December 15, 2007 INSTALL 8 NetBSD

NAME

INSTALL - Installation procedure for NetBSD/macppc.

CONTENTS

                                                              

About this Document............................................3 Quick install notes for the impatient..........................3 What is NetBSD?................................................5 Changes Between The NetBSD 3.0 and 4.0 Releases................5 Networking..................................................5 File systems................................................6 Drivers.....................................................6 Platforms...................................................9 Kernel subsystems...........................................9 Security...................................................10 Userland...................................................11 Components removed from NetBSD.............................12 The Future of NetBSD..........................................13 Sources of NetBSD.............................................13 NetBSD 4.0_wrstuden_fixsa_t1 Release Contents.................13 NetBSD/macppc subdirectory structure.......................15 Binary distribution sets...................................16 NetBSD/macppc System Requirements and Supported Devices.......17 Supported models...........................................18 Unsupported models.........................................19 Supported devices..........................................19 Unsupported devices........................................22 Supported boot devices and media...........................22 Getting the NetBSD System on to Useful Media..................22 Preparing your System for NetBSD installation.................24 Prepare yourself...........................................24 Preparing your Open Firmware 3 System for NetBSD..............26 Updating your BootROM......................................26 Getting to Open Firmware 3.................................26 Setting up Open Firmware 3 to boot NetBSD..................27 Available Boot Media.......................................27 Partitioning your hard drive for NetBSD....................29 Preparing the Open Firmware 3 Bootable Media...............30 Creating the NetBSD/macppc CD-R.........................31 Preparing an HFS or HFS+ partition......................31 Preparing a custom hybrid HFS/ISO9660 CD-R..............31 Creating an MS-DOS disk.................................32 Preparing the netboot server............................32 Preparing a SCSI or IDE drive with the CD-R image.......37 Preparing your Open Firmware 1.x or 2.x System for NetBSD.....38 Getting to Open Firmware on Apple Network Servers..........38 Open Firmware 1 and 2 System Preparation...................38 Getting to Open Firmware (MacOS X or Darwin)...............39 Getting to Open Firmware (Best, MacOS 8 or 9)..............39 Getting to Open Firmware (Harder, MacOS 7, 8, or...........40 Getting to Open Firmware (Without using MacOS).............41 Setting up Open Firmware 1 and 2 to boot...................42 Available Boot Media.......................................43 Partitioning your hard drive for NetBSD....................44 Preparing the Open Firmware 1 or 2 Bootable Media..........46 Creating the NetBSD/macppc CD-R.........................46 Creating the NetBSD install floppies....................46 Creating a custom ISO9660 CD-R..........................47 Creating an MS-DOS disk.................................48 Preparing the netboot server............................48 Preparing a SCSI or IDE drive with the CD-R image.......53 Installing the NetBSD System..................................53 Open Firmware boot syntax..................................53 Examples of Open Firmware boot commands....................57 Booting the NetBSD/macppc install CD-R..................57 Booting the NetBSD install floppies.....................57 Booting an IDE or SCSI drive with an HFS partition......57 Booting a custom CD-ROM.................................58 Booting an MS-DOS floppy................................58 Booting over the ethernet...............................58 Booting an IDE or SCSI drive with 'partition zero'......59 Example of a normal boot...................................59 Common Problems and Error Messages.........................60 Black screen............................................60 Grey screen with flashing question mark.................60 Information on your screen seems garbled or out of sync.61 DEFAULT CATCH!..........................................61 CLAIM failed............................................61 can't OPEN..............................................61 unrecognized Client Program formatstate not valid.......62 bad partition number, using 0no bootable HFS partition..62 READ TIMEOUT@...........................................62 TFTP timeout............................................62 enet:,/netbsd.ram.gz: Inappropriate file type or format.62 Bootloader hangs before the copyright notice............62 Hang after configuring devices..........................63 Milestone..................................................63 Running the sysinst installation program...................63 Introduction............................................63 General.................................................63 Quick install...........................................63 Booting NetBSD..........................................64 Network configuration...................................65 Preparing a disk for Open Firmware 3 systems............65 Installation drive selection and parameters.............66 Partitioning the disk...................................66 Preparing your hard disk................................67 Getting the distribution sets...........................67 Installation using ftp..................................68 Installation using NFS..................................68 Installation from CD-ROM................................68 Installation from an unmounted file system..............68 Installation from a local directory.....................68 Extracting the distribution sets........................69 Making the device nodes.................................69 Finalizing your installation............................69 Finalizing Open Firmware settings..........................70 Booting NetBSD exclusively..............................70 Additional Open Firmware tips...........................70 Booting NetBSD and MacOS X or Darwin....................70 Booting NetBSD and MacOS 9 or earlier...................71 Other boot techniques...................................71 Post installation steps.......................................71 Upgrading a previously-installed NetBSD System................74 Compatibility Issues With Previous NetBSD Releases............75 Issues affecting an upgrade from NetBSD 2.1 and older......75 Issues affecting an upgrade from NetBSD 3.x releases.......75 Issues with GDB 6.5...........................................76 Using online NetBSD documentation.............................76 Administrivia.................................................77 Thanks go to..................................................78 We are........................................................78 Dedication....................................................84 Legal Mumbo-Jumbo.............................................84 The End.......................................................91

DESCRIPTION

About this Document

This document describes the installation procedure for NetBSD 4.0_wrstuden_fixsa_t1 on the macppc platform. It is available in four different formats titled INSTALL.ext, where .ext is one of .ps, .html, .more, or .txt:

.ps
PostScript.

.html
Standard Internet HTML.

.more
The enhanced text format used on UNIX-like systems by the more(1) and less(1) pager utility programs. This is the format in which the on-line man pages are generally presented.

.txt
Plain old ASCII.

You are reading the HTML version.

Quick install notes for the impatient

This section contains some brief notes describing what you need to install NetBSD 4.0_wrstuden_fixsa_t1 on a machine of the macppc architecture.

What is NetBSD?

The NetBSD Operating System is a fully functional Open Source UNIX-like operating system derived from the University of California, Berkeley Networking Release 2 (Net/2), 4.4BSD-Lite, and 4.4BSD-Lite2 sources. NetBSD runs on fifty four different system architectures (ports), featuring seventeen machine architectures across fifteen distinct CPU families, and is being ported to more. The NetBSD 4.0_wrstuden_fixsa_t1 release contains complete binary releases for many different system architectures. (A few ports are not fully supported at this time and are thus not part of the binary distribution. Please see the NetBSD web site at http://www.NetBSD.org/ for information on them.)

NetBSD is a completely integrated system. In addition to its highly portable, high performance kernel, NetBSD features a complete set of user utilities, compilers for several languages, the X Window System, firewall software and numerous other tools, all accompanied by full source code.

NetBSD is a creation of the members of the Internet community. Without the unique cooperation and coordination the net makes possible, it's likely that NetBSD wouldn't exist.

Changes Between The NetBSD 3.0 and 4.0 Releases

The NetBSD 4.0_wrstuden_fixsa_t1 release provides numerous significant functional enhancements, including support for many new devices, integration of hundreds of bug fixes, new and updated kernel subsystems, and many user-land enhancements. The result of these improvements is a stable operating system fit for production use that rivals most commercially available systems.

It is impossible to completely summarize more than a year of development that went into the NetBSD 4.0_wrstuden_fixsa_t1 release. The complete list of changes can be found in the CHANGES: ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-4.0/CHANGES and CHANGES-4.0: ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-4.0/CHANGES-4.0 files in the top level directory of the NetBSD 4.0 release tree. Some highlights include:

Networking
File systems
Drivers
Platforms
Kernel subsystems

Kernel interfaces have continued to be refined, and more subsystems and device drivers are shared among the different ports. You can look for this trend to continue.

Security
Userland

Besides this list, there have also been innumerable bug fixes and other miscellaneous enhancements of course.

Components removed from NetBSD

In this release of NetBSD, some software components known from previous releases were removed from the system. In some cases those were components that are not useful anymore or their utility does not justify maintenance overhead. Other components were not working properly and there was lack of interest in fixing them.

The Future of NetBSD

The NetBSD Foundation has been incorporated as a non-profit organization. Its purpose is to encourage, foster and promote the free exchange of computer software, namely the NetBSD Operating System. The foundation will allow for many things to be handled more smoothly than could be done with our previous informal organization. In particular, it provides the framework to deal with other parties that wish to become involved in the NetBSD Project.

The NetBSD Foundation will help improve the quality of NetBSD by:

We hope to support even more hardware in the future, and we have a rather large number of other ideas about what can be done to improve NetBSD.

We intend to continue our current practice of making the NetBSD-current development source available on a daily basis.

We intend to integrate free, positive changes from whatever sources submit them, providing that they are well thought-out and increase the usability of the system.

Above all, we hope to create a stable and accessible system, and to be responsive to the needs and desires of NetBSD users, because it is for and because of them that NetBSD exists.

Sources of NetBSD

Refer to http://www.NetBSD.org/mirrors/.

NetBSD 4.0_wrstuden_fixsa_t1 Release Contents

The root directory of the NetBSD 4.0_wrstuden_fixsa_t1 release is organized as follows:

.../NetBSD-4.0_wrstuden_fixsa_t1/

CHANGES
Changes between NetBSD 3.0 and branching 4.0.

CHANGES-4.0
Changes since NetBSD 4.0 was branched.

CHANGES.prev
Changes in earlier NetBSD releases.

LAST_MINUTE
Last minute changes.

MIRRORS
A list of sites that mirror the NetBSD 4.0_wrstuden_fixsa_t1 distribution.

README.files
README describing the distribution's contents.

TODO
NetBSD's todo list (also somewhat incomplete and out of date).

patches/
Post-release source code patches.

source/
Source distribution sets; see below.

In addition to the files and directories listed above, there is one directory per architecture, for each of the architectures for which NetBSD 4.0_wrstuden_fixsa_t1 has a binary distribution.

The source distribution sets can be found in subdirectories of the source subdirectory of the distribution tree. They contain the complete sources to the system. The source distribution sets are as follows:

gnusrc
This set contains the ``gnu'' sources, including the source for the compiler, assembler, groff, and the other GNU utilities in the binary distribution sets.
95 MB gzipped, 484 MB uncompressed

sharesrc
This set contains the ``share'' sources, which include the sources for the man pages not associated with any particular program; the sources for the typesettable document set; the dictionaries; and more.
6 MB gzipped, 25 MB uncompressed

src
This set contains all of the base NetBSD 4.0_wrstuden_fixsa_t1 sources which are not in gnusrc, sharesrc, or syssrc.
45 MB gzipped, 214 MB uncompressed

syssrc
This set contains the sources to the NetBSD 4.0_wrstuden_fixsa_t1 kernel for all architectures; config(1); and dbsym(8).
33 MB gzipped, 165 MB uncompressed

xsrc
This set contains the sources to the X Window System.
95 MB gzipped, 502 MB uncompressed

All the above source sets are located in the source/sets subdirectory of the distribution tree.

The source sets are distributed as compressed tar files. Except for the pkgsrc set, which is traditionally unpacked into /usr/pkgsrc, all sets may be unpacked into /usr/src with the command:
       # cd / ; tar -zxpf set_name.tgz

In each of the source distribution set directories, there are files which contain the checksums of the files in the directory:

BSDSUM
Historic BSD checksums for the various files in that directory, in the format produced by the command:
cksum -o 1 file.

CKSUM
POSIX checksums for the various files in that directory, in the format produced by the command:
cksum file.

MD5
MD5 digests for the various files in that directory, in the format produced by the command:
cksum -a MD5 file.

SHA512
SHA512 digests for the various files in that directory, in the format produced by the command:
cksum -a SHA512 file.

SYSVSUM
Historic AT&T System V UNIX checksums for the various files in that directory, in the format produced by the command:
cksum -o 2 file.

The SHA512 digest is the safest checksum, followed by the MD5 digest, and finally the POSIX checksum. The other two checksums are provided only to ensure that the widest possible range of systems can check the integrity of the release files.

NetBSD/macppc subdirectory structure
The macppc-specific portion of the NetBSD 4.0_wrstuden_fixsa_t1 release is found in the macppc subdirectory of the distribution: .../NetBSD-4.0_wrstuden_fixsa_t1/macppc/. It contains the following files and directories:

INSTALL.html
INSTALL.ps
INSTALL.txt
INSTALL.more
Installation notes in various file formats, including this file. The .more file contains underlined text using the more(1) conventions for indicating italic and bold display.
binary/
kernel/
netbsd-GENERIC.gz
A gzipped NetBSD kernel containing code for everything supported in this release.
netbsd-GENERIC.MP.gz
A gzipped NetBSD kernel containing code for everything supported in this release. This kernel also supports SMP on systems with more than one CPU.
netbsd-GENERIC_MD.gz
A gzipped NetBSD kernel containing code for everything supported in this release. It also has a RAM-disk installer. This is the kernel you should use when you want to install via netboot, from a CD-R, or an HFS partition on Open Firmware 3 systems.
netbsd-INSTALL.gz
A gzipped NetBSD kernel containing code only for Open Firmware 1.0.5, 1.1.22, 2.0.x, and 2.4 systems (i.e. those that have floppy drives). It has a RAM-disk installer.
sets/
macppc binary distribution sets; see below.
installation/
floppy/boot1.fs
floppy/boot2.fs
macppc boot and installation floppy images. The first is the bootloader and kernel. The second image has the installation tools. Only usable on models that ship with a floppy drive (pre-Open Firmware 3); see below.
ofwboot.xcf
macppc bootloader; see below.
Binary distribution sets
The NetBSD macppc binary distribution sets contain the binaries which comprise the NetBSD 4.0_wrstuden_fixsa_t1 release for the macppc. The binary distribution sets can be found in the macppc/binary/sets subdirectory of the NetBSD 4.0_wrstuden_fixsa_t1 distribution tree, and are as follows:

base
The NetBSD 4.0_wrstuden_fixsa_t1 macppc base binary distribution. You must install this distribution set. It contains the base NetBSD utilities that are necessary for the system to run and be minimally functional. It includes shared library support, and excludes everything described below.
27 MB gzipped, 77 MB uncompressed

comp
Things needed for compiling programs. This set includes the system include files (/usr/include) and the various system libraries (except the shared libraries, which are included as part of the base set). This set also includes the manual pages for all of the utilities it contains, as well as the system call and library manual pages.
31 MB gzipped, 106 MB uncompressed

etc
This distribution set contains the system configuration files that reside in /etc and in several other places. This set must be installed if you are installing the system from scratch, but should not be used if you are upgrading.
1 MB gzipped, 1 MB uncompressed

games
This set includes the games and their manual pages.
4 MB gzipped, 8 MB uncompressed

kern-GENERIC
This set contains a NetBSD/macppc 4.0_wrstuden_fixsa_t1 GENERIC kernel named /netbsd. You must install this distribution set.
4 MB gzipped, 7 MB uncompressed

kern-GENERIC.MP
This set contains a NetBSD/macppc 4.0_wrstuden_fixsa_t1 GENERIC.MP kernel, which will use multiple processors (if present), named /netbsd.
4 MB gzipped, 7 MB uncompressed

man
This set includes all of the manual pages for the binaries and other software contained in the base set. Note that it does not include any of the manual pages that are included in the other sets.
8 MB gzipped, 33 MB uncompressed

misc
This set includes the (rather large) system dictionaries, the typesettable document set, and other files from /usr/share.
4 MB gzipped, 12 MB uncompressed

text
This set includes NetBSD's text processing tools, including groff(1), all related programs, and their manual pages.
4 MB gzipped, 11 MB uncompressed

NetBSD maintains its own set of sources for the X Window System in order to assure tight integration and compatibility. These sources are based on XFree86, and tightly track XFree86 releases. They are currently equivalent to XFree86 4.5.0. Binary sets for the X Window System are distributed with NetBSD. The sets are:

xbase
The basic files needed for a complete X client environment. This does not include the X servers.
7 MB gzipped, 20 MB uncompressed

xcomp
The extra libraries and include files needed to compile X source code.
13 MB gzipped, 45 MB uncompressed

xfont
Fonts needed by the X server and by X clients.
31 MB gzipped, 39 MB uncompressed

xetc
Configuration files for X which could be locally modified.
0.03 MB gzipped, 0.17 MB uncompressed

xserver
The X server. This includes both the XFree86 and Xmacppc servers.
The XFree86 server supports acceleration, switchable resolutions and bit-depths. This server supports only known video cards, such as ATI and Nvidia and can be difficult to configure.
The Xmacppc server supports all on-board video and Open Firmware-compatible video cards. Acceleration and depths greater than 256 colors are not supported.

