
Interactive Image Display
for the X Window System

Written by John Bradley
Version 3.10a

Copyright 1989, 1994, John Bradley

i

Thank you for acquiring a copy of xv, a pretty nifty X program. I hope you enjoy using it, as I’ve enjoyed writing it.

The latest version of xv (or at least a pointer to it) is available via anonymous ftp on ftp.cis.upenn.edu , in the
directory pub/xv. If you’re not sure if you have the latest version, or you are missing the source or documentation for
xv, PLEASE pick up the latest version of the xv distribution. Do not send mail unless absolutely necessary (i.e., you
don’t have ftp capability).

xv Licensing Information

xv is shareware for personal use only.

You may use xv for your own amusement, and if you find it nifty, useful, generally cool, or of some value to you, your
registration fee would be greatly appreciated. $25 is the standard registration fee, though of course, larger amounts
are quite welcome. Folks who donate $40 or more can receive a printed, bound copy of the xv manual for no extra
charge. If you want one, just ask. Be sure to specify the version of xv that you are using!

Commercial, government, and institutional users must register their copies of xv.

This does not mean that you are required to register xv just because you play with it on the workstation in your office.
This falls under the heading of ‘personal use’. If you are a systems administrator, you can put xv up in a public
directory for your users’ amusement. Again, ‘personal use’, albeit plural.

On the other hand, if you use xv in the course of doing your work, whatever your ‘work’ may happen to be, you must
register your copy of xv. (Note: If you are a student, and you use xv to do classwork or research, you should get your
professor/teacher/advisor to purchase an appropriate number of copies.)

xv licenses are $25 each. You should purchase one license per workstation, or one per xv user, whichever is the
smaller number. xv is not sold on a ‘number of concurrent users’ basis. If xv was some $1000 program, yes, that
would be a reasonable request, but at $25, it’s not. Also, given that xv is completely unlocked, there is no way to
enforce any ‘number of concurrent users’ limits, so it isn’t sold that way.

Printed and bound copies of the 120-ish page xv manual are available for $15 each. Note that manuals are only sold
with, at minimum, an equal number of licenses. (e.g. if you purchase 5 licenses, you can also purchase up to 5
copies of the manual)

The source code to the program can be had (as a compressed ‘tar’ file split over a couple 3.5” MS-DOS formatted
floppies) for $15, for those who don’t have ftp capabilities.

Orders outside the US and Canada must add an additional $5 per manual ordered to cover the additional shipping
charges.

Checks, money orders, and purchase orders are accepted. Credit cards are not. All forms of payment must be
payable in US Funds. Checks must be payable through a US bank (or a US branch of a non-US bank). Purchase
orders for less than $50, while still accepted, are not encouraged.

All payments should be payable to ‘John Bradley’, and mailed to:

John Bradley
1053 Floyd Terrace
Bryn Mawr, PA 19010
USA

Site Licenses

If you are planning to purchase 10 or more licenses, site licenses are available, at a substantial discount. Site licenses
let you run xv on any and all computing equipment at the site, for any purpose whatsoever. The site license covers
the current version of xv, and any versions released within one year of the licensing date. You are also allowed to
duplicate and distribute an unlimited number of copies of the xv manual, but only for use within the site. Covered
versions of the software may be run in perpetuity.

Also, it should be noted that a ‘site’ can be defined as anything you’d like. It can be a physical location (a room,
building, location, etc.), an organization (a workgroup, department, division, etc.) or any other logical grouping (“the
seventeen technical writers scattered about our company”, etc.).

The site license cost will be based on your estimate of the number of xv users or workstations at your site, whichever
is the smaller number.

ii

If you are interested in obtaining a site license, please contact the author via electronic mail or FAX (see below for
details). Send information regarding your site (the name or definition of the ‘site’, a physical address, a fax number,
and an estimate of the number of users or workstations), and we’ll get a site license out to you for your examination.

Copyright Notice

xv is Copyright 1989, 1994 by John Bradley

Permission to copy and distribute xv in its entirety, for non-commercial purposes, is hereby granted without fee,
provided that this license information and copyright notice appear in all copies.

If you redistribute xv, the entire contents of this distribution must be distributed, including the README, and
INSTALL files, the sources, and the complete contents of the ‘docs’ directory.

Note that distributing xv ‘bundled’ with any commercial product is considered to be a ‘commercial purpose’.

Also note that any copies of xv that are distributed must be built and/or configured to be in their ‘unregistered copy’
mode, so that it is made obvious to the user that xv is shareware, and that they should consider registering, or at least
reading this information.

The software may be modified for your own purposes, but modified versions may not be distributed without prior
consent of the author.

This software is provided ‘as-is’, without any express or implied warranty. In no event will the author be held liable
for any damages arising from the use of this software.

If you would like to do something with xv that this copyright prohibits (such as distributing it with a commercial
product, using portions of the source in some other program, distributing registered copies, etc.), please contact the
author (preferably via email). Arrangements can probably be worked out.

The author may be contacted via:

US Mail: John Bradley
1053 Floyd Terrace
Bryn Mawr, PA 19010

FAX: (610) 520-2042

Electronic Mail regarding xv should be sent to one of these three addresses:

xv@devo.dccs.upenn.edu - general xv questions
xvbiz@devo.dccs.upenn.edu - all xv licensing questions
xvtech@devo.dccs.upenn.edu - bug reports, technical questions

Please do not send electronic mail directly to the author, as he gets more than enough as it is.

iii

Table of Contents

TABLE OF CONTENTS ...iii

SECTION 0: RELEASE NOTES... 1

SECTION 1: OVERVIEW ... 2

SECTION 2: THE IMAGE WINDOW ... 3

SECTION 2.1: DISPLAYING PIXEL VALUES... 3
SECTION 2.2: SELECTION RECTANGLE.. 4
SECTION 2.3: CROPPING.. 5
SECTION 2.4: ZOOMING... 5
SECTION 2.5: MULTI-PAGE DOCUMENTS.. 6
SECTION 2.6: IMAGE EDITING .. 6

Section 2.6.1: Pixel Editing and Line Drawing ... 6
Section 2.6.2: Pixel Smudging .. 6

SECTION 3: THE CONTROL WINDOW ... 7

SECTION 3.1: RESIZING COMMANDS... 7
SECTION 3.2: ROTATE/FLIP COMMANDS... 10
SECTION 3.3: THE DISPLAY MENU ... 10

Section 3.3.1: Dithering Commands ... 11
Section 3.3.2: Color Allocation Commands .. 11

SECTION 3.4: ROOT DISPLAY MODES... 12
SECTION 3.5: THE 24/8 BIT MENU... 14
SECTION 3.6: IMAGE ALGORITHMS... 16
SECTION 3.7: CROPPING COMMANDS ... 19
SECTION 3.8: IMAGE CUT AND PASTE COMMANDS .. 20
SECTION 3.9: THE PAD COMMAND ... 21

Section 3.9.1: Pad Methods.. 21
Section 3.9.2: Image Size Dials .. 22
Section 3.9.3: Opaque-ness .. 22

SECTION 3.10: TEXT ANNOTATION .. 23
SECTION 3.11: THE GRAB COMMAND... 24
SECTION 3.12: WORKING WITH MULTIPLE FILES.. 25

Section 3.12.1: Operating a List Window.. 26
Section 3.12.2: The File Commands ... 26
Section 3.12.3: Image Reloading .. 28

SECTION 3.13: THE WINDOWS MENU... 29
SECTION 3.14: OTHER COMMANDS .. 30

SECTION 4: THE INFO WINDOW ... 31

SECTION 4.1: OVERVIEW ... 31
SECTION 4.2: THE FIELDS.. 31
SECTION 4.3: STATUS LINES.. 32

SECTION 5: THE COLOR EDITOR ... 33

SECTION 5.1: OVERVIEW ... 33
SECTION 5.2: THE COLORMAP EDITING TOOL... 34

Section 5.2.1: Using the Dial Controls ... 35

iv

Section 5.2.2: Colormap Editing Commands .. 35
SECTION 5.3: THE HSV MODIFICATION TOOLS.. 36

Section 5.3.1: Hue Remapping Controls ... 37
Section 5.3.2: The White Remapping Control ... 38
Section 5.3.3: The Saturation Control .. 39
Section 5.3.4: The Intensity Graph ... 39

SECTION 5.4: THE RGB MODIFICATION TOOL.. 41
SECTION 5.5: THE COLOR EDITOR CONTROLS.. 42

SECTION 6: THE VISUAL SCHNAUZER .. 45

SECTION 6.1: WHAT’S A VISUAL SCHNAUZER? ... 45
SECTION 6.2: OPERATING THE SCHNAUZER .. 45

Section 6.2.1: Generating Image Icons ... 46
Section 6.2.2: Changing Directories... 46
Section 6.2.3: Scrolling the Schnauzer.. 46
Section 6.2.4: Selecting Files ... 47
Section 6.2.5: File Management ... 47

SECTION 6.3: THE COMMANDS .. 48

SECTION 7: THE TEXTVIEW WINDOW .. 51

SECTION 7.1: OVERVIEW ... 51
Section 7.1.2: ASCII Mode ... 51
Section 7.1.3: Hex Mode .. 52

SECTION 7.2: THE COMMENT WINDOW.. 52

SECTION 8: THE LOAD WINDOW .. 54

SECTION 9: THE SAVE WINDOW .. 56

SECTION 9.1: COLOR CHOICES... 57
SECTION 9.2: FORMAT NOTES.. 58

SECTION 10: THE POSTSCRIPT WINDOW ... 63

SECTION 11: EXTERNAL PROGRAMS .. 66

SECTION 11.1: BGGEN... 66
SECTION 11.2: XCMAP ... 67
SECTION 11.3: XVPICTOPPM... 67
SECTION 11.4: CJPEG AND DJPEG.. 67
SECTION 11.5: VDCOMP... 67

SECTION 12: MODIFYING XV BEHAVIOR ... 68

SECTION 12.1: COMMAND LINE OPTIONS OVERVIEW .. 68
SECTION 12.2: GENERAL OPTIONS... 68
SECTION 12.3: IMAGE SIZING OPTIONS... 69
SECTION 12.4: COLOR ALLOCATION OPTIONS.. 70
SECTION 12.5: 8/24-BIT OPTIONS.. 71
SECTION 12.6: ROOT WINDOW OPTIONS.. 72
SECTION 12.7: WINDOW OPTIONS.. 74
SECTION 12.8: IMAGE MANIPULATION OPTIONS... 75
SECTION 12.9: MISCELLANEOUS OPTIONS.. 76
SECTION 12.10: COLOR EDITOR RESOURCES.. 82

Section 12.10.1: Huemap Resources... 83
Section 12.10.2: Whtmap Resources ... 83
Section 12.10.3: Satval Resource.. 84

v

Section 12.10.4: Graf Resources... 84
Section 12.10.5: Other Resources... 84

SECTION 12.11: WINDOW CLASSES.. 85

SECTION 13: CREDITS ... 86

Section 13.1: The Hall of Fame .. 87
SECTION 13.2: THE BETA TESTERS.. 89
SECTION 13.3: MISCELLANEOUS RAMBLINGS.. 89

APPENDIX A: COMMAND LINE OPTIONS ... 90

APPENDIX B: X RESOURCES.. 93

SECTION B.1: SIMPLE RESOURCES.. 93
SECTION B.2: COLOR EDITOR RESOURCES:... 95

Section B.3: Pad Command Resources ... 96

APPENDIX C: MOUSE AND KEYBOARD USAGE ... 97

SECTION C.1: MOUSE USAGE IN THE IMAGE WINDOW... 97
Section C.1.1 Mouse Usage in Selection Rectangle .. 97

SECTION C.2: NORMAL KEYBOARD EQUIVALENTS.. 97
Section C.2.1: Image Window Keys .. 99

SECTION C.3: VISUAL SCHNAUZER KEYS.. 99

APPENDIX D: RGB & HSV COLORSPACES .. 100

APPENDIX E: COLOR ALLOCATION IN XV ... 102

SECTION E.1: THE PROBLEM WITH PSEUDOCOLOR DISPLAYS.. 102
SECTION E.2: XV’S DEFAULT COLOR ALLOCATION ALGORITHM .. 102
SECTION E.3: ‘PERFECT’ COLOR ALLOCATION ... 103
SECTION E.4: ALLOCATING READ-WRITE COLORS... 103

APPENDIX F: THE DIVERSITY ALGORITHM .. 105

SECTION F.1: PICKING THE MOST ‘I MPORTANT’ COLORS.. 105
SECTION F.2: THE ORIGINAL DIVERSITY ALGORITHM... 106
SECTION F.3: THE MODIFIED DIVERSITY ALGORITHM... 106

APPENDIX G: ADDING OTHER IMAGE FORMATS TO XV.. 108

SECTION G.1: WRITING CODE FOR READING A NEW FILE FORMAT .. 108
Section G.1.1: Error Handling ... 111
Section G.1.2: Hooking it up to xv.. 111

SECTION G.2: ADDING CODE FOR WRITING A NEW FILE FORMAT.. 112
Section G.2.1: Writing Complex Formats ... 114

APPENDIX H: ADDING ALGORITHMS TO XV ... 116

SECTION H.1: ADDING AN ALGORITHM .. 116

Section 0: Release Notes 1

Version 3.10a December 29, 1994

Section 0: Release Notes

The following is a short synopsis of the major features that have been added to xv since Version 3.00. See
the CHANGELOG file in the xv source directory for complete details, and up-to-the-minute information.

• Image cut and paste capabilities.

• Minimal image editing (line drawing, text annotation, and smudging).

• Additional choices in the Algorithms menu. Also, algorithms now operate on the selected
region of the image, if any.

• Image padding.

• Added a Print command.

• Additional file formats: XPM files and 24-bit Targa files can both be read and written, as can a
variety of the Amiga ILBM formats (commonly called ‘IFF’ files). xv can read (but not write)
the XWD (X Window Dump) format. Also, xv can now read 16-bit greyscale ‘pgmraw’ files,
however, the low-order 8-bits will be discarded.

• Much improved Grab command. It is now possible to grab pull-down menus in other programs.

• Much improved selection rectangle handling.

• Image ‘panning’ when zoomed in.

• Improved 24-to-8-bit algorithm.

• Filename completion in the load and save windows.

• Changed command-line handling. All the ‘flag’ arguments (‘-perfect’, ‘-smooth’, etc.) are
forced ‘on’ if you start them with a ‘-‘, and are forced ‘off’ if you start them with a ‘+’. (They
used to toggle the state, which could lead to unpredictable results.)

• Support for ‘gzip’ed files.

• Sniffs out the ‘best’ visual type to use, rather than simply using the default visual.

• New versions of Sam Leffler’s libtiff TIFF i/o library (version 3.3) and the Independent JPEG
Group’s JPEG i/o library (version 5a) have been merged in.

• When viewing 24-bit images (in 24-bit mode) on an 8-bit display, xv now uses a 4*8*4 standard
RGB colormap, rather than the 6*6*6 colormap it used in 3.00. This colormap uses fewer colors,
and produces better looking results, on average.

Of course, there have been plenty of bug fixes and minor enhancements. It would probably be safe to say
that there’s some exciting new bugs, too!

Section 1: Overview 2

Version 3.10a December 29, 1994

Section 1: Overview

xv is an interactive image manipulation program for the X Window System. It can operate on images in
the GIF, JPEG, TIFF, PBM, PGM, PPM, XPM, X11 bitmap, Sun Rasterfile, Targa, RLE, RGB, BMP,
PCX, FITS, and PM formats on all known types of X displays. It can generate PostScript files, and if you
have ghostscript1 (version 2.6 or above) installed on your machine, it can also display them.

xv lets you do a large number of things (many of them actually useful), including, but not limited to, the
following:

• display an image in a window on the screen

• display an image on the root window, in a variety of styles

• grab any rectangular portion of the screen and turn it into an image

• arbitrarily stretch, compress, rotate or flip the image

• crop or pad images

• view files as ASCII text or hexadecimal data

• magnify any portion of the image by any amount, up to the size of the screen

• determine pixel values and x,y coordinates in the image

• adjust image brightness and contrast with a gamma correction function

• apply different gamma functions to the Red, Green, and Blue color components, to correct for
non-linear color response

• adjust global image saturation

• perform global hue remapping

• perform histogram equalization

• run a number of image-processing algorithms on any rectangular portion of the image

• edit an image’s colormap

• reduce the number of colors in an image

• dither in color and b/w

• crop off solid borders automatically

• convert image formats

Oddly enough, I’m still having a horrible time tracking down some minor bug in the Automatic
Checkbook Balancing Module, and once again it fails to make it into the official xv distribution.

1 The ghostscript distribution is available via anonymous ftp from prep.ai.mit.edu .

Section 2: The Image Window 3

Version 3.10a December 29, 1994

Section 2: The Image Window

Note: unless explicitly stated otherwise, the term click means “click with the Left mouse button.”

Start the program up by typing ‘xv ’. After a short delay, a window will appear with the default image
(the xv logo, credits and revision date) displayed in it. If you change the size of the window (using
whatever method your window manager provides), the image will be automatically stretched to fit the
window.

Section 2.1: Displaying Pixel Values

Clicking (and optionally dragging) the Middle mouse button inside this window will display pixel
information in the following format:

196, 137 = 191,121,209 #bf79d1 (287 42 81 HSV) [0, 0]

The first pair of numbers (196,137) are the x and y positions of the cursor, in image coordinates. These
numbers remain the same regardless of any image resizing, or cropping; a 320x200 image remains a
320x200 image, regardless of what size it is displayed on the screen.

The first triplet of numbers (191,121,209) are the RGB values of the selected pixel. The components will
have integer values in the range 0-255. The values displayed are prior to any HSV/RGB modification, but
after any colormap changes. See “Section 5: The Color Editor” for details.

The next item is a six-digit value expressing the RGB values of the selected pixel in hex, in the #rrggbb
format. This is the same format used to specify colors to other X programs, which may be useful.

The second triplet of numbers (287 42 81) are the HSV values of the selected pixel. The first component
will have integer values in the range 0-359, and the second and third components will have integer values
in the range 0-100. The values displayed are prior to any HSV/RGB modification, but after any colormap
changes. See “Section 5: The Color Editor” for details. Also, see “Appendix D: RGB & HSV
Colorspaces” for more information about what these numbers mean.

Finally, the last pair of numbers is the distance (dx, dy) between the current mouse position and where the
mouse was originally clicked.

Section 2: The Image Window 4

Version 3.10a December 29, 1994

Note: If you actually want to measure some pixels, it will probably help to zoom in on a the relevant
portion of the image, to the point that you can see the individual pixels. See “Section 2.4: Zooming”
below.

Note: This also sets the ‘current color’ value used by various painting tools. (See “Section 2.6: Image
Editing”.)

This string is automatically copied to your X server’s cut buffer whenever you measure pixel values. This
lets you easily feed this information to another program, useful if you’re doing manual feature extraction,
or something. Try it: measure a pixel’s value, and then go click your Middle mouse button in an xterm
window.

Section 2.2: Selection Rectangle

Bring up the xv controls window by pressing the ? key or clicking the Right mouse button inside the
image window.

Clicking and dragging the Left button of the mouse inside the image window will allow you to draw a
selection rectangle on the image. If you’re unhappy with the one you’ve drawn, simply click the Left
button and draw another. If you’d like the rectangle to go away altogether, click the Left button and
release it without moving the mouse.

Double-clicking the Left button inside the image window will create a selection rectangle the size of the
currently displayed area of the image, or remove the previous selection as appropriate.

Once a selection rectangle has been drawn, it can be fine-tuned by clicking and dragging any of the
handles that appear on its edge. If you press the <Shift> key while dragging a handle, the selection
rectangle is kept square. If you press the <Ctrl > key while dragging a handle, the selection rectangle
maintains the same aspect ratio it originally had.

You can move the selection rectangle by Left-clicking inside it and dragging it around. Pressing the
<Shift> key while doing so will constrain the motion to the horizontal and vertical axes.

You can determine how large the selection rectangle is (in image coordinates) by bringing up the xv info
window. Do this selecting Image Info from the Windows menu xv controls window or by pressing the i
key inside any open xv window.

The xv info window will display, among other things, the current size and position of the selection
rectangle in terms of image coordinates. For example, if it says:

114x77 rectangle starting at 119,58

it means that the current selection rectangle is 114 image pixels wide, 77 image pixels high, and that its
top-left corner is located 119 image pixels in from the left edge of the image, and 58 image pixels in from
the top edge. These values will be updated as you drag the cropping rectangle around.

If you want to set the size or position of the selection rectangle precisely, you can use the arrow keys on
your keyboard. First, make the xv info window visible as described above. Second, use the mouse to draw
a rough approximation of the selection rectangle that you want. You can now use the arrow keys to move
the selection rectangle around the image. Once you’ve gotten the top and left sides of the selection
rectangle precisely where you want them, you can move the bottom-right corner of the selection rectangle
by holding the <shift> key down while using the arrow keys. Pressing the up arrow will make the
rectangle shorter, and pressing the down arrow will make the rectangle taller.

Section 2: The Image Window 5

Version 3.10a December 29, 1994

Section 2.3: Cropping

Once you have a selection rectangle that you can live with, you can proceed with the actual cropping
operation. Click the Crop button in the xv controls window, or press the c key in any open xv window.
The image window will shrink to show only portions of the image that were inside the cropping rectangle.

Note: if you are running a window manager such as mwm, which decorates windows with a title bar,
resizing regions, and such, it is quite possible that the aspect ratio of the cropped image will get screwed
up. This is because certain window managers enforce a minimum window size. If you try to crop to a
rectangle that is too small, the window manager will create the smallest window it can, and the image will
be stretched to fit this window. If this happens, you can press the Aspect button in the xv controls
window, or press the a key in any open xv window. This will expand the image so that it will once again
have the correct aspect ratio. (Also, see the ‘-nodecor ’ option, in “Section 12.9: Miscellaneous
Options”.)

You can crop a cropped image by repeating the same steps (drawing a new selection rectangle and issuing
the Crop command), ad infinitum.

You can return to the original, uncropped image by using the UnCrop command. Simply click the
UnCrop button or press the u key in any open xv window. Note that using the UnCrop command will
turn off image smoothing (the Smooth command), due to the potentially long time it can take to generate
a large, smoothed image.

Note that if you try to make the selection rectangle too small in either width or height (under 5 screen
pixels), it’ll just turn itself off. If you want to crop a very small portion of an image, you’ll probably have
to do it in two passes. First, crop to a smallish rectangle, expand that image, then crop again.

You can also fine-crop the image by pressing the <Ctrl> key and one of the arrow keys. This will crop off
one pixel from the edge of the image, based on the arrow key pressed. The Up key moves the bottom edge
up one pixel, the Down key moves the top edge down one pixel, and so on.

Section 2.4: Zooming

ctrl +
You can Zoom In by a factor of two (or four, or eight, etc.) on any rectangular
region of the image by holding down the <Ctrl > key on your keyboard and
clicking the Left mouse button in the image window. A rectangle will appear,
centered around the cursor position, showing you what portion of the image
will be expanded. Move the rectangle as you see fit, release the mouse button,
and the region inside the rectangle will be redrawn at twice its previous size.
The image window should remain the same size. You can repeat this operation
to zoom in by a factor of four, or eight, or whatever, as many times as you wish.

ctrl +
While zoomed-in, you can Pan the image around by holding down the <Ctrl >
key, clicking the Middle mouse button in the image window, and dragging it
around. A rectangle will appear around the mouse, indicating where the
currently-displayed portion of the image will be moved to.

ctrl +
You can Zoom Out by a factor of two (if possible) by holding down the <Ctrl>
key and clicking the Right mouse button inside the image window. You can
not zoom out beyond the point where the entire image fills the window.

Section 2: The Image Window 6

Version 3.10a December 29, 1994

Section 2.5: Multi-Page Documents

xv now has the ability to display multi-page image files, though currently this is only implemented for
PostScript files (using the ghostscript interpreter). If you are viewing a multi-page document, a “page n of
m” string will be added to the xv image window’s title bar.

You can walk through the document by pressing the <PageUp> and <PageDown> keys on your keyboard
(they may be labeled ‘Prev’ and ‘Next’ instead) while the keyboard focus is on the xv image window.
Pressing <shift-Up> and <shift-Down> may also work.

You can also jump directly to any given page by typing ‘p’ into the xv image window. This will pop up a
dialog window which will ask you what page you’d like to go to.

Section 2.6: Image Editing

xv now features a number of rudimentary image-editing tools. While it isn’t about to compete with
Adobe’s PhotoShop anytime soon, you may still find what it does to be of some use. You now have the
ability to do pixel-editing, freehand ‘scribbling’, line drawing, and pixel-level ‘smudging’. Also, xv now
supports cut, paste, copy, and clear of rectangular selections, as described in “Section 3.8: Image Cut and
Paste Commands”. Also, xv now has a ‘text annotation’ tool, described in “Section 3.10: Text
Annotation”.

The major weakness: the various drawing tools listed above can only draw in colors that already exist in
the image. At this time, these tools (and xv) are primarily focused on the ‘image editing’ job, rather than
on the ‘arbitrary paint program’ job. Needless to say, there’s still a way to paint in whatever color you’d
like. It’s just a matter of getting the desired color(s) into the picture. The best way is probably to use the
Pad command (see “Section 3.9: The Pad Command”).

Section 2.6.1: Pixel Editing and Line Drawing

All of the following drawing commands use the concept of the ‘current color’. The current color is set by
using the Middle mouse button in the image window to ‘pick up’ the desired color.

You can edit individual pixels by doing a shift-middle-click with the mouse. (Hold a <Shift> key, and
Middle-click somewhere in the image window.) The selected pixel will change to the desired color. It
will probably help to zoom in on the relevant section of the image first. Anyway, if you drag the mouse
around, you will be able to draw arbitrary ‘scribbles’ all over the image. This probably isn’t desirable, so
be careful!

You can also draw straight lines by holding down the <Ctrl > key along with the shift-middle
combination.

Section 2.6.2: Pixel Smudging

You can ‘smudge’ specific areas of the image by doing a shift-right-click with the mouse, in the image
window. The clicked-on pixel will be replaced with the average color of the 9 pixels in the 3x3 square
centered on said pixel. This can be used to manual edit out ‘salt and pepper’ noise. It can also be used to
soften edges. As with the pixel editing tool, you can drag the ‘smudger’ around.

Note: This only works in ‘24-bit’ mode. If you are viewing an 8-bit image, it will be automatically
converted up to a 24-bit version of itself.

Note: While this tool is similar to the Blur and DeSpeckle algorithms, those algorithms operate on every
pixel in a rectangular region, whereas this tool operates only on those pixels that you click or drag on.

Section 3: The Control Window 7

Version 3.10a December 29, 1994

Section 3: The Control Window

The xv controls window is the central point of control for the program, which just goes to show how
appropriately it was named. It contains controls to resize the current image, flip and rotate it, load and
save different files, and bring up the other xv windows. It can be brought up by clicking the Right mouse
button in the image window, or by pressing the ? key inside any open xv window. Doing either of these
things while the xv controls window is visible will hide it.

All of the following commands may be executed by either clicking the appropriate command button, or
typing the keyboard equivalent (where given) into any open xv window.

Section 3.1: Resizing Commands

The resizing commands have all been moved to the Image Size menu. Note
that none of the ‘resizing’ commands modify the image in any way. They only
affect how the image is displayed. The image remains at its original size. This
allows you to arbitrarily stretch and compact the image without compounding
error caused by earlier resizing. In each case, the displayed image is
recomputed from the original internal image.

Note: The keyboard equivalents for each command are listed on the right side
of the menu. These commands may be entered in the xv image window, the xv
controls window, the xv info window, and the xv color editor window. They
may not be entered in the xv visual schnauzer windows, the xv load window, or
the xv save window. The same goes for all other commands listed in the xv
controls window.

Section 3: The Control Window 8

Version 3.10a December 29, 1994

Attempts to return the image to its normal size, where one image pixel maps to
one screen pixel. For example, if the image (or the current cropped portion of
the image) has a size of 320x200, this command will attempt to make the
image window 320 screen pixels wide by 200 screen pixels high.

This command may fail in two cases. If you’re running a window manager
(such as mwm) that enforces a minimum window size, and the ‘normal’ size is
too small, the image may get distorted. See the note in “Section 2.3:
Cropping” for more information.

Also, if the image is larger than the size of your screen, it will be shrunk
(preserving the aspect ratio) until it fits on the screen. For example, if you try
to display a 1400x900 image on a 1280x1024 screen, the Normal command
will display a 1280x823 image. (1400/900 = 1280/823)

This command will make the displayed image the same size as the screen. If
you are running a window manager that puts up a title bar, you’ll find that the
title bar is now off the top of the screen. To get the title bar back, simply shrink
the image to anything smaller than the size of the screen. The window will be
moved so that the title bar is once again visible.

Makes the image as large as possible, while preserving the aspect ratio. This
avoids the generally unwanted image distortion that Max Size is capable of
generating. For example, if you have a 320x200 image, and an 1280x1024
screen, doing the Maxpect command will result in an image that is 1280x800.
Max Size, on the other hand, would’ve generated an image of size 1280x1024,
which would be appear ‘stretched’ vertically.

Doubles the current size of the image, with the constraint that neither axis is
allowed to be larger than the screen. For example, given a 320x200 image and
a 1280x1024 screen, the image can be doubled once (to 640x400), a second
time (to 1280x800), but a third time would make the image 1280x1024. You’ll
note that on the third time, the width didn’t change at all, since it was already
at its maximum value. Also note that the height wasn’t allowed to double
(from 800 to 1600), but was truncated at its maximum value (1024).

Halves the current size of the image, with the constraint that neither axis is
allowed to have a size less than 1 pixel. Also, you may run into ‘minimum
size’ problems with your window manager. See the note in “Section 2.3:
Cropping” for more information.

Note that the window size is maintained as a pair of integers. As a result you
may see some integer round-off problems. For example, if you halve a 265x185
image, you’ll get a 132x92 image, which is just fine. However, if you
Double Size this image, you’ll get a 264x184 image, not the 265x185 image
that you started with.

Increases the current size of the image by 10%, subject to the constraint that the
image cannot be made larger than the screen size (in either axis). For example,
issuing this command on a 320x200 image will result in a 352x220 image.

Section 3: The Control Window 9

Version 3.10a December 29, 1994

Decreases the current size of the image by 10%. Neither axis of the image is
allowed to shrink below 1 pixel. Also, you run the risk of running into
‘minimum window size’ problems with your window manager.

It should be noted that the 10% Larger and 10% Smaller commands have no
concept of an ‘original size’. They simply increase or decrease the current
image size by 10%. As a result, they do not undo each other. For example,
take a 320x200 image. Do a 10% Larger and the image will be 352x220. If
you issue the 10% Smaller command now, the image will be made (352 -
35.2)x(220 - 22), or 316x198.

Lets you specify the exact size, or exact expansion, to display the image. Pops
open a dialog box where you can type a string of the form “width x height”,
“expansion%”, or “horiz-expansion% x vert-expansion%”. The spaces between
numbers aren’t necessary, but the ‘x’ and ‘%’ characters are.

Applies the ‘default aspect ratio’ to the image. This is done automatically
when the image is first loaded. Normally, the default aspect ratio is ‘1:1’, but
certain GIF files may have an aspect ratio encoded in them. You can also set
the default aspect ratio via a command-line argument or an X resource. See
“Section 12.3: Image Sizing Options” for more info. The idea behind this
command is that you’d stretch the image manually (via your window manager)
to roughly the size you’d like, and then use the Aspect command to fix up the
proportions.

Normally Aspect expands one axis of the image to correct the aspect ratio. If
this would result in an image that is larger than the screen, the Aspect
command will instead shrink one of the axes to correct the aspect ratio.

Attempts to resize the image so that the ratio of width to height is equal to 4 to
3. (e.g., 320x240, 400x300, etc.) This is useful because many images were
meant to fill the screen on whatever system they were generated, and nearly all
video tubes have an aspect ratio of 4:3. This command will stretch the image
so that things will probably look right on your X display (nearly all of which,
thankfully, have square pixels). This command is particularly useful for
images which have really bizarre sizes (such as the 600x200 images
presumably meant for CGA, and the 640x350 16-color EGA images).

Section 3: The Control Window 10

Version 3.10a December 29, 1994

Resizes the image to the nearest integral expansion or compression ratio. For
example, if an image is currently being displayed at “162.43% x 231%”, the
IntExpnd command will show the image at a “200% x 200%” expansion ratio.
Likewise, if an image is being shown at a “37% x 70%” expansion ratio,
IntExpnd will resize it to “33% x 50%”, the nearest integer compression ratios.

An alternate way of issuing the 10% Larger command.

An alternate way of issuing the 10% Smaller command.

Section 3.2: Rotate/Flip Commands

Rotates the entire image (not the selection) 90° clockwise.

Keyboard equivalent: t

Rotates the entire image (not the selection) 90° counter-clockwise.

Keyboard Equivalent: T

Flips the image (or the selected area of the image) horizontally (around the
vertical center-line of the image).

Keyboard Equivalent: h

Flips the image (or the selected area of the image) vertically (around the
horizontal center-line of the image).

Keyboard Equivalent: v

Section 3.3: The Display Menu

This menu controls how the image is displayed on your screen. None of these
commands actually modify the image itself, only how it is presented.

Section 3: The Control Window 11

Version 3.10a December 29, 1994

Section 3.3.1: Dithering Commands

Returns the displayed image to its ‘raw’ state (where each pixel in the displayed
image is as close as possible to the corresponding pixel in the internal image).
In short, it turns off any dithering or smoothing. This command is normally
disabled, and is only enabled after you have issued a Dithered or Smooth
command..

