Xlib = C Language X Interface
X Consortium Standard

X Version 11, Release 6.7 DRAFT

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, Sun Microsystems, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn WidenerTektronix, Inc.

Shigeru Yamada, Fujitsu OSSI

The X Windav System is a trademark of The Open Group.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, ygarson obtaining a cgpf this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, cgpmodify and distribute this documentation forygourpose and without fee is hereby granted,
provided that the alve cpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation foy parpose. lis provided “as is'without express or implied war-
ranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital EQuipment Corporation and Ron Newman of Midth at MIT Project AthenaX version 11,
however, is the result of the efforts of dozens of individuals at almost ay hoaations and
organizations. Atthe risk of offending some of the players by exclusion, we woutddik
acknowledge some of the people who desgpecial credit and recognition for their work on

Xlib. Our apologies to anyone inadvertentiyedooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from peppidnere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brurii@®ektronix) who was “loaned'to Project Athena at

exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not va had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of DigstalL.T RIX Documentation Group.

With good humor and chediney took a rough draft and made it an infinitely better and more use-
ful document. The work tlyghavedone will help mawn everywhere. V¢ dso would like to hank

Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to fIBfike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the windananager properties; and to @aRosenthal (Sun Microsystems)

who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants desgrgcial recognition and thanks as well. It is signifi-
cant that the bug reports (and mdixes) during alpha and beta test came almost exelysi

from just a fev of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors andaysities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam FuNéce-President of Corporate Research at Digital, who
has remained committed to the widest publalability of X and who made it possible to greatly
supplement MITS resources with the Digital sfah order to mak version 11 a realityMary of

the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Snegk\Wallace, who has been vital to the

projects aiccess. Othensot mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanforedity and nav of
Digital UEG-WSL, who wrote \WWthe predecessor to X, and Brian Reid, formerly of Stanford
University and nav of Digital WRL, who had much to do with \&/design.

Finally, our thanks goes to MITDigital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying thethle
functions for Inter-Client Communication Gamtions (ICCCM) support.

We dso thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Carrse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5

The principal authors of the Input Method facilities are Vania Jolglyden Software Founda-
tion) and Bill McMahon (Hewlett-&ckard). Theprincipal author of the rest of the international-
ization facilities is Glenn Widener €ktronix). Ourthanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, maihers hae cntributed substantially to the design and imple-
mentation. ®m McFarland (HP) and Frank Rojas (IBM) desgparticular recognition for their
contritutions. Othecontributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Da (HP), Chih-Chung K (lll), Vera Cheng (lll), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), Keisuk Fukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Haey (BM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Wasedavéisity), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Terukilrosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masal(i#ujitsu), Masato

Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We ae deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhirav#&Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (SgrCorporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck AdamseKtronix). Joanaylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Waam (SGI), Donna
Corverse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), @aSernlicht (MIT X Consor-

tium), Kumar Talluri (AT&T), and Richard Verbg(IBM).

We dso once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks alsove Eather (1XI) for proof-reading
and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much
of the design are due to them, mathers hae ontributed substantially to the design and imple-
mentation. The are: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Frabkng (Digital), Tom McFar-

land (HP), Hiroyuki Miyamoto (Digital), MasahikNarita (Fujitsu), Frank Rojas (IBM),

Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), FrankLing (Digital), Hiroyuki Miyamoto (Digital),

Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who hee mntributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makik Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Windav System is a network-transparent wimdsystem that was designed at MIX

display servers run on computers with either monochrome or color bitmap displayteardke
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in theanktwXlib is a C subroutine library that appli-
cation programs (clients) use to interface with the winggstem by means of a stream connec-

tion. Althougha dient usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib = C Languae X hterfaceis a reference guide to the lowskC language interface to the X
Window System protocol. It is neither a tutorial nor a useriide to programming the X Win-

dow System. Ratheiit provides a detailed description of each function in the library as well as a
discussion of the related background informati¥lib — C Languaye X hterfaceassumes a

basic understanding of a graphics wiwdsystem and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
Xlib library. For further information about these highevdd ibraries, see the appropriate toolkit
documentation. Th¥ Window System Protocprovides the definiie word on the behavior of

X. Althoughadditional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
. Overview of the X Windav System

. Errors

. Standard header files

. Generic values and types

. Naming and argument ceentions within Xlib

. Programming considerations

. Character sets and encodings

. Formatting comentions

1.1. Owerview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems hee dfferent meanings in X.You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Windav System supports one or more screens containiedapping windows or subwin-
dows. Ascreen is a physical monitor and hardware that can be gagscale, or monochrome.
There can be multiple screens for each displayarkstation. Asingle X server can provide dis-
play services for gannumber of screensA set of screens for a single user with oegtioard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each higsaach
root windav, which covers each of the display screens. Each root winidggpartially or com-
pletely cavered by child windas. All windows, except for root windows, V&parents. Therés
usually at least one windofor each application program. Child windows may in turvehaeir

Xlib — C Library X11, Release 6.7 DRAFT

own children. Inthis way an gplication program can create an arbitrarily deep tree on each
screen. Xprovides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child wiredm extend
beyond the boundaries of the parent, but all output to a wirgldipped by its parent. If seral
children of a windw haveoverlapping locations, one of the children is considered to be on top of
or raised wer the others, thus obscuring them. Output to areasred by other windows is sup-
pressed by the wingosystem unless the windohas backing store. If a windois obscured by

a £cond windwy, the second winde obscures only those ancestors of the second wiirllat

are also ancestors of the first wimdo

A window has a border zero or more pixels in width, which can lpgatiern (pixmap) or solid
color you like. Awindow usually but not aliays has a background pattern, which will be
repainted by the windw system when uncared. Childwindows obscure their parents, and
graphic operations in the parent wimdasually are clipped by the children.

Each windwv and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, O] at the upper-left co@mordinates are
integral, in terms of pixels, and coincide with pixel centér. a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to presetie contents of windes. Whenpart or all of a winde is hid-

den and then brought back onto the screen, its contents may be lost. The server then sends the
client program arexposeevent to notify it that part or all of the wingoneeds to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to asatras.

Most of the functions in Xlib just add requests to an output buffeese requests latexeeute
asynchronously on the X servdtunctions that return values of information stored in the server
do not return (that is, tyeblock) until an explicit reply is receéd or an eror occurs. You can
provide an error handlewhich will be called when the error is reported.

If a client does not want a request ¥e@ite asynchronouslit can follow the request with a call
to XSync, which blocks until all previously buffered asynchronovanés hae keen sent and
acted on. As an important side effect, the output buffer in Xlibnayal flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource 1D, which allows you to refer to objects
stored on the X serveihese can be of typ&/indow, Font, Pixmap, Colormap, Cursor, and
GContext, as cfined in the file X11/X.h>. Thesaesources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programg-onts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple Etetstsre often

cached in the serveKlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed ofemts. Eents may either be side effects of a request (for exam-
ple, restacking windows generatégposeevents) or completely asynchronous (for example,
from the leyboard). Aclient program asks to be informed ofsts. Becausether applications
can sendents to your application, programs must be prepared to handle (or igneme ef all

types.

Xlib — C Library X11, Release 6.7 DRAFT

Input events (for example, ady ressed or the pointer med) arrive asynchronously from the
server and are queued until yreee requested by an explicit call (for exampt&JextEvent or
XWindowEvent). Inaddition, some library functions (for examp}RaiseWindow) generate
Exposeand ConfigureRequestevents. Thesevents also arxie asynchronouslybut the client
may wish to explicitly wait for them by callingSync after calling a function that can cause the
server to generate/ents.

1.2. Errors

Some functions returBtatus, an integer error indication. If the function fails, it returns a zero.

If the function returns a status of zero, it has not updated the repurmemts. Because does

not provide multiple return values, mafunctions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functionghat return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for awgin request, the server can repory ahthem.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later thap abiially occur For debugging purposes, how-
eva, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported gsatbegenerated.

When Xlib detects an errdt calls an error handlewhich your program can pvade. If you do
not provide an error handlghe error is printed, and your program terminates.

