured to run
a “system filter” on every message, the values left in these variables are copied into the vésables

— $sn9at the end of the system filter, thus making them available to users’ filter files. How these
values are used is entirely up to the individual installation.

3.7 Current directory

The contents of your filter file should not make any assumptions about the current directory. It is best
to use absolute paths for file names; you can normally make use $htireevariable to refer to your
home directory. Theavecommand automatically insefaomeat the start of non-absolute paths.

3.8 Significant deliveries

When in the course of delivery a message is processed by a filter file, what happens next, that is,
after the filter file has been processed, depends on whether or not the filter sets sigréingant
deliveries If at least one significant delivery is set up, the filter is considered to have handled the
entire delivery arrangements for the current address, and no further processing of the address takes
place. If, however, no significant deliveries are set up, Exim continues processing the current address
as if there were no filter file, and typically sets up a delivery of a copy of the message into a local
mailbox. In particular, this happens in the special case of a filter file containing only comments.

The delivery commanddeliver, save andpipe are by default significant. However, if such a com-
mand is preceded by the word “unseen”, its delivery is not considered to be significant. In contrast,
other commands such azail andvacationdo not set up significant deliveries unless preceded by the
word “seen”. The following example commands set up significant deliveries:

deliver jack@beanstalk.example

pipe $home/bin/mymailscript

seen mail subject "message discarded"
seen finish

The following example commands do not set up significant deliveries:

unseen deliver jack@beanstalk.example
unseen pipe $home/bin/mymailscript
mail subject "message discarded"

finish

3.9 Filter commands

The filter commands that are described in subsequent sections are listed below, with the section in
which they are described in brackets:

add increment a user variable (section 8.10)

deliver deliver to an email address (secfion B.11)

fall force delivery failure (sysadmin use) (sec.18)
finish end processing (sectm.m)

freeze freeze message (sysadmin use) (seftion) 3.19)
headers set the header character set (se¢tior] 3.20)

if test condition(s) (sectign 3[21)

logfile define log file (sectioh 3.15)

logwrite write to log file (sectio 5

mail send a reply message (section 3.14)

10 Exim filter files

pipe pipe to a command secti.13)

save save to a file (sectign 312
testprint print while testing (sectidn 3.7
vacation tailored form ofmail (sectior] 3.14)

Theheaderscommand has additional parameters that can be used only in a system filtéail Timel
freezecommands are available only when Exim’s filtering facilities are being used as a system filter,
and are therefore usable only by the system administrator and not by ordinary users. They are
mentioned only briefly in this document; for more information, see the main Exim specification.

3.10 The add command

add <numbep to <user variable
e.g. add 2 to n3

There are 10 user variables of this type, with nai®e8— $n9. Their values can be obtained by the
normal expansion syntax (for exam@a3 in other commands. At the start of filtering, these vari-
ables all contain zero. Both arguments of ##d command are expanded before use, making it
possible to add variables to each other. Subtraction can be obtained by adding negative numbers.

3.11 The deliver command

deliver <mail address
e.g. deliver "Dr Livingstone <David@somewhere.africa.example>"

This command provides a forwarding operation. The delivery that it sets up is significant unless the
command is preceded by “unseen” (see se 3.8). The message is sent on to the given address,
exactly as happens if the address had appeared in a tradifiorveard file. If you want to deliver the
message to a number of different addresses, you can use more thdaliwrecommand (each one

may have only one address). However, duplicate addresses are discarded.

To deliver a copy of the message to your normal mailbox, your login name can be given as the
address. Once an address has been processed by the filtering mechanism, an identical generated
address will not be so processed again, so doing this does not cause a loop.

However, if you have a mail alias, you shouidt refer to it here. For example, if the mail address
L.Gulliver is aliased tolg303 then all references in Gulliver'dorward file should be tog303 A
reference to the alias will not work for messages that are addressed to that alias, sinéervike
file processing, aliasing is performed only once on an address, in order to avoid looping.

Following the new address, an optional second address, preceded by “errors_to” may appear. This
changes the address to which delivery errors on the forwarded message will be sent. Instead of going
to the message’s original sender, they go to this new address. For ordinary users, the only value that is
permitted for this address is the user whose filter file is being processed. For example, th8@zer
whose mailbox is in the domalitliput.examplecould have a filter file that contains

deliver jon@elsewhere.example errors_to Ig303@lilliput.example

Clearly, using this feature makes sense only in situations where not all messages are being forwarded.
In particular, bounce messages must not be forwarded in this way, as this is likely to create a malil
loop if something goes wrong.

