Athena Widget Set — C Language Interface
X Window System
X Version 11, Release 6.4

Chris D. Peterson
formerly MIT X Consortium



X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ““Software’), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided “as is’” without express or implied
warranty.



Acknowledgments

Many thanks go to Ralph Swick (Project Athena / Digital) who has contributed much time and
effort to this widget set. Previous versions of the widget set are largely due to his time and effort.
Many of the improvements that I have been able to make are because he provided a solid founda-
tion to build upon. While much of the effort has been Ralph’s, many other people have con-
tributed to the code.

Mark Ackerman (formerly Project Athena)
Donna Converse (MIT X Consortium)
Jim Fulton (formerly MIT X Consortium)
Loretta Guarino-Reid (Digital WSL)
Charles Haynes (Digital WSL)

Rich Hyde (Digital WSL)

Mary Larson (Digital UEG)

Joel McCormack (Digital WSL)

Ron Newman (formerly Project Athena)
Jeanne Rich (Digital WSL)

Terry Weissman (formerly Digital WSL)

While not much remains of the X10 toolkit, many of the ideas for this widget set come from that
original version. The design and implementation of the X10 toolkit were done by:

Mike Gancarz (formerly Digital UEG)
Charles Haynes (Digital WSL)

Phil Karlton (formerly Digital WSL)
Kathleen Langone (Digital UEG)

Mary Larson (Digital UEG)

Ram Rao (Digital UEG)

Smokey Wallace (formerly Digital WSL)
Terry Weissman (formerly Digital WSL)

I have used the formatting ideas, and some of the words from previous versions of this document.
The X11R3 Athena widget document was written by:

Ralph R. Swick (Project Athena/ Digital)
Terry Weissman (formerly Digital WSL)
Al Mento (Digital UEG)

Putting this manual together was a major task in and of itself. I would like to thank Ralph Swick,
Donna Converse, and Jim Fulton for taking the time to help convert my technical knowledge into

legible text. A special thanks to Jean Diaz (O’Reilly and Associates) for spending nearly a month
with me working out all the annoying little details.

Chris D. Peterson
MIT X Consortium 1989

The RS edition of this document has been edited by the research staff of the MIT X Consortium,
with significant contributions by Jim Fulton (NCD).

Donna Converse
MIT X Consortium 1991



The R6 edition of this document has been edited to reflect changes brought about by research
staff of the Omron Corporation, with special recognition to Li Yuhong, Seiji Kuwari, and Hiroshi
Kuribayashi for the X11R5/contrib/lib/Xaw internationalization that inspired this version.

Frank Sheeran
Omron Corporation 1994

vi



Chapter 1
Athena Widgets and The Intrinsics

The X Toolkit is made up of two distinct pieces, the Xt Intrinsics and a widget set. The Athena
widget set is a sample implementation of a widget set built upon the Intrinsics. In the X Toolkit, a
widget is the combination of an X window or subwindow and its associated input and output
semantics.

Because the Intrinsics provide the same basic functionality to all widget sets it may be possible to
use widgets from the Athena widget set with other widget sets based upon the Intrinsics. Since
widget sets may also implement private protocols, all functionality may not be available when
mixing and matching widget sets. For information about the Intrinsics, see the X Toolkit Intrin-
sics — C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib that provides
a set of user interface tools sufficient to build a wide variety of applications. This layer extends
the basic abstractions provided by X and provides the next layer of functionality primarily by sup-
plying a cohesive set of sample widgets. Although the Intrinsics are a Consortium standard, there
is no standard widget set.

To the extent possible, the Intrinsics are "policy-free". The application environment and widget
set, not the Intrinsics, define, implement, and enforce:

. Policy
. Consistency
. Style

Each individual widget implementation defines its own policy. The X Toolkit design allows for,
but does not necessarily encourage, the free mixing of radically differing widget implementations.

1.1. Introduction to the X Toolkit

The X Toolkit provides tools that simplify the design of application user interfaces in the X Win-
dow System programming environment. It assists application programmers by providing a set of
common underlying user-interface functions. It also lets widget programmers modify existing
widgets, by subclassing, or add new widgets. By using the X Toolkit in their applications, pro-
grammers can present a similar user interface across applications to all workstation users.

The X Toolkit consists of:

. A set of Intrinsics functions for building widgets
. An architectural model for constructing widgets
. A widget set for application programming

While the majority of the Intrinsics functions are intended for the widget programmer, a subset of
the Intrinsics functions are to be used by application programmers (see X Toolkit Intrinsics — C
Language Interface). The architectural model lets the widget programmer design new widgets by
using the Intrinsics and by combining other widgets. The application interface layers built on top
of the X Toolkit include a coordinated set of widgets and composition policies. Some of these
widgets and policies are specific to a single application domain, and others are common to a vari-
ety of applications.

The remainder of this chapter discusses the X Toolkit and Athena widget set:
. Terminology



Athena Widget Set X11, Release 6.4

. Model
. Conventions used in this manual
. Format of the Widget Reference Chapters

1.2. Terminology

In addition to the terms already defined for X programming (see X/ib — C Language X Interface),
the following terms are specific to the Intrinsics and Athena widget set and used throughout this
document.

Application programmer

A programmer who uses the X Toolkit to produce an application user interface.
Child

A widget that is contained within another "parent" widget.
Class

The general group to which a specific object belongs.
Client

A function that uses a widget in an application or for composing other widgets.
FullName

The name of a widget instance appended to the full name of its parent.
Instance

A specific widget object as opposed to a general widget class.
Method

A function or procedure implemented by a widget class.
Name

The name that is specific to an instance of a widget for a given client. This name is speci-
fied at creation time and cannot be modified.

Object
A data abstraction consisting of private data and private and public functions that operate on
the private data. Users of the abstraction can interact with the object only through calls to
the object’s public functions. In the X Toolkit, some of the object’s public functions are
called directly by the application, while others are called indirectly when the application
calls the common Intrinsics functions. In general, if a function is common to all widgets, an
application uses a single Intrinsics function to invoke the function for all types of widgets.
If a function is unique to a single widget type, the widget exports the function.

Parent
A widget that contains at least one other ("child") widget. A parent widget is also known as
a composite widget.

Resource

A named piece of data in a widget that can be set by a client, by an application, or by user
defaults.

Superclass

A larger class of which a specific class is a member. All members of a class are also mem-
bers of the superclass.

User
A person interacting with a workstation.



Athena Widget Set X11, Release 6.4

Widget
An object providing a user-interface abstraction (for example, a Scrollbar widget).
Widget class

The general group to which a specific widget belongs, otherwise known as the type of the
widget.

Widget programmer
A programmer who adds new widgets to the X Toolkit.

1.3. Underlying Model
The underlying architectural model is based on the following premises:
Widgets are X windows

Every user-interface widget is associated with an X window. The X window ID for a wid-
get is readily available from the widget. Standard Xlib calls can be used by widgets for
many of their input and output operations.

Information hiding

The data for every widget is private to the widget and its subclasses. That is, the data is nei-
ther directly accessible nor visible outside of the module implementing the widget. All pro-
gram interaction with the widget is performed by a set of operations (methods) that are
defined for the widget.

Widget semantics and widget layout geometry

Widget semantics are clearly separated from widget layout geometry. Widgets are con-
cerned with implementing specific user-interface semantics. They have little control over
issues such as their size or placement relative to other widget peers. Mechanisms are pro-
vided for associating geometric managers with widgets and for widgets to make suggestions
about their own geometry.

1.4. Conventions Used in this Manual

. All resources available to the widgets are listed with each widget. Many of these are avail-
able to more than one widget class due to the object oriented nature of the Intrinsics. The
new resources for each widget are listed in bold text, and the inherited resources are listed
in plain text.

. Global symbols are printed in bold and can be function names, symbols defined in include
files, or structure names. Arguments are printed in italics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
General discussion of the function, if any is required, follows the arguments. Where appli-
cable, the last paragraph of the explanation lists the return values of the function.

. To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in the case of multiple
arguments, the word return. The explanations for all arguments that you can pass and are
returned start with the words specifies and returns.

. Any pointer to a structure that is used to return a value is designated as such by the _return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using the _in_out suffix.



Athena Widget Set X11, Release 6.4

1.5. Format of the Widget Reference Chapters

The majority of this document is a reference guide for the Athena widget set. Chapters three
through six give the programmer all information necessary to use the widgets. The layout of the
chapters follows a specific pattern to allow the programmer to easily find the desired information.

The first few pages of every chapter give an overview of the widgets in that section. Widgets are
grouped into chapters by functionality.

Chapter 3 Simple Widgets

Chapter 4 Menus

Chapter 5 Text Widgets

Chapter 6 Composite and Constraint Widget

Following the introduction will be a description of each widget in that chapter. When no func-
tional grouping is obvious the widgets are listed in alphabetical order, such as in chapters three
and six.

The first section of each widget’s description is a table that contains general information about
this widget class. Here is the table for the Box widget, and an explanation of all the entries.

Application Header file <X11/Xaw/Box.h>

Class Header file <X11/Xaw/BoxP.h>

Class boxWidgetClass

Class Name Box

Superclass Composite

Application Header File This file must be included when an application uses this widget.

It usually contains the class definition, and some resource
macros. This is often called the “public” header file.

Class Header File This file will only be used by widget programmers. It will need
to be included by any widget that subclasses this widget. This is
often called the “‘private’ header file.

Class This is the widget class of this widget. This global symbol is
passed to XtCreateWidget so that the Intrinsics will know
which type of widget to create.

Class Name This is the resource name of this class. This name can be used in
a resource file to match any widget of this class.

Superclass This is the superclass that this widget class is descended from. If
you understand how the superclass works it will allow you to
more quickly understand what this widget does, since much of
its functionality may be inherited from its superclass.

After this table follows a general description of the default behavior of this widget, as seen by the
user. In many cases this functionality may be overridden by the application programmer, or by
the user.

The next section is a table showing the name, class, type and default value of each resource that is
available to this widget. There is also a column containing notes describing special restrictions
placed upon individual resources.

A This resource may be automatically adjusted when another resource is changed.
C This resource is only settable at widget creation time, and may not be modified with
XtSetValues.



Athena Widget Set X11, Release 6.4

D Do not modify this resource. While setting this resource will work, it can cause unex-
pected behavior. When this symbol appears there is another, preferred, interface provided
by the X Toolkit.

R This resource is READ-ONLY, and may not be modified.

After the resource table is a detailed description of every resource available to that widget. Many
of these are redundant, but printing them with each widget saves page flipping. The names of the
resources that are inherited are printed in plain text, while the names of the resources that are new
to this class are printed in bold. If you have already read the description of the superclass you
need only pay attention to the resources printed in bold.

For each composite widget there is a section on layout semantics that follows the resource
description. This section will describe the effect of constraint resources on the layout of the chil-
dren, as well as a general description of where it prefers to place its children.

Descriptions of default translations and action routines come next, for widgets to which they
apply. The last item in each widget’s documentation is the description of all convenience routines
provided by the widget.

1.6. Input Focus

The Intrinsics define a resource on all Shell widgets that interact with the window manager called
input. This resource requests the assistance of window manager in acquiring the input focus.
The resource defaults to False in the Intrinsics, but is redefined to default to True when an appli-
cation is using the Athena widget set. An application programmer may override this default and
set the resource back to False if the application does not need the window manager to give it the
input focus. See the X Toolkit Intrinsics — C Language Interface for details on the input
resource.



Athena Widget Set X11, Release 6.4

Chapter 2
Using Widgets

Widgets serve as the primary tools for building a user interface or application environment. The
Athena widget set consists of primitive widgets that contain no children (for example, a command
button) and composite widgets which may contain one or more widget children (for example, a
Box widget).

The remaining chapters explain the widgets that are provided by the Athena widget set. These
user-interface components serve as an interface for application programmers who do not want to
implement their own widgets. In addition, they serve as a starting point for those widget pro-
grammers who, using the Intrinsics mechanisms, want to implement alternative application pro-
gramming interfaces.

This chapter is a brief introduction to widget programming. The examples provided use the
Athena widgets, though most of the concepts will apply to all widget sets. Although there are
several programming interfaces to the X Toolkit, only one is described here. A full description of
the programming interface is provided in the document X Toolkit Intrinsics — C Language Inter-
face.

2.1. Setting the Locale

If it is desirable that the application take advantage of internationalization (i18n), you must estab-
lish locale with XtSetLanguageProc before XtDisplaylInitialize or XtApplInitialize is called.
For full details, please refer to the document X Toolkit Intrinsics — C Language Interface, section
2.2. However, the following simplest-case call is sufficient in many or most applications.

XtSetLanguageProc(NULL, NULL, NULL);

Most notably, this will affect the Standard C locale, determine which resource files will be loaded,
and what fonts will be required of FontSet specifications. In many cases, the addition of this line
is the only source change required to internationalize Xaw programs, and will not disturb the
function of programs in the default "C" locale.

2.2, Initializing the Toolkit

You must call a toolkit initialization function before invoking any other toolkit routines (besides
locale setting, above). XtApplnitialize opens the X server connection, parses the command line,
and creates an initial widget that will serve as the root of a tree of widgets created by this applica-
tion.

Widget XtApplnitialize(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, args, num_args)
XtAppContext *app_context_return;
String application_class;
XrmOptionDescRec optionsl];
Cardinal num_options;
int *argc_in_out,
String *argv_in_out[];
String *fallback_resources;
ArgList args;
Cardinal num_args;



Athena Widget Set X11, Release 6.4

app_con_return Returns the application context of this application, if non-NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application. A useful convention is to form
the class name by capitalizing the first letter of the application name. For
example, the application named “xman’’ has a class name of “Xman”.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmPar-
seCommand. For further information, see X/ib — C Language X Inter-

face.
num_options Specifies the number of entries in the options list.
argc_in_out Specifies a pointer to the number of command line parameters.
argv_in_out Specifies the command line parameters.
Jallback_resources Specifies resource values to be used if the site-wide application class
defaults file cannot be opened, or NULL.
args Specifies the argument list to use when creating the Application shell.
num_args Specifies the number of arguments in args.

This function will remove the command line arguments that the toolkit reads from argc_in_out,
and argv_in_out. It will then attempt to open the display. If the display cannot be opened, an
error message is issued and XtApplnitialize terminates the application. Once the display is
opened, all resources are read from the locations specified by the Intrinsics. This function returns
an ApplicationShell widget to be used as the root of the application’s widget tree.

2.3. Creating a Widget

Creating a widget is a three-step process. First, the widget instance is allocated, and various
instance-specific attributes are set by using XtCreateWidget. Second, the widget’s parent is
informed of the new child by using XtManageChild. Finally, X windows are created for the par-
ent and all its children by using XtRealizeWidget and specifying the top-most widget. The first
two steps can be combined by using XtCreateManagedWidget. In addition, XtRealizeWidget
is automatically called when the child becomes managed if the parent is already realized.

To allocate, initialize, and manage a widget, use XtCreateManagedWidget.

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArgList args;
Cardinal num_args;

name Specifies the instance name for the created widget that is used for retrieving wid-
get resources.

widget_class  Specifies the widget class pointer for the created widget.

parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-length list composed
of name and value pairs that contain information pertaining to the specific widget
instance being created. For further information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. If the num_args is zero,
the argument list is never referenced.

When a widget instance is successfully created, the widget identifier is returned to the application.
If an error is encountered, the XtError routine is invoked to inform the user of the error.



Athena Widget Set X11, Release 6.4

For further information, see X Toolkit Intrinsics — C Language Interface.

2.4. Common Resources

Although a widget can have unique arguments that it understands, all widgets have common argu-
ments that provide some regularity of operation. The common arguments allow arbitrary widgets
to be managed by higher-level components without regard for the individual widget type. Wid-
gets will ignore any argument that they do not understand.

The following resources are retrieved from the argument list or from the resource database by all
of the Athena widgets:

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent’s Colormap
depth Depth int Parent’s Depth
destroyCallback Callback XtCallbackList NULL

height Height Dimension widget dependent
mappedWhenManaged MappedWhenManaged Boolean True

screen Screen Screen Parent’s Screen
sensitive Sensitive Boolean True

translations Translations TranslationTable widget dependent
width Width Dimension widget dependent

X Position Position 0

y Position Position 0

The following additional resources are retrieved from the argument list or from the resource
database by many of the Athena widgets:

Name Class Type Default Value
callback Callback XtCallbackList NULL

cursor Cursor Cursor widget dependent
foreground Foreground Pixel XtDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap

2.5. Resource Conversions

Most resources in the Athena widget set have a converter registered that will translate the string in
a resource file to the correct internal representation. While some are obvious (string to integer,
for example), others need specific mention of the allowable values. Three general converters are
described here:

J Cursor
. Pixel
. Bitmap

Many widgets have defined special converters that apply only to that widget. When these occur,
the documentation section for that widget will describe the converter.



Athena Widget Set X11, Release 6.4

2.5.1. Cursor Conversion

The value for the cursorName resource is specified in the resource database as a string, and is of
the following forms:

. A standard X cursor name from < X11/cursorfont.h >. The names in cursorfont.h each
describe a specific cursor. The resource names for these cursors are exactly like the names
in this file except the XC_ is not used. The cursor definition XC_gumby has a resource
name of gumby.