Regenerates the displayed image by dithering with the available colors in an
attempt to approximate the original image. This has a useful effect only if the
color allocation code failed to get all the colors it wanted. If it did get all the
desired colors, the Dither command will just generate the same display image
as the Raw command. On the other hand, if you didn’t get all the desired
colors, the Dither command will try to approximate the missing colors by
dithering with the colors that were obtained, which can help eliminate visible
banding, and such. Note: If you are running xv on a 1-bit display the Dither
command will be disabled, as the image will always be dithered for display.

Smoothes out distortion caused by integer round-off when an image is
expanded or shrunk. This is generally a desirable effect, however it can be
fairly time-consuming on large images, so by default it is not done
automatically. See “Section 12: Modifying xv Behavior” for more details.
Note that Smooth only has a useful effect if the image has been resized. If the
image is being displayed at its normal 1:1 expansion ratio, then the Smooth
command will not have a useful effect.

Note: if you are currently in ‘24-bit mode’ (see “Section 3.5: The 24/8 Bit Menu” for more info), the
Dithered command is disabled, Raw displays the image (dithered on an 8-bit display), and Smooth
displays a smoothed version of the image (dithered on an 8-bit display).

Section 3.3.2: Color Allocation Commands

When turned on, forces xv to use read/write color cells (ignored and disabled in
Use Std. Colormap mode, below).. Normally, xv allocates read-only color
cells, which allows it to share colors with other programs. If you use read/write
color cells, no other program can use the colormap entries that xv is using, and
vice-versa. The major advantage is that using read/write color cells allows the
Apply function in the xv color editor window to operate much faster, and
allows the Auto-Apply while dragging feature to be used at all. Also note that
this command is only enabled if you are running xv on a PseudoColor display.
See “Appendix E: Color Allocation in xv” for more information on display
modes.

xv’s normal color allocation mode. For any given picture, xv figures out what
colors should be allocated, and tries to allocate them (read-only, or read/write,
as determined by the Read/Write Colors setting). If any color allocation fails,
xv will try a few other tricks, and generally just map the remaining colors (the
ones it didn’t get) into the closest colors that it did get.

When Perfect Colors is turned on, xv proceeds as in the Normal Colors case.
If any color allocation request fails, all colors are freed, and xv creates itself a

Section 3: The Control Window 12

Version 3.10a December 29, 1994

private colormap, and tries all over again. It is assumed that having a private
colormap will provide more colors than allocating out of the already partially-
used system default colormap.

Like Perfect Colors, but it doesn’t even try to allocate out of the system
colormap. Instead, it starts off by creating its own colormap, and allocating
from there. Slightly faster than Perfect Colors mode. Also useful, as certain
X servers (AIX 3.1 running on an RS6000, for instance) never report an
allocation error for read-only color cells. They just return the closest color
found in the system colormap. Generally nice behavior, but it prevents Perfect
Colors mode from ever allocating a colormap...

An entirely different color allocation mode. Instead of picking the (generally
unique) colors that each image requires, this mode forces all images to be
displayed (dithered) using the same set of (standard) colors. The downside is
that the images don’t look as nice as they do in the other modes. The upside is
that you can display many images simultaneously (by running more than one
copy of xv) without instantly running out of colors. The setting of Read/Write
Colors is ignored while in this mode. Also, this mode is the only one available
when you are displaying images in 24-bit mode.

Section 3.4: Root Display Modes

While xv normally displays an image in its own window, it is also
possible for it to display images on the root window (a.k.a. ‘the
desktop’). You would normally use this feature from the command-
line, as part of some sort of X startup script, to put up a background
pattern or image of your choice. See “Section 12.6: Root Window
Options” for further information on the relevant command-line
options.

You can also specify root display options interactively, while the
program is running, by using the Root menu, as shown.

One note regarding root display: it is not possible for xv to receive
button presses or keyboard presses in the root window. As such, there
are several functions that cannot be used while in a ‘root’ mode, such
as pixel tracking, image editing, pan and zoom operations, etc. If you

want to do such things, you’ll have to temporarily return to ‘window’ mode, and return to ‘root’ mode when
you’re finished. Also, when you are in a ‘root’ mode, you will not be able to get rid of the xv controls window.
At best you can iconify it (using your window manager). There’s a good reason for this. If you could get rid
of the window, there would be no way to ever get it back (since it won’t see keypresses or mouse clicks in the
root window).

One other note: If you are running xv on certain 24-bit displays, where the ‘default’ visual type is an 8-bit
PseudoColor, but xv in its cleverness has decided to use a 24-bit TrueColor mode, you will not be able to
switch the display to a root mode. This is because xv requires the visual used in the ‘window’ mode to be the
same as the visual used for the ‘root’ modes. In the case of these types of displays, it is not possible to put a
24-bit TrueColor image on the root window. You can get this to work by using the ‘-visual default ’
command-line option, which will force xv to use the ‘default’ visual for both the ‘window’ and ‘root’ modes.

Also note: This is only necessary to get this menu to work on such displays. If you use the ‘-root ’ or
‘ -rmode ’ command-line options, xv will automatically use patented “DoTheRightThing” technology...

Section 3: The Control Window 13

Version 3.10a December 29, 1994

Displays the image in a window. If you were previously in a ‘root’ mode, the root window
will also be cleared.

The image is displayed in the root window. One image is displayed aligned with the top-left
corner of the screen. The image is then duplicated towards the bottom and right edges of the
screen, as many times as necessary to fill the screen.

Similar to Root: Tiled, except that the image is first shrunk so that its width and height are
integer divisors of the screen’s width and height. This keeps the images along the bottom and
right edges of the screen from being ‘chopped-off’.

Note: using any of the ‘resizing’ commands (such as Normal, Double Size, etc.) will lose the ‘integer’-
ness of the image, and you’ll have to re-select this mode to ‘integer-ify’ the image again.

Tiles the original image with versions that have been horizontally flipped, vertically flipped,
and both horizontally and vertically flipped. This gets rid of the sharp dividing lines where
tiled images meet. The effect is quite interesting.

Like Root: Mirrored , but also does the integer-ization described under the Root: Integer
Tiled entry.

Like Root: Tiled, but it positions the images so that one of them is centered on the screen,
and the rest are tiled off in all directions. Visually pleasing without the image size distortion
associated with Root: Integer Tiled.

Displays a single image centered in the root window, surrounded by black, or your choice of
any other solid color. (See “Section 12: Modifying xv Behavior” for more information.)

Displays a single image centered in the root window, surrounded by a black and white ‘warp’
pattern, which produces some mildly visually pleasing Moiré effects. The colors can also be
chosen by the user. (See “Section 12: Modifying xv Behavior” for details.)

Displays a single image centered in the root window, surrounded by a black and white ‘brick’
pattern. Again, the colors can be set by the user.

Section 3: The Control Window 14

Version 3.10a December 29, 1994

Tiles images on the root window such that the images are symmetric around the horizontal
and vertical center lines of the screen.

Like the Root: symmetrical tiled mode, but the images are also mirrored.

Note: The three ‘centered’ modes (Root: Centered, Root: Centered, Warp, and Root: Centered,
Brick , but not Root: Center Tiled) require the creation of a Pixmap the size of the screen. This can be a
fairly large request for resources, and will fail on a color X terminal with insufficient memory. They can
also require the transmission of considerably more data than the other ‘root’ modes. If you’re on a brain-
damaged X terminal hanging off a slow network, you should probably go somewhere else. Barring that,
you should certainly avoid the ‘centered’ modes.

Also note: If you quit xv while displaying an image on the root window, the image will remain in the root
window, and the colors used by the image will remain allocated. This is generally regarded as correct
behavior. If you decide you want to get rid of the root image to free up resources, or simply because
you’re sick of seeing it, the quickest route is to run ‘xv -clear ’, which will clear the root window,
release any allocated colors, and exit. Alternately, xsetroot or any other X program that puts things in the
root window should be able to do the trick as well.

Section 3.5: The 24/8 Bit Menu

xv has a whopping grand total of two internal image formats: 8-bit
colormapped, and 24-bit RGB. Every image you load is converted to one
of these two formats, as part of the image loading procedure, before you
ever get to see the image.

There are a few crucial differences between these two modes. In 8-bit mode, you have a colormap, and
thus color-editing changes (see “Section 5: The Color Editor”) can happen much more quickly. On the
downside, most of the image editing functions only actually operate on 24-bit images. (Such as the
Algorithms menu, described later in this section.) If you use these functions, xv will convert the 8-bit
image into a 24-bit image, operate on the 24-bit data, and convert the result back to an 8-bit image. As a
result, artifacts can be introduced from the image conversions. As such, if you’re going to be doing a lot
of this sort of thing, switch to 24-bit mode first.

But I digress...

This menu lets you see which mode xv is currently operating in, and lets you change modes. You can also
force xv to remain in the current mode, and select how the program will convert 24-bit images into 8-bit
images.

Section 3: The Control Window 15

Version 3.10a December 29, 1994

Forces the program into 8-bit mode when selected. If you are currently
working on a 24-bit image, it will be converted into an 8-bit image using the
selected conversion algorithm (see below), and the 24-bit data will be thrown
away.

Forces the program into 24-bit mode when selected. If you currently working
on an 8-bit image, it will be converted into a 24-bit image and the 8-bit image
will be thrown away. Note that if you are working on a 24-bit image, switch to
8-bit mode, and switch back to 24-bit mode, your 24-bit data will have been
lost in the conversions. A dialog box will pop up to alert you of this potential
problem.

Normally, xv will switch between 8 and 24-bit modes based on the image type
(if you load a 24-bit image, it’ll switch to 24-bit mode, otherwise it will use 8-
bit mode). Turning this option on will force xv to remain in the current mode.
One reason that you might wish to this would be to lock xv into 8-bit mode so
that 24-bit images are shown dithered with the ‘Slow’ algorithm (see below),
which produces better looking images on 8-bit displays. (Just don’t try to save
the image afterwards!)

Converts 24-bit images to 8-bit images by dithering with a fixed 6x6x6 RGB
colormap. It is the quickest of the three algorithms, but also generally produces
the worst images. It can also be selected via the ‘-quick24’ command-line
option or X resource.

The default algorithm. Takes about twice as long as the Fast algorithm. Uses
the median-cut algorithm to pick a set of 256 colors, and then dithers with
these colors. It can be selected via the ‘-slow24’ command-line option or X
resource.

By far and away the slowest of the algorithms. Can take up to ten times as long
as the Slow algorithm. Uses a cleverer version of the median-cut algorithm to
pick a better set of 256 colors than the slow algorithm. Does not dither. This
might look best if you’re going to be expanding the image by very much, as the
dithering in the other two algorithms becomes very noticeable. You can also
select this option via the ‘-best24’ command-line option or X resource.

Note that none of the three 24->8 algorithm choices immediately does
anything. They merely select which algorithm will be used the next time xv
feels a need to convert a 24-bit image into an 8-bit image.

Section 3: The Control Window 16

Version 3.10a December 29, 1994

Section 3.6: Image Algorithms

xv now has the ability to run a number of standard image-processing
algorithms on the current image, or any rectangular portion of the current
image. If there is a current selection rectangle (See “Section 2.2: Selection
Rectangle”), the algorithm will only affect the selected area. Otherwise, the
algorithms operate on the entire image.

Algorithms are chosen via the Algorithms menu, and are executed
immediately. Algorithms are cumulative, in that if you run an algorithm on
an image, and then run a second algorithm, the second algorithm operates on
the modified image produced by the first algorithm. And so on.

See “Appendix H: Adding Algorithms to xv” for information on how you
can add additional algorithms to this menu.

Also, it should be noted that the algorithms operate on 24-bit images. If you
are currently operating on an 8-bit image, and you run an algorithm, the
image will be converted up to 24-bits, the algorithm will be run, and the

result will be converted back to 8-bits using the currently selected 24->8 algorithm. As such, if you’re
going to be doing a lot of algorithm-ing, you may find it faster to temporarily switch to 24-bit mode.
Likewise, if you intend to run multiple algorithms on the same image (say, a Blur followed by an
Emboss), you should definitely switch to 24-bit mode, to maintain full 24-bit precision on the
intermediate images (i.e., to prevent noise from being added to the image by any intermediate 24->8
conversions).

The (normally dimmed-out) Undo All selection undoes any and all algorithms
that have been run on the current image. It restores the image to the state it
was in when the first algorithm was executed, and it also puts xv back into the
8/24-bit mode it was in.

Keyboard Equivalent: <Meta> u

Runs a convolution over each plane (red, green, blue) of the image, using a n*n
convolution mask consisting of all 1’s. It has the effect of, for each pixel in the
image, replacing it with the average value of all the pixels in the n*n rectangle
centered around the pixel in question. When you select this command, a dialog
box is opened up to request the value for ‘n’. Values must be greater than or
equal to ‘3’, and they must also be odd (e.g. 3,7,5,9,11). Larger values blur the
image to a greater extent.

Warning! This algorithm, due to its n2 nature, can get very slow as n is
increased. Values above ‘15’ aren’t particularly recommended.

Note: This command is a reasonable way to turn dithered black-and-white
images back into some semblance of the greyscale that they probably originally
started as.

Keyboard Equivalent: <Meta> b

Runs an edge-sharpening algorithm on the image, which attempts to maximize
contrast between adjacent pixels. Prompts for a ‘strength’ value of 0% through
99%.

Section 3: The Control Window 17

Version 3.10a December 29, 1994

Keyboard Equivalent: <Meta> s

Runs a convolution using a pair of convolutions, one which detects horizontal
edges, and one which detects vertical edges. The convolution is done
separately for each plane (red, green, blue) of the image. It is only done for
pixels that have the 3x3 mask fully contained within the image, to avoid pesky
edge conditions. One note: since it runs an edge detection separately for each
plane of the image, the results are colorful. You’ll get red edges when there are
edges in the red plane, yellow edges when there are edges in the red and green
planes, and so on. If you’d like a traditional grey edge detection (based on the
overall intensity of each pixel), you should use the Saturation dial in the xv
color editor (See “Section 5.3.3: The Saturation Control”) to completely
desaturate all the colors in the image (turning it grey) first. Then, the results
will also be grey.

Keyboard Equivalent: <Meta> e

Runs an algorithm that produces nifty ‘embossed’ images by using a variation
of the edge detection algorithm. It produces greyscale (8-bit) images where
most of the image is shown as a medium gray. ‘Leading’ edges (edges found
on the top and left sides) are shown as a lighter gray, and ‘trailing’ edges
(bottom and right edges) are shown as a darker gray. The image wind up
looking like pseudo-3-d, sort of like the Motif toolkit. You can then use the
White dial in the xv color editor (See “Section 5.3.2: The White Remapping
Control”) to colorize the image as you see fit

Keyboard Equivalent: <Meta> m

Does an ‘oil transfer’, as described in the book “Beyond Photography”, by
Holzman. It is a sort of localized smearing. The basic algorithm is to take a
rectangle (7x7 in this case) centered around the current pixel, compute a
histogram of these (49) pixels, and replace the current pixel with the ‘most
popular’ pixel as determined by the histogram.

Keyboard Equivalent: <Meta> o

Blends a rectangular selection out of existence by replacing the selected area
with a radial gradient fill. Each pixel on the edge of the selection retains its
original color, the pixel in the center is replaced by the average of all the edge
pixels, and all remaining pixels are replaced by the weighted average of the
center pixel and the edge pixel (along the line that runs through the center
pixel and the pixel being computed).

This is much easier to see than it is to explain.

Keyboard Equivalent: <Meta> B

Section 3: The Control Window 18

Version 3.10a December 29, 1994

Does arbitrary (smooth) rotation of the entire image (or the selected region).
You will be prompted to enter a rotation amount, in degrees. Positive values
rotate the image counter-clockwise, negative values rotate the image clockwise.
The Copy Rotate function makes a copy of the selection, rotates it, and pastes
it back on top of the original, like so:

Newly-rotated image

Original, un-rotated imageOriginal, un-rotated image

Copy Rotate

Keyboard Equivalent: <Meta> t

Also does arbitrary smooth rotation, as with the Copy Rotate command, but
this version clears the original image (using the ‘current color’, see “Section
2.1: Displaying Pixel Values”) before pasting the rotated version, like so:

Newly-rotated image

Newly cleared areaOriginal, un-rotated image

Clear Rotate

Keyboard Equivalent: <Meta> T

Runs a ‘pixelization’ algorithm, suitable for obscuring sensitive and/or naughty
parts of an image. Pops open a dialog box which prompts for either a single
value ‘m’, or a pair of values ‘mxn’. Divides the image (or the selected region)
up into m-by-m squares (if a single value was entered) or m-by-n rectangles (if a
pair of values were entered). Each area is filled with the average color of all
pixels contained within the area.

Keyboard Equivalent: <Meta> p

Runs a ‘random spread’ algorithm on the selected area of the image (or the
entire image). Pops up a dialog box which prompts for either a single value
‘m’, or a pair of values ‘mxn’. In the case of the single value, each pixel in the
image is swapped with some other random pixel located within a distance of m
pixels from the first pixel. If two values are entered, each pixel is swapped
with another pixel located within ±m, ±n of the original pixel. This can
produce an interesting ‘de-rez’ effect. Whether it’s useful or not is for you to
decide.

Keyboard Equivalent: <Meta> S

Section 3: The Control Window 19

Version 3.10a December 29, 1994

Runs a despeckling algorithm, also known as a median filter among image-
processing circles. This algorithm is good at removing minor noise from an
image, such as you’ll normally find on scanned-in faxes and the like. It may
also prove useful for de-dithering images, turning black-and-white dithered
images into greyscale images, and dithered color images into undithered color
images. Note that the Blur algorithm can also be used in the same way, and
may do a better job of un-dithering. However, the DeSpeckle algorithm
generally leaves edges alone, unlike the Blur algorithm, which blurs everything
uniformly.

This algorithm runs through the selected area of the image, and for each pixel
in the image, looks at the m-by-m square centered around the pixel. It replaces
the pixel with the median value of the pixels found in the square. As with the
Blur algorithm, you will be prompted for a value of ‘m’. The value must not be
less than ‘3’, and it must be odd. Larger values have a greater effect, though
‘3’ should be sufficient for most purposes.

Keyboard Equivalent: <Meta> k

Section 3.7: Cropping Commands

Crops the image to the current selection rectangle. This command is only
available when a cropping rectangle has been drawn on the image. See
“Section 2.3: Cropping” for further information.

Keyboard Equivalent: c

Returns the image to its normal, uncropped state. This command is only
available after the image has been cropped. See “Section 2.3: Cropping” for
further information.

Keyboard Equivalent: u

Crops off any constant-color borders that exist in the image. It will crop to the
smallest rectangle that encloses the ‘interesting’ section of the image. It may
not always appear to work because of minor invisible color changes in the
image. As such, it works best on computer-generated images, and not as well
on scanned images. In an attempt to get around this problem, if you
AutoCrop while in 24-bit Mode, it will crop off portions that change by a little
bit, not just portions that are exactly the same. Not that it works all that well.

Keyboard Equivalent: C

Also, you can ‘fine-crop’ an image, by holding the <Ctrl> key and pressing the arrow keys on your
keyboard. Each press of the keys will remove one row (or column) of pixels from the appropriate edge.
For example, pressing <Ctrl><Up> will crop off the bottom row of the image. Likewise, <Ctrl><Down>
will crop off the top row, <Ctrl><Left> will crop off the right edge, and <Ctrl><Right> will crop off the
left edge. It may sound backwards, but it does the Right Thing.

Section 3: The Control Window 20

Version 3.10a December 29, 1994

This ‘fine-cropping’ will work regardless of whether or not there is a selection rectangle currently drawn.
If you accidentally crop too much off the image, you can use the UnCrop command described above to get
the original image back.

Note that cropping never actually changes the image, only what portions are displayed. The original
image can always be restored using the UnCrop command. Also, note that the ‘cropping’ commands and
the ‘zoom’ commands (See “Section 2.4: Zooming”) are related, in that both affect the ‘visible portion’ of
the image. The cropping commands maintain the same expansion factors by making the window larger or
smaller, while the zooming commands maintain the same window size, and stretch the relevant portion of
the image to fit. As such, the UnCrop command will also undo an zooming that you may have done.

Section 3.8: Image Cut and Paste Commands

A new feature added to Version 3.10 is the ability to cut and paste arbitrary rectangular portions of
images. You can cut (and copy) and paste within a single image, between two different images, or even
between two running copies of xv. You can even cut or copy a portion of an image, exit xv, go out for
dinner, come back, restart xv, and paste the previously-copied portion into the current image.

Copied image data is normally stored within the X Server’s memory (in the ‘XV_CLIPBOARD’ property),
and remains there until some other data is copied, or until the X Server is reset (i.e., when you log off).
This allows you to transfer image data between different copies of xv, and the xv’s can even be running on
different machines.

If there is not enough server memory available to hold the copied image data (this can happen if you copy
a large amount of data, and you’re using an X Terminal, as opposed to a workstation), xv will detect this,
and fall back to using a file (‘.xvclip ’) in your home directory. Needless to say, this precludes
transferring data between xv’s running on different machines, but it’s better than nothing.

Copy. First, you must select a region to copy, via the selection rectangle
mechanism (See “Section 2.2: Selection Rectangle”). Then, use this command
to copy the selected data to the ‘clipboard’.

Keyboard Equivalent: <Meta> c

Cut. Operates just like the Copy command, except that it also clears the
selection to the ‘current color’, which is set using the pixel measurement tool.
See “Section 2.1: Displaying Pixel Values” for further information.

Keyboard Equivalent: <Meta> x

Paste. If there is no selection rectangle currently drawn, the first time you
issue the Paste command, it will create a selection rectangle the size and shape
of the image data that will be pasted. You may move and resize this rectangle
as you see fit (See “Section 2.2: Selection Rectangle”). Then, when you have
the selection appropriately adjusted, hit Paste a second time to actually paste
the clipboard contents onto the image.

On the other hand, if you have a selection rectangle drawn when you hit Paste
the first time, the image will be pasted into the selected area immediately.

Keyboard Equivalent: <Meta> v

Section 3: The Control Window 21

Version 3.10a December 29, 1994

Clear. Clears the selected region to the ‘current color’, which is set using the
pixel measurement tool. See “Section 2.1: Displaying Pixel Values”.

Keyboard Equivalent: <Meta> d

Section 3.9: The Pad Command

The Pad command is the opposite of the Crop command. Sort of. It lets you add a border of a specified
size to the edges of the image. It also lets you resize images to some desired size without manually
expanding or cropping the image. But it goes further than that. There are a whole slew of interesting
effects available, as described below:

Pad. Brings up the dialog box shown below.

Keyboard Equivalent: P

Section 3.9.1: Pad Methods

There are three primary Pad methods, as shown to the left. These
methods are accessible via the ‘Pad Method’ menu, which says ‘Solid
Fill’ in the dialog box shown above. In all cases, the Pad command
operates in the same basic way: A new image of the desired size is

created, it is filled as specified, and the original image is pasted onto this new image, centered. If the new
image is smaller than the original image, the original image will be cropped. Otherwise, the area outside
the original image will have the new background.

Note: The new, padded image will have the same 8/24-bit mode as the original. As such, you probably
want to switch to 24-bit Mode before issuing the Pad command, particularly if you intend to modify the
image further. (See “Section 3.5: The 24/8 Bit Menu”.)

The ‘Pad Method’ menu gives you three different ways of filling the background:

The background is filled with a solid color. The color may be specified by
name, (as specified in the X11 ‘rgb.txt ’ file), by RGB values in the range 0-
255, separated by commas (e.g. ‘0,255,128’), or by RGB values in hexadecimal

Section 3: The Control Window 22

Version 3.10a December 29, 1994

(e.g. ‘0x00ff80’). In each case, the string you enter is parsed, and the
background is filled solid with the specified color.

The external program bggen is executed to generate the background. This
program is normally distributed with xv, and xv assumes that the executable is
located somewhere in your search path (such as ‘/usr/local/bin/bggen ’).
bggen can generate background gradients, at a specified angle. The gradient
can be the entire size of the background, or it can repeat multiple times. See
“Section 11: External Programs” for a complete description of the bggen
command.

An image file in any of the xv-supported formats may be loaded and used as the
background. In this case, the background size (and therefore the size of the
padded image) is equal to the size of the loaded background image. If you want
a different size, you can load the background image (as a regular image), resize
it as you see fit, save it, and use the newly saved version as the background for
the original image.

Section 3.9.2: Image Size Dials

These dials let you specify the size of the new, padded image in the
“Solid” and “Run ‘bggen’” modes. In the “Load Image” mode, the
dials are disabled, as the new image size is dictated by the size of the
loaded image.

If the image size dials are enabled, the small button above them resets
them to the size of the currently-loaded image. Note that padding
with the ‘new’ size equal to the current size won’t actually do
anything, unless you change the “Opaque” dial, described below.

Section 3.9.3: Opaque-ness

This dial sets the ‘opaque-itude’ of the foreground (the original image). Normally,
this is set to ‘100%’, which simply means that everywhere the original image and
the background overlap, the original image is what you’ll see. If you set the dial to
‘0%’, then wherever the original image and the background overlap, the background
is what you’ll see. In any case, at points where the foreground image does not
overlap the background, you’ll see the background, unmodified. (Practical upshot:
at ‘0%’ you will only see the background.)

Of course, most of the interesting effects happen when the dial is set to intermediate values, where the
foreground image will appear semi-transparent.

There are four modes the ‘Opaque’ dial can operate in. They are selected by clicking the button located
above the ‘Opaque’ dial.

RGB The two images are blended together in the most obvious way. Each RGB color
component in the new image is computed by taking a weighted average of the
RGB components from the appropriate pixels in the foreground and
background images. Like so:

Rnew = (opaque% * Rfg) + ((100 - opaque%) * Rbg) (same for G and B)

Section 3: The Control Window 23

Version 3.10a December 29, 1994

INT On overlapping pixels, only the Intensity components (the ‘V’ in the HSV
colorspace, see “Appendix D: RGB & HSV Colorspaces”) of the pixels are
blended, using the same weighted average calculation shown above. If you set
the ‘Opaque’ value to ‘0%’, brightness of overlapping pixels will be completely
determined by the ‘background’ pixel. It’s possible to get some interesting
‘masking’ effects and whatnot by playing around with black&white
backgrounds.

SAT Similar to INT , except that it is the Saturation component (the ‘S’ in the HSV
colorspace, see “Appendix D: RGB & HSV Colorspaces”) of the two pixels
that will be blended together, again using the weighted average calculation.
The effects possible with this one are considerably more subtle, and not
necessarily interesting. It is mainly included for completeness.

HUE In this case, the colors of the two overlapping pixels are blended. You can get
some interesting effects by setting ‘Opaque’ to ‘0%’, and loading a colorful
rainbow background. In this case, at all overlapping pixels, it will be as if the
foreground image were a greyscale transparency, as the brightness and
saturation will be controlled by the foreground, and the color will be controlled
by the background.

Technical Note: The HUE case does not simply do a weighted average of the
two hue components. Instead, it plots the two points on the edge of a standard
color wheel, draws a straight line between them, and picks a point along this
line based on the ‘Opaque’ value (i.e., the larger the value, the closer it is to the
‘foreground’ endpoint of the line). As a result, the HUE setting can affect both
the hue and saturation components of the computed pixel. While this makes
this ‘Opaque’ mode somewhat unlike the others, once again it is a fine example
of xv’s trademark “Do The Right Thing” technology.

Section 3.10: Text Annotation

Starting in xv version 3.10, it is now possible to do text annotation, or what we in the business call
“putting words on the picture”. There is one thing to note, before you go diving in: xv’s text annotation
ability is Really Lame. I mean, Big Time Lame. It’s awkward to use (to say the least), and not very
powerful. Frankly, it’s an embarrassment. But maybe it’ll be useful to someone.

Now that your expectations are suitably low, here’s how it works:

Text Annotation. First, if you have a selection rectangle drawn, get rid of it.
Click this button to bring up a dialog box, where you can enter a single-line
string. After you enter the string and press <Return> (or the Ok button in the
dialog box), you will be presented with an appropriately-sized selection
rectangle. You may reposition and resize this rectangle as you see fit. When
you have the rectangle just so, use the Paste command to put the text on the
image. The text will be pasted in the current color (See “Section 2.1:
Displaying Pixel Values”). The text will be stretched to fit the selection
rectangle.

Keyboard Equivalent: A

Note: if you want to change the color of the pasted text, pick a new color (via the ‘eyedropper’ described
in “Section 2.1: Displaying Pixel Values”), and issue the Text Annotation command again. (It is not

Section 3: The Control Window 24

Version 3.10a December 29, 1994

sufficient to simply Paste again.) Note that if you have a selection rectangle drawn, the Text Annotation
command will not change the position or shape of the rectangle to reflect the new text, which lets you
easily re-Paste over your last attempt.

Section 3.11: The Grab Command

The Grab command in xv version 3.10 has been extensively improved. It is now possible to do delayed
grabs, which can give you time to shuffle some windows around before the grab takes place. You can also
do delayed auto-grabs, which gives you a way to grab pull-down menus and other actions that take place
while a mouse-button is being held down.

Grab command. Clicking this button brings up the xv grab dialog box shown
(and described) below.

Keyboard Equivalent: <Ctrl> g

A normal grab operation (issued by hitting the Grab button in the xv grab dialog box) operates as follows:

You can grab the entire contents of a window (including its frame) by clicking
the Left mouse button in a window. If you click the Left button somewhere on
the root window, the entire screen will be loaded into xv. Note: if you Left-
click somewhere inside a window whose contents are drawn in a different
visual than the frame (as happens on many 24-bit graphics systems, where the
default visual is an 8-bit PseudoColor, but the window contents may be drawn
in 24-bit TrueColor), the window frame will not be included in the grabbed
image. (It is not possible to grab data from two different visuals
simultaneously.)

You can grab an arbitrary region of the screen by clicking the Middle mouse
button and dragging a rectangle in exactly the same way you draw a cropping
rectangle. When you release the mouse button, the contents of this rectangle
will be read from the screen and loaded into xv. Note: the image will be
grabbed with respect to the visual of the outermost window that completely
encloses the grabbed rectangle. (Practical upshot: on 24-bit systems, if you try
to grab the contents of a 24-bit window, plus some of the (8-bit) root window,
window frames, etc., you will not get what you probably wanted. Sorry.)

Section 3: The Control Window 25

Version 3.10a December 29, 1994

Or, alternately, you can simply abort the Grab command by clicking the Right
mouse button anywhere on the screen.

A delayed grab is very similar to a normal grab, except that xv will wait for the specfied number of
seconds, and then beep once to signify the start of the grab. You can then press the Left, Middle, or Right
mouse buttons, as described above. To do a delayed grab, simply enter a non-zero number in the ‘Delay’
field, and press the Grab button in the xv grab dialog box.

A delayed auto-grab is another matter entirely. When you issue this command (by entering a non-zero
number in the ‘Delay’ field, and pressing the AutoGrab button), xv will sleep for the specified number of
seconds, and then automatically grab the full contents of whatever top-level window the mouse is
positioned inside of. This makes it possible to grab things like pull-down menus that cannot be captured
using the normal grab method. For example, to grab a pull-down menu in another program, set the
‘Delay’ field to something small (say, ‘5’ seconds), hit the AutoGrab button, go to your other program,
and open up the pull-down menu. Continue holding the menu open until xv beeps once (signifying the
start of the grab), and then beeps twice (signifying the end of the grab). The entire top-level window
containing your menu will be copied into xv. If you get more than you want, you can easily crop off the
rest, using the cropping commands. (See “Section 2.3: Cropping”)

Note: You may not be able to Grab all of the xv windows, at least not windows owned by the xv doing the
grabbing. If you run into this minor inconvenience, simply start a second copy of xv and use it to grab the
windows from the first xv (or vice-versa).

You can use the Grab command for a wide variety of purposes. For example, you can use it to print the
contents of any window (or the whole screen) by grabbing the appropriate image, and then saving it as a
PostScript file.

You can use the Grab command, in conjunction with xv’s Zoom and UnZoom commands, as a
reasonable, albeit overpowered and none-too-quick, replacement for the xmag program.

You can also use the Grab command to pick ‘just the right colors’ for any application. Simply start the
application in question, Grab the window into xv, and use the xv color editor to twiddle the colors around
to your heart’s content.

Note: the Grab command does not work on Macintoshes running MacX in a ‘rootless’ mode, which isn’t
too surprising, if you think about it...

Section 3.12: Working With Multiple Files

xv provides a set of controls that let you conveniently operate on a list of images. To use the following
commands, you’ll have to start up xv with a list of filenames. For example, you could type ‘xv *.gif ’
(assuming, of course, that you have a bunch of files that end with the suffix ‘.gif’ in the current directory).

Section 3: The Control Window 26

Version 3.10a December 29, 1994

The filenames are listed in a scrollable window, as shown below. The current selection is shown in
reverse video. If there are more names than will fit in the window, the scrollbar will be enabled.

Section 3.12.1: Operating a List Window

The scrollbar operates as follows:

• clicking in the top or bottom arrow of the scrollbar scrolls the list by one line in the appropriate
direction. It will continue to scroll the list as long as you hold the mouse down.

• The thumb (the small rectangle in the middle of the scrollbar) shows roughly where in the list
you are. You can change your position in the list by clicking and dragging the thumb to another
position in the scrollbar. The list will scroll around as you move the thumb.

• You can scroll the list up or down a page at a time by clicking in the grey region between the
thumb and the top or bottom arrows.

• If you click on a name in the list, that name will become highlighted. You can drag the highlight
bar up and down, and the list will scroll appropriately.

