
The Remote Debug Agent

The Remote Debug Agent
Copyright © 2004 by Red Hat, Inc.

Red Hat is a registered trademark and the Red Hat Shadow Man logo is a trademark of Red Hat, Inc.
All other trademarks and copyrights referred to are the property of their respective owners.

Table of Contents
1. Using RDA, the Red Hat Debug Agent ..1

Prerequisites..1
Starting RDA for use with a network interface ...1
Starting RDA for use with a serial interface...1
Using RDA to attach to an existing process ...2
Obtaining RDA’s usage message ...2
Connecting to RDA with GDB ...3

iii

iv

Chapter 1. Using RDA, the Red Hat Debug Agent

User space applications may be debugged with GDB via a helper application called
RDA. RDA is the Red Hat Debug Agent. It runs as a user space application on a
board running the Linux kernel. RDA communicates with GDB over a TCP/IP net-
work connection or serial connection using the GDB remote protocol. It translates
protocol requests from GDB into the appropriate ptrace() operations and builds re-
sponse packets from the results of the various ptrace() operations.

Prerequisites
Before using RDA, the following requirements must be met:

• The target must be running the Linux kernel with network support or support for
some suitable serial device.

• The root file system running on the board must have a shell and the RDA applica-
tion. GNUPro BSP root filesystems come with RDA by default.

• A network or serial interface must be available, configured, and visible to the host
running GDB.

• The application to be debugged must be loaded onto some filesystem accessible
from the board. It is permissible to strip debugging information from the applica-
tion loaded onto the board.

• The application complete with debugging information must be accessible from the
host.

• Shared libraries which are required by the application must be available on both
the host and target via some means. It is quite helpful if the target’s root filesys-
tem is accessible on the host. If the target’s root filesystem isn’t available, then the
toolchain’s sys-root directory will often suffice.

The last requirement is important for debugging of applications which use shared
libraries. A common problem is that the shared libraries are either not accessible from
the host or are not exactly the same as those installed on the target. When installing
updated shared libraries on the target, it is easy to forget to update the host’s copies
of these libraries.

Starting RDA for use with a network interface
When using a network interface for communication between RDA and GDB, RDA is
started as follows:

rda [-v] tcp-port-num executable-file [arguments ...]

Consider the following command:

rda 1234 myapp

This will start RDA running at TCP port 1234. Once GDB connects, rda will attempt
to start the application myapp.

The -v flag may be included on the RDA command line. Inclusion of this flag will
cause RDA to print informational messages to stderr . These messages are occasion-
ally useful to see if GDB is getting connected.

Any arguments supplied after the name of the executable file will become the argu-
ments to the application started by RDA.

1

Chapter 1. Using RDA, the Red Hat Debug Agent

Starting RDA for use with a serial interface
When using a seral interface (such as an RS232 port) for communication between
RDA and GDB, RDA is started as follows:

rda [-v] [-s speed] device-name executable-file [arguments ...]

Consider the following command:

rda -s 115200 /dev/ttyS0 myapp 42

This command will start RDA connected to serial port /dev/ttyS0 running at 115200
baud. Once the serial port is open, RDA will attempt to start the application myapp
whose single command line argument is 42 .

The -v flag may be included on the RDA command line. Inclusion of this flag will
cause RDA to print informational messages to stderr . These messages are occasion-
ally useful to see if GDB is getting connected.

If device-name is - (the dash character), RDA will connect to whatever device is
attached to stdin and stdout . This makes it possible to start RDA from programs
such as inetd .

Using RDA to attach to an existing process
RDA may be used to attach to and debug an already running process by use of the
-a switch. The RDA command used to do this takes one of the following two forms
(depending upon whether the transport mechanism is a network or serial interface).

Either:

rda -a [-v] tcp-port-num process-id

Or:

rda -a [-v] [-s speed] device-name process-id

In either case, process-id is the PID (process id) of the process to attach to. The PID
is typically found using the ps command.

Obtaining RDA’s usage message
The -h switch will cause RDA to display a brief usage message. For example:

rda -h

This command will cause RDA to display the following output:

Usage: rda [-v] tcp-port-num executable-file [arguments ...]
or: rda -a [-v] tcp-port-num process-id
or: rda [-v] [-s speed] device-name executable-file [arguments ...]
or: rda -a [-v] [-s speed] device-name process-id
or: rda -h

Start the Red Hat debug agent for use with a remote debugger.
Options and arguments:

-a Attach to already running process.
-h Print this usage message.
-s speed Set speed (e.g. 115200) at which device "device-name"

will communicate with remote debugger.
-v Increase verbosity. One -v flag enables informational

messages. Two -v flags turn on internal debugging
messages.

arguments ... Command line arguments with which to start program
being debugged.

device-name Name of serial device over which RDA will communicate
with remote debugger.

executable-file Name of program to debug.

2

Chapter 1. Using RDA, the Red Hat Debug Agent

process-id Process ID (PID) of process to attach to.
tcp-port-num Port number to which debugger connects for purpose

of communicating with the debug agent using the GDB
remote protocol.

Connecting to RDA with GDB
Prior to connecting with GDB, the executable’s symbols must be loaded into GDB.
This is either accomplished via GDB’s file command or by simply specifying the
name of the application to run on GDB’s command line.

In order for GDB to find the symbols associated with shared libraries, it is essential
that solib-absolute-prefix be set to the path on the host from which the target’s /lib
directory is available. (This should be the directory which contains /lib , not a the
library directory itself). The current setting of solib-absolute-prefix can be dis-
played via the show solib-absolute-prefix command. If this prefix is not correct, it
should be set via the set solib-absolute-prefix command. For example:

set solib-absolute-prefix /nfsroots/root-192.168.42.42

This will set solib-absolute-prefix so that the path
/nfsroots/root/root-192.168.42.42 will be prepended to absolute paths of
libraries found by GDB’s shared library machinery. If this path is not set correctly by
default, it is often quite useful to add a suitable command to a .gdbinit file so that
it will be performed automatically at startup time.

Once RDA is running, the GDB command target remote should be used to connect
to the board running RDA. As noted earlier, either a network or serial interface must
be configured and visible to the host running GDB. For example:

target remote 192.168.42.42:1234

Assuming that the board’s network interface has been set to 192.168.42.42, GDB will
attempt to connect to RDA at TCP port 1234. (If a hostname has been associated with
this address via some sort of name resolution facility such as DNS, then the hostname
may be used in place of the IP address.) Once connected, GDB will display something
along the following lines:

Remote debugging using 192.168.42.42:1234
0xb75ebc50 in ?? ()

Alternately, if connecting to RDA using a serial interface, a slightly different target
remote command is used. Consider the following GDB command:

target remote /dev/ttyS1

This command will attempt to connect to RDA over the serial port named
/dev/ttyS1 . Once connected, GDB will display a message much like this one:

Remote debugging using /dev/ttyS1
0xb75ebc50 in ?? ()

At this point, breakpoints may be set and the program may be run via GDB’s con-
tinue command. (The run command is not used). See the GNUPro documentation
for more information on using GDB.

3

Chapter 1. Using RDA, the Red Hat Debug Agent

4

	The Remote Debug Agent
	Table of Contents
	Chapter 1. Using RDA, the Red Hat Debug Agent
	Prerequisites
	Starting RDA for use with a network interface
	Starting RDA for use with a serial interface
	Using RDA to attach to an existing process
	Obtaining RDA's usage message
	Connecting to RDA with GDB