See the X11 FAQ for help using X on macppc systems. http://www.NetBSD.org/ports/macppc/x11.html
11 MB gzipped, 28 MB uncompressed

The macppc binary distribution sets are distributed as gzipped tar files named with the extension .tgz, e.g. base.tgz.

The instructions given for extracting the source sets work equally well for the binary sets, but it is worth noting that if you use that method, the filenames stored in the sets are relative and therefore the files are extracted below the current directory. Therefore, if you want to extract the binaries into your system, i.e. replace the system binaries with them, you have to run the tar -xpf command from the root directory ( / ) of your system. This utility is used only in a Traditional method installation.

Note:
Each directory in the macppc binary distribution also has its own checksum files, just as the source distribution does.

NetBSD/macppc System Requirements and Supported Devices

Currently, NetBSD/macppc requires the use of Open Firmware to boot. Open Firmware is a command environment using the FORTH language. The NetBSD kernel uses Open Firmware to gather information about your system and to control some of your devices. It is part of the boot ROMs in most PowerPC-based Macintosh systems. Until late 1996, Apple never intended to use Open Firmware for anything other than internal debugging and hardware support. It was not intended to be used to boot an operating system. This is why earlier machines have so much trouble with Open Firmware. This also means that PowerMacs and clones that lack Open Firmware cannot boot NetBSD on the macppc platform. Most machines introduced by Apple and the clone-makers after August 17, 1995 have Open Firmware and are supported.

Apple made several revisions of this Open Firmware environment, and each has various quirks and problems that we must work around. The single hardest step of installing NetBSD/macppc is to set up Open Firmware properly. Open Firmware versions 1.0.5 and 2.0.x act similarly and the same set of instructions applies to them. Open Firmware version 2.4 is slightly different with regards to booting. Open Firmware version 3 is altogether different, but easier to set up for NetBSD.

At present, NetBSD/macppc does not support the PPC 601 microprocessor, which means that the PowerMacintosh 7200 and 7500 models are not supported. The PowerMacintosh 7500 may be upgraded to a PPC 604, G3 or G4 microprocessor via a daughtercard replacement, in which case NetBSD will run on this system.

The minimal configuration requires 16 MB of RAM and ~80 MB of disk space. To install the entire system requires 200 MB plus space for the swap partition (usually the RAM size, unless you've got a lot of RAM). To install X, an additional 60 MB disk space is required, as is more RAM (at least 32 MB). NetBSD with 16 MB of RAM is very slow. Until you have around 32 MB of RAM, getting more RAM is more important than getting a faster CPU.

Supported models
Find your model from the list below and take note of its Open Firmware version:

Open Firmware 1.0.5

Open Firmware 1.1.22

Open Firmware 2.0.x

Open Firmware 2.4

Open Firmware 3

Unsupported models
Supported devices
Unsupported devices
Supported boot devices and media
Each version of Open Firmware supports different devices and media that you may boot from. We define the terms ``bootable media'' as the media (hard drive, floppy, CD-R, ethernet) that will be used to bootstrap your macppc system into NetBSD, and ``distribution sets'' or ``distribution media'' as the media (hard drive, CD-R, ethernet) that contains the files that will be installed to generate a working NetBSD system onto your destination media.

Go to the NetBSD/macppc Model Support webpage and look up your system. Take note of the comments about your model and keep these in mind during the rest of this installation procedure. http://www.NetBSD.org/ports/macppc/models.html

Getting the NetBSD System on to Useful Media

You should wait to decide where to put the NetBSD distribution sets until you have figured out how you are going to boot your system. Refer back to this section after you have done so.

Note:
Some Mac OS ftp clients default to downloading files in `ASCII' mode. This will render the NetBSD files useless. Make sure to set your ftp program to download in `binary' mode.

Note that if you are installing or upgrading from a writable media, the media can be write-protected if you wish. These systems mount a root image from inside the kernel, and will not need to write to the media. If you booted from a floppy, the floppy disk may be removed from the drive after the system has booted.

Installation is supported from several media types, including:

The steps necessary to prepare the distribution sets for installation depend upon which installation medium you choose. The steps for the various media are outlined below.

CD-ROM / DVD
Find out where the distribution set files are on the CD-ROM or DVD. Likely locations are binary/sets and macppc/binary/sets.

Proceed to the instruction on installation.

MS-DOS floppy
NetBSD doesn't include split sets to keep the distribution size down. They can be created on a separate machine using the split(1) command, running e.g. split -b 235k base.tgz base. to split the base.tgz file from macppc/binary/sets into files named base.aa, base.ab, and so on. Repeat this for all set_name.tgz files, splitting them into set_name.xx files. Count the number of set_name.xx files that make up the distribution sets you want to install or upgrade. You will need one sixth that number of 1.44 MB floppies.

Format all of the floppies with MS-DOS. Do not make any of them bootable MS-DOS floppies, i.e. don't use format /s to format them. (If the floppies are bootable, then the MS-DOS system files that make them bootable will take up some space, and you won't be able to fit the distribution set parts on the disks.) If you're using floppies that are formatted for MS-DOS by their manufacturers, they probably aren't bootable, and you can use them out of the box.

Place all of the set_name.xx files on the MS-DOS disks.

Once you have the files on MS-DOS disks, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading.

FTP
The preparations for this installation/upgrade method are easy; all you need to do is make sure that there's an FTP site from which you can retrieve the NetBSD distribution when you're about to install or upgrade. If you don't have DHCP available on your network, you will need to know the numeric IP address of that site, and, if it's not on a network directly connected to the machine on which you're installing or upgrading NetBSD, you need to know the numeric IP address of the router closest to the NetBSD machine. Finally, you need to know the numeric IP address of the NetBSD machine itself. If you don't have access to a functioning nameserver during installation, the IPv4 address of ftp.NetBSD.org is 204.152.190.13 and the IPv6 address is 2001:4f8:4:7:230:48ff:fe31:43f2 (as of December, 2007).

Once you have this information, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading.

Note:
This method of installation is recommended for those familiar with using BSD network configuration and management commands. If you aren't, this documentation should help, but is not intended to be all-encompassing.

NFS
Place the NetBSD distribution sets you wish to install into a directory on an NFS server, and make that directory mountable by the machine on which you are installing or upgrading NetBSD. This will probably require modifying the /etc/exports file on the NFS server and resetting its mount daemon (mountd). (Both of these actions will probably require superuser privileges on the server.)

You need to know the numeric IP address of the NFS server, and, if you don't have DHCP available on your network and the server is not on a network directly connected to the machine on which you're installing or upgrading NetBSD, you need to know the numeric IP address of the router closest to the NetBSD machine. Finally, you need to know the numeric IP address of the NetBSD machine itself.

Once the NFS server is set up properly and you have the information mentioned above, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading.

Note:
This method of installation is recommended for those already familiar with using BSD network configuration and management commands. If you aren't, this documentation should help, but is not intended to be all-encompassing.

Tape
To install NetBSD from a tape, you need to make a tape that contains the distribution set files, in `tar' format.

If you're making the tape on a UNIX-like system, the easiest way to do so is probably something like:

       # tar -cf tape_device dist_directories

where tape_device is the name of the tape device that describes the tape drive you're using; possibly /dev/rst0, or something similar, but it will vary from system to system. (If you can't figure it out, ask your system administrator.) In the above example, dist_directories are the distribution sets' directories, for the distribution sets you wish to place on the tape. For instance, to put the kern-GENERIC, base, and etc distributions on tape (in order to do the absolute minimum installation to a new disk), you would do the following:


       # cd .../NetBSD-4.0_wrstuden_fixsa_t1
       # cd macppc/binary
       # tar -cf tape_device kern-GENERIC base etc

Note:
You still need to fill in tape_device in the example.

Once you have the files on the tape, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading.


Preparing your System for NetBSD installation

Prepare yourself
Take a deep breath.

Good. Now, make sure you are reading the PDF (if available), PostScript, or HTML version of this document, as the .txt and .more versions lack important formatting information that will prevent you from following the twisted path you must follow. OK, good. Now, print out this document.

While it's printing, get some coffee, relax a bit, and mentally prepare yourself for something that promises to be confusing, frustrating, and annoying. If you assume the worst, you'll be pleasantly surprised when everything works easier than you expected. Also, forget everything you've been told about installing NetBSD/macppc. That's right, flush your knowledge cache -- some of it is almost certainly dirty.

Some of this document assumes familiarity with MacOS, e.g. how to download BinHex files and extract things with StuffIt Expander. If you've never heard of those terms before, it is possible to install NetBSD/macppc without booting or knowing how to use MacOS, but depending on your model it may be almost as painful as learning a little MacOS. See the FAQ for more help: http://www.NetBSD.org/ports/macppc/faq.html#macos-newbie

It's done printing? Fine, time to get started.

The recommended installation procedure is as follows:

  1. Go to the NetBSD/macppc model support page and look up your model information and issues (I can't stress this enough times). http://www.NetBSD.org/ports/macppc/models.html

  2. Spend about 15 minutes and read through this document from this point onward. There will be many pages of instructions that apply to Open Firmware versions that you do not have. Throw them out. Do not read them -- at best you will be confused, at worst you may damage your system requiring repairs.

  3. Now create your bootable media and media for the distribution sets.

  4. Prepare your machine, depending on the instructions for your model (for example: partition your drive, download and run System Disk, or hook up a serial console).

  5. Boot into Open Firmware, and verify that it has the version of Open Firmware you think it does. Also make sure that the other variables are set correctly.

  6. Figure out the correct boot command, and boot your machine from the bootable media you just created. If you're having trouble, be sure to read the section on Common Problems and Error Messages

  7. Celebrate! The worst is over, but you've still got some work to do. Take a break, maybe more coffee, maybe a quick walk around the block, whatever turns your fancy.

  8. Now use the installer to install the distribution sets onto your system and do some initial configurations.

  9. Figure out how to boot from the installed partition. Boot into NetBSD for the first time.

  10. You may then boot into Open Firmware and set it to always boot your favorite operating system.

  11. Configure to your preferences, install your favorite packages, and have fun with your new NetBSD/macppc machine!

Note:
You really actually truly do need to follow the procedure listed in this document in the order that we describe. These systems are rather tricky to boot for the novice and expert alike. Once you cross off the sections that don't apply to you, it will make more sense.

Note:
If the instructions in a subsection below do not apply to all versions of Open Firmware, there will be a line listing which versions of Open Firmware they apply to, such as:
(Open Firmware 1.0.5, Open Firmware 1.1.22, Open Firmware 2.0.x, Open Firmware 2.4, Open Firmware 3)
If you do not have an Open Firmware 3 system, skip down to Preparing your Open Firmware 1.x or 2.x System for NetBSD

Preparing your Open Firmware 3 System for NetBSD

Updating your BootROM
Open Firmware 3 systems have a rewritable ``firmware'', also called the BootROM. When you use an Apple firmware updater, it updates the BootROM. This will not change the version of Open Firmware in your machine -- it will still be Open Firmware 3. The BootROM is what is first executed when you power on or reset your system. The BootROM then loads Open Firmware, which boots your operating system.

Go to the `Apple Software Downloads' web site at http://www.info.apple.com/support/downloads.html and search for `firmware' and install the most recent version for your model. For most G3 and G4 models, you will need to run the FirmWare updater from MacOS 9.

Note:
If you accidentally change the load-base or real-base Open Firmware variables and reset your machine you will, in effect, rewrite the BootROM with garbage. This will permanently damage your machine. We recommend not doing this.

Note:
The most recent BootROMs available (4.1.7 and later) are a little picky about RAM. Initially, some PowerMacintosh G3 users found that their third-party RAM had been disabled, but the RAM vendors brought their RAM up to spec and it hasn't been much of an issue since then.

There is one report that FirmWare Update 4.1.9 on iMac (Summer 2000) will prevent the CD-ROM and the hard drive from operating together. You may get wdc0:0:1: lost interrupt problems.

Getting to Open Firmware 3
Hold down a special four-key combination when your system boots.

After the chime starts, but before it stops, hold down the four COMMAND-OPTION-O-F keys (the COMMAND key looks like a four-leaf clover or an open apple, and the OPTION key may look like a two-way switch with four straight line segments or say ALT) until you see the Open Firmware command prompt on your screen:

Apple PowerBook3,1 2.1f1 BootROM built on 01/29/00 at 22:38:07
Copyright 1994-2000 Apple Computer, Inc.
All Rights Reserved
                                                                                     

Welcome to Open Firmware. To continue booting, type "mac-boot" and press return. To shut down, type "shut-down" and press return. ok 0 >

Now, set your system to always stop at the Open Firmware prompt.

0 > setenv auto-boot? false

Alternatively, if you are currently running MacOS X or Darwin, you can use the nvram command to set this variable before rebooting.

# nvram auto-boot\?=false

You will need to escape the question-mark or enclose the whole nvram argument in double-quotes to prevent your shell from trying to interpret it.

Setting up Open Firmware 3 to boot NetBSD
This section describes some steps you must take to prepare Open Firmware to boot NetBSD. Additional resources are available in the FAQ regarding how to use the Open Firmware command environment, and the Open Firmware variables you may be using: http://www.NetBSD.org/ports/macppc/faq.html#ofw-access http://www.NetBSD.org/ports/macppc/faq.html#ofw-variables

Double-check your Open Firmware version:

0 > dev /openprom
0 > .properties
name                    openprom
device_type             BootROM
model                   OpenFirmware 3
relative-addressing
supports-bootinfo
 ok

If you will be netbooting your system, you can look up your MAC address.

0 > dev enet
0 > .properties
[...]
local-mac-address   CCCCCCCC CCCC
[...]

Note:
Some Open Firmware 3 machines have their MAC address stored incorrectly (little- vs. big-endian problem). If you look up your MAC address in MacOS, it will be different than what Open Firmware 3 uses to contact your netboot server. Your machine will still work, but its MAC address may conflict with another ethernet device on your network.

You can check your Open Firmware settings with the printenv command:

0 > printenv
-------------- Partition: common -------- Signature: 0x70 ---------------
little-endian?      false               false
real-mode?          false               false
auto-boot?          false               true
diag-switch?        false               false
[...]
use-nvramrc?        true                false
real-base           -1                  -1
[...]
input-device        keyboard            keyboard
output-device       screen              screen
Available Boot Media
Open Firmware is capable of booting from a variety of media (such as hard drives, CD-ROMs, and ethernet). Open Firmware is able to boot files from a variety of file systems (such as ISO9660, HFS, HFS+, and MS-DOS FAT). Unfortunately, Open Firmware is not able to directly boot from the NetBSD file system (FFS) or Apple's new BSD-based file system (UFS), so we must put the bootloader in a location that Open Firmware is capable of understanding.