1.3. StandardHeader Files
The following include files are part of the Xlib standard:
. <X11/Xlib.h>

This is the main header file for Xlibrhe majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor syidlilnEpecificationRe-
lease This symbol is defined to faa the 6 in this release of the standard. (Release 5 of
Xlib was the first release to vetis symbol.)

. <X11/X.h>
This file declares types and constants for the X protocol that are to be used by applications.

It is included automatically fromX11/Xlib.h>, so application code shouldvweeneed to
reference this file directly.

. <X11/Xcms.h>
This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix “Xcms”, plus the Colon@imion

Contexts macros, are declared in this fil&X1%/Xlib.h> must be included before including
this file.

. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 andxta./Xib.h>
must be included before including this file.

. <X11/Xresource.lr

This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15XK/Xlib.h> must be included before including this

Xlib — C Library X11, Release 6.7 DRAFT

file.
. <X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix “XA_".
. <X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in appen-
dix B. All cursor symbols hae te prefix “XC_".

. <X11/keysymdef.h»

This file declares all standar&¥Sym values, which are symbols with the prefix “XK_".

The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. Thepreprocessor symbol must be defined prior to inclusion of the file to obtain the
associatedalues. Thereprocessor symbols are XK_MISCELLANXK_XKB_KEYS,
XK_3270, XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK_KA TAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW XK_THAI, and XK_KOREAN.

. <X11/keysym.I»

This file defines the preprocessor symbols XK_MISCELLAXK _XKB_KEYS,
XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, and XK_GREEK and then
includes X11/keysymdef.t».

. <X11/Xlibint.h >

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includ&s X Xlib.h>.

. <X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromx1/Xlibint.h >, so application and exten-
sion code should ner need to reference this file directly.

. <X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromxl1/Xproto.h>, so application and exten-
sion code should ner need to reference this file directly.

. <X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. GenericValues and Types

The following symbols are defined by Xlib and used throughout the manual:

. Xlib defines the typ&ool and the Boolean valués ue and False.

. None is the urwversal null resource ID or atom.

. The typeXID is used for generic resource IDs.

. The typeXPointer is defined to be chaand is used as a generic opaque pointer to data.

1.5. Namingand Argument Corventions within Xlib

Xlib follows a number of corentions for the naming and syntax of the functionsve@ihat you
remember what information the function requires, theseantions are intended to makhe
syntax of the functions more predictable.

Xlib — C Library X11, Release 6.7 DRAFT

The major naming caentions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leges lowercase for variables and all uppercase for user macros, as
per existing covention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More genegalyhing that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capitaldstinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure arevietoase. Compoungords, where
needed, are constructed with underscorgs (

The display argument, where used, i8agks first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a dawable), the graphics context occurs in the argument list after the other
resource. Dnaables outrank all other resources.

Source arguments\abys precede the destination arguments in the argument list.
The x argument alays precedes the y argument in the argument list.
The width argument alays precedes the height argument in the argument list.

Where the x, ywidth, and height arguments are used togetherx and y arguments
always precede the width and height arguments.

Where a mask is accompanied with a structure, the masisaprecedes the pointer to the
structure in the argument list.

1.6. Programming Considerations
The major programming considerations are:

Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for argn levd of performance. Coordinatesually are

declared as amt in the interbce. \Alues larger than 16 bits are truncated silerfilges

(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufactuoekstations. lfyou
want your program to be portable, you should be particularly conservatie.

Mary display systems e limited amounts of off-screen memory you can, you should
minimize use of pixmaps and backing store.

The user should ka @ntrol of his screen real estate. Therefore, you should write your
applications to react to windomanagement rather than presume control of the entire
screen. Whayou do inside of your top-lel window, howeve, is up to your application.
For further information, see chapter 14 andltiter-Client Communication Conventions
Manual

Xlib — C Library X11, Release 6.7 DRAFT

1.7. CharacterSets and Encodings

Some of the Xlib functions makeference to specific character sets and character encodings.
The following are the most common:

. X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A..Z 0.9 I"'#$%&'()*+,-./;;<=>?@[\] _{|} <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. ltis also the set of graphic characters in 7-bit ASCII plus the same three control
characters. Thactual encoding of these characters on the host is system dependent.

. Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

. Latin-1
The coded character set defined by the ISO 8859-1 standard.
. Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

. STRING Encoding

Latin-1, plus tab and newline.
. UTF-8 Encoding

The ASCII compatible character encoding scheme defined by the ISO 10646-1 standard.
. POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a.zA.Z0.9 . -

1.8. Formatting Conventions
Xlib — C Languaye X hterfaceuses the following camentions:

. Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed italics. In the explanatory text that follows, thasually are printed in
regular type.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI Cvénnments. Generaliscussion of the

Xlib — C Library X11, Release 6.7 DRAFT

function, if ary is required, follows the guments. Wherapplicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can geriaage.
complete discussion of the Xlib error codes, see section 11.8.2.

. To diminate aly ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesr, in the case of multiple arguments, the wepecify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn. The explanations for all arguments that you can pass and are
returned start with the wordpecifies and returns

. Any pointer to a structure that is used to return a value is designated as suchrieyutime
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using th_outsuffix.

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 2

Display Functions

Before your program can use a displgyu must establish a connection to the X ser@irce
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the displ@jis chapter discussesviado:

. Open (connect to) the display

. Obtain information about the displaynage formats, or screens
. Generate aNoOperation protocol request

. Free client-created data

. Close (disconnect from) a display

. Use X Server connection close operations

. Use Xlib with threads

. Use internal connections

2.1. Openingthe Display
To gpen a connection to the X server that controls a disps@XOpenDisplay.

Display *XOpenDisplaydisplay _namég
char *display_name

display_name Specifies the hardware display nhame, which determines the display and commu-
nications domain to be used. On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISFLgkvironment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. OROSIX-conformant systems, the display name or DISPé&Avironment

variable can be a string in the format:

Xlib — C Library X11, Release 6.7 DRAFT

protocol/hostnamenumberscreen_number

protocol Specifies a protocol family or an alias for a protocol famypported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-
ified.

hostname Specifies the name of the host machine on which the display is physically
attached. Wu follow the hostname with either a single colon (:) or a double
colon (::).

number Specifies the number of the display server on that host mactinemay
optionally follow this display number with a period (A single CPU can ha
more than one displayMultiple displays are usually numbered starting with
zero.

screen_number
Specifies the screen to be used on that seMattiple screens can be controlled
by a single X serverThe screen_number sets an internal variable that can be
accessed by using tlgefaultScreenmacro or theXDefaultScreenfunction if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named “dual-
headed”:

dual-headed:0.1

The XOpenDisplay function returns display structure that serves as the connection to the X
server and that contains all the information about that X seK@penDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp”, "inet", or

"inet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hosthname and display nund@penDisplay connects using TCP streams. (If

the protocol is specified as "inet", TCRDpIPVv4 is used. If the protocol is specified as "inet6",

TCP over IPv6 is used. Otherwise, the implementation determines which IP version is used.) If
the hostname and protocol are both not specified, Xlib useswehiteelieves is he fastest

transport. Itthe hostname is a host machine name and a double colon (::) separates the hostname
and display numbeXOpenDisplay connects using DECnef single X server can support any

or all of these transport mechanisms simultaneouslgarticular Xlib implementation can sup-

port maly more of these transport mechanisms.

If successful XOpenDisplay returns a pointer to Bisplay structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, dl of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned bipéfaultScreenmacro (or theXDe-
faultScreen function). You can access elements of isplay and Screenstructures only by
using the information macros or functiorisor information about using macros and functions to
obtain information from th®isplay structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

Xlib — C Library X11, Release 6.7 DRAFT

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. Thenacros are used for C programming, and their corresponding
function eguralents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of th®isplay structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications musendirectly modify or inspect these
private members of thBisplay structure.