. Glyphs, as in FONT font-name glyph-index [[ font-name | glyph-index |. The first font and
glyph specify the cursor source pixmap. The second font and glyph specify the cursor
mask pixmap. The mask font defaults to the source font, and the mask glyph index defaults
to the source glyph index.

. A relative or absolute file name. If a relative or absolute file name is specified, that file is
used to create the source pixmap. Then the string "Mask" is appended to locate the cursor
mask pixmap. If the "Mask" file does not exist, the suffix "msk" is tried. If "msk" fails, no
cursor mask will be used. If the filename does not start with ’/* or ./’ the the bitmap file
path is used (see section 2.4.3).

2.5.2. Pixel Conversion

The string-to-pixel converter takes any name that is acceptable to XParseColor (see Xlib — C
Language X Interface). In addition this routine understands the special toolkit symbols ‘XtDe-
faultForeground’ and ‘XtDefaultBackground’, described in X Toolkit Intrinsics — C Language
Interface. In short the acceptable pixel names are:

. Any color name for the rgb.txt file (typically in the directory /usr/lib/X11 on POSIX sys-
tems).

. A numeric specification of the form #<red><green><blue> where these numeric values are
hexadecimal digits (both upper and lower case).

. The special strings ‘XtDefaultForeground’ and ‘XtDefaultBackground’

2.5.3. Bitmap Conversion

The string-to-bitmap converter attempts to locate a file containing bitmap data whose name is
specified by the input string. If the file name is relative (i.e. does not begin with / or ./), the direc-
tories to be searched are specified in the bitmapFilePath resource--class BitmapFilePath. This
resource specifies a colon (:) separated list of directories that will be searched for the named
bitmap or cursor glyph (see section 2.4.1). The bitmapFilePath resource is global to the applica-
tion, and may not be specified differently for each widget that wishes to convert a cursor to
bitmap. In addition to the directories specified in the bitmapFilePath resource a default direc-
tory is searched. When using POSIX the default directory is /usr/include/X11/bitmaps.

2.6. Realizing a Widget
The XtRealizeWidget function performs two tasks:

. Calculates the geometry constraints of all managed descendants of this widget. The actual
calculation is put off until realize time for performance reasons.

. Creates an X window for the widget and, if it is a composite widget, realizes each of its
managed children.

void XtRealizeWidget(w)
Widget w;
w Specifies the widget.
For further information about this function, see the X Toolkit Intrinsics — C Language Interface.



Athena Widget Set X11, Release 6.4

2.7. Processing Events

Now that the application has created, managed and realized its widgets, it is ready to process the
events that will be delivered by the X Server to this client. A function call that will process the
events is XtAppMainLoop.

void XtAppMainLoop(app_context)
XtAppContext app_context;

app_context  Specifies the application context of this application. The value is normally
returned by XtApplInitialize.

This function never returns: it is an infinite loop that processes the X events. User input can be
handled through callback procedures and application defined action routines. More details are
provided in X Toolkit Intrinsics — C Language Interface.

2.8. Standard Widget Manipulation Functions

After a widget has been created, a client can interact with that widget by calling one of the stan-
dard widget manipulation routines provided by the Intrinsics, or a widget class-specific manipula-
tion routine.

The Intrinsics provide generic routines to give the application programmer access to a set of stan-
dard widget functions. The common widget routines let an application or composite widget per-
form the following operations on widgets without requiring explicit knowledge of the widget
type.

. Control the mapping of widget windows
. Destroy a widget instance

. Obtain an argument value

. Set an argument value

2.8.1. Mapping Widgets

By default, widget windows are mapped (made viewable) automatically by XtRealizeWidget.
This behavior can be disabled by using XtSetMapped WhenManaged, making the client respon-
sible for calling XtMapWidget to make the widget viewable.

void XtSetMappedWhenManaged(w, map_when_managed)
Widget w;
Boolean map_when_managed,

w Specifies the widget.

map_when_managed
Specifies the new value. If map_when_managed is True, the widget is mapped
automatically when it is realized. If map_when_managed is False, the client
must call XtMapWidget or make a second call to XtSetMappedWhenMan-
aged to cause the child window to be mapped.

The definition for XtMapWidget is:

void XtMapWidget(w)
Widget w;

w Specifies the widget.

When you are creating several children in sequence for a previously realized common parent it is
generally more efficient to construct a list of children as they are created (using XtCreateWidget)
and then use XtManageChildren to request that their parent managed them all at once. By man-
aging a list of children at one time, the parent can avoid wasteful duplication of geometry pro-
cessing and the associated ““screen flash”.

10



Athena Widget Set X11, Release 6.4

void XtManageChildren(children, num_children)
WidgetList children;
Cardinal num_children,
children Specifies a list of children to add.
num_children  Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch updates so that the
minimum amount of visible window reconfiguration is performed.

For further information about these functions, see the X Toolkit Intrinsics — C Language Inter-
face.

2.8.2. Destroying Widgets
To destroy a widget instance of any type, use XtDestroyWidget.
void XtDestroyWidget(w)
Widget w;
w Specifies the widget.

XtDestroyWidget destroys the widget and recursively destroys any children that it may have,
including the windows created by its children. After calling XtDestroyWidget, no further refer-
ences should be made to the widget or any children that the destroyed widget may have had.

2.8.3. Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget instance, use XtGet-
Values.
void XtGetValues(w, args, num_args)

Widget w;

ArgList args;

Cardinal num_args;
w Specifies the widget.
args Specifies a variable-length argument list of name and address pairs that contain

the resource name and the address into which the resource value is stored.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that the
caller is responsible for providing space into which the returned resource value is copied; the
ArgList contains a pointer to this storage (e.g. x and y must be allocated as Position). For further
information, see the X Toolkit Intrinsics — C Language Interface.

2.8.4. Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget instance, use XtSet-
Values.

void XtSetValues(w, args, num_args)
Widget w;
ArgList args;
Cardinal num_args;

w Specifies the widget.

args Specifies an array of name and value pairs that contain the arguments to be modi-
fied and their new values.

num_args Specifies the number of arguments in the argument list.

11



Athena Widget Set X11, Release 6.4

The arguments and values that are passed will depend on the widget being modified. Some wid-
gets may not allow certain resources to be modified after the widget instance has been created or
realized. No notification is given if any part of a XtSetValues request is ignored.

For further information about these functions, see the X Toolkit Intrinsics — C Language Inter-
face.

Note

The argument list entry for XtGetValues specifies the address to which the caller
wants the value copied. The argument list entry for XtSetValues, however, contains
the new value itself, if the size of value is less than sizeof(XtArgVal) (architecture
dependent, but at least sizeof(long)); otherwise, it is a pointer to the value. String
resources are always passed as pointers, regardless of the length of the string.

2.9. Using the Client Callback Interface

Widgets can communicate changes in their state to their clients by means of a callback facility.
The format for a client’s callback handler is:

void CallbackProc(w, client_data, call_data)
Widget w;
XtPointer client_data,
XtPointer call_data;

w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should pass back to the
client when the widget executes the client’s callback procedure. This is a way for
the client registering the callback to also register client-specific data: a pointer to
additional information about the widget, a reason for invoking the callback, and
so on. If no additional information is necessary, NULL may be passed as this
argument. This field is also frequently known as the closure.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its jumpProc callback list, it passes the cur-
rent position of the thumb in call_data.

Callbacks can be registered either by creating an argument containing the callback list described
below or by using the special convenience routines XtAddCallback and XtAddCallbacks.
When the widget is created, a pointer to a list of callback procedure and data pairs can be passed
in the argument list to XtCreateWidget. The list is of type XtCallbackList:

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before calling XtCreateWidget. The end of
the list is identified by an entry containing NULL in callback and closure. Once the widget is cre-
ated, the client can change or de-allocate this list; the widget itself makes no further reference to
it. The closure field contains the client_data passed to the callback when the callback list is
executed.

The second method for registering callbacks is to use XtAddCallback after the widget has been
created.

12



Athena Widget Set X11, Release 6.4

void XtAddCallback(w, callback_name, callback, client_data)
Widget w;
String callback_name;
XtCallbackProc callback;
XtPointer client_data;

w Specifies the widget to add the callback to.

callback_name Specifies the callback list within the widget to append to.
callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when it is invoked.

XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list named destroyCallback where clients can register procedures
that are to be executed when the widget is destroyed. The destroy callbacks are executed when
the widget or an ancestor is destroyed. The call_data argument is unused for destroy callbacks.

2.10. Programming Considerations

This section provides some guidelines on how to set up an application program that uses the X
Toolkit.

2.10.1. Writing Applications

When writing an application that uses the X Toolkit, you should make sure that your application
performs the following:

1. Include <X11/Intrinsic.h> in your application programs. This header file automatically
includes <X11/Xlib.h>, so all Xlib functions also are defined. It may also be necessary to
include < X11/StringDefs.h > when setting up argument lists, as many of the XtNsome-
thing definitions are only defined in this file.

2. Include the widget-specific header files for each widget type that you need to use. For
example, <X11/Xaw/Label.h> and <X11/Xaw/Command.h>.

3. Call the XtApplInitialize function before invoking any other toolkit or Xlib functions. For
further information, see Section 2.1 and the X Toolkit Intrinsics — C Language Interface.

4. To pass attributes to the widget creation routines that will override any site or user cus-
tomizations, set up argument lists. In this document, a list of valid argument names is pro-
vided in the discussion of each widget. The names each have a global symbol defined that
begins with XtN to help catch spelling errors. For example, XtNlabel is defined for the
label resource of many widgets.

For further information, see Section 2.9.2.2.

5. When the argument list is set up, create the widget with the XtCreateManaged Widget
function. For further information, see Section 2.2 and the X Toolkit Intrinsics — C Lan-
guage Interface.

6. If the widget has any callback routines, set by the XtNcallback argument or the XtAdd-
Callback function, declare these routines within the application.

7. After creating the initial widget hierarchy, windows must be created for each widget by
calling XtRealizeWidget on the top level widget.

8. Most applications now sit in a loop processing events using XtAppMainLoop, for exam-
ple:

XtCreateManagedWidget(name, class, parent, args, num_args);
XtRealizeWidget(shell);
XtAppMainLoop(app_context);

13



Athena Widget Set X11, Release 6.4

For information about this function, see the X Toolkit Intrinsics — C Language Interface.

9. Link your application with libXaw (the Athena widgets), libXmu (miscellaneous utili-
ties), libXt (the X Toolkit Intrinsics), libSM (Session Management), libICE (Inter-Client
Exchange), libXext (the extension library needed for the shape extension code which
allows rounded Command buttons), and libX11 (the core X library). The following pro-
vides a sample command line:

cc -0 application application.c —1Xaw —1Xmu —1Xt —-ISM —lICE -1Xext —1X11

2.10.2. Changing Resource Values

The Intrinsics support two methods of changing the default resource values; the resource man-
ager, and an argument list passed into XtCreateWidget. While resources values will get updated
no matter which method you use, the two methods provide slightly different functionality.

Resource Manager This method picks up resource definitions described in Xlib — C Lan-
guage X Interface from many different locations at run time. The loca-
tions most important to the application programmer are the fallback
resources and the app-defaults file, (see X Toolkit Intrinsics — C Lan-
guage Interface for the complete list). Since these resource are loaded at
run time, they can be overridden by the user, allowing an application to
be customized to fit the particular needs of each individual user. These
values can also be modified without the need to rebuild the application,
allowing rapid prototyping of user interfaces. Application programmers
should use resources in preference to hard-coded values whenever possi-
ble.

Argument Lists The values passed into the widget at creation time via an argument list
cannot be modified by the user, and allow no opportunity for customiza-
tion. It is used to set resources that cannot be specified as strings (e.g.
callback lists) or resources that should not be overridden (e.g. window
depth) by the user.

2.10.2.1. Specifying Resources

It is important for all X Toolkit application programmers to understand how to use the X
Resource Manager to specify resources for widgets in an X application. This section will
describe the most common methods used to specify these resources, and how to use the X
Resource manager.

Xrdb The xrdb utility may be used to load a file containing resources into the
X server. Once the resources are loaded, the resources will affect any
new applications started on the display that they were loaded onto.

Application Defaults The application defaults (app-defaults) file (normally in /ust/lib/X11/app-
defaults/classname) for an application is loaded whenever the application
is started.

The resource specification has two colon-separated parts, a name, and a value. The value is a
string whose format is dependent on the resource specified by name. Name is constructed by
appending a resource name to a full widget name.

The full widget name is a list of the name of every ancestor of the desired widget separated by
periods (.). Each widget also has a class associated with it. A class is a type of widget (e.g. Label
or Scrollbar or Box). Notice that class names, by convention, begin with capital letters and
instance names begin with lower case letters. The class of any widget may be used in place of its
name in a resource specification. Here are a few examples:

xman.form.button1 This is a fully specified resource name, and will affect only widgets
called button]1 that are children of widgets called form that are children

14



Athena Widget Set X11, Release 6.4

of applications named xman. (Note that while typically two widgets that
are siblings will have different names, it is not prohibited.)

Xman.Form.Command This will match any Command widget that is a child of a Form widget
that is itself a child of an application of class Xman.

Xman.Form.button1 This is a mixed resource name with both widget names and classes speci-
fied.

This syntax allows an application programmer to specify any widget in the widget tree. To match
more than one widget (for example a user may want to make all Command buttons blue), use an
asterisk (*) instead of a period. When an asterisk is used, any number of widgets (including zero)
may exist between the two widget names. For example:

Xman*Command This matches all Command widgets in the Xman application.
Foo*buttonl This matches any widget in the Foo application that is named button|.

The root of all application widget trees is the widget returned by XtApplInitialize. Even though
this is actually an ApplicationShell widget, the toolkit replaces its widget class with the class
name of the application. The name of this widget is either the name used to invoke the applica-
tion (argv[0]) or the name of the application specified using the standard -name command line
option supported by the Intrinsics.

The last step in constructing the resource name is to append the name of the resource with either a
period or asterisk to the full or partial widget name already constructed.

*foreground:Blue Specifies that all widgets in all applications will have a fore-
ground color of blue.

Xman*borderWidth:10 Specifies that all widgets in an application whose class is
Xman will have a border width of 10 (pixels).

xman.form.button1.label: Testing ~ Specifies that a particular widget in the xman application
will have a label named 7esting.

An exclamation point (!) in the first column of a line indicates that the rest of the line should be
treated as a comment.

Final Words

The Resource manager is a powerful tool that can be used very effectively to customize X Toolkit
applications at run time by either the application programmer or the user. Some final points to
note:

. An application programmer may add new resources to their application. These resources
are associated with the global application, and not any particular widget. The X Toolkit
function used for adding the application resources is XtGetApplicationResources.

. Be careful when creating resource files. Since widgets will ignore resources that they do
not understand, any spelling errors will cause a resource to have no effect.

. Only one resource line will match any given resource. There is a set of precedence rules,
which take the following general stance.

. More specific overrides less specific, thus period always overrides asterisk.
. Names on the left are more specific and override names on the right.

. When resource specifications are exactly the same, user defaults
will override program defaults.

For a complete explanation of the rules of precedence, and other specific topics see X Toolkit
Intrinsics — C Language Interface and Xlib — C Language X Interface.

15



Athena Widget Set X11, Release 6.4

2.10.2.2. Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you may use any of the
four approaches discussed in this section. Each resource name has a global symbol associated
with it. This global symbol has the form XtNresource name. For example, the symbol for “‘fore-
ground” is XtNforeground. For further information, see the X Toolkit Intrinsics — C Language
Interface.

Argument are specified by using the following structure:

typedef struct {
String name;
XtArgVal value;
} Arg, *Arglist;

The first approach is to statically initialize the argument list. For example:

static Arg arglist[] = {
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) 300},

1

This approach is convenient for lists that do not need to be computed at runtime and makes
adding or deleting new elements easy. The XtNumber macro is used to compute the number of
elements in the argument list, preventing simple programming errors:

XtCreateWidget(name, class, parent, arglist, XtNumber(arglist));
The second approach is to use the XtSetArg macro. For example:

Arg arglist[10];
XtSetArg(arglist[1], XtNwidth, 400);
XtSetArg(arglist[2], XtNheight, 300);

To make it easier to insert and delete entries, you also can use a variable index:

Arg arglist[10];

Cardinal i=0;

XtSetArg(arglist[i], XtNwidth, 400); 1++;
XtSetArg(arglist[i], XtNheight, 300); 1++;

The i variable can then be used as the argument list count in the widget create function. In this
example, XtNumber would return 10, not 2, and therefore is not useful.

Note

You should not use auto-increment or auto-decrement within the first argument to
XtSetArg. Asitis currently implemented, XtSetArg is a macro that dereferences the
first argument twice.

The third approach is to individually set the elements of the argument list array:

Arg arglist[10];

arglist[0].name = XtNwidth;
arglist[0].value = (XtArgVal) 400;
arglist[1].name = XtNheight;
arglist[1].value = (XtArgVal) 300;

16



Athena Widget Set X11, Release 6.4

Note that in this example, as in the previous example, XtNumber would return 10, not 2, and
therefore would not be useful.

The fourth approach is to use a mixture of the first and third approaches: you can statically define
the argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) NULL},
1
arglist[1].value = (XtArgVal) 300;

In this example, XtNumber can be used, as in the first approach, for easier code maintenance.