Therefore, to boot the NetBSD kernel, Open Firmware must first load a `bootloader' (ofwboot.xcf) which knows how to load the NetBSD kernel.

Note:
ofwboot.elf is obsoleted. All users should be using ofwboot.xcf instead of ofwboot.elf now.

The following bootable media are available for loading the bootloader:

Once the bootloader is loaded, it can open the kernel from one of the following sources:

The boot CD-R images provided with the distribution sets has both a `partition zero' bootloader and ofwboot.xcf on a hybrid partition so it can be booted on all Open Firmware versions. It also has an ISO9660 file system with an installation kernel and the distribution sets.

Partitioning your hard drive for NetBSD
You must have at least one disk that was partitioned before running the NetBSD installer.

This is the drive that will have the bootloader, ofwboot.xcf. Your NetBSD partitions may either be on this same disk (using the method described in the rest of this section), or on a separate disk accessible only to NetBSD.

This section describes how to make a single disk usable by both MacOS and NetBSD -- this is necessary for machines which have only one hard drive (such as the eMac, iBook, iMac, PowerBook, and PowerMacintosh Cube systems). If you do not want MacOS you must still follow this procedure, but create only a small HFS+ partition (large enough for the bootloader).

There are two partitioning tools available for NetBSD/macppc, disklabel(8) and pdisk(8). The former is used in the NetBSD sysinst installer, and will render your disk unusable by MacOS. It will also prevent Open Firmware 3 machines from booting from that disk. When running the installer, you will need to use the installer's ``Re-install sets'' option to skip the disklabel step.

Do not use disklabel or ``Re-install sets'' unless you will use one drive for NetBSD only and have another drive which will have the bootloader.

The process is more fully detailed in the Partitioning HOW-TO: http://www.NetBSD.org/ports/macppc/partitioning.html

You can create a partition map with pdisk(8), but the disk will not be usable with MacOS 9 and earlier. If this is a concern, you will need to use Apple's Drive Setup or Disk Utility.

If you are using Apple's Drive Setup tool, make sure you have version 1.8.1 or later. This tool only runs under MacOS 9 and earlier. Drive Setup will erase the contents of your drive -- it does not preserve data from any of your partitions.

Apple's Disk Utility only runs under MacOS X 10.0.0 and later. Make sure you click the ``Install Mac OS 9 Disk Drivers'' checkbox. Also, keep in mind that Disk Utility does not create the partitions that NetBSD/macppc requires. After creating the initial partition map with Disk Utility, you will need to use the NetBSD pdisk to change the partition types. Also, Disk Utility will erase the contents of your drive -- it does not preserve data from any of your partitions.

pdisk is the most flexible (and most difficult to use) partitioning tool available. It runs on almost all OSes that macppc machines support. Download it: ftp://ftp.NetBSD.org/pub/NetBSD/arch/macppc/netbsd-pdisk/ ftp://ftp.NetBSD.org/pub/NetBSD/arch/macppc/macos-utils/pdisk.sea.hqx

There is built-in help describing how it works. When it asks you to enter the ``Type of partition'', use Apple_UNIX_SVR2 for NetBSD partitions, Apple_HFS for HFS and HFS+ partitions, and Apple_UFS for UFS partitions.

After you've written the partition map with pdisk, you will need to create the file systems. Use newfs(8) and mount(8) for NetBSD file systems, and hfstools to create and mount HFS file systems. ftp://ftp.NetBSD.org/pub/NetBSD/packages/pkgsrc/sysutils/hfsutils/README.html

Make the following partitions:

HFS or HFS+
Must be large enough to hold the bootloader, over 100 KB. May be as large as you desire for MacOS usage.

A/UX Root
Must be at least 20 MB. Alternatively, you may decide to use one partition for your entire NetBSD installation, in which case it should be at least 200 MB without X, or 260 MB with X. NetBSD interprets an A/UX Root partition as the first partition (a) on the disk. This partition is not readable from MacOS.

A/UX Swap
Any size. The recommendation is your RAM size, although this is not strictly necessary for machines with a lot of RAM. NetBSD interprets an A/UX Swap partition as the second partition (b) on the disk. This partition is not readable from MacOS.

A/UX User and A/UX Free1
Use these for any additional partitions you may want to use under NetBSD, such as /usr (at least 200 MB), /home, /usr/local, or /usr/pkg. NetBSD interprets these partitions as normal NetBSD-style partitions. These partitions are not readable from MacOS.

HFS
Any size. You may want to leave an additional partition available to transfer files between MacOS and NetBSD. If would like to create such a partition, then see the Partitioning HOW-TO. http://www.NetBSD.org/ports/macppc/partitioning.html#msdos

UFS
Any size. UFS partitions are not readable from MacOS versions prior to X 10.0.0. If you use an UFS partition as your root, then it may not be recognized by the NetBSD kernel as the first partition (a) on the disk. You will need to compile a new kernel with the root partition explicitly defined to be the UFS partition.

Now would be a good time to use pdisk to determine the partition numbers for your bootloader and kernel.

Preparing the Open Firmware 3 Bootable Media
The purpose of this section is to prepare the media from which your system will boot the installer. We'll describe how to put the files in the right places on your disk(s) or netboot server and prepare it for use on your system.

If you will be running your system diskless (i.e. entirely over NFS, not using any local hard drives), then you do not need to run the installer, you only need to extract the distribution sets on the diskless server.

To get the distribution sets onto appropriate media, see the above section entitled Getting the NetBSD System on to Useful Media. You may want to get the distribution sets when you create the bootable media.

Note:
Some MacOS ftp clients default to downloading files in `ASCII' mode. This will render the NetBSD files useless. Make sure to set your ftp program to download in `binary' mode.

What follows are the steps to create different types of bootable media for the NetBSD install kernel. You should only need to create one of these to get your system to boot the installer

Skip forward to Installing the NetBSD System

Preparing your Open Firmware 1.x or 2.x System for NetBSD

Getting to Open Firmware on Apple Network Servers
(Open Firmware 1.1.22)

The version of Open Firmware in the Apple Network Servers can only use a serial console. You must first hook up a serial console (38400 bps, 8 bits, no parity, 1 stop bit, no handshaking) to `Port 2' (the `ttya' device in Open Firmware).

Hold down a special four-key combination on the keyboard attached to the ADB port on your system (not the serial console) when your system boots.

After the chime starts, but before it stops, hold down the four COMMAND-OPTION-O-F keys (the COMMAND key looks like a four-leaf clover or an open apple, and the OPTION key may look like a two-way switch with four straight line segments or say ALT) until you see some introductory text and the Open Firmware command prompt on your serial terminal:

0 >

Your Apple Network Server's screen will remain black.

Now, set your system to always stop at the Open Firmware prompt.

0 > setenv auto-boot? false

Skip down to the section on Setting up Open Firmware 1 and 2 to boot NetBSD since the next several pages are instructions for MacOS models.

Open Firmware 1 and 2 System Preparation
Open Firmware has two variables, `input-device' and `output-device', which specify how it accepts commands and displays output. All Open Firmware 1.0.5 and most Open Firmware 2.0.x systems will default to using the `Modem' serial port for the console instead of the ADB keyboard and the monitor attached to the on-board video.

Unless you use a MacOS-based utility to set these variables correctly, you will need to hook up a serial console temporarily to configure Open Firmware to use your keyboard and screen. Some models (such as the Performa 54xx, 6360, 6400, and 6500) have the `Modem' serial port covered with a piece of plastic since the internal modem usurps that serial port. You will either need to use Boot Variables to set the `input-device' and `output-device' variables to `ttyb' (which is the Printer serial port) or remove the internal modem.

Open Firmware seems to ignore the settings on most DB15 to VGA adapters. Depending on your model, it will default to either 640 x 480 at 60 Hz or to the resolution previously selected in MacOS. Make sure that your monitor can handle these resolutions.

Now would be a good time to look at the NetBSD/macppc Model Support webpage to determine the issues with your model. http://www.NetBSD.org/ports/macppc/models.html

In particular, some models must use a serial console, or they will be unable to boot NetBSD at all. All models can be set to use a serial console, if you desire to bypass the keyboard and screen.

If, after re-reading the next several sections, you still need help figuring out your `input-device' and `output-device' settings, see the FAQ: http://www.NetBSD.org/ports/macppc/faq.html#ofw-input-output-devices

If you need to use a serial console, you can use a normal `printer' cable (mini-DIN 8 to mini-DIN 8) and a MacOS tool, such as ZTerm to connect a MacOS system to your NetBSD/macppc system. http://hyperarchive.lcs.mit.edu/HyperArchive/Archive/comm/term/zterm-101.hqx http://homepage.mac.com/dalverson/zterm/

See the NetBSD Serial Port Primer for additional help and references: http://www.NetBSD.org/docs/Hardware/Misc/serial.html

All Open Firmware 1 and 2 macppc systems have Open Firmware bugs. Luckily, Open Firmware has a small Non-Volatile RAM variable (NVRAM) which is reserved for FORTH commands which will be run before booting an operating system. Apple has released a freeware MacOS 9 tool called System Disk, which patches most of these bugs. We strongly recommend that you use this tool to patch your Open Firmware, as several systems cannot boot without these patches. Instructions for using System Disk are covered in the next section.

Unfortunately, some models are broken by or are unsupported by System Disk. If you have one of the following models, then skip down to the section on Getting to Open Firmware (Harder, MacOS 7 thru 9)
Apple Performa 4400, 5500, 6500, 54xx, 6400, and 6360,
Motorola Starmax 3000, 4000, 5000, and 5500,
APS Tech M*Power 604e/200,
PowerComputing PowerBase,
Umax Apus 2000, Apus 3000, C500, and C600
Umax S900

Getting to Open Firmware (MacOS X or Darwin)
When you install MacOS X or Darwin, it will install the necessary NVRAM bug fixes. Use the nvram command to set your system to always stop at the Open Firmware prompt, then reboot.
# nvram auto-boot\?=false

You will need to escape the question-mark or enclose the whole nvram argument in double-quotes to prevent your shell from trying to interpret it.

You should now see the Open Firmware command prompt on your screen:

Open Firmware, 1.0.5
To continue booting the MacOS type:
BYE<return>
To continue booting from the default boot device type:
BOOT<return>
 ok
0 >

If your screen is black, then your model has defaulted to using a serial console. You must hook up a serial console (38400 bps, 8 bits, no parity, 1 stop bit, no handshaking).

Getting to Open Firmware (Best, MacOS 8 or 9)
Download System Disk: ftp://ftp.apple.com/developer/macosxserver/utilities/SystemDisk2.3.1.smi.bin

For a brief tutorial on how to use System Disk, see: http://www.NetBSD.org/ports/macppc/SystemDisk-tutorial/

Launch the MacOS System Disk tool. Click on ``Power User (Open Firmware)'' then click on the ``Advanced Options'' button. Now, click on the checkbox that says ``Stop Boot at Open Firmware prompt'' and select ``OK''. Click the ``Save'' button and reboot your system.

Note:
NVRAM patches and Open Firmware settings will be erased if you `zap your PRAM' by holding down COMMAND-OPTION-P-R keys during the boot chimes, or if you accidentally boot into MacOS 9 or earlier.

If your `output-device' is `/chaos/control' (i.e. you have a PowerMacintosh 7300 -- 8600 system), there is a chance that your monitor will not sync. See http://www.NetBSD.org/ports/macppc/SystemDisk-tutorial/of105patch.html

You should now see the Open Firmware command prompt on your screen:

Open Firmware, 1.0.5
To continue booting the MacOS type:
BYE<return>
To continue booting from the default boot device type:
BOOT<return>
 ok
0 >

If your screen is black, then your model does not support using the on-board video in Open Firmware. You will need to connect a serial console to the `Modem' port of your system (38400 bps, 8 bits, no parity, 1 stop bit, no handshaking).

Note:
The ``Stop Boot at Open Firmware prompt'' setting is persistent. It is equivalent to the Open Firmware command

0 > setenv auto-boot? false

Note:
Unfortunately, there are a few models that are better off without the System Disk patches. If you find that your machine doesn't boot, then try:

0 > setenv use-nvramrc? false
0 > reset-all
Getting to Open Firmware (Harder, MacOS 7, 8, or 9)
If System Disk doesn't work because your version of MacOS is too old or because System Disk says that it doesn't support your model, then you may try using the MacOS BootVars tool.

ftp://ftp.NetBSD.org/pub/NetBSD/arch/macppc/macos-utils/bootvars/bootvars.sit.hqx

Note:
BootVars does not apply the (possibly critical) NVRAM patches that System Disk does. Expect some devices to not work (such as booting from hard drives and CD-ROMs).

Look up the proper `output-device' for your model on the NetBSD/macppc Model Support webpage. http://www.NetBSD.org/ports/macppc/models.html If the NetBSD/macppc Model support webpage does not list an `output-device' for your model, then your system will default to using the on-board video. You needn't fill in the `output-device' and `input-device' variables.

Launch the MacOS BootVars tool. Uncheck the ``auto-boot?'' checkbox, then check on the ``All Variables'' checkbox and type kbd into the `input-device' box, and the proper device name into the `output-device' box. Click on the ``write'' button, and then reboot your system.

If your `output-device' is `/chaos/control' (i.e. you have a PowerMacintosh 7300 -- 8600 system), there is a chance that your monitor will not sync. See http://www.NetBSD.org/ports/macppc/SystemDisk-tutorial/of105patch.html

If you have a Performa 5500 or 6500, you may need to apply NVRAMRC patches to use your built-in video. See the information in the NetBSD/macppc Model Support webpage.

You should now see the Open Firmware command prompt on your screen:

Open Firmware, 1.0.5
To continue booting the MacOS type:
BYE<return>
To continue booting from the default boot device type:
BOOT<return>
 ok
0 >

If your screen is black, then your model has defaulted to using a serial console. This is fairly common on Open Firmware 1 and 2 models if you do not use the System Disk tool to set up Open Firmware. You must hook up a serial console (38400 bps, 8 bits, no parity, 1 stop bit, no handshaking).

Note:
The ``auto-boot?'' setting is persistent. Your system will always stop at the Open Firmware prompt. It is equivalent to the Open Firmware command

0 > setenv auto-boot? false
Getting to Open Firmware (Without using MacOS)
(Open Firmware 1.0.5, Open Firmware 2.0.x, Open Firmware 2.4)

If you don't have MacOS, then you need to hold down a special four-key combination when your system boots. Do this on the keyboard attached to the ADB port on your system (not the serial console or PS/2 port) when your system boots.

Note:
Your system will not have the (possibly critical) NVRAM patches that System Disk applies. Expect some devices to not work (such as booting from hard drives and CD-ROMs).

After the chime starts, but before it stops, hold down the four COMMAND-OPTION-O-F keys (the COMMAND key looks like a four-leaf clover or an open apple, and the OPTION key may look like a two-way switch with four straight line segments or say ALT) until you see the Open Firmware command prompt on your screen or serial console:

Open Firmware, 1.0.5
To continue booting the MacOS type:
BYE<return>
To continue booting from the default boot device type:
BOOT<return>
 ok
0 >

If your screen is black, then your system has defaulted to using a serial console. This is fairly common on Open Firmware 1 and 2 models if you do not use the System Disk tool to set up Open Firmware. You must hook up a serial console (38400 bps, 8 bits, no parity, 1 stop bit, no handshaking).