• It is also possible to control the list window from the keyboard. In all cases, you must make sure
that the window sees the keypress. Generally, this means you have to have the cursor inside the
window, though your window manager may also require you to click inside the window first.

• The up and down arrow keys move the highlight bar up and down. If the bar is at the top or
bottom of the window, the list will scroll one line.

• The <PageUp> and <PageDown> keys scroll the list up or down a page at a time. These keys
may be called <Previous> and <Next> on your keyboard. You can probably also page up and
down by typing <shift>-<Up> and <shift>-<Down>.

• Pressing the <Home> key will jump to the beginning of the list. Pressing the <End> key will
jump to the bottom of the list. If you don’t have <Home> and <End> keys on your keyboard,
you may be able to emulate them by holding <shift> and typing the <PageUp> and
<PageDown> keys.

Section 3.12.2: The File Commands

You can directly view any image in the list by double-clicking on its filename. If xv is unable to load the
file (for any of a variety of reasons), it’ll display an appropriate error message.

Attempts to load the next file in the list. If it is unable to load the next file, it
will continue down the list until it successfully loads a file. If it gets to the

Section 3: The Control Window 27

Version 3.10a December 29, 1994

bottom of the list without successfully loading a file, it will put up the default
image.

Keyboard Equivalent: <Space>

Attempts to load the previous file in the list. If it is unable to load the previous
file, it will continue up the list until it successfully loads a file. If it gets to the
top of the list without successfully loading a file, it will put up the default
image.

Keyboard Equivalent: <backspace>

This command lets you delete the currently selected file from the list (and
optionally delete the associated disk file). Note that the currently selected file is
the one with the highlight bar on it. While this is generally the same as the
currently displayed image, it doesn’t have to be.

Keyboard Equivalent: <Ctrl> d

The Delete command will pop up a window asking you what you want to
delete. Your choices are:

List Entry , which will remove the highlighted name from the list. (Keyboard
Equivalent: <Enter>)

Disk File, which will remove the highlighted name from the list and also delete
the associated disk file. This removes unwanted images, just like manually
typing ‘rm <filename> ’ in another window. (Keyboard Equivalent:
<Ctrl> d)

Cancel, which lets you get out of the Delete command without actually
deleting anything. (Keyboard Equivalent: <Esc>

Opens the xv load window, which lets you load images that weren’t specified
on the original command-line. See “Section 8: The Load Window” for more
details. Note: this function has been mostly taken over by the visual schnauzer
(See “Section 6: The Visual Schnauzer”) but remains for largely historical
reasons. (It is considerably faster than the schnauzer, however...)

Keyboard Equivalent: <Ctrl> l

Opens the xv save window, which lets you save the current image (or current
selected area) in a variety of image formats. See “Section 9: The Save
Window” for more details.

Keyboard Equivalent: <Ctrl> s

Section 3: The Control Window 28

Version 3.10a December 29, 1994

Prints the current image to a PostScript2 device.. This command takes a
somewhat Unix-centric approach to printing, but it may work on other
operating systems. When you issue this command, it opens a dialog box which
prompts you for the ‘print’ command to use. Normally, this is just ‘lpr ’, but if
you’d like to send the output to another printer, you could use something like
‘ lpr -Pelsewhere ’. (And right after you do that, you should change the
name of that printer!) You change the default command the appears in this
window by using the ‘xv.print ’ X resource. See “Section 12.10.5: Other
Resources”.

Anyway, enter some command that will have the desired effect. xv will open
up the xv postscript window, where you can fine-tune the size, position, and
rotation of your image. See “Section 10: The PostScript Window” for more
information. When you press the Ok button, xv will generate the appropriate
PostScript, and feed it as ‘stdin ’ to the command you entered earlier.

Keyboard Equivalent: <Ctrl> p

Section 3.12.3: Image Reloading

It is occasionally desirable to reload an image file because the contents of the file have changed. For
example, you could be downloading a file, and you might want to keep reloading the file to check on the
progress of the download. Or perhaps you have a program that generates images, and you’d like to view
these images without any manual intervention.

xv provides a way to reload an image via an external signal. If you send the xv process a SIGQUIT signal
(‘kill -QUIT <pid> ’, or ‘kill -3 <pid> ’ on most systems), the program will reload the
currently selected file. (The one that is currently highlighted in the xv controls window filename list.)
This behavior is exactly the same as hitting <Return> in the xv controls window. If xv is currently in a
state where hitting <Return> in the controls window won’t load an image (i.e., some pop-up dialog box is
grabbing all such events), then sending this signal won’t work either.

An idea: You could write a ‘clock’ program that, once a minute, generates a really spiffy looking picture
of the current time (with color gradations, 3-d extruded numbers, whatever), then sends xv the signal to
reload the generated image. If anyone ever does this, I’d like to hear about it.

Note: This will not work if the current file was read from <stdin> .

xv also has a ‘polling mode’, enabled by the ‘-poll ’ option. When it is turned on, xv will attempt to
recognize when the currently displayed file changes on disk. (What with UNIX being a multi-tasking OS,
it’s perfectly possible to have another process modify a file while xv is displaying it.) When the current
file changes, xv will reload it.

You can use this feature to get xv to monitor all sorts of things. For example, if you have one of those
programs that automatically goes out and ftps the latest version of the US weather map, (and you do, in
the unsupt directory), then you can have xv automatically reload the map whenever a new one is
downloaded.

2 It probably goes without saying that ‘PostScript’ is a registered trademark of Adobe Systems, Inc.

Section 3: The Control Window 29

Version 3.10a December 29, 1994

You could even use xv as a sort of frame buffer, to allow otherwise non-X programs to display graphics.
Just have your program draw on its own internal ‘frame buffer’ (just an appropriately sized hunk of
memory), and periodically write it out to a file in some xv-supported format. The PBM/PGM/PPM
formats are trivial to write. See the documentation in the doc subdirectory of the xv distribution.
Anyhow, periodically write the image to a file, and have xv display the file with the ‘-poll ’ option
turned on. Voila! An instant output-only frame buffer for X workstations, albeit a fairly slow one.

Section 3.13: The Windows Menu

As an obvious result of xv’s patented “Keep-Adding-Code-Until-It-
Breaks” Technology, there are considerably more commands, features,
cool gizmos, and dubious design decisions than will comfortably fit in the
xv controls window.

Luckily, this is nothing that bolting-on a couple more top-level windows
won’t fix, which is the method that has been used.

This is where the Windows menu comes into play, though in practice
you’ll probably just use the keyboard equivalents to open the other
windows. I know I do.

Opens up a xv visual schnauzer window (you can have up to four of them). The
visual schnauzer lets you manipulate your image file collection in a nifty
Point’n’Click, Drag’n’Drop, What You See Is What You Get, Graphical User
Interface. Despite all that, it’s actually a useful thing. See “Section 6: The
Visual Schnauzer” for more info.

Keyboard Equivalent: <Ctrl> v

Opens and closes the xv color editor window. The color editor provides you
with an interesting collection of color manipulation doodads, including a
colormap editor, hue remapping controls, arbitrary R, G, B, and I gamma
correction curves, and so on. See “Section 5: The Color Editor” for more info.

Keyboard Equivalent: e

Opens and closes the xv info window. This window gives you detailed
information about the current image, the current selection, the success/failure
of the color allocation code, and such. See “Section 4: The Info Window” for
more info.

Keyboard Equivalent: I

Opens the xv image comments window. This lets you view any comments that
may be encoded in the current image. It does not let you add or edit any
comments, as that’s a project for a later release. Note that, currently, the vast
majority of images do not have comments in them. My fault, no doubt. See
“Section 7.2: The Comment Window” for more details.

Keyboard Equivalent: <Ctrl> c

Section 3: The Control Window 30

Version 3.10a December 29, 1994

Opens the xv text viewer window. Displays the contents of the currently
selected file (i.e., the file selected in the filename list in the xv controls
window), as ASCII text, or as a hexadecimal dump. This happens
automatically when xv tries to load a file in a format it doesn’t recognize. See
“Section 7: The TextView Window” for more info.

Keyboard Equivalent: <Ctrl> t

Opens the xv text viewer window, and displays version information, copyright
notice, licensing information, the author’s email addresses, and such.
Basically, it’s the text of the first two (or so) pages of this manual.

Keyboard Equivalent: <Ctrl> a

Opens the xv text viewer window, and displays a summary of all the keyboard
equivalents and mouse button permutations.

Section 3.14: Other Commands

Does exactly the same thing as the About XV command described in “Section
3.13: The Windows Menu”: displays version number, licensing info, etc.

‘Reloads’ and displays the xv logo image, which not only contains the version
number and revision date of this copy, it also has some nifty 3-D fish.3

The logo image also displays who, if anyone, this particular copy of xv is
licensed to. If it still says “UNREGISTERED COPY”, you should probably do
something about that.

Keyboard Equivalent: <none whatsoever>

Quits xv. Quite possibly the most useful command of them all.

Keyboard Equivalents: q and <Ctrl> q

3 Through the magic of povray, just in case you’re interested.

Section 4: The Info Window 31

Version 3.10a December 29, 1994

Section 4: The Info Window

Section 4.1: Overview

This window displays information about the current image, color allocation, expansion, cropping, and any
error messages. It can be opened by issuing the Image Info command. (Select Image Info from the
Windows menu in the xv controls window, or type i in any open xv window.) You can close the window
by using the Image Info command while the window is open. You can also close the window by clicking
anywhere inside of it.

The top portion of the window displays the program name, version number, and revision date. It also
shows the University of Pennsylvania shield, the PennNet logo, the copyright notice, and of course, the
author’s name.

Section 4.2: The Fields

The “Filename” field displays the name of the currently loaded file. The name is displayed without any
leading pathname. If there is no currently loaded image (i.e., you’re looking at the default image, or a
grabbed image) this field will display “<none>”.

The “Format” field displays information describing what image format the file is stored in, and how large
the file is (in bytes).

The “Resolution” field shows the width and height (in image pixels) of the loaded image. Note that this
does not necessarily have anything to do with the size of the image currently displayed on your screen.
These numbers do not change as you modify the display image.

The “Cropping” field displays the current state of any cropping/selection activity. If you are looking at the
entire (uncropped) image, this field will show “<none>”. If you are viewing a cropped portion of an
image, this field will display something like “247x128 rectangle starting at 132,421”. See “Section 2.3:
Cropping” for more details.

Section 4: The Info Window 32

Version 3.10a December 29, 1994

The “Expansion” field gives you information about how the image is displayed. It can display something
like “158.00% x 137.00% (505 x 273)”. This tells you that the current displayed image is 505 pixels
wide and 273 pixels high, and that it is 1.58 times wider and 1.37 times higher than the original image
(which, in this case, had a size of 320x200).

The “Selection” field displays the size and position of the currently-drawn selection rectangle. If there
isn’t a current selection, this field will show “<none>“.

The “Colors” field gives you detailed information on how well (or poorly) color allocation went. If
everything went reasonably well it will display something like:

Got all 67 desired colors. (66 unique)

This means that 67 entries in the image’s colormap were used in the image, but that only 66 of these
colors were different, as far as the X server is concerned. (e.g., if ‘white’ (255,255,255) was listed twice
in the image’s colormap, it would only allocate one X colorcell, but would still count as 2 successful color
allocations).

See “Appendix E: Color Allocation” for a complete discussion of how colors are allocated, and what the
“Colors” field can tell you.

Note that the fields are filled in as information becomes available. As such, they can be used as a rough
‘progress indicator’ when loading images. When you begin loading, all the fields are cleared. Once the
image has been successfully loaded, the top three fields (Filename, Format, Resolution) are filled in. Once
the colors have been allocated, and the display image generated, the bottom four fields are shown
(Cropping, Expansion, Selection, and Colors).

Section 4.3: Status Lines

The bottom two lines in the info window display various error messages, warnings, and status
information. These two lines are also duplicated in the xv controls window.

The upper line is the more commonly used. It normally displays a one-line summary of the current image
and color allocation success. If an error occurs, it will be displayed on this line as well.

The lower line is used to display warning messages.

Section 5: The Color Editor 33

Version 3.10a December 29, 1994

Section 5: The Color Editor

Section 5.1: Overview

The xv color editor provides a powerful system for manipulating color images. Since there are many
different reasons why a person would want to modify an image’s colors, and many different types of
images that may need modification, there is no one color manipulation tool that would be ‘best’ for all
purposes. Because of this problem, xv gives the user three different color tools, all of which can be used
simultaneously.

• Colormap Editing: This tool lets you arbitrarily modify individual colormap entries. Useful for
modifying the color of captions or other things that have been added to images. Also works well
on images that have a small number of colors, such as images generated by ‘drawing’ or CAD
programs. It’s also an easy way to spiff up boring 1-bit black and white images. Note that the
Colormap Editing tool is not available when you are in 24-bit mode.

Section 5: The Color Editor 34

Version 3.10a December 29, 1994

• HSV Modification: This tool lets you alter the image globally in the HSV colorspace. (See
“Appendix D: RGB and HSV Colorspaces” for more info.) Here are examples of the sort of
things you can do with this tool:

• turn all the blues in an image into reds

• change the tint of an image

• change a greyscale image into a mauve-scale image

• increase or decrease the amount of color saturation in an image

• change the overall brightness of an image

• change the overall contrast of an image

• RGB Modification: This tool lets you route the red, green, and blue color components of an
image through independent mapping functions. The functions can either be the standard gamma
function, or any arbitrary function that can be drawn with straight line segments or a cubic
spline. See “Section 5.3.4: The Intensity Graph” for more info about graph functions.

The major use of the RGB Modification tool is to correct for the differing color response curves of
various color monitors, printers, and scanners. This is the tool to use when the image is too red,
for instance.

These three tools are tied together in a fixed order. The Colormap Editing tool operates on the original
colors in the image. The output of this tool is piped into the HSV Modification tool. Its output is piped
into the RGB Modification tool. The output from the RGB Modification tool is what actually gets
displayed.

In addition there is a collection of buttons that control the xv color editor as a whole (more or less).

Don’t Panic! It’s not as complicated as it looks.

Section 5.2: The Colormap Editing Tool

The top portion of this window shows the colormap of the
current image. There are 16 cells across, and up to 16 rows
down, for a maximum of 256 color cells. Only cells
actually used somewhere in the image are shown in this
array.

The currently selected color cell is shown with a thick
border. You can change the selection by clicking anywhere
in the array. If you drag the mouse through this area, you’ll
see the dials at the bottom change to track the current pixel
values.

You can also select a color cell by clicking anywhere in the
image window. Whichever pixel value you were on when
you let go of the mouse will become the new selected color
cell.

You can define a smoothly gradated range of colors by Left
clicking on the color cell that marks the ‘start’ of the
range, and Middle clicking on the color cell that marks the
‘end’ of the range. Intervening color cells will be
interpolated between the colors of the ‘start’ and ‘end’
colorcells.

Section 5: The Color Editor 35

Version 3.10a December 29, 1994

Since certain images will have many colors that are the same, or nearly the same, it is sometimes
convenient to group color cells together. Grouped color cells all take on the same color, and changing any
one of them affects all of the other colors in the group.

To group color cells together, do the following:

1. Hold down the <shift> key.

2. Left click on one color cell that you would like to be in the group

3. Right click on other color cells that you wish to be in this group. (Right clicking on cells that are
already selected will de-select them.)

4. Release the <shift> key when you’re done.

You can create as many groups as you like.

You can use this grouping/ungrouping technique to copy colors from one color cell to another. Left click
on the source color cell, Right click on the destination color cell, and Right click on the destination color
cell again (to ungroup it).

Section 5.2.1: Using the Dial Controls

At the bottom of the Colormap Editing tool are three dials
that let you set the color of the current color cell (or group of
cells). By default, the dials control the Red, Green, and Blue
components of the RGB colorspace, but they can also control
the Hue, Saturation, and Value components of the HSV
colorspace. (The RGB/HSV button controls this.)

Regardless of what they control, all dials in xv work the same
way. Clicking on the single arrows increase/decrease the value by 1. Clicking on the double arrows
increase/decrease the value by a larger amount (16 in this case). If you click on one of the arrows, and
hold the mouse button down, the increase/decrease will repeat until you release the mouse button.

You can also click in the general area of the pointer and simply drag it to the position you want. The
further your mouse cursor is from the center of the dial, the more precise the control will be. While
dragging, you do not have to keep the cursor inside the dial window.

Section 5.2.2: Colormap Editing Commands

Undoes the last change made to the colormap that resulted in a color cell
changing value. This includes grouping and ungrouping color cells, and
changing any of the dials.

Undoes all color changes. Returns the colormap to its original state. Destroys
any groups that you may have created.

Toggles the Colormap Editing dials between editing colors in terms of Red,
Green, and Blue, and editing colors in terms of Hue, Saturation, and Value.

Section 5: The Color Editor 36

Version 3.10a December 29, 1994

Turns color images into greyscale images by changing the colormap. This
replaces each color cell with a greyscale representation of itself. Use the
Revert command to restore the colors.

This command behaves differently, depending on the setting of the RGB/HSV
mode. (You can tell which mode you’re in by the titles on the dials.)

In RGB mode, each color component is separately ‘inverted’. For example,
Yellow (which is composed of full red, full green, and no blue) would turn to
Blue (no red, no green, full blue).

In HSV mode, only the Value (intensity) component is ‘inverted’. The Hue and
Saturation components remain the same. In this mode, bright colors turn to
dark versions of the same color. For example, a Yellow would turn Brown.

Generates a random colormap. This is of questionable usefulness, but it will
occasionally come up with pleasing color combinations that you never would’ve
come up with yourself. So it stays in. It works best on images with a small
number of colors. Note that it respects cell groupings, so if your image has a
lot of colors, you can create a few large groups and then use the Random
command.

Note: It is HIGHLY RECOMMENDED that if you’re using the Colormap Editing tool, you do not use
either the HSV Modification tool or the RGB Modification tool. If you do, the results can be quite
confusing. For example, you might edit a color cell, and set its color values to produce a purple.
However, because of HSV/RGB Modification further down the line, the actual color displayed on the
image (and in the color cell) is yellow. It confuses me, it’ll probably confuse you, too.

Section 5.3: The HSV Modification Tools

There are four separate controls in the HSV Modification tool.

At the top of the window are a pair of circular controls that handle hue
remapping.

Lower down is a circular control that maps ‘white’ (and greys) to a specified
color. There is also dial control that lets you saturate/desaturate the colors
of the image.

Finally, at the bottom there is a graph window that lets you modify intensity
values via an arbitrary remapping function.

Section 5: The Color Editor 37

Version 3.10a December 29, 1994

Section 5.3.1: Hue Remapping Controls

These two dials are used to define a source and a destination
range of hue values. Every hue in the source range (defined
in the From dial) gets mapped to the value of the
corresponding point in the destination range (defined in the
To dial).

Each dial has a pair of radial lines with handles at their ends.
Between the two lines an arc is drawn with an arrow at one
end. The wedge drawn by these lines and the arc defines a
range of values (in degrees). The direction of the arc
(clockwise, or counter-clockwise) determines the direction of
this range of values (increasing or decreasing).

Distributed around the dial are tick marks and the letters ‘R’,
‘Y’, ‘G’, ‘C’, ‘B’, and ‘M’. These letters stand for the colors Red, Yellow, Green, Cyan, Blue, and
Magenta, and they show where these colors appear on the circle.

The range is shown numerically below the control. By default the range is ‘330°, 30° CW’. This means
that a range of values [330°, 331°, 332°, ... 359°, 0°, 1°, ... 28°, 29°, 30°] has been defined. Note that
(being a circle) it wraps back to 0° after 359°.

The range can be changed in many different ways. You can click on the ‘handles’ at the end of the radial
lines and move them around. If you click inside the dial, but not on one of the handles, you’ll be able to
drag the range around as a single object. There are also 5 buttons below the dial that let you rotate the
range, flip the direction of the range, and increase/decrease the size of the range while keeping it centered
around the same value.

In its default state, the To dial is set to the same range as the From dial. When the two dials are set to the
same range, they are effectively ‘turned off’, and ignored.

An example of hue remapping:

1. As a simple example of the sort of things you can do with the hue remapping control, we’ll
change the color of the 3-D fish in the default (xv logo) image without changing any other colors
in the image. Since the fish are drawn using many different shades of pink, you would not want
to do this with the Colormap Editing tool. It would take forever, or at least most of your lunch
break.

2. Get the default image up on the screen by running xv without specifying any filenames on the
command line. Open up the xv color editor window via the Color Editor command.

3. Next, click the mouse in the image window and drag it around. You’ll find that pixels in the fish
bodies have a Hue component value of ‘0’ (which corresponds to pure red).

4. To remap this hue, simply adjust the From dial so that its range includes this Hue value. (It
probably already does, by default.) Then twiddle the To dial to remap the hues. If you find more
than the fish changing color, you can shrink the From range so it covers a smaller range of hues.
This may help.

Note that the values printed when you are tracking pixel values in the image are the values before the
HSV Modification tool is applied. For example, the background of the default image will still claim to be
blue, regardless of what color you may have changed it to. This is so that you know what Hue value you
will need to remap if you want to change its color again.

If you press the Reset button that is located near the hue remapping controls, it will effectively disable the
hue remapping by setting the To range equal to the From range.

Section 5: The Color Editor 38

Version 3.10a December 29, 1994

Below the hue remapping controls are a group of ‘radio buttons’. You can have up to six different hue
remappings happening simultaneously. Higher numbered mappings take precedence over lower
numbered mappings.

An example of multiple hue remappings:

1. Draw a From range that is a complete circle. The easiest way to do this is to draw a range that is
nearly a full circle, then click and hold down the ‘increase range’ button located below the From
range dial until the range stops getting bigger.

2. Copy this range to the To range by pressing the Reset button.

3. Rotate the To range slightly, by either clicking and dragging anywhere in the To range dial, or by
using the ‘rotate clockwise’ and ‘rotate counter-clockwise’ buttons located below the To range.

4. You’ve just built yourself what is effectively a tint control.

5. Now, suppose, you’d like to adjust the sky color of your (tint-modified) image, without affecting
anything else. Clicking on the sky in the image window reveals that the background still has an
(original) hue of around 240. To modify this hue without affecting anything else, we’ll need a
second hue remapping.

6. Click on the 2 radio button. The dials will change to some other default setting. As before, set
the From range to encompass the value 240, preferably as ‘tightly’ as possible, and set the To
range to produce the desired background color. Note that since both the sky and the ocean are
blueish, it may not be possible to change the color of one without affecting the color of the other.

Note that the six hue remappings are not ‘cascaded’. The output of one remapping is not fed as input into
any of the other hue remappings. The hue remappings always operate on the hue values in the original
image. In this example, if remapping #1 adds 32 to all hue values, thereby mapping the blue background
(value 240) into a purple-blue (value 272), remapping #2 still sees the background at 240, and can remap
it to anything it likes. Similarly, in the same example, if remapping #1 has mapped a green-blue color
(value 208) into blue (value 240), remapping #2 will not map this into another color. As far as remapping
#2 is concerned, that green-blue is still green-blue.

If it seems complicated, I’m sorry. It is.

Section 5.3.2: The White Remapping Control

In the HSV colorspace, ‘white’ (including black, and all the greys in between) has
no Hue or Saturation components. As such, it is not possible to use the hue
remapping controls to change the color of white pixels in the image, since they
have no ‘color’ to change.

The white remapping control gives you a way to add Hue and Saturation
components to all the whites in the image. It consists of a movable point in a
color dial. The angle of the dot from the center of the dial determines the Hue
component. The distance of the dot from the center of the dial determines the
Saturation component. The further the dot is from the center of the dial, the more
saturated the color will be.

You can control the white remapping control in several ways. You can click on the handle and drag it
around with the mouse. There are also four buttons provided under the dial. One pair allows you to rotate
the handle clockwise and counter-clockwise without changing its distance from the center. The other pair
of buttons lets you change the distance between the handle and the center without changing the angle.

The current Hue and Saturation values provided by the control are displayed below the dial. The first
number is the Hue component, in degrees, and the second is the Saturation component, as a percentage.

Section 5: The Color Editor 39

Version 3.10a December 29, 1994

There is also a checkbox that will let you turn off the white remapping control. This lets you quickly
compare your modified ‘white’ with the original white. You can also effectively disable the white
remapping control by putting the handle back in the center of the control. The easiest way to do this is to
click and hold the ‘move towards center’ button until the saturation value gets down to 0%.

Example:

1. Press the Grey button in the Colormap Editing tool. This turns all the colors in the image into
shades of grey.

2. Drag the handle in the white remapping control halfway down towards the ‘R’ mark. The Hue
and Saturation values should be roughly 0° and 50%. The image should now be displayed in
shades of pink.

Section 5.3.3: The Saturation Control

The saturation control lets you globally increase or decrease the color saturation
of the image. In effect, it is much like the ‘color’ control on most color
televisions.

The saturation control is a dial that operates exactly like the dials described in
“Section 5.2.1: Using the Dial Controls”. In short, you can click and hold down
any of the four buttons in the bottom of the control to increase or decrease the
control’s value. You can also click on the dial itself and move the pointer
around directly.

The saturation control has values that range from ‘-100%’ to ‘+100%’. At its default setting of ‘0%’, the
saturation control has no effect on the image. As the values increase, the colors become more saturated,
up to ‘+100%’, at which point every color is fully saturated. Likewise, as values decrease, the colors
become desaturated. At ‘-100%’, every color will be completely desaturated (i.e., a shade of grey). Note
that this control is applied after the White Remapping control, so if you ‘greyify’ the image by completely
desaturating it, you will not be able to color it using the White Remapping control. You could get around
this problem by saving the (now grey) image, and reloading, or you could simply use the Grey button in
the Colormap Editor instead.

Unless you’re trying for some special effects, the useful range of this control is probably ±20%. Also note
that the control will have no effect on shades of grey, as they have no color to saturate.

Section 5.3.4: The Intensity Graph

The Intensity graph allows you to change the brightness of the
image, change the contrast of the image, and get some unique
effects.

The Intensity graph is a function that lets you remap intensity values
(the Value component in the HSV Colorspace) into other intensity
values. The input and output values of this function both range from
0 to 255. The input values range along the x axis of this graph (the
horizontal). For every input value (point along the x axis) there is a
unique output value determined by the height of the graph at that
point. In the graph’s default state, the function is a straight line
from bottom-left to top-right. In this case, each input value
produces an equivalent output value, and the graph has no effect.

There are a number of ‘handles’ along the graph. These provide your major means of interacting with the
graph. You can move them around arbitrarily, subject to these two constraints: the handles at the far left

Section 5: The Color Editor 40

Version 3.10a December 29, 1994

and far right of the graph can only be moved vertically, and handles must remain between their
neighboring handles for the graph to remain a proper function.

The handles are normally connected by a spline curve. To see this, move one of the handles by clicking
and dragging it. (Note that the x,y position of the current handle is displayed while the mouse button is
held down.) The function will remain a smoothly curved line that passes through all the handles. You
can change this behavior by putting the function into ‘lines’ mode. Press the button. The function
will change to a series of line segments that connect the handles. Press the button to go back to
‘spline’ mode.

The next two buttons let you add or delete handles. The button will insert a handle into the largest
‘gap’ in the function. The button will remove a handle from the smallest ‘gap’ in the function. You
can have as few as 2 handles, or as many as 16. Note that as the number of handles gets large, the spline
will start getting out of control. You may wish to switch to ‘lines’ mode in this case.

The button puts everything back on a straight line connecting bottom-left to top-right (a 1:1 function).
It does not change the number of handles, nor does it change the x-positions of the handles.

The button lets you set the function curve by entering a single number. The function is set equal to
the gamma function:

y = 255 ⋅ (i ÷ 255)1/γ

where i is the input value (0-255), γ is the gamma value, and y is the computed result (0-255).

Gamma values (for our purposes) are floating point numbers that can range between -1000 and 1000, non-
inclusive.

A gamma value of ‘1.00’ results in the normal 1:1 straight line.

Gamma values of less than 1.00 but greater than 0.00 result in ‘exponential’
curves which will dim the image.

Gamma values greater than 1.00 result in ‘logarithmic’ curves, which will
brighten the image. Try it and see.

Gamma values between 0 and -1 result in reversed ‘exponential’ curves.

Gamma values less than -1 result in reversed ‘logarithmic’ curves.

There is a shortcut for the button. Type g while the mouse is inside the graph window.

Also, touching any of the handles after a command will put the graph back into its ‘normal’ mode.
(Either ‘spline’ or ‘lines’ depending on which of the top two buttons is turned on.)

Generally, whenever you move a graph handle and let go of it, the image will be redrawn to show you the
effects of what you’ve done. This can be time-consuming if you intend to move many points around. You
can temporarily prevent the redisplay of the image by holding down a <shift> key. Continue to hold the
<shift> key down while you move the handles to the new position. Release the <shift> key when you’re
done, and the image will be redisplayed.

Section 5: The Color Editor 41

Version 3.10a December 29, 1994

Section 5.4: The RGB Modification Tool

The RGB Modification tool is a collection of three graph windows, each of
which operate on one of the components of the RGB colorspace. This tool
lets you perform global color-correction on the image by boosting or
cutting the values of one or more of the RGB color components. You can
use this to correct for color screens that are ‘too blue’, or for color printers
that produce ‘brownish’ output, or whatever.

The graphs work exactly as explained in “Section 5.3.4: The Intensity
Graph”.

Neat Trick: In addition to color-correction, you can use the RGB
modification tool to add color to images that didn’t have color to begin
with. For instance, you can ‘pseudo-color’ a greyscale image.

An example of pseudo-coloring:

1. Adjust the Red graph so that there is a strong red presence on the right side of the graph, and
none on the left, or in the middle.

2. Adjust the Green graph so that there is a strong green presence in the middle of the graph, and
none on the left or right.

3. Adjust the Blue graph so that there is a strong blue presence on the left side of the graph, and
none on the left, or in the middle.

4. The graphs should look roughly like this:

You now have a transformation that will take greyscale images and display them in pseudo-color, using a
‘temperature’ color scheme. Neato!

Section 5: The Color Editor 42

Version 3.10a December 29, 1994

Section 5.5: The Color Editor Controls

These buttons provide general control over the whole xv
color editor window. You can display the image with or
without color modification, save and recall presets, and
undo/redo changes. Also, convenience controls are given
for performing some of the most common operations on the
Intensity graph.

Displays the image using the current HSV and RGB Modifications. Also turns
the ‘Display with HSV/RGB mods’ checkbox on. (See below.) This is only
useful when the ‘Auto-apply HSV/RGB mods’ checkbox is off.

Keyboard Equivalent: <Meta> a

Displays the image without any HSV or RGB Modifications. Also turns the
‘Display with HSV/RGB mods’ checkbox off.

Undoes the last change to the HSV or RGB controls.

It may be helpful to think of xv as maintaining a series of 32 ‘snapshots’ of the
HSV and RGB controls. You are normally looking at the last frame in this
series. The Undo control moves you backwards in the series.

Only available after you’ve hit Undo. Moves you forward in the ‘snapshot’
series described above. Note that if you have hit Undo a few times (i.e., you’re
now looking at some frame in the middle of the series), and you change an
HSV or RGB control, all subsequent frames in the series are thrown away, and
the current state becomes that last frame in the series.

Resets all HSV and RGB controls to their default settings. Doesn’t affect the
Colormap Editing tool. Note that these default settings can be changed using
the Set command described below.

Keyboard Equivalents: R, <Meta> r, and <Meta> 0

Pressing any of these buttons recalls a preset (a complete set of values for the
HSV and RGB controls). By default, the presets are:

1. Binary intensity. Every color in the image is either at full brightness, or
black. Gives images a neat ‘neon’ sort of look, much like the Saturday Night
Live credits of the late-70’s.

2. Binary colors. The image will be shown using only the 8 binary
combinations of red, green, and blue. (e.g. black, blue, green, cyan, red,
magenta, yellow, white)

Section 5: The Color Editor 43

Version 3.10a December 29, 1994

3. Temperature pseudo-color. (For use on greyscale images) Maps intensity
values 0-255 into a ‘temperature’ color scheme where blue is ‘coldest’ and red
is ‘hottest’.

4. Map pseudo-color. (For use on greyscale images) Maps intensity values 0-
255 into something akin to the standard ‘elevation map’ color scheme (blue,
green, yellow, brown)

Of course, you can replace these defaults with your own. See “Section 12:
Modifying xv Behavior” for more details.

Keyboard Equivalents: <Meta> 1, <Meta> 2, <Meta> 3, and <Meta> 4

Used in conjunction with the Reset, 1, 2, 3, or 4 buttons to store the current
settings of the HSV and RGB controls into a preset. To do so, press the Set
button, and then press one of the Reset, 1, 2, 3, or 4 buttons. The current HSV
and RGB control settings will be stored in that preset, as long as xv continues
running. The values will be lost when the program exits. It is also possible to
save these values permanently. See the CutRes button (below) and “Section
12: Modifying xv Behavior” for more details.

Copies the current settings of the HSV and RGB controls, as text, into the X
server’s cut buffer. You can then use a text editor to paste these values into
your ‘.Xdefaults ’ (or ‘ .Xresources ’) file. This lets you save the current
settings ‘permanently’. See “Section 12: Modifying xv Behavior” for more
details.

This button closes the xv color editor window.

Brightens the image by moving all the handles in the Intensity graph up by a
constant amount.

Darkens the image by moving all the handles in the Intensity graph down by a
constant amount.

Increases the contrast of the image by moving handles on the left side of the
Intensity graph down, and handles on the right side up.

Decreases the contrast of the image by moving handles on the left side of the
Intensity graph up, and handles on the right side down.

Normalizes the image so that the darkest pixels in the image are given an
intensity of ‘0’, and the brightest pixels are given an intensity of ‘255’.
Intermediate colors are interpolated accordingly. This forces the image to have
the full (maximum) dynamic range.

