Python Library Reference
Release 1.5.2

Guido van Rossum

July 6, 1999

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addrigssftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file 1/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-inTYPES . . o o 3
2.2 BUIlt-IN EXCEPLiONS o o e e e e 12
2.3 BUIlt-in FUNCLONS e e 16

3 Python Services 25
3.1 sys — System-specific parameters and functions. oL oL 25
3.2 types — Namesforall built-intypes.. 28
3.3 UserDict — Class wrapper for dictionaryobjects 30
3.4 UserList —Classwrapperforlistobjects 30
3.5 operator — Standard operatorsasfunctions..o oL 31
3.6 traceback — Printorretrieve astacktraceback. o oo oL 33
3.7 linecache —Randomaccesstotextlines. 34
3.8 pickle — Pythonobjectserialization 35
3.9 cPickle — Alternate implementation giickle oo Lo 38
3.10 copy _reg — Registempickle supportfunctions. 38
3.11 shelve — Python object persistency. 39
3.12 copy — Shallow anddeep copyoperationso 40
3.13 marshal — Alternate Python object serialization. 41
3.14 imp — Accessthamport internals. e 41
3.15 parser — Access parse trees for Pythoncade. 44
3.16 symbol — Constants used with Python parsetrees 53
3.17 token — Constants used with Python parsetrees 54
3.18 keyword — Testing for Pythonkeywords 54
3.19 tokenize — Tokenizer for Pythonsource. 54
3.20 pyclbr — Python class browsersupport e 55
3.21 code — Codeobjectservices.. e 55
3.22 codeop — Compile Pythoncode e 56
3.23 pprint —Dataprettyprinter.. e e e e 56
3.24 repr — Alternaterepr() implementation.. e 58
3.25 py_compile — Compile Python sourcefiles.. 60
3.26 compileall =~ — Byte-compile Python libraries. o L. 60
3.27 dis —Disassembler.. L e 61
3.28 new — Runtime implementation object creation. L oL 66
3.29 site — Site-specific configurationhook. 67
3.30 user — User-specific configurationhook 68
3.31 __builtin __ —Built-infunctions. 68

CONTENTS

3.32 __main __ —Top-level scriptenvironment.

String Services

4.1 string —Commonstringoperations e e e
4.2 re — Perl-style regular expression operations.
4.3 regex — Regular expression search and match operations.
4.4 regsub — String operations using regular expressions

4.5 struct — Interpretstrings as packed binarydata.. 0o L
4.6 fpformat — Floating pointconversions. e
4.7 Stringl0 — Read and write stringsasfiles.
4.8 cStringl0 — Fasterversion oBtringlO L

Miscellaneous Services

5.1 math — Mathematical functions.
5.2 cmath — Mathematical functions for complexnumbers
5.3 whrandom — Floating point pseudo-random number generator.

5.4 random — Generate pseudo-randomnumbers.o oL

5.5 bisect — Array bisection algorithm
5.6 array — Efficientarraysofnumericvalues.,
5.7 ConfigParser — Configurationfileparser.
5.8 fileinput — Iterate over lines from multiple input streams
5.9 calendar — Functions that emulate theNuUx cal program..

5.10 cmd— Build line-oriented command interpreters..o
5.11 shlex — Simplelexicalanalysis e

Generic Operating System Services 105

6.1 o0s — Miscellaneous OS interfaces o o e e

6.2 os.path — Common pathname manipulations.
6.3 dircache — Cacheddirectorylistings. e
6.4 stat — Interpretingstat() results.
6.5 statcache — Anoptimization ofos.stat() Lo L
6.6 statvfs — Constants used withs.statvfs() o

6.7 cmp—File comparisons e e e e e
6.8 cmpcache — Efficientfile comparisons. L e
6.9 time —Timeaccessand CoOnVersionS.. v i i i it e e
6.10 sched — Eventscheduler. e

6.11 getpass — Portable passwordinput. L
6.12 curses — Terminal independantconsole handling.
6.13 getopt — Parserforcommand lineoptions. o
6.14 tempfile — Generate temporaryfilenames.,

6.15 errno — Standard errno systemsymbols.. oL
6.16 glob — UNIX style pathname patternexpansion
6.17 fnmatch — UNix filename patternmatching
6.18 shutii — High-levelfile operations
6.19 locale — Internationalizationservices e
6.20 mutex — Mutual exclusion Support. e

Optional Operating System Services 143

7.1 signal — Sethandlersforasynchronousevents.
7.2 socket — Low-level networkinginterface. Lo
7.3 select — Waiting for I/O completion. L
7.4 thread — Multiplethreadsofcontrol.
7.5 threading — Higher-level threadinginterface.
7.6 Queue —Asynchronizedqueueclass..
7.7 anydbm — Generic access to DBM-style databases o o oo

10

11

7.8 dumbdbm— Portable DBM implementation 159

7.9 dbhash — DBM-style interface to the BSD database libraty. 160
7.10 whichdb — Guess which DBM module created adatabase. 161
7.11 bsddb — Interfaceto Berkeley DB library 161
7.12 zlib — Compression compatible withzip 163
7.13 gzip — Supportforgzipfiles e 164
7.14 rlcompleter ~ — Completion functionforreadline, 165
Unix Specific Services 167
8.1 posix — The mostcommon POSIX systemcalls. 167
8.2 pwd—Thepassworddatabase. 168
8.3 grp —Thegroupdatabase 168
8.4 crypt — Function used to checklUx passwords 169
8.5 dl —CallCfunctionsinsharedobjects 169
8.6 dbm— Simple “database” interface. e 170
8.7 gdbm— GNU'sreinterpretationofdbm. 171
8.8 termios —POSIXstylettycontrol. 172
8.9 TERMIOS— Constants used with thermios module 173
8.10 tty — Terminal controlfunctions. 173
8.11 pty — Pseudo-terminal utilities e 174
8.12 fentl — Thefentl() andioctl() systemcalls. 174
8.13 pipes — Interface to shell pipelines 175
8.14 posixfile — File-like objects with locking support 176
8.15 resource — Resource usage information. L Lo oo 178
8.16 nis — Interfaceto Sun'sNIS (YelloPages) 180
8.17 syslog — UNix sysloglibraryroutines e 181
8.18 popen2 — Subprocesses with accessible I/Ostreams. 181
8.19 commands— Utilities for runningcommands Lo 182
The Python Debugger 185
9.1 Debugger Commands e e e 186
9.2 How ItWorks. e 188
The Python Profiler 191
10.1 Introductiontothe profiler L 191
10.2 How Is This Profiler Different From The Old Profiler?. 191
10.3 InstantUsers Manual. e 192
10.4 What Is Deterministic Profiling?. e 194
10.5 Reference Manual L e 194
10.6 Limitations. o o o e e 197
10.7 Calibration. e 197
10.8 Extensions — Deriving Better Profilers. 198
Internet Protocols and Support 203
11.1 cgi — Common Gateway Interface support.. e 203
11.2 urlib — Open an arbitrary objectgivenby URL. 209
11.3 httplib —HTTP protocolclient. e 211
11.4 ftplib —FTPprotocolclient. e 213
11.5 gopherlib — Gopher protocolclient 216
11.6 poplib —POP3protocolclient. 216
11.7 imaplib — IMAP4 protocolclient e 218
11.8 nntplib —NNTP protocolclient. e 220
11.9 smtplib — SMTP protocolclient. e 223
11.10telnetlib —Telnetclient 226
11.11urlparse — Parse URLsinto components.. o o i i i i i i e 228