Now, set your system to always stop at the Open Firmware prompt.

0 > setenv auto-boot? false

To use your on-board video and keyboard, look up the proper `output-device' for your model on the NetBSD/macppc webpage http://www.NetBSD.org/ports/macppc/models.html Run the following commands to use your screen instead of a serial console (replace `screen' with the correct `output-device' for your model):

0 > setenv output-device screen
0 > setenv input-device kbd
0 > reset-all

Now you should see the Open Firmware prompt on your screen.

If your `output-device' is `/chaos/control' (i.e. you have a PowerMacintosh 7300 -- 8600 system), there is a chance that your monitor will not sync. See http://www.NetBSD.org/ports/macppc/SystemDisk-tutorial/of105patch.html

Setting up Open Firmware 1 and 2 to boot NetBSD
This section describes some steps you must take to prepare Open Firmware to boot NetBSD. Additional resources are available in the FAQ regarding how to use the Open Firmware command environment, and the Open Firmware variables you may be using:
http://www.NetBSD.org/ports/macppc/faq.html#ofw-access
http://www.NetBSD.org/ports/macppc/faq.html#ofw-variables

Double-check your Open Firmware version:

0 > dev /openprom
0 > .properties
name                    openprom
model                   Open Firmware, 1.0.5
relative-addressing
 ok

If your system has Open Firmware prior to version 3, then you must set some Open Firmware variables before NetBSD can boot. Do not run these commands on Open Firmware 3 machines, as you may overwrite your firmware requiring a trip to Apple for repairs.

0 > setenv load-base 600000
0 > setenv real-base F00000
0 > reset-all

The last command reboots your machine so that the settings are stored.

If you will be netbooting your system, you can look up your MAC address.

0 > dev enet
0 > .properties
[...]
local-mac-address   CCCCCCCC CCCC
[...]
 ok

Note:
Some early Open Firmware 1.0.5 machines had their MAC address stored incorrectly on the motherboard (little- vs. big-endian problems). The patches the System Disk installs will correct this. Without the patch, the machine will still work, but its MAC address may conflict with another ethernet device on your network.

You can check your Open Firmware settings with the printenv command:

0 > printenv
little-endian?      false               false
real-mode?          false               false
auto-boot?          false               true
diag-switch?        false               false
[...]
use-nvramrc?        true                false
real-base           F00000              -1
[...]
load-base           600000              4000
[...]
input-device        kbd                 ttya
output-device       /chaos/control      ttya

Note:
All Open Firmware 1.0.5 settings and nvram patches will be erased if you boot into MacOS 9 or earlier. You will need to re-enter them before booting NetBSD again.

Note:
Open Firmware 2.0.x and Open Firmware 2.4 systems will set the real-base environment variable to its default value (which prevents NetBSD from booting) if you boot into MacOS 9 or earlier.
Available Boot Media
Open Firmware is capable of booting from a variety of media (such as hard drives, floppy disks, CD-ROMs, and ethernet). Open Firmware is able to boot files from a variety of file systems (such as ISO9660, and MS-DOS FAT). Unfortunately, Open Firmware is not able to directly boot from the NetBSD file system (FFS) or Apple's file systems (HFS, HFS+, or UFS), so we must put the bootloader in a location that Open Firmware is capable of understanding.

Therefore, to boot the NetBSD kernel, Open Firmware must first load a `bootloader' which knows how to load the NetBSD kernel. Open Firmware 1 and 2 take either a two or three stage approach, depending on the boot media. In the two step approach, Open Firmware loads ofwboot.xcf from the boot media, which then loads the kernel. In the three step approach (used in the `partition zero' method), Open Firmware loads a primary bootloader bootxx from a disk which then loads the secondary bootloader ofwboot (which is functionally identical to ofwboot.xcf) which then loads the kernel.

Note:
ofwboot.elf is obsoleted. All users should be using ofwboot.xcf instead of ofwboot.elf now.

The following bootable media are available for loading the bootloader:

Once the bootloader is loaded, it can open the kernel from one of the following sources:

In theory, Open Firmware 2.4 systems should be able to load the bootloader from an HFS or HFS+ partition or a hybrid CD-R, but users have reported that it doesn't work.

The boot floppy images provided with the distribution sets have a `partition zero' bootloader and a NetBSD file system with an installation kernel. The boot CD-R images provided with the distribution sets has both a `partition zero' bootloader and ofwboot.xcf on a hybrid partition so it can be booted on all Open Firmware versions. It also has an ISO9660 file system with an installation kernel and the distribution sets.

Partitioning your hard drive for NetBSD
You must use the NetBSD installer to partition your disk if you want it to be bootable. With this release of NetBSD, there is no way to dual-boot MacOS and NetBSD on one hard drive.

You can use the instructions in this section to partition a disk that may also be used with MacOS, although a disk prepared in this way will not boot NetBSD. That means, your root partition (/) must be on a drive prepared with the NetBSD installer, but the partitions not necessary to boot (for example /usr, /home, or /export) may be on the same disk as MacOS.

Unless you are planning to use partitions on the same disk as MacOS, skip forward to Preparing the Open Firmware 1 or 2 Bootable Media

There are two partitioning tools available for NetBSD/macppc, disklabel(8) and pdisk(8). The former is used in the NetBSD sysinst installer, and will render your disk unusable by MacOS.

The process is more fully detailed in the Partitioning HOW-TO: http://www.NetBSD.org/ports/macppc/partitioning.html

You can create a partition map with pdisk(8), but the disk will not be usable with MacOS 9 and earlier. If this is a concern, you will need to use Apple's Drive Setup or Disk Utility.

If you are using Apple's Drive Setup tool, make sure you have version 1.8.1 or later. This tool only runs under MacOS 9 and earlier. Drive Setup will erase the contents of your drive -- it does not preserve data from any of your partitions.

Apple's Disk Utility only runs under MacOS X 10.0.0 and later. Make sure you click the ``Install Mac OS 9 Disk Drivers'' checkbox. Also, keep in mind that Disk Utility does not create the partitions that NetBSD/macppc requires. After creating the initial partition map with Disk Utility, you will need to use the NetBSD pdisk to change the partition types. Also, Disk Utility will erase the contents of your drive -- it does not preserve data from any of your partitions.

pdisk is the most flexible (and most difficult to use) partitioning tool available. It runs on almost all OSes that macppc machines support. Download it: ftp://ftp.NetBSD.org/pub/NetBSD/arch/macppc/netbsd-pdisk/ ftp://ftp.NetBSD.org/pub/NetBSD/arch/macppc/macos-utils/pdisk.sea.hqx

There is built-in help describing how it works. When it asks you to enter the ``Type of partition'', use Apple_UNIX_SVR2 for NetBSD partitions, Apple_HFS for HFS and HFS+ partitions, and Apple_UFS for UFS partitions.

After you've written the partition map with pdisk, you will need to create the file systems. Use newfs(8) and mount(8) for NetBSD file systems, and hfstools to create and mount HFS file systems. ftp://ftp.NetBSD.org/pub/NetBSD/packages/pkgsrc/sysutils/hfsutils/README.html

Make the following partitions:

A/UX Swap
Any size. The recommendation is your RAM size, although this is not strictly necessary for machines with a lot of RAM. NetBSD interprets an A/UX Swap partition as the second partition (b) on the disk. This partition is not readable from MacOS.

A/UX User and A/UX Free1
Use these for any additional partitions you may want to use under NetBSD, such as /usr (at least 200 MB), /home, /usr/local, or /usr/pkg. NetBSD interprets these partitions as normal NetBSD-style partitions. These partitions are not readable from MacOS.

HFS
Any size. You may want to leave an additional partition available to transfer files between MacOS and NetBSD. If would like to create such a partition, then see the Partitioning HOW-TO. http://www.NetBSD.org/ports/macppc/partitioning.html#msdos

UFS
Any size. UFS partitions are not readable from MacOS versions prior to X 10.0.0. If you use an UFS partition as your root, then it may not be recognized by the NetBSD kernel as the first partition (a) on the disk. You will need to compile a new kernel with the root partition explicitly defined to be the UFS partition.

Now would be a good time to use pdisk to determine the partition numbers for your bootloader and kernel.

Preparing the Open Firmware 1 or 2 Bootable Media
The purpose of this section is to prepare the media from which your system will boot the installer. We'll describe how to put the files in the right places on your disk(s) or netboot server and prepare it for use on your system.

If you will be running your system diskless (i.e. entirely over NFS, not using any local hard drives), then you do not need to run the installer, you only need to extract the distribution sets on the diskless server.

To get the distribution sets onto appropriate media, see the above section entitled Getting the NetBSD System on to Useful Media. You may want to get the distribution sets when you create the bootable media.

Note:
Some MacOS ftp clients default to downloading files in `ASCII' mode. This will render the NetBSD files useless. Make sure to set your ftp program to download in `binary' mode.

What follows are the steps to create different types of bootable media for the NetBSD install kernel. You should only need to create one of these to get your system to boot the installer



Installing the NetBSD System

Open Firmware boot syntax
The syntax of the Open Firmware boot command is:

       boot boot-device [boot-file] [-as]

where the boot-device describes where to find the bootloader, boot-file describes where to find the NetBSD kernel, and the options specify how you want to boot.

You use the boot-device to tell Open Firmware where to find ofwboot(8) by listing the device, the partition (if it's a disk), and the filename of the bootloader (if using ofwboot.xcf).

If the boot-file is on the same device and partition (if it's a disk) as the boot-device then you can just specify the kernel filename. Otherwise, you need to specify the full Open Firmware path to the kernel.

The -a flag will ask you for the location of the next item to load (i.e. the bootloader will ask where the kernel is (if unspecified), or the kernel will ask where the root file system is). The -s flag will boot into `single-user' mode.

The exact command you will be using depends on which version of Open Firmware your machine has and which device you will be booting from. Sometimes you may have to guess as we don't know all of the combinations of models, device names, and file names. In general the format is: device:[partition][,\filename]. Keep in mind for the future that you may be able to have your boot-device and boot-file on entirely different devices (such as the bootloader netbooted from enet and the kernel loaded from a hard drive on the ultra0 ATA/IDE bus).

We'll try to walk you through the process of figuring out what Open Firmware calls your device, partition, and file names. To start with, Open Firmware keeps a ``device tree'' with all of the devices it finds in your system. You can get a listing of the nodes in this device tree with the dev and ls commands. dev is similar to the unix cd command and is used to change between the nodes in the Open Firmware device tree (similar to a file system). ls of course is similar to the unix ls command and is used to list the contents of the current device node. To get a listing of all the devices available in your system, use the following commands:

0 > dev /
0 > ls

Open Firmware has device aliases which are simple names for the full hardware path to a device (similar to alias in csh(1)). You can find out what device aliases Apple created on your machine with the devalias command. For example, here are the devaliases on a PowerMacintosh 7300:

0 > devalias
vci0                /chaos@F0000000
pci1                /bandit@F2000000
pci2                /bandit@F4000000
fd                  /bandit/gc/swim3
kbd                 /bandit/gc/via-cuda/adb/keyboard
ttya                /bandit/gc/escc/ch-a
ttyb                /bandit/gc/escc/ch-b
enet                /bandit/gc/mace
scsi                /bandit/gc/53c94
scsi-int            /bandit/gc/mesh
 ok

On most systems, you'll find the devices you're looking for. Typical aliases are:


      
hd internal hard drive       
cd CD-ROM drive       
zip internal Zip drive       
enet ethernet       
fd floppy drive       
scsi SCSI bus       
scsi-int internal SCSI bus (on systems with multiple SCSI busses)       
ata ATA/IDE bus       
ideN ATA/IDE bus number N       
ultraN Ultra/66 or Ultra/100 IDE bus number N

Note that some of these items are the device itself, and some are a bus. When you only have the devalias to a bus, you need to specify which device on that bus you want to use. You can use the Open Firmware dev and ls commands. For example, here are the devices on the internal SCSI bus of a PowerMacintosh 7300:

0 > dev scsi-int
0 > ls
FF83C850: /sd@0,0
FF83D480: /st@0,0
 ok

In this case, Open Firmware seems to be saying there are two devices, both at address zero (one is a SCSI disk `sd@0,0' and the other is a SCSI tape `st@0,0 ).' Unfortunately, older systems will only list the naming convention and not the actual devices currently connected, but that's OK -- we've got more tricks up our sleeve.

If you've got ATA/IDE drives, you have all the device information you need (since Apple only ever ships drives as ``master'' which is typically something like ata-disk@0, ATA-Disk@0, atapi-disk, or disk@0 ).

You can find out the devices on your SCSI bus with the show-children command:

0 > dev scsi-int
0 > show-children
Target 0
  Unit 0  Disk     IBM     DCAS-32160      S65A
Target 3
  Unit 0  Removable Read Only device    SONY    CD-ROM CDU-8005 1.0j
 ok

Open Firmware calls SCSI IDs ``Target''. The ``Unit'' number is the Logical Unit Number (LUN). This is almost always zero. Thus, this PowerMacintosh system has an IBM hard drive (DCAS-32160) at SCSI ID 0, and a Sony CD-ROM drive (CDU-8005) at SCSI ID 3.

Now, we've got enough information to construct the device name for Open Firmware. Just stick everything together to describe to Open Firmware what you want. For example, Open Firmware calls the CD-ROM drive in this system scsi-int/sd@3.

To determine if a device is bootable, type:

0 > dev scsi-int/sd@3
0 > words
load          write        read          seek        close     open
write-blocks  read-blocks  max-transfer  block-size  dma-sync  dma-map-out
dma-map-in    dma-free     dma-alloc
 ok

If the word ``open'' is present in the list, then the device is almost certainly bootable.

Next, you need to figure out what partition Open Firmware thinks your bootloader is located on if you're going to boot from a disk. If you're using a ``partition zero'' bootloader, the answer is obvious: 0. Thus, your boot-device for the NetBSD/macppc CD-R image on an Open Firmware 1.0.5 system would be scsi-int/sd@3:0 since the image has a `partition zero' bootloader.

Other situations get a little trickier, as we know of no way to get a partition map from within Open Firmware, and it uses a different numbering scheme than either NetBSD or MacOS 9 (or earlier). You can use pdisk to get a listing of the partitions on a disk. See the Partitioning HOW-TO for help: http://www.NetBSD.org/ports/macppc/partitioning.html#pdisk

Typically, MS-DOS and ISO9660 formatted disks have their file systems at partition 1. Typically, Drive Setup formatted disks have their file systems starting at partition number 9. Often, if you omit the partition number, Open Firmware looks in the first partition it understands holding a valid file system.

Open Firmware uses a comma (,) to separate the partition number from the filename. It uses a backslash (the \ character) to separate directories. The bootloader uses forward slashes (the / character) to separate directories when specifying the boot-file. Thus, to specify the top of the file system on a CD-ROM in the example PowerMacintosh 7300 system, you'd use: scsi-int/sd@3:,\

Now, to confirm that you and Open Firmware are looking at the same files, you can get a directory listing of the file system on your device with the dir command. This command is only useful with file systems that Open Firmware understands and is able to boot from. On Open Firmware 1.0.5, 1.1.22, and 2.0.x systems, you can use dir on ISO9660 (not hybrid) and MS-DOS file systems. On Open Firmware 2.4, you can use it on HFS, HFS+, hybrid, ISO9960, and MS-DOS file systems. On Open Firmware 3, you can use it on HFS, HFS+, hybrid (not pure ISO9660), and MS-DOS file systems. The one exception to this rule is that Open Firmware cannot list files on a disk with a `partition zero' bootloader (including the NetBSD/macppc CD-R image and installation floppies).