Keyboard Equivalent: N

Section 5: The Color Editor 44

Version 3.10a December 29, 1994

Runs a histogram equalization algorithm on the currently displayed region of
the image. That is, if you’re cropped, it will only run the algorithm on the
cropped section. Note, however, that the only modification it makes to the
image is to generate a bizarre corrective Intensity curve. As such, if you
HistEq a section of the image, the rest of the image will probably not be what
you’d want. Also note that the histogram curve will ‘go away’ if you touch any
of the handles in the Intensity graph window, just like a ‘gamma’ curve would.

Keyboard Equivalent: H

The ‘Display with HSV/RGB mods’ checkbox tells you whether or you’re looking at a modified image
(checked) or the ‘raw’, unmodified image (unchecked). The Apply and NoMod buttons change the
setting of this checkbox, and you can also change the checkbox directly by clicking on it.

The ‘Auto-apply HSV/RGB mods’ checkbox controls whether or not the program regenerates and
redisplays the image after each change to an HSV or RGB control. By default, this checkbox is turned on,
so that you can easily see the results of your modifications. However, if you want to make a large number
of changes at once, it might be preferable to turn automatic redisplay off for a while, to speed things up.

The ‘Auto-apply while dragging’ checkbox controls whether or not the image colors are changed
automatically as you manipulate the various xv color editor dials and graphs. This button is normally
turned on, but for it to have any effect, you must be in ‘Read/Write Colors’ mode. See “Section 3.3.2:
Color Allocation Commands” and the ‘-rw ’ mode described in “Section 12.4: Color Allocation Options”
for more information.

The ‘Auto-reset on new image’ checkbox controls whether or not the HSV and RGB controls are Reset
back to their default values whenever a new image is loaded up. By default, this is also turned on, as
when you’re playing with the HSV/RGB controls, you probably only want to affect the current image, and
not all subsequently loaded images as well.

Section 6: The Visual Schnauzer 45

Version 3.10a December 29, 1994

Section 6: The Visual Schnauzer

Section 6.1: What’s a Visual Schnauzer?

Hint: it’s not a smallish seeing-eye dog of Germanic descent.

Probably the most exciting new feature in Version 3.00 was the Visual Schnauzer, and while it hasn’t
changed dramatically in Version 3.10, it’s still plenty exciting. The Visual Schnauzer gives you a visual
interface to the UNIX file system. It lets you view tiny ‘thumbnail’ representations of your image files,
directories, and other files. It lets you create directories, rename files, move and copy files to different
directories, delete files, view image files, view text files, and just generally nose around.

In short, it’s cool, and it should be of some use for those of us who have large numbers of GIF and JPEG
files with non-descriptive MS-DOS-style ‘8+3’ filenames.

Note: Unlike most xv windows, schnauzer windows are resizable. You can decide how many (or few)
icons you’d like displayed by changing the size of the schnauzer window. It also should be pointed out
that there are more command buttons available than are shown at the default schnauzer size. If you make
the window larger, you will be given additional command buttons. All the commands are always available
from the Misc. Commands menu.

Section 6.2: Operating the Schnauzer

Click on the Visual Schnauzer button in the xv controls window, or type a <Ctrl> v inside any active xv
window. This will open a schnauzer window. The window will display the contents of the directory that

Section 6: The Visual Schnauzer 46

Version 3.10a December 29, 1994

you were in when you started xv. (Though this behavior, like so many things, can be overridden. See the
description of the ‘-dir ’ command-line option in “Section 12.9: Miscellaneous Options”.)

The first time you open an image directory with the schnauzer, you’ll find that your image files are not
displayed as spiffy little thumbnail icons, but instead are shown as generic icons showing the file format
used. This is because the icons need to be generated from the image files. Displaying a thumbnail icon
would normally require loading the entire image, compressing it down to a small 80x60-ish image, and
dithering it with some set of colors. This is a very time-consuming operation. To avoid doing this every
single time you open a schnauzer window, xv lets you do this operation once, and it maintains the results
in a hidden subdirectory (‘.xvpics ’) for each directory. This subdirectory contains one small (2k) file
for each file in the parent directory. The icons are in an 8-bit per pixel format, pre-dithered with a 332
RGB colormap.

So, assuming that there are some image files in the current directory, the first thing you should do is
generate some icons. (If there aren’t any image files in the current directory, exit xv and start it again
from a directory that does have image files. We’ll discuss navigating via the schnauzer later.)

Section 6.2.1: Generating Image Icons

To generate icons for all the images in the current directory, issue the select All files command from the
Misc. Commands menu. All the icons in the current directory should ‘light up’ in some way to signify
that they are selected, with the possible exception of the <parent> directory.

Next, issue the Generate icons command from the Misc. Commands menu. xv will begin the process of
generating icon files for the selected files. This process can be quite time-consuming, particularly if you
have a large number of files in the directory, or the image files are in the JPEG format. During this time,
xv is effectively ‘out-to-lunch’, as it will not be paying attention to any X events. There isn’t any way to
stop it either, though if you kill the xv process from another window, you will succeed in stopping the icon
generation. You will not lose any computed icons by doing this, as icon files are written out as they are
computed, so it’s perfectly safe to stop the generation via this method.

Also, you’ll note that xv displays a bar-graph ‘progress meter’ at the top of the schnauzer window while
it’s doing this, so you can gauge roughly how long it will take. Icons will be displayed as they are
generated, in an attempt to make the process as entertaining as possible.

Section 6.2.2: Changing Directories

The name of the current directory is displayed in a button at the top-center of the schnauzer window. You
can change to any higher-level directory in the current path by pulling down this menu button. The
names of the parent directories will be shown in the pull down menu.

You can also go up one level by double-clicking on the <parent> directory icon.

You can go down to any subdirectory by double-clicking on the appropriate subdirectory icon.

The Change Directory command gives you a more direct route: you just type the pathname of the
directory you’d like to go to.

Section 6.2.3: Scrolling the Schnauzer

You can scroll the schnauzer by operating the vertical scroll bar, which operates exactly as described in
“Section 3.12.1: Operating a List Window”.

You can also scroll the window a page at a time by using the <PageUp> and <PageDown> keys on your
keyboard (which may be labeled <Prev> and <Next> on some keyboards). The <Home> and <End>
keys will take you to the beginning and end of the list, respectively. (If your keyboard doesn’t have Home
and End keys, <Shift> <PageUp> and <Shift> <PageDown> may also work.) You can scroll the list a

Section 6: The Visual Schnauzer 47

Version 3.10a December 29, 1994

line at a time by using the up and down arrow keys. Note, however, that the arrow keys move the
indicator that shows the currently selected file. Likewise, the left and right arrow keys move the selection
indicator left and right, wrapping at the edges of the window.

Also, if you type a normal, alphabetic character into the schnauzer window, it will attempt to scroll the
window so that the first file beginning with that character will be visible. Note that this behavior keeps
you from typing normal xv keyboard equivalents into this window, so don’t even try it.

Section 6.2.4: Selecting Files

Double-click on an image file’s icon. The image should be loaded, and the full path name of the image
should be added to the bottom of the xv controls window’s name list. You can also double-click on text
files to view them in a TextView window. (See “Section 7: The TextView Window” for more
information.)

It is possible to select more than one file at a time. The easiest way to do so is to hold down the <Shift>
key and click on icons. When the <Shift> key is held down, any icons clicked on are simply toggled
between being selected, and being not selected. All other files remain as they were. If you type <Shift>
<Space>, xv will keep all currently ‘lit’ files lit, and light (and load) the file after the last lit file it finds.
This can be useful for building up a big list of files to delete by <Shift> <Space>-ing your way through
the list, and manually unselecting any files you want to keep.

You can also select files by drawing a rectangle around icons that you want selected. To do so, simply
click in the space in between the icons, and drag. A rectangle will be drawn, and all icons that are inside
(or partially inside) the rectangle will be selected. Note that if you drag the rectangle off the top or bottom
of the window, the window will automatically scroll. Also, if you hold down the <Shift> key while you
draw a rectangle, any previously selected icons will continue to remain lit.

Finally, you can also select files by using the select All files command from the menu (or by typing a
<Ctrl> a) to select all the icons in the current directory. If you want most of the files selected, it might be
easiest to select all the files, hold down the <Shift> key, and selectively turn off the ones you don’t want
selected.

If you double-click on a selected file while there are multiple files selected, the clicked-on file will be
displayed, and all selected filenames will be copied into the xv controls window’s list.

Section 6.2.5: File Management

Once you have some files selected, you can move them to other directories by clicking on a lit icon and
dragging it into one of the subdirectories. When you press the mouse button, the cursor will change to a
‘files’ cursor to indicate that you are potentially moving files around. If you move the cursor near the top
or bottom edge of the window, the window will scroll up or down accordingly. Necessary, as the
subdirectory folders are always shown at the top of the window. When you move the cursor on top of a
folder (either the <parent> directory, or one of the subdirectories), the folder will light up to
acknowledge your selection. If you release the mouse button while a folder is lit, all currently selected
files (and folders) will be moved into the lit folder.

Note that, using only one schnauzer window, it’s only possible to move files up or down one directory
level. If you want to move files to completely unrelated directories, you can easily accomplish this by
opening a second schnauzer window (via the open new Window command in the menu, or <Ctrl> w).
Get the second schnauzer window aimed at the desired destination directory, and simply drag the files
from the first window into the second window.

Also, when you drag files around, xv normally ‘moves’ the files from one directory to another. If you’d
like, you can copy files instead of moving them. Just press (and hold down) the <Ctrl> key while

Section 6: The Visual Schnauzer 48

Version 3.10a December 29, 1994

dragging the files. The ‘files’ cursor will change to display ‘CPY’ as well, to signify that you are copying
files instead of moving them.

The remaining file-management commands (renaming files, deleting files, and creating subdirectories)
are discussed below.

Section 6.3: The Commands

There are more commands available in the schnauzer than are
normally displayed in the buttons at the bottom of the window. The
additional buttons will be displayed if you make the window larger.
Alternately, all commands are always available via the
Misc. Commands menu shown to the left.

Note that the keyboard equivalent for all commands that have one is
listed in the menu, next to the command. (‘^’ means <Ctrl>)

Also note that the bottom two commands, Show hidden files, and
Select files, do not appear as buttons, ever. They’re only accessible
via the Misc. Commands menu.

Pops open a dialog box that prompts you for a directory name to cd to.
This can be handy if the directory you want to go to is far away in the
directory tree.

Keyboard Equivalent: <Ctrl> c

This command can only be issued when one or more files (or
directories) are selected. It will pop up a confirmation box to make
sure you didn’t accidentally issue the command. At the confirmation
box, you can type <Ctrl> d a second time to say Ok, or press <Esc> to
Cancel the deletion. (Of course, you can just click on the appropriate
button, as well.) Also, note that if you delete a subdirectory, all files
and directories in that subdirectory will be recursively deleted.
Finally, note that you can’t delete the <parent> directory... for your
own protection.

Keyboard Equivalent: <Ctrl> d

When you issue this command you’ll be prompted for a plain filename
for the new directory. You can only create subdirectories in the
current directory.

Keyboard Equivalent: <Ctrl> n

Section 6: The Visual Schnauzer 49

Version 3.10a December 29, 1994

This command can only be used when a single file (or subdirectory) is
selected. You’ll be prompted for the new name. Also, note that you
can’t rename the <parent> directory, again, for your own good.

Keyboard Equivalent: <Ctrl> r

Rescans the current directory. Since other programs may be creating
or deleting files in the current directory, the contents shown in the
schnauzer may not always be up-to-date. Use the ReScan command to
re-read the current directory.

Keyboard Equivalent: <Ctrl> s

Like the ReScan command, but more serious about it. In addition to
re-reading the current directory contents, it will also look for files that
don’t have icons created (or files that have later modification times
than their associated icon files) and generate icons for them. After
that, it will look for icon files that no longer have associated image
files (which can happen if you delete the image files without using the
schnauzer), and deletes them. Note that this command is not limited
to the selected files, unlike the Generate icon(s) command listed
below.

Keyboard Equivalent: <Ctrl> u

Opens a new schnauzer window, up to a maximum of 4. The new
schnauzer opened will display the same directory that the opening-
schnauzer was displaying.

Keyboard Equivalent: <Ctrl> w

Unconditionally generates icons for all the currently selected files. As
such, you can only issue this command when one or more files are
selected.

Keyboard Equivalent: <Ctrl> g

Selects all files in the current directory.

Keyboard Equivalent: <Ctrl> a

Displays the currently-selected file in a TextView window. This
command can only be used when there is exactly one file currently
selected. Note that if you double-click on a file in an unrecognized
format, xv will automatically display it in a TextView window. This
command lets you view recognized image files in text mode.

Keyboard Equivalent: <Ctrl> t

Recursively walks its way down a directory tree, starting from the
current directory, and does an Update command in each subdirectory.
It will follow symbolic links, if you have any, and it’s smart enough to

Section 6: The Visual Schnauzer 50

Version 3.10a December 29, 1994

avoid circular links. It gives you a nifty way to generate icons for an
entire hierarchy of image files. It can also take a Good Long Time,
depending on your particular situation, so it pops up an annoying “Are
You Sure?” dialog box before it starts working its magic.

Keyboard Equivalent: <Ctrl> e

Exits the xv program.

Keyboard Equivalent: <Ctrl> q

Closes this particular schnauzer window.

Keyboard Equivalent: <Ctrl> c

Toggles whether or not ‘hidden’ files (in Unix, files that have a ‘.’ as
their first character) should be displayed.

Keyboard Equivalent: <none>

Opens a dialog box that lets you select files by name. Wildcards are
accepted. It does not clear any previously selected files.

Keyboard Equivalent: <Ctrl> f

Section 7: The TextView Window 51

Version 3.10a December 29, 1994

Section 7: The TextView Window

Section 7.1: Overview

xv now has the ability to display arbitrary text data. While there are several different ways to cause a
TextView window to appear, (such as opening an unrecognized type of file, using the Text view command
in the Visual Schnauzer, or the TextView, Comments, or License commands in the xv controls window)
all of the windows behave the same.

The TextView window has two primary modes of operation. It can display data as ASCII text, or it can
display data in hexadecimal format.

There are a total of two TextView windows available. One is reserved for the Comments command. The
other is used for all other text data.

As you might suspect, you can scroll the TextView windows by using the mouse in the scroll bars (as
described in “Section 3.12.1: Operating a List Window”). Likewise, you can scroll the window around
using the arrow keys on your keyboard, the <PageUp> and <PageDown> keys (sometimes labeled
<Prev> and <Next>) and the <Home> and <End> keys. It behaves as you would expect.

You can switch modes by pressing the nice friendly Ascii and Hex buttons. Close (or pressing <Esc>)
will close the TextView window.

Section 7.1.2: ASCII Mode

This is the default mode for the TextView windows. It will display text of any width and length. The
only limitation is that all of the text must fit into memory. If it doesn’t, you’ll get an appropriate error
message, and the text will not be displayed.

TextView windows are resizable. When you change the size of the main window, the inner text display
window will change size appropriately, and display more (or less) data. While the default size of all
TextView windows (except for the Comments window) is 80 characters wide by 24 lines high, there is
nothing magical about these numbers. They’re only chosen out of a sense of tradition.

When in ASCII mode, the TAB character (ctrl-I) and the NL character (ctrl-J) are interpreted as is normal
on a UNIX system (e.g. tab stops every 8 characters, NL marks end of line). The CR character (ctrl-M) is
not displayed.

Section 7: The TextView Window 52

Version 3.10a December 29, 1994

All other control characters (characters with an ASCII value less than ‘32’) are displayed with a caret (^)
and the appropriate upper-case letter. For example, character number 17 (decimal) will be displayed as
‘^Q’.

All characters with an ASCII value greater than 127 are displayed as octal numbers with a leading
backslash. As an example, character number 128 (decimal) will display as ‘\200’.

All other characters are displayed with the appropriate standard glyph.

Section 7.1.3: Hex Mode

This mode is useful for displaying binary data. In fact, if you have some binary data to display, you might
want to start up xv just to display it, as this mode beats the heck out of using the standard UNIX command
‘od -ha ’.

The data is shown 16 bytes to a line. The first number on each line is the offset (in hex) from the
beginning of the file. This is followed by 16 bytes, shown in hex, and then in ASCII. Bytes which have a
value less than 0x20 or greater than 0x7f are shown as a ‘.’ in the ASCII section.

While you can resize the window while in Hex mode, changing the width will not be of any use, as the
output is formatted for an 80 character wide TextView window. Making the window wider will just put
unused space on the right side. Making the window narrower will just enable the horizontal scroll bar.
Changing the height of the window may prove useful, however.

Section 7.2: The Comment Window

The xv comments window (opened by the Comments command in the xv controls window) operates in
exactly the same way as the TextView window. You can even display image comments in Hex mode,
though I don’t see that as being very useful.

The xv comments window displays any comments found in the currently-loaded image file. If there are no
comments, the window will be empty. Note that only certain image formats support comment fields
(GIF89, JPEG, TIFF, and PBM/PGM/PPM are the most likely formats to have comments).

Whenever a new image is loaded, the xv comments window is updated to reflect the new image comments,
or lack thereof.

Whenever you save an image in a format that supports comments, the comments from the last loaded
image will be written out as well. This lets you read a file (say a GIF) which has comments, and write it
out in another format (say, JPEG) preserving the comments.

Section 7: The TextView Window 53

Version 3.10a December 29, 1994

Currently, xv does not give you a way to directly edit the image comments. Given how few images
actually have comments in them, it seemed like a lot of work for very little gain. (Yeah, I know, if
something actually let you edit the comments, perhaps people would start entering some...) Whatever.
Seems likely enough that this feature will make it into a future version of xv. Of course, that’s exactly
what I said in the 3.00 documentation, a year and a half ago, so you may want to take that statement with
a grain of salt...

Until then, if you really want to add or edit the comments in an image file, write it out as a
PBM/PGM/PPM file. This format has a plain-text header (comments simply begin with a ‘#’ character,
which is not part of the comment), and you can edit it very easily with emacs, or any other reasonable text
editor. Once that’s done, you can use xv to convert the file back into the desired format.

Section 8: The Load Window 54

Version 3.10a December 29, 1994

Section 8: The Load Window

The xv load window lets you load and view images interactively, without specifying them on the
command line when you start xv. While it has been made somewhat obsolete by the Visual Schnauzer, the
xv load window is considerably quicker.

The load window shows the contents of the current directory in a scrolling window. The files will be
sorted alphabetically, with a small icon for each indicating the type of file (directory, executable, or
normal file).

This list window operates in the same way that the one in the xv controls window works. (See “Section
3.12.1: Operating a List Window” for details.) In short, you can operate the scroll bar, drag the highlight
bar around the window, and use the <Up>, <Down>, <Home>, <End>, <PageUp>, and <PageDown>
keys on your keyboard.

Whenever you click on a name in the list (or otherwise change the position of the highlight bar), the name
of the highlighted file is copied to the “Load file” text entry region, located below the list window.
Pressing the Ok button (or hitting <Return>) will make xv attempt to load the specified file. If the load
attempt is successful, the load window will disappear, and the new image will be displayed. Otherwise, an
error message will be displayed, and the load window will remain visible.

The Browse checkbox overrides this behavior, and keeps the load window
visible until explicitly closed (via the Cancel button). This is handy if you’re
using xv to ‘wander around a directory tree’, and plan to be using the Load

Section 8: The Load Window 55

Version 3.10a December 29, 1994

command quite often. (Though a better way would probably involve using the
Visual Schnauzer.)

If the image is successfully loaded, its name will be added to the xv controls window list. This will let you
quickly reload it later without have to go through the xv load window again.

You can also load a file by double-clicking on its name in the file list.

If the specified filename begins with a ‘!’ or ‘|’ character, the filename will be interpreted as a shell
command to run. The leading ‘!’ or ‘|’ is dropped, and the rest of the line is fed to the default system
shell. The command is expected to generate an image in one of the xv-recognized formats as its standard
output. If the command returns non-zero, xv assumes it failed, and doesn’t try to read the output
produced. You can pipe multiple commands together. For example loading “! xwd | xwdtopnm ”
would run xwd to generate a window dump, pipe that to xwdtopnm to convert it to a PPM file, and that file
would be piped to xv.

If the specified file is a directory, xv will figure that out and (instead of loading it) will cd to that directory,
and display its contents in the list window.

Above the list window is a pop-up menu button. It normally displays the name of the current directory. If
you click this button, and hold the mouse down, the complete path will be shown, one directory per line.
You can go ‘up’ the directory tree any number of levels, all the way up to the root directory, by simply
selecting a directory name in this list.

For those who prefer the direct approach, you can simply type file or directory names in the “Load file”
text entry region. If you type a directory name and hit <Return>, xv will cd to that directory and display
its contents in the list window. If you type a file name and hit <Return>, xv will attempt to load the file.
You can enter relative paths (relative to the currently displayed directory), absolute paths, and even paths
that begin with a ‘~’.

The “Load file” text entry region supports a number of emacs-like editing keys:
<Ctrl> f moves the cursor forward one character
<Ctrl> b moves the cursor backward one character
<Ctrl> a moves the cursor to the beginning of the line
<Ctrl> e moves the cursor to the end of the line
<Ctrl> d deletes the character to the right of the cursor
<Ctrl> u clears the entire line
<Ctrl> k clears from the cursor position to the end of the line.
<Tab> Filename completion. Note: it can only complete ‘simple’ filenames (no ‘/’ chars)

If the filename is so long that it cannot be completely displayed in the text entry region, a thick line will
appear on the left or right side (or both sides) of the region to show that “there’s more over this way”.

Pressing the Rescan button will rescan the current directory. While the
contents of the current directory are read each time the load window is opened,
it is perfectly possible (given a multitasking operating system) that some other
program may add, delete, or rename files in the current directory. xv would not
know if this happened. The Rescan button gives you an easy way of ‘kicking’
xv into looking again.

The Load All button simply copies the names of all ‘plain files’ found in the
current directory into the xv controls filename list, where you have the Next
and Prev buttons to help you look at a list of files.

Section 9: The Save Window 56

Version 3.10a December 29, 1994

Section 9: The Save Window

Damned if it doesn’t look suspiciously like the xv load window! The xv save window lets you write
images back to disk, presumably after you’ve modified them. You can write images back in many
different formats, not just the original format.

Warning! Images are saved as they are currently shown! (i.e. At the current size, with the current color
modification, rotation, cropping, etc. applied.) The only exceptions to this rule are if you are displaying
images on a 1-bit B/W display, or displaying 24-bit images on a non-24-bit display. The fact that such
images have to be dithered in order to be displayed doesn’t count as ‘modification’, and the file won’t be
saved ‘as displayed’. As such, you can manipulate and save color images on a 1-bit display, and 24-bit
images on any type of display, even if you can’t really see them ‘as they are’.

For the most part, the xv save window operates exactly like the xv load window. (See “Section 8: The
Load Window” for details.) Only the differences are listed here.

When the window is opened, it should have the filename of the currently loaded file already entered into
the text entry region. If you click on a file name in the list window, this name will be cleared and
replaced with the new name. Likewise, the Format and Colors selections will reflect the currently loaded
image. This behavior can be annoying if you are using xv to do file format conversion, or are routinely
typing the same filename (a piped command, for instance).

The Prev Set button restores the Format and Colors choices to the settings
that were used the last time a file was saved during this particular run of xv.

Section 9: The Save Window 57

Version 3.10a December 29, 1994

Likewise, the Prev Name button restores the filename string to the value it had
the last time a file was saved.

At the top of the window are a pair of pull-down menus, Format and Colors. These menus let you choose
the image file format and color settings that will be used when you save the image. Normally, they
display the format that the current image is already in. If you change formats, and your filename has a
recognized suffix (i.e., ‘.gif’, ‘.GIF’, ‘.pbm’, etc.), the suffix portion of your filename will be replaced with
the new, appropriate suffix for the selected format.

You can pipe output from xv to other programs by using the xv save window. If the first character of the
specified filename is ‘!’ or ‘|’, the rest of the filename is interpreted as a command to pipe output to, in the
currently selected image format. A fine use for this feature is directly printing images to a PostScript
printer by selecting ‘PostScript’ in the formats list, and typing something like “| lpr ” as the filename.
In this case, xv will create a temporary file, write the PostScript to that file, and cat the contents of that file
to the entered command. xv will wait for the command to complete. If the command completed
successfully, the xv save window will disappear. If the command was unsuccessful, the window will
remain visible. In any event, the temporary file will be deleted.

Normally, when you save an image, it will be saved at the current expansion
(i.e., one screen pixel will map to one image pixel in the saved file).
Sometimes, however, it’s desirable to save an image at its original size. This is
particularly relevant when you’re viewing images larger than your screen. By
default, xv will automatically shrink images so that they fit on the screen. If
you save these images, you’ll find that you’ve lost a lot of data, that maybe you
wanted to keep. That’s what this checkbox is here for. Note: certain
operations, most notably the Smooth and Dither commands, only affect the
‘displayed’ image. If you choose to save an image at its normal size, these
effects will not be in the saved image.

If you have a selection rectangle drawn on the image, this control can be used.
When enabled, only the contents of the selection will be saved. This can be
very useful if you want to break parts of an image out into their own files, as
was done extensively to put together this documentation. (i.e. I Grab’bed an
xv window, such as this save window, moved the selection rectangle around so
that it contained various parts of the image (such as the ‘Selected Area’ button
to the left), and saved these parts in their own separate files, for use with
Microsoft Word.)

One important note: If your selection goes ‘off-screen’ (beyond the boundaries
of the xv image window), as can happen when you zoom-in to fine-tune the
position of the selection rectangle, your selection will be cropped to the window
when you save it, unless you also turn on the Normal checkbox. You can not
save expanded areas of the image that are not visible in the xv image window,
as such areas don’t really exist (they aren’t computed).

Section 9.1: Color Choices

At the top of the xv save window there is the Colors menu, which contains a list of possible color styles to
use when saving the image.. Most file formats support different ‘sub-formats’ for 24-bit color, 8-bit
greyscale, 1-bit B/W stippled, etc. Not all of them do. Likewise, not all ‘Color’ choices are available in
all formats.

In general, the choices in the Colors menu do the following:

Section 9: The Save Window 58

Version 3.10a December 29, 1994

Saves the image as currently shown with all color modifications,
cropping, rotation, flipping, resizing, and smoothing. The image will
be saved with all of its colors, even if you weren’t able to display them
all on your screen. For example, you can load a color image on a 1-bit
B/W display, modify it, and write it back. The saved image will still
be full color, even though all you could see on your screen was some
B/W-dithered nightmare.

Like Full Color , but saves the image in a greyscale format.

Like Full Color , but before saving the image xv generates a 1-bit-per-
pixel, black-and-white dithered version of the image, and saves that,
instead.

Saves the image as currently shown, with all color modifications,
cropping, rotation, flipping, resizing, and smoothing. The image will
be saved as shown on the screen, with as many or few colors as xv was
able to use on the display. The major purpose of this is to allow
special effects (color reduction) to be saved, in conjunction with the ‘-
ncols’ command line option. You will probably never need to use this.

Section 9.2: Format Notes

While xv can read both the GIF87a and GIF89a variants of the GIF
format, it will normally write GIF87a. xv will only write a GIF89a file
if there are image comments to be saved (comment blocks being a
GIF89a extension).. This is in keeping with the GIF89 specification,
which states that if you don’t need any of the features added in GIF89,
you should continue to write GIF87, for greater compatibility with old
GIF87-only readers.

Since GIF only supports one format (up to 8 bits per pixel, with a
colormap), there will be no file size difference between a Full Color
and a Greyscale image. A B/W Dithered image, on the other hand,
will be considerably smaller.

If you are currently in 24-bit mode, and you are saving in any color
mode other than B/W Dithered, the currently selected 24->8
conversion algorithm will be used to generate an 8-bit version of the
current image, and that image will be written. (See “Section 3.5: The
24/8 Bit Menu” for more info.)

One minor clarification: ‘JPEG’ is an image compression algorithm,
not an image file format. ‘JFIF’ is a file format created by the fine
folks at the Independent JPEG Group for the storage and interchange
of ‘JPEG’-ed image data. As such, it is the de-facto standard for
‘JPEG’ images. So, technically, when folks talk about ‘JPEG’ files,
what they probably mean is ‘JFIF’ files, but it’s not necessarily so.
Therefore, it is possible to run across ‘JPEG’ files that xv can’t read,
because they don’t adhere to the ‘JFIF’ file format standard. Just
thought you’d like to know.

Section 9: The Save Window 59

Version 3.10a December 29, 1994

Full Color images are written in a 24-bit RGB format, and Greyscale
images are written in an 8-bit greyscale format. B/W Dithered
images should not be used, as they will probably wind up being larger
than Greyscale versions of the same images, due to the way JPEG
works. Note: You cannot write a Reduced Color JPEG file. Trust
me, given the method that JPEG uses to compress, it’s not in your best
interest to save Reduced Color JPEG files. If you attempt to do so, a
Full Color JPEG file will be saved.

When you save in the JPEG format, the dialog box shown above will
pop up and ask you for a quality setting and a smoothing value. ‘75%’
is the default quality value, and really, it’s a fine choice. You
shouldn’t have to change it under normal circumstances. The lower
you set the quality, the higher the compression ratio will be (i.e., the
JPEG file will be smaller). Note that setting the quality setting to
‘100%’ will not result in ‘lossless JPEG’ (i.e., the original and the
JPEG’d images will not be exactly the same, just very close).

The smoothing value is used to ‘blur’ images before saving them. It’s
often a good idea to blur GIF (and other 8-bit color) images before
saving them, as you’ll get better compression that way, and it also may
partially undo the dithering that been done to many 8-bit images. On
the downside, you’ll also get somewhat blurred images. Something
you have to decide for yourself.

Note: The JPEG support in xv is optional. While it is normally
enabled, it is possible that it may not be enabled on your system (due
to problems compiling the JPEG library, or something). If this is the
case, you won’t have a JPEG selection in the Format menu. Please
feel free to complain to whomever built the binary that you’re using.

Full Color and Reduced Color images are written in a 24-bit RGB
format, and Greyscale images are written in an 8-bit greyscale format.
B/W Dithered images are written in a 1-bit B/W format.

Section 9: The Save Window 60

Version 3.10a December 29, 1994

When you save in the TIFF format, the dialog box shown above will
pop up and ask you which type of image compression it should use.
None, LZW , and PackBits compression types are available for use
with all the Color modes. In addition, there are two B/W Dithered-
only algorithms, CCITT Group3 and CCITT Group4 .

Note: The TIFF support in xv is optional. While it is normally
enabled, it is possible that it may not be enabled on your system (due
to problems compiling the TIFF library, or something). If this is the
case, you won’t have a TIFF selection in the Format menu. Please
feel free to complain to whomever built the binary that you’re using.

Full Color and Reduced Color images are stored in a 24-bit RGB
format, Greyscale images are stored in an 8-bit greyscale format, and
B/W Dithered images are stored in a 1-bit B/W format.

xv writes Encapsulated PostScript, so you can incorporate xv-generated
PostScript into many desktop-publishing programs. xv also prepends
some color-to-greyscale code, so even if your printer doesn’t support
color, you can still print ‘color’ PostScript images. These images will
be three times larger (in file size) than their greyscale counterparts, so
it’s a good idea to save Greyscale PostScript, unless you know you
may be printing the file on a color printer at some point.

Also, you should probably never need to generate B/W Dithered
PostScript, as every PostScript printer I’ve ever heard of can print
greyscale images. The only valid cases I can think of are: A) doing it
for a special effect, and B) doing it to generate a much smaller
(roughly 1/8th the size) PostScript file.

Note: When you try to save a PostScript file, the xv postscript window
will pop up to let you specify how you want the image printed.
(Section 10: The PostScript Window”, for details.)

Full Color images are saved in PPM format. Greyscale images are
saved in PGM format. B/W Dithered images are saved in PBM
format. Each of these formats are tailored to the data that they save,
so PPM images are larger than PGM images, which are in turn larger
than PBM images.

Section 9: The Save Window 61

Version 3.10a December 29, 1994

In the raw variation of the PBM formats, the header information is
written in plain ASCII text, and the image data is written as binary
data. This is the more popular of the two dialects of PBM, as it
produces considerably smaller image files.

Like PBM/PGM/PPM (raw) , only the image data is written as ASCII
text. As such, images written in this format will be several times
larger than images written in PBM/PGM/PPM (raw) . This is a
pretty good format for interchange between systems because it is easy
to parse. Also, since they are pure, printable ASCII text, images saved
in this format can be mailed, without going through a uuencode-like
program.

Note that xv-created PBM files (both raw and ascii variants) may
break some PBM readers that do not correctly parse comments. If
your PBM reader cannot parse comments, you can easily edit the PBM
file and remove the comment lines. A comment is everything from a
“#” character to the end of the line.

Saves files in the format used by the bitmap program, which is part of
the standard X11 distribution. Since bitmap files are inherently 1-bit
per pixel, you can only select the B/W Dithered option for this
format.

New to xv version 3.10, you can now load and save images in the
XPM (X PixMap) format. Such files are best suited to small-ish
images with a small number of colors, such as multi-color icons, and
the like. One nifty feature of this format is that images can be created
and edited using a text editor. All color choices work as expected.
One warning: xv will not write out an XPM file with more than 256
different colors. If you are viewing a 24-bit image and save it as an
XPM file, xv will first compute an 8-bit version of the image using the
current 24->8 conversion algorithm (see “Section 3.5: The 24/8 Bit
Menu”), and then save that.

xv will write a number of different types of BMP files depending on
the 8/24 bit mode that you’re in, the number of colors in the image,
and the current ‘Colors’ choice.