12

13

14

15

16

11.12SocketServer — A framework for network servers.. o 229

11.13BaseHTTPServer —BasicHTTP server.. it e 231
11.14SimpleHTTPServer — A Do-Something RequestHandler. 233
11.15CGIHTTPServer — A Do-Something RequestHandler 234
11.16asyncore — Asyncronous sockethandler. 234
Internet Data Handling 239
12.1 sgmllib — Simple SGML parser. 0 e e 239
12.2 htmllib — AparserforHTML documents 241
12.3 htmlentitydefs — Definitions of HTML general entities 243
12.4 xmllib — Aparserfor XMLdocuments. 243
12.5 formatter = — Generic output formatting oL 246
12.6 rfc822 —Parse RFC822mailheaders. e 249
12.7 mimetools — Tools for parsing MIMEmessages i v v i v i i i i 252
12.8 MimeWriter — Generic MIME filewriter 253
12.9 multifile — Support for files containing distinctparts. oo oL 254
12.10binhex — Encode and decode binhex4files 256
12.11uu — Encode and decode uuencodefiles L Lo Lo 256
12.12binascii ~ — Convert between binary amdsCil Lo 257
12.13xdrlib — Encode and decode XDRdata.. 258
12.14mailcap — Mailcap file handling.. e 260
12.15mimetypes — Map filenamesto MIME types. oL 261
12.16base64 — Encode and decode MIME base64 data. 262
12.17quopri — Encode and decode MIME quoted-printabledata 263
12.18mailbox — Read various mailboxformats oL oL 263
12.19mhlib — Accessto MH mailboxes e 263
12.20mimify — MIME processing of mailmessages. e 265
12.21netrc —netrcfile processing. 266
Restricted Execution 269
13.1 rexec — Restricted execution framework oL 270
13.2 Bastion — Restrictingaccesstoobjects o 272
Multimedia Services 273
14.1 audioop — Manipulateraw audiodata 273
14.2 imageop — Manipulaterawimagedata. 276
14.3 aifc — Read and write AIFFand AIFCfiles. oo 277
14.4 sunau — Read and write Sun AUfiles 279
145 wave — Read and write WAV files. e 281
14.6 chunk —Read IFFchunkeddata. 283
14.7 colorsys — Conversions between colorsystems 284
14.8 rghimg — Read and write “SGIRGB"files 284
14.9 imghdr — Determinethetypeofanimage.., 285
14.10sndhdr — Determine type of soundfile.. o 286
Cryptographic Services 287
15.1 md5— MD5 message digestalgorithm. 287
15.2 sha — SHA message digestalgorithm. 288
15.3 mpz— GNU arbitrary magnitude integers 288
15.4 rotor — Enigma-like encryption and decryption.. oL ool 289
SGI IRIX Specific Services 291
16.1 al —Audio functionsonthe SGl e 291
16.2 AL — Constantsused withtted module 293
16.3 cd — CD-ROM access on SGISystems i i it e e 293

16.4 fl — FORMS library interface for GUl applications. 296
16.5 FL — Constants used withtife module 301
16.6 flp — Functions for loading stored FORMS designs. 302
16.7 fm — Font Managelinterface. e 302
16.8 gl — Graphics Libraryinterface 303
16.9 DEVICE— Constantsused withthgd module 305
16.10GL— Constants used withttgd module 305
16.11imgfile — Support for SGlimglibfiles o 305
16.12jpeg — Read and write JPEGfiles. 306
17 SunOS Specific Services 309
17.1 sunaudiodev — AccesstoSunaudiohardware., 309
17.2 SUNAUDIODEW- Constants used wittunaudiodev 310
18 MS Windows Specific Services 311
18.1 msvert — Useful routines from the MS VC++runtime. L. 311
18.2 winsound — Sound-playing interface for Windows. oL 312
19 Undocumented Modules 313
19.1 Frameworks. e e 313
19.2 Miscellaneous useful utilities. e 313
19.3 Platform specificmodules L e 313
19.4 Multimedia. e 314
195 Obsolete. 314
19.6 Extensionmodules L 315
Module Index 317
Index 319

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, like socket 1/O; others provide interfaces that are
specific to a particular application domain, like the World-Wide Web. Some modules are avaiable in all versions
and ports of Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use iriffanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, e.d, OL, 0.0 .

e any empty sequence, e.y.,, () ,[] -

e any empty mapping, e.d} .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retionfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex Q)
x and y | if xis false, therx, elsey 1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operators, so a@. a == is interpreted asot(a == b) ,
anda == not b isasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarilyxeg.y <= z is equivalenttax < y and y

<= z, except thay is evaluated only once (but in both casess not evaluated at all whex < vy is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
I= not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’'t choose beteeeand C! :-)

Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (e.g., win-
dows) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such
objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric typeglain integers long integers floating point numbersand complex numbersPlain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the fame rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy Q)
X %y remainder ok / vy
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(X) x converted to floating point
complex(re, im) | acomplex number with real pas, imaginary parim. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, x %) 3)
pow(X, YY) x to the powery
X ¥y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is O.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftian(s
andceil) in modulemath for well-defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

2As a consequence, the Ijdt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatiens(id ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwiseor of x andy
X"y bitwise exclusive oof x andy
X &y bitwiseandof x andy
X << n | xshifted left byn bits (1), (2)
X >> n | xshifted right byn bits (1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quoteyzzy’ ,"frobozz" . See Chapter 2 of tHeython Reference
Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheseas, p,gg or() . A single item tuple must

have a trailing comma, e.dd,)

Sequence types support the following operations. Tie &nd ‘not in ' operations have the same priorities as the
comparison operations. The 'and **’ operations have the same priority as the corresponding numeric operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s | ncopies ofsconcatenated 3)
9] i'th item of s, origin O 1)
g i] slice ofsfromi toj @), @
len(9) length ofs
min(s) smallest item of
max(s) largest item of

Notes:

3They must have since the parser can't tell the type of the operands.

Chapter 2.

Built-in Types, Exceptions and Functions

(1) If i orj is negative, the index is relative to the end of the string,le@(s) + iorlen(s) + |is substituted.
But note thatO is still 0.

(2) The slice ofsfromi to] is defined as the sequence of items with indexich that <= k < j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usd. If j is omitted, usden(s) . If i is greater than or equal {p
the slice is empty.

(3) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typsg).as

More String Operations

String objects have one unique built-in operation: %heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple*cijedollowing format characters

are understood% c, s, i, d, u, 0, X, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurédépand%nare not supported. Since Python strings have

an explicit length%sconversions don't assume tHel' is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tR&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> |anguage = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modtrlag and in built-in modulee .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

4A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromi to is replaced by
del di:j] sameas i: j] =[]
s.append(x) same ag{len(s)len(9] = [X
s.extend(Xx) same agllen(s)len(9] = x (5)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such that[i] == x 1)
sinsert(i, X) sameasi:i] = [x] ifi >= 0
s.pop([i]) sameax = di]; del g i]; return X (4)
s.remove(X) same aslel ¢ sindex(X)] D)
s.reverse() reverses the items afin place 3)
s.sort([cmpfund) sort the items o§in place (2), (3)

Notes:

(1) Raises an exception wheris not found ins.

(2) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metsod$) andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

(3) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(4) Thepop() method is experimental and not supported by other mutable sequence types than lists. The optional
argument defaults to-1 , so that by default the last item is removed and returned.

(5) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable types other than lists.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (&.gnd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wleaadb are mappingsk is a key, ands andx are arbitrary
objects):

8 Chapter 2. Built-in Types, Exceptions and Functions

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
akl = x seta k] tox
del a[kK removea k] froma D)
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key(k) | 1if ahas akey, else0
a.items() a copy ofa’s list of (key, value pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k, v in b.items(): ak] = v 3
a.values() a copy ofa’s list of values (2)
aget(k[, x]) | a[K if ahas _key(K), elsex @)

Notes:

(1) Raises &eyError exception ifk is not in the map.

(2) Keys and values are listed in random order.

(3) b must be of the same type as

(4) Never raises an exceptionkifis not in the map, instead it returfsf is optional; wherf is not provided and is

not in the mapNone is returned.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a hame

defined inm's symbol table. Module attributes can be assigned to. (Note thatribert
speaking, an operation on a module objauiport

it requires an (externatlefinitionfor a module nametbo somewhere.)

A special member of every module is dict __.

statement is not, strictly

foo does not require a module object naniedto exist, rather

This is the dictionary containing the module’s symbol table.

Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thiet __

attribute is not possible (i.e., you can write __dict __[a] = 1

write m. __dict

=0

Modules built into the interpreter are written like thismodule 'sys’ (built-in)>

they are written asmodule 'os’ from ’/usr/local/lib/pythonl.5/0s.pyc’>

Classes and Class Instances

See Chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions.

fung argument-lis} .

, which defineam.a to bel, but you can'’t

. If loaded from a file,

The only operation on a function object is to call it:

2.1. Built-in Types

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributésnc _code is a function’scode objec{see below) and
f.func _globals is the dictionary used as the function’s global name space (this is the same_aslict
wheremis the module in which the functidhwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methimals:self is the object on
which the method operates, andm _func is the function implementing the method. Callim§arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theirfunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhes defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nant&itipsis (a built-in name).

It is written asEllipsis

10 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using G&lio package and can be created with the built-in functpen() de-
scribed section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
posix.popen() andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&mror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()

Close the file. A closed file cannot be read or written anymore.
flush ()

Flush the internal buffer, liketdio s fflush()
isatty ()

Returnl if the file is connected to a tty(-like) device, elBe

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friends.

read ([size])
Read at mossizebytes from the file (less if the read hi®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned wheBoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aOFis hit.) Note that this method may call the underlying C funci@ad() more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢aien
is hitimmediately. Note: unlikstdio ’'sfgets() ,the returned string contains null characté® () if they
occurred in the input.

readlines ([sizehint])
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mehint
argument is present, instead of reading ugaa, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read.

seek (offse{, Whencd)
Set the file’s current position, likstdio s fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) addseek relative to the
file’s end). There is no return value.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file's size. If the optional size argument present, the file is truncated to (at most) that size. The size
defaults to the current position. Availability of this function depends on the operating system version (e.g., not
all UNIX versions support this operation).

write (str)

6The advantage of leaving the newline on is that an empty string can be returned t@ areaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

Write a string to the file. There is no return value. Note: due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to meatdhnes() ;
writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attributesldbe() method
changes the value.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the forrs!..> . This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifdfpace attribute,
which should be initialized to zero. This will be automatic for classes implemented in Python; types imple-
mented in C will have to provide a writabseftspace attribute.