0 > dir fd:,\
FINDER  .DAT 022 2 2B8
DESKTOP .    022 0 0
RESOURCE.FRK 012 3 0
NETBSD~1.GZ  020 5 1FDFCA
TRASH   .    010 B00 0
OFWBOOT .XCF 020 A75 D8F4
 ok
You can see that this MS-DOS formatted disk has a bunch of stuff, as well as the two important files: NETBSD~1.GZ and OFWBOOT.XCF. Note that MacOS shortened netbsd-GENERIC_MD.gz to NETBSD~1.GZ since MS-DOS file systems can only natively hold 8 characters for the filename.

Note:
Keep in mind that Open Firmware is often case-sensitive when it comes to filenames.

Note:
You may need to append a ;1 to the filename when using a ISO 9660 file system. This ``version number'' is part of the ISO 9660 specification and will show up in the directory listing if it is present on the disk. For example:
0 > boot cd:,\OFWBOOT.XCF;1 NETBSD.MACPPC;1

If the dir command showed you the files you're looking for, then you've figure out how to tell Open Firmware to look for your bootloader! In this case, your `boot-device' is `fd:,\OFWBOOT.XCF' and your `boot-file' is `fd:,/NETBSD~1.GZ'.

For additional help, see ofwboot(8) and the FAQ on topics like how to use the Open Firmware command environment and how to boot from a device attached to a PCI card which has Open Firmware support: http://www.NetBSD.org/ports/macppc/faq.html#ofw-use http://www.NetBSD.org/ports/macppc/faq.html#boot-pci

Examples of Open Firmware boot commands
Here are some examples of the commands you might use to boot your system:
Example of a normal boot
Of course, a lot of the information in this example depends on your model and what your boot method is, but we'll include this anyways just so you get an idea of what to expect (user-typed commands are in bold).
 Apple PowerBook3,1 2.1f1 BootROM built on 01/29/00 at 22:38:07
 Copyright 1994-2000 Apple Computer, Inc.
 All Rights Reserved
                                                                                     

Welcome to Open Firmware. To continue booting, type "mac-boot" and press return. To shut down, type "shut-down" and press return. ok 0 > boot enet:,ofwboot.xcf netbsd-GENERIC_MD.gz loading XCOFF tsize=C280 dsize=14AC bsize=2620 entry=600000 SECTIONS: .text 00600000 00600000 0000C280 000000E0 .data 0060D000 0060D000 000014AC 0000C360 .bss 0060E4B0 0060E4B0 00002620 00000000 loading .text, done.. loading .data, done.. clearing .bss, done..

>> NetBSD/macppc OpenFirmware Boot, Revision 1.3 >> (tsubai@mint.iri.co.jp, Sun Nov 26 01:41:27 JST 2000) 1701508+177748 [100+68176+55886]=0x1e9468

start=0x100000 Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001 The NetBSD Foundation, Inc. All rights reserved. Copyright (c) 1982, 1986, 1989, 1991, 1993 The Regents of the University of California. All rights reserved.

NetBSD 1.5.1 (INSTALL) #0: Thu Mar 15 00:52:56 PST 2001 mw@al:/usr/src/sys/arch/macppc/compile/INSTALL total memory = 192 MB avail memory = 172 MB using 2483 buffers containing 9932 KB of memory [...] erase ^H, werase ^W, kill ^U, intr ^C, status ^T Terminal type? [vt100] Erase is backspace. (I)nstall, (S)hell or (H)alt ?

Common Problems and Error Messages
This is a brief list of some of the Open Firmware problems you may run into. See the NetBSD/macppc FAQ for a thorough list. http://www.NetBSD.org/ports/macppc/faq.html#boot-trouble

Note:
You may find it necessary to remove all non-Apple devices from your machine. Some users have found this necessary.

Milestone
If you've reached this point, then you must've gotten the NetBSD installer to boot. Congratulations! That was the hard part. From now through the rest of this document, there should be no more Open Firmware specific problems, so read everything because it applies to all models.

Running the sysinst installation program

  1. Introduction

    Using sysinst, installing NetBSD is a relatively easy process. You still should read this document and have it in hand when doing the installation process. This document tries to be a good guideline for the installation and as such covers many details for the sake of completeness. Do not let this discourage you; the install program is not hard to use.

  2. General

    The following is a walk-through of the steps you will take while getting NetBSD installed on your hard disk. sysinst is a menu driven installation system that allows for some freedom in doing the installation. Sometimes, questions will be asked and in many cases the default answer will be displayed in brackets (``[ ]'') after the question. If you wish to stop the installation, you may press CONTROL-C at any time, but if you do, you'll have to begin the installation process again from scratch by running the /sysinst program from the command prompt. It is not necessary to reboot.

  3. Quick install

    First, let's describe a quick install. The other sections of this document go into the installation procedure in more detail, but you may find that you do not need this. If you want detailed instructions, skip to the next section. This section describes a basic installation, using a CD-ROM install as an example.

  4. Booting NetBSD

    You may want to read the boot messages, to notice your disk's name and capacity. Its name will be something like sd0 or wd0 and the geometry will be printed on a line that begins with its name. As mentioned above, you may need your disk's geometry when creating NetBSD's partitions. You will also need to know the name, to tell sysinst on which disk to install. The most important thing to know is that wd0 is NetBSD's name for your first IDE disk, wd1 the second, etc. sd0 is your first SCSI disk, sd1 the second, etc.

    Once NetBSD has booted and printed all the boot messages, you will be presented with a welcome message and a main menu. It will also include instructions for using the menus.

  5. Network configuration

    If you will not use network operation during the installation, but you do want your machine to be configured for networking once it is installed, you should first go to the Utility menu, and select the Configure network option. If you only want to temporarily use networking during the installation, you can specify these parameters later. If you are not using the Domain Name System (DNS), you can give an empty response in reply to answers relating to this.

  6. Preparing a disk which will be used for Open Firmware 3 systems

    Skip this step if you are installing NetBSD on an Open Firmware 1 or 2 system.

    Go to the Utility Menu, and select the Run /bin/sh option which will give you a shell prompt. From this shell prompt, you will do some of the steps that the normal install procedure runs automatically. Unfortunately, at the moment, our install tools aren't smart enough to deal with drives with Apple Partition Maps and will overwrite important information describing your partitions.

    You may need to type one of the following commands to get your delete key to work properly, depending on your keyboard:
           # stty erase '^h'
           # stty erase '^?'

    Type the following command (replacing wd0 with the name of your destination hard drive):
           # disklabel wd0

    This will print out the partition info that was generated by pdisk, Drive Setup, or Disk Utility. Note that, as discussed above in the Partitioning your hard drive for NetBSD section, your A/UX Root typically is the first partition (a) and your A/UX Swap typically is the second partition (b). You may also find that your A/UX User partition is the seventh partition (g). For example:


           # disklabel wd0
    [...] # size offset fstype [fsize bsize cpg/sgs] a: 426613 837432 4.2BSD 0 0 0 # (Cyl. 1622*- 2449*) b: 204800 632632 swap # (Cyl. 1226*- 1622*) c: 2134305 0 unused 0 0 # (Cyl. 0 - 4136*) d: 426616 1216 HFS # (Cyl. 2*- 829*) e: 204800 427832 HFS # (Cyl. 829*- 1226*) f: 21 2134284 unknown # (Cyl. 4136*- 4136*) g: 870239 1264045 4.2BSD 0 0 0 # (Cyl. 2449*- 4136*) disklabel: boot block size 0 disklabel: super block size 0

    Now, you need to create file systems on the partitions that NetBSD will be using.

    Do not modify any partitions labeled HFS, UFS, or unknown. The partitions you will be using have their fstype listed as 4.2BSD.

    Run the newfs command on the 4.2BSD partitions:


           # newfs /dev/wd0a
    newfs: /dev/wd0a: not a character-special device Warning: 120 sector(s) in last cylinder unallocated /dev/wd0a: 426612 sectors in 827 cylinders of 4 tracks, 129 sectors 208.3MB in 52 cyl groups (16 c/g, 4.03MB/g, 1024 i/g) super-block backups (for fsck -b #) at: 32, 8432, 16832, 25232, 33056, 41456, 49856, 58256, 66080, 74480, 82880, 91280, 99104, 107504, 115904, 124304, 132128, 140528, 148928, 157328, 165152, 173552, 181952, 190352, 198176, 206576, 214976, 223376, 231200, 239600, 248000, 256400, 264224, 272624, 281024, 289424, 297248, 305648, 314048, 322448, 330272, 338672, 347072, 355472, 363296, 371696, 380096, 388496, 396320, 404720, 413120, 421520, newfs: ioctl (WDINFO): Invalid argument newfs: /dev/wd0a: can't rewrite disk label
    You can ignore the `not a character-special device', `sector(s) in last cylinder unallocated', `ioctl (WDINFO): Invalid argument', and `can't rewrite disk label' warnings.

    Now you need to mount your destination root partition:
           # mount /dev/wd0a /mnt

    Make an fstab file for your new system (right now, you only really need to include /, /usr, and swap), for example:
           # mkdir /mnt/etc
           # cat > /mnt/etc/fstab
           /dev/wd0a / ffs rw 1 1
           /dev/wd0b none swap sw 0 0
           /dev/wd0g /usr ffs rw 1 2

    If you mess up while typing, you can press CONTROL-U to erase everything on the current line, or CONTROL-C to cancel the file creation, so you can start over. CONTROL-D finishes and writes the file to disk.

    Great, now create the mountpoints for the file systems you listed in the fstab:
           # mkdir /mnt/usr

    Clean up and return to sysinst:
           # cd /
           # umount /mnt
           # exit

  7. Installation drive selection and parameters

    To start the installation onto a dedicated NetBSD drive (Open Firmware 1 or 2), select Install NetBSD to hard disk from the main menu. To start the installation onto a drive with an Apple Partition Map (Open Firmware 3), select Re-install sets or install additional sets from the main menu.

    The first thing is to identify the disk on which you want to install NetBSD. sysinst will report a list of disks it finds and ask you for your selection. Depending on how many disks are found, you may get a different message. You should see disk names like wd0, wd1, sd0 or sd1.

    If sysinst reports
           I can not find any hard disk for use by NetBSD
    or the drive you wish to install onto is missing, then you should look at the FAQ entry http://www.NetBSD.org/ports/macppc/faq.html#nodisk

  8. Partitioning the disk

    You can skip a few steps, down to `Getting the distribution sets', if you are installing onto a drive with an Apple Partition Map (Open Firmware 3), i.e. you selected Re-install sets or install additional sets from the main menu.

  9. Editing the NetBSD disklabel

    The partition table of the NetBSD part of a disk is called a disklabel. In actuality, NetBSD/macppc uses an Apple Partition Map. The installer creates something like a real Apple Partition Map, but it is not compatible with Mac OS or Open Firmware, which is one of the reasons why you cannot use this installer to partition a disk that can be used with Mac OS or Open Firmware 3 systems.

    There are 4 layouts for the NetBSD part of the disk that you can pick from: Standard, Standard with X, Custom and Use Existing. The first two use a set of default values (that you can change) suitable for a normal installation, possibly including X. With the Custom option you can specify everything yourself. The last option uses the partition info already present on the disk.

    You will be presented with the current layout of the NetBSD disklabel, and given a chance to change it. For each partition, you can set the type, offset and size, block and fragment size, and the mount point. The type that NetBSD uses for normal file storage is called 4.2BSD. A swap partition has a special type called swap. Some partitions in the disklabel have a fixed purpose.

    a
    Root partition (/)

    b
    Swap partition.

    c
    The NetBSD portion of the disk.

    d-p
    Available for other use. Traditionally, g is the partition mounted on /usr, but this is historical practice and not a fixed value.

    You will then be asked to name your disk's disklabel. The default response will be ok for most purposes. If you choose to name it something different, make sure the name is a single word and contains no special characters. You don't need to remember this name.

  10. Preparing your hard disk

    You are now at the point of no return. Nothing has been written to your disk yet, but if you confirm that you want to install NetBSD, your hard drive will be modified. If you are sure you want to proceed, enter yes at the prompt.

    The install program will now label your disk and make the file systems you specified. The file systems will be initialized to contain NetBSD bootstrapping binaries and configuration files. You will see messages on your screen from the various NetBSD disk preparation tools that are running. There should be no errors in this section of the installation. If there are, restart from the beginning of the installation process. Otherwise, you can continue the installation program after pressing the return key.

    Note:
    The bootstrapping code installed in this step will not boot a machine with Open Firmware 3. You will still need to have ofwboot.xcf on an HFS or HFS+ partition.

  11. Getting the distribution sets

    The NetBSD distribution consists of a number of sets, that come in the form of gzipped tarfiles. A few sets must be installed for a working system, others are optional. At this point of the installation, you will be presented with a menu which enables you to choose from one of the following methods of installing the sets. Some of these methods will first load the sets on your hard disk, others will extract the sets directly.

    For all these methods, the first step is making the sets available for extraction, and then do the actual installation. The sets can be made available in a few different ways. The following sections describe each of those methods. After reading the one about the method you will be using, you can continue to the section labeled `Extracting the distribution sets'.

  12. Installation using ftp

    To be able to install using ftp, you first need to configure your network setup, if you haven't already at the start of the install procedure. sysinst will do this for you, asking you if you want to use DHCP, and if not to provide data like IP address, hostname, etc. If you do not have name service set up for the machine that you are installing on, you can just press RETURN in answer to these questions, and DNS will not be used.

    You will also be asked to specify the host that you want to transfer the sets from, the directory on that host, the account name and password used to log into that host using ftp, and optionally a proxy server to use. If you did not set up DNS when answering the questions to configure networking, you will need to specify an IP address instead of a hostname for the ftp server.

    sysinst will proceed to transfer all the default set files from the remote site to your hard disk.

  13. Installation using NFS

    To be able to install using NFS, you first need to configure your network setup, if you haven't already at the start of the install procedure. sysinst will do this for you, asking you if you want to use DHCP, and if not to provide data like IP address, hostname, etc. If you do not have name service set up for the machine that you are installing on, you can just press RETURN in answer to these questions, and DNS will not be used.

    You will also be asked to specify the host that you want to transfer the sets from, and the directory on that host that the files are in. This directory should be mountable by the machine you are installing on, i.e. correctly exported to your machine.

    If you did not set up DNS when answering the questions to configure networking, you will need to specify an IP address instead of a hostname for the NFS server.

  14. Installation from CD-ROM

    When installing from a CD-ROM, you will be asked to specify the device name for your CD-ROM player (usually cd0), and the directory name on the CD-ROM where the distribution files are.

    sysinst will then check if the files are indeed available in the specified location, and proceed to the actual extraction of the sets.

  15. Installation from an unmounted file system

    In order to install from a local file system, you will need to specify the device that the file system resides on (for example sd1e) the type of the file system, and the directory on the specified file system where the sets are located. sysinst will then check if it can indeed access the sets at that location. Remember, NetBSD/macppc doesn't grok HFS or HFS+ partitions

  16. Installation from a local directory

    This option assumes that you have already done some preparation yourself. The sets should be located in a directory on a file system that is already accessible. sysinst will ask you for the name of this directory.