If you are currently in 8-bit Mode, and you select Full Color ,
Reduced Color, or Greyscale, xv will write out an uncompressed 4-
or 8-bits per pixel BMP file, based on the number of different colors in
the current image.

If you are in 24-bit Mode and you select Full Color , the program will
write out an uncompressed 24-bits per pixel image.

If you are in 24-bit Mode and you select Greyscale, an uncompressed
8-bit per pixel BMP file will be written.

If you select B/W Dither , a 1-bit per pixel BMP file will be written.

Section 9: The Save Window 62

Version 3.10a December 29, 1994

Full Color and Reduced Color images are stored in a 24-bit RGB
format, Greyscale images are stored in an 8-bit greyscale format, and
B/W Dithered images are stored in a 1-bit B/W format.

If you select Full Color or Reduced Color, the program will write a
24-bit image. Otherwise, it will write out an 8-bit image.

Another new format added to xv version 3.10. xv can now read and
write 24-bit uncompressed Targa files. As such files are about the
only reason folks still use the Targa format, this shouldn’t be a
problem. The color choices will do what you’d expect, but given that
xv only reads/writes 24-bit Targa files, saving anything but Full Color
would be a waste.

Saves images in the FITS format, a greyscale-only format used
primarily by astronomers.

Note: This format is was developed at Penn, and is rarely seen outside
of Penn. If you don’t know anything about it, trust me, you don’t want
to.

Full Color images are saved in the 3-plane, 1-band, PM_C format.
Greyscale and B/W Dithered images are both saved in the 1-plane,
1-band, PM_C format. As such, there is no size advantage to saving
in the B/W Dithered format.

This is not an ‘image file format’ at all, which is why it appears
separate from the rest of the formats in the Format menu. Instead of
saving the current image, what this does is save a list of all the
filenames in the xv controls window file list. This file list can be used
in conjunction with the ‘-flist ’ option. See “Section 12:
Modifying xv Behavior” for more details.

Section 10: The PostScript Window 63

Version 3.10a December 29, 1994

Section 10: The PostScript Window

The xv postscript window lets you describe how your image should look when printed. You can set the
paper size and the image size, position the image on the paper, and print in ‘portrait’ or ‘landscape’
mode.

The majority of the xv postscript window is taken up by a window that shows a white rectangle (the page)
with a black rectangle (the image) positioned on it. You can position the image rectangle anywhere on
the page. The only constraint is that the center of the image (where the two diagonal lines meet) must
remain on the page. Only the portion of the image that is on the page will actually be printed.

The image can be (roughly) positioned on the page by clicking in the image rectangle and dragging it
around. As you move the image, the “Top” and “Left” position displays will show the size of the top and
left margins (the distance between the top-left corner of the page and the top-left corner of the image).

You’ll note that you have limited placement resolution with the mouse. If you want to fine-position the
image, you can use the arrow keys to move the image around. The arrow keys will move the image in
.001” increments. You can hold them down, and they will auto-repeat. You can also hold a <Shift> key
down while using the arrow keys. This will move the image in .010” increments.

You can change the size of the printed image by adjusting the
Width or Height dials. Normally, the dials are locked together, to
keep the aspect ratio of the image constant. You can unlock the
dials by turning the off the checkbox located below the dials. As
you change the dials, the size of the image (when printed) is
displayed below, in inches and in millimeters. The current
resolution of the image is also displayed below. The “Resolution”
numbers tell you how many image pixels will be printed per inch.

Section 10: The PostScript Window 64

Version 3.10a December 29, 1994

One note on the ‘Resolution’ setting: I get a fair number of complaints about the default of ‘100% = 72
dpi’. Many folks wonder why they can’t set the resolution to 300 dpi, given that most PostScript printers
are 300 dpi. The answer, of course, is that they can. While you are constrained to integral percentage
scaling factors, all the good resolutions (72, 75, 100, 150, 300, and 600 dpi) are attainable with
appropriate settings of the scaling factors (100, 96, 72, 48, 24, and 12%, respectively).

Now, one other thing to note is that, unless you are printing a black-and-white (not greyscale) image, you
almost certainly do not want to print at 300 dpi (or whatever your printer’s resolution is). At this time, all
but the most enormous and expensive PostScript printers (> $20K) are fundamentally bitonal. That is,
they can either put a dot at a certain position on a page, or not put a dot there. They have no ability (or
nearly none) to adjust the size or darkness of the dot. As such, they cannot put an arbitrary 8-bit shade of
gray (or 24-bit RGB color) at each 300 (or 600) dpi pixel position. They approximate grays (and colors)
by dithering over a larger area. For example, if you print at 75 dpi onto a 300 dpi printer, each arbitrarily
colored pixel in your source image will be represented by a 4x4 grid of bitonal dots on the page. This is
why you should print non-bitonal images at low resolutions, such as 72 dpi. If you try to print them at
higher resolutions, you will lose shades of gray (or different colors).

Located below the ‘page’ rectangle are a set of radio buttons that let you specify the current paper size
(8.5”x11”, 8.5”x14”, 11”x17”, A3, A4, B5, 4”x5”, and 35mm), and orientation (Portrait and Landscape).

This button will center the image on the page.

This button will align the bottom-left of the image with the bottom-left of the
page. (Which is the origin in the standard PostScript coordinate system.) This
may be useful if you are generating Encapsulated PostScript files for use in
some desktop-publishing package.

This button will make the image as large as possible (maintaining half-inch
margins on all sides) without changing the aspect ratio.

There are a pair of small buttons located next to the “Left” and “Top” displays. Clicking the “Left” one
will cycle between displaying the “Left” margin, the “Right” margin, and the “Center X” position (the
distance from the left edge of the paper to the center of the image).

Clicking the “Top” display’s button will cycle between displaying the size of the “Top” margin, the size of
the “Bottom” margin, and the “Center Y” position (the distance from the top edge of the paper to the
center of the image).

This checkbox lets you specify whether or not to include a b/w preview of the
image in the PostScript file. Certain desktop publishing programs may make
use of such a preview.

Specifies whether or not to generate compressed 8-bit per pixel PostScript.
This is particularly handy if you’re generating color PostScript, and you are
currently in 8-bit Mode, as color PostScript files are normally three times
larger than their greyscale counterparts. Compression can shrink these color
PostScript files by a factor of 4:1. It has a lesser effect on greyscale images. It
should be noted, however, that compressed PostScript files may take 2-3 times
longer to print than uncompressed PostScript files. However, if you are

Section 10: The PostScript Window 65

Version 3.10a December 29, 1994

connected to your laser printer via a slow 9600 baud serial line, the decreased
transmission time due to compression may make up for the increased execution
time. Also note that the ‘compress’ checkbox is not available when you are in
24-bit Mode.

Click the Ok button when you’re done. If everything is successful, the xv postscript and the xv save
window will both close. If xv was unable to write the PostScript file, the xv postscript window will close,
but the xv save window will remain open, to give you a chance to enter a different filename.

Section 11: External Programs 66

Version 3.10a December 29, 1994

Section 11: External Programs

Section 11.1: bggen

Syntax: bggen [-h high] [-w wide] [-b bits] [-g geom] [-d disp] [-a] [-r rot] [-G rptgeom]
color1 [color2 ... colorN]

bggen generates background gradients for use with xv. It does not directly display anything itself.
Instead, it generates an appropriately sized PPM file, which xv can display. It is also used by the xv’s Pad
command, for a similar purpose.

By default, bggen will generate a screen-sized PPM file with a vertical color gradient. The top of the
image will be in color1, the bottom of the image will be in colorN, and intermediate positions will have
an appropriate intermediate color. You can list as many colors as you’d like. If you only list one color,
the entire image will be that single color.

Color specifications can be in one of three formats:

• A color name (e.g. ‘lightblue’) known to your X server. Use the showrgb command to get a
(gigantic) list of known colors.

• An X11-style hexadecimal RGB color specification (e.g. ‘#00ff00’), where the first two hex digits
specify the red value, the middle two specify the green value, and the last two specify the blue
value. Note that the ‘#’ character is treated specially in some shells, and to be on the safe side
you should either protect it by putting a ‘\’ character in front of it, or wrap the whole color
specification in single-quotes.

• Three integers, in the 0-255 range, separated by spaces (e.g. 0 255 0). This is mainly for
backward compatibility, as it was the only format understood by previous versions of bggen.

Options:

-d disp Specifies the name of the X display that the program should talk to. bggen
needs to connect to an X display to determine the screen size (which is
used as the default image size), and to parse color names. It is not
necessary for bggen to connect to an X display. If it can’t, you will have to
specify an image size (see below), and you’ll have to use the numeric
format to enter color specifications.

-g geom Specifies the size of the generated image. geom should be in the format:
widexhigh (e.g. ‘1024x768’). If you don’t specify a size, the image will
default to the size of your display, assuming it was able to connect to your
display.

-w wide -h high Another way to specify the size of the generated image. Provided for
backward compatibility.

-G rptgeom Sets the size of the gradient. Normally, the gradient will be the size of the
image. However, if you wish, you make the gradient smaller than the
image; the gradient will repeat as often as necessary to fill the image

-r rot Lets you rotate the gradient. Normally, the gradient is aligned vertically,
with the first color at the top, and the last color at the bottom. Using this
option, you can rotate the whole mess by an arbitrary amount. rot should
be specified in degrees. Positive values rotate the gradient counter-
clockwise.

Section 11: External Programs 67

Version 3.10a December 29, 1994

-a If supplied, bggen will generate a PPM ‘ascii’ file, rather than the default
PPM ‘raw’ format.

-b bits Specifies the number of significant bits to use in the RGB color
specifications in the output image. It must range between 1 and 8,
inclusive. Use values less than 8 (the default) to limit color use by
increasing the color granularity. Since xv can do this sort of thing better,
this is of dubious value.

Section 11.2: xcmap

This is a little X program I wrote years ago to help me debug xv’s color allocation code. It displays the
contents of the default colormap as (typically) a 16x16 grid of colored rectangles. Run it, and then run
something that allocates colors (such as xv), and you’ll see the color cells changing color. It can give you
an indication of how full your colortable is, and whatnot. It only works on displays where the default
visual is a PseudoColor visual, but that’s nearly all of them, so it shouldn’t be a problem.

There are two standard X options: ‘-d display’ to set the X display, and ‘-g geom’, to set the default
window size and position.

You can click in the window to examine the RGB values of various color cells. I have not found a useful
purpose for this feature, but there must have been one at one time...

Type ‘q’ in the window to exit the program.

Section 11.3: xvpictoppm

This program is a standard Unix filter that reads the ‘thumbnail’ files created by the visual schnauzer
(from stdin) and writes standard PPM versions of same (to stdout). The thumbnail files are small
(80x60 maximum) 8-bit versions of your image files and are used as the icons in the visual schnauzer.
These files are stored in my own weird format (one optimized for my purposes), but many folks have
asked for a way to turn them into standard image files, for use on their WWW pages, or whatever.

Anyway, assuming you’ve done an Update or Generate Icons command in the visual schnauzer, you’ll
find the thumbnail version of an image stored with the same name in the ‘.xvpics ’ subdirectory. For
example, if you have a file ‘/pics/gif/foobie.gif ’, you would find the thumbnail version of it in
the file ‘/pics/gif/.xvpics/foobie.gif ’.

Section 11.4: cjpeg and djpeg

These two programs are distributed as part of the Independent JPEG Group’s software, located in the
jpeg subdirectory of the xv source. They perform command-line conversion between JPEG and the
PPM/PGM, GIF, BMP and Targa formats. Since xv has absolutely no command-line or ‘batch’
conversion abilities, you may find these useful if you want to convert a lot of images, or automatically
convert images from a script. If this is the case, you should probably get Jef Poskanzer’s most-excellent
pbmplus package, which you can get via anonymous ftp on ftp.x.org and elsewhere..

Section 11.5: vdcomp

Uncompresses compressed PDS and VICAR images. Beyond that, I know nothing.

Section 12: Modifying xv Behavior 68

Version 3.10a December 29, 1994

Section 12: Modifying xv Behavior

xv supports literally dozens of command line options and X11 resources. Fortunately, it is doubtful that
you’ll ever need to use more than a small few. The rest are provided mainly for that ‘one special case’
application of xv... Note that you do not have to specify the entire option name, only enough characters to
uniquely identify the option. Thus, ‘-geom ’ is a fine abbreviation of ‘-geometry ’.

Section 12.1: Command Line Options Overview

If you start xv with the command ‘xv -help ’, the current (wildly out of control) list of options will be
displayed:

xv [-] [-/+24] [-/+2xlimit] [-/+4x3] [-/+8] [-/+acrop] [-aspect w:h] [-best24]
 [-bg color] [-black color] [-bw width] [-/+cecmap] [-cegeometry geom]
 [-/+cemap] [-cgamma rval gval bval] [-cgeometry geom] [-/+clear] [-/+close]
 [-/+cmap] [-cmtgeometry geom] [-/+cmtmap] [-crop x y w h] [-cursor char#]
 [-DEBUG level] [-dir directory] [-display disp] [-/+dither] [-drift dx dy]
 [-expand exp | hexp:vexp] [-fg color] [-/+fixed] [-flist fname]
 [-gamma val] [-geometry geom] [-grabdelay seconds] [-gsdev str]
 [-gsgeom geom] [-gsres int] [-help] [-/+hflip] [-hi color] [-/+hist]
 [-/+hsv] [-icgeometry geom] [-/+iconic] [-igeometry geom] [-/+imap]
 [-/+lbrowse] [-lo color] [-/+loadclear] [-/+max] [-/+maxpect] [-mfn font]
 [-/+mono] [-name str] [-ncols #] [-/+ninstall] [-/+nodecor] [-/+nofreecols]
 [-/+nolimits] [-/+nopos] [-/+noqcheck] [-/+noresetroot] [-/+norm]
 [-/+nostat] [-/+owncmap] [-/+perfect] [-/+pkludge] [-/+poll] [-preset #]
 [-quick24] [-/+quit] [-/+random] [-/+raw] [-rbg color] [-rfg color] [-/+rgb]
 [-RM] [-rmode #] [-/+root] [-rotate deg] [-/+rv] [-/+rw] [-slow24] [-/+smooth]
 [-/+stdcmap] [-tgeometry geom] [-/+vflip] [-/+viewonly] [-visual type]
 [-/+vsdisable] [-vsgeometry geom] [-/+vsmap] [-/+vsperfect] [-wait seconds]
 [-white color] [-/+wloop] [filename ...]

Yes, as a matter of fact, I am a little embarrassed about it.

One big change starting in xv 3.10: In the past, most of the command-line options were toggles, in that
they would normally turn some feature on, but if you had an X resource that also turned that feature on,
then they would turn that feature off. Now, they are absolute settings. For instance, ‘-rv ’ turns on
reverse video mode, regardless of the setting of the ‘xv.reverse ’ resource, and ‘+rv ’ turns off reverse
video mode, regardless of the setting of the ‘xv.reverse ’ resource. (Thanks Peder!)

Section 12.2: General Options

Note: In the following sections, the part of the option name shown in boldface is the shortest allowable
abbreviation of the option in question.

-he lp Print usage instructions, listing the current available command-line
options. Any unrecognized option will do this as well.

-dis play disp Specifies the display that xv should attempt to connect to. If you don’t
specify a display, xv will use the environment variable $DISPLAY.

-fg color Sets the foreground color used by the windows.

(Resource name: foreground . Type: string)

-bg color Sets the background color used by the windows.

(Resource name: background . Type: string)

Section 12: Modifying xv Behavior 69

Version 3.10a December 29, 1994

-hi color Sets the highlight color used for the top-left edges of the control buttons.

(Resource name: highlight . Type: string)

-lo color Sets the lowlight color used for the bottom-right edges of the control
buttons, and also the background of some windows.

(Resource name: lowlight . Type: string)

-bw bwidth Sets the width of the border on the windows. Your window manager may
choose to ignore this, however.

(Resource name: borderWidth . Type: integer)

Section 12.3: Image Sizing Options

-ge ometry geom Lets you specify the size and placement of the ‘image’ window. It’s most
useful when you only specify a position, and let xv choose the size. If you
specify a size as well, xv will create a window of that size, unless -fixed
is specified. The geom argument is in the form of a normal X geometry
string (e.g. “300x240” or “+10+10” or “400x300+10+10”)

(Resource name: geometry . Type: string)

±fi xed Only used in conjunction with the -geometry option. If you specify a
window size with the -geometry option, xv will normally stretch the
picture to exactly that size. This is not always desirable, as it may
seriously distort the aspect ratio of the picture. Specifying the -fixed
option corrects this behavior by instructing xv to use the specified geometry
size as a maximum window size. It will preserve the original aspect ratio
of the picture. (+fixed turns off this feature, forcing the image to be
exactly the size specified by the -geometry option.)

For example, if you give a rectangular geometry of ‘320x240’, and you try
to display a square picture with a size of ‘256x256’, the window opened
will actually be ‘240x240’, which is the largest square that still fits in the
‘320x240’ rectangle that was specified.

(Resource name: fixed . Type: boolean)

-e xpand exp Lets you specify an initial expansion or compression factor for the picture.
You can specify floating-point values. Values larger than zero multiply the
picture’s dimensions by the given factor. (i.e., an expand factor of ‘3’ will
make a 320x200 image display as 960x600).

Factors less than zero are treated as reciprocals. (i.e., an expand factor of
‘-4’ makes the picture 1/4th its normal size.). ‘0’ is not a valid expansion
factor.

You can also specify a pair of expansion values, separated by a colon, to set
different horizontal and vertical expansion ratios. For instance, ‘3:2’
would expand images 3x horizontally, and 2x vertically.

(Resource name: expand . Type: string)

Section 12: Modifying xv Behavior 70

Version 3.10a December 29, 1994

-as pect w:h Lets you set an initial aspect ratio, and also sets the value used by the
Aspect command. The aspect ratio of nearly every X display (and, in fact,
any civilized graphics display) is 1:1. What this means is that pixels
appear to be ‘square’. A 100 pixel wide by 100 pixel high box will appear
on the screen as a square. Unfortunately, this is not the case with some
screens and digitizers. The -aspect option lets you stretch the picture so
that the picture appears correctly on your display. Unlike the other size-
related options, this one doesn’t care what the size of the overall picture is.
It operates on a pixel-by-pixel basis, stretching each image pixel slightly,
in either width or height, depending on the ratio.

Aspect ratios greater than ‘1:1’ (e.g., ‘4:3’) make the picture wider than
normal. Aspect ratios less than ‘1:1’ (e.g. ‘2:3’) make the picture taller
than normal. (Useful aspect ratio: A 512x480 image that was supposed to
fill a standard 4x3 video screen (produced by many video digitizers) should
be displayed with an aspect ratio of ‘5:4’)

(Resource name: aspect . Type: string)

Section 12.4: Color Allocation Options

-nc ols nc Sets the maximum number of colors that xv will use. By default, this is ‘as
many as it can get’. However, you can set this to smaller values for
interesting effect. If you set it to ‘0’, it will display the picture by dithering
with ‘black’ and ‘white’. (The actual colors used can be set by the -
black and -white options, below.)

The other major use of this option is to limit the number of colors used
when putting up an image that’s going to be hanging around for a while.
(i.e., an image in the root window) You may want to limit the number of
colors used for such images so that other programs will still have some
colorcells available for their own use.

(Resource name: ncols . Type: integer)

±rw Tells xv to use read/write color cells. Normally, xv allocates colors read-
only, which allows it to share colors with other programs. If you use
read/write color cells, no other program can use the colors that xv is using,
and vice-versa. The major reason to do such a thing is that using
read/write color cells allows the Apply function in the xv color editor
window to operate much faster. (+rw forces xv to use read-only color, the
default)

(Resource name: rwColor . Type: boolean)

±pe rfect Makes xv try ‘extra hard’ to get all the colors it wants. In particular, when
-perfect is specified, xv will allocate and install its own colormap if
(and only if) it was unable to allocate all the desired colors. This option is
not allowed in conjunction with the -root option.

(Resource name: perfect . Type: boolean)

±owncmap Like ‘-perfect ’, only this option forces xv to always allocate and install
its own colormap, thereby leaving the default colormap untouched.

Section 12: Modifying xv Behavior 71

Version 3.10a December 29, 1994

(Resource name: ownCmap. Type: boolean)

±st dcmap Puts xv into Use Std. Colormap mode. All images will be shown dithered
using the same set of colors. This lets you run multiple copies of xv to
display multiple images simultaneously, and still have enough colors to go
around.

(Resource name: useStdCmap . Type: boolean)

±cec map Specifies whether xv installs the image’s colormap in the xv color editor
window, as well as in the image’s window. By default, the program does
not install the colormap in the color editor window, as this often makes the
color editor window unreadable. Note, however that the Colormap Editor
tool will be appear somewhat misleading. (This option only applies when
the ‘-perfect ’ or ‘ -owncmap ’ options create their own colormaps.)

(Resource name: ceditColorMap . Type boolean)

±ni nstall Prevents xv from ‘installing’ its own colormap, when the -perfect or
-owncmap options are in effect. Instead of installing the colormap, it will
merely ‘ask the window manager, nicely’ to take care of it. This is the
correct way to install a colormap (i.e., ask the WM to do it), unfortunately,
it doesn’t actually seem to work in many window managers, so the default
behavior is for xv to handle installation itself. However, this has been seen
to annoy one window manager (dxwm), so this option is provided if your
WM doesn’t like programs installing their own colormaps.

(Resource name: ninstall . Type: boolean)

Section 12.5: 8/24-Bit Options

See “Section 3.5: The 24/8 Bit Menu” for further information about the following options.

±8 Locks xv into 8-bit Mode.

(Resource name: force8 . Type: boolean)

±24 Locks xv into 24-bit Mode.

(Resource name: force24 . Type: boolean)

The following three options only come into play if you are using xv to display 24-bit RGB data (PPM files,
color PM files, JPEG files, the output of bggen, etc.), and you have xv locked into 8-bit Mode, or you
save 24-bit image data into an 8-bit graphics file format (such as GIF). They have no effect whatsoever on
how GIF pictures or 8-bit greyscale images are displayed.

-quic k24 Forces xv to use the ‘quick’ 24-bit to 8-bit conversion algorithm. This
algorithm dithers the picture using a fixed set of colors that span the entire
RGB colorspace. In versions of xv prior to 2.10, this was the default
algorithm. It no longer is.

(Resource name: quick24 . Type: boolean)

-sl ow24 Forces xv to use the ‘slow’ 24-bit to 8-bit conversion algorithm. This
algorithm uses a version of Heckbert’s median cut algorithm to pick the

Section 12: Modifying xv Behavior 72

Version 3.10a December 29, 1994

‘best’ colors on a per-image basis, and dithers with those. This is the
current default conversion algorithm.

Advantages: The -slow24 algorithm often produces better looking
pictures than the -quick24 algorithm.

Disadvantages: The -slow24 algorithm is about half as fast as the
-quick24 algorithm. Also, since the colors are chosen on a per-image
basis, it can’t be used to display multiple images simultaneously, as each
image will almost certainly want a different set of 256 colors. The
-quick24 algorithm, however, uses the same exact colors for all images,
so it can display many images simultaneously, without running out of
colors.

(Resource name: slow24 . Type: boolean)

-be st24 Forces xv to use the same algorithm used in the program ppmquant,
written by Jef Poskanzer. This algorithm also uses a version of Heckbert’s
median cut algorithm, but is capable of picking ‘better’ colors than the -
slow24 algorithm, and it doesn’t dither.

Advantages: Generally produces slightly better images than the -slow24
algorithm. Also, the images are undithered, so they look better when
expanded.

Disadvantages: Much slower than the -slow24 algorithm. Like, 5 to 10
times slower. The images produced aren’t that much better than those
produced by the -slow24 algorithm.

(Resource name: best24 . Type: boolean)

-noq check Turns off a ‘quick check’ that is normally made. Normally, before running
any of the 24-bit to 8-bit conversion algorithms, xv determines whether the
picture to be displayed has more than 256 unique colors in it. If the picture
doesn’t, it will treat the picture as an 8-bit colormapped image (i.e., GIF),
and won’t run either of the conversion algorithms.

Advantages: The pictures will be displayed ‘perfectly’, whereas if they
went through one of the conversion algorithms, they’d probably be
dithered.

Disadvantages: Often uses a lot of colors, which limits the ability to view
multiple images at once. (See the -slow24 option above for further info
about color sharing.)

 (Resource name: noqcheck . Type: boolean)

Section 12.6: Root Window Options

xv has the ability to display images on the root window of an X display, rather than opening its own
window (the default behavior). When using the root window, the program is somewhat limited, because
the program cannot receive input events (keypresses and mouse clicks) from the root window. As a result,
you cannot track pixel values, nor crop, nor can you use keyboard commands while the mouse is in the
root window.

±roo t Directs xv to display images in the root window, instead of opening its own
window. Exactly how the images will be displayed in the root window is

Section 12: Modifying xv Behavior 73

Version 3.10a December 29, 1994

determined by the setting of the -rmode option. Defaults to style ‘0’ if -
rmode is not specified.

(Resource name: <none>)

-rm ode mode Determines how images are to be displayed on the root window, when
-root has been specified. You can find the current list of ‘modes’ by
using a mode value of ‘-1’. xv will complain, and show a list of valid
modes. The current list at of the time of this writing is:

0: tiling
1: integer tiling
2: mirrored tiling
3: integer mirrored tiling
4: centered tiling
5: centered on a solid background
6: centered on a ‘warp’ background
7: centered on a ‘brick’ background
8: symmetrical tiling
9: symmetrical mirrored tiling

The default mode is ‘0’. See “Section 3.4: Root Display Modes” for a
description of the different display modes. Also, if you specify a ‘-rmode ’
option on the command line, it is not necessary to also specify the ‘-root ’
option.

(Resource name: rootMode . Type: integer)

±nore setroot Lets you turn off the clearing of the root window that happens when you
switch from a ‘root’ display mode back to the ‘window’ display mode.
Handy if you’re trying to create a neat mirrored root tile, and you have to
keep adjusting your cropping. Or something like that.

(Resource name: resetroot . Type: boolean)

-rf g color Sets the ‘foreground’ color used in some of the root display modes.

(Resource name: rootForeground . Type: string)

-rb g color Sets the ‘background’ color used in some of the root display modes.

(Resource name: rootBackground . Type: string)

±max Makes xv automatically stretch the image to the full size of the screen.
This is mostly useful when you want xv to display a background. While
you could just as well specify the dimensions of your display
(‘-geom 1152x900’ for example), the -max option is display-independent.
If you decide to start working on a 1280x1024 display the same command
will still work. Note: If you specify -max when you aren’t using -root ,
the behavior is slightly different. In this case, the image will be made as
large as possible while still preserving the normal aspect ratio.

(Resource name: <none>)

±maxpect Makes the image as large as possible while preserving the aspect ratio,
whether you’re in a ‘root’ mode or not..

Section 12: Modifying xv Behavior 74

Version 3.10a December 29, 1994

(Resource name: <none>)

±quit Makes xv display the (first) specified file and exit, without any user
intervention. Since images displayed on the root window remain there
until explicitly cleared, this is very useful for having xv display background
images on the root window in some sort of start-up script.

If you aren’t using a ‘root’ mode, this option will make xv exit as soon as
the user clicks any mouse button in the image window. This is useful if
you are calling xv from some other program to display an image.

(Resource name: <none>)

±cle ar Clears the root window of any xv images. Note: it is not necessary to do an
‘xv -clear ’ before displaying another picture in the root window. xv
will detect that there’s an old image in the root window and automatically
clear it out (and free the associated colors).

(Resource name: <none>)

Section 12.7: Window Options

xv currently consists has several top-level windows, plus one window for the actual image. These
windows (the xv controls window, the xv info window, the xv color editor window, the xv comments
window, the xv text viewer window, and the xv visual schnauzer) may be automatically mapped and
positioned when the program starts.

±cmap Maps the xv controls window.

(Resource name: ctrlMap . Type: boolean)

-cge om geom Sets the initial geometry of the xv controls window. Note: only the
position information is used. The window is of fixed size.

(Resource name: ctrlGeometry . Type: string)

±im ap Maps the xv info window.

(Resource name: infoMap . Type: boolean)

-ig eom geom Sets the initial geometry of the xv info window. Note: only the position
information is used. The window is of fixed size.

(Resource name: infoGeometry . Type: string)

±cemap Maps the xv color editor window.

(Resource name: ceditMap . Type: boolean)

-ceg eom geom Sets the initial geometry of the xv color editor window. Note: only the
position information is used. The window is of fixed size.

(Resource name: ceditGeometry . Type: string)

±cmtmap Maps the xv comments window.

(Resource name: commentMap. Type: boolean)

Section 12: Modifying xv Behavior 75

Version 3.10a December 29, 1994

-cmtg eometry geom Sets the initial geometry of the xv comments window.

(Resource name: commentGeometry . Type: string)

-tg eometry geom Sets the initial geometry for any TextView windows (other than the
xv comments window).

(Resource name: textviewGeometry . Type: string)

±vsmap Maps an xv visual schnauzer window.

(Resource name: vsMap. Type: boolean)

-vsg eometry geom Sets the initial geometry of the xv visual schnauzer windows.

(Resource name: vsGeometry . Type: string)

±nop os Turns off the ‘default’ positioning of the various xv windows. Every time
you open a window, you will be asked to position it. (Assuming your
window manager asks you such things. mwm, for instance, doesn’t seem to
ask)

(Resource name: nopos . Type: boolean)

Section 12.8: Image Manipulation Options

±dit her When specified, tells xv to automatically issue a Dither command
whenever an image is first displayed. Useful on displays with limited color
capabilities (4-bit and 6-bit displays), or in conjunction with the ‘-ncols ’
option.

(Resource name: autoDither . Type: boolean)

±smooth When specified, tells xv to automatically issue a Smooth command
whenever an image is first displayed. This is useful when you are using
one of the image sizing options (such as ‘-expand ’ or ‘ -max ’).

(Resource name: autoSmooth . Type: boolean)

±ra w Forces xv to display the image in Raw mode. Mainly used to override the
autoDither or autoSmooth resources. Can also be used to turn off
the automatic dithering and smoothing that occurs when you are using
Use Std. Colormap mode or when an image is shrunk to fit the screen.

(Resource name: autoRaw . Type: boolean)

-cr op x y w h Tells xv to automatically crop the specified region of the image. The
rectangle is specified in image coordinates, which remain constant
(regardless of any expansion/compression of the displayed image). This is
useful if you want to view a series of images, and you only want to see one
common area of the images. For example, you may have the GIF weather
maps of the United States, but only want to display your general region of
the country.

(Resource name: <none>)

Section 12: Modifying xv Behavior 76

Version 3.10a December 29, 1994

±ac rop When specified, tells xv to automatically issue an AutoCrop command
whenever an image is first displayed.

(Resource name: autoCrop . Type: boolean)

±4x3 Automatically issues a 4x3 command whenever an image is loaded.

(Resource name: auto4x3 . Type: boolean)

±hf lip Automatically issues a ‘horizontal flip’ command whenever an image is
loaded.

(Resource name: autoHFlip . Type: boolean)

±vf lip Automatically issues a ‘vertical flip’ command whenever an image is
loaded.

(Resource name: autoVFlip . Type: boolean)

-rot ate deg Automatically rotates the image by the specified amount whenever an
image is loaded. deg can be 0, ±90, ±180, or ±270. Positive values rotate
the image clockwise, negative values rotate the image counter-clockwise.

(Resource name: autoRotate . Type: integer)

±norm Automatically issues a Norm command (to normalize the contrast of an
image) whenever an image is loaded.

(Resource name: autoNorm . Type: boolean)

±his t Automatically issues a HistEq command (to do histogram equalization)
whenever an image is loaded.

(Resource name: autoHist . Type: boolean)

-ga mma val Sets the Intensity graph (in the xv color editor window) to the gamma
function of the specified value.

(Resource name: <none>)

-cga mma rv gv bv Sets the Red, Green, and Blue graphs in the xv color editor window to the
gamma functions of the specified values.

(Resource name: <none>)

-pr eset preset Makes the specified preset (in the xv color editor) the default. It does this
by swapping the specified preset (1, 2, 3, or 4) with the settings associated
with the Reset button.

(Resource name: defaultPreset . Type: integer)

Section 12.9: Miscellaneous Options

±mono Forces the image to be displayed in greyscale. This is most useful when
you are using certain greyscale X displays. While xv attempts to determine
if it’s running on a greyscale display, many X displays lie, and claim to be

Section 12: Modifying xv Behavior 77

Version 3.10a December 29, 1994

able to do color. (This is often because they have color graphics boards
hooked up to b/w monitors. The computer, of course, has no way of
knowing what type of monitor is attached.) On these displays, if you don’t
specify -mono , what you will see is a greyscale representation of one of
the RGB outputs of the system. (For example, you’ll see the ‘red’ output
on greyscale Sun 3/60s.) The -mono option corrects this behavior.

(Resource name: mono. Type: boolean)

±rv Makes xv display a ‘negative’ of the loaded image. White becomes black,
and black becomes white. Color images will have ‘interesting’ effects, as
the RGB components are individually reversed. For example, red (255,0,0)
will become cyan (0,255,255), yellow will become blue, and so on.

-wh ite color Specifies the ‘white’ color used when the picture is b/w stippled. (When
‘ -ncols 0 ’ has been specified, or when viewing a b/w image.)

(Resource name: white . Type: string)

-bl ack color Specifies the ‘black’ color used when the picture is b/w stippled. (When
‘ -ncols 0 ’ has been specified, or when viewing a b/w image.)