Internal Objects

See thePython Reference Manu#br this information. It describes code objects, stack frame objects, traceback
objects, and slice objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict
A dictionary of some sort used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[f§., __methods __ yields['append’, 'count’,
'index’, 'insert’, 'pop’, 'remove’, 'reverse’, 'sort’]

__members__
Similar to__methods __, but lists data attributes.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5, all standard exceptions have been converted to class objects, and users are encouraged to do the same. The

12 Chapter 2. Built-in Types, Exceptions and Functions

source code for those exceptions is present in the standard library neoagletions ; this module never needs to
be imported explicitly.

For backward compatibility, when Python is invoked with tXeoption, most of the standard exceptions are stfings
This option may be used to run code that breaks because of the different semantics of class based excepons. The
option will become obsolete in future Python versions, so the recommended solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofékeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootElaeption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard exceptions
are used, they are tuples containing the directly derived classes.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions excB8gstemExit . StandardError itself is derived from the
root class€Exception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError
ZeroDivisionError , FloatingPointError

LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

EnvironmentError
The base class for exceptions that can occur outside the Python sy®termor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instarcets attribute (it is assumed
to be an error number), and the second item is available osttbror attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as

"For forward-compatibility the new exceptiofxception , LookupError , ArithmeticError , EnvironmentError , andStan-
dardError are tuples.

2.2. Built-in Exceptions 13

above, while the third item is available on tlilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefihe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised. They are class objects, exceptheptibe
is used to revert back to string-based standard exceptions.

AssertionError
Raised when aassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError s raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined
in the ‘config.h’ file.

IOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to

find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lntrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipnt() orraw _input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@doc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotlmplementedError

14 Chapter 2. Built-in Types, Exceptions and Functions

This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

OSEtrror
This class is derived frof&environmentError and is used primarily as thies module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimpan statement, in arexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfileutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionsir() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpretersys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemEXxit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

When class exceptions are used, the instance has an attrdagewhich is set to the proposed exit status or
error message (defaulting done). Also, this exception derives directly froException and notStan-
dardError , since it is not technically an error.

A call to sys.exit() is translated into an exception so that clean-up handferally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sincteg&rror

2.2. Built-in Exceptions 15

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thgnport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghe statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_ owmport __()

function.

For example, the statementmport spam ' results in the following call: __import __(’'spam’,
globals(), locals(), [1) ; the statementfrom spam.ham import eggs results in
__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even thouglo-

cals() and[eggs’] are passed in as arguments, theémport __() function does not set the local
variable nameakggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitgls argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named hyame However, when a non-emptgomlistargument is given, the
module named bpameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ', the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugstattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(name):
mod = __import__(name)
components = string.split(name, '.")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg{, keywordé)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingund args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdbgctargument. The buffer object will be a slice from

16 Chapter 2. Built-in Types, Exceptions and Functions

the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whascil code is the integer e.g.,chr(97) returns the stringg’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusive.

cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

coerce (X,Y)

Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed lBxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; passstgng>’
if it wasn't read from a file. Th&ind argument specifies what kind of code must be compiled,; it caaxss’
if string consists of a sequence of statemetgsal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagj or convert a string or number to a complex number. Each
argument may be any numeric type (including compleximiigis omitted, it defaults to zero and the function
serves as a numeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, namg
This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) is equivalenttalel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectfict __,
__methods __and__members__ attributes, if defined. The listis not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The
resulting list is sorted alphabetically. For example:

>>> jmport sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]
>>>

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(iig, a %
b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. Inany casé¢ b + a % bis

2.3. Built-in Functions 17

very close ta, if a % bis non-zero it has the same signtagand0 <= abs(a % b) < abs(b).

eval (expressio[n, globale[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthizalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thrglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneak is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpiye()). In this case
pass a code object instead of a string. The code object must have been compiled’paasing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ¢ihabals andlocals dictionaries as global and local name

space. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted,

the expression is executed in the environment weeesfile() is called. The return value None.

filter (function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufictionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensital goatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, namg
The arguments are an object and a string. The string must be the name of one of the object’s attributes. The
result is the value of that attribute. For exampgjetattr(x, ' foobar) is equivalent toc. foobar.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,

8|t is used relatively rarely so does not warrant being made into a statement.

18 Chapter 2. Built-in Types, Exceptions and Functions

0 if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macHie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disjunct may have the &i{ne value.) (Implementation
note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(promp)) .

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

int (x)
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical
to string.atoi(X) . Otherwise, the argument may be a plain or long integer or a floating point number.
Conversion of floating point numbers to integers is defined by the C semantics; normally the conversion truncates
towards zerd.

isinstance (object, clasy
Return true if theobjectargument is an instance of tledassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns falstad$is neither a class object nor a
type object, al'ypeError exception is raised.

issubclass (classl, classp
Return true iftlasslis a subclass (direct or indirect) dfass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. If sequencés already a list,
a copy is made and returned, similardequende] . For instancelist('abc’) returns returng§'a’,
b, ¢ andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAldning: the contents of this dictionary should

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 19

not be modified; changes may not affect the values of local variables used by the interpreter.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idersicagatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioniédt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWitne items. Iffunctionis None, the identity function is assumed,; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumend, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerd, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit mactoo;1) vyields’'037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

open (filename{, mode{, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openethodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), anid’ opens it for appending (which @aomeUNIx
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&’ . When opening a binary file, you should appéod to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is u¥ed.

ord (¢)
Return theascii value of a string of one character. E.grd('a’) returns the integed7. This is the inverse
of chr()

pow(X, y[z])
Returnx to the powery; if z is present, returx to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; eagw(2, -1) orpow(2, 35000) is not allowed.

10specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

20 Chapter 2. Built-in Types, Exceptions and Functions

range ([start,] stop{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmmedloops.
The arguments must be plain integers. If gtepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ...] . If stepis positive, the last element is the largesrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6, 7, 8 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

1

>>> range(1, 0)

1

>>>

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &@res read,
EOFError israised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python's Flying Circus"
>>>

If the readline module was loaded, thenaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequen{einitializer])
Apply functionof two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (modulg

Re-parse and re-initialize an already imponteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the patrtially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions

2.3. Built-in Functions 21

of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepgsfor
__main __and__builtin ~ __. In certain cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usirgm ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefuamthe
statement, another is to ugeport and qualified namesr{odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed teval()

round (x[, n])
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenynifinus
two multiples are equally close, rounding is done away from 0 (soregnd(0.5) is 1.0 andround(-
0.5) is-1.0).

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] sto;{, step])
Return a slice object representing the set of indices specifiedrime(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittais , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] .

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequencas already
a tuple, it is returned unchanged. For instartagle(abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objec)
Return the type of anbject The return value is a type object. The standard motiygdes defines names for
all built-in types. For instance:

>>> jmport types
>>> if type(x) == types.StringType: print "It's a string"

vars ([object])

22 Chapter 2. Built-in Types, Exceptions and Functions

Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ([start,] stop{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.

MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

11 the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 23

24

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
types
UserDict
UserList
operator
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
imp

parser
symbol
token
keyword
tokenize
pyclbr
code
codeop
pprint

repr

py _compile
compileall
dis

new

site

user
__builtin __
__main __

Access system-specific parameters and functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

All Python’s standard operators as built-in functions.

Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistency.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Access the implementation of thmport statement.

Access parse trees for Python source code.

Constants representing internal nodes of the parse tree.
Constants representing terminal nodes of the parse tree.
Test whether a string is a keyword in Python.

Lexical scanner for Python source code.

Supports information extraction for a Python class browser.
Code object services.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.

Compile Python source files to byte-code files.

Tools for byte-compiling all Python source files in a directory tree.
Disassembler.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

25

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usintdtiamand
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned dnype valug tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objaa)ie gets the exception parameter (&ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning theracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best dorteywith &nally

statement) or to caltxc _info() in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback
Deprecated since release 1.®Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handi&d,_type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefix argument to
the configure script. Specifically, all configuration files (e.g. thephfig.h’ header file) are installed in the
directoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + ’/lib/python versiorilib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer level.

26 Chapter 3. Python Services

The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.