2.11. Example Programs

The best way to understand how to use any programming library is by trying some simple exam-
ples. A collection of example programs that introduces each of the widgets in that Athena widget
set, as well as many important toolkit programming concepts, is available in the X11R6 release as
distributed by the X Consortium. It can be found in the distribution directory contrib/exam-
ples/mit/Xaw, but see your site administrator for the exact location of these files on your system.
See the README file from that directory for a guide to the examples.

17



Athena Widget Set X11, Release 6.4

Chapter 3

Simple Widgets

Each of these widgets performs a specific user interface function. They are simple because they
cannot have widget children—they may only be used as leaves of the widget tree. These widgets
display information or take user input.

Command A push button that, when selected, may cause a specific action to take place.
This widget can display a multi-line string or a bitmap or pixmap image.

Grip A rectangle that, when selected, will cause an action to take place.

Label A rectangle that can display a multi-line string or a bitmap or pixmap image.

List A list of text strings presented in row column format that may be individually

selected. When an element is selected an action may take place.

Panner A rectangular area containing a slider that may be moved in two dimensions.
Notification of movement may be continuous or discrete.

Repeater A push button that triggers an action at an increasing rate when selected. This
widget can display a multi-line string or a bitmap or pixmap image.

Scrollbar A rectangular area containing a thumb that when slid along one dimension may
cause a specific action to take place. The Scrollbar may be oriented horizontally
or vertically.

Simple The base class for most of the simple widgets. Provides a rectangular area with a
settable mouse cursor and special border.

StripChart A real time data graph that will automatically update and scroll.

Toggle A push button that contains state information. Toggles may also be used as
“radio buttons” to implement a ““one of many”’ or ““zero or one of many’’ group
of buttons. This widget can display a multi-line string or a bitmap or pixmap
image.

3.1. Command Widget

Application header file <X11/Xaw/Command.h>
Class header file <X11/Xaw/CommandP.h>
Class commandWidgetClass
Class Name Command

Superclass Label

The Command widget is an area, often rectangular, that contains text or a graphical image. Com-
mand widgets are often referred to as “push buttons.” When the pointer is over a Command wid-
get, the widget becomes highlighted by drawing a rectangle around its perimeter. This highlight-
ing indicates that the widget is ready for selection. When mouse button 1 is pressed, the Com-
mand widget indicates that it has been selected by reversing its foreground and background col-
ors. When the mouse button is released, the Command widget’s notify action is invoked, calling
all functions on its callback list. If the pointer is moved off of the widget before the pointer but-
ton is released, the widget reverts to its normal foreground and background colors, and releasing
the pointer button has no effect. This behavior allows the user to cancel an action.

18



Athena Widget Set

3.1.1. Resources

X11, Release 6.4

When creating a Command widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Class Type Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent’s Colormap

cornerRoundPercent CornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int Parent’s Depth

destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit

font Font XFontStruct XtDefaultFont

foreground Foreground Pixel XtDefaultForeground

height Height Dimension graphic height + 2 * internalHeight

highlightThickness Thickness Dimension 2 (0 if Shaped)

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internal Width Width Dimension 4

international International Boolean False

justify Justify Justify XtJustifyCenter (center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

mappedWhenManaged MappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize Boolean True

screen Screen Screen Parent’s Screen

sensitive Sensitive Boolean True

shapeStyle ShapeStyle ShapeStyle Rectangle

translations Translations TranslationTable See below

width Width Dimension graphic width + 2 * internal Width

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set

to anything other than XtUnspecifiedPixmap, the pixmap specified will

19



Athena Widget Set

bitmap

borderColor
borderPixmap
borderWidth
callback

colormap
cornerRoundPercent

cursor

cursorName

depth
destroyCallback
encoding

font

fontSet

foreground

height
width

highlightThickness

insensitiveBorder

internalHeight
internal Width

X11, Release 6.4

be used instead of the background color.

A bitmap to display instead of the label. The default size of the widget
will be just large enough to contain the bitmap and the widget’s internal
width and height. The resource converter for this resource constructs
bitmaps from the contents of files. (See Converting Bitmaps for
details.) If this bitmap is one bit deep then the 1’s will be rendered in the
foreground color, and the 0’s in the background color. If bitmap has a
depth greater than one, it is copied directly into the window.

A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

The width of this widget’s window border.
A list of routines to be called when the notify action is invoked.
The colormap that this widget will use.

When a ShapeStyle of roundedRectangle is used, this resource controls
the radius of the rounded corner. The radius of the rounded corners is
specified as a percentage of the length of the shortest side of the widget.

The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

The depth of this widget’s window.
All functions on this list are called when this widget is destroyed.

The encoding method used by the value of the label resource. The value
may be XawTextEncoding8bit or XawTextEncodingChar2b. When
international is set to true this resource is not used.

The text font to use when displaying the label, when the international
resource is false.

The text font set to use when displaying the label, when the interna-
tional resource is true.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the widget’s window. This color is also used to render
all 1’s in a bitmap one plane deep.

The height and width of this widget in pixels.

The thickness of the rectangle that is used to highlight the internal border
of this widget, alerting the user that it is ready to be selected. The default
value is 2 pixels if the shapeStyle is rectangle, and 0 Pixels (no high-
lighting) otherwise.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

The minimum amount of space to leave between the graphic and the ver-
tical and horizontal edges of the window.

20



Athena Widget Set

international

justify

label

leftBitmap
mappedWhenManaged

pointerColor

X11, Release 6.4

This is a boolean flag, only settable at widget creation time. A value of
false signals the widget to use pre-R6 internationalization (specifically,
the lack thereof), such as using fonts for displaying text, etc. A value of
true directs the widget to act in an internationalized manner, such as uti-
lizing font sets for displaying text, etc.

Specifies left, center, or right alignment of graphic within the widget.
This resource may be specified with the values XtJustifyLeft, XtJustify-
Center, or XtJustifyRight. A converter is registered for this resource
that will convert the following strings: left, right, and center. This
resource only has noticeable effect when the width of the widget is larger
than necessary to display the graphic. Note that when the graphic is a
multi-line label, the longest line will obey this justification while shorter
lines will be left-justified with the longest one.

Specifies the text string to be displayed in the widget’s window if no
bitmap is specified. The default is the name of this widget. Regardless
of the value of encoding or international, a single newline character (1
byte) will cause a line break.

Specifies a bitmap to display to the left of the graphic in the widget’s
window.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

pointerColorBackground A pixel value which indexes the widget’s colormap to derive the

resize

screen

sensitive

shapeStyle

translations

background color of the pointer symbol specified by the cursor-
Name resource.

Specifies whether the widget should attempt to resize to its preferred

dimensions whenever its resources are modified with XtSetValues. This
attempt to resize may be denied by the parent of this widget. The parent
is always free to resize the widget regardless of the state of this resource.

The screen on which this widget is displayed. This is not a settable
resource.

Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

Nonrectangular widgets may be created using this resource. Nonrectan-
gular widgets are supported only on a server that supports the Shape
Extension. If nonrectangular widgets are specified for a server lacking
this extension, the shape is ignored and the widgets will be rectangular.
The following shapes are currently supported: XmuShapeRectangle,
XmuShapeQOval, XmuShapeEllipse, and XmuShapeRoundedRectan-
gle. A converter is registered for this resource that will convert the fol-
lowing strings: rectangle, oval, ellipse, and roundedRectangle.

The event bindings associated with this widget.

The location of the upper left outside corner of this widget in its parent.

21



Athena Widget Set X11, Release 6.4

3.1.2. Command Actions
The Command widget supports the following actions:

. Switching the button’s interior between the foreground and background colors with set,
unset, and reset.

. Processing application callbacks with notify

. Switching the internal border between highlighted and unhighlighted states with highlight
and unhighlight

The following are the default translation bindings used by the Command widget:

<EnterWindow>: highlight()
<LeaveWindow>: reset()
<Btnl1Down>: set()
<Btn1Up>: notify() unset()

The full list of actions supported by Command is:

highlight(condition)  Displays the internal highlight border in the color (foreground or back-
ground ) that contrasts with the interior color of the Command widget.
The conditions WhenUnset and Always are understood by this action
procedure. If no argument is passed, WhenUnset is assumed.

unhighlight() Displays the internal highlight border in the color (foreground or back-
ground ) that matches the interior color of the Command widget.

set() Enters the set state, in which notify is possible. This action causes the
button to display its interior in the foreground color. The label or
bitmap is displayed in the background color.

unset( ) Cancels the set state and displays the interior of the button in the back-
ground color. The label or bitmap is displayed in the foreground color.

reset() Cancels any set or highlight and displays the interior of the button in the
background color, with the label or bitmap displayed in the foreground
color.

notify() When the button is in the set state this action calls all functions in the

callback list named by the callback resource. The value of the call_data
argument passed to these functions is undefined.

A very common alternative to registering callbacks is to augment a Command’s translations with
an action performing the desired function. This often takes the form of:

*Myapp*save.translations: #augment <Btn1Down>,<Btn1Up>: Save()

Note

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset()
actions have no effect, since there are no foreground and background colors used in a
multi-plane pixmap.

3.2. Grip Widget

Application header file <X11/Xaw/Grip.h>
Class header file <X11/Xaw/GripP.h>
Class gripWidgetClass
Class Name Grip

Superclass Simple

22



Athena Widget Set

X11, Release 6.4

The Grip widget provides a small rectangular region in which user input events (such as Button-
Press or ButtonRelease) may be handled. The most common use for the Grip widget is as an
attachment point for visually repositioning an object, such as the pane border in a Paned widget.

3.2.1. Resources

When creating a Grip widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes  Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 0

callback Callback Callback NULL

colormap Colormap Colormap Parent’s Colormap

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int Parent’s Depth

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

height Height Dimension 8

insensitiveBorder Insensitive Pixmap GreyPixmap

international International Boolean False

mappedWhenManaged MappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

screen Screen Screen Parent’s Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

width Width Dimension 8

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

23



Athena Widget Set

callback

colormap
cursor

cursorName

depth
destroyCallback
foreground

height
width

insensitiveBorder

international

mappedWhenManaged

pointerColor

pointerColorBackground

screen

sensitive

translations

X
y

3.2.2. Grip Actions

X11, Release 6.4

All routines on this list are called whenever the GripAction action rou-
tine is invoked. The call_data contains all information passed to the
action routine. A detailed description is given below in the Grip Actions
section.

The colormap that this widget will use.

The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

The depth of this widget’s window.
All functions on this list are called when this widget is destroyed.

A pixel value which indexes the widget’s colormap to derive the color
used to flood fill the entire Grip widget.

The height and width of this widget in pixels.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

This is a boolean flag, only settable at widget creation time. While not
utilized in this widget, it can and should be checked by any subclasses
that have behavior that should vary with locale.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

The screen on which this widget is displayed. This is not a settable
resource.

Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

The event bindings associated with this widget.

The location of the upper left outside corner of this widget in its parent.

The Grip widget does not declare any default event translation bindings, but it does declare a sin-
gle action routine named GripAction. The client specifies an arbitrary event translation table,
optionally giving parameters to the GripAction routine.

The GripAction routine executes the callbacks on the callback list, passing as call_data a pointer
to a XawGripCallData structure, defined in the Grip widget’s application header file.

typedef struct _XawGripCallData {

XEvent *event;

24



Athena Widget Set X11, Release 6.4

String *params;
Cardinal num_params;
} XawGripCallDataRec, *XawGripCallData,
GripCallDataRec, *GripCallData; /* supported for R4 compatibility */

In this structure, the event is a pointer to the input event that triggered the action. params and
num_params give the string parameters specified in the translation table for the particular event
binding.

The following is an example of a translation table that uses the GripAction:

<Btn1Down>: GripAction(press)
<Btn1Motion>: GripAction(move)
<Btn1Up>: GripAction(release)

For a complete description of the format of translation tables, see the X Toolkit Intrinsics — C
Language Interface.

3.3. Label Widget

Application header file <X11/Xaw/Label.h>
Class header file <X11/Xaw/LabelP.h>
Class labelWidgetClass
Class Name Label

Superclass Simple

A Label widget holds a graphic displayed within a rectangular region of the screen. The graphic
may be a text string containing multiple lines of characters in an 8 bit or 16 bit character set (to be
displayed with a font), or in a multi-byte encoding (for use with a fontset). The graphic may also
be a bitmap or pixmap. The Label widget will allow its graphic to be left, right, or center justi-
fied. Normally, this widget can be neither selected nor directly edited by the user. It is intended
for use as an output device only.

3.3.1. Resources

When creating a Label widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent’s Colormap
cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent’s Depth
destroyCallback Callback XtCallbackList NULL

25



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

encoding Encoding UnsignedChar XawTextEncoding8bit

font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A graphic height + 2 * internalHeight

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internal Width Width Dimension 4

international International Boolean C False

justify Justity Justify XtJustifyCenter (center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

mappedWhenManaged MappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize Boolean True

screen Screen Screen R Parent’s Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable See above

width Width Dimension A graphic width + 2 * internal Width

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

bitmap A bitmap to display instead of the label. The default size of the widget
will be just large enough to contain the bitmap and the widget’s internal
width and height. The resource converter for this resource constructs
bitmaps from the contents of files. (See Converting Bitmaps for
details.) If this bitmap is one bit deep then the 1’s will be rendered in the
foreground color, and the 0’s in the background color. If bitmap has a
depth greater than one, it is copied directly into the window.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

colormap The colormap that this widget will use.

cursor The image that will be displayed as the pointer cursor whenever it is in

this widget. The use of this resource is deprecated in favor of cursor-
Name.

26



Athena Widget Set

cursorName

depth
destroyCallback
encoding

font

fontSet

foreground

height
width
insensitiveBorder

internalHeight
internal Width

international

justify

label

leftBitmap

mappedWhenManaged

pointerColor

pointerColorBackground

X11, Release 6.4

The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

The depth of this widget’s window.
All functions on this list are called when this widget is destroyed.

The encoding method used by the value of the label resource. The value
may be XawTextEncoding8bit or XawTextEncodingChar2b. When
international is set to true this resource is not used.

The text font to use when displaying the label, when the international
resource is false.

The text font set to use when displaying the label, when the interna-
tional resource is true.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the widget’s window. This color is also used to render
all 1’s in a bitmap one plane deep.

The height and width of this widget in pixels.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

The minimum amount of space to leave between the graphic and the ver-
tical and horizontal edges of the window.

This is a boolean flag, only settable at widget creation time. A value of
false signals the widget to use pre-R6 internationalization (specifically,
the lack thereof), such as using fonts for displaying text, etc. A value of
true directs the widget to act in an internationalized manner, such as uti-
lizing font sets for displaying text, etc.

Specifies left, center, or right alignment of graphic within the widget.
This resource may be specified with the values XtJustifyLeft, XtJustify-
Center, or XtJustifyRight. A converter is registered for this resource
that will convert the following strings: left, right, and center. This
resource only has noticeable effect when the width of the widget is larger
than necessary to display the graphic. Note that when the graphic is a
multi-line label, the longest line will obey this justification while shorter
lines will be left-justified with the longest one.

Specifies the text string to be displayed in the widget’s window if no
bitmap is specified. The default is the name of this widget. Regardless
of the value of encoding or international, a single newline character (1
byte) will cause a line break.

Specifies a bitmap to display to the left of the graphic in the widget’s
window.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

27



Athena Widget Set

resize

screen

sensitive

translations

X
y

3.4. List Widget

Application header file
Class header file

Class

Class Name
Superclass

X11, Release 6.4

Specifies whether the widget should attempt to resize to its preferred

dimensions whenever its resources are modified with XtSetValues. This
attempt to resize may be denied by the parent of this widget. The parent
is always free to resize the widget regardless of the state of this resource.

The screen on which this widget is displayed. This is not a settable

resource.

Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is

False.

The event bindings associated with this widget.

The location of the upper left outside corner of this widget in its parent.

<X11/Xaw/List.h>
<X11/Xaw/ListP.h>
listWidgetClass

List
Simple

The List widget contains a list of strings formatted into rows and columns. When one of the
strings is selected, it is highlighted, and the List widget’s Notify action is invoked, calling all rou-
tines on its callback list. Only one string may be selected at a time.

3.4.1. Resources

When creating a List widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

callback Callback Callback NULL

colormap Colormap Colormap Parent’s Colormap
columnSpacing Spacing Dimension 6

cursor Cursor Cursor XC_left_ptr
cursorName Cursor String NULL
defaultColumns Columns int 2

depth Depth int C Parent’s Depth
destroyCallback Callback XtCallbackList NULL

font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
forceColumns Columns Boolean False

foreground Foreground Pixel XtDefaultForeground
height Height Dimension A Enough space to contain the list

28



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internal Width Width Dimension 4

international International Boolean C False

list List Pointer name of widget

longest Longest int A 0

mappedWhenManaged MappedWhenManaged Boolean True

numberStrings NumberStrings int A computed for NULL terminated list

pasteBuffer Boolean Boolean False

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

rowSpacing Spacing Dimension 2

screen Screen Screen R Parent’s Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable See below

verticalList Boolean Boolean False

width Width Dimension A Enough space to contain the list

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

callback All functions on this list are called whenever the notify action is invoked.
The call_data argument contains information about the element selected
and is described in detail in the List Callbacks section.

colormap The colormap that this widget will use.

columnSpacing

rowSpacing The amount of space, in pixels, between each of the rows and columns in
the list.

cursor The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

cursorName The name of the symbol to use to represent the pointer cursor. This

resource will override the cursor resource if both are specified. (See
24.1)

29



Athena Widget Set

defaultColumns

depth
destroyCallback
font

fontSet
forceColumns
foreground
height

width

insensitiveBorder

internalHeight
internal Width

list

international

longest

mappedWhenManaged

numberStrings

pasteBuffer

pointerColor

pointerColorBackground

X11, Release 6.4

The default number of columns. This value is used when neither the
width nor the height of the List widget is specified or when
forceColumns is True.