Note

The XDisplayWidth , XDisplayHeight, XDisplayCells, XDisplayPlanes XDis-
playWidthMM , and XDisplayHeightMM functions in the next sections are mis-
named. Thesginctions really should be named Scwhateverand XScreewhat-
ewer, not Displaywhateveror XDisplaywhatever Our apologies for the resulting
confusion.

2.2.1. DisplayMacros

Applications should not directly modify mipart of theDisplay and Screenstructures. The
members should be considered read-atilgough thg may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding functiovalsais that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.

These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens agdiaseamay not actually be

black or white. The names are intended tovegrthe expected relat intensity of the colors.

10

Xlib — C Library X11, Release 6.7 DRAFT

BlackPixel (display, screen_numbegr

unsigned long XBlackP#&{ (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_numbér

unsigned long XWhiteP#&! (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumbedjsplay)

int XConnectionNumbedisplay)
Display *display,

display Specifies the connection to the X server.

Both return a connection number for the specified dispglaya FOSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormapdisplay, screen_numb@r

Colormap XDehultColormapdisplay, screen_numbér
Display *display;,
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen nhumber on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine

11

Xlib — C Library X11, Release 6.7 DRAFT

allocations of color should be made out of this colormap.

DefaultDepth flisplay, screen_numbér

int XDefaultDepth fisplay, screen_numbér
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root wifidothe specified screen.
Other depths may also be supported on this screeX{da&chVisuallnfo).

To determine the number of depths that ara@lable on a gien screen, useXListDepths.

int *XListDepths display, screen_numbecount_returr)
Display *display,
int screen_number
int *count_return

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that aralable on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number edilable depths. Otherwise, it does not set
count_return and returns NULLTo release the memory allocated for the array of depths, use
XFree.

DefaultGC display, screen_numbg@r

GC XDefaultGC (display, screen_numbér
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root windbthe specified screen. This GC is
created for the carenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the

12

Xlib — C Library X11, Release 6.7 DRAFT

screen, respeeily. You can modify its contents freely because it is not usedyiXhim func-
tion. ThisGC should neer be freed.

DefaultRootWinda (display)

Window XDefaultRootWindav (display)
Display *display;,

display Specifies the connection to the X server.

Both return the root windw for the default screen.

DefaultScreenOfDisplaydisplay)

Screen *XDeaultScreenOfDisplaydisplay)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplaydisplay, screen_numbegr

Screen *XScreenOfDisplag(splay, screen_numbgr
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

DefaultScreendisplay)

int XDefaultScreendisplay)
Display *display,

display Specifies the connection to the X server.

Both return the default screen number referenced bX@enDisplay function. Thismacro or
function should be used to retresthe screen number in applications that will use only a single
screen.

13

Xlib — C Library X11, Release 6.7 DRAFT

DefaultMsual (display, screen_numbér

Visual *XDefaultMsual (display, screen_numbegr
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified scréenfurther information about visual
types, see section 3.1.

DisplayCells ¢lisplay, screen_numbér

int XDisplayCellsdisplay, screen_numbegr
Display *display;,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanesdisplay, screen_numbér

int XDisplayPlanesdisplay, screen_number
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth of the root windof the specified screerkzor an explanation of depth, see
the glossary.

14

Xlib — C Library X11, Release 6.7 DRAFT

DisplayString @isplay)

char *XDisplayString {isplay)
Display *display;,

display Specifies the connection to the X server.

Both return the string that was passeX@penDisplay when the current display was opened.

On POSIX-conformant systems, if the passed string was NULL, these return the value of the DIS-
PLAY environment variable when the current display was opened. These are useful to applica-
tions that inoke the fork system call and want to open amn@nnection to the same display

from the child process as well as for printing error messages.

long XExtendedMaxRequestSizigplay)
Display *display;

display Specifies the connection to the X server.

The XExtendedMaxRequestSiz€unction returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib fubkdicavs-

Lines, XDrawArcs , XFillPolygon, XChangeProperty, XSetClipRectangles and XSetRe-

gion will use the extended-length encoding as necesi$arypported by the servetJse of the
extended-length encoding in other Xlib functions (for examgBrawPoints, XDrawRectan-

gles, XDrawSegments XFillArcs , XFillRectangles, XPutimage) is permitted but not

required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSizéfsplay)
Display *display;

display Specifies the connection to the X server.

The XMaxRequestSizefunction returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requests to the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles XDrawSegments XFillArcs , XFillRectangles, and
XPutlmage.

15

Xlib — C Library X11, Release 6.7 DRAFT

LastkKnavnRequestProcessatigplay)

unsigned long XLastKnenRequestProcesseatigplay)
Display *display,

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlibvie been processed by
the X server Xlib automatically sets this number when repliegnés, and errors are reved.

NextRequestdisplay)

unsigned long XNeRequestdisplay)
Display *display,

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

Protocol\érsion @isplay)

int XProtocol\érsion display)
Display *display;,

display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the connected dis-

play.

ProtocolReision (display)

int XProtocolReision (display)
Display *display;

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

16

Xlib — C Library X11, Release 6.7 DRAFT

QLength display)

int XQLengthdisplay)
Display *display,

display Specifies the connection to the X server.

Both return the length of theent queue for the connected displdyote that there may be more
events that hee rot been read into the queue yet (¥&arentsQueued.

RootWindav(display, screen_numbér

Windowv XRootWindav(display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen humber on the host server.

Both return the root winda These are useful with functions that need avelbde of a particular
screen and for creating topsgtwindows.

ScreenCountlisplay)

int XScreenCountdisplay)
Display *display;,

display Specifies the connection to the X server.

Both return the number of/alable screens.

Server\éndor display)

char *XServer¥éndor @isplay)
Display *display,

display Specifies the connection to the X server.
Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the data returned by the server is in the Latin Portable Character

Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementation-dependent.

17

Xlib — C Library X11, Release 6.7 DRAFT

VendorReleasedisplay)

int XVendorReleaseifsplay)
Display *display;,

display Specifies the connection to the X server.

Both return a number related to a vendozlease of the X server.

2.2.2. ImageFormat Functions and Macros

Applications are required to present data to the X server in a format that the server déimands.
help simplify applications, most of the work required toveninthe data is provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;
} X PixmapFormatValues;

To dbtain the pixmap format information for asgn display, use XListPixmapFormats.

XPixmapFormatValues *XListPixmagiFmats @isplay, count_return
Display *display;,
int *count_return

display Specifies the connection to the X server.
count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array &fPixmapFormatValues structures that
describe the types of Z format images supported by the specified difplagufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, us&Free.

The following lists the C language macros, their corresponding functiovalsais that are for
other language bindings, and what daty thath return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

18

Xlib — C Library X11, Release 6.7 DRAFT

ImageByteOrderdisplay)

int XImageByteOrderdisplay)
Display *display;,

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format (bitmap) or
for each pixel value in Z format. The macro or function can return ditBBFirst or MSB-
First.

BitmapUnit(display)

int XBitmapUnit(display)
Display *display;

display Specifies the connection to the X server.

Both return the size of a bitmapcanline unit in bits. The scanline is calculated in multiples of
this value.

BitmapBitOrder glisplay)

int XBitmapBitOrder display)
Display *display;,

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least significant or most significant bit in the unit. This macro or function can le®BRirst or
MSBFirst .

BitmapRad (display)

int XBitmapRad (display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

19

Xlib — C Library X11, Release 6.7 DRAFT

DisplayHeight ¢lisplay, screen_numbér

int XDisplayHeight@isplay, screen_numbegr
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM display, screen_number

int XDisplayHeightMM (display, screen_numbegr
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWidth (display, screen_numbgr

int XDisplayWdth (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

20

Xlib — C Library X11, Release 6.7 DRAFT

DisplayWdthMM (display, screen_numb@r

int XDisplayWdthMM (display, screen_numbé@r
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Sceen Information Macros

The following lists the C language macros, their corresponding functiovalsais that are for
other language bindings, and what daty theth can return. These macros or functions ak tak
pointer to the appropriate screen structure.

BlackPixelOfScreengcreer)

unsigned long XBlackP&lOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreengcreer)

unsigned long XWhiteP&dOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the white pixel value of the specified screen.