If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed tesys.stderr and results in an exit code of 1. In particulgys.exit("some error

message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Note: the exit function is not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() s called.

getrefcount (objec)
Return the reference count of tlkject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeitréscount()

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke faype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path

A list of strings that specifies the search path for modules. Initialized from the environment variable $PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is insertezforethe entries inserted as a result of $PYTHON-

PATH.
platform
This string contains a platform identifier, e.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.
prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed; by
default, this is the stringfusr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the diregboeyix
+ 'llib/python versiori while the platform independent header files (all excephfig.h’) are stored in
prefix + ’linclude/python versiori , whereversionis equal toversion[:3]

3.1. sys — System-specific parameters and functions 27

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &®&> ' and’... ' . If a non-string object is
assigned to either variable, #&() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuee= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fgture.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr
File objects corresponding to the interpreter’'s standard input, output and error stretims. is used for
all interpreter input except for scripts but including callsnput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the promptsamit() andraw _input()
The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hadtey) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr __
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defdl008. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter.

3.2 types — Names for all built-in types.

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * ' — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

28 Chapter 3. Python Services

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).

FloatType
The type of floating point numbers (e 4.0).

ComplexType

The type of complex numbers (e .0j).
StringType

The type of character strings (e!§pam’).

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

3.2. types — Names for all built-in types.

29

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sygs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

3.3 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviours to dictionaries.

TheUserDict module defines theserDict class:

UserDict ()
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which
is accessible via théata attribute ofUserDict instances.

In addition to supporting the methods and operations of mappings (see section2séff)ict instances provide
the following attribute:

data
A real dictionary used to store the contents of theerDict class.

3.4 UserList — Class wrapper for list objects

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to lists.

TheUserList module defines thelserList class:

UserList ([Iist])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via thedata attribute ofUserList instances. The instance’s contents are initially set to a cofdistof
defaulting to the empty lisf] . list can be either a regular Python list, or an instancé&sérList (or a
subclass).

30 Chapter 3. Python Services

In addition to supporting the methods and operations of mutable sequences (see sectiodsedL&, instances
provide the following attribute:

data
A real Python list object used to store the contents ottherList class.

3.5 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

Theoperator module defines the following functions:

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

sub (a, b)
__sub__(a,b
Returna- b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

div (a, b
_div __(a,b
Returna/ b.

mod(a, b)
__mod__(a,b
Returna %b.

neg(o)
__neg__(0)
Returno negated.

pos (0)
__pos__(0)
Returno positive.

abs (0)
__abs__(0)
Return the absolute value of

inv (0)
__inv __(0)
Return the inverse aj.

Ishift (a, b)
__Ishift __(a,b
Returna shifted left byb.

rshift (a, b
__rshift __(a, b
Returna shifted right byb.

and _(a, b
__and__(a, b

3.5. operator — Standard operators as functions. 31

Return the bitwise and & andb.

or (a,b
__or__(a,b
Return the bitwise or o andb.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

not _(o)

__not __(0)
Return the outcome afiot 0. (Note that there is na_not __() discipline for object instances; only the
interpreter core defines this operation.)

truth (o)
Returnl if ois true, and 0 otherwise.

concat (a, b)
__concat __(a,b
Returna + b for a andb sequences.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artgis an integer.

contains (a, b
sequencelncludes (a, b
Return the outcome of the tdsin a. Note the reversed operands.

countOf (a,b)
Return the number of occurrencestah a.

indexOf (a, b)
Return the index of the first of occurrenceloi a.

getitem (a,b)
__getitem __(a,b)
Return the value ad at indexb.

setitem (a,b,Q
__setitem __(a,b,q
Set the value o at indexb to c.

delitem (a,b)
__delitem __(a,b)
Remove the value af at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a,b,9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

32 Chapter 3. Python Services

>>> jmport operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayaldes _traceback
andsys.last _traceback and returned as the third item frosys.exc _info()

The module defines the following functions:

print _tb (tracebacl[, Iimit[, file]])
Print up tolimit stack trace entries frormaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba&klimit[, file]])
Print exception information and up tamit stack trace entries fronracebackto file. This differs from
print _tb() inthe following ways: (1) itracebackis notNone, it prints a headerTraceback (inner-
most last): ’; (2) it prints the exceptionypeandvalueafter the stack trace; (3) ffpeis SyntaxError
andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret indicating
the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file)’. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl{, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback thajeeback
It is useful for alternate formatting of stack traces.litfit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy) representing the
information that is usually printed for a stack trace. Thetis a string with leading and trailing whitespace
stripped; if the source is not available ithne.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formagxas for
tract _tb() . The optionaF andlimit arguments have the same meaning apfort _stack()

format _list (list)

3.6. traceback — Print or retrieve a stack traceback 33

Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready

for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.ast _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8ntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are contatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[, limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

3.6.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.7 linecache — Random access to text lines

34 Chapter 3. Python Services

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢back module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedfilename This function will never throw an exception — it will returh on
errors.

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you know that you do not need to read lines from many of files you already
read from using this module.

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> import linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\012’

3.8 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistency — althopigkle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thaickle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as th#Pickle module. This has the same interface exceptfiektler —andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Unlike the built-in modulemarshal , pickle handles the following correctly:

e recursive objects (objects containing references to themselves)
e object sharing (references to the same object in different places)

e user-defined classes and their instances

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicspkle s

3.8. pickle — Python object serialization 35

representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fonthe
argument to th@ickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichitmershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written uspickle , it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of gsintiable
characters. The resolution of such names is not defined hyitkke module — the persistent object module will
have to implement a methqebrsistent _load() . To write references to persistent objects, the persistent module
must define a methqggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled,tsinit __() method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a _getinitargs __() method.

If it is desirable that the__init __() method be called on unpickling, a class can define a method
__getinitargs __() , which should return #uple containing the arguments to be passed to the class construc-
tor (__init __()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the mefbisthte __()

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate __() , itis called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate __() method, the instance’s_dict __ is pickled. If there
isno__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bathgetstate () and__setstate __() , the state object needn’t be

a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in theopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class's__setstate __() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

36 Chapter 3. Python Services

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

pickle.Unpickler(f)
u.load()

A shorthand is:

x = pickle.load(f)

ThePickler class only calls the methddwrite() with a string argument. Thenpickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thPickler class has an optional second argumbint, If this is present and nonzero, the binary
pickle format is used; if it is zero or absent, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e strings

e tuples, lists and dictionaries containing only picklable objects
e classes that are defined at the top level in a module

e instances of such classes whasalict __ or __setstate __() is picklable

Attempts to pickle unpicklable objects will raise tReklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to tltump() method of the sam®ickler instance. These must then be
matched to the same number of calls tolthexd() method of the correspondingnpickler instance. If the same

object is pickled by multiplelump() calls, theload() will all yield references to the same objetarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the sd®itkler instance, the object is not pickled again — a reference to

it is pickled and thdJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation abectto the open file objectile. This is equivalent toPickler(file,
bin).dump(objec) . If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

3.8. pickle — Python object serialization 37

load (file)
Read a pickled object from the open file objélet. This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passBakber.dump()

See Also:

Modulecopy _reg (section 3.10):
pickle interface constructor registration

Moduleshelve (section 3.11):
indexed databases of objects; upekle

Modulecopy (section 3.12):
shallow and deep object copying

Modulemarshal (section 3.13):
high-performance serialization of built-in types

3.9 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality agpthele module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteRectiat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingitide module, so it is possible to ugéckle
andcPickle interchangably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it's possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each others pickles back in.)

3.10 copy _reg — Register pickle support functions

Thecopy _reg module provides support for thckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor.

pickle (type, functimﬁ, constructoﬂ)
Declares thatunctionshould be used as a “reduction” function for objects of type or digses functionshould
return either a string or a tuple. The optiorahstructorparameter, if provided, is a callable object which can
be used to reconstruct the object when called with the tuple of arguments returhatttignat pickling time.

38 Chapter 3. Python Services

3.11 shelve — Python object persistency

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (#&mor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not suppazbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Wix file locking can be used to solve this, but this differs acrossxUversions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.7):
Generic interface tdbm-style databases.

Moduledbhash (section 7.9):
BSDdb database interface.

Moduledbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.8):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Modulepickle (section 3.8):
Obiject serialization used tshelve .

3.11. shelve — Python object persistency 39

ModulecPickle (section 3.9):
High-performance version gfickle

3.12 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy
X = copy.copy(y) # make a shallow copy of y
X = copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferémcesnto it to
the objects found in the original.

e A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:
e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a

recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs _ () ,__getstate __() and__setstate __() . See the description of modubéckle for
information on these methods. Thepy module does not use tlepy _reg registration module.

In order for a class to define its own copy implementation, it can define special methedpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadiepeopy()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.8):
Discussion of the special disciplines used to support object state retrieval and restoration.

40 Chapter 3. Python Services

3.13 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistency” module. For general persistency and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules gfy/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supp¢otes:integers, long

integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where it should be understood
that tuples, lists and dictionaries are only supported as long as the values contained therein are themselves supported;
and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the comaesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen()

If the value has (or contains an object that has) an unsupported tyjfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldady)

load (file)
Read one value from the open file and return it. If no valid value is read, E&)$eError , ValueError or
TypeError . The file must be an open file object.