  17. Extracting the distribution sets

    After the install sets containing the NetBSD distribution have been made available, you can either extract all the sets (a full installation), or only extract sets that you have selected. In the latter case, you will be shown the currently selected sets, and given the opportunity to select the sets you want. Some sets always need to be installed and etc (kern, base,) they will not be shown in this selection menu.

    Before extraction begins, you can elect to watch the files being extracted; the name of each file that is extracted will be shown. This can slow down the installation process considerably, especially on machines with slow graphics consoles or serial consoles. Alternatively, you will be asked if you wish to have a progress bar. This is the preferred option as it shows progress without significantly slowing down the installation process.

    If you are installing using the Re-install sets or install additional sets option, then you will need to create the device nodes in /dev, otherwise, all the necessary device node files will be created. If you have already configured networking, you will be asked if you want to use this configuration for normal operation. If so, these values will be installed in the network configuration files. The next menu will allow you to select the time zone that you're in, to make sure your clock has the right offset from UTC. Finally you will be asked to select a password encryption algorithm and can then set a password for the "root" account, to prevent the machine coming up without access restrictions.

  18. Making the device nodes

    If you are installing using the Re-install sets or install additional sets option, then you will need to create the device nodes in /dev now. Otherwise, skip this step.

    Go to the main installation menu, and select Utility menu and then select the Run /bin/sh option, which will give you a shell prompt. You may need to type one of the following commands to get your delete key to work properly, depending on your keyboard:
           # stty erase '^h'
           # stty erase '^?'

    Type the following command (replacing wd0a with the partition name of your destination root partition): Now you need to mount your destination root partition:
           # mount /dev/wd0a /mnt
           # cd /mnt/dev
           # sh MAKEDEV all
           # cd /
           # umount /mnt
           # exit

  19. Finalizing your installation

    Congratulations, you have successfully installed NetBSD 4.0_wrstuden_fixsa_t1.

Finalizing Open Firmware settings
Now, you can reboot to get to the Open Firmware prompt. You still need to figure out how to get Open Firmware to boot the operating system(s) of your choice. First, try to get NetBSD/macppc running. Using the methods described in the section Examples of Open Firmware boot commands figure out the boot command for your installation of NetBSD. Try booting. Once you've got the syntax worked out, decide which operating systems you'll be using regularly.

Post installation steps

Once you've got the operating system running, there are a few things you need to do in order to bring the system into a properly configured state, with the most important ones described below.

  1. Configuring /etc/rc.conf

    If you or the installation software haven't done any configuration of /etc/rc.conf (sysinst usually will), the system will drop you into single user mode on first reboot with the message

           /etc/rc.conf is not configured. Multiuser boot aborted.

    and with the root file system (/) mounted read-only. When the system asks you to choose a shell, simply press RETURN to get to a /bin/sh prompt. If you are asked for a terminal type, respond with vt100 (or whatever is appropriate for your terminal type) and press RETURN. You may need to type one of the following commands to get your delete key to work properly, depending on your keyboard:
           # stty erase '^h'
           # stty erase '^?'
    At this point, you need to configure at least one file in the /etc directory. You will need to mount your root file system read/write with:
           # /sbin/mount -u -w /
    Change to the /etc directory and take a look at the /etc/rc.conf file. Modify it to your tastes, making sure that you set rc_configured=YES so that your changes will be enabled and a multi-user boot can proceed. Default values for the various programs can be found in /etc/defaults/rc.conf, where some in-line documentation may be found. More complete documentation can be found in rc.conf(5).

    If your /usr directory is on a separate partition and you do not know how to use ed, you will have to mount your /usr partition to gain access to ex or vi. Do the following:


           # mount /usr
           # export TERM=vt100

    If you have /var on a separate partition, you need to repeat that step for it. After that, you can edit /etc/rc.conf with vi(1). When you have finished, type exit at the prompt to leave the single-user shell and continue with the multi-user boot.

    Other values that need to be set in /etc/rc.conf for a networked environment are hostname and possibly defaultroute, furthermore add an ifconfig_int for your <int> network interface, where your on-board interfaces may be one of mc0, bm0, tlp0 or gem0. For example:


           ifconfig_mc0="inet 123.45.67.89 netmask 255.255.255.0"

    or, if you have myname.my.dom in /etc/hosts:


           ifconfig_mc0="inet myname.my.dom netmask 255.255.255.0"

    To enable proper hostname resolution, you will also want to add an /etc/resolv.conf file or (if you are feeling a little more adventurous) run named(8). See resolv.conf(5) or named(8) for more information. Instead of manually configuring network and naming service, DHCP can be used by setting dhclient=YES in /etc/rc.conf.

    Other files in /etc that may require modification or setting up include /etc/mailer.conf, /etc/nsswitch.conf, and /etc/wscons.conf.

  2. Logging in

    After reboot, you can log in as root at the login prompt. Unless you've set a password in sysinst, there is no initial password. If you're using the machine in a networked environment, you should create an account for yourself (see below) and protect it and the ``root'' account with good passwords. By default, root login from the network is disabled (even via ssh(1)). One way to become root over the network is to log in as a different user that belongs to group ``wheel'' (see group(5)) and use su(1) to become root.

    Unless you have connected an unusual terminal device as the console you can just press RETURN when it prompts for Terminal type? [...].

  3. Adding accounts

    Use the useradd(8) command to add accounts to your system. Do not edit /etc/passwd directly! See vipw(8) and pwd_mkdb(8) if you want to edit the password database.

  4. The X Window System

    If you have installed the X Window System, look at the files in /usr/X11R6/lib/X11/doc for information. Also, you may want to read through the NetBSD/macppc X11R6 FAQ.
    http://www.NetBSD.org/ports/macppc/x11.html

    Don't forget to add /usr/X11R6/bin to your path in your shell's dot file so that you have access to the X binaries.

  5. Installing third party packages

    If you wish to install any of the software freely available for UNIX-like systems you are strongly advised to first check the NetBSD package system. This automatically handles any changes necessary to make the software run on NetBSD, retrieval and installation of any other packages on which the software may depend, and simplifies installation (and deinstallation), both from source and precompiled binaries.

  6. Misc

Upgrading a previously-installed NetBSD System

The upgrade to NetBSD4.0_wrstuden_fixsa_t1 is a binary upgrade; it can be quite difficult to update the system from an earlier version by recompiling from source, primarily due to interdependencies in the various components.

To do the upgrade, you must boot from the installer kernel using one of the methods described above. You must also have at least the base and kern binary distribution sets available, so that you can upgrade with them, using one of the upgrade methods described above. Finally, you must have sufficient disk space available to install the new binaries. Since files already installed on the system are overwritten in place, you only need additional free space for files which weren't previously installed or to account for growth of the sets between releases. If you have a few megabytes free on each of your root (/) and /usr partitions, you should have enough space.

Since upgrading involves replacing the kernel, the boot blocks on your NetBSD partition, and most of the system binaries, it has the potential to cause data loss. You are strongly advised to back up any important data on the NetBSD partition or on another operating system's partition on your disk before beginning the upgrade process. Since installation of the bootloader will prevent Mac OS from using the disk and will prevent Open Firmware 3 machines from booting, there is an option to bypass this step. Make sure you know whether or not to install the bootloader.

The upgrade procedure using the sysinst tool is similar to an installation, but without the hard disk partitioning. sysinst will attempt to merge the settings stored in your /etc directory with the new version of NetBSD. Getting the binary sets is done in the same manner as the installation procedure; refer to the installation part of the document for how to do this. Also, some sanity checks are done, i.e. file systems are checked before unpacking the sets.

After a new kernel has been copied to your hard disk, your machine is a complete NetBSD4.0_wrstuden_fixsa_t1 system. However, that doesn't mean that you're finished with the upgrade process. You will probably want to update the set of device nodes you have in /dev. If you've changed the contents of /dev by hand, you will need to be careful about this, but if not, you can just cd into /dev, and run the command:

       # sh MAKEDEV all

Finally, you will want to delete old binaries that were part of the version of NetBSD that you upgraded from and have since been removed from the NetBSD distribution.

Compatibility Issues With Previous NetBSD Releases

Users upgrading from previous versions of NetBSD may wish to bear the following problems and compatibility issues in mind when upgrading to NetBSD 4.0_wrstuden_fixsa_t1 .

N.B. when using sysinst for upgrading, it will automatically invoke

postinstall fix
and thus all issues that are fixed by postinstall by default (see below) will be handled.
Issues affecting an upgrade from NetBSD 2.1 and older releases.
See the section below on upgrading from NetBSD 3.x as well.

It is very important that you populate the directory /etc/pam.d with appropriate configuration files for Pluggable Authentication Modules (PAM) because you will not be able to login any more otherwise. Using postinstall as described below will take care of this. Please refer to http://www.NetBSD.org/docs/guide/en/chap-pam.html for documentation about PAM.

The following issues can generally be resolved by running postinstall with the etc set :

postinstall -s /path/to/etc.tgz check
postinstall -s /path/to/etc.tgz fix

Issues fixed by postinstall:

The following issues need to be resolved manually:

Issues affecting an upgrade from NetBSD 3.x releases.

The following issues can generally be resolved by running postinstall with the etc set :

postinstall -s /path/to/etc.tgz check
postinstall -s /path/to/etc.tgz fix

Issues fixed by postinstall:

The following issues need to be resolved manually:

Issues with GDB 6.5

Some architectures (arm, i386, powerpc and sparc64) have switched to a newer gdb version (6.5) in this release. Unfortunately support for debugging programs using the SA (scheduler activation) based thread library, is incomplete in this gdb version. Furthermore kernel crashdumps can not be debugged due to a missing identification in the kernel binaries.

Both issues have been addressed on the wrstuden-fixsa branch, but did not make it into the NetBSD release. Both will be fixed in the next patch release.

Using online NetBSD documentation

Documentation is available if you first install the manual distribution set. Traditionally, the ``man pages'' (documentation) are denoted by `name(section)'. Some examples of this are

The section numbers group the topics into several categories, but three are of primary interest: user commands are in section 1, file formats are in section 5, and administrative information is in section 8.

The man command is used to view the documentation on a topic, and is started by entering man[ section] topic. The brackets [] around the section should not be entered, but rather indicate that the section is optional. If you don't ask for a particular section, the topic with the lowest numbered section name will be displayed. For instance, after logging in, enter


       # man passwd

to read the documentation for passwd(1). To view the documentation for passwd(5), enter


       # man 5 passwd

instead.

If you are unsure of what man page you are looking for, enter


       # apropos subject-word

where subject-word is your topic of interest; a list of possibly related man pages will be displayed.

Administrivia

If you've got something to say, do so! We'd like your input. There are various mailing lists available via the mailing list server at majordomo@NetBSD.org. To get help on using the mailing list server, send mail to that address with an empty body, and it will reply with instructions.

There are various mailing lists set up to deal with comments and questions about this release. Please send comments to: netbsd-comments@NetBSD.org.

To report bugs, use the send-pr(1) command shipped with NetBSD, and fill in as much information about the problem as you can. Good bug reports include lots of details. Additionally, bug reports can be sent by mail to: netbsd-bugs@NetBSD.org.

Use of send-pr(1) is encouraged, however, because bugs reported with it are entered into the NetBSD bugs database, and thus can't slip through the cracks.

There are also port-specific mailing lists, to discuss aspects of each port of NetBSD. Use majordomo to find their addresses, or visit http://www.NetBSD.org/mailinglists/. If you're interested in doing a serious amount of work on a specific port, you probably should contact the `owner' of that port (listed below).

If you'd like to help with this effort, and have an idea as to how you could be useful, send us mail or subscribe to: netbsd-help@NetBSD.org.

As a favor, please avoid mailing huge documents or files to these mailing lists. Instead, put the material you would have sent up for FTP or WWW somewhere, then mail the appropriate list about it, or, if you'd rather not do that, mail the list saying you'll send the data to those who want it.

Thanks go to

We are...

(in alphabetical order)


The NetBSD core group:
Alistair Crooksagc@NetBSD.org
Quentin Garniercube@NetBSD.org
YAMAMOTO Takashiyamt@NetBSD.org
Matt Thomasmatt@NetBSD.org
Christos Zoulaschristos@NetBSD.org

The portmasters (and their ports):
Anders Magnussonragge vax
Andrew Doranad amd64
Andrew Doranad i386
Andrey Petrovpetrov sparc64
Ben Harrisbjh21 acorn26
Cherry G. Mathewcherry ia64
Chris Gilbertchris cats
Darrin Jewelldbj next68k
Erik Berlscyber cobalt
Gavan Fantomgavan iyonix
IWAMOTO Toshihirotoshii hpcarm
Ichiro FUKUHARAichiro hpcarm
Ignatios Souvatzisis amiga
Izumi Tsutsuitsutsui ews4800mips
Izumi Tsutsuitsutsui hp300
Izumi Tsutsuitsutsui news68k
Jaime A Fournierober bebox
Jaime A Fournierober zaurus
Jason Thorpethorpej algor
Jason Thorpethorpej evbarm
Jason Thorpethorpej shark
Jonathan Stonejonathan pmax
Julian Colemanjdc atari
Manuel Bouyerbouyer xen
Marcus Comstedtmarcus dreamcast
Martin Husemannmartin sparc64
Matt Fredettefredette sun2
Matt Thomasmatt alpha
Matt Thomasmatt netwinder
Matthias Drochnerdrochner cesfic
Michael Lorenzmacallan macppc
NISHIMURA Takeshinsmrtks x68k
Nathan Williamsnathanw sun3
Nick Hudsonskrll hp700
Noriyuki Sodasoda arc
Paul Kranenburgpk sparc
Phil Nelsonphil pc532
Reinoud Zandijkreinoud acorn32
Ross Harveyross alpha
Søren Jørvangsoren sgimips
Scott Reynoldsscottr mac68k
Shin Takemuratakemura hpcmips
Simon Burgesimonb evbmips
Simon Burgesimonb pmax
Simon Burgesimonb sbmips
Steve Woodfordscw evbppc
Steve Woodfordscw mvme68k
Steve Woodfordscw mvmeppc
Takayoshi Kochikochi ia64
Tim Rightnourgarbled prep
Tohru Nishimuranisimura luna68k
Tohru Nishimuranisimura sandpoint
Wayne Knowleswdk mipsco
Wolfgang Solfrankws ofppc
The NetBSD 4.0_wrstuden_fixsa_t1 Release Engineering team:
Grant Beattiegrant@NetBSD.org
Manuel Bouyerbouyer@NetBSD.org
David Brownleeabs@NetBSD.org
Pavel Cahynapavel@NetBSD.org
James Chaconjmc@NetBSD.org
Julian Colemanjdc@NetBSD.org
Håvard Eidneshe@NetBSD.org
Liam J. Foyliamjfoy@NetBSD.org
John Heasleyheas@NetBSD.org
Geert Hendrickxghen@NetBSD.org
Soren Jacobsensnj@NetBSD.org
Daniel de Kokdaniel@NetBSD.org
Phil Nelsonphil@NetBSD.org
Jeff Rizzoriz@NetBSD.org