CellsOfScreengcreen

int XCellsOfScreengcreern)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the number of colormap cells in the default colormap of the specified screen.

21

Xlib — C Library X11, Release 6.7 DRAFT

DefaultColormapOfScrees¢reen

Colormap XDe#ultColormapOfScrees¢reen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreersgreen)

int XDefaultDepthOfScreersgreen
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the depth of the root wirwllo

Default GCOfScreenrdcreen

GC XDefaultGCOfScreendcreer)
Screen $creen

screen Specifies the appropriatécreenstructure.

Both return a default graphics context (GC) of the specified screen, which has the same depth as
the root windav of the screen. The GC mustueebe freed.

DefaultVisualOfScreengcreer)

Visual *XDefaultMsualOfScreengcreer)
Screen screen

screen Specifies the appropriatécreenstructure.

Both return the default visual of the specified scrdem.information on visual types, see section
3.1.

22

Xlib — C Library X11, Release 6.7 DRAFT

DoesBackingStoresgreer)

int XDoesBackingStorescreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return a value indicating whether the screen supports backing stores. The value returned can
be one oflWhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaeUnders écreern)

Bool XDoesSaeUnders gcreen
Screen screen

screen Specifies the appropriatcreenstructure.

Both return a Boolean value indicating whether the screen suppeetensiers. IfTrue, the
screen supportsgauwnders. IfFalse, the screen does not supporntesanders (see section 3.2.5).

DisplayOfScreengcreer)

Display *XDisplayOfScreendgcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the display of the specified screen.

int XScreenNumberOfScreesdreern)
Screen screen

screen Specifies the appropriatcreenstructure.

The XScreenNumberOfScreenfunction returns the screen indeumber of the specified screen.

EventMaskOfScreersgreern)

long XEventMaskOfScreersgreern)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the went mask of the root windofor the specified screen at connection setup time.

23

Xlib — C Library X11, Release 6.7 DRAFT

WidthOfScreengcreer)

int XWidthOfScreengcreen
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the width of the specified screen in pixels.

HeightOfScreengcreer)

int XHeightOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the height of the specified screen in pixels.

WidthMMOfScreengcreer)

int XWidthMMOfScreen §creen)
Screen screen

screen Specifies the appropriatécreenstructure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreengcreen

int XHeightMMOfScreensgcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreems€reern)

int XMaxCmapsOfScreerstreen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the maximum number of installed colormaps supported by the specified screen (see

24

Xlib — C Library X11, Release 6.7 DRAFT

section 9.3).

MinCmapsOfScreersgreer)

int XMinCmapsOfScreerscreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreers¢reer)

int XPlanesOfScreers¢reer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the depth of the root wirwilo

RootWindavOfScreensgcreer)

Windowv XRootWindavOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.
Both return the root windw of the specified screen.

2.3. Generatinga NoOperation Protocol Request
To execute aNoOperation protocol request, uséNoOp.

XNoOp (display)
Display *display,

display Specifies the connection to the X server.

The XNoOp function sends &loOperation protocol request to the X seryéitereby &ercising
the connection.

2.4. Freeing Client-Created Data
To free in-memory data that was created by an Xlib functionX&see.

25

Xlib — C Library X11, Release 6.7 DRAFT

XFree [data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified datianust use
it to free amy objects that were allocated by Xlib, unless an alternate function is explicitly speci-
fied for the object A NULL pointer cannot be passed to this function.

2.5. Closingthe Display
To dose a display or disconnect from the X seruee XCloseDisplay.

XCloseDisplaydisplay)
Display *display,

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource Msndow, Font, Pixmap, Colormap,
Cursor, and GContext), or other resources that the client has created on this displegs the
close-down mode of the resource has been changeX$#€loseDownModg. Therefore,

these windows, resource IDs, and other resources shouidheereferenced again or an error

will be generated. Before exiting, you should ¢étloseDisplay explicitly so that ag pending

errors are reported a€CloseDisplay performs a finaXSync operation.

XCloseDisplay can generate BadGC error.

Xlib provides a function to permit the resources owned by a client tosewdter the client’'s
connection is closedTo change a client’ dose-down mode, us¥SetCloseDownMode

XSetCloseDwnMode display, close_modg
Display *display,
int close_modg
display Specifies the connection to the X server.

close_mode Specifies the client close-down modéu can pasdestroyAll, RetainPerma-
nent, or RetainTemporary.

The XSetCloseDownModedefines what will happen to the clientesources at connection
close. Aconnection starts iDestroyAll mode. er information on what happens to the client’s
resources when the close_mode argumeReiginPermanentor RetainTemporary, see sec-
tion 2.6.

XSetCloseDownModecan generate BadValue error.

2.6. UsingX Server Connection Close Operations

When the X serves’aonnection to a client is closed either by an explicit cak@oseDisplay
or by a process that exits, the X server performs the following automatic operations:

26

Xlib — C Library X11, Release 6.7 DRAFT

. It disowns all selections owned by the client (¥&etSelectionOwne).

. It performs anXUngrabPointer and XUngrabKeyboard if the client has actely
grabbed the pointer or theyboard.

. It performs anXUngrabServer if the client has grabbed the server.
. It releases all pas& gabs made by the client.
. It marks all resources (including colormap entries) allocated by the client either as perma-

nent or temporaryepending on whether the close-down modResainPermanentor
RetainTemporary. Howeva, this does not prent other client applications from explic-
itly destroying the resources (sESetCloseDownMods.

When the close-down modeDestroyAll, the X server destroys all of a clientesources as fol-
lows:

. It examines each windwin the clients saveset to determine if it is an inferior (subwin-
dow) of a windav created by the client. (Thewaset is a list of other clients’ windows
that are referred to asv&eset windavs.) If so, the X server reparents theeaet window
to the closest ancestor so that theesset windav is not an inferior of a winde created by
the client. The reparenting s unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of thgesaet windov.

. It performs aMapWindow request on the se-set windaev if the sae-set windav is
unmapped. Th& server does thisven if the sae-set windev was not an inferior of a
window created by the client.

. It destroys all windows created by the client.

. It performs the appropriate free request on each nonwineleource created by the client
in the server (for exampl&ont, Pixmap, Cursor, Colormap, and GContext).

. It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as a result of a connection closing with the close_nieitrof/All

the X server does the following:

. It resets its state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients thatveaierminated inRetainPermanentor RetainTempo-
rary mode.

. It deletes all but the predefined atom identifiers.

. It deletes all properties on all root windows (see section 4.3).

. It resets all device maps and attributes (for exampledick, bell volume, and accelera-
tion) as well as the access control list.

. It restores the standard root tiles and cursors.

. It restores the default font path.

. It restores the input focus to st&einterRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanentor RetainTemporary.

2.7. UsingXlib with Threads

On systems that kia threads, support may be provided to permit multiple threads to use Xlib
concurrently.

27

Xlib — C Library X11, Release 6.7 DRAFT

To initialize support for concurrent threads, udaitThreads .

Status XlInitThreads);

The XlnitThreads function initializes Xlib support for concurrent threads. This function must
be the first Xlib function a multi-threaded program calls, and it must complete bejasthan

Xlib call is made. This function returns a nonzero status if initialization was successful; other-
wise, it returns zero. On systems that do not support threads, this funai@ys edturns zero.

It is only necessary to call this function if multiple threads might use Xlib concutréhély

calls to Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in a toolkit or through explicit client programming), Xlib thread initialization is
not required. It is recommended that single-threaded programs not call this function.

To lock a display acrosswral Xlib calls, useXLockDisplay .

void XLockDisplay display)
Display *display;,

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified disgther
threads attempting to use the display will block until the display is unlocked by this thread.
Nested calls toXLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of timeslaxkDisplay . This function
has no effect unless Xlib was successfully initialized for threads ddnithreads .

To unlock a displayuse XUnlockDisplay .

void XUnlockDisplay display)
Display *display;,

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified displayad\ry

threads that hee Hocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, tkelmlockDisplay must be

called an equal number of times before the display is actually wtdockhisfunction has no

effect unless Xlib was successfully initialized for threads uXimitThreads .