3.12 The save command

save <file name
e.g. save $home/mail/bookfolder

This command specifies that a copy of the message is to be appended to the given file (that is, the file
is to be used as a mail folder). The delivery teawesets up is significant unless the command is
preceded by “unseen” (see sec 3.8).

More than onesavecommand may be obeyed; each one causes a copy of the message to be written to
its argument file, provided they are different (duplicgteecommands are ignored).

11 Exim filter files

If the file name does not start with a / character, the contents dbtlbenevariable are prepended,

unless it is empty, or the system administrator has disabled this feature. In conventional configur-
ations, this variable is normally set in a user filter to the user's home directory, but the system
administrator may set it to some other path. In some configuratibneme may be unset, or
prepending may be disabled, in which case a non-absolute path name may be generated. Such con-
figurations convert this to an absolute path when the delivery takes place. In a systeishidtaesis

never set.

The user must of course have permission to write to the file, and the writing of the file takes place in a
process that is running as the user, under the user’s primary group. Any secondary groups to which
the user may belong are not normally taken into account, though the system administrator can con-
figure Exim to set them up. In addition, the ability to use this command at all is controlled by the
system administrator — it may be forbidden on some systems.

An optional mode value may be given after the file name. The value for the mode is interpreted as an
octal number, even if it does not begin with a zero. For example:

save /some/folder 640

This makes it possible for users to override the system-wide mode setting for file deliveries, which is
normally 600. If an existing file does not have the correct mode, it is changed.

An alternative form of delivery may be enabled on your system, in which each message is delivered
into a new file in a given directory. If this is the case, this functionality can be requested by giving the
directory name terminated by a slash aftersgnsecommand, for example

save separated/messages/

There are several different formats for such deliveries; check with your system administrator or local
documentation to find out which (if any) are available on your system. If this functionality is not
enabled, the use of a path name ending in a slash causes an error.

3.13 The pipe command

pipe <command
e.g. pipe "$home/bin/countmail $sender_address"

This command specifies that the message is to be delivered to the specified command using a pipe.
The delivery that it sets up is significant unless the command is preceded by “unseen” (see section
3.9). Remember, however, that no deliveries are done while the filter is being processed. All deliveries

happen later on. Therefore, the result of running the pipe is not available to the filter.

When the deliveries are done, a separate process is run, and a copy of the message is passed on its
standard input. The process runs as the user, under the user’'s primary group. Any secondary groups to
which the user may belong are not normally taken into account, though the system administrator can
configure Exim to set them up. More than gripe command may appear; each one causes a copy of

the message to be written to its argument pipe, provided they are different (dupligatmmmands

are ignored).

When the time comes to transport the message, the command supglipd i®split up by Exim into

a command name and a number of arguments. These are delimited by white space except for argu-
ments enclosed in double quotes, in which case backslash is interpreted as an escape, or in single
guotes, in which case no escaping is recognized. Note that as the whole command is normally
supplied in double quotes, a second level of quoting is required for internal double quotes. For
example:

pipe "$home/myscript \"size is $message_size\

String expansion is performed on the separate components after the line has been split up, and the
command is then run directly by Exim; it is not run under a shell. Therefore, substitution cannot
change the number of arguments, nor can quotes, backslashes or other shell metacharacters in vari-
ables cause confusion.

12 Exim filter files

Documentation for some programs that are normally run via this kind of pipe often suggest that the
command should start with

IFS=""

This is a shell command, and shouldt be present in Exim filter files, since it does not normally run
the command under a shell.

However, there is an option that the administrator can set to cause a shell to be used. In this case, the
entire command is expanded as a single string and passed to the shell for interpretation. It is recom-

mended that this be avoided if at all possible, since it can lead to problems when inserted variables

contain shell metacharacters.

The default PATH set up for the command is determined by the system administrator, usually contain-
ing at least/bin and/usr/bin so that common commands are available without having to specify an
absolute file name. However, it is possible for the system administrator to restrict the pipe facility so
that the command name must not contain any / characters, and must be found in one of the directories
in the configured PATH. It is also possible for the system administrator to lock out the usepip¢he
command altogether.