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, rei&@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.14 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbe statement. It defines the follow-
ing constants and functions:

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would beratshtie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

3.13. marshal — Alternate Python object serialization 41

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has th¢ $offrx mode
type , wheresuffixis a string to be appended to the module name to form the filename to searafofte,
is the mode string to pass to the builtépen() function to open the file (this can Bbe for text files or
'rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCHEY_COMPILED or
C_EXTENSION described below.

find _module (nam({, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduldPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour&/(RESOURCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triplde, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, addscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

not live in afile, the returnefile is None, filenameis the empty string, and traescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses dabove. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In ordePtdAfine.,
submoduleM of packageP, usefind _module() andload _module() to find and load package, and
then usdfind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported, it
is equivalent to aeload() ! Thenameargument indicates the full module name (including the package name,
if this is a submodule of a package). Tfike argument is an open file, aritenameis the corresponding file
name; these can done and” , respectively, when the module is not being loaded from a file.dBseription
argument is a tuple as returnedfilyd _module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (uspattError)
is raised.

Important: the caller is responsible for closing tfike argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (namg
Return a new empty module object calleaime This object ismotinserted insys.modules

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE

42 Chapter 3. Python Services

The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thrindjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin ~ (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise animportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callestame None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (namg
Returnl if there is a built-in module calledamewhich can be initialized again. Returh if there is a built-in
module callechamewhich cannot be initialized again (sest _builtin()). Return0 if there is no built-in
module callechame

is _frozen (nameg
Returnl if there is a frozen module (sé@t _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Tifeargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeasbain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. TlEeneargument is used to construct
the name of the initialization function: an external C function calied ‘' namd) ' in the shared library is
called. The optiondfile argment is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigyc’ or ‘.pyo’) exists, it will be used instead of
parsing the given source file.

3.14. imp — Access the import internals 43

3.14.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincénd _module() has been extended and
load _module() hasbeenaddedin1.4.)

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incleelead() function can be
found in the standard modulmee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.15 parser — Access parse trees for Python code

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of ugiagsre module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to fAgthon Language Referenc&he parser itself is created from

a grammar specification defined in the fi@ammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
theexpr() orsuite() functions, described below. The AST objects createddgyuence2ast() faithfully

simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

44 Chapter 3. Python Services

Each element of the sequences returnedastlist() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
‘Include/graminit.h’ and the Python moduleymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the
parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywoifl in anif _stmt , are included in the node tree without any special treatment. For exam-
ple, theif keyword is represented by the tugle 'if’) , Wherel is the numeric value associated with JAME

tokens, including variable and function names defined by the user. In an alternate form returned when line humber
information is requested, the same token might be representéd &8, 12) , Where thel2 represents the line
number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of ithe keyword above is representative. The various types of
terminal symbols are defined in the C header filelide/token.h’ and the Python moduleken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

See Also:

Modulesymbol (section 3.16):
Useful constants representing internal nodes of the parse tree.

Moduletoken (section 3.17):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

3.15.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create teeal’ and’exec’ forms.

expr (string)
Theexpr() function parses the parametgring as if it were an input tocompile(string, 'eval’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

suite (' string)
Thesuite() function parses the parametdring as if it were an input tocompile(string, 'exec’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

sequence2ast (sequence
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be valid®edeaError exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passecbtopileast() . This may indicate
problems not related to syntax (such dd@amoryError exception), but may also be due to constructs such as
the result of parsingel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

3.15. parser — Access parse trees for Python code 45

Sequences representing terminal tokens may be represented as either two-element lists of {ie form
‘'name’) or as three-element lists of the for(h, 'name’, 56) . If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols in
the input tree.

tuple2ast (sequence
This is the same function agquence2ast() . This entry point is maintained for backward compatibility.

3.15.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (ast[, Iine_info])
This function accepts an AST object from the calleastand returns a Python list representing the equivelent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspectiomast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which thendkerhis
information is omitted if the flag is false or omitted.

ast2tuple (ast[, Iine_info])
This function accepts an AST object from the calleagtand returns a Python tuple representing the equivelent
parse tree. Other than returning a tuple instead of a list, this function is identasttiost()

If line_info is true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, filename = ’'<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-eval() function. This function provides the interface to
the compiler, passing the internal parse tree fastto the parser, using the source file name specified by the
filenameparameter. The default value suppliedfitenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example woulslylodexEr-

ror caused by the parse tree fitgl f(0) : this statement is considered legal within the formal grammar for
Python but is not a legal language construct. BlgataxError raised for this condition is actually generated
by the Python byte-compiler normally, which is why it can be raised at this point hyafser module. Most
causes of compilation failure can be diagnosed programmatically by inspection of the parse tree.

3.15.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source @gh(Yia or suite()
or from a parse tree visequence2ast()

isexpr (asi
Whenastrepresents aeval'’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created lmpmpileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

46 Chapter 3. Python Services

issuite (asi
This function mirrorgsexpr() in that it reports whether an AST object represent&eaerc’ form, com-
monly known as a “suite.” It is not safe to assume that this function is equivelenotoisexpr(asf) ’, as
additional syntactic fragments may be supported in the future.

3.15.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built iByntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed teequence2ast() and an explanatory string. Calls $equence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionsompileast() ,expr() ,andsuite() may throw exceptions which are normally thrown
by the parsing and compilation process. These include the built in excepliem®ryError , OverflowError
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated

with them. Refer to the descriptions of each function for detailed information.

3.15.5 AST Objects

AST objects returned bgxpr() ,suite() andsequence2ast() have no methods of their own.

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (usicigehe
module) is also supported.

ASTType
The type of the objects returned bypr() ,suite() andsequence2ast()

AST objects have the following methods:

compile ([filenamd)
Same agompileast(ast filenam@g.

isexpr ()

Same assexpr(as) .
issuite ()

Same asssuite(as) .

tolist ([line_info])
Same asist2list(ast, line_info) .

totuple ([Iine,info])
Same asst2tuple(ast line_info) .

3.15.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulationobthpile() built-in function and the complex example

shows the use of a parse tree for information discovery.

3.15. parser — Access parse trees for Python code 47

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using tharser module to produce an intermediate data structure is equivelent to the
code

>>> code = compile(a + 5’, ’eval’)
>>> g = 5

>>> eval(code)

10

The equivelent operation using tparser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(a + 5)
>>> code = parser.compileast(ast)

>>> g = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
code = parser.compileast(ast)
return ast, code

def load_expression(source_string):
ast = parser.expr(source_string)
code = parser.compileast(ast)
return ast, code

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter ing@ort . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located iDéhw/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited

48 Chapter 3. Python Services

measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defingef bgtatement at
column zero of a module, but not a function defined within a branch df an. else construct, though there are

some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large
number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the fileGrammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (Sedofikring.py’.)

Some documentation.

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> jmport parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = parser.ast2tuple(ast)
>>> pprint.pprint(tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,
(293,
(294,
(295,
(296,
(297,
(298,
(299,
(300, (3, ™"Some documentation.\OL2"")M,
C))P
4 "),
©, ")

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. Howevesyitiigol andtoken modules provide symbolic

names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the2bgerd three additional tuples.
Node type257 has the symbolic namide _input . Each of these inner tuples contains an integer as the first ele-
ment; these integergp4, 4, andO, represent the node typssnt , NEWLINE andENDMARKERespectively. Note
that these values may change depending on the version of Python you are using; spmsoltgy’ and ‘token.py’ for

3.15. parser — Access parse trees for Python code 49

details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the momensstifihe node is much more interesting. In

particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described

structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple
pattern matching approach to check any given subtree for equivelence to the general pattern for docstrings. Since the
example demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form,
allowing a simple variable representation to[lvariable _name’] . A simple recursive function can implement

the pattern matching, returning a boolean and a dictionary of variable name to value mappings. (Seenfile.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is None:
vars = {}

if type(pattern) is ListType:
vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (Seesfitariple.py’.)

50 Chapter 3. Python Services

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,
(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, ['docstring’])
MMM
(token.NEWLINE, ™)

)

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously
is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found

1

>>> vars

{docstring”: "™"Some documentation.\012"""}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt nodeinacode blocKile _input orsuite node types). Amodule consists ofasinfile _input node,

and class and function definitions each contain exactlysoite node. Classes and functions are readily identified

as subtrees of code block nodes which start \{gtimt, (compound _stmt, (classdef, ... or (stmt,

(compound _stmt, (funcdef, Note that these subtrees cannot be matcheohditigh() since it does

not support multiple sibling nodes to match without regard to number. A more elaborate matching function could be
used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it representdlcthielnfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

3.15. parser — Access parse trees for Python code 51

The public classes includ€lassinfo , Functioninfo , and Modulelnfo . All objects provide the meth-

odsget _name() , get _docstring() , get _class _names() , andget _class _info() . TheClass-
Info objects supporget _method _names() and get _method _info() while the other classes provide
get _function _names() andget _function _info()

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base SlaissinfoBase , with the accessors for function

and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of tdef statement to define both types of elements.