Try something like:
‘xv -ncols 0 -bl red -wh yellow <filename> ’

for some interesting, late-60’s-style psychedelia effects.

(Resource name: black . Type: string)

-wa it secs Turns on a ‘slide-show’ feature. Normally, if you specify multiple input
files, xv will display the first one, and wait for you to give the Next
command (or whatever). The -wait option makes xv wait for the
specified number of seconds, and then go on to the next picture, without
any user intervention. The program still accepts commands, so it’s
possible to ‘abort’ the current picture without waiting the full specified
time by using the Next command.

Note: If you are in Use Std. Colormap mode, and you use -wait 0 , the
images will not be dithered (as they normally are when you are in
Use Std. Colormap mode). It’s assumed that if you said ‘-wait 0 ’ that
you want the images displayed at maximum speed. You can still turn the
dithering on if you desire by using the -dither option.

(Resource name: <none>)

±wl oop Normally, when running a slide-show with the -wait option, xv will
terminate after displaying the last image. If you also specify the -wloop
option, the program will loop back to the first image and continue the
slide-show until the user issues the Quit command.

(Resource name: <none>)

±ra ndom Makes xv display multiple image files in a random order. Useful for
breaking up the monotony of having slide-shows always display in the
same order. Also, if you also use the -quit option, you can have xv

Section 12: Modifying xv Behavior 78

Version 3.10a December 29, 1994

display a single, random file from a list of files. This may be useful if
you’d like xv to pick a random ‘background image’ from some set of files.

(Resource name: <none>)

±loa dclear If you were on a PseudoColor display, xv used to automatically clear the
image window (and the root window, if using a root mode) whenever you
loaded a new image. This was to prevent the potentially
annoying/confusing ‘rainbow’ effect that happens when colormap entries
are freed and reallocated with different colors. This has changed. By
default, xv no longer clears the image/root window. This is for two
reasons: I’ve decided the rainbow effect is semi-entertaining, in that it
gives you something to look at while the next image is being loaded.
Secondly, if you are viewing a series of images that have the same colors in
them, it’s possible for xv to animate them (by using the ‘-wait ’ command
line option), albeit no faster than one frame every 1-2 seconds. For
example, you can go get the satellite radar images from
vmd.cso.uiuc.edu (in the directory wx), run ‘xv -wait 0 SA* ’,
and voila! Just like the evening news!

(Resource name: clearOnLoad Type: boolean)

±nof reecols Whenever you load a new image, xv normally frees the colors it was using
for the previous image, and allocates new colors for the new image. This
can cause ‘rainbow’ effects on PseudoColor displays as the colors are
changed. You can avoid this problem entirely by using the
-nofreecols option, which suppresses the normal freeing of old colors.
This is most useful when doing slide-shows. Note, however that there will
be fewer colors available for ‘later’ images. These images will wind up
being displayed with whatever colors were allocated for the earlier images.
As such, they may or may not look that hot... (And allow me to reiterate:
xv is not an image animator, despite options like these that let it do so,
albeit poorly.)

(Resource name: <none>)

±rg b Specifies that, by default, the colormap editing dials in the xv color editor
window should be in RGB mode. This is the normal default behavior.

(Resource name: hsvMode . Type: boolean (false))

±hs v Specifies that, by default, the colormap editing dials in the xv color editor
window should be in HSV mode.

(Resource name: hsvMode . Type: boolean (true))

±lb rowse Turns on the Browse checkbox in the xv load window. This keeps the
window from being automatically closed whenever you successfully load an
image.

(Resource name: loadBrowse . Type: boolean)

±nos tat Speeds up the performance of the xv load and xv save windows. (Which
are really the same window...) It keeps xv from doing a stat() system
call for each file in the current directory whenever you change directories.
This is handy on systems with a lot remote files, where doing the stat()

Section 12: Modifying xv Behavior 79

Version 3.10a December 29, 1994

calls takes too long. One downside: subdirectories will not be shown with
the little folder icons, as it requires a stat() call to determine whether a
file is a subdirectory or a data file. This will not affect the operation of the
program, just the ‘niceness’.

(Resource name: nostat . Type: boolean)

-vis ual vistype Normally, xv uses the ‘best’ visual model it can get. It looks for a 24 or
32-bit deep TrueColor, or DirectColor visual. If it can get one, that’s what
it uses. Otherwise, it will fall back to using the ‘default’ visual provided by
your X server. You can override this bit of cleverness by explicitly
selecting a visual to use. Valid types are StaticGray, StaticColor,
TrueColor, GrayScale, PseudoColor, DirectColor, and default. All of
these modes are not necessarily provided on any given X display. Run
xdpyinfo on your display to find out what visual types are supported. You
can also specify a specific visual by using its numeric visual ID, in the case
that you have multiple instances of a given visual type available (xv will
pick the ‘deepest’ one by default)

(Resource name: visual . Type: string)

-cu rsor curs Specifies an alternate cursor to use in the image window (instead of the
normal ‘arrow’ cursor). curs values are obtained by finding the character
number of a cursor you like in the ‘cursor’ font. (Run
‘xfd -fn cursor ’ to display the cursor font.) For example, a curs
value of ‘56’ corresponds to the (singularly useless) ‘Gumby’ cursor.

(Resource name: cursor . Type: integer)

±2x limit By default, xv prevents the image window from ever getting larger than the
screen. Unfortunately, because of this, if you load an image that is larger
than your screen, the image will be shrunk until it fits on your screen.
Some folks find this undesirable behavior. Specifying the -2xlimit
option doubles the size limitations. The image window will be kept from
getting larger than 2x the width and height of your screen.

Just in case you’re wondering why there are any size limitations: it’s fairly
easy to accidentally ask for a huge image to be generated. Simply Crop a
section of the image, zoom so you can see the individual pixels, and
UnCrop. If there were no size limitations, the (expanded many times)
image could be huge, and might crash your X server. At the very least, it
would take a long time to generate and transmit to your X server, and
would freeze up your X server during part of it. Generally undesirable
behavior.

(Resource name: 2xlimit . Type: boolean)

±nol imits For the truly daring, this turns off all limitations on the maximum size of
an image. (Well, there’s still an X-imposed maximum size of 64K by 64K,
but that really shouldn’t be a problem.) Warning: as mentioned above, it
is fairly easy to accidentally generate a huge image when you do an
UnCrop command, and you may well crash xv, your X server, the host
machine, or all three. Use At Your Own Risk!!!

(Resource name: nolimits Type: boolean)

Section 12: Modifying xv Behavior 80

Version 3.10a December 29, 1994

±clo se If specified, iconifying the xv image window will automatically close all
the other xv windows. De-iconifying the xv image window will re-open the
other xv windows.

(Resource name: autoClose . Type: boolean)

±ico nic Starts xv with its image window iconified.

(Resource name: iconic . Type: boolean)

-icg eometry geom Specifies the screen position of the icon (when you use the -iconic
option).

(Resource name: iconGeometry . Type: string)

-dir directory Specifies an initial directory for xv to switch to when run. Also specifies
the default directory used for the visual schnauzer and the xv load and
xv save windows.

(Resource name: searchDirectory . Type: string)

-fl ist fname Tells xv to read a file fname that consists of a list of names of image files to
load, one per line. This file is in the same format generated by the File list
checkbox in the xv save window. You can use this to get around shell
‘command-length’ limitations (which can hit you if you try ‘xv * ’ in a
directory with a thousand or two files), or you could have find (or
whatever) generate this file based on some type of criteria (age, size, etc.)

(Resource name: fileList . Type: string)

-dr ift dx dy A kludge. In order to do certain operations, xv needs to be able to precisely
position the contents of an image window on the screen. Unfortunately,
window managers disagree wildly on exactly how the “where’s the
window” information will be presented to the program. The practical
upshot is that, despite a sizable effort to the contrary, xv may very will have
its image window ‘drift’ on the screen as you resize it. This option lets you
specify correction factors to cancel out the drift. If the window drifts down
and to the right, use negative values to cancel the drifting. If the window
drifts up and to the left, use positive values to cancel the drifting.

(Resource name: driftKludge . Type: string)

-pk ludge Another kludge. xv attempts to position the various pop-up windows (error
messages, the load/save windows, etc.) with their Ok button (or other
suitable default) centered around the cursor. Unfortunately, there doesn’t
seem to be a consistent way to do this on all systems. If you find the
windows routinely appearing with their default button near, but not under,
the cursor, enabling this option may solve this problem.

(Resource name: popupKludge . Type: boolean)

-mf n font Lets you specify the mono-spaced font used in the TextView windows, and
a few other places. Be sure you use a mono-spaced font, or you may well
get ‘interesting’ effects.

(Resource name: monofont . Type: string)

Section 12: Modifying xv Behavior 81

Version 3.10a December 29, 1994

-na me string Lets you change what string is displayed in the titlebar of the image
window. Normally, xv will display the version number and the filename.
If you’re calling xv from another program, you may prefer to have it print a
more descriptive string, or perhaps something like ‘<click mouse to quit>’
if you’re also using the -quit option.

(Resource name: <none>)

±vie wonly For use when calling xv from some other program. Forces all user input to
be ignored. This keeps the untrained (or inquisitive) user from nosing
around, creating files, or just generally misbehaving. Also note that
there’s no way for the user to quit the program. It is up to the calling
process to manually kill xv when it feels that the image has been displayed
long enough.

(Resource name: <none>)

±gr abdelay seconds Sets the default ‘grab delay’ in the Grab dialog box. See “Section 3.11:
The Grab Command”.

(Resource name: <none>)

±po ll Turns file polling on. If enabled, xv will notice when the currently
displayed image file changes (due to some other process rewriting it, or
something like that), and it will automatically reload the image file once it
appears to have settled down (once the file size stops changing for a few
seconds). See “Section 3.12.3: Image Reloading” for further details.

(Resource name: <none>)

±vsp erfect Normally, the visual schnauzer uses its own private colormap. This is
necessary in order to get a good set of colors to display the image icons,
and not steal colors away from the actual image window. However, you
may find the colormap install/deinstall very annoying. I do. You can
specify this option (+vsperfect) to turn the ‘perfect’ behavior off. If
you do so, the visual schnauzer windows will steal away a small (64-entry)
part of the colormap (unless you are in Use Std. Colormap mode, in which
case they will share the standard colormap). The downside is that neither
the schnauzer nor the image will look as good.

(Resource name: vsPerfect . Type: boolean)

±vsd isable Completely disables the visual schnauzer. This is mainly so, if you have
vsPerfect turned off, you can disable the schnauzer and keep it from
stealing any colors from the image. In the default setting (vsPerfect is
turned on), this option will have no useful effect.

(Resource name: vsDisable . Type: boolean)

-gsd ev str Sets the ‘device’ that the ghostscript package will generate output for,
which is used whenever you read a PostScript file in xv. Currently, the
default device is ppmraw, which means all PostScript will be converted to
either a 24-bit color PPM file, an 8-bit greyscale PGM file, or a 1-bit black-
and-white PBM file, as appropriate (based on the particular PostScript file
in question). Note that your copy of ghostscript must be configured to

Section 12: Modifying xv Behavior 82

Version 3.10a December 29, 1994

support this device, and any other values you may wish to set this option to.
See the xv Makefile for further information.

Also note: Be very careful when using these options, as it’s pretty easy to
have ghostscript generate enormous data files. For example, for normal
8½” by 11” pages, at 72dpi, a PBM file will require ~60K per page, a PGM
file will require ~500K per page, and a PPM file will require ~1.5M per
page. If you have it generate images at 300 dpi (see below), these sizes
explode to roughly 1, 8, and 24 megabytes per page.

As such, you should forget about viewing color pages at 300 dpi, and you
may also want to forget about viewing multi-page PostScript files at 300
dpi.

(Resource name: gsDevice . Type: string)

-gsr es res Specifies the resolution of the page files generated by ghostscript, in dots
per inch. Defaults to 72 dpi. You can set it to any value, but be careful
about generating enormous intermediate datafiles.

(Resource name: gsResolution . Type: integer)

-gsg eom geom Sets the page size of the files generated by ghostscript. Normally, this
defaults to ‘612x792’, which is the size of 8½” by 11” paper, as measured
in 72nds of an inch. Note that these numbers are in 72nds of an inch
regardless of the resolution (dpi) value set by gsResolution .

(Resource name: gsGeometry . Type: string)

±nod ecor Turns off certain decorations on the xv image window’s frame, maybe.
Works for mwm, at least. There is no way to do this trick with olwm, and
twm doesn’t need it. Anyway, if you turn off the titlebar and such on the xv
image window, it removes the minimum size constraint/problem that I talk
about in “Section 2.3: Cropping”, and elsewhere.

(Resource name: nodecor Type: boolean)

-R M If specified, deletes all files specified on the xv command line when xv
exits. This can be handy if you’re using xv as an external viewer, and
you’d like to hand it a file, have it displayed, and then have it go away.

(Resource name: nodecor Type: boolean)

-D EBUG level Turns on some debugging information. You shouldn’t need this. If
everything worked perfectly, I wouldn’t need this.

(Resource name: <none>)

- Specifying ‘-‘ all by itself tells xv to take its input from stdin , rather than
from a file. This lets you put xv on the end of a Unix pipe.

Section 12.10: Color Editor Resources

You can set default values for all of the HSV and RGB modification controls in the xv color editor
window via X resources. The easiest way to explain this is with an example.

1. Start xv and put it in the background by typing ‘xv & ’.

Section 12: Modifying xv Behavior 83

Version 3.10a December 29, 1994

2. Type the command ‘cat >foo ’ in an active xterm window

3. Bring the xv color editor window up.

4. Issue the Cut Resources command.

5. Click your middle mouse button in the xterm window. A set of resource lines describing the
current state of the xv color editor controls will be ‘pasted’ into the window.

6. You could type <ctrl-D> in the xterm to complete the cat command, edit this file, and put it in
your .Xdefaults or .Xresources file.

The lines generated by Cut Resources will look like this:

xv.default.huemap1: 330 30 CW 330 30 CW
xv.default.huemap2: 30 90 CW 30 90 CW
xv.default.huemap3: 90 150 CW 90 150 CW
xv.default.huemap4: 150 210 CW 150 210 CW
xv.default.huemap5: 210 270 CW 210 270 CW
xv.default.huemap6: 270 330 CW 270 330 CW
xv.default.whtmap: 0 0 1
xv.default.satval: 0
xv.default.igraf: S 4 : 0,0 : 64,64 : 192,192 : 254,254
xv.default.rgraf: S 4 : 0,0 : 64,64 : 192,192 : 254,254
xv.default.ggraf: S 4 : 0,0 : 64,64 : 192,192 : 254,254
xv.default.bgraf: S 4 : 0,0 : 64,64 : 192,192 : 254,254

These lines completely describe one state of the xv color editor controls. There are five different states
that you can specify via X resources. The ‘default ’ state (as shown) holds the settings used whenever
the program is first started, and whenever the Reset command is used. You can also store settings in one
of the four xv presets (accessed via the 1, 2, 3, or 4 buttons in the xv color editor) by changing the string
‘default ’ in the above lines to ‘preset1 ’, ‘ preset2 ’, ‘ preset3 ’, or ‘preset4 ’ respectively.

There are four types of resource described in these lines: huemap, whtmap , satval , and graf .

Section 12.10.1: Huemap Resources

The huemap resources describe the state of the hue remapping dials. There are six huemap resources per
state of the xv color editor. These huemap resources are numbered ‘huemap1’, through ‘huemap6’, and
correspond to the ‘1’-‘ 6’ radio buttons under the hue remapping dials.

Each huemap resources takes six parameters:

1. The ‘starting’ angle of the From range, in degrees (integer).

2. The ‘ending’ angle of the From range, in degrees (integer).

3. The direction of the From range. Either ‘cw’ (clockwise) or ‘ccw ’ (counter-clockwise).

4. The ‘starting’ angle of the To range, in degrees (integer).

5. The ‘ending’ angle of the To range, in degrees (integer).

6. The direction of the To range. Either ‘cw’ or ‘ccw ’.

Section 12.10.2: Whtmap Resources

The whtmap resource describes the state of the white remapping control. There is one whtmap resource
per state of the xv color editor controls. The whtmap resource takes three parameters:

1. The hue to remap ‘white’ to, in degrees (integer).

2. The saturation to give to the remapped ‘white’, in percent (integer).

Section 12: Modifying xv Behavior 84

Version 3.10a December 29, 1994

3. A boolean specifying whether the white remapping control is enabled. If ‘1’, the control is
enabled. If ‘0’, the control is disabled.

Section 12.10.3: Satval Resource

The satval resource describes the value of the Saturation dial. There is one satval resource per state.
The satval resource takes a single integer value, in the range ±100, which specifies how much to add or
subtract to the overall image color saturation.

Section 12.10.4: Graf Resources

The graf resources describe the state of the four ‘graph’ windows in the xv color editor window
(Intensity, Red, Green, and Blue). The graf resources can be in one of two formats, ‘gamma’ and
‘spline/line’.

In ‘gamma’ format, the graf resource takes two parameters:

1. The letter ‘G’, specifying ‘gamma’ mode

2. A single floating point number specifying the gamma value.

In ‘spline/line’ mode, the graf resource takes a variable number of parameters:

1. The letter ‘S’ specifying ‘spline’ mode, or the letter ‘L’ specifying ‘line’ mode.

2. An integer number indicating the number of handles (control points) that this graph window will
have. (Must be in the range 2-16, inclusive.)

3. For each handle, there will be a ‘:’, and the x and y positions of the handle, separated by a
comma. The x and y positions can be in the range 0-255 inclusive.

Section 12.10.5: Other Resources

autoApply A boolean resource that sets the default condition of the Auto-Apply
HSV/RGB Mods checkbox in the xv color editor window.

displayMods A boolean resource that sets the default condition of the Display With
HSV/RGB Mods checkbox in the xv color editor window.

dragApply A boolean resource that sets the default condition of the Auto-Apply
While Dragging checkbox in the xv color editor window.

autoReset A boolean resource that sets the default condition of the Auto-Reset On
New Image checkbox in the xv color editor window.

saveNormal A boolean resource that sets the default condition of Normal Size
checkbox in the xv save window.

pspreview A boolean resource that sets the default condition of Preview checkbox in
the xv postscript window.

pscompress A boolean resource that sets the default condition of Compress checkbox
in the xv postscript window.

print A string resource that sets the default command that shows up in the Print
dialog box.

pspaper A string resource that sets the default paper size selected in the xv
postscript window. Valid settings are: 8.5x11, 8.5x14, 11x17,
4x5 35mm a3 a4 b5

Section 12: Modifying xv Behavior 85

Version 3.10a December 29, 1994

psorient A string resource that sets the default image orientation in the xv postscript
window. Valid settings are: portrait and landscape

psres An integer resource that sets the default image resolution in the xv
postscript window. Valid settings are in the range 10 through 720 dpi.

Section 12.11: Window Classes

xv defines the following ‘class’ names for its various top-level windows:

XVroot for the xv image window
XVcontrols for the xv controls window
XVdir for the xv load and xv save windows
XVinfo for the xv info window
XVcedit for the xv color editor window
XVps for the xv postscript window
XVjpeg for the xv jpeg window
XVtiff for the xv tiff window
XVconfirm for all the pop-up windows

You may be able to use these class names to do something nifty with your window manager. For instance,
with mwm you can control which controls you’ll get in the window frame, on a per-window basis. For
example, to turn off all the mwm doodads that normally are tacked onto the xv image window, you could
put this in your .Xdefaults file:

Mwm*XVroot*clientDecoration: none

Section 13: Credits 86

Version 3.10a December 29, 1994

Section 13: Credits

Thanks go out to the following wonderful folks:

• First and foremost, John Hagan, best friend, lead beta-tester, and guy who got me a new job.
He’s been the driving force behind much of xv. Nearly all the major differences between the xv
that you see today, and the xgif of four (five? six?) years ago can be traced to the years of
continual harassment because of alleged (and actual) weaknesses in xgif. xv probably never
would’ve been written, were it not for his input. Many of the features in the code were his idea.
For example, he’d been asking for a Visual Schnauzer for years now...

• Theresa O’Malley, friend, sweetie, future wife. About a year and a half ago, in a decision she
no doubt regrets, she asked if she could help me with my business. Since then, she’s taken over
all business aspects of xv. When you send mail to xv@devo.dccs.upenn.edu , or to
xvbiz@devo.dccs.upenn.edu , she’s the one who (eventually) answers your mail. It’s a
big job, and you all owe her a thanks, because if I had to handle all the xv business stuff, I would
have had no time whatsoever to work on xv version 3.10, and you wouldn’t be reading this now,
or ever...

• Filip Fuma, my former boss, deserves a great deal of thanks for seeing the value of xv, and
allowing, (if not actually encouraging) me to write it. I also owe him an eternal debt of gratitude
for being the genius who said “You know, you should make this into shareware...”

• Helen Anderson has provided many fine ideas over the years, and has continued to be amused by
xv for much of that time, more than I can occasionally say for myself. She also proofread the
2.20 version of this document, much of which remains verbatim.

• Patrick J. Naughton (naughton@wind.sun.com) provided ‘gif2ras.c’, a program that converts
GIF files to Sun Rasterfiles. This program provided the basis for the original xgif, which
eventually grew into xv. As such, it would be safe to say that he “started it all.” This code, now
somewhat modified, is still in use in the module xvgif.c .

• Michael Mauldin (mlm@cs.cmu.edu) provided a short, understandable version of the GIF
writing code. This code, essentially unmodified, is in the module xvgifwr.c .

• Dave Heath (heath@cs.jhu.edu) provided the Sun Rasterfile i/o support in the module
xvsunras.c . Ken Rossman (ken@shibuya.cc.columbia.edu) fixed it up somewhat.

• Tom Lane (tgl@sss.pgh.pa.us), for much advice and assistance on 24->8 bit quantization, color
allocation, and, of course, JPEG issues.

Of course, many thanks go out to Tom and all the rest of the folks in the Independent JPEG
Group for providing a freely-distributable version of the JPEG software, thereby providing the
rest of us with the new standard graphics format (replacing GIF).

• Sam Leffler (sam@sgi.com) has not only come up with a freely-distributable library for doing
TIFF file i/o (the libtiff package), but also wrote the xv interface modules xvtiff.c and
xvtiffwr.c . Thanks Sam!

• Paul Haeberli (paul@manray.asd.sgi.com) provided me with nice clean, portable code to read
and write IRIS ‘rgb’ files.

• Jef Poskanzer (jef@well.sf.ca.us) is responsible for coming up with several cool/whizzo general
image formats (pbm, pgm, ppm), and a package of programs for image manipulation and format
conversion. Part of this code has been snarfed and incorporated into xv in the form of the
-best24 algorithm and the XWD format support.

Section 13: Credits 87

Version 3.10a December 29, 1994

• Rick Dyson (dyson@iowasp.physics.uiowa.edu) has been doing the VMS ports of xv for the past
couple years now. All you VMS users owe him a great big “Thank you,” because you wouldn’t
have xv if it weren’t for his efforts. I won’t go near a VMS system. Rick also gets a “Thanks”
from me for doing a good deal of beta-testing, as well.

• David Elliot (dce@smsc.sony.com) gets a special thanks for being the guy who has submitted
more bug fixes and feature requests than anybody else. You’d almost think he has more time to
work on xv than I do!

• Bernie McIlroy (berniem@microsoft.com) for providing me with information on the BMP
format. (Which is included in the docs subdirectory, so please don’t bother him!)

• Anthony Datri (aad@scr.siemens.com) for writing the PDS/VICAR i/o module.

• Thomas Meyer (i03a@alf.zfn.uni-bremen.de) for writing the IFF i/o module.

• Chris Ross (cross@eng.umd.edu), for writing the XPM i/o module, and in the process,
inadvertently making me think about a great number of things...

• David Robinson (drtr@mail.ast.cam.ac.uk) for writing the FITS i/o module.

Section 13.1: The Hall of Fame

The following folks have all contributed to the development of xv in the form of bug reports, bug fixes,
patches, support for additional systems, and/or good ideas. See the CHANGELOG file for specifics:

Jimmy Aitken jimmy@pyra.co.uk
Satoshi Asami asami@is.s.u-tokyo.ac.jp
Leon Avery leon@eatworms.swmed.edu
Tim Ayers ayers@mermaid.micro.umn.edu
Bill Barabash barabash@rachel.enet.dec.com
Markus Baur mbaur@ira.uka.de
Jason Berri berri@aero.org
Richard Bingle bingle@cs.purdue.edu
Alan Blanchard alan@abraxas.mbt.washington.edu
Bob Boag boag@marshall.wvnet.edu
David Boulware dgb@landau.phys.washington.edu
Thomas Braeunl braeunl@informatik.uni-stuttgart.de
Jon Brinkmann jvb7u@astro.virginia.edu
Andrew Brooks arb@comp.lancs.ac.uk
David Brooks dbrooks@osf.org
Kevin Brown brown@hpbsm15.boi.hp.com
Elaine Chen eychen@athena.mit.edu
Jeff Coffler coffler@jeck.amherst.nh.us
Reg Clemens clemens@plk.af.mil
Paul Close pdc@lunch.wpd.sgi.com
David A. Clunie dclunie@flash.us.com
Jan D. jhd@irfu.se
Anthony Datri datri@convex.com
Berthold Dettlaff dettlaff@informatik.uni-stuttgart.de
L. Peter Deutsch ghost@aladdin.com
Derek Dongray dongray@genrad.com
Rick Dyson dyson@iowasp.physics.uiowa.edu
Dean Elhard elhard@system-m.za05.bull.com
David Elliot dce@smsc.sony.com
Scott Erickson sources@sherlock.ics.uci.edu
Stefan Esser se@ikp.uni-koeln.de
Bob Finch bob@gli.com
Robert Forsman thoth@raybans.cis.ufl.edu
Peter Glassenbury pete@cosc.canterbury.ac.nz
Michael Gleicher mkg@stealth.plk.af.mil
Robert Goodwill robert@earth.cs.jcu.edu.au
Dave Gregorich dtg@csula-ps.calstatela.edu
Brian Gregory bgregory@megatest.com
Ted Grzesik tedg@apollo.hp.com
Harald Hanche-Olsen hance@ams.sunysb.edu

Section 13: Credits 88

Version 3.10a December 29, 1994

Charles Hannum mycroft@gnu.ai.mit.edu
Dave Heath heath@cs.jhu.edu
Scott D. Heavner sdh@po.cwru.edu
Bill Hess hess@tethys.apl.washington.edu
Dave Hill ddhill@zk3.dec.com
Tom Hinds rocker@cs.bu.edu
Ricky KeangPo Ho kpho@sabina.berkeley.edu
Mark Horstman mh2620@sarek.sbc.com
Tetsuya Ikeda tetsuya@is.s.u-tokyo.ac.jp
Yasuhiro Imoto tomo@sonytek.co.jp
Lester Ingber ingber@alumni.caltech.edu
Dana Jacobsen jacobsd@solar.cor2.epa.gov
Roy Johnson rjohnson@shell.com
Dave Jones jonesd@kcgl1.eng.ohio-state.edu
Kjetil Jorgensen jorgens@lise.unit.no
Jonathan Kamens jik@pit-manager.mit.edu
Vivek Khera khera@cs.duke.edu
Tero Kivinen kivinen@joker.cs.hut.fi
Rainer Klute klute@irb.informatik.uni-dortmund.de
Marc Kossa M.Kossa@frec.bull.fr
Bill Kucharski kucharsk@solbourne.com
Bruce Labow labow@itd.nrl.navy.mil
Dave Lampe djl@ptc.timeplex.com
Tom Lane tom_lane@g.gp.cs.cmu.edu
Peder Langlo respl@mi.uib.no
Jeremy Lawrence jeremy@snrc.uow.edu.au
Sam Leffer sam@sgi.com
Jim Lick jim@pi-chan.ucsb.edu
Jean Liddle jliddle@mrcnext.cso.uiuc.edu
Michael Lipscomb lipscomb@visionl.engr.utk.edu
Eam Lo eam@netcom.com
Rolf Mayer rz90@rz.uni-karlsruhe.de
Stephen Mautner stephen@cs.utexas.edu
Tom McConnel tmcconne@sedona.intel.com
Craig McGregor craig@csdvax.csd.unsw.edu.au
Thomas Meyer i03a@alf.zfn.uni-bremen.de
Peter Miller pmiller@topaz.bmr.gov.au
Erwan Moysan erwan.moysan@irisa.fr
Chris Newman chrisn+@cmu.edu
Lars Bo Nielsen lbn@hugin.dk
James Nugent james@ironbark.bcae.oz.au
Arthur Olson ado@elsie.nci.nih.gov
Machael Pall pall@rz.uni-karlsruhe.de
Mike Patnode mikep@sco.com
Nigel Pearson nigel@socs.uts.edu.au
Joe Peterson joe@avs.com
Colin Plumb colin@nyx10.cs.du.edu
Daniel Pommert daniel@ux1.cso.uiuc.edu
Robert Potter rpotter@grip.cis.upenn.edu
Werner Randolf evol@brian.uni-koblenz.de
Eric Raymond eric@snark.thyrsus.com
Eric Rescorla erk@eitech.com
Phil Richards pgr@prg.oxford.ac.uk
Declan A. Rieb darieb@sandia.gov
David Robinson drtr@mail.ast.cam.ac.uk
R. P. Rodgers rodgers@nlm.nih.gov
Chris P. Ross cross@eng.umd.edu
Eckhard Rueggeberg eckhard.rueggeberg@ts.go.dlr.de
Arvind Sabharwal arvind@brutus.ct.gmr.com
Hitoshi Saji saji@is.s.u-tokyo.ac.jp
Nick Sayer mrapple@quack.kfu.com
Klaus Schnepper df40@master.df.op.dlr.de
Steven Schoch schoch@starnet.com
Bill Silvert silvert@biome.bio.ns.ca
Ben Simons ben@lewis.vislab.su.edu.au
Cameron Simpson cameron@cse.unsw.edu.au
Mark Snitily mark@zok.sgcs.com
Karsten Spang krs@kampsax.dk
Greg Spencer greg@longs.lance.colostate.edu
Matthew Stier matthew@sunpix.east.sun.com
Andreas Stolcke stolcke@icsi.Berkeley.edu

Section 13: Credits 89

Version 3.10a December 29, 1994

Rod Summers rsummers@ard.fbi.gov
Steve Swales steve@bat.lle.rochester.edu
Tony Sweeney sweeney@ingres.com
Matt Thomas thomas@netrix.lkg.dec.com
Rich Thomson rthomson@dsd.es.com
Bill Turner bturner@cv.hp.com
Larry W. Virden lwv26@cas.org
John Walker kelvin@autodesk.com
Doug Washburn washburn@hpmpea2.cup.hp.com
Drew Watson dwatson@encore.com
Chris Weikart weikart@prl.dec.com
Michael Weller eowmob@exp-math.uni-essen.de
Kenny Zalewski zalewk@rpi.edu
Jamie Zawinski jwz@lucid.com
Dan Zheme dan@mordor.webo.dg.com

Section 13.2: The Beta Testers

Eric Demerling AIX
Rick Dyson VAX VMS, VMS on Alpha, SunOS
Tom Lane HP systems
Sam Leffler SGI systems
Chris Ross Solaris, SunOS, Ultrix, NetBSD
Michael Weller Linux
Myself OSF/1, SunOS

Thanks to these folks we can be pretty sure that xv will at least compile cleanly on the vast majority of
systems. Any bugs that have slipped through are entirely my fault, as, in all fairness, I haven’t given
these guys much time to test it. As such, the only platform that I can say xv has been seriously tested on is
OSF/1 running on a DEC Alpha, as that’s been my most recent development environment.

Section 13.3: Miscellaneous Ramblings

And, of course, thanks to everyone else. If you contributed to the developement of xv in some way, and I
somehow forgot to put you in the big list, my humble apologies. Documentation and careful record-
keeping are not my strong suits. “Heck,” why do you think it takes me a year and a half to come up with a
minor new release? Because, while I love to add new features to the code, I dread documenting the dumb
things. Besides, we all know that writing the documentation is the hardest part of any program.
Particularly when the good folks at id Software insisted upon releasing DOOM II...

And finally, thanks to all the folks who’ve written in from hundreds of sites world-wide. You’re the ones
who’ve made xv a real success. (Well, that’s not actually true. My love of nifty user-interfaces, all the
wonderful code I’ve gotten from the folks listed above, and the fact that xv actually serves a useful purpose
(albeit “displaying pictures of naked women”) are the things that have made xv a real success. You folks
who’ve written in have given me a way to measure how successful xv is.) But I digress. Thanks!

By the way, when I last counted (in October 1992), xv was in use at 180 different Universities, and dozens
of businesses, goverment agencies, and the like, in 27 countries on 6 of the 7 continents. Since then, I’ve
received messages from hundreds of new sites. And xv has been spotted in Antartica, bringing the total to
7 of 7 continents, and allowing me to claim that xv is, in fact, truly global software. That’s probably a
good thing. Does anybody know if there’s a Unix workstation in the Space Shuttle?... :-)

Appendix A: Command Line Options 90

Version 3.10a December 29, 1994

Appendix A: Command Line Options

- Tells xv to read an image from <stdin> .

±24 Lock xv into 24-bit Mode.

±2x limit Allow image windows to be twice the size of the screen.

±4x3 Issue 4x3 command when an image is loaded.

±8 Lock xv into 8-bit Mode.

±ac rop Issue an AutoCrop command when an image is loaded.

-as pect w:h Sets the default ratio used by the Aspect command.

-be st24 Use the ‘best’ (read: slowest) 24-bit to 8-bit color algorithm.

-bg color Sets the background color.

-bl ack color Sets the ‘black’ color used in B/W dithering.