2.8. Usinginternal Connections

In addition to the connection to the X senaar Xib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapteolkis

and clients that use multiple displays, or that use displays in combination with other inputs, need
to obtain these additional connections to correctly block until inpwiikble and need to

process that input when it isailable. Simpleclients that use a single display and block for input

in an Xlib event function do not need to use these facilities.

28

Xlib — C Library X11, Release 6.7 DRAFT

To track internal connections for a displage XAddConnectionWatch.

typedef void (*XConnection\tchProc)dlisplay, client_data fd, opening watch_data
Display *display,
XPointerclient_datg
int fd;
Bool opening
XPointer *watch_data

Status XAddConnectionsltch display, procedure client_datg
Display *display,
XWatchProgrocedure
XPointerclient_datg

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or
closes an internal connection for the specified displéne procedure is passed the dispthg

specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to a locationvatepriatch data. If opening is

Tr ue, the procedure can store a pointer tovate data in the location pointed to by watch_data;
when the procedure is later called for this same connection and opeRadgesthe location

pointed to by watch_data will hold this samevate data pointer.

This function can be called atyatime after a display is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, b&fddConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedure is suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not cayl dfib functions. If the procedure directly or indi-

rectly causes the state of internal connections or watch procedures to change, the result is not
defined. IfXlib has been initialized for threads, the procedure is called with the display locked
and the result of a call by the procedure tp 4lib function that locks the display is not defined
unless thexaecuting thread has externally locked the display usihgckDisplay .

To dop tracking internal connections for a displase XRemoveConnectionWatch.

Status XRemeeConnectionVdtch display, procedure client_datg
Display *display,
XWatchProgrocedure
XPointerclient_datg
display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XRemoveConnectionWatch function remwees a geviously registered connection watch
procedure. Thelient_data must match the client_data used when the procedure was initially

29

Xlib — C Library X11, Release 6.7 DRAFT

registered.

To process input on an internal connection, X&rocessinternalConnection

void XProcessinternalConnectiotigplay, fd)

Display *display;

int fd;
display Specifies the connection to the X server.
fd Specifies the file descriptor.

The XProcessinternalConnectionfunction processes inputalable on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example selector poll) has indicated that input ivalable; otherwise, the effect is not
defined.

To dbtain all of the current internal connections for a displag XInternalConnectionNum-
bers.

Status XInternalConnectionNumbedsgplay, fd_return, count_return
Display *display;,
int **fd_return;
int *count_return

display Specifies the connection to the X server.

fd_return Returns the file descriptors.
count_return Returns the number of file descriptors.

The XInternalConnectionNumbers function returns a list of the file descriptors for all internal
connections currently open for the specified displ&en the allocated list is no longer needed,
free it by usingXFree. This functions returns a nonzero status if the list is successfully allo-
cated; otherwise, it returns zero.

30

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 3

Window Functions

In the X Windav System, a windw is a rectangular area on the screen that lets yau graphic
output. Clientapplications can displaywerlapping and nested windows on one or more screens
that are drien by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by call€@@penDisplay. This chapter begins with a
discussion of visual types and windattributes. Thechapter continues with a discussion of the
Xlib functions you can use to:

. Create windows

. Destrgy windows

. Map windows

. Unmap windows

. Configure windows

. Change windw stacking order

. Change windw attributes

This chapter also identifies the windactions that may generateents.

Note that it is vital that your application conform to the establishegentions for communicat-
ing with windav managers for it to work well with the various windmanagers in use (see sec-
tion 14.1). Toolkits generally adhere to these gamntions for you, relieving you of the burden.
Toolkits also often supersede nydninctions in this chapter with versions of theAamo For more
information, refer to the documentation for the toolkit that you are using.

3.1. Msual Types

On some display hardware, it may be possible to deal with color resources in more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. er each screen of the displdyere may be a list of valid visual types supported at dif-
ferent depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this compleddityprovides macros and
functions that return the default root wingdhe default depth of the default root winga@nd

the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaqu¥isual structure that contains information about the possible color mapping.
The visual utility functions (see section 16.7) useXafisuallnfo structure to return this infor-

mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and colormap_size. The class member speci-
fies one of the possible visual classes of the screen and &tatlo&ray, StaticColor, Tr ue-

Color, GrayScale, PseudoColor, or DirectColor .

The following concepts may serto make the explanation of visual types clear@he screen
can be color or grayscale, carvba olormap that is writable or read-onbnd can also ha a
colormap whose indices are decomposed into separate RGB pieces, provided one is not on a

31

Xlib — C Library X11, Release 6.7 DRAFT

grayscale screen. This leads to the following diagram:

Color Gray-scale
R/O R/W R/IO R/W

Undecomposed Static Pseudo StaticGray

Colormap Color| Color Gray | Scale
Decomposed fOe Direct
Colormap Color| Color

Conceptuallyas ech pixel is read out of video memory for display on the screen, it goes through
a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily on some
hardware, in limited ways on other hardware, and not at all on otherdrardivhevisual types

affect the colormap and the RGB values in the following ways:

. For PseudoColor, a gxel value indees a ®lormap to produce independent RGB values,
and the RGB values can be changed dynamically.

. GrayScaleis treated the same way BseudoColorexcept that the primary that ges the
screen is undefined. Thus, the client shoulthgs store the same value for red, green, and
blue in the colormaps.

. For DirectColor, a gxel value is decomposed into separate RGB subfields, and each sub-
field separately indes the colormap for the correspondinglve. TheRGB values can be
changed dynamically.

. TrueColor is treated the same way BgectColor except that the colormap has prede-
fined, read-only RGBalues. Thes®GB values are server dependent but provide linear or
near-linear ramps in each primary.

. StaticColor is treated the same way BseudoColorexcept that the colormap has prede-
fined, read-onlyserver-dependent RGB values.

. StaticGray is treated the same way 8taticColor except that the RGB values are equal
for ary single pixel value, thus resulting in shades of gr&yaticGray with a two-entry
colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defib@@dtColor and

TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green, and
blue. ActualRGB values are unsigned 16-bit numbers. The colormap_size member defines the
number of gailable colormap entries in a newly created colormiagr. DirectColor and Tr ue-

Color, this is the size of an individual pixel subfield.

To obtain the visual ID from &isual, use XVisualIDFromVisual .

VisuallD XVisuallDFrom\Vsual (visual)
Visual *visual;

visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual ID for the specified visual type.

32

Xlib — C Library X11, Release 6.7 DRAFT

3.2. Window Attributes

All InputOutput windows hae a lorder width of zero or more pixels, an optional background,
an event suppression mask (which suppresses propagatiomatsdrom children), and a prop-
erty list (see section 4.3). The windtorder and background can be a solid color or a pattern,
called a tile. All windows except the rootveea @rent and are clipped by their parent. If a win-
dow is gacked on top of another wingpit obscures that other windofor the purpose of input.

If a windaw has a background (almost all do), it obscures the other wifilopurposes of out-
put. Attemptdo output to the obscured area do nothing, and no imeatse(for example,

pointer motion) are generated for the obscured area.

Windows also hae associated property lists (see section 4.3).

Both InputOutput andInputOnly windows hae the following common attributes, which are
the only attributes of amputOnly window:

. win-gravity

. event-mask

. do-not-propagate-mask

. override-redirect

. cursor

If you specify ag other attributes for amputOnly window, a BadMatch error results.

InputOnly windows are used for controlling inpwtents in situations whernputOutput win-
dows are unnecessarinputOnly windows are invisible; can only be used to control such things
as cursors, inputvent generation, and grabbing; and cannot be usedyigraphics requests.

Note thatinputOnly windows cannot hae InputOutput windows as inferiors.

Windows hae lorders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the wwdbno further explicit references to them are to be
made. Thepattern can either be relaito the parent or absolute. HarentRelative, the par-

ent’s background is used.

When windows are first created, yhare not visible (not mapped) on the screeny Antput to a
window that is not visible on the screen and that does na becking store will be discarded.