NetBSD Developers:
Nathan Ahlstromnra@NetBSD.org
Steve Allenwormey@NetBSD.org
Jukka Andbergjandberg@NetBSD.org
Julian Assangeproff@NetBSD.org
Lennart Augustssonaugustss@NetBSD.org
Christoph Badurabad@NetBSD.org
Bang Jun-Youngjunyoung@NetBSD.org
Dieter Barondillo@NetBSD.org
Robert V. Baronrvb@NetBSD.org
Alan Barrettapb@NetBSD.org
Grant Beattiegrant@NetBSD.org
Jason Beeganjtb@NetBSD.org
Erik Berlscyber@NetBSD.org
Hiroyuki Besshobsh@NetBSD.org
John Birrelljb@NetBSD.org
Mason Loring Blissmason@NetBSD.org
Charles Blundellcb@NetBSD.org
Rafal Bonirafal@NetBSD.org
Stephen Borrillsborrill@NetBSD.org
Sean Boudreauseanb@NetBSD.org
Manuel Bouyerbouyer@NetBSD.org
John Brezakbrezak@NetBSD.org
Allen Briggsbriggs@NetBSD.org
Mark Brinicombemark@NetBSD.org
Aaron Brownabrown@NetBSD.org
Andrew Brownatatat@NetBSD.org
David Brownleeabs@NetBSD.org
Frederick Bruckmanfredb@NetBSD.org
Jon Bullerjonb@NetBSD.org
Simon Burgesimonb@NetBSD.org
Robert Byrnesbyrnes@NetBSD.org
Pavel Cahynapavel@NetBSD.org
D'Arcy J.M. Caindarcy@NetBSD.org
Dave Carrelcarrel@NetBSD.org
Daniel Carosonedan@NetBSD.org
James Chaconjmc@NetBSD.org
Bill Coldwellbillc@NetBSD.org
Julian Colemanjdc@NetBSD.org
Ben Collverben@NetBSD.org
Jeremy Cooperjeremy@NetBSD.org
Chuck Cranorchuck@NetBSD.org
Alistair Crooksagc@NetBSD.org
Aidan Cullyaidan@NetBSD.org
Garrett D'Amoregdamore@NetBSD.org
Johan Danielssonjoda@NetBSD.org
John Darrowjdarrow@NetBSD.org
Jed Davisjld@NetBSD.org
Matt DeBergalisdeberg@NetBSD.org
Arnaud Degrootedegroote@NetBSD.org
Rob Dekerdeker@NetBSD.org
Chris G. Demetrioucgd@NetBSD.org
Tracy Di Marco Whitegendalia@NetBSD.org
Jaromír Dolecekjdolecek@NetBSD.org
Andy Doranad@NetBSD.org
Roland Dowdeswellelric@NetBSD.org
Emmanuel Dreyfusmanu@NetBSD.org
Matthias Drochnerdrochner@NetBSD.org
Jun Ebiharajun@NetBSD.org
Håvard Eidneshe@NetBSD.org
Stoned Elipotseb@NetBSD.org
Michael van Elstmlelstv@NetBSD.org
Enami Tsugutomoenami@NetBSD.org
Bernd Ernestiveego@NetBSD.org
Erik Fairfair@NetBSD.org
Gavan Fantomgavan@NetBSD.org
Hauke Fathhauke@NetBSD.org
Hubert Feyrerhubertf@NetBSD.org
Jason R. Finkjrf@NetBSD.org
Matt J. Flemingmjf@NetBSD.org
Marty Foutsmarty@NetBSD.org
Liam J. Foyliamjfoy@NetBSD.org
Matt Fredettefredette@NetBSD.org
Thorsten Frueauffrueauf@NetBSD.org
Castor Fucastor@NetBSD.org
Ichiro Fukuharaichiro@NetBSD.org
Quentin Garniercube@NetBSD.org
Thomas Gernerthomas@NetBSD.org
Simon J. Gerratysjg@NetBSD.org
Justin Gibbsgibbs@NetBSD.org
Chris Gilbertchris@NetBSD.org
Eric Gillespieepg@NetBSD.org
Michael Graffexplorer@NetBSD.org
Brian C. Graysonbgrayson@NetBSD.org
Matthew Greenmrg@NetBSD.org
Andreas Gustafssongson@NetBSD.org
Ulrich Habelrhaen@NetBSD.org
Jun-ichiro itojun Haginoitojun@NetBSD.org
Adam Hamsikhaad@NetBSD.org
Juergen Hannken-Illjeshannken@NetBSD.org
Charles M. Hannummycroft@NetBSD.org
Ben Harrisbjh21@NetBSD.org
Ross Harveyross@NetBSD.org
Eric Haszlakiewiczerh@NetBSD.org
John Hawkinsonjhawk@NetBSD.org
HAMAJIMA Katsuomihamajima@NetBSD.org
HAYAKAWA Koichihaya@NetBSD.org
John Heasleyheas@NetBSD.org
Geert Hendrickxghen@NetBSD.org
René Hexelrh@NetBSD.org
Iain Hibbertplunky@NetBSD.org
Kouichirou Hiratsukahira@NetBSD.org
Michael L. Hitchmhitch@NetBSD.org
Jachym Holecekfreza@NetBSD.org
Christian E. Hoppschopps@NetBSD.org
Ken Hornsteinkenh@NetBSD.org
Marc Horowitzmarc@NetBSD.org
Eduardo Horvatheeh@NetBSD.org
Nick Hudsonskrll@NetBSD.org
Shell Hungshell@NetBSD.org
Martin Husemannmartin@NetBSD.org
Dean Huxleydean@NetBSD.org
Love Hörnquist Åstrandlha@NetBSD.org
Bernardo Innocentibernie@NetBSD.org
Tetsuya Isakiisaki@NetBSD.org
ITOH Yasufumiitohy@NetBSD.org
IWAMOTO Toshihirotoshii@NetBSD.org
Matthew Jacobmjacob@NetBSD.org
Soren Jacobsensnj@NetBSD.org
Lonhyn T. Jasinskyjlonhyn@NetBSD.org
Darrin Jewelldbj@NetBSD.org
Nicolas Jolynjoly@NetBSD.org
Chris Jonescjones@NetBSD.org
Søren Jørvangsoren@NetBSD.org
Takahiro Kambetaca@NetBSD.org
Antti Kanteepooka@NetBSD.org
Masanori Kanaokakanaoka@NetBSD.org
Frank Kardelkardel@NetBSD.org
Mattias Karlssonkeihan@NetBSD.org
KAWAMOTO Yosihisakawamoto@NetBSD.org
Mario Kempermagick@NetBSD.org
Min Sik Kimminskim@NetBSD.org
Thomas Klausnerwiz@NetBSD.org
Klaus Kleinkleink@NetBSD.org
John Klosjklos@NetBSD.org
Wayne Knowleswdk@NetBSD.org
Takayoshi Kochikochi@NetBSD.org
John Kohljtk@NetBSD.org
Daniel de Kokdaniel@NetBSD.org
Paul Kranenburgpk@NetBSD.org
Lubomir Kundraklkundrak@NetBSD.org
Martti Kuparinenmartti@NetBSD.org
Kentaro A. Kurahonekurahone@NetBSD.org
Kevin Laheykml@NetBSD.org
David Laightdsl@NetBSD.org
Johnny C. Lamjlam@NetBSD.org
Martin J. Laubachmjl@NetBSD.org
Greg Leheygrog@NetBSD.org
Ted Lemonmellon@NetBSD.org
Christian Limpachcl@NetBSD.org
Frank van der Lindenfvdl@NetBSD.org
Joel Lindholmjoel@NetBSD.org
Mike Longmikel@NetBSD.org
Michael Lorenzmacallan@NetBSD.org
Warner Loshimp@NetBSD.org
Tomasz Luchowskizuntum@NetBSD.org
Federico Lupifederico@NetBSD.org
Brett Lymnblymn@NetBSD.org
Paul Mackerraspaulus@NetBSD.org
Anders Magnussonragge@NetBSD.org
MAEKAWA Masahidegehenna@NetBSD.org
David Maxwelldavid@NetBSD.org
Dan McMahilldmcmahill@NetBSD.org
Gregory McGarrygmcgarry@NetBSD.org
Jared D. McNeilljmcneill@NetBSD.org
Neil J. McRaeneil@NetBSD.org
Perry Metzgerperry@NetBSD.org
Simas Mockeviciussymka@NetBSD.org
Juan Romero Pardinesxtraeme@NetBSD.org
Julio M. Merino Vidaljmmv@NetBSD.org
Minoura Makotominoura@NetBSD.org
Luke Mewburnlukem@NetBSD.org
der Mousemouse@NetBSD.org
Joseph Myersjsm@NetBSD.org
Ken Nakatakenn@NetBSD.org
Takeshi Nakayamanakayama@NetBSD.org
Phil Nelsonphil@NetBSD.org
John Nemethjnemeth@NetBSD.org
Bob Nestorrnestor@NetBSD.org
NISHIMURA Takeshinsmrtks@NetBSD.org
Tohru Nishimuranisimura@NetBSD.org
NONAKA Kimihirononaka@NetBSD.org
Takehiko NOZAKItnozaki@NetBSD.org
Tobias Nygrentnn@NetBSD.org
OBATA Akioobache@NetBSD.org
Jesse Offjoff@NetBSD.org
Tatoku Ogaitotacha@NetBSD.org
OKANO Takayoshikano@NetBSD.org
Masaru Okioki@NetBSD.org
Atsushi Onoeonoe@NetBSD.org
Greg Osteroster@NetBSD.org
Jonathan Perkinsketch@NetBSD.org
Herb Peyerlhpeyerl@NetBSD.org
Matthias Pfallermatthias@NetBSD.org
Chris Pinnockcjep@NetBSD.org
Adrian Portelliadrianp@NetBSD.org
Rui Paulorpaulo@NetBSD.org
Peter Postmapeter@NetBSD.org
Dante Profetadante@NetBSD.org
Chris Provenzanoproven@NetBSD.org
Niels Provosprovos@NetBSD.org
Mindaugas Rasiukeviciusrmind@NetBSD.org
Michael Rauchmrauch@NetBSD.org
Marc Rechtrecht@NetBSD.org
Darren Reeddarrenr@NetBSD.org
Jeremy C. Reedreed@NetBSD.org
Antoine Reillestonio@NetBSD.org
Tyler R. Retzlaffrtr@NetBSD.org
Scott Reynoldsscottr@NetBSD.org
Michael Richardsonmcr@NetBSD.org
Tim Rightnourgarbled@NetBSD.org
Alan Ritterrittera@NetBSD.org
Jeff Rizzoriz@NetBSD.org
Gordon Rossgwr@NetBSD.org
Steve Rumblerumble@NetBSD.org
Ilpo Ruotsalainenlonewolf@NetBSD.org
Heiko W. Rupphwr@NetBSD.org
David Saintydsainty@NetBSD.org
SAITOH Masanobumsaitoh@NetBSD.org
Kazuki Sakamotosakamoto@NetBSD.org
Curt Sampsoncjs@NetBSD.org
Wilfredo Sanchezwsanchez@NetBSD.org
Ty Sarnatsarna@NetBSD.org
SATO Kazumisato@NetBSD.org
Jan Schaumannjschauma@NetBSD.org
Matthias Schelertron@NetBSD.org
Karl Schilke (rAT)rat@NetBSD.org
Amitai Schlairschmonz@NetBSD.org
Konrad Schroderperseant@NetBSD.org
Georg Schwarzschwarz@NetBSD.org
Lubomir Sedlaciksalo@NetBSD.org
Christopher SEKIYAsekiya@NetBSD.org
Reed Shadgettdent@NetBSD.org
John Shannonshannonjr@NetBSD.org
Tim Shepardshep@NetBSD.org
Takeshi Shibagakishiba@NetBSD.org
Naoto Shimazakiigy@NetBSD.org
Takao Shinoharashin@NetBSD.org
Takuya SHIOZAKItshiozak@NetBSD.org
Daniel Siegerdsieger@NetBSD.org
Chuck Silverschs@NetBSD.org
Thor Lancelot Simontls@NetBSD.org
Jeff Smithjeffs@NetBSD.org
Noriyuki Sodasoda@NetBSD.org
Wolfgang Solfrankws@NetBSD.org
T K Spindlerdogcow@NetBSD.org
SOMEYA Yoshihikosomeya@NetBSD.org
Bill Sommerfeldsommerfeld@NetBSD.org
Jörg Sonnenbergerjoerg@NetBSD.org
Ignatios Souvatzisis@NetBSD.org
Bill Squiergroo@NetBSD.org
Jonathan Stonejonathan@NetBSD.org
Bill Studenmundwrstuden@NetBSD.org
Kevin Sullivansullivan@NetBSD.org
SUNAGAWA Keikikei@NetBSD.org
Kimmo Suominenkim@NetBSD.org
Shin Takemuratakemura@NetBSD.org
TAMURA Kentkent@NetBSD.org
Shin'ichiro TAYAtaya@NetBSD.org
Ian Lance Taylorian@NetBSD.org
Matt Thomasmatt@NetBSD.org
Jason Thorpethorpej@NetBSD.org
Christoph Toshoktoshok@NetBSD.org
Greg Troxelgdt@NetBSD.org
Tsubai Masanaritsubai@NetBSD.org
Izumi Tsutsuitsutsui@NetBSD.org
UCHIYAMA Yasushiuch@NetBSD.org
Masao Uebayashiuebayasi@NetBSD.org
Shuichiro URATAur@NetBSD.org
Valeriy E. Ushakovuwe@NetBSD.org
Todd Vierlingtv@NetBSD.org
Aymeric Vincentaymeric@NetBSD.org
Paul Vixievixie@NetBSD.org
Mike M. Volokhovmishka@NetBSD.org
Krister Walfridssonkristerw@NetBSD.org
Lex Wennmacherwennmach@NetBSD.org
Leo Weppelmanleo@NetBSD.org
Assar Westerlundassar@NetBSD.org
Todd Whiteseltoddpw@NetBSD.org
Frank Willephx@NetBSD.org
Nathan Williamsnathanw@NetBSD.org
Rob Windsorwindsor@NetBSD.org
Dan Winshipdanw@NetBSD.org
Arnaud Lacombealc@NetBSD.org
Jim Wisejwise@NetBSD.org
Michael Wolfsonmbw@NetBSD.org
Steve Woodfordscw@NetBSD.org
Colin Woodender@NetBSD.org
YAMAMOTO Takashiyamt@NetBSD.org
Yuji Yamanoyyamano@NetBSD.org
Reinoud Zandijkreinoud@NetBSD.org
S.P.Zeidlerspz@NetBSD.org
Maria Zevenhovenmaria7@NetBSD.org
Christos Zoulaschristos@NetBSD.org

Other contributors:
Dave Burgessburgess@cynjut.infonet.net
Brian R. Gaekebrg@dgate.org
Brad Granthamgrantham@tenon.com
Lawrence Kestelootkesteloo@cs.unc.edu
Waldi Ravenswaldi@moacs.indiv.nl.net

Dedication

NetBSD 4.0 is dedicated to the memory of Jun-Ichiro "itojun" Hagino, who died in October 2007. Itojun was a member of the KAME project, which provided IPv6 and IPsec support; he was also a member of the NetBSD core team (the technical management for the project), and one of the Security Officers. Due to Itojun's efforts, NetBSD was the first open source operating system with a production ready IPv6 networking stack, which was included in the base system before many people knew what IPv6 was. We are grateful to have known and worked with Itojun, and we know that he will be missed. This release is therefore dedicated, with thanks, to his memory.

Legal Mumbo-Jumbo

All product names mentioned herein are trademarks or registered trademarks of their respective owners.

The following notices are required to satisfy the license terms of the software that we have mentioned in this document:

NetBSD is a registered trademark of The NetBSD Foundation, Inc.