-bw width Sets the border width of the windows.

±cec map Install image’s colormap in the xv color editor window.

-ceg eometry geom Sets the initial position of the xv color editor.

±cemap Automatically open the xv color editor on startup.

-cga mma rv gv bv Sets Red, Green, and Blue graphs to specified gamma values.

-cge ometry geom Sets the initial position of the xv controls window.

±cle ar Clears out the root window and exits.

±clo se Automatically close xv windows when image window is iconified.

±cmap Automatically open the xv controls window on startup.

-cmtg eometry geom Sets the initial position and size of the xv comments window.

±cmtmap Automatically open the xv comments window on startup.

-cr op x y w h Automatically do a Crop command when an image is loaded.

-cu rsor curs Sets the cursor used in the image window.

-D EBUG level Displays debugging information.

-dir directory Sets the initial directory for the visual schnauzer and xv load windows.

-dis play disp Specifies which X display to use.

±dit her Automatically do a Dither command when an image is loaded.

-dr ift dx dy Kludge to keep image window from ‘drifting’ around screen.

-e xpand exp Automatically expand or contract images by the given factor, or factors.

-fg color Sets the foreground color.

±fi xed Sets ‘fixed aspect ratio’ mode.

-fl ist name Loads a list of image filenames from a file.

Appendix A: Command Line Options 91

Version 3.10a December 29, 1994

-ga mma val Sets the Intensity graph to the given gamma value.

-ge ometry geom Specifies initial size and position of image window.

-gr abdelay secs Sets time to wait before starting Grab command.

-gsd ev str Type of file ghostscript should produce.

-gsg eom geom Size of page ghostscript should produce, in 72nds of an inch.

-gsr es res Resolution of file ghostscript should produce, in dpi.

-he lp Prints a list of valid command-line options.

±hf lip Issue a ‘horizontal flip’ command when image is loaded.

-hi color Sets the ‘highlight’ color used by the buttons.

±his t Issue a HistEq command when image is loaded.

±hs v Puts the colormap editing dials into HSV mode.

-icg eometry geom Specifies position of icon when run in -iconic mode.

±ico nic Starts up xv with the image window iconified.

-ig eometry geom Specifies initial position of xv info window.

±ima p Automatically open xv info window on startup.

±lb rowse Keep the xv load window open until deliberately closed.

-lo color Sets the ‘lowlight’ color used by the buttons.

±loa dclear Clear window to avoid ‘rainbow’ effect on PseudoColor displays.

±max Make the image as large as possible.

±maxpect Make the image as large as possible, preserving aspect ratio.

-mf n font Mono-spaced font used in TextView windows.

±mono Display all pictures in greyscale.

-na me str Set string displayed in image window’s titlebar.

-nc ols num Specifies maximum number of different colors to use.

±ni nstall Don’t ‘install’ colormaps. Have the WM do it for us.

±nod ecor Remove decorations from xv image window frame.

±nof reecols Don’t free colors for old image when loading new image.

±nol imits Turn off all ‘maximum size’ limitations on the image.

±nop os Don’t automatically position the xv windows.

±noq check Suppress quick-check when doing 24->8 bit algorithms.

±norm Issue Norm command when image is loaded.

±nore setroot Don’t clear root when going back to ‘window’ display mode.

±nos tat Speed up directory changing in load/save windows.

±owncmap Always use and install a private colormap.

Appendix A: Command Line Options 92

Version 3.10a December 29, 1994

±pe rfect Use and install a private colormap if necessary.

±pk ludge Use alternate ‘center-window-around-cursor’ code.

±po ll Reload image files if they change.

-pr eset set Makes preset #set the default preset.

-quic k24 Use the quickest 24-bit to 8-bit color algorithm.

±quit Exit after displaying first image.

±ran dom Show images in random order.

±raw Issue a Raw command when image is loaded.

-rb g color Root background color, used on some root display modes.

-rf g color Root foreground color, used on some root display modes.

±rg b Puts colormap editing dials in RGB mode.

-R M Deletes files listed on command line when xv exits.

-rm ode num Use specified display mode when using root window.

±roo t Display images on root window.

-rot ate deg Rotate image when it is loaded.

±rv Reverses RGB values when image is loaded.

±rw Use read/write color cells for faster color editing.

-sl ow24 Use ‘in-between’ 24-bit to 8-bit color compression algorithm

±smooth Automatically Smooth image on initial load.

±st dcmap Use Standard Colormap.

-t geometry geom Initial position and size for TextView window.

±vf lip Automatically do a ‘vertical flip’ command when image is loaded.

±vie wonly Ignore all user input.

-vis ual type Use a non-default visual of your X display.

±vsd isable Disable Visual Schnauzer.

-vsg eometry geom Initial size and position for Visual Schnauzer windows.

±vsmap Automatically open a Visual Schnauzer window on startup.

±vsp erfect Prevent Visual Schnauzer from installing its own private colormap.

-wa it sec Specifies time delay in slide show.

-wh ite color Sets the ‘white’ color used in B/W stippling.

±wl oop When in slide show mode, loop to start after last image.

Appendix B: X Resources 93

Version 3.10a December 29, 1994

Appendix B: X Resources

Section B.1: Simple Resources

Name Type Description

aspect string Sets the default aspect ratio used by the Aspect command.

2xlimit boolean Allow image window to be twice the size of the screen.

auto4x3 boolean Issue 4x3 command when an image is loaded.

autoApply boolean Sets initial setting of Auto-Apply HSV/RGB mods checkbox in
xv color editor window.

autoClose boolean Automatically close xv windows when image window is iconified.

autoCrop boolean Issue an AutoCrop command when an image is loaded.

autoDither boolean Automatically do a Dither command when an image is loaded.

autoHFlip boolean Issue a ‘horizontal flip’ command when image is loaded.

autoHistEq boolean Issue a HistEq command when image is loaded.

autoNorm boolean Issue Norm command when image is loaded.

autoRaw boolean Issue a Raw command when image is loaded.

autoReset boolean Sets initial setting of Auto-reset on new image checkbox in xv
color editor window.

autoRotate integer Rotate image when it is loaded.

autoSmooth boolean Automatically Smooth image on initial load.

autoVFlip boolean Automatically do a ‘vertical flip’ command when image is loaded.

background string Sets the background color.

best24 boolean Use the ‘best’ (read: slowest) 24-bit to 8-bit color algorithm.

black string Sets the ‘black’ color used in B/W dithering.

borderWidth integer Sets the border width of the windows.

ceditGeometry string Sets the initial position of the xv color editor.

ceditMap boolean Automatically open the xv color editor on startup.

ceditColorMap boolean Install image’s colormap in the xv color editor window.

clearOnLoad boolean Clear window to avoid ‘rainbow’ effect on PseudoColor displays.

commentGeometry string Sets the initial position and size of the xv comments window.

commentMap boolean Automatically open the xv comments window on startup.

ctrlGeometry string Sets the initial position of the xv controls window.

ctrlMap boolean Automatically open the xv controls window on startup.

cursor integer Sets the cursor used in the image window.

Appendix B: X Resources 94

Version 3.10a December 29, 1994

defaultPreset integer Makes specified preset number the default preset.

displayMods boolean Sets initial setting of Display with HSV/RGB mods checkbox in
xv color editor window.

dragApply boolean Sets initial setting of Auto-Apply while dragging checkbox in xv
color editor window.

driftKludge string Kludge to keep image window from ‘drifting’ around screen.

expand string Automatically expand or contract images by the given factor.

fileList string Loads a list of image filenames from a file.

fixed boolean Sets ‘fixed aspect ratio’ mode.

force8 boolean Lock xv into 8-bit Mode.

force24 boolean Lock xv into 24-bit Mode.

foreground string Sets the foreground color.

geometry string Specifies initial size and position of image window.

gsDevice string Type of file ghostscript should produce.

gsGeometry string Size of page ghostscript should produce, in 72nds of an inch.

gsResolution integer Resolution of file ghostscript should produce, in dpi.

hsvMode boolean Puts the colormap editing dials into HSV mode.

highlight string Sets the ‘highlight’ color used by the buttons.

iconGeometry string Specifies position of icon when run in -iconic mode.

iconic boolean Starts up xv with the image window iconified.

infoGeometry string Specifies initial position of xv info window.

infoMap boolean Automatically open xv info window on startup.

loadBrowse boolean Keep the xv load window open until deliberately closed.

lowlight string Sets the ‘lowlight’ color used by the buttons.

mono boolean Display all pictures in greyscale.

monofont string Mono-spaced font used in TextView windows.

ncols integer Specifies maximum number of different colors to use.

ninstall boolean Don’t ‘install’ colormaps. Have the WM do it for us.

nodecor boolean Don’t put decorations on xv image window frame.

nolimits boolean Turn off all ‘maximum size’ limitations on the image.

nopos boolean Don’t automatically position the xv windows.

noqcheck boolean Suppress quick-check when doing 24->8 bit algorithms.

nostat boolean Speed up directory changing in load/save windows.

ownCmap boolean Always use and install a private colormap.

perfect boolean Use and install a private colormap if necessary.

popupKludge boolean Use alternate ‘center-window-around-cursor’ code.

Appendix B: X Resources 95

Version 3.10a December 29, 1994

print string Sets initial setting of Orientation in xv postscript window.

psorient string Sets initial setting of Orientation in xv postscript window.
(landscape portrait)

pspaper string Sets initial setting of Paper Size in xv postscript window.
(8.5x11 8.5x14 11x17 4x5 35mm a3 a4 b5)

psres integer Sets initial setting of Resolution in xv postscript window.

pscompress boolean Sets initial setting of compress button in xv postscript window.

pspreview boolean Sets initial setting of preview button in xv postscript window.

quick24 boolean Use the quickest 24-bit to 8-bit color algorithm.

resetroot boolean Clear root when going back to ‘window’ display mode.

reverse boolean Reverses RGB values when image is loaded.

rootBackground string Root background color, used on some root display modes.

rootForeground string Root foreground color, used on some root display modes.

rootMode integer Use specified display mode when using root window.

rwColor boolean Use read/write color cells for faster color editing.

saveNormal boolean Sets default setting of Save at normal size checkbox in xv save
window.

searchDirectory string Sets the initial directory for the visual schnauzer and xv load
windows.

textviewGeometry string Initial position and size for TextView window.

useStdCmap boolean Use Standard Colormap.

visual string Use a non-default visual of your X display.

vsDisable boolean Disable Visual Schnauzer.

vsGeometry string Initial size and position for Visual Schnauzer windows.

vsMap boolean Automatically open a Visual Schnauzer window on startup.

vsPerfect boolean Prevent Visual Schnauzer from installing its own private
colormap.

white string Sets the ‘white’ color used in B/W stippling.

Section B.2: Color Editor Resources:

The xv color editor resources take the general form:

xv .state.item: val

where state is: ‘default ’, ‘ preset1 ’, ‘ preset2 ’, ‘ preset3 ’, or ‘preset4 ’

and item is: ‘huemap1’ ‘ huemap2’, ‘ huemap3’, ‘ huemap4’, ‘ huemap5’, ‘ huemap6’,
‘whtmap ’, ‘ satval ’, ‘ igraf ’, ‘ rgraf ’, ‘ ggraf ’, or ‘bgraf ’

Appendix B: X Resources 96

Version 3.10a December 29, 1994

Section B.3: Pad Command Resources

You can change the contents of the ‘shortcut’ menus in the Pad command dialog box using the following
resource format:

xv.pad. menu. slot

Where menu is one of ‘color’, ‘bggen’, ‘load’, and slot is ‘val0’ .. ‘val9’, or ‘name0’ .. ‘name9’. The
‘val’s are string resources that hold the actual ‘shortcut text’ that is entered when you select this menu
choice. The ‘name’s are optional, and are the short descriptions listed on the menus.

For instance, to add the items ‘yellow’, and ‘blue’ to the ‘color’ menu, stick these lines in your
.Xdefaults (or .Xresources) file:

xv.pad.color.name0: yellow
xv.pad.color.val0: 255 255 0
xv.pad.color.name1: blue
xv.pad.color.val1: 0 0 255

Appendix C: Mouse and Keyboard Usage 97

Version 3.10a December 29, 1994

Appendix C: Mouse and Keyboard Usage

Section C.1: Mouse Usage in the Image Window

Button1 draws a selection rectangle
Button2 display pixel values, measure distance, picks drawing color
Button3 opens or closes the xv controls window

<Ctrl> Button1 Zoom In
<Ctrl> Button2 Pan (while zoomed in)
<Ctrl> Button3 Zoom Out

<Shift> Button1 draws a square selection rectangle
<Shift> Button2 freehand drawing tool
<Shift> <Ctrl> Button2 line drawing tool
<Shift> Button3 smudging tool

Section C.1.1 Mouse Usage in Selection Rectangle

Button1 moves selection rectangle
<Shift> Button1 moves selection, constrains motion
Button2 ‘drag-and drop’ cut and paste
<Shift> Button2 ‘drag and drop’ cut and paste, constrains motion
<Ctrl> Button2 ‘drag and drop’ copy and paste
<Shift> <Ctrl> Button2 ‘drag and drop’ copy and paste, constrains motion

Section C.2: Normal Keyboard Equivalents

The following keyboard equivalents can be used in most xv windows, including the xv image, xv controls,
xv color editor, and so on, but not the xv visual schnauzer.

Key Description
<Tab> or <Space> Next
<Return> reload currently selected image file
<Delete> or <Backspace> Prev

<Ctrl> l Load
<Ctrl> s Save
<Ctrl> p Print
<Ctrl> d Delete
<Ctrl> q or q Quit

<Meta> x Cut
<Meta> c Copy
<Meta> v Paste
<Meta> d Clear

n reset image to Normal size
m Max

Appendix C: Mouse and Keyboard Usage 98

Version 3.10a December 29, 1994

M Maxpect
> Double Size
< Half Size
<Period> 10% Larger
<Comma> 10% Smaller
S Set Size
a Re-Aspect
4 4x3
I Int. Expand

t turn image 90° clockwise
T turn image 90° counter-clockwise
h flip image horizontally
v flip image vertically

P Pad
A Text Annotation
c Crop
u UnCrop
C AutoCrop

r Raw
d Dither
s Smooth
<Meta> 8 toggle between 8-bit and 24-bit modes

<Ctrl> v or V Visual Schnauzer
e Color Editor
i Image Info
<Ctrl> c Image Comments
<Ctrl> t Text View

<Ctrl> g Grab
<Ctrl> a About XV

<Meta> b Blur
<Meta> s Sharpen
<Meta> e Edge Detection
<Meta> m Emboss
<Meta> o Oil Paint
<Meta> B Blend
<Meta> t Copy Rotate
<Meta> T Clear Rotate
<Meta> p Pixelize
<Meta> S Spread

<Meta> r or R or <Meta> 0 Reset command in xv color editor
<Meta> 1 select preset #1 in xv color editor
<Meta> 2 select preset #2 in xv color editor
<Meta> 3 select preset #3 in xv color editor
<Meta> 4 select preset #4 in xv color editor
<Meta> a Apply command in xv color editor

Appendix C: Mouse and Keyboard Usage 99

Version 3.10a December 29, 1994

Section C.2.1: Image Window Keys

The following keys can only be used inside the image window.

<Ctrl> <Up> crops 1 pixel off the bottom of the image
<Ctrl> <Down> crops 1 pixel off the top of the image
<Ctrl> <Left> crops 1 pixel off the right side of the image
<Ctrl> <Right> crops 1 pixel off the left side of the image

If you’re viewing a multi-page document:

p opens a ‘go to page #’ dialog box
<PageUp> go to previous page
<PageDown> go to next page

If a selection rectangle is active:

<Up> moves selection rectangle up 1 pixel
<Down> moves selection rectangle down 1 pixel
<Left> moves selection rectangle left 1 pixel
<Right> moves selection rectangle right 1 pixel
<Shift> <Up> shrink rectangle vertically by 1 pixel
<Shift> <Down> expand rectangle vertically by 1 pixel
<Shift> <Left> shrink rectangle horizontally by 1 pixel
<Shift> <Right> shrink rectangle horizontally by 1 pixel

Section C.3: Visual Schnauzer Keys

The following keys can only be used in the visual schnauzer windows.

<Ctrl> d Delete File(s)
<Ctrl> n New Directory
<Ctrl> r Rename File
<Ctrl> s ReScan Directory
<Ctrl> w Open New Window
<Ctrl> u Update Icons
<Ctrl> g Generate Icons
<Ctrl> a Select All Files
<Ctrl> t Text View
<Ctrl> q Quit XV
<Ctrl> c Change Directory
<Ctrl> f Select Filenames
<Ctrl> e Recursive Update
<Esc> Close Window
<Return> load currently selected file(s)
<Space> load next file
<Shift> <Space> load next file, keeping previous file(s) selected
<Backspace> load previous file

Appendix D: RGB & HSV Colorspaces 100

Version 3.10a December 29, 1994

Appendix D: RGB & HSV Colorspaces

Both the RGB and HSV Colorspaces define a method of uniquely specifying colors via three numbers.

The RGB colorspace is the more commonly used of the two. For example, most color monitors operate on
RGB inputs. In RGB colorspace, each color is represented by a three number ‘triple’. The components of
this triple specify, respectively, the amount of red, the amount of green, and the amount of blue in the
color. In most computer graphics systems (and in xv), these values are represented as 8-bit unsigned
numbers. Thus, each component has a range of 0-255, inclusive, with 0 meaning ‘no output’, and 255
meaning ‘full output’.

The eight ‘primary’ colors in the RGB colorspace, and their values in the standard 8-bit unsigned range
are:

Black (0, 0, 0)
Red (255, 0, 0)
Green (0,255, 0)
Yellow (255,255, 0)
Blue (0, 0,255)
Magenta (255, 0,255)
Cyan (0,255,255)
White (255,255,255)

Other colors are specified by intermediate values. For example, orange is chromatically between red and
yellow on the color spectrum. To get an orange, you can simply average red (255,0,0) and yellow
(255,255,0) on a component-by-component basis resulting in (255,127,0), which will be some orange-ish
color.

You can change the brightness of the colors by raising or lowering all of their components by some factor.
For example, if (0,255,255) is cyan (it is), then (0,128,128) would be a dark cyan.

Saturation of a color is a measure of how ‘pure’ the color is. Desaturated colors will appear washed-out,
or pastel, whereas saturated colors will be bold and vibrant, the sort of colors you’d paint a sports car. In
the RGB colorspace, you can desaturate colors by adding white to them. For example, if you take red
(255,0,0), and add a medium grey to it (128,128,128), you’ll get a shade of pink (255,128,128). Note that
the component values are ‘clipped’ to remain in the range 0-255.

The HSV colorspace works somewhat differently. It is considered by many to be more intuitive to use,
closer to how an artist actually mixes colors.

In the HSV colorspace, each color is again determined by a three-component ‘triple’. The first
component, Hue, describes the basic color in terms of its angular position on a ‘color wheel’. In this
particular implementation, Hue is described in terms of degrees.

Unfortunately, since this document isn’t printed in color, it is not possible to show this ‘color wheel’ in
any meaningful way. Here is where the ‘primary’ colors live:

Red 0 °
Yellow 60 °
Green 120 °
Cyan 180 °
Blue 240 °
Magenta 300 °

The colors appear in the same order that they do on a standard color spectrum, except that they form a
circle, with magenta looping back to red.

As with the RGB space, in-between colors are represented by in-between values. For example, orange
would have a Hue value of 30°, being situated roughly halfway between red and yellow.

Appendix D: RGB & HSV Colorspaces 101

Version 3.10a December 29, 1994

The second component of the HSV triple is Saturation, which, as described above, can be thought of as
“how pure the color is”. In this implementation, saturation can range between 0 and 100, inclusive.
Colors with a saturation of 100 are fully-saturated, whereas colors with a saturation of 0 are completely
desaturated (in other words, grey).

The third component of the HSV triple is Value, which really should be called Intensity. It is a measure of
how ‘bright’ the color is. In this implementation, Value can range between 0 and 100, inclusive. A color
with a Value component of 100 will be as bright as possible, and a color with a Value component of 0 will
be as dark as possible (i.e., black).

Appendix E: Color Allocation in xv 102

Version 3.10a December 29, 1994

Appendix E: Color Allocation in xv

Allocating colors on an X11 display is not as trivial a matter as it might seem on first glance. xv goes to a
lot of trouble to allocate colors from what is essentially a scarce resource. This appendix is provided for
those inquisitive types who’d be interested in learning how to successfully ‘argue’ with an X server.

Note: If you’re using a TrueColor display, you can safely ignore this appendix, as none of the following
actually happens on your system. On a TrueColor system, there is no colormap. Pixel values directly
correspond to displayed color values. For example, in a typical 24-bit TrueColor display, each pixel value
is a 24-bit unsigned number, which corresponds to an 8-bit Red component, an 8-bit Green component,
and an 8-bit Blue component, bitwise shifted and OR-ed together to form a 24-bit number. As a result, all
displayable colors are always available for use.

Section E.1: The Problem with PseudoColor Displays

Most color X displays use a ‘visual’ model called PseudoColor. On a PseudoColor display, pixel values
are small unsigned integers which point into a ‘colormap’, which contains an RGB triple for each possible
pixel value. As an example, on a typical 8-bit color X display, pixel values can range between 0 and 255,
inclusive. There is a 256-entry colormap which contains an RGB triple for each possible pixel value.
When the video display hardware sees a pixel value of ‘7’, for instance, it looks up color #7 in the
colormap, and sends the RGB components found in that position of the colormap to the video monitor for
display.

In the X Window System, entries on the display’s colormap (called colorcells) are a scarce resource. At
any time, out of the 256 colors available (in an 8-bit PseudoColor system), several of these colors may
already be in use by your window manager, the cursor, and other applications. As such, xv cannot assume
that it has 256 colors at its disposal, because it generally doesn’t.

A word on the xv color allocation policy: The overall goal is to “make this one image being displayed
right now look as good as possible, without changing the colors of any other applications.” You can
modify this goal slightly to suit your purposes, on the off chance that your goal isn’t the same as my goal.
Section 3.3.2: Color Allocation Commands” for further details.

Section E.2: xv’s Default Color Allocation Algorithm

By default, xv will allocate ‘read-only’ colorcells. Since these colorcells cannot be changed by the
application, they can be freely shared among applications. This is the default behavior because it is the
most likely to succeed in getting the colors it needs. It does, however, slow down any color changes made
in the xv color editor window. If you intend to be doing any serious color modification, you should
probably run xv with the ‘-rw ’ option.

When allocating read-only colorcells, xv uses a four-step process to acquire the colors it wants.

The first step is to sort the desired colors by order of ‘importance’, so that we ask for the most ‘important’
colors first. See “Appendix F: The Diversity Algorithm” for more details on this step.

The next step (Phase 1 Color Allocation) is to ask for each color in the list. Colors that we failed to get
(presumably because there are no more entries available in the colormap) are marked for use in the Phase
2 and Phase 3 Color Allocation steps.

If we successfully allocated all the desired colors in Phase 1, the algorithm exits at this time. Otherwise, it
goes on to Phase 2. In Phase 2, the display’s colormap is examined. For each color that went unallocated
in Phase 1, the program looks for the color in the display’s colormap that is the ‘nearest’ match to the
originally desired color. It then tries to allocate these ‘nearest’ colors as read-only colorcells. The number

Appendix E: Color Allocation in xv 103

Version 3.10a December 29, 1994

of successful allocations in Phase 2 will be displayed in the string “Got ## ‘close’ colors.”, visible in the
xv info window.

If all the colors have been successfully allocated by this point, the algorithm exits. Otherwise, it continues
on the Phase 3. In Phase 3, any colors still unallocated are simply mapped into the ‘nearest’ colors that
were allocated in Phase 1 or Phase 2.

Section E.3: ‘Perfect’ Color Allocation

If you’d like the image displayed “as nicely as possible on this display, and everything else be damned”,
you can run xv in ‘perfect’ mode, by specifying the ‘-perfect ’ option on the command line.

In ‘perfect’ mode, color allocation proceeds much like it does in ‘imperfect’ mode. The colors are sorted
in decreasing order of ‘importance’. Each of these colors is then requested, as in the Phase 1 color
allocation code described above.

The big change comes on a failed allocation request. If a color is not successfully allocated in Phase 1,
and this is the first failed request, we assume that the colormap is full. The program frees all the colors
allocated so far, creates and installs a completely new colormap. When a new colormap is installed,
everything else on the screen (including other xv windows) will go to hell. Only the image window will
look correct. Generally, the colormap will remain installed as long as your mouse is inside the image
window. It is, however, up to your particular window manager to decide how multiple colormaps are
handled..

After the colormap has been installed, the program starts Phase 1 over again, allocating colors from the
new, empty colormap. If any color allocation requests still fail, they are marked and dealt with in Phase 2.
(It is possible for allocation requests from the new, empty colormap to fail, as the program may be asking
for more colors than are available in a colormap. For example, you could be running xv on a 4- or 6-bit
display, which only would have 16 or 64 colors (respectively) in a colormap.)

Phase 2 operates as described above, except that it looks for ‘nearest’ matches in the newly created
colormap. Also, since xv already owns every color in this colormap, we don’t technically have to
‘allocate’ any of them in this Phase. We already have allocated them once.

Note that ‘perfect’ mode only creates and installs a new colormap if it was necessary. If all the Phase 1
color allocation requests succeeded, a new colormap will not be created.

Section E.4: Allocating Read-Write Colors

It is sometimes desirable to allocate read-write colorcells instead of read-only colorcells. Read-write
colorcells cannot be shared among programs. As such, unless you use ‘perfect’ mode as well, you are
likely to successfully allocate fewer colors. That’s the disadvantage. The advantage is that, since xv
completely owns these colorcells, it can do what it wishes with them. Color changes (as controlled by the
xv color editor window) will happen almost instantaneously, as the program only has to store new RGB
values in the colorcells, rather than free all the colors and reallocate new different colors.

To allocate read-write colorcells, start xv with the ‘-rw ’ option. Colorcells are allocated one at a time. If
an allocation request fails, the code stops allocating new colorcells. (Unless you’ve also specified ‘perfect’
mode. In ‘perfect’ mode, the first time an allocation request fails, all allocated colors are freed, a new,
empty colormap is created and installed, and all colors are reallocated. If there is an allocation error in
this second pass, the code stops allocating new colorcells.)

If there are still unallocated color remaining, these colors are simply mapped into the closest colors that
were allocated.

Appendix E: Color Allocation in xv 104

Version 3.10a December 29, 1994

For further information, and actual code that does everything described in this appendix, see the functions
‘AllocROColors() ’ and ‘AllocRWColors() ’, both of which can be found in the source module
‘xvcolor.c ’.

Appendix F: The Diversity Algorithm 105

Version 3.10a December 29, 1994

Appendix F: The Diversity Algorithm

The problem: You want to display an image that has n colors in it. You can only get m colors, where
m<n. What colors do you use?

As explained in Appendix E, colors on a non-TrueColor X display are a scarce resource. You can’t
guarantee that you’ll get as many colors as you might like. You can’t even know ahead of time how many
colors you will succeed in getting. As such, the first step of all of the color allocation algorithms
(described in Appendix E) is to sort the colors in order of decreasing ‘importance’. The colors are then
allocated in this order, so that if the color allocation fails after m colors, then at least we allocated the m
most ‘important’ colors.

This sorting algorithm is called the Diversity Algorithm, and is described in detail here. While the
algorithms described in Appendix E are probably only of use to other X programmers (or programmers
using other windowing systems with shared colormap resources), the Diversity Algorithm should be of use
to anyone who has to display an image using fewer colors than they’d like to have. As far as I know, the
Diversity Algorithm is a completely original algorithm designed for this program.

Section F.1: Picking the Most ‘Important’ Colors

There are many different criteria that one could use to define which colors in an image are ‘important’.

The most naive approach would be to simply ignore the question, and just use the first m colors from the
colormap. This is clearly unacceptable. The entries in a colormap are generally not sorted in any order
whatsoever. Even when the colors are sorted in some order, it’s not likely that it will be a useful order.

For example, in a normal greyscale picture, there is an implied colormap consisting of a continuous
collection of greys, with black at the beginning, and white at the end. If a program were to only use the
first few colors from this colormap, it would have several shades of black, but no whites, or even middle
greys.

A method of determining a color’s importance to the overall picture quality is needed.

A color’s ‘importance’ can be determined intuitively by asking the question “If we can only use one of
these two colors, which one would make the picture look better?”. The goal is to have the picture be
recognizable with very few colors. Additional colors should smooth out color gradation, but should not
add significant detail, nor change the color balance of the overall picture.

Picking colors in this order is not a trivial task, and is open to some degree of subjectivity. One method
might involve calculating a histogram of the data to find out which colors are used the most often (i.e.,
which colors have the greatest number of pixels associated with them), and using those colors first. This
is certainly a valid approach, but it places too much emphasis on large, uniformly colored regions, such as
backgrounds. This is not generally where the ‘interesting’ portion of the picture is found.

For example, assume a picture that consists of a blue background, with a relatively small red square on it.
Furthermore, suppose that the background isn’t just one solid shade of blue, but is actually made up of
three shades of blue (light blue, dark blue, and medium blue, to give them names). Finally, assume that a
histogram has been computed, and light blue has been found to be the most prevalent color, followed by
medium blue, dark blue, and red, in that order.

Now, attempt to display this picture using only two colors. Which two should be used? If the selection
criteria is simply ‘in order of decreasing usage’, light blue and medium blue would be picked. However, if
this is done the red square will disappear completely (as red will wind up being ‘approximated’ by one of
the two blues).

Appendix F: The Diversity Algorithm 106

Version 3.10a December 29, 1994

Clearly the solution is to use red and one of the blues. Which blue, though? It could be argued that since
there are three blues and only one of them can be used, middle blue should be selected, since it is the
‘average’ blue. This is where it gets somewhat subjective. The Diversity Algorithm would pick light
blue, since it is used more than the others. When possible, the algorithm will try to maximize the number
of pixels that are ‘correct’ (i.e. exactly what was asked for), rather than trying to minimize the total error
of the picture. This way, additional colors smooth out gradations, rather than changing the overall color
balance of the picture.

Suppose that a small yellow circle is added to the picture described above. If the problem is still ‘display
this picture using only two colors’, then it cannot be resolved in any satisfactory method. There are no
two colors that will adequately display red, yellow, and blue simultaneously . No matter what colors are
used, one of the three major colors will be lost. As this is now a no-win scenario, it is no longer very
interesting. It doesn’t matter what colors are picked, since it will look bad regardless. However, if the
problem is changed, and three colors can now be selected, it is intuitively obvious that yellow, red, and
one of the blues should be selected.

So, the question is, “what is being maximized when colors are selected in this manner?” Certainly, since
the blue regions are so much larger than the red and yellow regions, any rule based on the number of
pixels satisfied by the color choice is irrelevant. What is being maximized is the diversity of the colors.
By picking colors that are as unlike each other as possible, we wind up covering the ‘inhabited’ portion of
the RGB color space as quickly as possible.

As a general rule, this tends to bring out the major details (such as objects) in the picture first, since the
details are likely to involve contrasting colors. As more colors are picked, gaps in the RGB space are
filled in. This smoothes out the color gradations, and brings out lesser detail (such as texture).

Section F.2: The Original Diversity Algorithm

The algorithm operates as follows:

1. Run a histogram on the entire picture to determine ‘pixel counts’ for each desired color in the
colormap. Important point: throw away any colors that have a ‘pixel count’ of 0. These colors are never
actually used in the image, and it’s important that we not waste valuable colorcells allocating unused
colors.

2. Pick the color with the highest pixel count. This is the ‘overall’ color of the picture.

3. Run through the list of un-picked colors, and find the one with the greatest ‘distance’ from the first
color. This is the color that is most diverse from the ‘overall’ color. Distance is defined by the traditional
‘Euclidean’ formula:

d = [(r1 - r2)2 + (g1 - g2)2 + (b1 - b2)2]1/2

where r1,g1,b1 are the RGB components of one color, and r2,g2,b2 are the RGB components of another
color. d is the computed distance between the two colors.

4. For each color remaining in the ‘unpicked’ list, compute the distance from it to each of the colors in
the ‘picked’ list. Find the color in the unpicked list that is furthest from all of the colors in the picked list.
Pick this color. Repeat until all colors have been picked.

Section F.3: The Modified Diversity Algorithm

Tom Lane of the Independent JPEG Group came up with a couple of improvements to the Diversity
Algorithm, resulting in the Modified Diversity Algorithm, which is what xv currently uses. He rightly
pointed out that, on displays with an intermediate number of colors (~64), too much emphasis was being
placed on getting ‘different’ colors, and not enough emphasis was placed on getting the ‘correct’ colors.

Appendix F: The Diversity Algorithm 107

Version 3.10a December 29, 1994

His idea was to modify the sorting criteria slightly, to better balance the allocation between diverse colors
and ‘popular’ colors (colors with high ‘pixel counts’). His solution to the problem was to alternate
between picking colors based on diversity and based on popularity.

In the Modified Diversity Algorithm, as implemented in xv, the first color picked is the most-popular
color. The second color picked is the color furthest away from the first color. The third through tenth
colors picked are all picked using the normal Diversity Algorithm. The eleventh color picked is picked on
popularity, (the un-picked color with the highest ‘pixel count’ is chosen). The twelfth color is once again
picked on diversity. The thirteenth color is chosen on popularity, and so on, alternating, until all the
colors have been picked.

It should be pointed out that there’s a fair amount of subjectivity here, and certainly different fine-tunings
of the color picking order will make some pictures look better, and other pictures look worse. Tom
originally had the algorithm pick colors alternately based on diversity and popularity right from the first
color. (The first color picked on popularity, the second on diversity, the third on popularity, etc.) I felt
that this broke the algorithm for displays with very few colors (<16), and proposed the strategy described
above. (First color picked on popularity, the next ten colors picked on diversity, remaining colors
alternately picked on popularity and diversity.)