The depth of this widget’s window.
All functions on this list are called when this widget is destroyed.

The text font to use when displaying the list, when the international
resource is false.

The text font set to use when displaying the list, when the international
resource is true.

Forces the default number of columns to be used regardless of the List
widget’s current size.

A pixel value which indexes the widget’s colormap to derive the color
used to paint the text of the list elements.

The height and width of this widget in pixels.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

The margin, in pixels, between the edges of the list and the correspond-
ing edge of the List widget’s window.

An array of text strings displayed in the List widget. If numberStrings
is zero (the default) then the list must be NULL terminated. If a value is
not specified for the list, then numberStrings is set to 1, and the name of
the widget is used as the list, and longest is set to the length of the name
of the widget. The list is used in place, and must be available to the List
widget for the lifetime of this widget, or until it is changed with XtSet-
Values or XawListChange.

This is a boolean flag, only settable at widget creation time. A value of
false signals the widget to use pre-R6 internationalization (specifically,
the lack thereof), such as using fonts for displaying text, etc. A value of
true directs the widget to act in an internationalized manner, such as uti-
lizing font sets for displaying text, etc.

Specifies the width, in pixels, of the longest string in the current list. The
List widget will compute this value if zero (the default) is specified. If
this resource is set by hand, entries longer than this will be clipped to fit.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

The number of strings in the current list. If a value of zero (the default)
is specified, the List widget will compute it. When computing the num-
ber of strings the List widget assumes that the list is NULL terminated.

If this resource is set to True then the name of the currently selected list
element will be put into CUT_BUFFER_0.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

30



Athena Widget Set X11, Release 6.4

screen The screen on which this widget is displayed. This is not a settable
resource.

sensitive Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

translations The event bindings associated with this widget.

verticalList If this resource is set to True then the list elements will be presented in
column major order.

X

y The location of the upper left outside corner of this widget in its parent.

3.4.2. List Actions

The List widget supports the following actions:

. Highlighting and unhighlighting the list element under the pointer with Set and Unset
. Processing application callbacks with Notify

The following is the default translation table used by the List Widget:

<Btn1Down>,<Btn1Up>: Set() Notify()

The full list of actions supported by List widget is:

Set() Sets the list element that is currently under the pointer. To inform the
user that this element is currently set, it is drawn with foreground and
background colors reversed. If this action is called when there is no list
element under the cursor, the currently sef element will be unset.

Unset() Cancels the set state of the element under the pointer, and redraws it with
normal foreground and background colors.
Notify() Calls all callbacks on the List widget’s callback list. Information about

the currently selected list element is passed in the call_data argument
(see List Callbacks below).

3.4.3. List Callbacks

All procedures on the List widget’s callback list will have a XawListReturnStruct passed to
them as call_data. The structure is defined in the List widget’s application header file.

typedef struct _XawListReturnStruct {
String string; /* string shown in the list. */
int list_index; /* index of the item selected. */
} XawListReturnStruct;
Note

The list_index item used to be called simply index. Unfortunately, this name collided
with a global name defined on some operating systems, and had to be changed.

3.4.4. Changing the List
To change the list that is displayed, use XawListChange.

31



Athena Widget Set X11, Release 6.4

void XawListChange(w, list, nitems, longest, resize)
Widget w;
String * list;
int nitems, longest;
Boolean resize;

w Specifies the List widget.

list Specifies the new list for the List widget to display.

nitems Specifies the number of items in the /ist. If a value less than 1 is specified, list
must be NULL terminated, and the number of items will be calculated by the List
widget.

longest Specifies the length of the longest item in the /ist in pixels. If a value less than 1

is specified, the List widget will calculate the value.

resize Specifies a Boolean value that if True indicates that the List widget should try to
resize itself after making the change. The constraints of the List widget’s parent
are always enforced, regardless of the value specified here.

XawListChange will unset all list elements that are currently set before the list is actually
changed. The /ist is used in place, and must remain usable for the lifetime of the List widget, or
until /ist has been changed again with this function or with XtSetValues.

3.4.5. Highlighting an Item
To highlight an item in the list, use XawListHighlight.
void XawListHighlight(w, item)

Widget w;
int item;
w Specifies the List widget.
item Specifies an index into the current list that indicates the item to be highlighted.

Only one item can be highlighted at a time. If an item is already highlighted when
XawListHighlight is called, the highlighted item is unhighlighted before the new item is high-
lighted.

3.4.6. Unhighlighting an Item
To unhighlight the currently highlighted item in the list, use XawListUnhighlight.
void XawListUnhighlight(w)

Widget w;

w Specifies the List widget.

3.4.7. Retrieving the Currently Selected Item
To retrieve the list element that is currently set, use XawListShowCurrent.
XawListReturnStruct *XawListShowCurrent(w)
Widget w;
w Specifies the List widget.

XawListShowCurrent returns a pointer to an XawListReturnStruct structure, containing the
currently highlighted item. If the value of the index member is XAW_LIST_NONE, the string
member is undefined, and no item is currently selected.

3.4.8. Restrictions

Many programmers create a ““scrolled list” by putting a List widget with many entries as a child
of a Viewport widget. The List continues to create a window as big as its contents, but that big

32



Athena Widget Set X11, Release 6.4

window is only visible where it intersects the parent Viewport’s window. (L.e., itis “clipped.”)

While this is a useful technique, there is a serious drawback. X does not support windows above
32,767 pixels in width or height, but this height limit will be exceeded by a List’s window when
the List has many entries (i.e., with a 12 point font, about 3000 entries would be too many.)

3.5. Panner Widget

Application header file <X11/Xaw/Panner.h>
Class header file <X11/Xaw/PannerP.h>
Class pannerWidgetClass
Class Name Panner

Superclass Simple

A Panner widget is a rectangle, called the ‘“‘canvas,” on which another rectangle, the “slider,”
moves in two dimensions. It is often used with a Porthole widget to move, or “scroll,” a third
widget in two dimensions, in which case the slider’s size and position gives feedback as to what
portion of the third widget is visible.

The slider may be scrolled around the canvas by pressing, dragging, and releasing Button1; the
default translation also enables scrolling via arrow keys and some other keys. While scrolling is
in progress, the application receives notification through callback procedures. Notification may
be done either continuously whenever the slider moves or discretely whenever the slider has been

given a new location.

3.5.1. Resources

When creating a Panner widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL

allowOff AllowOff Boolean False
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
backgroundStipple BackgroundStipple String NULL

borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

canvasHeight CanvasHeight Dimension 0

canvasWidth CanvasWidth Dimension 0

colormap Colormap Colormap Parent’s Colormap
cursor Cursor Cursor None

cursorName Cursor String NULL

defaultScale DefaultScale Dimension 8

depth Depth int C Parent’s Depth
destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground
height Height Dimension A depends on orientation
internalSpace InternalSpace Dimension 4

international International Boolean C False

lineWidth LineWidth Dimension 0
mappedWhenManaged MappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

33



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

pointerColorBackground Background Pixel XtDefaultBackground

reportCallback ReportCallback Callback NULL

resize Resize Boolean True

rubberBand RubberBand Boolean False

screen Screen Screen R Parent’s Screen

sensitive Sensitive Boolean True

shadowColor ShadowColor Pixel XtDefaultForeground

shadowThickness ShadowThickness Dimension 2

sliderX SliderX Position 0

sliderY SliderY Position 0

sliderHeight SliderHeight Dimension 0

sliderWidth SliderWidth Dimension 0

translations Translations TranslationTable See below

width Width Dimension A depends on orientation

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

allowOff Whether to allow the edges of the slider to go off the edges of the canvas.

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

backgroundStipple = The name of a bitmap pattern to be used as the background for the area
representing the canvas.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

canvasHeight

canvasWidth The size of the canvas.

colormap The colormap that this widget will use.

cursor The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

cursorName The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

defaultScale The percentage size that the Panner widget should have relative to the
size of the canvas.

depth The depth of this widget’s window.

34



Athena Widget Set

destroyCallback
foreground

height
width

internalSpace

international

lineWidth

mappedWhenManaged

pointerColor

pointerColorBackground

reportCallback
resize

rubberBand

screen

sensitive

shadowColor
shadowThickness

sliderX
sliderY

sliderHeight
sliderWidth

translations

X
y

3.5.2. Panner Actions

X11, Release 6.4

All functions on this list are called when this widget is destroyed.

A pixel value which indexes the widget’s colormap to derive the color
used to draw the slider.

The height and width of this widget in pixels.

The width of internal border in pixels between a slider representing the
full size of the canvas and the edge of the Panner widget.

This is a boolean flag, only settable at widget creation time. While not
utilized in this widget, it can and should be checked by any subclasses
that have behavior that should vary with locale.

The width of the lines in the rubberbanding rectangle when rubberband-
ing is in effect instead of continuous scrolling. The default is O.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

All functions on this callback list are called when the notify action is
invoked. See the Panner Actions section for details.

Whether or not to resize the panner whenever the canvas size is changed
so that the defaultScale is maintained.

Whether or not scrolling should be discrete (only moving a rubberbanded
rectangle until the scrolling is done) or continuous (moving the slider
itself). This controls whether or not the move action procedure also
invokes the notify action procedure.

The screen on which this widget is displayed. This is not a settable
resource.

Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

The color of the shadow underneath the slider.
The width of the shadow underneath the slider.

The location of the slider in the coordinates of the canvas.

The size of the slider.

The event bindings associated with this widget.

The location of the upper left outside corner of this widget in its parent.

The actions supported by the Panner widget are:

start()
stop()

This action begins movement of the slider.
This action ends movement of the slider.

35



Athena Widget Set X11, Release 6.4

abort() This action ends movement of the slider and restores it to the position it
held when the start action was invoked.

move() This action moves the outline of the slider (if the rubberBand resource
is True) or the slider itself (by invoking the notify action procedure).

page(xamount,yamount)
This action moves the slider by the specified amounts. The format for
the amounts is a signed or unsigned floating-point number (e.g., +1.0 or
—.5) followed by either p indicating pages (slider sizes), or ¢ indicating
canvas sizes. Thus, page(+0,+.5p) represents vertical movement down
one-half the height of the slider and page(0,0) represents moving to the
upper left corner of the canvas.

notify() This action informs the application of the slider’s current position by
invoking the reportCallback functions registered by the application.

set(what,value) This action changes the behavior of the Panner. The what argument must
currently be the string rubberband and controls the value of the rubber-
Band resource. The value argument may have one of the values on, off,
or toggle.

The default bindings for Panner are:

<BtnlDown>: start()
<BtnlMotion>: move()
<Btn1Up>: notify( ) stop()
<Btn2Down>: abort( )
<Key>KP_Enter: set(rubberband,toggle)
<Key>space: page(+1p,+1p)
<Key>Delete: page(—1p,—1p)
<Key>BackSpace: page(—1p,—1p)
<Key>Left: page(—.5p,+0)
<Key>Right: page(+.5p,+0)
<Key>Up: page(+0,—.5p)
<Key>Down: page(+0,+.5p)
<Key>Home: page(0,0)

3.5.3. Panner Callbacks
The functions registered on the reportCallback list are invoked by the notify action as follows:
void ReportProc(panner, client_data, report)

Widget panner;

XtPointer client_data;

XtPointer report; /* (XawPannerReport *) */

panner Specifies the Panner widget.
client_data Specifies the client data.
report Specifies a pointer to an XawPannerReport structure containing the location

and size of the slider and the size of the canvas.

3.6. Repeater Widget

Application header file <X11/Xaw/Repeater.h>
Class header file <X11/Xaw/RepeaterP.h>
Class repeater WidgetClass

36



Athena Widget Set

Class Name
Superclass

Repeater

Command

X11, Release 6.4

The Repeater widget is a subclass of the Command widget; see the Command documentation for
details. The difference is that the Repeater can call its registered callbacks repeatedly, at an
increasing rate. The default translation does so for the duration the user holds down pointer but-
ton 1 while the pointer is on the Repeater.

3.6.1. Resources

When creating a Repeater widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent’s Colormap
cornerRoundPercent CornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String NULL

decay Decay Int 5

depth Depth int Parent’s Depth
destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit
flash Boolean Boolean False

font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension graphic height + 2 * internalHeight
highlightThickness Thickness Dimension 2 (0 if Shaped)
initialDelay Delay Int 200

insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean False

justify Justify Justify XtJustifyCenter (center)
label Label String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenManaged MappedWhenManaged Boolean True

minimumDelay MinimumDelay Int 10

pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel XtDefaultBackground
repeatDelay Delay Int 50

resize Resize Boolean True

screen Screen Pointer Parent’s Screen
sensitive Sensitive Boolean True

shapeStyle ShapeStyle ShapeStyle Rectangle
startCallback StartCallback Callback NULL

stopCallback StopCallback Callback NULL

37



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

translations Translations TranslationTable See below

width Width Dimension A graphic width + 2 * internal Width

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

bitmap A bitmap to display instead of the label. The default size of the widget
will be just large enough to contain the bitmap and the widget’s internal
width and height. The resource converter for this resource constructs
bitmaps from the contents of files. (See Converting Bitmaps for
details.) If this bitmap is one bit deep then the 1’s will be rendered in the
foreground color, and the 0’s in the background color. If bitmap has a
depth greater than one, it is copied directly into the window.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

callback A list of routines to be called when the notify action is invoked.

colormap The colormap that this widget will use.

cornerRoundPercent =~ When a ShapeStyle of roundedRectangle is used, this resource controls
the radius of the rounded corner. The radius of the rounded corners is
specified as a percentage of the length of the shortest side of the widget.

cursor The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

cursorName The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

decay The number of milliseconds that should be subtracted from each suc-
ceeding interval while the Repeater button is being held down until the
interval has reached minimumDelay milliseconds.

depth The depth of this widget’s window.

destroyCallback All functions on this list are called when this widget is destroyed.

encoding The encoding method used by the value of the label resource. The value

may be XawTextEncoding8bit or XawTextEncodingChar2b. When

38



Athena Widget Set

flash
font

fontSet

foreground

height
width

highlightThickness

initialDelay
insensitiveBorder

internalHeight
internal Width

international

justify

label

leftBitmap

mappedWhenManaged

minimumDelay
pointerColor

X11, Release 6.4

international is set to true this resource is not used.
Whether or not to flash the Repeater button whenever the timer goes off.

The text font to use when displaying the label, when the international
resource is false.

The text font set to use when displaying the label, when the interna-
tional resource is true.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the widget’s window. This color is also used to render
all 1’s in a bitmap one plane deep.

The height and width of this widget in pixels.

The thickness of the rectangle that is used to highlight the internal border
of this widget, alerting the user that it is ready to be selected. The default
value is 2 pixels if the shapeStyle is rectangle, and 0 Pixels (no high-
lighting) otherwise.

The number of milliseconds between the beginning of the Repeater but-
ton being held down and the first invocation of the callback function.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

The minimum amount of space to leave between the graphic and the ver-
tical and horizontal edges of the window.

This is a boolean flag, only settable at widget creation time. A value of
false signals the widget to use pre-R6 internationalization (specifically,
the lack thereof), such as using fonts for displaying text, etc. A value of
true directs the widget to act in an internationalized manner, such as uti-
lizing font sets for displaying text, etc.

Specifies left, center, or right alignment of graphic within the widget.
This resource may be specified with the values XtJustifyLeft, XtJustify-
Center, or XtJustifyRight. A converter is registered for this resource
that will convert the following strings: left, right, and center. This
resource only has noticeable effect when the width of the widget is larger
than necessary to display the graphic. Note that when the graphic is a
multi-line label, the longest line will obey this justification while shorter
lines will be left-justified with the longest one.

Specifies the text string to be displayed in the widget’s window if no
bitmap is specified. The default is the name of this widget. Regardless
of the value of encoding or international, a single newline character (1
byte) will cause a line break.