An application may wish to create a windtbng before it is mapped to the screen. When a win-
dow is eventually mapped to the screen (usiylapWindow), the X server generates an
Exposeevent for the windav if backing store has not been maintained.

A window manager canwarride your choice of size, border width, and position for a teg-le

window. Your program must be prepared to use the actual size and position of the top. windo

is not acceptable for a client application to resize itself unless in direct response to a human com-
mand to do so. Instead, either your program should use the spet#ogt, or if the space is too

small for ary useful work, your program might ask the user to resize the windbe border of

your top-level window is considered fair game for windomanagers.

To =t an attribute of a winag set the appropriate member of tk&etWindowAttributes struc-
ture and OR in the corresponding value bitmask in your subsequent c&lsaateWindow
and XChangeWindowAttributes, or use one of the other ceenience functions that set the
appropriate attribte. Thesymbols for the value mask bits and k®&etWindowAttributes
structure are:

33

Xlib — C Library

/* Window attribute value mask bits */

#define CWBackPixmap
#define CWBackPixel
#define CWBorderPixmap
#define CWBorderPixel
#define CWBItGravity
#define CWWinGravity
#define CWBackingStore
#define CWBackingPlanes
#define CWBackingPixel
#define CWOverrideRedirect
#define CWSaveUnder
#define CWEventMask
#define CWDontPropagate
#define CWColormap
#define CWCursor

[* Values */

typedef struct {

Pixmap background_pixmap;

unsigned long background_ pix

Pixmap border_pixmap;

unsigned long border_pek
int bit_gravity;
int win_gravity;

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<b)
(1L<<6)
(AL<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)

X11, Release 6.7 DRAFT

/* background, None, or ParentReldti

[* background pixel */

/* border of the windor CopyFromParent */

/* border pixel value */

/* one of bit gravity values */
/* one of the windw gravity values */

int backing_store;
unsigned long backing_planes;

unsigned long backing_pk
Bool save_under;
long event_mask;

/* NotUseful, WhenMappedwalys */
* planes to be preserved if possible */

/* value to use in restoring planes */

/*should bits under be wad? (popups) */
/*set of @ents that should be ged */

long do_not_propate_mask;

Bool override_redirect;

Colormap colormap;

Cursor cursor;
} X SetWindowAttributes;

I’set of @ents that should not propagate */
/*boolean value forvarride_redirect */

* color map to be associated with wintlo
/* cursor to be displayed (or None) */

The following lists the defaults for each windettribute and indicates whether the attribute is
applicable tanputOutput andInputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pigl Undefined Yes No
border-pixmap CopyFromParent Yes No
border-piel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes

34

Xlib — C Library X11, Release 6.7 DRAFT

Attribute Default InputOutput InputOnly
backing-store NotUseful Yes No
backing-planes Albnes es No
backing-pixel zero Yes No
save-under False Yes No
event-mask emptyget Yes Yes
do-not-propagte-mask emptget Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1. Backgound Attribute

Only InputOutput windows can hae a lackground. Wu can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a wimdsgpecifies the pixmap to be used for a window’s
background. Thipixmap can be of arsize, although some sizes may be faster than others. The
background-pixel attribute of a windaspecifies a pixel value used to paint a windoteck-

ground in a single color.

You can set the background-pixmap to a pixmigpne (default), orParentRelative. You can

set the background-pixel of a winddo any pixel value (no dedult). If you specify a back-
ground-pixel, it @errides either the default background-pixmap or @ue you may hae st in

the background-pixmapA pixmap of an undefined size that is filled with the background-pixel is
used for the background. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits.

If you set the background-pixmap, itesrides the defult. Thebackground-pixmap and the win-
dow must hae the same depth, orBadMatch error results. If you set background-pixmap to
None, the windav has no defined background. If you set the background-pixmBpremtRel-
ative:

. The parent windovs background-pixmap is used. The child wimddoweve, must hae
the same depth as its parent, @aMatch error results.

. If the parent winde has a background-pixmap dfone, the windav also has a back-
ground-pixmap oNone.

. A copy of the parent windovg' background-pixmap is not made. The parebsickground-
pixmap is examined each time the child windobackground-pixmap is required.

. The background tile originwahbys aligns with the parent windosvbackground tile origin.
If the background-pixmap is nétarentRelative, the background tile origin is the child
window’s arigin.
Setting a n& background, whether by setting background-pixmap or background-pirgiides
ary previous background. The background-pixmap can be freed immediately if no further
explicit reference is made to it (the X server will keep aydopuse when needed). If you later
draw into the pixmap used for the background, what happens is undefined because the X imple-
mentation is free to maka ©py of the pixmap or to use the same pixmap.

When no valid contents argailable for regions of a winde and either the regions are visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the winddias a background dfone. If the background idlone, the

35

Xlib — C Library X11, Release 6.7 DRAFT

previous screen contents from other windows of the same depth as the aiadomply left in
place as long as the contents come from the parent of thewvardin inferior of the parent.
Otherwise, the initial contents of the exposed regions are undefihguhseevents are then gen-
erated for the regionsyen if the background-pixmap ione (see section 10.9).

3.2.2. BorderAttribute

Only InputOutput windows can hae a lorder You can set the border of émputOutput win-
dow by using a pixel or a pixmap.

The border-pixmap attribute of a windapecifies the pixmap to be used for a windoidrder.

The border-pixel attribute of a windaspecifies a pixmap of undefined size filled with that pixel
be used for a window'border Range checking is not performed on the background pixel; it sim-
ply is truncated to the appropriate number of bits. The border tile origiwdgsathe same as the
background tile origin.

You can also set the border-pixmap to a pixmap gfsime (some may be faster than others) or to
CopyFromParent (default). You can set the border-pixel toygpixel value (no default).

If you set a border-pixmap, iverrides the defult. Theborder-pixmap and the windomust

have the same depth, orBadMatch error results. If you set the border-pixmapdopy-
FromParent, the parent windovg border-pixmap is copied. Subsequent changes to the parent
window’s border attribute do not affect the child windoHoweve, the child windev must hae

the same depth as the parent windar a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If you
later drav into the pixmap used for the borgehat happens is undefined because the X imple-
mentation is free either to mala ©py of the pixmap or to use the same pixmap. If you specify a
border-pixel, it @errides either the default border-pixmap oy &alue you may hze st in the
borderpixmap. Allpixels in the windows border will be set to the border-gix Settinga new

border whether by setting border-pixel or by setting border-pixmagrriaes ay previous bor-

der.

Output to a windw is dways clipped to the inside of the winato Therefore, graphics operations
never affect the winda border.

3.2.3. Gravity Attributes

The bit gravity of a winde defines which region of the windoshould be retained when an
InputOutput window is resized. Thelefault value for the bit-gravity attribute ForgetGrav-

ity . The windav gravity of a windav allows you to define he the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity
attribute isNorthWestGravity .

If the inside width or height of a windois not changed and if the windos moved or its border

is changed, then the contents of the wim@ce not lost but mee with the windav. Changing the
inside width or height of the winglocauses its contents to be ved or lost (depending on the
bit-gravity of the window) and causes children to be reconfigured (depending on their win-grav-
ity). For a change of width and height, the (x, y) pairs are defined:

Gravity Dir ection Coordinates

NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)

36

Xlib — C Library X11, Release 6.7 DRAFT

NorthEastGravity (Width, 0)

WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a windw with one of these bit-gravity values is resized, the corresponding pair defines the
change in position of each pixel in the wimdoWhen a windw with one of these win-gravities

has its parent windwresized, the corresponding pair defines the change in position of the win-
dow within the parent. When a windais so epositioned, &ravityNotify event is generated

(see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should novenelative ©

the origin of the root winde. If the change in size of the wingdas coupled with a change in
position (X, y), then for bit-gravity the change in position of each pixel is (-x, —y), and for win-
gravity the change in position of a child when its parent is so resized is (=x, —y). Nd&tahat
icGravity still only takes effect when the width or height of the winde changed, not when the
window is moved.