Tom’s other major modification to the Diversity Algorithm was to rewrite it so that ‘diverse’ colors are
picked in O(n2) time, instead of O(n3) time.

For further information, consult the source code. (The function ‘SortColors() ’ in the file
‘xvcolor.c ’.)

Appendix G: Adding Other Image Formats to xv 108

Version 3.10a December 29, 1994

Appendix G: Adding Other Image Formats to xv

This appendix is split up into two sections, one for reading a new file format, and the other for writing a
new file format. Note that you do not necessarily have to read and write a new file format. For example,
xv can read PCX files, but it doesn’t write them. Likewise, xv traditionally could only write PostScript
files, but couldn’t read them. (And technically, it still doesn’t.)

For the purposes of this example, I’ll be talking about the PBM/PGM/PPM code specifically. (See the file
xvpbm.c for full details.)

Section G.1: Writing Code for Reading a New File Format

Note: Despite the wide variety of displays and file formats xv can deal with, internally it only manipulates
8-bit colormapped images or 24-bit RGB images. If you’re loading an 8-bit colormapped image, such as a
GIF image, no problem. If you’re loading an 8-or-fewer-bits format that doesn’t have a colormap (such as
an 8-bit greyscale image, or a 1-bit B/W bitmap) your Load () routine will have to generate an appropriate
colormap.

Make a copy of xvpbm.c , calling it something appropriate. For the rest of this appendix, mentally
replace the string ‘xvpbm.c ’ with the name of your new file.

Edit the Makefile and/or the Imakefile so that your new module will be compiled. In the
Makefile , add “xvpbm.o ” to the “OBJS = ... ” macro definition. In the Imakefile , add
“xvpbm.o ” to the end of the “OBJS1 = ... ” macro definition, and “xvpbm.c” to the end of the
“SRCS1 = ...” macro definition.

Edit the new module.

You’ll need to #include “xv.h” , of course.

The module should have one externally callable function that does the work of loading up the file. The
function is called with two arguments, a filename to load, and a pointer to a PICINFO structure, like so:

/***/
int LoadPBM(fname, pinfo)
char *fname; PICINFO *pinfo;
/***/

The file name will be the complete file name (absolute, not relative to any directory). Note: if xv is
reading from stdin , don’t worry about it. stdin is always automatically copied to a temporary file.
The same goes for pipes and compressed files. Your Load() routine is guaranteed that it will be reading
from a real file that appears to be in your file format, not a stream. This lets you use routines such as
fseek() , and such.

The pinfo argument is a pointer to a PICINFO structure. This structure is used to hold the complete set
of information associated with the image that will be loaded. When your Load() routine is called, the
fields in this structure will all be zeroed-out. It is your function’s responsibility to load up the structure
appropriately, and completely. The structure is defined as:

Appendix G: Adding Other Image Formats to xv 109

Version 3.10a December 29, 1994

/* info structure filled in by the LoadXXX() image reading routines */
typedef struct { byte *pic; /* image data */
 int w, h; /* size */
 int type; /* PIC8 or PIC24 */
 byte r[256],g[256],b[256]; /* colormap, if PIC8 */
 int normw, normh; /* normal size of image.
 normally == w,h except when
 doing quick load for icons
*/
 int frmType; /* def. Format type to save in */
 int colType; /* def. Color type to save in */
 char fullInfo[128]; /* Format: field in info box */
 char shrtInfo[128]; /* short format info */
 char *comment; /* comment text */

 int numpages; /* # of page files, if >1 */
 char pagebname[64]; /* basename of page files */
} PICINFO;

The Load() function should return ‘1’ on success, ‘0’ on failure.

All other information is communicated using the PICINFO structure. The fields should be setup as
follows:

byte *pic;

This is an array of bytes which holds the returned image. The array is malloc() ’d by the Load()
routine. The array should be w*h bytes long (for an 8-bit colormapped image) or w*h*3 bytes long (for a
24-bit RGB image). For an 8-bit image, there is one byte per pixel, which serves as an index into the
returned colormap (see below). For a 24-bit image, there are three bytes per pixel, in red, green blue,
order. In either case, pixels start at the top-left corner, and proceed in normal scan-line order. There is
no padding of any sort at the end of a scan line.

int w, h;

These variables specify the width and height (in pixels) of the image that has been loaded.

int type;

This variable is used to tell the calling routine whether the loaded image is an 8-bit image or a 24-bit
image. It must be set equal to PIC8 or PIC24 , whichever one is appropriate. These constants are
defined in ‘xv.h ’.

byte r[256], g[256], b[256];

If the returned image is an 8-bit image, you must load up these variables with the colormap for the image.
A given pixel value in pic maps to an RGB color through these arrays. In each array, a value of 0 means
‘off’, and a value of 255 means ‘fully on’. Note: the arrays do not have to be completely filled. Only
RGB entries for pixels that actually exist in pic need to be set. For example, if pic is known to be a
B/W bitmap with pixel values of 0 and 1, you would only have to set entries ‘0’ and ‘1’ of the r,g,b
arrays.

On the other hand, if the returned image is a 24-bit image, the r,g,b arrays are ignored, and you do not
have to do anything with them.

int normw, normh;

These specify the ‘normal’ size of the image. Normally, they are equal to w and h, respectively. The only
exception is when doing a ‘quick’ load for icon generation, in which case it may be possible to read a
‘reduced’ version of the image, sufficient for generating the tiny icon files. In such a case, w and h would
reflect the (reduced) size of the image returned, and normw and normh would reflect the ‘normal’ image
size, for use in the comments displayed in the xv visual schnauzer. Currently only the LoadJFIF()
function in xvjpeg.c actually does this.

Appendix G: Adding Other Image Formats to xv 110

Version 3.10a December 29, 1994

int frmType;

This lets you specify the Format type to automatically select when you Save a file. As such, this is only
relevant if you intend to have xv write your image format as well as read it. If you are only writing an
image loader, you should set this field to ‘-1 ’. On the other hand, if you do intend to write a Write()
function for your format, you should edit xv.h , find the F_* format definitions, and add one for your
format. See xvpcx.c for an example of a load-only format, or xvpbm.c for a load-and-save format.

int colType;

Used to determine which Colors setting should be used by default when you save a file. Since xv will use
this setting no matter what format you’re using, you must fill this field in appropriately regardless of
whether or not you plan to have a Write() function for your format. This field should be set to
F_FULLCOLOR for any type of color image, F_GREYSCALE for greyscale images, and F_BWDITHER for
black-and-white 1-bit images. If in doubt, F_FULLCOLOR is always a safe choice, though it’d be nice if
your module ‘does the right thing’. (For instance if you read colormapped images, you should check to
see if the colormap consists only of shades of grey, and set F_GREYSCALE if it does.)

char fullInfo[128];

This string will be shown in the Format field of the xv info window. It should be set to something like
this:

Color PPM, raw format (12345 bytes)

char shrtInfo[128];

A ‘short’ version of the info string. This gets displayed in the info line at the bottom of the xv controls
and xv info windows when the image is loaded. It should look like this:

512x400 PPM.

char *comment;

If your image file format supports some sort of comment field, and you find one in the file, you should
malloc() a pointer to a null-terminated string and copy any and all comments into this field. If there
are multiple comments in a file, you should concatenate them together to form one long string. This
string MUST be null-terminated, as xv will expect to be able to use strlen() on it, and possibly other
‘string’ functions.

int numpages;
char pagebname[64];

These two fields will only be used if your are writing a Load() function for a format that may have
multiple images per file. If your format only ever has a single image per file, you don’t have to worry
about (or do anything with) these two fields.

On the other hand, if your format does do multiple images per file, and the current file has more than one
image in it, then what your program should do is split the multi-image file up into a temporary collection
of single-image files, which should probably live in /tmp or something. Once you’ve done so, you should
return the number of files created in numpages , and the ‘base’ filename of the page files in
pagebname . The files created should have a common ‘base’, with the page number appended. (e.g.,
“/tmp/xvpg12345a.1”, “/tmp/xvpg12345a.2”, etc., where “/tmp/xvpg12345a.” is the base filename
(created by the mktemp() system function)) You should also load the first file and return its image in
the normal way.

See the LoadPS() function in xvps.c for a complete example of how this is done. Also, note that if
your format supports multiple image per file, you should also pass in a ‘quick ’ parameter, which will tell
your function to only load the first ‘page’ of the file. This is used by the visual schnauzer, which needs to
load images when it generates icon files. To speed things up, the schnauzer tells the Load() function to
only load the first page, as that’s all it need to generate the icon file.

Appendix G: Adding Other Image Formats to xv 111

Version 3.10a December 29, 1994

Section G.1.1: Error Handling

Non-fatal errors in your Load() routine should be handled by calling the function
SetISTR(ISTR_WARNING, “%s: %s”, bname, err) , and returning a zero value. Where
bname is the ‘simple’ name of your file (which can be obtained using BaseName() function in
xvmisc.c), and err should be an appropriate error string.

Non-fatal errors are considered to be errors that only affect the success of loading this one image, and not
the continued success of running xv. For instance, “can’t open file”, “premature EOF”, “garbage in file”,
etc. are all non-fatal errors. On the other hand, not being able to allocate memory (unsuccessful returns
from malloc()) is considered a fatal error, as it means xv is likely to run out of memory in the near
future anyhow.

Fatal errors should be handled by calling FatalError(error_string) . This function prints the
string to stderr , and exits the program with an error code.

Warnings (such as ‘truncated file’) that may need to be noted can be handled by calling SetISTR() as
shown above, but continuing to return ‘1’ from the Load() routine, signifying success.

Also, if your load routine fails for any reason, it is your responsibility to free() any pointers allocated
(such as the pic field and the comment field, and return NULL in these fields). Otherwise, there’ll be
memory leaks whenever an image load fails.

Section G.1.2: Hooking it up to xv

Once you have written a Load() routine, you’ll want to hook it up to the xv source.

Edit xv.h and add a function prototype for any global functions you’ve written (presumably just
LoadPBM() in this case). Follow the style used for the other Load*() function declarations.

Find the RFT_* definitions and tack one on the end for your format (e.g., RFT_PBM). This is a list of
values that ‘ReadFileType() ’ can return. We’ll be working on that soon enough.

Edit xv.c :

1. Tell the ReadFileType() routine about your format. Add an ‘else-if’ case that determines if the
file in question is in your format. Note that it must be possible to uniquely identify your format by reading
the first 16 characters (or so) of the file. If your file format doesn’t have some sort of magic number, you
won’t be able to conveniently hook it into xv, though you can certainly come up with some sort of
kludge...

2. Tell the ReadPicFile() routine about your format. Add another case for your format type, and
have it call your Load() routine with the appropriate arguments.

3. Hook your file up into the visual schnauzer. Edit the file xvbrowse.c

• The first thing you have to do is create a ‘generic’ icon for your file format. Copy one of the
existing ones (such as ‘bits/br_pbm.xbm ’) to get the size and the general ‘look’ correct.

• #include this icon at the top of the file.

• Add an appropriately-named BF_* definition to the end of the list, and increase BF_MAX
appropriately.

• Have the icon pixmap created in the CreateBrowse() function, by doing something like this:

bfIcons[BF_PBM] = MakePix1(br->win, br_pbm_bits,
 br_pbm_width, br_pbm_height);

Appendix G: Adding Other Image Formats to xv 112

Version 3.10a December 29, 1994

• Hook your format into the scanFile() function. Find the following code:

switch (filetype) {
case RFT_GIF: bf->ftype = BF_GIF; break;
case RFT_PM: bf->ftype = BF_PM; break;

etc...

And add a case for your format. (To map RFT_* values into their corresponding BF_* values.)

• Hook your format into the genIcon() function. Find the following code:

sprintf(str, “%dx%d “, pinfo.w, pinfo.h);
switch (filetype) {
 case RFT_GIF: if (strstr(pinfo.shrtInfo, “GIF89”))
 strcat(str,”GIF89 file”);
 else
 strcat(str,”GIF87 file”);
 break;
 case RFT_PM: strcat(str,”PM file”);

 break;

etc...

And add a case for your format. This generates an appropriate info string that gets put in the icon files
maintained by the visual schnauzer (and displayed whenever you click on an icon in the schnauzer
window).

That should do it. Consult the files xv.h, xv.c, xvbrowse.c, and xvpbm.c for any further
specifics.

Section G.2: Adding Code for Writing a New File Format

Note: Despite the wide variety of displays and file formats xv deals with, internally it only manipulates
either 8-bit colormapped images or 24-bit RGB images. Your Write() routine must be prepared to take
either sort of image, and convert it (if necessary) to the image format that your file format dictates.

If you haven’t already done so (if/when you created the Load() function):

• Make a copy of xvpbm.c , calling it something appropriate. For the rest of this appendix, mentally
replace the string ‘xvpbm.c ’ with the name of your new file.

• Edit the Makefile and/or the Imakefile so that your new module will be compiled. In the
Makefile , add “xvpbm.o ” to the “OBJS = ... ” macro definition. In the Imakefile , add
“xvpbm.o ” to the end of the “OBJS1 = ... ” macro definition, and “xvpbm.c” to the end of the
“SRCS1 = ...” macro definition.

• Edit the new module.

• You’ll need to #include “xv.h” , of course.

The module should have one externally callable function that does the work of writing the file. The
function is called with a large number of arguments, described below. The function should return ‘0’ if
everything succeeded, and ‘-1’ on failure.

/***/
int
WritePBM(fp,pic,ptype,w,h,rmap,gmap,bmap,numcols,colorstyle,raw,comment)
 FILE *fp;

Appendix G: Adding Other Image Formats to xv 113

Version 3.10a December 29, 1994

 byte *pic;
 int ptype, w,h;
 byte *rmap, *gmap, *bmap;
 int numcols, colorstyle, raw;
 char *comment;
/***/

file *fp;

This is a pointer to an already-fopen() ’d stream. Your function should neither open nor close this
stream, as that all gets handled elsewhere in xvdir.c .

byte *pic;

This points to the image data that will be written. In the case of a PIC8 image, pic will point to a w*h
long array of bytes, one byte per pixel, starting at the top-left, and proceeding in normal scan-line order.
There is no padding of any sort at the end of the lines.

In the case of a PIC24 image, pic will point to a w*h*3 long array of bytes. There are three bytes per
pixel, in red, green, blue order. The pixels start at the top-left, and proceed in normal scan line order.
There is no padding of any sort at the end of the lines.

int ptype, w, h;

These variables describe the format of pic . ptype can be set to either PIC8 or PIC24 . w and h are the
width and height of the image, in pixels.

byte *rmap, *gmap, *bmap;
int numcols;

These pointers point to the colormap associated with the image. They are only relevant when ptype is
PIC8, meaning that pic is an 8-bit per pixel colormapped image. These arrays will each be numcols
entries long, with a maximum length of 256. Do not attempt to access entries >= numcols , as the
colormaps are not necessarily 256 entries long. You are guaranteed that pixel values found in pic will
be within the range [0..numcols-1], so you don’t have to check each pixel value. Also, do not attempt to
access these arrays at all if ptype is PIC24, as these pointers will probably be NULL in that case.

int colorstyle;

The Colors choice selected in the xv save window. It can be either F_FULLCOLOR, F_GREYSCALE, or
F_BWDITHER. It will not be F_REDUCED. If the user selects Reduced Color in the xv save window, the
appropriate image will be computed, and you’ll be given that image, and colorstyle will be set to
F_FULLCOLOR.

Likewise, if the user has selected B/W Dithered in the xv save window, an appropriate black-and-white
image will have been generated before your Write() routine is called, so you won’t have to worry about
that. Such an image will be a PIC8 image, with a 2-entry colormap. It is up to you to decide which of
the two colors should be written as black, and which should be written as white. You should do this by
comparing the values of MONO(rmap[0],gmap[0],bmap[0]) and
MONO(rmap[1],gmap[1],bmap[1]) . Whichever value is smaller is the darker of the two, and should
be written as black.

int raw;

This is a value passed in specifically for the WritePBM() function, as PBM has two closely-related
subformats (raw, and ascii) both of which are written by this one function. Your function won’t need this,
nor should it be passed in to your function.

char *comment;

This will point to a zero-terminated character string which contains the comments that should be written
into the image file. Note that this string can be of any length, and it may contain any number of lines

Appendix G: Adding Other Image Formats to xv 114

Version 3.10a December 29, 1994

(separated by ‘\n ’ characters). If your image format supports comments in the file, you should write this
information to the file. If it doesn’t, you should just ignore this variable. Also, this variable may be
NULL, (signifying ‘no comments’), in which case it should not be used.

You may pass more parameters, since you’re going to be adding the call to this function later on. For
example, in my PBM code, I pass one more parameter, ‘raw’ (whether to save the file as ‘raw’ or ‘ascii’)
to handle two very similar formats. (Rather than having to write WritePBMRaw() and
WritePBMAscii () functions.)

Write the function as you deem appropriate. See xvpbm.c for an example of a Write() routine that
writes different formats for 1-bit per pixel images, 8-bit per pixel images, and 24-bit per pixel images,
based on ptype and colorstyle .

Note: If your file format can only handle 8-bit images, and ptype is set to PIC24 , you will have to call
Conv24to8() to convert the 24-bit image into an 8-bit colormapped image that you can write to the
file. See xvgifwr.c for an example of how this is done.

That done, edit ‘xv.h ’ and add a function declaration for your new function. Search for ‘WritePBM() ’
in the file for a sample declaration to copy.

Also find the block that begins with:

#define F_GIF 0
#define F_JPEG (0 + F_JPGINC)

and add a definition for your format. Note that it’ll be easiest to tack it on at the end.

These numbers must be contiguous, as they are used as indices into the fmtMB menu in xvdir.c .

Edit ‘xvdir.c ’. This is the module that controls the xv save window.

Add another format name, in the appropriate position, to the saveFormats[] string array.

In the function DoSave() , find the following block:

switch (fmt) {
 case F_GIF:
 rv = WriteGIF(fp, thepic, ptype, w, h, rp, gp, bp, nc, col,
picComments);
 break;
 case F_PM:
 rv = WritePM (fp, thepic, ptype, w, h, rp, gp, bp, nc, col,
picComments);
 break;

and add a case for your function.

Finally, if your format has a common 3 or 4 letter filename suffix (like, “.gif”, “.jpg”, etc.), you should
modify the changeSuffix() routine in xvdir.c so that it recognizes your suffix, and puts your
suffix on when someone selects your format.

And It’s just that easy!

Section G.2.1: Writing Complex Formats

Okay, maybe it’s not that easy...

If your format requires some additional information to specify how the file should be saved (such as the
‘quality’ setting in JPEG, or position/size parameters in PostScript), then your task is somewhat more
difficult. You’ll have to create some sort of pop-up dialog box to get the additional information that you
want. You’ll also have to change the way your Write() function gets called (as it will now get called
from your pop-up dialog box). (Though, if you only feel like doing a quick hack, you can probably just

Appendix G: Adding Other Image Formats to xv 115

Version 3.10a December 29, 1994

use the GetStrPopUp() function to get a one-line character string from the user, and avoid the
complication of writing your own dialog box.)

This is not recommended for anyone who doesn’t understand Xlib programming. Frankly, it’s not
recommended for those who do, either, but they at least stand some chance of success.

The more adventurous types who wish to pursue this should take a look at the xvjpeg.c code, which
implements an extremely simple pop-up dialog. A considerably more complicated dialog box is
implemented in xvps.c . In addition to writing a module like these for your format, you’ll also have to
add the appropriate hooks to the DoSave() function (in xvdir.c) and the HandleEvent() function
(in xvevent.c). ‘grep PS *.c ’ will be helpful in finding places where the xvps.c module is
called.

Appendix H: Adding Algorithms to xv 116

Version 3.10a December 29, 1994

Appendix H: Adding Algorithms to xv

With the addition of the Algorithms menu in the xv controls window, xv can now perform standard
image-processing algorithms. However, I’m not really into the whole image-processing scene, so I’ve
only implemented a few algorithms.

Please! Feel free to add your own algorithms, it’s easy, and if you’d care to donate them, they may find
their way into future official releases of xv, and eternal fame and glory will be yours, in the form of a
credit in the “Hall of Fame” listing..

Section H.1: Adding an Algorithm

For the purposes of this example, I’ll be adding a new algorithm called ‘Noise’ which will simply add (or
subtract) a small random amount from each pixel in the image. I can’t see that this would be a very useful
algorithm (which is why it’s not already in xv), but then again, what do I know about such things...

Edit xv.h , and find the block that starts with:

#define ALG_NONE 0
#define ALG_SEP1 1 /* separator */
#define ALG_BLUR3 2

and add an additional definition at the end of the list (right before ALG_MAX) for your algorithm. Don’t
forget to increment ALG_MAX to reflect the additional algorithm:

#define ALG_TINF 6
#define ALG_OIL 7
#define ALG_NOISE 8
#define ALG_MAX 9

Edit xvctrl.c , and find where the array algMList[] is initialized. Add a string for your new
algorithm. The string’s position in the list must match the number that you assigned to the ALG_* value
in xv.h :

static char *algMList[] = { “Undo All”,
 MBSEP,
 “Blur (3x3)”,
 “Blur (7x7)”,
 “Edge Detection”,
 “Emboss”,
 “Oil Painting” ,
 “Add Noise”};

Edit xvalg.c , and find the DoAlg() function. This function is called with an ALG_* value whenever
something is selected from the Algorithms menu. Add a case for the new ALG_NOISE value, and have it
call your top-level function, with no parameters:

 case ALG_TINF: EdgeDetect(1); break;
 case ALG_OIL: OilPaint(); break;
 case ALG_NOISE: Noise(); break;
 }

Appendix H: Adding Algorithms to xv 117

Version 3.10a December 29, 1994

Write your top-level function:

/************************/
static void Noise()
{
 byte *pic24, *tmpPic;
 /* turn on flapping fish cursor */
 WaitCursor();

 /* mention progress... */
 SetISTR(ISTR_INFO, “Running Noise algorithm...”);

 /* generates a 24-bit version of pic , if necessary.
 also generates a w*h*3 buffer (tmpPic) to hold intermediate results */
 if (start24bitAlg(&pic24, &tmpPic)) return;
 /* do the noise algorithm */
 doNoise(pic24, pWIDE,pHIGH, tmpPic);

 /* if we’re in PIC8 mode, convert pic24 back to PIC8. free pic24 & tmppic */
 end24bitAlg(pic24, tmpPic);
}

Now write the function that does the work of your algorithm. It will be passed a 24-bit RGB source image
srcpic, its dimensions w,h, and a destination 24-bit image dstpic of the same size. If your algorithm is
normally meant to be run on greyscale images (as so many image algorithms are), you should simply run
it separately for each of the Red, Green, and Blue planes, and glue the results back together at the end of
the algorithm.

/************************/
static void doNoise(srcpic, w, h, dstpic)
 byte *srcpic, *dstpic;
 int w, h;
{
 byte *sp, *dp;
 int x,y,newr,newg,newb;

 printUTime(“start of doNoise”); /* print timing info */

 for (y=0; y<h; y++) {
 if ((y & 15) == 0) WaitCursor();

 sp = srcpic + y*w*3; /* position sp,dp at start of line #y */
 dp = dstpic + y*w*3;
 for (x=0; x<w; x++) {
 newr = sp[0] + (random()&0x3f)-0x20; /* add noise to red component */
 newg = sp[1] + (random()&0x3f)-0x20; /* add noise to green component */
 newb = sp[2] + (random()&0x3f)-0x20; /* add noise to blue component */
 RANGE(newr, 0, 255); /* clip values to range[0..255] inclusive */
 RANGE(newg, 0, 255); /* RANGE() is defined in xv.h */
 RANGE(newb, 0, 255);
 dp[0] = (byte) newr; /* store new values in dstpic */
 dp[1] = (byte) newg;
 dp[2] = (byte) newb;

 sp += 3; dp += 3; /* advance to next 3-byte pixel in images */
 }
 }
 printUTime(“end of doConvolv”);
}

Note that this algorithm is written in about as non-optimal a way as possible, for the sake of clarity.

Also note that if you define TIMING_TEST at the beginning of xvalg.c , it will turn on code that will
let you measure the CPU time your algorithm requires. Once you have a working algorithm, you may find
this useful if you wish to try to optimize your algorithm for increased performance.

And that’s all there is to it!

Index 118

Version 3.10a December 29, 1994

1

10% Larger command..8, 10
10% Smaller command...9, 10

2

24/8 Bit menu..14
24-bit mode command...15

4

4x3 command.. 9

8

8-bit mode command...15

A

About XV command..30
Algorithms menu..16
Apply command...42
Author

electronic mail addresses.. ii
fax number... ii
mail address.. ii

Auto-apply HSV/RGB mods option..........................44
Auto-apply while dragging option............................44
AutoCrop command..19
Auto-reset on new image option...............................44

B

Best 24->8 command...15
bggen program...66
Blend command...17
Blur command...16
bmp format..61
Browse option...54

C

Change directory command......................................48
Checkbook balancing.. 2
cjpeg program..67
Clear command...21

Clear Rotate command...18
Color Editor command...29
color editor presets...42
Color Editor window..33
colormap editing..34

ColUndo command..35
Grey command..36
Random command..36
Revert command...35
RevVid command..36
rgb dials ..35
RGB/HSV command...35

ColUndo command..35
command line options..68

-24...71
-2xlimit ...79
-4x3...76
-8 71
-acrop..76
-aspect...70
-best24..72
-bg...68
-black..77
-bw..69
-cecmap... 71, 74
-cegeom...74
-cgamma..76
-cgeom...74
-clear...74
-close...80
-cmap..74
-cmtgeometry...75
-cmtmap..74
-crop..75
-cursor...79
-DEBUG...82
-dir ..80
-display...68
-dither...75
-drift ..80
-expand...69
-fg ...68
-fixed...69
-flist ..80
-gamma...76
-geometry..69
-grabdelay..81
-gsdev..81
-gsgeom...82
-gsres...82
-help..68
-hflip ...76
-hi ...69
-hist...76
-hsv...78
-icgeometry..80
-iconic...80
-igeom...74

Index 119

Version 3.10a December 29, 1994

-imap...74
-lbrowse...78
-lo..69
-loadclear...78
-max..73
-maxpect..73
-mfn...80
-mono..76
-name..81
-ncols...70
-ninstall ...71
-nodecor...82
-nofreecols...78
-nolimits..79
-nopos..75
-noqcheck..72
-noresetroot..73
-norm...76
-nostat..78
-owncmap..70
-perfect..70
-pkludge..80
-poll...81
-preset...76
-quick24..71
-quit...74
-random...77
-raw...75
-rbg..73
-rfg ..73
-rgb..78
-RM...82
-rmode...73
-root...72
-rotate..76
-rv..77
-rw...70
-slow24..71
-smooth..75
-stdcmap..71
-tgeometry..75
-vflip ..76
-viewonly...81
-visual..79
-vsdisable..81
-vsgeometry...75
-vsmap...75
-vsperfect...81
-wait..77
-white..77
-wloop...77

Copy command..20
Copy Rotate command..18
Copyright.. ii
Crop command..19
cropping, fine...19
Cut command..20
CutRes command..43

D

Delete command..27
Delete file(s) command..48
DeSpeckle command...19
Dim command...43
Display menu..10
Display with HSV/RGB mods option.......................44
Dithered command..11
djpeg program..67
Double Size command...8
Dull command...43

E

Edge Detect command..17
Emboss command..17

F

file list
loading..80

filename list
saving..62

fits format..62
Flip Horizontal command...10
Flip Vertical command...10
ftp site ..i

G

gamma correction...40
Generate icon(s) command.......................................49
ghostscript...2
gif format...58
Grab command...24
Grab window..24
graph windows

function...39
operating...39

Grey command..36

H

Half Size command...8
HistEq command...44
hsv modification..36

hue remapping...37
intensity graph...39
saturation control...39
white remapping..38

Index 120

Version 3.10a December 29, 1994

I

Image Comments command......................................29
Image formats supported... 2
Image Info command...29
Image Info window...31
Image Size menu..7
Int. Expand command...10
intensity graph...39
IRIS rgb format..62

J

jpeg format...58
save dialog...59

L

Licensing... i
Load command..27
Load window...54
Lock current mode command...................................15

M

Max Size command... 8
Maxpect command... 8
Misc. Commands menu..48

N

New directory command...48
New features... 1
Next command...26
NoMod command..42
Norm command...43
Normal Colors command..11
Normal command... 8

O

Oil Painting command..17
Open new window command....................................49

P

Pad command..21
Pad Method menu...21
Pad window...21
panning... 5

Paste command...20
pbm format..60
Perfect Colors command...11
pgm format..60
pixel coordinates..3
pixel distance...3
pixel values...3
Pixelize command..18
pm format..62
postscript fomrat..60
postscript format

compress option..64
preview option..64
save dialog..63

ppm format..60
Prev command..27
Print command...28

Q

Quick 24->8 command..15
Quit command...30

R

Random command..36
rasterfile format...62
Raw command...11
Read/Write Colors command...................................11
Re-Aspect command...9
Recursive Update command.....................................49
Redo command..42
Rename file command...48
Rescan directory command.......................................49
Reset command...42
Revert command...35
RevVid command..36
rgb format..62
rgb modification...41
RGB/HSV command...35
Root

center tiled command...13
centered command..13
centered, brick command.....................................13
centered, warp command.....................................13
integer mirrored command..................................13
integer tiled command..13
mirrored command...13
symmetrical mirrored command..........................14
symmetrical tiled command..................................14
tiled command...13

Root menu...12
Rotate Clockwise command......................................10
Rotate Counter-Clockwise command.......................10

Index 121

Version 3.10a December 29, 1994

S

saturation control...39
Save command...27
Save window...56

Normal Size option..57
Selected Area option...57

scrollbar operation...26
Select all files command..49
Select files command...50
selection

fine tuning.. 4
moving.. 4
resizing... 4

Set command...43
Set Size command... 9
SGI rgb format...62
Sharp command..43
Sharpen command...16
Show hidden files command......................................50
Slow 24->8 command..15
Smooth command..11
Spread command...18
Sun rasterfile format..62

T

targa format...62
Text Annotation command..23
text editing keys...55
Text View command..30
Text view command, visual schnauzer.......................49
Text View window..51
tiff format ..59

save dialog...60

U

UnCrop command...19
Undo All command..16
Undo command..42
Update icons command...49
Use Own Colormap command..................................12
Use Std. Colormap command....................................12

V

vdcomp program...67
Visual Schnauzer command......................................29
Visual Schnauzer window...45

W

white remapping..38
Window command..13
Windows menu...29

X

X11 bitmap format...61
X11 resources

2xlimit ..79
aspect..70
auto4x3...76
autoApply..84
autoClose..80
autoCrop..76
autoDither...75
autoHFlip..76
autoHist...76
autoNorm..76
autoRaw..75
autoReset...84
autoRotate...76
autoSmooth...75
autoVFlip..76
background..68
black...77
borderWidth..69
ceditColorMap...71
ceditGeometry...74
ceditMap...74
clearOnLoad..78
color editor presets..82
commentGeometry...75
commentMap...74
ctrlGeometry..74
ctrlMap...74
cursor..79
defaultPreset..76
displayMods..84
dragApply..84
driftKludge..80
expand...69
fileList...80
fixed..69
force24..71
force8..71
foreground...68
geometry..69
gsDevice..82
gsGeometry...82
gsResolution..82
highlight..69
hsvMode..78
iconGeometry..80
iconic ..80
infoGeometry...74
infoMap...74

Index 122

Version 3.10a December 29, 1994

loadBrowse..78
lowlight ...69
mono...77
monofont...80
ncols..70
ninstall ..71
nodecor..82
nolimits...79
nopos...75
noqcheck..72
nostat...79
ownCmap..71
perfect...70
popupKludge...80
print...84
pscompress..84
psorient..85
pspaper..84
pspreview..84
psres..85
quick24..71
resetroot...73
rootBackground..73
rootForeground..73
rootMode...73
rwColor...70
saveNormal..84
searchDirectory..80
slow24...72
textviewGeometry..75
useStdCmap...71

visual..79
vsDisable...81
vsGeometry...75
vsMap...75
vsPerfect..81
white ...77

xbm format..61
xcmap program..67
xpm format..61
xv color editor window..33
xv controls window..7
xv grab window...24
xv info window..31
xv jpeg window..59
XV Keyboard Help command...................................30
xv load window...54
xv logo...3, 30
xv pad window...21
xv postscript window...63
xv save window..56
xv text view window...51
xv tiff window..60
xv visual schnauzer window.......................................45
xvpictoppm program..67

Z

zoom in..5
zoom out..5

	xv user guide
	xv Licensing Information

	Table of Contents
	Sections
	Section 0: Release Notes
	Section 1: Overview
	Section 2: The Image Window
	Section 3: The Control Window
	Section 4: The Info Window
	Section 5: The Color Editor
	Section 6: The Visual Schnauzer
	Section 7: The TextView Window
	Section 8: The Load Window
	Section 9: The Save Window
	Section 10: The PostScript Window
	Section 11: External Programs
	Section 12: Modifying xv Behavior
	Section 13: Credits

	Appendices
	Appendix A: Command Line Options
	Appendix B: X Resources
	Appendix C: Mouse and Keyboard Usage
	Appendix D: RGB & HSV Colorspaces
	Appendix E: Color Allocation in xv
	Appendix F: The Diversity Algorithm
	Appendix G: Adding Other Image Formats to xv
	Appendix H: Adding Algorithms to xv

	Index