Most of the accessor functions are declared®intelnfoBase and do not need to be overriden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuitelnfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of th&uiteInfoBase definition from ‘example.py’:

class SuitelnfoBase:
_docstring = "
_hame =’

def _ init_ (self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:
self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:
found, vars = match(DOCSTRING_STMT_PATTERNI1], tree[l])
else:
found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:
self._docstring = eval(vars['docstring’])
discover inner definitions
for node in tree[l:]:
found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:
cstmt = vars['compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]

self._function_info[name] = FunctionInfo(cstmt)
elif cstmt[0] == symbol.classdef:

name = cstmt[2][1]

self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls tleatract _info() method. This method performs

the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

52 Chapter 3. Python Services

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):
return x ** vy
return raiser

When the short form is used, the code block may contain a docstring as the first, and possitdynalfily, stmt

element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is ongmaile _stmt node

in thesimple _stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds usimgtittg) function as described
above, and the value of the docstring is stored as an attribute SlitelnfoBase object.

After docstring extraction, a simple definition discovery algorithm operates ostihie nodes of thesuite node.
The special case of the short form is not tested; since there atnto nodes in the short form, the algorithm will
silently skip the singlsimple _stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The repesentation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provideSuitgline
foBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-level function
can be used to extract the complete set of information from a source file. (Sesditele.py’.)

def get_docs(fileName):
source = open(fileName).read()
import os
basename = os.path.basename(os.path.splitext(fileName)[0])
import parser
ast = parser.suite(source)
tup = parser.ast2tuple(ast)
return Modulelnfo(tup, basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

3.16 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to th@dilenar/Grammar’ in the Python distribution for the
defintions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

3.16. symbol — Constants used with Python parse trees 53

sym_name
Dictionary mapping the numeric values of the constants defined in this module back to nhame strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

Moduleparser (section 3.15):
second example uses this module

3.17 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file Grammar/Grammar’ in the Python distribution for the defintions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok _name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(X)
Return true for terminal token values.

ISNONTERMINAL x)
Return true for non-terminal token values.

ISEOF(X)
Return true ifx is the marker indicating the end of input.

See Also:

Moduleparser (section 3.15):
second example uses this module

3.18 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (9
Return true ifsis a Python keyword.

3.19 tokenize — Tokenizer for Python source

Thetokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize (readline{, tokeneate])
Thetokenize() function accepts two parameters: one representing the input stream, and one providing an
output mechanism faokenize()

The first parametergadling must be a callable object which provides the same interface asdléne()

54 Chapter 3. Python Services

method of built-in file objects (see section 2.1.7). Each call to the function should return one line of input as a
string.

The second parametdgkeneater must also be a callable object. It is called with five parameters: the token
type, the token string, a tuplesrow, scol) specifying the row and column where the token begins in the

source, a tupl€ erow, eco) giving the ending position of the token, and the line on which the token was
found. The line passed is thagical line; continuation lines are included.

All constants from theoken module are also exported frotokenize , as is one additional token type value that
might be passed to thtekeneatefunction bytokenize()

COMMENT
Token value used to indicate a comment.

3.20 pyclbr — Python class browser support

Thepyclbr can be used to determine some limited information about the classes and methods defined in a module.
The information provided is sufficient to implement a traditional three-pane class browser. The information is extracted
from the source code rather than from an imported module, so this module is safe to use with untrusted source code.
This restriction makes it impossible to use this module with modules not implemented in Python, including many
standard and optional extension modules.

readmodule (module[, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The pamiukter
should be the name of a module as a string; it may be the name of a module within a packguethpasameter
should be a sequence, and is used to augment the vakys.giath , which is used to locate module source
code.

3.20.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returmeddiyodule() provide the following data
members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described. Classes which
are named as superclasses but which are not discoverab&atisnodule() are listed as a string with the
class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file namefildoy .

3.21 code — Code object services.

3.20. pyclbr — Python class browser support 55

Thecode module defines operations pertaining to Python code objects. It defines the following function:

compile _command source,[filenameE, symbo]])
This function is useful for programs that want to emulate Python'’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &lmaisin
always makes the same decision as the real interpreter main loop.

Arguments:sourceis the source strindilenameis the optional filename from which source was read, defaulting
to '<input>" ; andsymbolis the optional grammar start symbol, which should be eitsiegle’ (the
default) oreval’

Return a code object (the samecasnpile(source filename symbo)) if the command is complete and
valid; returnNone if the command is incomplete; raiSyntaxError if the command is a syntax error.

3.22 codeop — Compile Python code

Thecodeop module provides a function to compile Python code with hints on whether it certainly complete, possible
complete or definitely incomplete. This is used by thhele module and should not normally be used directly.

Thecodeop module defines the following function:

compile _command source[, filenam{, symboﬂ])
Try to compilesource which should be a string of Python code. Return a code objsctifceis valid Python
code. In that case, the filename attribute of the code object willddeme which defaults to<input>’

ReturnNone if sourceis notvalid Python code, but is a prefix of valid Python code.
Raise an exception if there is a problem wsthurce

eSyntaxError if there is invalid Python syntax.
eOverflowError if there is an invalid numeric constant.

The symbolargument means whether to compile it as a staten&ng(e’ , the default) or as an expression

(eval').

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

3.23 pprint — Data pretty printer.

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. Construd®rettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

PrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tereamkeyword; the only method used on the stream object is the file protocol's
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordisdeng depth andwidth. The amount

56 Chapter 3. Python Services

of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... ". By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>>
>>>
>>>
>>>
>>>

[

>>>
>>>
>>>
>>>
>>>

[

import pprint, sys

stuff = sys.path[:]

stuff.insert(0, stuff[:])

pp = pprint.PrettyPrinter(indent=4)

pp.pprint(stuff)

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],
"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

import parser

tup = parser.ast2tuple(
parser.suite(open(’pprint.py’).read()))[1][1][1]

pp = pprint.PrettyPrinter(depth=6)

pp.pprint(tup)

(266, (267, (307, (287, (288, (...))N))

ThePrettyPrinter

class supports several derivative functions:

pformat (objec)
Return the formatted representatiombifectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation object on stream followed by a newline. Ifstreamis omitted,

sys.stdout

is used. This may be used in the interactive interpreter insteacpdhts statement for in-

specting values. The default parameters for formatting are used.

>>>
>>>
>>>

stuff = sys.path[:]
stuff.insert(0, stuff)
pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/python1.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

3.23. pprint — Data pretty printer. 57

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representelexsifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", 'lusr/local/lib/pythonl.5’, '/usr/loca
Illib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, '/usr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.23.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation aifject This takes into Account the options passed to Fhet-
tyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.24 repr — Alternate repr() implementation.

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr ()
Class which provides formatting services useful in implementing functions similar to the brelpif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usediepr() and the Python debugger.

58 Chapter 3. Python Services

repr (obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.24.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulxdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defadt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner agxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tgpr() . This uses the type abjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value oflevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method nameypeis replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.24.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

3.24. repr — Alternate repr() implementation. 59

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in ['<stdin>’, '<stdout>’, '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.25 py_compile — Compile Python source files.

Thepy _compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of the
users may not have permission to write the byte-code cache files in the directory containing the source code.

compile (file[, cfilg], dfile]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from the
file namefile. The byte-code is written tofile, which defaults tdile + 'c’ (‘o' if optimization is enabled in
the current interpreter). Hfileis specified, it is used as the name of the source file in error messages instead of
file.

See Also:

Modulecompileall (section 3.26):
Utilities to compile all Python source files in a directory tree.

3.26 compileall — Byte-compile Python libraries.

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree, allowing users without permission to write to the libraries to take advantage of cached
byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories hamed on the
command line or irsys.path

compile _dir (dir[, maxleveIE, ddir]])
Recursively descend the directory tree namedliny compiling all “py’ files along the way. Thenaxlevels
parameter is used to limit the depth of the recursion; it default®tdf ddir is given, it is used as the base path
from which the filenames used in error messages will be generated.

compile _path ([skip_curdir[, maxlevels}])
Byte-compile all the.py’ files found alongsys.path . If skip_curdir is true (the default), the current directory
is not included in the search. Timeaxlevelgparameter defaults t0 and is passed to theompile _dir()
function.

See Also:

Modulepy _compile (section 3.25):
Byte-compile a single source file.

60 Chapter 3. Python Services

3.27 dis — Disassembler.

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the fileIhclude/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functiomyfunc :

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembstyyfiinc()

>>> dis.dis(myfunc)

0 SET_LINENO 1
3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)
12 CALL_FUNCTION 1

15 RETURN_VALUE

16 LOAD_CONST 0 (None)

19 RETURN_VALUE

Thedis module defines the following functions:

dis ([bytesourcé)
Disassemble thbytesourcebject. bytesourcean denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

disto ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, Iasti])
Disassembles a code object, indicating the last instructitastf was provided. The output is divided in the
following columns:

1.the current instruction, indicated as> ’,

2.a labelled instruction, indicated with>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, Iasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

3.27. dis — Disassembler. 61

opname
Sequence of a operation names, indexable using the byte code.

cmp_op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

hascompare
Sequence of byte codes of boolean operations.