When the command is run, a number of environment variables are set up. The complete list for pipe
deliveries may be found in the Exim reference manual. Those that may be useful for pipe deliveries
from user filter files are:

DOMAIN the domain of the address
HOME your home directory
LOCAL_PART see below

LOCAL_PART_PREFIX see below
LOCAL_PART_SUFFIX see below

LOGNAME your login name
MESSAGE_ID the unique id of the message
PATH the command search path
RECIPIENT the complete recipient address
SENDER the sender of the message
SHELL /bin/sh

USER see below

LOCAL_PART, LOGNAME, and USER are all set to the same value, namely, your login id.
LOCAL_PART_PREFIX and LOCAL_PART_SUFFIX may be set if Exim is configured to recognize
prefixes or suffixes in the local parts of addresses. For example, a message addregsakd to
suf2Z@domain.examplmay cause the filter for usqrat to be run. If this sets up a pipe delivery,
LOCAL_PART_SUFFIX is-suf2 when the pipe command runs. The system administrator has to
configure Exim specially for this feature to be available.

If you run a command that is a shell script, be very careful in your use of data from the incoming
message in the commands in your script. RFC 2822 is very generous in the characters that are
permitted to appear in mail addresses, and in particular, an address may begin with a vertical bar or a
slash. For this reason you should always use quotes round any arguments that involve data from the
message, like this:

/some/command '$SENDER'
so that inserted shell meta-characters do not cause unwanted effects.

Remember that, as was explained earlier, the pipe command is not run at the time the filter file is
interpreted. The filter just defines what deliveries are required for one particular addressee of a
message. The deliveries themselves happen later, once Exim has decided everything that needs to be
done for the message.

A consequence of this is that you cannot inspect the return code from the pipe command from within
the filter. Nevertheless, the code returned by the command is important, because Exim uses it to
decide whether the delivery has succeeded or failed.

13 Exim filter files

The command should return a zero completion code if all has gone well. Most non-zero codes are
treated by Exim as indicating a failure of the pipe. This is treated as a delivery failure, causing the
message to be returned to its sender. However, there are some completion codes that are treated as
temporary errors. The message remains on Exim’s spool disk, and the delivery is tried again later,
though it will ultimately time out if the delivery failures go on too long. The completion codes to
which this applies can be specified by the system administrator; the default values are 73 and 75.

The pipe command should not normally write anything to its standard output or standard error file
descriptors. If it does, whatever is written is normally returned to the sender of the message as a
delivery error, though this action can be varied by the system administrator.

3.14 Mail commands

There are two commands that cause the creation of a new mail message, neither of which count as a
significant delivery unless the command is preceded by the word “seen” (see ion 3.8). Thisis a
powerful facility, but it should be used with care, because of the danger of creating infinite sequences
of messages. The system administrator can forbid the use of these commands altogether.

To help prevent runaway message sequences, these commands have no effect when the incoming
message is a bounce (delivery error) message, and messages sent by this means are treated as if they
were reporting delivery errors. Thus, they should never themselves cause a bounce message to be
returned. The basic mail-sending command is

mail [to <address-list]

[cc <address-list]

[bcc <address-list]

[from <address]

[reply_to <address]
[subject <text>]
[extra_headers <text>]
[text <texts]

[[expand] file <filename]
[return message]

[log <log file name]

[once <note file name]
[once_repeat <time intervab]

e.g. mail text "Your message about $h_subject: has been received”

Each <address-list can contain a number of addresses, separated by commas, in the formia: of a
or Cc: header line. In fact, the text you supply here is copied exactly into the appropriate header line.
It may contain additional information as well as email addresses. For example:

mail to "Julius Caesar <jc@rome.example>, \
<ma@rome.example> (Mark A.)"

Similarly, the texts supplied fdrom andreply to are copied into their respective header lines.

As a convenience for use in one common case, there is also a commandsaalédn It behaves in
the same way amail, except that the defaults for trmubject, file, log, once and once_repeat
options are

subject "On vacation"
expand file .vacation.msg
log .vacation.log

once .vacation
once_repeat 7d

respectively. These are the same file names and repeat period used by the traditionalddtion
command. The defaults can be overridden by explicit settings, but if a file name is given its contents
are expanded only if explicitly requested.

Warning: The vacationcommand should always be used conditionally, subject to at leagtethe
sonalcondition (see secti? below) so as not to send automatic replies to non-personal messages

14 Exim filter files

from mailing lists or elsewhere. Sending an automatic response to a mailing list or a mailing list
manager is an Internet Sin.

For both commands, the key/value argument pairs can appear in any order. At leastextieofile
must appear (except withacation where there is a default fdite); if both are present, the text string
appears first in the messageekpandprecededile, each line of the file is subject to string expansion
before it is included in the message.

Several lines of text can be supplied text by including the escape sequence “\n” in the string
wherever a newline is required. If the command is output during filter file testing, newlines in the text
are shown as “\n”.