This product includes software developed by the University of California, Berkeley and its contributors.
This product includes software developed by the NetBSD Foundation.
This product includes software developed by The NetBSD Foundation, Inc. and its contributors.
This product includes software developed for the NetBSD Project. See http://www.netbsd.org/ for information about NetBSD.
This product contains software developed by Ignatios Souvatzis for the NetBSD project.
This product contains software written by Ignatios Souvatzis and Michael L. Hitch for the NetBSD project.
This product contains software written by Michael L. Hitch for the NetBSD project.
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)
This product includes cryptographic software written by Eric Young (eay@mincom.oz.au)
This product includes software designed by William Allen Simpson.
This product includes software developed at Ludd, University of Lulea, Sweden and its contributors.
This product includes software developed at Ludd, University of Lulea.
This product includes software developed at the Information Technology Division, US Naval Research Laboratory.
This product includes software developed by Berkeley Software Design, Inc.
This product includes software developed by David Jones and Gordon Ross
This product includes software developed by Gordon W. Ross and Leo Weppelman.
This product includes software developed by Hellmuth Michaelis and Joerg Wunsch
This product includes software developed by Internet Research Institute, Inc.
This product includes software developed by Leo Weppelman and Waldi Ravens.
This product includes software developed by Mika Kortelainen
This product includes software developed by Aaron Brown and Harvard University.
This product includes software developed by Adam Ciarcinski for the NetBSD project.
This product includes software developed by Adam Glass and Charles M. Hannum.
This product includes software developed by Adam Glass.
This product includes software developed by Advanced Risc Machines Ltd.
This product includes software developed by Alex Zepeda, and Colin Wood for the NetBSD Projet.
This product includes software developed by Alex Zepeda.
This product includes software developed by Alistair G. Crooks.
This product includes software developed by Alistair G. Crooks. for the NetBSD project.
This product includes software developed by Allen Briggs
This product includes software developed by Amancio Hasty and Roger Hardiman
This product includes software developed by Berkeley Software Design, Inc.
This product includes software developed by Berkeley Software Design, Inc.
This product includes software developed by Bill Paul.
This product includes software developed by Bodo Moeller. (If available, substitute umlauted o for oe)
This product includes software developed by Boris Popov.
This product includes software developed by Brad Pepers
This product includes software developed by Bradley A. Grantham.
This product includes software developed by Brini.
This product includes software developed by Causality Limited.
This product includes software developed by Charles D. Cranor and Seth Widoff.
This product includes software developed by Charles D. Cranor and Washington University.
This product includes software developed by Charles D. Cranor, Washington University, and the University of California, Berkeley and its contributors.
This product includes software developed by Charles D. Cranor, Washington University, the University of California, Berkeley and its contributors.
This product includes software developed by Charles D. Cranor.
This product includes software developed by Charles Hannum.
This product includes software developed by Charles M. Hannum, by the University of Vermont and State Agricultural College and Garrett A. Wollman, by William F. Jolitz, and by the University of California, Berkeley, Lawrence Berkeley Laboratory, and its contributors.
This product includes software developed by Charles M. Hannum.
This product includes software developed by Christian E. Hopps, Ezra Story, Kari Mettinen, Markus Wild, Lutz Vieweg and Michael Teske.
This product includes software developed by Christian E. Hopps.
This product includes software developed by Christian Limpach
This product includes software developed by Christopher G. Demetriou for the NetBSD Project.
This product includes software developed by Christopher G. Demetriou.
This product includes software developed by Christos Zoulas.
This product includes software developed by Chuck Silvers.
This product includes software developed by Colin Wood for the NetBSD Project.
This product includes software developed by Colin Wood.
This product includes software developed by Cybernet Corporation and Nan Yang Computer Services Limited
This product includes software developed by Daishi Kato
This product includes software developed by Dale Rahn.
This product includes software developed by Daniel Widenfalk and Michael L. Hitch.
This product includes software developed by Daniel Widenfalk for the NetBSD Project.
This product includes software developed by Darrin B. Jewell
This product includes software developed by David Miller.
This product includes software developed by Dean Huxley.
This product includes software developed by Eduardo Horvath.
This product includes software developed by Eric S. Hvozda.
This product includes software developed by Eric S. Raymond
This product includes software developed by Eric Young (eay@@mincom.oz.au)
This product includes software developed by Eric Young (eay@cryptsoft.com)
This product includes software developed by Eric Young (eay@mincom.oz.au)
This product includes software developed by Ezra Story and by Kari Mettinen.
This product includes software developed by Ezra Story, by Kari Mettinen and by Bernd Ernesti.
This product includes software developed by Ezra Story, by Kari Mettinen, Michael Teske and by Bernd Ernesti.
This product includes software developed by Ezra Story, by Kari Mettinen, and Michael Teske.
This product includes software developed by Ezra Story.
This product includes software developed by Frank van der Linden for the NetBSD Project.
This product includes software developed by Gardner Buchanan.
This product includes software developed by Gary Thomas.
This product includes software developed by Gordon Ross
This product includes software developed by Gordon W. Ross
This product includes software developed by HAYAKAWA Koichi.
This product includes software developed by Harvard University and its contributors.
This product includes software developed by Harvard University.
This product includes software developed by Herb Peyerl.
This product includes software developed by Hubert Feyrer for the NetBSD Project.
This product includes software developed by Iain Hibbert
This product includes software developed by Ian F. Darwin and others.
This product includes software developed by Ian W. Dall.
This product includes software developed by Ichiro FUKUHARA.
This product includes software developed by Ignatios Souvatzis for the NetBSD Project.
This product includes software developed by Internet Initiative Japan Inc.
This product includes software developed by James R. Maynard III.
This product includes software developed by Jared D. McNeill.
This product includes software developed by Jason L. Wright
This product includes software developed by Jason R. Thorpe for And Communications, http://www.and.com/
This product includes software developed by Joachim Koenig-Baltes.
This product includes software developed by Jochen Pohl for The NetBSD Project.
This product includes software developed by Joerg Wunsch
This product includes software developed by John Birrell.
This product includes software developed by John P. Wittkoski.
This product includes software developed by John Polstra.
This product includes software developed by Jonathan R. Stone for the NetBSD Project.
This product includes software developed by Jonathan Stone and Jason R. Thorpe for the NetBSD Project.
This product includes software developed by Jonathan Stone.
This product includes software developed by Juan Romero Pardines for the NetBSD Foundation, Inc. and its contributors.
This product includes software developed by Jukka Marin.
This product includes software developed by Julian Highfield.
This product includes software developed by Kazuhisa Shimizu.
This product includes software developed by Kazuki Sakamoto.
This product includes software developed by Kenneth Stailey.
This product includes software developed by Kiyoshi Ikehara.
This product includes software developed by Klaus Burkert,by Bernd Ernesti, by Michael van Elst, and by the University of California, Berkeley and its contributors.
This product includes software developed by LAN Media Corporation and its contributors.
This product includes software developed by Leo Weppelman for the NetBSD Project.
This product includes software developed by Leo Weppelman.
This product includes software developed by Lloyd Parkes.
This product includes software developed by Luke Mewburn.
This product includes software developed by Lutz Vieweg.
This product includes software developed by MINOURA Makoto, Takuya Harakawa.
This product includes software developed by Manuel Bouyer.
This product includes software developed by Marc Horowitz.
This product includes software developed by Marcus Comstedt.
This product includes software developed by Mark Brinicombe for the NetBSD project.
This product includes software developed by Mark Brinicombe.
This product includes software developed by Mark Murray
This product includes software developed by Mark Tinguely and Jim Lowe
This product includes software developed by Markus Wild.
This product includes software developed by Martin Husemann and Wolfgang Solfrank.
This product includes software developed by Masanobu Saitoh.
This product includes software developed by Masaru Oki.
This product includes software developed by Mats O Jansson and Charles D. Cranor.
This product includes software developed by Mats O Jansson.
This product includes software developed by Matt DeBergalis
This product includes software developed by Matthew Fredette.
This product includes software developed by Matthias Pfaller.
This product includes software developed by Michael Graff for the NetBSD Project.
This product includes software developed by Michael Graff.
This product includes software developed by Michael L. Hitch.
This product includes software developed by Michael Shalayeff.
This product includes software developed by Michael Smith.
This product includes software developed by Mike Glover and contributors.
This product includes software developed by Mike Pritchard.
This product includes software developed by Minoura Makoto.
This product includes software developed by Nan Yang Computer Services Limited.
This product includes software developed by Niels Provos.
This product includes software developed by Niklas Hallqvist, Brandon Creighton and Job de Haas.
This product includes software developed by Niklas Hallqvist.
This product includes software developed by Onno van der Linden.
This product includes software developed by Paul Kranenburg.
This product includes software developed by Paul Mackerras.
This product includes software developed by Per Fogelstrom
This product includes software developed by Peter Galbavy.
This product includes software developed by Phase One, Inc.
This product includes software developed by Philip A. Nelson.
This product includes software developed by Philip L. Budne.
This product includes software developed by RiscBSD.
This product includes software developed by Roar Thronæs.
This product includes software developed by Rodney W. Grimes.
This product includes software developed by Roger Hardiman
This product includes software developed by Roland C. Dowdeswell.
This product includes software developed by Rolf Grossmann.
This product includes software developed by Ross Harvey for the NetBSD Project.
This product includes software developed by Ross Harvey.
This product includes software developed by Scott Bartram.
This product includes software developed by Scott Stevens.
This product includes software developed by Shingo WATANABE.
This product includes software developed by Softweyr LLC, the University of California, Berkeley, and its contributors.
This product includes software developed by Soren S. Jorvang.
This product includes software developed by Stephan Thesing.
This product includes software developed by Steve Woodford.
This product includes software developed by Takashi Hamada
This product includes software developed by Takumi Nakamura.
This product includes software developed by Tatoku Ogaito for the NetBSD Project.
This product includes software developed by Terrence R. Lambert.
This product includes software developed by Tetsuya Isaki.
This product includes software developed by Thomas Gerner
This product includes software developed by Thomas Klausner for the NetBSD Project.
This product includes software developed by Tobias Weingartner.
This product includes software developed by Todd C. Miller.
This product includes software developed by Tohru Nishimura and Reinoud Zandijk for the NetBSD Project.
This product includes software developed by Tohru Nishimura for the NetBSD Project.
This product includes software developed by Tohru Nishimura. for the NetBSD Project.
This product includes software developed by TooLs GmbH.
This product includes software developed by Toru Nishimura.
This product includes software developed by Trimble Navigation, Ltd.
This product includes software developed by WIDE Project and its contributors.
This product includes software developed by Waldi Ravens.
This product includes software developed by Wasabi Systems for Zembu Labs, Inc. http://www.zembu.com/
This product includes software developed by Winning Strategies, Inc.
This product includes software developed by Wolfgang Solfrank.
This product includes software developed by Yasushi Yamasaki
This product includes software developed by Zembu Labs, Inc.
This product includes software developed by the Alice Group.
This product includes software developed by the Center for Software Science at the University of Utah.
This product includes software developed by the Charles D. Cranor, Washington University, University of California, Berkeley and its contributors.
This product includes software developed by the Computer Systems Engineering Group at Lawrence Berkeley Laboratory.
This product includes software developed by the David Muir Sharnoff.
This product includes software developed by the Harvard University and its contributors.
This product includes software developed by the Kungliga Tekniska Högskolan and its contributors.
This product includes software developed by the Network Research Group at Lawrence Berkeley Laboratory.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)
This product includes software developed by the PocketBSD project and its contributors.
This product includes software developed by the RiscBSD kernel team
This product includes software developed by the RiscBSD team.
This product includes software developed by the SMCC Technology Development Group at Sun Microsystems, Inc.
This product includes software developed by the University of California, Berkeley and its contributors, as well as the Trustees of Columbia University.
This product includes software developed by the University of California, Lawrence Berkeley Laboratory and its contributors.
This product includes software developed by the University of California, Lawrence Berkeley Laboratory.
This product includes software developed by the University of Illinois at Urbana and their contributors.
This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman.
This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman, by William F. Jolitz, and by the University of California, Berkeley, Lawrence Berkeley Laboratory, and its contributors.
This product includes software developed for the FreeBSD project
This product includes software developed for the NetBSD Project by Bernd Ernesti.
This product includes software developed for the NetBSD Project by Christopher G. Demetriou.
This product includes software developed for the NetBSD Project by Christos Zoulas
This product includes software developed for the NetBSD Project by Emmanuel Dreyfus.
This product includes software developed for the NetBSD Project by Frank van der Linden
This product includes software developed for the NetBSD Project by Ignatios Souvatzis.
This product includes software developed for the NetBSD Project by Jason R. Thorpe.
This product includes software developed for the NetBSD Project by John M. Vinopal.
This product includes software developed for the NetBSD Project by Matthias Drochner.
This product includes software developed for the NetBSD Project by Michael L. Hitch.
This product includes software developed for the NetBSD Project by Perry E. Metzger.
This product includes software developed for the NetBSD Project by Scott Bartram and Frank van der Linden
This product includes software developed for the NetBSD Project by Allegro Networks, Inc., and Wasabi Systems, Inc.
This product includes software developed for the NetBSD Project by Genetec Corporation.
This product includes software developed for the NetBSD Project by Jonathan Stone.
This product includes software developed for the NetBSD Project by Piermont Information Systems Inc.
This product includes software developed for the NetBSD Project by SUNET, Swedish University Computer Network.
This product includes software developed for the NetBSD Project by Shigeyuki Fukushima.
This product includes software developed for the NetBSD Project by Wasabi Systems, Inc.
This product includes software developed under OpenBSD by Per Fogelstrom Opsycon AB for RTMX Inc, North Carolina, USA.
This product includes software developed under OpenBSD by Per Fogelstrom.
This software is a component of "386BSD" developed by William F. Jolitz, TeleMuse.
This software was developed by Holger Veit and Brian Moore for use with "386BSD" and similar operating systems. "Similar operating systems" includes mainly non-profit oriented systems for research and education, including but not restricted to "NetBSD", "FreeBSD", "Mach" (by CMU).
This software includes software developed by the Computer Systems Laboratory at the University of Utah.
This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).
This product includes software developed by Marshall M. Midden.
This product includes software developed or owned by Caldera International, Inc.
The Institute of Electrical and Electronics Engineers and The Open Group, have given us permission to reprint portions of their documentation.

In the following statement, the phrase ``this text'' refers to portions of the system documentation.

Portions of this text are reprinted and reproduced in electronic form in NetBSD, from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between these versions and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.

The original Standard can be obtained online at http://www.opengroup.org/unix/online.html.

This notice shall appear on any product containing this material

This product includes software developed by Allen K. Briggs.
This product includes software developed by Apple Computer, Inc.
This product includes software developed by Bill Studenmund.
This product includes software developed by Bradley A. Grantham.
This product includes software developed by Carnegie-Mellon University.
This product includes software developed by Chris P. Cputo.
This product includes software developed by Colin Wood.
This product includes software developed by David Huang.
This product includes software developed by Internet Research Institute, Inc.
This product includes software developed by John P. Wittkoski.
This product includes software developed by Open Software Foundation, Inc.
This product includes software developed by Per Fogelstrom, Opsycon AB and RTMX Inc, USA.
This product includes software developed by Takashi Hamada.
This product includes software developed by Tsubai Masanari.
This product includes software developed by University of Utah.
This product includes software developed by Wolfgang Solfrank.

The End