Specifies a bitmap to display to the left of the graphic in the widget’s
window.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

The minimum time between callbacks in milliseconds.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

39



Athena Widget Set X11, Release 6.4

pointerColorBackground A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

repeatDelay The number of milliseconds between each callback after the first (minus
an increasing number of decays).

resize Specifies whether the widget should attempt to resize to its preferred
dimensions whenever its resources are modified with XtSetValues. This
attempt to resize may be denied by the parent of this widget. The parent
is always free to resize the widget regardless of the state of this resource.

screen The screen on which this widget is displayed. This is not a settable
resource.

sensitive Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

shapeStyle Nonrectangular widgets may be created using this resource. Nonrectan-

gular widgets are supported only on a server that supports the Shape
Extension. If nonrectangular widgets are specified for a server lacking
this extension, the shape is ignored and the widgets will be rectangular.
The following shapes are currently supported: XmuShapeRectangle,
XmuShapeQOval, XmuShapeEllipse, and XmuShapeRoundedRectan-
gle. A converter is registered for this resource that will convert the fol-
lowing strings: rectangle, oval, ellipse, and roundedRectangle.

startCallback The list of functions to invoke by the start action (typically when the
Repeater button is first pressed). The callback data parameter is set to
NULL.

stopCallback The list of functions to invoke by the stop action (typically when the
Repeater button is released). The callback data parameter is set to
NULL.

translations The event bindings associated with this widget.

X

y The location of the upper left outside corner of this widget in its parent.

3.6.2. Repeater Actions
The Repeater widget supports the following actions beyond those of the Command button:

start() This invokes the functions on the startCallback and callback lists and
sets a timer to go off in initialDelay milliseconds. The timer will cause
the callback functions to be invoked with increasing frequency until the
stop action occurs.

stop() This invokes the functions on the stopCallback list and prevents any fur-
ther timers from occuring until the next start action.

The following are the default translation bindings used by the Repeater widget:

<EnterWindow>: highlight()
<LeaveWindow>: unhighlight()
<Btnl1Down>: set() start()
<Btn1Up>: stop( ) unset()

40



Athena Widget Set X11, Release 6.4

3.7. Scrollbar Widget

Application header file <X11/Xaw/Scrollbar.h>
Class header file <X11/Xaw/ScrollbarP.h>
Class scrollbarWidgetClass
Class Name Scrollbar

Superclass Simple

A Scrollbar widget is a rectangle, called the “canvas,” on which another rectangle, the ‘““‘thumb,”
moves in one dimension, either vertically or horizontally. A Scrollbar can be used alone, as a
value generator, or it can be used within a composite widget (for example, a Viewport). When a
Scrollbar is used to move, or “scroll,” the contents of another widget, the size and the position of
the thumb usually give feedback as to what portion of the other widget’s contents are visible.

Each pointer button invokes a specific action. Pointer buttons 1 and 3 do not move the thumb
automatically. Instead, they return the pixel position of the cursor on the scroll region. When
pointer button 2 is clicked, the thumb moves to the current pointer position. When pointer button
2 is held down and the pointer is moved, the thumb follows the pointer.

The pointer cursor in the scroll region changes depending on the current action. When no pointer
button is pressed, the cursor appears as a double-headed arrow that points in the direction that
scrolling can occur. When pointer button 1 or 3 is pressed, the cursor appears as a single-headed
arrow that points in the logical direction that the thumb will move. When pointer button 2 is
pressed, the cursor appears as an arrow that points to the top or the left of the thumb.

When the user scrolls, the application receives notification through callback procedures. For both
discrete scrolling actions, the callback returns the Scrollbar widget, the client_data, and the pixel
position of the pointer when the button was released. For continuous scrolling, the callback rou-
tine returns the scroll bar widget, the client data, and the current relative position of the thumb.
When the thumb is moved using pointer button 2, the callback procedure is invoked continuously.
When either button 1 or 3 is pressed, the callback procedure is invoked only when the button is
released and the client callback procedure is responsible for moving the thumb.

3.7.1. Resources

When creating a Scrollbar widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap parent’s Colormap
cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C parent’s Depth
destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground
height Height Dimension A depends on orientation
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C False

41



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

jumpProc Callback XtCallbackList NULL

length Length Dimension 1

mappedWhenManaged MappedWhenManaged Boolean True

minimumThumb MinimumThumb Dimension 7

orientation Orientation Orientation XtorientVertical (vertical)

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

screen Screen Screen R parent’s Screen

scrollDCursor Cursor Cursor XC_sb_down_arrow

scrollHCursor Cursor Cursor XC_sb_h_double_arrow

scrollLCursor Cursor Cursor XC_sb_left_arrow

scrollProc Callback XtCallbackList NULL

scrollRCursor Cursor Cursor XC_sb_right_arrow

scrollUCursor Cursor Cursor XC_sb_up_arrow

scrollVCursor Cursor Cursor XC_sb_v_arrow

sensitive Sensitive Boolean True

shown Shown Float 0.0

thickness Thickness Dimension 14

thumb Thumb Bitmap GreyPixmap

thumbProc Callback XtCallbackList NULL

topOfThumb TopOfThumb Float 0.0

translations Translations TranslationTable See below

width Width Dimension A depends on orientation

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

colormap The colormap that this widget will use.

cursor The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

cursorName The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

depth The depth of this widget’s window.

42



Athena Widget Set

destroyCallback
foreground

height
width

insensitiveBorder

international

jumpProc

length
mappedWhenManaged

minimumThumb
orientation

pointerColor

X11, Release 6.4

All functions on this list are called when this widget is destroyed.

A pixel value which indexes the widget’s colormap to derive the color
used to draw the thumb.

The height and width of this widget in pixels.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

This is a boolean flag, only settable at widget creation time. While not
utilized in this widget, it can and should be checked by any subclasses
that have behavior that should vary with locale.

All functions on this callback list are called when the NotifyThumb
action is invoked. See the Scrollbar Actions section for details.

The height of a vertical scrollbar or the width of a horizontal scrollbar.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

The smallest size, in pixels, to which the thumb can shrink.

The orientation is the direction that the thumb will be allowed to move.
This value can be either XtorientVertical or XtorientHorizontal. A
converter is registered for this resource that will convert the following
strings: vertical and horizontal.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

pointerColorBackground A pixel value which indexes the widget’s colormap to derive the

screen

scrollDCursor
scrollHCursor
scrollLCursor
scrollProc

scrollRCursor

scrollUCursor

scrollVCursor

sensitive

shown

thickness
thumb

background color of the pointer symbol specified by the cursor-
Name resource.

The screen on which this widget is displayed. This is not a settable
resource.

This cursor is used when scrolling backward in a vertical scrollbar.
This cursor is used when a horizontal scrollbar is inactive.
This cursor is used when scrolling forward in a horizontal scrollbar.

All functions on this callback list may be called when the NotifyScroll
action is invoked. See the Scrollbar Actions section for details.

This cursor is used when scrolling backward in a horizontal scrollbar, or
when thumbing a vertical scrollbar.

This cursor is used when scrolling forward in a vertical scrollbar, or
when thumbing a horizontal scrollbar.

This cursor is used when a vertical scrollbar is inactive.

Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

This is the size of the thumb, expressed as a percentage (0.0 - 1.0) of the
length of the scrollbar.

The width of a vertical scrollbar or the height of a horizontal scrollbar.

This pixmap is used to tile (or stipple) the thumb of the scrollbar. If no
tiling is desired, then set this resource to None. This resource will accept
either a bitmap or a pixmap that is the same depth as the window. The
resource converter for this resource constructs bitmaps from the contents

43



Athena Widget Set X11, Release 6.4

of files. (See Converting Bitmaps for details.)

topOfThumb The location of the top of the thumb, as a percentage (0.0 - 1.0) of the
length of the scrollbar. This resource was called top in previous versions
of the Athena widget set. The name collided with the a Form widget
constraint resource, and had to be changed.

translations The event bindings associated with this widget.
X
y The location of the upper left outside corner of this widget in its parent.

3.7.2. Scrollbar Actions
The actions supported by the Scrollbar widget are:

StartScroll(value) The possible values are Forward, Backward, or Continuous. This must
be the first action to begin a new movement.

NotifyScroll(value) The possible values are Proportional or FullLength. If the argument to
StartScroll was Forward or Backward, NotifyScroll executes the scroll-
Proc callbacks and passes either; the position of the pointer, if value is
Proportional, or the full length of the scroll bar, if value is FullLength. If
the argument to StartScroll was Continuous, NotifyScroll returns without
executing any callbacks.

EndScroll() This must be the last action after a movement is complete.
MoveThumb() Repositions the Scrollbar’s thumb to the current pointer location.
NotifyThumb() Calls the jumpProc callbacks and passes the relative position of the

pointer as a percentage of the scroll bar length.

The default bindings for Scrollbar are:

<Btn1Down>: StartScroll(Forward)

<Btn2Down>: StartScroll(Continuous) MoveThumb() NotifyThumb()
<Btn3Down>: StartScroll(Backward)

<Btn2Motion>: MoveThumb( ) NotifyThumb()

<BtnUp>: NotifyScroll(Proportional) EndScroll()

Examples of additional bindings a user might wish to specify in a resource file are:

*Scrollbar.Translations: \

"Meta<Key>space: StartScroll(Forward) NotifyScroll(FullLength) \n\
Meta<Key>space: StartScroll(Backward) NotifyScroll(FullLength) \n\
EndScroll()

3.7.3. Scrollbar Callbacks

There are two callback lists provided by the Scrollbar widget. The procedural interface for these
functions is described here.

The calling interface to the scrollProc callback procedure is:

void ScrollProc(scrollbar, client_data, position)
Widget scrollbar;
XtPointer client_data;
XtPointer position; /* int */

scrollbar Specifies the Scrollbar widget.

44



Athena Widget Set X11, Release 6.4

client_data Specifies the client data.
position Specifies a pixel position in integer form.

The scrollProc callback is used for incremental scrolling and is called by the NotifyScroll action.
The position argument is a signed quantity and should be cast to an int when used. Using the
default button bindings, button 1 returns a positive value, and button 3 returns a negative value. In
both cases, the magnitude of the value is the distance of the pointer in pixels from the top (or left)
of the Scrollbar. The value will never be greater than the length of the Scrollbar.

The calling interface to the jumpProc callback procedure is:
void JumpProc(scrollbar, client_data, percent)
Widget scrollbar;
XtPointer client_data;
XtPointer percent_ptr; /* float* */
scrollbar Specifies the ID of the scroll bar widget.
client_data Specifies the client data.
percent_ptr Specifies the floating point position of the thumb (0.0 — 1.0).

The jumpProc callback is used to implement smooth scrolling and is called by the NotifyThumb
action. Percent_ptr must be cast to a pointer to float before use; i.e.

float percent = *(float*)percent_ptr;

With the default button bindings, button 2 moves the thumb interactively, and the jumpProc is
called on each new position of the pointer, while the pointer button remains down. The value
specified by percent_ptr is the current location of the thumb (from the top or left of the Scrollbar)
expressed as a percentage of the length of the Scrollbar.

3.7.4. Convenience Routines
To set the position and length of a Scrollbar thumb, use XawScrollbarSetThumb.
void XawScrollbarSetThumb(w, top, shown)

Widget w;
float fop;
float shown;
w Specifies the Scrollbar widget.
top Specifies the position of the top of the thumb as a fraction of the length of the
Scrollbar.
shown Specifies the length of the thumb as a fraction of the total length of the Scrollbar.

XawScrollbarThumb moves the visible thumb to a new position (0.0 — 1.0) and length (0.0 —
1.0). Either the top or shown arguments can be specified as —1.0, in which case the current value
is left unchanged. Values greater than 1.0 are truncated to 1.0.

If called from jumpProc, XawScrollbarSetThumb has no effect.

3.7.5. Setting Float Resources

The shown and topOfThumb resources are of type float. These resources can be difficult to get
into an argument list. The reason is that C performs an automatic cast of the float value to an
integer value, usually truncating the important information. The following code fragment is one
portable method of getting a float into an argument list.

top = 0.5;
if (sizeof(float) > sizeof(XtArgVal)) {

45



Athena Widget Set

/*

* If a float is larger than an XtArgVal then pass this

* resource value by reference.

*/

}

else {
/*

XtSetArg(args[0], XtNshown, &top);

* Convince C not to perform an automatic conversion, which

* would truncate 0.5 to 0.

*/

3.8. Simple Widget

Application Header file
Class Header file

Class

Class Name

Superclass

XtArgVal * 1_top = (XtArgVal *) &top;
XtSetArg(args[0], XtNshown, *1_top);

<Xaw/Simple.h>
<Xaw/SimpleP.h>
simpleWidgetClass

Simple
Core

X11, Release 6.4

The Simple widget is not very useful by itself, as it has no semantics of its own. It main purpose
is to be used as a common superclass for the other simple Athena widgets. This widget adds six
resources to the resource list provided by the Core widget and its superclasses.

3.8.1. Resources

When creating a Simple widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent’s Colormap
cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent’s Depth
destroyCallback Callback XtCallbackList NULL

height Height Dimension 0

insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C False
mappedWhenManaged MappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel XtDefaultBackground
screen Screen Screen R Parent’s Screen

46



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

width Width Dimension 0

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

colormap The colormap that this widget will use.

cursor The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

cursorName The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

depth The depth of this widget’s window.

destroyCallback All functions on this list are called when this widget is destroyed.

height

width The height and width of this widget in pixels.

insensitiveBorder This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

international This is a boolean flag, only settable at widget creation time. While not
utilized in this widget, it can and should be checked by any subclasses
that have behavior that should vary with locale.

mappedWhenManaged If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

pointerColor A pixel value which indexes the widget’s colormap to derive the fore-

ground color of the pointer symbol specified by the cursorName
resource.

pointerColorBackground A pixel value which indexes the widget’s colormap to derive the

background color of the pointer symbol specified by the cursor-
Name resource.

47



Athena Widget Set

screen

sensitive

translations

X
y

X11, Release 6.4

The screen on which this widget is displayed. This is not a settable
resource.

Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

The event bindings associated with this widget.

The location of the upper left outside corner of this widget in its parent.

3.9. StripChart Widget

Application Header file
Class Header file

Class

Class Name

Superclass

<Xaw/StripChart.h>
<Xaw/StripCharP.h>
stripChartWidgetClass

StripChart
Simple

The StripChart widget is used to provide a roughly real time graphical chart of a single value. For
example, it is used by the common client program xload to provide a graph of processor load.
The StripChart reads data from an application, and updates the chart at the update interval speci-

fied.

3.9.1. Resources

When creating a StripChart widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent’s Colormap
cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent’s Depth
destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground
getValue Callback XtCallbackList NULL

height Height Dimension 120

highlight Foreground Pixel XtDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C False

jumpScroll JumpScroll int A half the width of the widget
mappedWhenManaged MappedWhenManaged Boolean True

minScale Scale int 1

pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel XtDefaultBackground
screen Screen Pointer R Parent’s Screen
sensitive Sensitive Boolean True

48



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

translations Translations TranslationTable NULL

update Interval int 10

width Width Dimension 120

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

colormap The colormap that this widget will use.

cursor The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

cursorName The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

depth The depth of this widget’s window.

destroyCallback All functions on this list are called when this widget is destroyed.

foreground A pixel value which indexes the widget’s colormap to derive the color
that will be used to draw the graph.

getValue A list of callback functions to call every update seconds. This list
should contain one function, which returns the value to be graphed by the
StripChart widget. The following section describes the procedural inter-
face. Behavior when this list has more than one function is undefined.

height

width The height and width of this widget in pixels.

highlight A pixel value which indexes the widget’s colormap to derive the color
that will be used to draw the scale lines on the graph.

insensitiveBorder This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

international This is a boolean flag, only settable at widget creation time. While not

utilized in this widget, it can and should be checked by any subclasses
that have behavior that should vary with locale.

49



Athena Widget Set X11, Release 6.4

jumpScroll When the graph reaches the right edge of the window it must be scrolled
to the left. This resource specifies the number of pixels it will jump.
Smooth scrolling can be achieved by setting this resource to 1.

mappedWhenManaged If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

minScale The minimum scale for the graph. The number of divisions on the graph
will always be greater than or equal to this value.

pointerColor A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

pointerColorBackground A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

screen The screen on which this widget is displayed. This is not a settable
resource.

sensitive Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

translations The event bindings associated with this widget.

update The number of seconds between graph updates. Each update is repre-

sented on the graph as a 1 pixel wide line. Every update seconds the
getValue procedure will be used to get a new graph point, and this point
will be added to the right end of the StripChart.

X
y The location of the upper left outside corner of this widget in its parent.

3.9.2. Getting the StripChart Value
The StripChart widget will call the application routine passed to it as the getValue callback func-
tion every update seconds to obtain another point for the StripChart graph.
The calling interface for the getValue callback is:
void (*getValueProc)(w, client_data, value)
Widget w;
XtPointer client_data;
XtPointer value; /* double * */

w Specifies the StripChart widget.

client_data Specifies the client data.

value Returns a pointer to a double. The application should set the address pointed to
by this argument to a double containing the value to be graphed on the
StripChart.

This function is used by the StripChart to call an application routine. The routine will pass the
value to be graphed back to the the StripChart in the value field of this routine.

3.10. Toggle Widget

Application Header file <Xaw/Toggle.h>
Class Header file <Xaw/ToggleP.h>
Class toggleWidgetClass
Class Name Toggle

50



Athena Widget Set X11, Release 6.4

Superclass Command

The Toggle widget is an area, often rectangular, that displays a graphic. The graphic may be a
text string containing multiple lines of characters in an 8 bit or 16 bit character set (to be dis-
played with a font), or in a multi-byte encoding (for use with a fontset). The graphic may also be
a bitmap or pixmap.