3.27.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP_CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POR_TOP
Removes the top-of-stack (TOS) item.

ROTTWO
Swaps the two top-most stack items.

ROT.THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP_TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARYPOSITIVE
ImplementsTOS = +TOS
UNARYNEG
ImplementsTOS = -TOS
UNARYNOT
ImplementsTOS = not TOS.
UNARY CONVERT
ImplementsTOS = ‘TOS*.

UNARY.INVERT
ImplementsTOS = "TOS

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY_POWER

62 Chapter 3. Python Services

ImplementsTOS = TOS1 ** TOS

BINARY_MULTIPLY
ImplementsTOS = TOS1 * TOS

BINARY_DIVIDE
ImplementsTOS = TOS1 / TOS

BINARY_MODULO
ImplementsTOS = TOS1 %TQS

BINARY_ADD
ImplementsTOS = TOS1 + TOS

BINARY_SUBTRACT
ImplementsTOS = TOS1 - TOS

BINARY_SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY_LSHIFT
ImplementsTOS = TOS1 << TOS

BINARY_RSHIFT
ImplementsTOS = TOS1 >> TOS

BINARY_AND

ImplementsTOS = TOS1 and TOS
BINARY_XOR

ImplementsTOS = TOS1 = TOS
BINARY_OR

ImplementsTOS = TOS1 or TOS
The slice opcodes take up to three parameters.
SLICE+0

ImplementsTOS = TOS[:] .
SLICE+1

ImplementsTOS = TOS1[TOS].
SLICE+2

ImplementsTOS = TOS1[:TOS1] .
SLICE+3

ImplementsTOS = TOS2[TOS1:TOS].
Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.
STORESLICE+0

ImplementsTOS[:]] = TOS1 .
STORESLICE+1

ImplementsTOS1[TOS:] = TOS2 .
STORESLICE+2

ImplementsTOS1[:TOS] = TOS2.

STORESLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3.

DELETE_SLICE+0
Implementsdel TOS[:]

3.27. dis — Disassembler.

DELETE SLICE+1
Implementsdel TOS1[TOS:]

DELETE_SLICE+2
Implementsdel TOS1[:TOS]

DELETE_SLICE+3
Implementgdel TOS2[TOS1:TOS] .

STORESUBSCR
ImplementsTOS1[TOS] = TOS2.
DELETE_SUBSCR
Implementgdel TOS1[TOS] .
PRINT_EXPR

Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminateP@EhSTACK

PRINT_ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT_NEWLINE

Prints a new line orsys.stdout . This is generated as the last operation of a print statement, unless the
statement ends with a comma.

BREAK LOOP
Terminates a loop due to a break statement.

LOAD LOCALS

Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

EXEC.STMT
Implementseexec TOS2,TOS1,TOS . The compiler fills missing optional parameters with None.

POP_BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END_FINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD _CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORENAME namei
Implementsname = TOS nameiis the index ofnamein the attributeco _names of the code object. The
compiler tries to usSSTORE.LOCALor STORE GLOBALIf possible.

DELETE_NAME namei
Implementgdel name , wherenameiis the index intaco _names attribute of the code object.

UNPACKTUPLE count
Unpacks TOS int@ountindividual values, which are put onto the stack right-to-left.

UNPACKLIST count

64 Chapter 3. Python Services

Unpacks TOS int@ountindividual values.

STOREATTR namei
ImplementsTOS.name = TOSJ, wherenameiis the index of name iBo _names.

DELETE_ATTR namei
Implementgdel TOS.name , usingnameias index intaco _names.

STOREGLOBAL namei
Works asSTORE.NAMEDbut stores the name as a global.

DELETE_GLOBAL namei
Works asDELETE_NAMEbut deletes a global name.

LOAD_CONST consti
Pushesco _consts[const] ' onto the stack.

LOAD_NAME namei
Pushes the value associated witb names[name] ' onto the stack.

BUILD _TUPLE count
Creates a tuple consumirguntitems from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST count
Works asBUILD _TUPLE, but creates a list.

BUILD _MAP zero
Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOADATTR namei
Replaces TOS witlgetattr(TOS,co _names[hame] .

COMPAREOP opname
Performs a boolean operation. The operation name can be fowngpnop[opnamé.

IMPORT_NAME namei
Imports the moduleo _names[name] . The module object is pushed onto the stack. The current name space
is not affected: for a proper import statement, a subseddiERE FAST instruction modifies the name space.

IMPORT_FROM namei
Imports the attributeo _names[name] . The module to import from is found in TOS and left there.

JUMP_FORWARDdelta
Increments byte code counter dglta

JUMP_IF _TRUE delta
If TOS is true, increment the byte code counterdajta TOS is left on the stack.

JUMPLIF _FALSE delta
If TOS is false, increment the byte code countedejta TOS is not changed.

JUMP_ABSOLUTE target
Set byte code counter target

FOR_LOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code countdeltyy Otherwise, push the sequence, the incremented
counter, and the current item onto the stack.

LOAD GLOBAL namei
Loads the global namezb _names[name] onto the stack.

SETUR_LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with alsita of

3.27. dis — Disassembler. 65

bytes.

SETUP_EXCEPT delta
Pushes a try block from a try-except clause onto the block sthdta points to the first except block.

SETUPRP_FINALLY delta
Pushes a try block from a try-except clause onto the block stidtapoints to the finally block.

LOADFAST var_num
Pushes a reference to the local_varnames[var_nuni onto the stack.

STOREFAST var_num
Stores TOS into the locab _varnames|[var_nuni .

DELETE_FAST var_num
Deletes locato _varnames[var_num .

SET_LINENO lineno
Sets the current line number lineno.

RAISE_VARARGS argc
Raises an exceptiorargc indicates the number of parameters to the raise statement, ranging from 1 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL_FUNCTION argc
Calls a function. The low byte @frgcindicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKE.FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to havargc default parameters, which are found below TOS.

BUILD_SLICE argc
Pushes a slice object on the stagkgc must be 2 or 3. If it is 2glice(TOS1, TOS) s pushed; ifitis 3,
slice(TOS2, TOS1, TOS) s pushed. See thadice() built-in function.

3.28 new — Runtime implementation object creation

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class, dic}
This function creates an instance @ésswith dictionarydict without calling the__init __() constructor.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, cla¥s
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable, andnstancemust be an instance objectbne.

function (code, gIobaIE, name[argdefs]])
Returns a (Python) function with the given code and globalsaifieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takedaeoo _name.
If argdefsis given, it must be a tuple and will be used to the determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab

66 Chapter 3. Python Services

This function is an interface to tHeyCode_New() C function.

module (namg
This function returns a new module object with nana@ne namemust be a string.

classobj (name, baseclasses, gdict
This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.29 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsitaipesfix and
sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses firstlib/pythonversiorisite-packages’ and then lib/site-python’ (on UNIX). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgdpath , and also inspected for path
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added teys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped.

For example, supposys.prefix andsys.exec _prefix are setto/usr/local’. The Python 1.5.2 library is then
installed in fusr/local/lib/pythonl1.5" (note that only the first three characterssyk.version are used to form the
path name). Suppose this has a subdirectagy/local/lib/pythonl.5/site-packages’ with three subsubdirectoriesipb’,
‘bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:
bar package configuration
bar
Then the following directories are addedslgs.path , in this order:

/usr/local/lib/pythonl.5/site-packages/bar
lusr/local/lib/pythonl.5/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; thaal’ directory precedes thdoo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration

3.29. site — Site-specific configuration hook 67

file.

After these path manipulations, an attempt is made to import a module ref@eastomize , which can perform
arbitrary site-specific customizations. If this import fails withlexportError exception, it is silently ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.30 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file .pythonrc.py’ in the user's home directory and if it can be opened, exececutes it
(usingexecfile()) in its own (i.e. the moduleser 's) global namespace. Errors during this phase are not caught;
that's up to the program that imports theer module, if it wishes. The home directory is assumed to be named by
the SHOME environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabfer.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoutdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.29):
site-wide customization mechanism

3.31 __Dbuiltin ___ — Built-in functions

68 Chapter 3. Python Services

This module provides direct access to all ‘built-in’ identifiers of Python; e.chuiltin -~ __.open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.32 __main __ — Top-level script environment.

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input or from a script file.