A bit-gravity of ForgetGravity indicates that the window'contents are alays discarded after a

size change ven if a backing store or s@& under has been requested. The wimndwtiled with

its background and zero or mdexposeevents are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and alays generaté&xposeevents.

The contents and borders of inferiors are not affected by their Enémiavity. A server is
permitted to ignore the specified bit-gravity and Besget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the windav is not moved), except
the child is also unmapped when the parent is resized, addraapNotify event is generated.

3.2.4. BackingStore Attribute

Some implementations of the X server may choose to maintain the contémst@utput

windows. Ifthe X server maintains the contents of a windbe off-screen sed pixels are

known as backing store. The backing store advises the X server on what to do with the contents
of a windav. The backing-store attribute can be selNttUseful (default), WhenMapped, or

Always.

A backing-store attribute dflotUseful advises the X server that maintaining contents is unneces-
sary dthough some X implementations may still choose to maintain contents and, therefore, not
generateExposeevents. Abacking-store attribute alvhenMapped advises the X server that
maintaining contents of obscured regions when the wirisonapped would be beneficial. In

this case, the server may generat&aposeevent when the winde is created. Abacking-store
attribute ofAlways advises the X server that maintaining contenés &vhen the windw is

unmapped would be beneficial. Even if the wikvds larger than its parent, this is a request to

the X server to maintain complete contents, not just the region within the parenivwoioglaod-

aries. Whilethe X server maintains the windavdontents Exposeevents normally are not gen-
erated, but the X server may stop maintaining contentsydinae.

When the contents of obscured regions of a winde being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). Howeer, regons obscured by inferior windows are not included.

37

Xlib — C Library X11, Release 6.7 DRAFT

3.2.5. Sae Under Flag

Some server implementations may presenntents ofinputOutput windows under other
InputOutput windows. Thisis not the same as preserving the contents of a wifdloyou.

You may get better visual appeal if transient windows (for example, pop-up menus) request that
the system presesvthe screen contents under them, so the temporarily obscured applications do
not hare repaint.

You can set the se-under flag tolr ue or False (default). If save-under isTrue, the X server is
advised that, when this windds mapped, saving the contents of windows it obscures would be
beneficial.

3.2.6. BackingPlanes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planeslopat©utput

window hold dynamic data that must be preserved in backing store and dwéngndars. The

default value for the backing-planes attribute is all bits set tofi.can set backing pixel to

specify what bits to use in planes nov@ed by backing planes. The default value for the back-
ing-pixel attribute is all bits set to 0. The X server is free W@ saly the specified bit planes in

the backing store or thev@aunder and is free to regenerate the remaining planes with the speci-
fied pixel \alue. Ary extraneous bits in these values (that is, those bits beyond the specified depth
of the window) may be simply ignored. If you request backing storeverwsaers, you should

use these members to minimize the amount of off-screen memory required to store yowr windo

3.2.7. Event Mask and Do Not Propagate Mask Attributes

The event mask defines whictvents the client is interested in for tHigputOutput or Inpu-
tOnly window (or, for some eent types, inferiors of this windg). Theevent mask is the bitwise
inclusive OR of zero or more of the validvent mask bits.You can specify that no maskable
events are reported by settildpEventMask (default).

The do-not-propagate-mask attribute defines whiehte should not be propagated to ancestor
windows when no client has theeat type selected in thimputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise ine€IR of zero or more of the following masks:
KeyPress KeyRelease ButtonPress, ButtonRelease PointerMotion , Button1Motion, But-
ton2Motion, Button3Motion , Button4Motion , Button5Motion , and ButtonMotion . You can
specify that all eents are propagated by settiNgEventMask (default).

3.2.8. Owerride Redirect Flag

To control windav placement or to add decoration, a windmanager often needs to intercept
(redirect) ag map or configure request. Pop-up windows, hareoften need to be mapped
without a windev manager getting in the waylo control whether adnputOutput or Inpu-
tOnly window is to ignore these structure control facilities, use therale-redirect flag.

The override-redirect flag specifies whether map and configure requests on thiswgmzdd
override aSubstructureRedirectMask on the parentYou can set the werride-redirect flag to
True or False (default). Window managers use this information teoad tampering with pop-up
windows (see also chapter 14).

3.2.9. ColormapAttribute

The colormap attribute specifies which colormap best reflects the true colordrgfut@utput
window. The colormap must ka the same visual type as the wimdar a BadMatch error

results. Xservers capable of supporting multiple hardware colormaps can use this information,
and windev managers can use it for callsXenstallColormap . You can set the colormap

38

Xlib — C Library X11, Release 6.7 DRAFT

attribute to a colormap or tGopyFromParent (default).

If you set the colormap tGopyFromParent, the parent windove alormap is copied and used

by its child. Howeer, the child windev must hae the same visual type as the parent, Bad-

Match error results. The parent winganust not hae a ®lormap ofNone, or aBadMatch

error results. The colormap is copied by sharing the colormap object between the child and par-
ent, not by making a complete gogf the colormap contents. Subsequent changes to the parent
window’s colormap attribute do not affect the child windo

3.2.10. CursorAttribute

The cursor attribute specifies which cursor is to be used when the pointer isnput@utput
or InputOnly window. You can set the cursor to a cursoiName (default).

If you set the cursor tblone, the parens aursor is used when the pointer is in thputOutput

or InputOnly window, and ary change in the parestaursor will cause an immediate change in
the displayed cursoBy calling XFreeCursor, the cursor can be freed immediately as long as
no further explicit reference to it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higbeenctions
specifically for creating and placing topsbwindows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, heereyou must provide some standard
information or hints for the windo manager by using the Xlib inter-client communication func-
tions (see chapter 14).

If you use Xlib to create your own topvl windows (direct children of the root window), you
must obserg the following rules so that all applications interact reasonably across the different
styles of windav management:

. You must neer fight with the windar manager for the size or placement of your tojelle
window.

. You must be able to deal with whegesize windav you get, gen if this means that your
application just prints a messagesliPlease mad me ligger” in its windaw.

. You should only attempt to resize orvadop-level windows in direct response to a user
request. Ifa request to change the size of a togellevindow fails, you must be prepared to
live with what you get.You ae free to resize or me the children of top-hsl windows as
necessary(Toolkits often hae facilities for automatic relayout.)

. If you do not use a toolkit that automatically sets standard wipdaperties, you should
set these properties for topswindows before mapping them.

For further information, see chapter 14 andltiter-Client Communication Conventions Manual

XCreateWindow is the more general function that allows you to set specific wirattabutes
when you create a windo XCreateSimpleWindow creates a winde that inherits its attributes
from its parent winde.

The X server acts as lifiputOnly windows do not exist for the purposes of graphics requests,
exposure processing, andsibilityNotify events. AnlnputOnly window cannot be used as a
dravable (that is, as a source or destination for graphics requésm)tOnly and InputOutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To aeate an unmapped wingand set its windw attributes, useXCreateWindow.

39

Xlib — C Library X11, Release 6.7 DRAFT

Window X CreateWindw (display, parent, x, y, width, height, border_width depth
class visual, valuemaskattributes
Display *display;,
Window parent,
intx,y;
unsigned intvidth, height,
unsigned inborder_width
int depth
unsigned intlass
Visual *visual;
unsigned longyaluemask
XSetWindowAttributes attributes

display Specifies the connection to the X server.

parent Specifies the parent windo

X

y Specify the x and y coordinates, which are the top-left outside corner of the cre-
ated windows borders and are relag © the inside of the parent windoswor-
ders.

width

height Specify the width and height, which are the created winglmside dimensions

and do not include the created windsworders. Thalimensions must be
nonzero, or BadValue error results.

border_width Specifies the width of the created windsuwrder in pixels.

depth Specifies the window’depth. Adepth ofCopyFromParent means the depth is
taken from the parent.
class Specifies the created windandass. You can pastnputOutput , InputOnly ,

or CopyFromParent. A class ofCopyFromParent means the class is taken
from the parent.

visual Specifies the visual typeA visual of CopyFromParent means the visual type is
taken from the parent.

valuemask Specifies which windw attributes are defined in the attributeguanent. This
mask is the bitwise inclug OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be talken. Thevalue mask should va the appropriate bits set to indicate
which attributes hae been set in the structure.