This widget maintains a Boolean state (e.g. True/False or On/Off) and changes state whenever it
is selected. When the pointer is on the Toggle widget, the Toggle widget may become high-
lighted by drawing a rectangle around its perimeter. This highlighting indicates that the Toggle
widget is ready for selection. When pointer button 1 is pressed and released, the Toggle widget
indicates that it has changed state by reversing its foreground and background colors, and its
notify action is invoked, calling all functions on its callback list. If the pointer is moved off of the
widget before the pointer button is released, the Toggle widget reverts to its previous foreground
and background colors, and releasing the pointer button has no effect. This behavior allows the
user to cancel the operation.

Toggle widgets may also be part of a ““radio group.” A radio group is a list of at least two Toggle
widgets in which no more than one Toggle may be set at any time. A radio group is identified by
the widget ID of any one of its members. The convenience routine XawToggleGetCurrent will
return information about the Toggle widget in the radio group.

Toggle widget state is preserved across changes in sensitivity.

3.10.1. Resources
When creating a Toggle widget instance, the following resources are retrieved from the argument

list or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent’s Colormap
cornerRoundPercent CornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent’s Depth
destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A graphic height + 2 * internalHeight
highlightThickness Thickness Dimension A 2 (0 if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2

internal Width Width Dimension 4

international International Boolean C False

justify Justity Justify XtJustifyCenter (center)
label Label String name of widget

51



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

leftBitmap LeftBitmap Bitmap None

mappedWhenManaged MappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

radioData RadioData Pointer Name of widget

radioGroup Widget Widget No radio group

resize Resize Boolean True

screen Screen Screen R Parent’s Screen

sensitive Sensitive Boolean True

shapeStype ShapeStyle ShapeStyle Rectangle

state State Boolean Off

translations Translations TranslationTable See below

width Width Dimension A graphic width + 2 * internal Width

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

bitmap A bitmap to display instead of the label. The default size of the widget
will be just large enough to contain the bitmap and the widget’s internal
width and height. The resource converter for this resource constructs
bitmaps from the contents of files. (See Converting Bitmaps for
details.) If this bitmap is one bit deep then the 1°s will be rendered in the
foreground color, and the 0’s in the background color. If bitmap has a
depth greater than one, it is copied directly into the window.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

callback A list of routines to be called when the notify action is invoked.

colormap The colormap that this widget will use.

cornerRoundPercent =~ When a ShapeStyle of roundedRectangle is used, this resource controls
the radius of the rounded corner. The radius of the rounded corners is
specified as a percentage of the length of the shortest side of the widget.

cursor The image that will be displayed as the pointer cursor whenever it is in
this widget. The use of this resource is deprecated in favor of cursor-
Name.

cursorName The name of the symbol to use to represent the pointer cursor. This

resource will override the cursor resource if both are specified. (See

52



Athena Widget Set

depth
destroyCallback
encoding

font
fontSet

foreground

height
width

highlightThickness

insensitiveBorder

internalHeight
internal Width

international

justify

label

leftBitmap

mappedWhenManaged

pointerColor

X11, Release 6.4

24.1)
The depth of this widget’s window.
All functions on this list are called when this widget is destroyed.

The encoding method used by the value of the label resource. The value
may be XawTextEncoding8bit or XawTextEncodingChar2b. When
international is set to true this resource is not used.

The text font to use when displaying the label, when the international
resource is false.

The text font set to use when displaying the label, when the interna-
tional resource is true.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the widget’s window. This color is also used to render
all 1’s in a bitmap one plane deep.

The height and width of this widget in pixels.

The thickness of the rectangle that is used to highlight the internal border
of this widget, alerting the user that it is ready to be selected. The default
value is 2 pixels if the shapeStyle is rectangle, and 0 Pixels (no high-
lighting) otherwise.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

The minimum amount of space to leave between the graphic and the ver-
tical and horizontal edges of the window.

This is a boolean flag, only settable at widget creation time. A value of
false signals the widget to use pre-R6 internationalization (specifically,
the lack thereof), such as using fonts for displaying text, etc. A value of
true directs the widget to act in an internationalized manner, such as uti-
lizing font sets for displaying text, etc.

Specifies left, center, or right alignment of graphic within the widget.
This resource may be specified with the values XtJustifyLeft, XtJustify-
Center, or XtJustifyRight. A converter is registered for this resource
that will convert the following strings: left, right, and center. This
resource only has noticeable effect when the width of the widget is larger
than necessary to display the graphic. Note that when the graphic is a
multi-line label, the longest line will obey this justification while shorter
lines will be left-justified with the longest one.

Specifies the text string to be displayed in the widget’s window if no
bitmap is specified. The default is the name of this widget. Regardless
of the value of encoding or international, a single newline character (1
byte) will cause a line break.

Specifies a bitmap to display to the left of the graphic in the widget’s
window.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

53



Athena Widget Set X11, Release 6.4

pointerColorBackground A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

radioData Specifies the data that will be returned by XawToggleGetCurrent when
this is the currently set widget in the radio group. This value is also used
to identify the Toggle that will be set by a call to XawToggleSetCurrent.
The value NULL will be returned by XawToggleGetCurrent if no wid-
get in a radio group is currently set. Programmers must not specify
NULL (or Zero) as radioData.

radioGroup Specifies another Toggle widget that is in the radio group to which this
Toggle widget should be added. A radio group is a group of at least two
Toggle widgets, only one of which may be set at a time. If this value is
NULL (the default) then the Toggle will not be part of any radio group
and can change state without affecting any other Toggle widgets. If the
widget specified in this resource is not already in a radio group then a
new radio group will be created containing these two Toggle widgets.
No Toggle widget can be in multiple radio groups. The behavior of a
radio group of one toggle is undefined. A converter is registered which
will convert widget names to widgets without caching.

resize Specifies whether the widget should attempt to resize to its preferred
dimensions whenever its resources are modified with XtSetValues. This
attempt to resize may be denied by the parent of this widget. The parent
is always free to resize the widget regardless of the state of this resource.

screen The screen on which this widget is displayed. This is not a settable
resource.

sensitive Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

shapeStyle Nonrectangular widgets may be created using this resource. Nonrectan-

gular widgets are supported only on a server that supports the Shape
Extension. If nonrectangular widgets are specified for a server lacking
this extension, the shape is ignored and the widgets will be rectangular.
The following shapes are currently supported: XmuShapeRectangle,
XmuShapeQOval, XmuShapeEllipse, and XmuShapeRoundedRectan-
gle. A converter is registered for this resource that will convert the fol-
lowing strings: rectangle, oval, ellipse, and roundedRectangle.

state Specifies whether the Toggle widget is set (True) or unset (False).
translations The event bindings associated with this widget.

X

y The location of the upper left outside corner of this widget in its parent.

3.10.2. Toggle Actions
The Toggle widget supports the following actions:

. Switching the Toggle widget between the foreground and background colors with set and
unset and toggle

. Processing application callbacks with notify

. Switching the internal border between highlighted and unhighlighted states with highlight
and unhighlight

The following are the default translation bindings used by the Toggle widget:

54



Athena Widget Set X11, Release 6.4

<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight()
<Btn1Down>,<Btn1Up>: toggle() notify()

3.10.3. Toggle Actions
The full list of actions supported by Toggle is:

highlight(condition)  Displays the internal highlight border in the color (foreground or back-
ground ) that contrasts with the interior color of the Toggle widget. The
conditions WhenUnset and Always are understood by this action proce-
dure. If no argument is passed then WhenUnset is assumed.

unhighlight() Displays the internal highlight border in the color (foreground or back-
ground ) that matches the interior color of the Toggle widget.

set() Enters the set state, in which notify is possible. This action causes the
Toggle widget to display its interior in the foreground color. The label
or bitmap is displayed in the background color.

unset( ) Cancels the set state and displays the interior of the Toggle widget in the
background color. The label or bitmap is displayed in the foreground
color.

toggle() Changes the current state of the Toggle widget, causing to be set if it was

previously unset, and unset if it was previously set. If the widget is to be
set, and is in a radio group then this procedure may unset another Toggle
widget causing all routines on its callback list to be invoked. The call-
back routines for the Toggle that is to be unset will be called before the
one that is to be set.

reset() Cancels any set or highlight and displays the interior of the Toggle wid-
get in the background color, with the label displayed in the foreground
color.

notify() When the Toggle widget is in the set state this action calls all functions

in the callback list named by the callback resource. The value of the
call_data argument in these callback functions is undefined.

Note

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset()
actions have no effect, since there are no foreground and background colors used in a
multi-plane pixmap.

3.10.4. Radio Groups

There are typically two types of radio groups desired by applications. The default translations for
the Toggle widget implement a "zero or one of many" radio group. This means that there may be
no more than one Toggle widget active, but there need not be any Toggle widgets active.

The other type of radio group is "one of many" and has the more strict policy that there will
always be exactly one radio button active. Toggle widgets can be used to provide this interface
with a slight modification to the translation table of each Toggle in the group.

<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight()
<Btn1Down>,<Btn1Up>: set() notify()

This translation table will not allow any Toggle to be unset except as a result of another Toggle

55



Athena Widget Set X11, Release 6.4

becoming set. It is the application programmer’s responsibility to choose an initial state for the
radio group by setting the state resource of one of its member widgets to True.

3.10.5. Convenience Routines
The following functions allow easy access to the Toggle widget’s radio group functionality.

3.10.5.1. Changing the Toggle’s Radio Group.

To enable an application to change the Toggle’s radio group, add the Toggle to a radio group, or
remove the Toggle from a radio group, use XawToggleChangeRadioGroup.

void XawToggleChangeRadioGroup(w, radio_group)
Widget w, radio_group;
w Specifies the Toggle widget.

radio_group  Specifies any Toggle in the new radio group. If NULL then the Toggle will be
removed from any radio group of which it is a member.

If a Toggle is already set in the new radio group, and the Toggle to be added is also sef then the
previously set Toggle in the radio group is unset and its callback procedures are invoked.

Finding the Currently selected Toggle in a radio group of Toggles

To find the currently selected Toggle in a radio group of Toggle widgets use XawToggleGetCur-
rent.

XtPointer XawToggleGetCurrent(radio_group);
Widget radio_group;
radio_group  Specifies any Toggle widget in the radio group.

The value returned by this function is the radioData of the Toggle in this radio group that is cur-
rently set. The default value for radioData is the name of that Toggle widget. If no Toggle is set
in the radio group specified then NULL is returned.

Changing the Toggle that is set in a radio group.
To change the Toggle that is currently set in a radio group use XawToggleSetCurrent.

void XawToggleSetCurrent(radio_group, radio_data);
Widget radio_group;
XtPointer radio_data;

radio_group  Specifies any Toggle widget in the radio group.

radio_data Specifies the radioData identifying the Toggle that should be set in the radio
group specified by the radio_group argument.

XawToggleSetCurrent locates the Toggle widget to be set by matching radio_data against the
radioData for each Toggle in the radio group. If none match, XawToggleSetCurrent returns
without making any changes. If more than one Toggle matches, XawToggleSetCurrent will
choose a Toggle to set arbitrarily. If this causes any Toggle widgets to change state, all routines in
their callback lists will be invoked. The callback routines for a Toggle that is to be unset will be
called before the one that is to be set.

Unsetting all Toggles in a radio group.
To unset all Toggle widgets in a radio group use XawToggleUnsetCurrent.

void XawToggleUnsetCurrent(radio_group);
Widget radio_group;

radio_group  Specifies any Toggle widget in the radio group.

56



Athena Widget Set X11, Release 6.4

If this causes a Toggle widget to change state, all routines on its callback list will be invoked.

57



Athena Widget Set X11, Release 6.4

Chapter 4

Menus

The Athena widget set provides support for single paned non-hierarchical popup and pulldown
menus. Since menus are such a common user interface tool, support for them must be provided
in even the most basic widget sets. In menuing as in other areas, the Athena Widget Set provides
only basic functionality.

Menus in the Athena widget set are implemented as a menu container (the SimpleMenu widget)
and a collection of objects that comprise the menu entries. The SimpleMenu widget is itself a
direct subclass of the OverrideShell widget class, so no other shell is necessary when creating a
menu. The managed children of a SimpleMenu must be subclasses of the Sme (Simple Menu
Entry) object.

The Athena widget set provides three classes of Sme objects that may be used to build menus.

Sme The base class of all menu entries. It may be used as a menu entry itself to pro-
vide blank space in a menu. “Sme” means ‘“Simple Menu Entry.”

SmeBSB This menu entry provides a selectable entry containing a text string. A bitmap
may also be placed in the left and right margins. “BSB”’ means “Bitmap String
Bitmap.”

SmeLine This menu entry provides an unselectable entry containing a separator line.

The SimpleMenu widget informs the window manager that it should ignore its window by setting
the Override Redirect flag. This is the correct behavior for the press-drag-release style of menu
operation. If click-move-click or “pinable’” menus are desired it is the responsibility of the
application programmer, using the SimpleMenu resources, to inform the window manager of the
menu.

To allow easy creation of pulldown menus, a MenuButton widget is also provided as part of the
Athena widget set.

4.1. Using the Menus

The default configuration for the menus is press-drag-release. The menus will typically be acti-
vated by clicking a pointer button while the pointer is over a MenuButton, causing the menu to
appear in a fixed location relative to that button; this is a pulldown menu. Menus may also be
activated when a specific pointer and/or key sequence is used anywhere in the application; this is
a popup menu (e.g. clicking Ctrl-<pointer button 1> in the common application xterm). In this
case the menu should be positioned under the cursor. Typically menus will be placed so the
pointer cursor is on the first menu entry, or the last entry selected by the user.

The menu remains on the screen as long as the pointer button is held down. Moving the pointer
will highlight different menu items. If the pointer leaves the menu, or moves over an entry that
cannot be selected then no menu entry will highlighted. When the desired menu entry has been
highlighted, releasing the pointer button removes the menu, and causes any mechanism associated
with this entry to be invoked.

4.2. SimpleMenu Widget

Application Header file <X11/Xaw/SimpleMenu.h>
Class Header file <X11/Xaw/SimpleMenP.h>

58



Athena Widget Set

Class simpleMenuWidgetClass
Class Name SimpleMenu
Superclass OverrideShell

X11, Release 6.4

The SimpleMenu widget is a container for the menu entries. It is a direct subclass of shell, and is
should be created with XtCreatePopupShell, not XtCreateManagedWidget. This is the only

part of the menu that actually is associated with a window. The SimpleMenu serves as the glue to
bind the individual menu entries together into a menu.

4.2.1. Resources

The resources associated with the SimpleMenu widget control aspects that will affect the entire

menu.

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean True
allowShellResize AllowShellResize Boolean True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
backingStore BackingStore BackingStore see below
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

bottomMargin VerticalMargins Dimension 0

children ReadOnly WidgetList NULL
createPopupChildProc CreatePopupChildProc Function NULL

colormap Colormap Colormap Parent’s Colormap
cursor Cursor Cursor None

depth Depth int Parent’s Depth
destroyCallback Callback XtCallbackList NULL

geometry Geometry String NULL

height Height Dimension Enough space to contain all entries
label Label String NULL

labelClass LabelClass Pointer SmeBSBObjectClass
mappedWhenManaged MappedWhenManaged Boolean True

menuOnScreen MenuOnScreen Boolean True

numChildren ReadOnly Cardinal 0

overrideRedirect OverrideRedirect Boolean True
popdownCallback Callback XtCallbackList NULL
popupCallback Callback XtCallbackList NULL
popupOnEntry PopupOnEntry Widget Label or first entry
rowHeight RowHeight Dimension 0

saveUnder SaveUnder Boolean False

screen Screen Screen Parent’s Screen
sensitive Sensitive Boolean True

topMargin VerticalMargins Dimension 0

translations Translations TranslationTable See below

visual Visual Visual CopyFromParent
width Width Dimension Width of widest entry
X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even

though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

59



Athena Widget Set

ancestorSensitive

backingStore

background

backgroundPixmap

borderColor

borderPixmap

borderWidth

bottomMargin
topMargin

children
colormap
cursor

depth
destroyCallback
geometry

height
width

label

labelClass

mappedWhenManaged

menuOnScreen

numChildren
overrideRedirect

X11, Release 6.4

The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

Determines what type of backing store will be used for the menu. Legal
values for this resource are NotUseful, WhenMapped, and Always.
These values are the backing-store integers defined in <X11/X.h>. A
converter is registered for this resource that will convert the following
strings: notUseful, whenMapped, always, and default. If default is
specified (the default behavior) the server will use whatever it thinks is
appropriate.

A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

The width of this widget’s window border.

The amount of space between the top or bottom of the menu and the
menu entry closest to that edge.

A list of all this composite widget’s current children.

The colormap that this widget will use.

The shape of the mouse pointer whenever it is in this widget.
The depth of this widget’s window.

All functions on this list are called when this widget is destroyed.

If this resource is specified it will override the x, y, width and height of
this widget. The format of this string is [<width>x<height>][{+ -} <xoff-
set> {+ -}<yoffset>].

The height and width of this widget in pixels.

This label will be placed at the top of the SimpleMenu, and may not be
highlighted. The name of the label object is menuLabel. Using this
name it is possible to modify the label’s attributes through the resource
database. When the label is created, the label is hard coded to the value
of label, and justify is hard coded as XtJustifyCenter.