3.32. __main __ — Top-level script environment. 69

70

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Perl-style regular expression search and match operations.
regex Regular expression search and match operations.
regsub Substitution and splitting operations that use regular expressions.
struct Interpret strings as packed binary data.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version oBtringlO , but not subclassable.
4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:
digits
The string0123456789’

hexdigits
The string'0123456789abcdefABCDEF

letters
The concatenation of the stringavercase() anduppercase() described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopqgrstuvwxyz’ . Do not change its definition — the effect on the routinpper()
andswapcase() is undefined.

octdigits
The string01234567’

uppercase

A string containing all the characters that are considered uppercase letters. On most systems this is the string
"ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifeser()
andswapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines

71

strip() andsplit() is undefined.
The functions defined in this module are:

atof (s)
Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, basﬂ)
Convert strings to an integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{' or ‘- ’). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sigx’ ‘or ‘0X’ means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or ‘0X’ is always accepted. Note that when invoked withbaseor
with baseset to 10, this behaves identical to the built-in functiotf) when passed a string. (Also note: for
a more flexible interpretation of numeric literals, use the built-in functieal() .)

atol (s[, bas@)
Convert strings to a long integer in the givebhase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asafoi() . Atrailing ‘I "or ‘L’
is not allowed, except if the base is 0. Note that when invoked withasieor with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize ('word)
Capitalize the first character of the argument.

capwords (9)
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s, [tabsizd)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, starl[,end]])
Return the lowest index iswhere the substringubis found such thatubis wholly contained irg] start end .
Return-1 on failure. Defaults fostartandendand interpretation of negative values is the same as for slices.

rfind (s, suki, starl[, end]])
Like find() but find the highest index.
index (s, suk{, starl[, end]])
Like find() but raiseValueError when the substring is not found.

rindex (s, suk[, starl{, end]])
Like rfind() but raisevValueError when the substring is not found.

count (s, sut{, starl{, end]])
Return the number of (non-overlapping) occurrences of substtibin string g start end . Defaults forstart
andendand interpretation of negative values is the same as for slices.

lower (9)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each

72 Chapter 4. String Services

character iffrominto the character at the same positiondnfrom andto must have the same length.

Warning: don’t use strings derived frohowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, alwayswee) andupper()

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesgpis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and ndtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumemaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahexcstit-1

elements).

splitfields (s[, se;{, maxspliﬂ])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single

space character. It is always true thatting.join(string.split(S, sep, sep’equalss.
joinfields (Words{, sep])
This function behaves identical foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.)
Istrip (9
Return a copy o$ but without leading whitespace characters.
rstrip (9
Return a copy of but without trailing whitespace characters.
strip (9

Return a copy o$ without leading or trailing whitespace.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters frommthat are indeletechargif present), and then translate the characters usibp
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9
Return a copy 0§, but with lower case letters converted to upper case.

ljust (s, width

riust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stemgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill - (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firstnaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldeverimport the latter module directly. Whestring discovers thastrop exists, it

4.1. string — Common string operations 73

transparently replaces parts of itself with the implementation fstnop . After initialization, there isno overhead
in usingstring instead ofstrop

4.2 re — Perl-style regular expression operations.

This module provides regular expression matching operations similar to those found in Perl. It's 8-bit clean: the strings
being processed may contain both null bytes and characters whose high bit is set. Regular expression pattern strings
may not contain null bytes, but can specify the null byte using thembernotation. Characters with the high bit set

may be included. Thee module is always available.

Regular expressions use the backslash charaétgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have td\Write as the pattern

string, because the regular expression must\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ™. So r'\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidagidiB are both regular expressions,
thenABis also an regular expression. If a stripgnatches A and another striggmatches B, the stringq will match

AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characteés,‘ Bkedr

‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast . (In the rest of this section, we’ll write RE’s itthis special style I

usually without quotes, and strings to be matcliedsingle quotes’)

Some characters, lik¢ *or * (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘. (Dot.) In the default mode, this matches any character except a newline. BE@FALLflag has been
specified, this matches any character including a newline.

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string, and MULTILINE mode also matches before a newliffeo ; matches
both 'foo’ and 'foobar’, while the regular expressiioo$; matches only 'foo’.

“*' Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* ;will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

74 Chapter 4. String Services

()

1?)

7,472,727

{m, n}

{m, n}?

(.)

..)

(?iLmsx)

Causes the resulting RE to match 1 or more repetitions of the precedingREwill match 'a’ followed
by any non-zero number of 'b’s; it will not match just 'a’.

Causes the resulting RE to match 0 or 1 repetitions of the precedindgBE.will match either 'a’ or
‘ab’.

The *’, *+’, and “?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn’'t desired; if the RE.*> | is matched againstH1>title</H1>’ , it will match the
entire string, and not juskH1>' . Adding ‘?’ after the qualifier makes it perform the matchrion-
greedyor minimal fashion; affew characters as possible will be matched. Usiig ;in the previous
expression will match onRgH1>" .

Causes the resulting RE to match fremto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examfd€3,5} will match from 3 to 5 &’ characters. Omitting
specifies an infinite upper bound; you can’t omit

Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strinpaaaaa’ , 'a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefs Jike', and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn't recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For exampléakm$] ; will match any of the charactera”, ‘k’, ‘m, or ‘$’; Ta-z] ; will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes subtl as

or\S (defined below) are also acceptable inside a range. If you want to inclydeoaa ‘-’ inside a

set, precede it with a backslash, or place it as the first character. The dgkterwill match’] , for
example.

You can match the characters not within a rangedayplementinghe set. This is indicated by including
a "’ as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] ;will match any character excef"

A|B, where A and B can be arbitrary RES, creates a regular expression that will match either A or B.
This can be used inside groups (see below) as well. To match a literalse\| ;, or enclose it inside a
character class, as fif] .

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litgfats“’) ’, use\(;or

\)), or enclose them inside a character cldgk:[)] .

This is an extension notation (2'*following a ‘(' is not meaningful otherwise). The first character after

the 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group{?P< name-...) | is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the sét’, ‘L', ‘m, ‘s’, ‘x’.) The group matches the empty string; the letters
set the corresponding flage(l ,re.L ,re.M ,re.S ,re.X) for the entire regular expression. This is
useful if you wish to include the flags as part of the regular expression, instead of pa8amgrgument

to thecompile() function.

4.2. re — Perl-style regular expression operations. 75

(?:...)

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the greamotbe retrieved after performing a match or referenced
later in the pattern.

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-

bolic group nhamename Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named 'id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name
in arguments to methods of match objects, sucmagoup(’id’) or m.end(’id") , and also by
name in pattern text (e.§?P=id)) and replacement text (e.\g<id>).

(?P=namg Matches whatever text was matched by the earlier group naiared

(?#...)
(?=..)
(2L...)

A comment; the contents of the parentheses are simply ignored.

Matchesifl... ;matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) will match’lsaac ' only ifit's followed by 'Asimov’
Matches if... | doesn't match next. This is a negative lookahead assertion. For exatsphs

(?'Asimov) ;will match’lsaac only if it's notfollowed by’Asimov’

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarkplenatches the charactep’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B
\d
\D
\s
\S

\w

\W

\Z
\

example/(.+) \1 ;matchesthe the’ or’55 55 | butnot'the end” (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber Inside the [' and ‘] ' of a character class, all numeric escapes are
treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character rang#h | represents the backspace character, for compatibility with Python’s string
literals.

Matches the empty string, but only when itist at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the e8] .

Matches any non-digit character; this is equivalent to thg€e8] .

Matches any whitespace character; this is equivalent to the S&t\r\fiv] 5
Matches any non-whitespace character; this is equivalent to ti{g $8n\r\fiv] 5

When theLOCALEflag is not specified, matches any alphanumeric character; this is equivalent to the set
Ta-zA-Z0-9 _] . With LOCALE it will match the set[0-9 _], plus whatever characters are defined
as letters for the current locale.

When theLOCALEflag is not specified, matches any non-alphanumeric character; this is equivalent to
the set["a-zA-Z0-9 _],. With LOCALE it will match any character not in the sf@-9 _], and not
defined as a letter for the current locale.

Matches only at the end of the string.

Matches a literal backslash.

76

Chapter 4. String Services

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl's semantics, the search operation is what you're looking for. Sex#ineh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning Wit ° matches only at the start

of the string, or iNMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmstional
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile(""a", re.M).search("\na", 1) # succeeds
re.compile(""a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

I

IGNORECASE
Perform case-insensitive matching; expressions TikeZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w, \W, \b ;, \B , dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defatihatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.

4.2. re — Perl-style regular expression operations. 77

S

DOTALL
Make the : ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.

X
VERBOSE
This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line egsmaitisea *
in a character class or preceded by an unescaped backslash, all characters from the leftm&5sttsocigh
the end of the line are ignored.

search (pattern, stringi, flags])
Scan througlstring looking for a location where the regular expresspatternproduces a match, and return a
correspondingMatchObject instance. ReturiNone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match (pattern, string{, flags])
If zero or more characters at the beginningtring match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheredtring, usesearch() instead.

split (pattern, string,[, maxsplit = 0])
Split string by the occurrences gattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occu