The XCreateWindow function creates an unmapped subwimndor a specified parent windop
returns the winde ID of the created winde, and causes the X server to generatraateNo-
tify event. Thecreated windw is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left cornerCoordinates are integral, in terms of pixels, and coincide with pixel centers.
Each windav and pixmap has its own coordinate systefar a window, the origin is inside the
border at the inside, upper-left corner.

The border_width for amputOnly window must be zero, or BadMatch error results.For
classinputOutput , the visual type and depth must be a combination supported for the screen, or

40

Xlib — C Library X11, Release 6.7 DRAFT

a BadMatch error results. The depth need not be the same as the parent, but the parent must not
be a windav of classinputOnly , or aBadMatch error results.For an InputOnly window, the

depth must be zero, and the visual must be one supported by the screen. If either condition is not
met, aBadMatch error results. The parent windphoweve, may hase any &pth and class. If

you specify ap invdid window attribute for a windw, a BadMatch error results.

The created winde is not yet displayed (mapped) on the useisplay To display the windw,
call XMapWindow . The nev window initially uses the same cursor as its parénhew airsor
can be defined for the wavindow by calling XDefineCursor. The windav will not be visible
on the screen unless it and all of its ancestors are mapped and it is not obscuyeaf g an
ancestors.

XCreateWindow can generat8adAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and BadWindow errors.

To aeate an unmappddputOutput subwindav of a gven parent windav, use XCreateSim-
pleWindow.

Windav XCreateSimpleWinde(display, parent, x, y, width, height, border_width
border, background
Display *display,
Windowparent;
intx,y;
unsigned intvidth, height,
unsigned inborder_width
unsigned londporder,
unsigned londpackground

display Specifies the connection to the X server.

parent Specifies the parent windo

X

y Specify the x and y coordinates, which are the top-left outside corner of the new
window'’s borders and are relag the inside of the parent windosworders.

width

height Specify the width and height, which are the created winslmside dimensions

and do not include the created windswrders. Thalimensions must be
nonzero, or BadValue error results.

border_width Specifies the width of the created windsurder in pixels.
border Specifies the border pixel value of the windo
background Specifies the background pixel value of the wimdo

The XCreateSimpleWindow function creates an unmappkgputOutput subwindav for a
specified parent windgg returns the winde ID of the created winde, and causes the X server to
generate LreateNotify event. Thecreated windw is placed on top in the stacking order with
respect to siblings. Anpart of the windav that extends outside its parent windis dipped.

The border_width for amputOnly window must be zero, or BadMatch error results. XCre-
ateSimpleWindow inherits its depth, class, and visual from its parent. All other window
attributes, except background and bortiavetheir default values.

41

Xlib — C Library X11, Release 6.7 DRAFT

XCreateSimpleWindow can generat8adAlloc, BadMatch, BadValue, and BadwWindow
errors.

3.4. Destoying Windows

Xlib provides functions that you can use to desaavindow or destrgy al subwindows of a win-
dow.

To destroy a window and all of its subwindows, uséDestroyWindow.

XDestroyWindav (display, w)
Display *display;,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XDestroyWindow function destroys the specified windas well as all of its subwindows

and causes the X server to generabeatroyNotify event for each winde. The windav should
never be referenced agjn. If the windav specified by the w argument is mapped, it is unmapped
automatically The ordering of thé®estroyNotify events is such that for grgiven window being
destroyedDestroyNotify is generated on gnnferiors of the windw before being generated on
the windav itself. Theordering among siblings and across subhierarchies is not otherwise con-
strained. Ilfthe windav you specified is a root winde no windows are destged. Destrging a
mapped winde will generateExposeevents on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate BadWindow error.
To destrg al subwindows of a specified windg use XDestroySubwindows

XDestroySubwindas (display, w)
Display *display;,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XDestroySubwindowsfunction destroys all inferior windows of the specified widim
bottom-to-top stacking ordeit causes the X server to generatBestroyNotify event for each
window. If any mapped subwindows were actually destroy¢DestroySubwindowscauses the

X server to generatExposeevents on the specified windo This is much more efficient than
deleting mag windows one at a time because much of the work need be performed only once for
all of the windows, rather than for each wimdorhe subwindows should ver be referenced

again.

XDestroySubwindowscan generate BadWindow error.

3.5. Mapping Windows

A window is considered mapped if akMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

42

Xlib — C Library X11, Release 6.7 DRAFT

. It is obscured by another opaque wimdo
. One of its ancestors is not mapped.
. It is entirely clipped by an ancestor.

Exposeevents are generated for the windavhen part or all of it becomes visible on the screen.
A client receves the Exposeevents only if it has asked for thenwindows retain their position
in the stacking order when there unmapped.

A window manager may want to control the placement of subwitsddf SubstructureRedi-
rectMask has been selected by a wimdmanager on a parent windqusually a root window),

a map request initiated by other clients on a child wimionot performed, and the windoman-
ager is sent MapRequestevent. Hawever, if the averride-redirect flag on the child had been set
to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and then
decide to map the wingoto its final location.A window manager that wants to provide decora-
tion might reparent the child into a frame firfor further information, see sections 3.2.8 and
10.10. Onlya sngle client at a time can select fBubstructureRedirectMask.

Similarly, a sngle client can select fdResizeRedirectMaskon a parent winde. Then, any
attempt to resize the windaby another client is suppressed, and the client vesei Resiz-
eRequestevent.

To map a gven window, use XMapWindow .

XMapWindow (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XMapWindow function maps the windoand all of its subwindows that a had map
requests. Mapping window that has an unmapped ancestor does not display thewbudo
marks it as eligible for display when the ancestor becomes mapped. Suchwa isinalted
unviewable. Whenall its ancestors are mapped, the windmcomes vieable and will be visi-
ble on the screen if it is not obscured by another windthis function has no effect if the win-
dow is dready mapped.

If the override-redirect of the winde is False and if some other client has selectabstructur-
eRedirectMask on the parent windg, then the X server generatedapRequestevent, and the
XMapWindow function does not map the winaio Otherwise, the windw is mapped, and the X
server generatesMapNotify event.

If the windaw becomes vizable and no earlier contents for it are remembered, the X server tiles
the windav with its background. If the window'background is undefined, the existing screen
contents are not altered, and the X server generates zero cErpmseevents. Ifbacking-store
was maintained while the winde was unmapped, nBxposeevents are generated. If backing-
store will nav be maintained, a full-winder exposure is alays generated. Otherwise, only visi-
ble regions may be reported. Similar tiling and exposure fiiaice for ag newly viewable infe-

riors.

If the windaw is an InputOutput window, XMapWindow generatexposeevents on each
InputOutput window that it causes to be displayed. If the client maps and paints the window

43

Xlib — C Library X11, Release 6.7 DRAFT

and if the client begins processinggets, the windw is painted twice.To avoid this, first ask for
Exposeevents and then map the windpso the client processes inputeats as usual. Thevent
list will include Exposefor each windw that has appeared on the screen. The ciientmal
response to akexposeevent should be to repaint the winglo This method usually leads to sim-
pler programs and to proper interaction with wiwdoanagers.

XMapWindow can generate BadWindow error.
To map and raise a wingg use XMapRaised.

XMapRaiseddisplay, w)

Display *display;,

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XMapRaised function essentially is similar t§MapWindow in that it maps the window
and all of its subwindows thatVehad map requests. Howaer, it also raises the specified win-
dow to the top of the stackiar additional information, seXMapWindow .

XMapRaised can generate multiplBadWindow errors.
To map all subwindows for a specified wivdaise XMapSubwindows.

XMapSubwindaevs (display, w)

Display *display;,

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XMapSubwindows function maps all subwindows for a specified wiwdo top-to-bottom
stacking order The X server generat&xposeevents on each newly displayed windoThis

may be much more efficient than mapping ynamdows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for eachwvindo

XMapSubwindows can generate BadWindow error.

3.6. UnmappingWindows
Xlib pr