Specifies the type of Sme object created as the menu label.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

If the menu is automatically positioned under the cursor with the Xaw-
PositionSimpleMenu action, and this resource is True, then the menu
will always be fully visible on the screen.

The number of children in this composite widget.

Determines the value of the override_redirect attribute of the Simple-
Menu’s window. The override_redirect attribute of a window determines

60



Athena Widget Set

popdownCallback
popupCallback

popupOnEntry

rowHeight

saveUnder

screen

sensitive

translations

X
y

X11, Release 6.4

whether or not a window manager may interpose itself between this win-
dow and the root window of the display. For more information see the
Interclient Communications Conventions Manual.

These callback functions are called by the Xt Intrinsics whenever the
shell is popped up or down (See X Toolkit Intrinsics — C Language
Interface for details).

The XawPositionSimpleMenu action will, by default, popup the Sim-
pleMenu with its label (or first entry) directly under the pointer. To
popup the menu under another entry, set this resource to the menu entry
that should be under the pointer, when the menu is popped up. This
allows the application to offer the user a default menu entry that can be
selected with out moving the pointer.

If this resources is zero (the default) then each menu entry will be given
its desired height. If this resource has any other value then all menu
entries will be forced to be rowHeight pixels high.

If this is True then save unders will be active on the menu’s window.

The screen on which this widget is displayed. This is not a settable
resource.

Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

The event bindings associated with this widget.

The location of the upper left outside corner of this widget in its parent.

4.2.2. SimpleMenu Actions
The SimpleMenu widget supports the following actions:

. Switching the entry under the mouse pointer between the foreground and background col-
ors with highlight and unhighlight
. Processing menu entry callbacks with notify

The following are the default translation bindings used by the SimpleMenu widget:

<EnterWindow>: highlight()

<LeaveWindow>: unhighlight()

<BtnMotion>: highlight()

<BtnUp>: MenuPopdown( ) notify() unhighlight()

The user can pop down the menu without activating any of the callback functions by releasing the
pointer button when no menu item is highlighted.

The full list of actions supported by SimpleMenu is:

highlight()

unhighlight()

Highlight the menu entry that is currently under the pointer. Only a item
that is highlighted will be notified when the notify action is invoked.
The look of a highlighted entry is determined by the menu entry.

Unhighlights the currently highlighted menu item, and returns it to its
normal look.

61



Athena Widget Set X11, Release 6.4

notify() Notifies the menu entry that is currently highlighted that is has been
selected. It is the responsibility of the menu entry to take the appropriate
action.

MenuPopdown(menu) This action is defined in X Toolkit Intrinsics — C Language Interface.

4.2.3. Positioning the SimpleMenu

If the SimpleMenu widget is to be used as a pulldown menu then the MenuButton widget, or
some other outside means should be used to place the menu when it is popped up.

If popup menus are desired it will be necessary to add the XawPositionSimpleMenu and
MenuPopup actions to the translation table of the widget that will be popping up the menu. The
MenuPopup action is described in X Toolkit Intrinsics — C Language Interface. XawPosition-
SimpleMenu is a global action procedure registered by the SimpleMenu widget when the first
one is created or the convenience routine XawSimpleMenuAddGlobalActions is called.

Translation writers should be aware that Xt does not register grabs on ““‘don’t care” modifiers, and
therefore the left hand side of the production should be written to exclude unspecified modifiers.
For example these are the translations needed to popup some of xterm’s menus:

ICtrl<Btn1Down>: XawPositionSimpleMenu(xterm) MenuPopup(xterm)
ICtrl<Btn2Down>: XawPositionSimpleMenu(modes) MenuPopup(modes)

XawPositionSimpleMenu(menu) The XawPositionSimpleMenu routine will search for the
menu name passed to it using XtNameToWidget starting
with the widget invoking the action as the reference widget.
If it is unsuccessful it will continue up the widget tree using
each of the invoking widget’s ancestors as the reference wid-
get. If it is still unsuccessful it will print a warning message
and give up. XawPositionSimpleMenu will position the
menu directly under the pointer cursor. The menu will be
placed so that the pointer cursor is centered on the entry
named by the popupOnEntry resource. If the menuOn-
Screen resource is True then the menu will always be fully
visible on the screen.

4.2.4. Convenience Routines

4.2.4.1. Registering the Global Action Routines

The XawPositionSimpleMenu action routine may often be invoked before any menus have been
created. This can occur when an application uses dynamic menu creation. In these cases an
application will need to register this global action routine by calling XawSimpleMenuAddGlob-
alActions:

void XawSimpleMenuAddGlobalActions(app_con)
XtAppContext app_con;

app_con Specifies the application context in which this action should be registered.

This function need only be called once per application and must be called before any widget that
uses XawPositionSimpleMenu action is realized.

4.2.4.2. Getting and Clearing the Current Menu Entry
To get the currently highlighted menu entry use XawSimpleMenuGetActiveEntry:

62



Athena Widget Set X11, Release 6.4

Widget XawSimpleMenuGetActiveEntry(w)
Widget w;
w Specifies the SimpleMenu widget.

This function returns the menu entry that is currently highlighted, or NULL if no entry is high-
lighted.

To clear the SimpleMenu widget’s internal information about the currently highlighted menu
entry use XawSimpleMenuClearActiveEntry:

Widget XawSimpleMenuClearActiveEntry(w)
Widget w;
w Specifies the SimpleMenu widget.

This function unsets all internal references to the currently highlighted menu entry. It does not
unhighlight or otherwise alter the appearance of the active entry. This function is primarily for
use by implementors of menu entries.

4.3. SmeBSB Object

Application Header file <X11/Xaw/SmeBSB.h>
Class Header file <X11/Xaw/SmeBSBP.h>
Class smeBSBObjectClass
Class Name SmeBSB

Superclass Sme

The SmeBSB object is used to create a menu entry that contains a string, and optional bitmaps in
its left and right margins. Since each menu entry is an independent object, the application is able
to change the font, color, height, and other attributes of the menu entries, on an entry by entry
basis. The format of the string may either be the encoding of the 8 bit font utilized, or in a multi-
byte encoding for use with a fontSet.

4.3.1. Resources

The resources associated with the SmeBSB object are defined in this section, and affect only the
single menu entry specified by this object.

Name Class Type Notes Default Value
ancestorSensitive AncestorSensitive Boolean D True

callback Callback Callback NULL
destroyCallback Callback XtCallbackList NULL

font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A Font height + vertSpace
international International Boolean C False

justify Justify Justity XtjustifyLeft

label Label String NULL

leftBitmap LeftBitmap Pixmap XtUnspecifiedPixmap
leftMargin leftMargin Dimension 4

rightBitmap RightBitmap Pixmap XtUnspecifiedPixmap
rightMargin rightMargin Dimension 4

sensitive Sensitive Boolean True

vertSpace VertSpace int 25

63



Athena Widget Set X11, Release 6.4

Name Class Type Notes Default Value

width Width Dimension A TextWidth + margins

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

callback All callback functions on this list are called when the SimpleMenu noti-
fies this entry that the user has selected it.

destroyCallback All functions on this list are called when this widget is destroyed.

font The text font to use when displaying the label, when the international
resource is false.

fontSet The text font set to use when displaying the label, when the interna-
tional resource is true.

foreground A pixel value which indexes the SimpleMenu’s colormap to derive the
foreground color of the menu entry’s window. This color is also used to
render all 1’s in the left and right bitmaps.

height

width The height and width of this widget in pixels. Keep in mind that the
SimpleMenu widget will force the width of all menu entries to be the
width of the longest entry.

international This is a boolean flag, only settable at widget creation time. A value of
false signals the widget to use pre-R6 internationalization (specifically,
the lack thereof), such as using fonts for displaying text, etc. A value of
true directs the widget to act in an internationalized manner, such as uti-
lizing font sets for displaying text, etc.

justify How the label is to be rendered between the left and right margins when
the space is wider than the actual text. This resource may be specified
with the values XtJustifyLeft, XtJustifyCenter, or XtJustifyRight.
When specifying the justification from a resource file the values left,
center, or right may be used.

label This is a the string that will be displayed in the menu entry. The exact
location of this string within the bounds of the menu entry is controlled
by the leftMargin, rightMargin, vertSpace, and justify resources.

leftBitmap

rightBitmap This is a name of a bitmap to display in the left or right margin of the
menu entry. All 1’s in the bitmap will be rendered in the foreground
color, and all 0’s will be drawn in the background color of the Simple-
Menu widget. It is the programmers’ responsibility to make sure that the
menu entry is tall enough, and the appropriate margin wide enough to
accept the bitmap. If care is not taken the bitmap may extend into
another menu entry, or into this entry’s label.

leftMargin

rightMargin This is the amount of space (in pixels) that will be left between the edge
of the menu entry and the label string.

sensitive Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

vertSpace This is the amount of vertical padding, expressed as a percentage of the

height of the font, that is to be placed around the label of a menu entry..
The label and bitmaps are always centered vertically within the menu.

64



Athena Widget Set X11, Release 6.4

The default value for this resource (25) causes the default height to be
125% of the height of the font.

4.4. SmeLine Object

Application Header file <X11/Xaw/SmeLine.h>
Class Header file <X11/Xaw/SmeLineP.h>
Class smeLineObjectClass
Class Name SmeLine

Superclass Sme

The SmeLine object is used to add a horizontal line or menu separator to a menu. Since each
SmeLine is an independent object, the application is able to change the color, height, and other
attributes of the SmeLine objects on an entry by entry basis. This object is not selectable, and
will not highlight when the pointer cursor is over it.

4.4.1. Resources

The resources associated with the SmeLine object are defined in this section, and affect only the
single menu entry specified by this object.

Name Class Type Notes Default Value

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

height Height Dimension lineWidth

international International Boolean C False

lineWidth LineWidth Dimension 1

stipple Stipple Pixmap XtUnspecifiedPixmap

width Width Dimension 1

destroyCallback All functions on this list are called when this widget is destroyed.

foreground A pixel value which indexes the SimpleMenu’s colormap to derive the
foreground color used to draw the separator line.

height

width The height and width of this widget in pixels. Keep in mind that the
SimpleMenu widget will force all menu items to be the width of the
widest entry. Thus, setting the width is generally not very important.

international This is a boolean flag, only settable at widget creation time. While not
utilized in this widget, it can and should be checked by any subclasses
that have behavior that should vary with locale.

lineWidth The width of the horizontal line that is to be displayed.

stipple If a bitmap is specified for this resource, the line will be stippled through

it. This allows the menu separator to be rendered as something more
exciting than just a line. For instance, if you define a stipple that is a
chain link, then your menu separators will look like chains.

4.5. Sme Object

Application Header file <X11/Xaw/Sme.h>
Class Header file <X11/Xaw/SmeP.h>
Class smeObjectClass

65



Athena Widget Set X11, Release 6.4

Class Name Sme
Superclass RectObj

The Sme object is the base class for all menu entries. While this object is mainly intended to be
subclassed, it may be used in a menu to add blank space between menu entries.

4.5.1. Resources

The resources associated with the SmeLine object are defined in this section, and affect only the
single menu entry specified by this object. There are no new resources added for this class, as it
picks up all its resources from the RectObj class.

Name Class Type Notes Default Value
ancestorSensitive AncestorSensitive Boolean True

callback Callback XtCallbackList NULL
destroyCallback Callback XtCallbackList NULL

height Height Dimension 0

international International Boolean C False

sensitive Sensitive Boolean True

width Width Dimension 1
ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-

tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

destroyCallback All functions on this list are called when this widget is destroyed.
height
width The height and width of this widget in pixels. Keep in mind that the

SimpleMenu widget will force all menu items to be the width of the
widest entry.

international This is a boolean flag, only settable at widget creation time. While not
utilized in this widget, it can and should be checked by any subclasses
that have behavior that should vary with locale.

sensitive Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

4.5.2. Subclassing the Sme Object

To Create a new Sme object class you will need to define three class methods. These methods
allow the SimpleMenu to highlight and unhighlight the menu entry as the pointer cursor moves
over it, as well as notify the entry when the user has selected it. All of these methods may be
inherited from the Sme object, although the default semantics are not very interesting.

Highlight()  Called to put the menu entry into the highlighted state.
Unhighlight() Called to return the widget to its normal (unhighlighted) state.
Notify() Called when the user selects this menu entry.

Other then these methods, creating a new object is straight forward. Here is some information
that may help you avoid some common mistakes.

1) Objects can be zero pixels high.

2) Objects draw on their parent’s window, therefore the Drawing dimensions are different from
those of widgets. For instance, y locations vary from y to y + height, not 0 to height.

66



Athena Widget Set

X11, Release 6.4

3) XtSetValues calls may come from the application while the Sme is highlighted, and if the Set-
Values method returns True, will result in an expose event. The SimpleMenu may later call
the menu entry’s unhighlight procedure. However, due to the asynchronous nature of X, the
expose event generated by XtSetValues will come affer this unhighlight.

4) Remember that your subclass of the Sme does not own the window. Share the space with
other menu entries, and refrain from drawing outside the subclass’s own section of the menu.

4.6. MenuButton Widget

Application Header file
Class Header file

Class

Class Name

Superclass

<X11/Xaw/MenuButton.h>
<X11/Xaw/MenuButtonP.h>
menuButtonWidgetClass
MenuButton

Command

The MenuButton widget is an area, often rectangular, that displays a graphic. The graphic may
be a text string containing multiple lines of characters in an 8 bit or 16 bit character set (to be dis-
played with a font), or in a multi-byte encoding (for use with a fontset). The graphic may also be

a bitmap or pixmap.

When the pointer cursor is on a MenuButton widget, the MenuButton becomes highlighted by
drawing a rectangle around its perimeter. This highlighting indicates that the MenuButton is

ready for selection. When a pointer button is pressed, the MenuButton widget will pop up the
menu named in the menuName resource.

4.6.1. Resources

When creating a MenuButton widget instance, the following resources are retrieved from the

argument list or from the resource database:

Name Class Type Notes  Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent’s Colormap
cornerRoundPercent CornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String None

depth Depth int C Parent’s Depth
destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A graphic height + 2 * internalHeight
highlightThickness Thickness Dimension A 2 (0 if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap

67



Athena Widget Set X11, Release 6.4

Name Class Type Notes  Default Value

internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean C False

justify Justity Justify XtJustifyCenter (center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

mappedWhenManaged MappedWhenManaged Boolean True

menuName MenuName String "menu"

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize Boolean True

screen Screen Screen R Parent’s Screen

sensitive Sensitive Boolean True

shapeStype ShapeStyle ShapeStyle Rectangle

translations Translations TranslationTable See below

width Width Dimension A graphic width + 2 * internalWidth

X Position Position 0

y Position Position 0

accelerators A list of event to action bindings to be executed by this widget, even
though the event occurred in another widget. (See the X Toolkit Intrin-
sics — C Language Interface for details).

ancestorSensitive The sensitivity state of the ancestors of this widget. A widget is insensi-
tive if either it or any of its ancestors is insensitive. This resource should
not be changed with XtSetValues, although it may be queried.

background A pixel value which indexes the widget’s colormap to derive the back-
ground color of the widget’s window.

backgroundPixmap The background pixmap of this widget’s window. If this resource is set
to anything other than XtUnspecifiedPixmap, the pixmap specified will
be used instead of the background color.

bitmap A bitmap to display instead of the label. The default size of the widget
will be just large enough to contain the bitmap and the widget’s internal
width and height. The resource converter for this resource constructs
bitmaps from the contents of files. (See Converting Bitmaps for
details.) If this bitmap is one bit deep then the 1°s will be rendered in the
foreground color, and the 0’s in the background color. If bitmap has a
depth greater than one, it is copied directly into the window.

borderColor A pixel value which indexes the widget’s colormap to derive the border
color of the widget’s window.

borderPixmap The border pixmap of this widget’s window. If this resource is set to
anything other than XtUnspecifiedPixmap, the pixmap specified will be
used instead of the border color.

borderWidth The width of this widget’s window border.

callback A list of routines to be called when the notify action is invoked.

colormap The colormap that this widget will use.

cornerRoundPercent ~ When a ShapeStyle of roundedRectangle is used, this resource controls
the radius of the rounded corner. The radius of the rounded corners is
specified as a percentage of the length of the shortest side of the widget.

cursor The image that will be displayed as the pointer cursor whenever it is in

this widget. The use of this resource is deprecated in favor of cursor-
Name.

68



Athena Widget Set

cursorName

depth
destroyCallback
font

fontSet

foreground

height
width

highlightThickness

insensitiveBorder

internalHeight
internal Width

international

justify

label

mappedWhenManaged

menuName

X11, Release 6.4

The name of the symbol to use to represent the pointer cursor. This
resource will override the cursor resource if both are specified. (See
24.1)

The depth of this widget’s window.
All functions on this list are called when this widget is destroyed.

The text font to use when displaying the label, when the international
resource is false.

The text font set to use when displaying the label, when the interna-
tional resource is true.

A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the widget’s window. This color is also used to render
all 1’s in a bitmap one plane deep.

The height and width of this widget in pixels.

The thickness of the rectangle that is used to highlight the internal border
of this widget, alerting the user that it is ready to be selected. The default
value is 2 pixels if the shapeStyle is rectangle, and 0 Pixels (no high-
lighting) otherwise.