Note that the keyword for creating Reply-To:header isreply_to, because Exim keywords may
contain underscores, but not hyphens. If fiten keyword is present and the given address does not
match the user who owns the forward file, Exim normally addSeader:header to the message,
though it can be configured not to do this.

Theextra_headerskeyword allows you to add custom header lines to the message. The text supplied
must be one or more syntactically valid RFC 2822 header lines. You can use “\n” within quoted text
to specify newlines between headers, and also to define continued header lines. For example:

extra_headers "h1: first\nh2: second\n continued\nh3: third"
No newline should appear at the end of the final header line.

If no to_argument appears, the message is sent to the address $nethlg addressariable (see
sectio above). Am-Reply-To:header is automatically included in the created message, giving a
reference to the message identification of the incoming message.

If return messageis specified, the incoming message that caused the filter file to be run is added to
the end of the message, subject to a maximum size limitation.

If a log file is specified, a line is added to it for each message sent.

If a oncefile is specified, it is used to hold a database for remembering who has received a message,
and no more than one message is ever sent to any particular addresspunkeggpeats set. This
specifies a time interval after which another copy of the message is sent. The interval is specified as a
sequence of numbers, each followed by the initial letter of one of “seconds”, “minutes”, “hours”,
“days”, or “weeks”. For example,

once_repeat 5d4h

causes a new message to be sent if at least 5 days and 4 hours have elapsed since the last one was
sent. There must be no white space in a time interval.

Commonly, the file name specified fonceis used as the base name for direct-access (DBM) file
operations. There are a number of different DBM libraries in existence. Some operating systems
provide one as a default, but even in this case a different one may have been used when building
Exim. With some DBM libraries, specifyingnceresults in two files being created, with the suffixes

.dir and.pagbeing added to the given name. With some others a single file with the silffix used,

or the name is used unchanged.

Using a DBM file for implementing thencefeature means that the file grows as large as necessary.
This is not usually a problem, but some system administrators want to put a limit on it. The facility
can be configured not to use a DBM file, but instead, to use a regular file with a maximum size. The
data in such a file is searched sequentially, and if the file fills up, the oldest entry is deleted to make
way for a new one. This means that some correspondents may receive a second copy of the message
after an unpredictable interval. Consult your local information to see if your system is configured this
way.

More than onamail or vacationcommand may be obeyed in a single filter run; they are all honoured,
even when they are to the same recipient.

15 Exim filter files

3.15 Logging commands

A log can be kept of actions taken by a filter file. This facility is normally available in conventional
configurations, but there are some situations where it might not be. Also, the system administrator
may choose to disable it. Check your local information if in doubt.

Logging takes place while the filter file is being interpreted. It does not queue up for later like the
delivery commands. The reason for this is so that a log file need be opened only once for several write
operations. There are two commands, neither of which constitutes a significant delivery. The first
defines a file to which logging output is subsequently written:

logfile <file name
e.g. logfile $homeffilter.log

The file name must be fully qualified. You can uifeome as in this example, to refer to your home
directory. The file name may optionally be followed by a mode for the file, which is used if the file
has to be created. For example,

logfile $homeffilter.log 0644

The number is interpreted as octal, even if it does not begin with a zero. The default for the mode is
600. It is suggested that tHegfile command normally appear as the first command in a filter file.
Once a log file has been obeyed, ltgavrite command can be used to write to it:

logwrite " <some text strirg'
e.g. logwrite "$tod_log $message_id processed”

It is possible to have more than othegfile command, to specify writing to different log files in
different circumstances. Writing takes place at the end of the file, and a newline character is added to
the end of each string if there isn't one already there. Newlines can be put in the middle of the string
by using the “\n” escape sequence. Lines from simultaneous deliveries may get interleaved in the file,
as there is no interlocking, so you should plan your logging with this in mind. However, data should
not get lost.

3.16 The finish command

The commandinish which has no arguments, causes Exim to stop interpreting the filter file. This is
not a significant action unless preceded by “seen”. A filter file containing only “seen finish” is a black
hole.

3.17 The testprint command

It is sometimes helpful to be able to print out the values of variables when testing filter files. The
command

testprint <text-
e.g. testprint "home=$home reply_address=$reply_address"

does nothing when mail is being delivered. However, when the filtering code is being tested by means
of the-bf option (see secti.3 above), the value of the string is written to the standard output.

3.18 The fail command

When Exim’s filtering facilities are being used as a system filter,flilecommand is available, to
force delivery failure. Because this command is normally usabl