This pixmap will be tiled into the widget’s border if the widget becomes
insensitive.

The minimum amount of space to leave between the graphic and the ver-
tical and horizontal edges of the window.

This is a boolean flag, only settable at widget creation time. A value of
false signals the widget to use pre-R6 internationalization (specifically,
the lack thereof), such as using fonts for displaying text, etc. A value of
true directs the widget to act in an internationalized manner, such as uti-
lizing font sets for displaying text, etc.

Specifies left, center, or right alignment of graphic within the widget.
This resource may be specified with the values XtJustifyLeft, XtJustify-
Center, or XtJustifyRight. A converter is registered for this resource
that will convert the following strings: left, right, and center. This
resource only has noticeable effect when the width of the widget is larger
than necessary to display the graphic. Note that when the graphic is a
multi-line label, the longest line will obey this justification while shorter
lines will be left-justified with the longest one.

Specifies the text string to be displayed in the widget’s window if no
bitmap is specified. The default is the name of this widget. Regardless
of the value of encoding or international, a single newline character (1
byte) will cause a line break.

If this resource is True, then the widget’s window will automatically be
mapped by the Toolkit when it is realized and managed.

The name of a popup shell to popup as a menu. The MenuButton will
search for this name using XtNameToWidget starting with itself as the
reference widget. If the search is unsuccessful the widget will continue
up the widget tree using each of its ancestors as the reference widget
passed to XtNameToWidget. If no widget of called menuName is
found by this algorithm, the widget will print a warning message and
give up. When the menu is found it will be popped up exclusive and

69



Athena Widget Set X11, Release 6.4

spring_loaded. The MenuButton widget does not copy the value of this
resource into newly allocated memory. The application programmer must
pass the resource value in nonvolatile memory.

pointerColor A pixel value which indexes the widget’s colormap to derive the fore-
ground color of the pointer symbol specified by the cursorName
resource.

pointerColorBackground A pixel value which indexes the widget’s colormap to derive the
background color of the pointer symbol specified by the cursor-
Name resource.

resize Specifies whether the widget should attempt to resize to its preferred
dimensions whenever its resources are modified with XtSetValues. This
attempt to resize may be denied by the parent of this widget. The parent
is always free to resize the widget regardless of the state of this resource.

screen The screen on which this widget is displayed. This is not a settable
resource.

sensitive Whether or not the toolkit should pass user events to this widget. The
widget will not get input events if either ancestorSensitive or sensitive is
False.

shapeStyle Nonrectangular widgets may be created using this resource. Nonrectan-

gular widgets are supported only on a server that supports the Shape
Extension. If nonrectangular widgets are specified for a server lacking
this extension, the shape is ignored and the widgets will be rectangular.
The following shapes are currently supported: XmuShapeRectangle,
XmuShapeQOval, XmuShapeEllipse, and XmuShapeRoundedRectan-
gle. A converter is registered for this resource that will convert the fol-
lowing strings: rectangle, oval, ellipse, and roundedRectangle.

translations The event bindings associated with this widget.
X
y The location of the upper left outside corner of this widget in its parent.

4.6.2. MenuButton Actions

The MenuButton widget supports the following actions:

. Switching the button between the foreground and background colors with set and unset
. Processing application callbacks with notify

. Switching the internal border between highlighted and unhighlighted states with highlight
and unhighlight

. Popping up a menu with PopupMenu
The following are the default translation bindings used by the MenuButton widget:

<EnterWindow>: highlight()
<LeaveWindow>: reset()
<BtnDown>: reset( ) PopupMenu(

4.6.3. MenuButton Actions
The full list of actions supported by MenuButton is:

highlight(condition)  Displays the internal highlight border in the color (foreground or back-
ground ) that contrasts with the interior color of the Command widget.
The conditions WhenUnset and Always are understood by this action

70



Athena Widget Set

unhighlight()

set()

unset()
reset()

notify()

PopupMenu( )

X11, Release 6.4

procedure. If no argument is passed, WhenUnset is assumed.

Displays the internal highlight border in the color (XtNforeground or
background ) that matches the interior color of the MenuButton widget.

Enters the set state, in which notify is possible. This action causes the
button to display its interior in the foreground color. The label or
bitmap is displayed in the background color.

Cancels the set state and displays the interior of the button in the back-
ground color. The label or bitmap is displayed in the foreground color.

Cancels any set or highlight and displays the interior of the button in the
background color, with the label displayed in the foreground color.

When the button is in the set state this action calls all functions in the
callback list named by the callback resource. The value of the call_data
argument in these callback functions is undefined.

Pops up the menu specified by the menuName resource.

The MenuButton widget does not place a server grab on itself. Instead, PopupMenu is registered
as a grab action. As a result, clients which popup menus without using XtMenuPopup or
MenuPopup or PopupMenu in translations will fail to have a grab active. They should make a
call to XtRegisterGrabAction on the appropriate action in the application initialization routine, or
use a different translation.

71



Athena Widget Set X11, Release 6.4

Chapter 5
Text Widgets

The Text widget provides a window that will allow an application to display and edit one or more
lines of text. Options are provided to allow the user to add Scrollbars to its window, search for a
specific string, and modify the text in the buffer.

The Text widget is made up of a number of pieces; it was modularized to ease customization.
The AsciiText widget class (actually not limited to ASCII but so named for compatibility) is be
general enough to most needs. If more flexibility, special features, or extra functionality is
needed, they can be added by implementing a new TextSource or TextSink, or by subclassing the
Text Widget (See Section 5.8 for customization details.)

The words insertion point are used in this chapter to refer to the text caret. This is the symbol
that is displayed between two characters in the file. The insertion point marks the location where
any new characters will be added to the file. To avoid confusion the pointer cursor will always be
referred to as the pointer.

The text widget supports three edit modes, controlling the types of modifications a user is allowed
to make:

. Append-only
. Editable
. Read-only

Read-only mode does not allow the user or the programmer to modify the text in the widget.
While the entire string may be reset in read-only mode with XtSetValues, it cannot be modified
via with XawTextReplace. Append-only and editable modes allow the text at the insertion point
to be modified. The only difference is that text may only be added to or removed from the end of
a buffer in append-only mode.

5.1. Text Widget for Users

The Text widget provides many of the common keyboard editing commands. These commands
allow users to move around and edit the buffer. If an illegal operation is attempted, (such as delet-
ing characters in a read-only text widget), the X server will beep.

5.1.1. Default Key Bindings
The default key bindings are patterned after those in the EMACS text editor:

Ctrl-a Beginning Of Line Meta-b Backward Word

Ctrl-b Backward Character Meta-f Forward Word

Ctrl-d Delete Next Character Meta-i Insert File

Ctrl-e End Of Line Meta-k Kill To End Of Paragraph
Ctrl-f Forward Character Meta-q Form Paragraph

Ctrl-g Multiply Reset Meta-v Previous Page

Ctrl-h Delete Previous Character Meta-y Insert Current Selection
Ctrl+j Newline And Indent Meta-z Scroll One Line Down
Ctrl-k Kill To End Of Line Meta-d Delete Next Word
Ctrl-1 Redraw Display Meta-D Kill Word

Ctrl-m Newline Meta-h Delete Previous Word
Ctrl-n Next Line Meta-H Backward Kill Word

72



Athena Widget Set X11, Release 6.4

Ctrl-o Newline And Backup Meta-< Beginning Of File
Ctrl-p Previous Line Meta-> End Of File

Ctrl-r Search/Replace Backward Meta-] Forward Paragraph
Ctrl-s Search/Replace Forward Meta-[ Backward Paragraph
Ctrl-t Transpose Characters

Ctrl-u Multiply by 4 Meta-Delete Delete Previous Word
Ctrl-v Next Page Meta-Shift Delete Kill Previous Word
Ctrl-w Kill Selection Meta-Backspace Delete Previous Word
Ctrl-y Unkill Meta-Shift Backspace Kill Previous Word
Ctrl-z Scroll One Line Up

Ctrl-\ Reconnect to input method

Kanji Reconnect to input method

In addition, the pointer may be used to cut and paste text:

Button 1 Down Start Selection

Button 1 Motion Adjust Selection

Button 1 Up End Selection (cut)

Button 2 Down Insert Current Selection (paste)
Button 3 Down Extend Current Selection
Button 3 Motion Adjust Selection

Button 3 Up End Selection (cut)

Since all of these key and pointer bindings are set through the translations and resource manager,
the user and the application programmer can modify them by changing the Text widget’s transla-
tions resource.

5.1.2. Search and Replace

The Text widget provides a search popup that can be used to search for a string within the current
Text widget. The popup can be activated by typing either Control-r or Control-s. If Control-s is
used the search will be forward in the file from the current location of the insertion point; if Con-
trol-r is used the search will be backward. The activated popup is placed under the pointer. It has
a number of buttons that allow both text searches and text replacements to be performed.

At the top of the search popup are two toggle buttons labeled backward and forward. One of
these buttons will always be highlighted; this is the direction in which the search will be per-
formed. The user can change the direction at any time by clicking on the appropriate button.

Directly under the buttons there are two text areas, one labeled Search for: and the other labeled
Replace with:. If this is a read-only Text widget the Replace with: field will be insensitive and no
replacements will be allowed. After each of these labels will be a text field. This field will allow
the user to enter a string to search for and the string to replace it with. Only one of these text
fields will have a window border around it; this is the active text field. Any key presses that occur
when the focus in in the search popup will be directed to the active text field. There are also a
few special key sequences:

Carriage Return: Execute the action, and pop down the search widget.
Tab: Execute the action, then move to the next field.
Shift Carriage Return: Execute the action, then move to the next field.
Control-q Tab: Enter a Tab into a text field.

Control-c: Pop down the search popup.

73



Athena Widget Set X11, Release 6.4

Using these special key sequences should allow simple searches without ever removing one’s
hands from the keyboard.

Near the bottom of the search popup is a row of buttons. These buttons allow the same actions to
to be performed as the key sequences, but the buttons will leave the popup active. This can be
quite useful if many searches are being performed, as the popup will be left on the display. Since
the search popup is a transient window, it may be picked up with the window manager and pulled
off to the side for use at a later time.

Search Search for the specified string.

Replace Replace the currently highlighted string with the string in the Replace with text
field, and move onto the next occurrence of the Search for text field. The func-
tionality is commonly referred to as query-replace.

Replace-All Replace all occurrences of the search string with the replace string from the
current insertion point position to the end (or beginning) of the file. There is
no key sequence to perform this action.

Cancel Remove the search popup from the screen.

Finally, when international resource is true, there may be a pre-edit buffer below the button row,
for composing input. Its presence is determined by the X locale in use and the VendorShell’s
preeditType resource.

The widget hierarchy for the search popup is show below, all widgets are listed by class and
instance name.

Text <name of Text widget>
TransientShell search
Form form

Label labell
Label label2
Toggle backwards
Toggle forwards
Label searchLabel
Text searchText
Label replaceLabel
Text replaceText
Command search
Command replaceOne
Command replaceAll
Command cancel

5.1.3. File Insertion

To insert a file into a text widget, type the key sequence Meta-i, which will activate the file insert
popup. This popup will appear under the pointer, and any text typed while the focus is in this
popup will be redirected to the text field used for the filename. When the desired filename has
been entered, click on Insert File, or type Carriage Return. The named file will then be inserted
in the text widget beginning at the insertion point position. If an error occurs when opening the
file, an error message will be printed, prompting the user to enter the filename again. The file
insert may be aborted by clicking on Cancel. If Meta-i is typed at a text widget that is read-only,
it will beep, as no file insertion is allowed.

The widget hierarchy for the file insert popup is show below; all widgets are listed by class and
instance name.

Text <name of Text widget>

TransientShell insertFile
Form form

74



Athena Widget Set X11, Release 6.4

Label label

Text text
Command insert
Command cancel

5.1.4. Text Selections for Users

The text widgets have a text selection mechanism that allows the user to copy pieces of the text
into the PRIMARY selection, and paste into the text widget some text that another application
(or text widget) has put in the PRIMARY selection.

One method of selecting text is to press pointer button 1 on the beginning of the text to be
selected, drag the pointer until all of the desired text is highlighted, and then release the button to
activate the selection. Another method is to click pointer button 1 at one end of the text to be
selected, then click pointer button 3 at the other end.

To modify a currently active selection, press pointer button 3 near either the end of the selection
that you want to adjust. This end of the selection may be moved while holding down pointer but-
ton 3. When the proper area has been highlighted release the pointer button to activate the selec-
tion.

The selected text may now be pasted into another application, and will remain active until some
other client makes a selection. To paste text that some other application has put into the PRI-
MARY selection use pointer button 2. First place the insertion point where you would like the
text to be inserted, then click and release pointer button 2.

Rapidly clicking pointer button 1 the following number of times will adjust the selection as
described.

Two Select the word under the pointer. A word boundary is defined by the Text wid-
get to be a Space, Tab, or Carriage Return.

Three Select the line under the pointer.

Four Select the paragraph under the pointer. A paragraph boundary is defined by the
text widget as two Carriage Returns in a row with only Spaces or Tabs between
them.

Five Select the entire text buffer.

To unset the text selection, click pointer button 1 without moving it.

5.2. Text Widget Actions

All editing functions are performed by translation manager actions that may be specified through
the translations resource in the Text widget.

Insert Point Movement Delete
forward-character delete-next-character
backward-character delete-previous-character
forward-word delete-next-word
backward-word delete-previous-word
forward-paragraph delete-selection

backward-paragraph
beginning-of-line

end-of-line Selection

next-line select-word
previous-line select-all
next-page select-start
previous-page select-adjust

75



Athena Widget Set

beginning-of-file
end-of-file
scroll-one-line-up
scroll-one-line-down

Miscellaneous
redraw-display
insert-file
insert-char
insert-string
display-caret
focus-in
focus-in
search
multiply
form-paragraph
transpose-characters
no-op
XawWMProtocols
reconnect-im

X11, Release 6.4

select-end
extend-start
extend-adjust
extend-end
insert-selection

New Line
newline-and-indent
newline-and-backup
newline

Kill
kill-word
backward-kill-word
kill-selection
kill-to-end-of-line
kill-paragraph
kill-to-end-of-paragraph

Most of the actions take no arguments, and unless otherwise noted you may assume this to be the

case.

5.2.1. Cursor Movement Actions

forward-character( )
backward-character( )

forward-word( )
backward-word()

forward-paragraph()
backward-paragraph()

beginning-of-line( )
end-of-line()

next-line( )
previous-line()

These actions move the insert point forward or backward one
character in the buffer. If the insert point is at the end or begin-
ning of a line this action will move the insert point to the next (or
previous) line.

These actions move the insert point to the next or previous word
boundary. A word boundary is defined as a Space, Tab or Car-
riage Return.

These actions move the insert point to the next or previous para-
graph boundary. A paragraph boundary is defined as two Car-
riage Returns in a row with only Spaces or Tabs between them.

These actions move to the beginning or end of the current line.
If the insert point is already at the end or beginning of the line
then no action is taken.

These actions move the insert point up or down one line. If the
insert point is currently N characters from the beginning of the
line then it will be N characters from the beginning of the next or
previous line. If N is past the end of the line, the insert point is
placed at the end of the line.

76



Athena Widget Set

next-page()
previous-page( )

beginning-of-file()
end-of-file()

scroll-one-line-up()
scroll-one-line-down( )

5.2.2. Delete Actions

delete-next-character( )
delete-previous-character( )

delete-next-word()
delete-previous-word( )

delete-selection( )

5.2.3. Selection Actions

select-word()

select-all( )
select-start( )

select-adjust()

select-end(namel ,name,...])

extend-start( )

X11, Release 6.4

These actions move the insert point up or down one page in the
file. One page is defined as the current height of the text widget.
The insert point is always placed at the first character of the top
line by this action.

These actions place the insert point at the beginning or end of the
current text buffer. The text widget is then scrolled the minimum
amount necessary to make the new insert point location visible.

These actions scroll the current text field up or down by one line.
They do not move the insert point. Other than the scrollbars this
is the only way that the insert point may be moved off of the visi-
ble text area. The widget will be scrolled so that the insert point
is back on the screen as soon as some other action is executed.

These actions remove the character immediately before or after
the insert point. If a Carriage Return is removed then the next
line is appended to the end of the current line.

These actions remove all characters between the insert point
location and the next word boundary. A word boundary is
defined as a Space, Tab or Carriage Return.

This action removes all characters in the current selection. The
selection can be set with the selection actions.

This action selects the word in which the insert point is currently
located. If the insert point is between words then it will select
the previous word.

This action selects the entire text buffer.

This action sets the insert point to the current pointer location (if
triggered by a button event) or text cursor location (if triggered
by a key event). It will then begin a selection at this location. If
many of these selection actions occur quickly in succession then
the selection count mechanism will be invoked (see the section
titled Text Selections for Application Programmers for
details).

This action allows a selection started with the select-start action
to be modified, as described above.

This action ends a text selection that began with the select-start
action, and asserts ownership of the selection or selections speci-
fied. A name can be a selection (e.g., PRIMARY) or a cut
buffer (e.g., CUT_BUFFERO0). Note that case is important. If
no names are speci