XEmacs Lisp Reference Manual

Version 3.4 (for XEmacs 21.1), May 1999

by Ben Wing

Based on the GNU Emacs Lisp Reference Manual
by Bil Lewis, Dan LaLiberte, Richard Stallman
and the GNU Manual Group

Copyright (©) 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Copyright
(© 1994, 1995 Sun Microsystems, Inc. Copyright © 1995, 1996 Ben Wing.

Version 3.3
Revised for XEmacs Versions 21.1,
April 1998.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the Free
Software Foundation instead of in the original English.

Cover art by Etienne Suvasa.

Short Contents

GNU GENERAL PUBLICLICENSE ..t vviiinneenieeenns 1
1 Introduction +....eeeeeeeeeeeeesesoesssossssons 9
2 LispData Types..eeeeeeeeeeeeeeeeeeeeennnnnnns 17
3 NUMDEIS ¢ v v oottt t i iveeeeeeeeesoooeoonnocssns 47
4 Strings and Characters « oo v v v v v v v v oo voooossoeeees 61
T 171 79
6 Sequences, Arrays, and Vectors « v v v v v v v v v ittt 103
7 Symbols. sttt ittt i i e i 113
8 Evaluation . o o v v v v v v e e ittt enssesosoconses 121
9 Control StruCtUIeS e o v v v v v v v v e e oo oooossoeeeeesss 131
10 Variables o v oo oo e ettt it ii i i i i ettt 147
11 FUnCtionS e s o v oo oo v oo vvoesoeossossssossssses 165
12 MaACIOS o oo oo oo o oo veooooesooessooeassoosssss 181
13 Writing Customization Definitions « o v v e e v oo oo oo oo vnn 189
14 Loading . oo v v v v oo oo eeeeeeeososossssnees 199
15 Byte Compilation « « oo v v ev e e v ineiieeeiennnnnn 209
16 Debugging Lisp Programs. . « « v v v v v v v e v i v v v v ennn. 221
17 Reading and Printing Lisp Objects « v oo v v v v oo 255
18 Minibuffers. « o v v v v v v e it it ettt eeensonnsss 265
19 Command LOOD v v v v v v v s v v v v eeeeeeeeeooonnens 285
20 Keymaps ¢ oo v v v v v v vveeeeeeeeeennnnssaossess 319
21 MENUS o v o v v v oo v v oo oveesooesssossssnssssons 341
22 Dialog BOXeS. v v v v vttt ittt oeoenns 353
23 Toolbar o v v v s v v it i i i i i i i s 3DD
24 SCrollbars o v v v v v v vt it e i e e et 361
25 Dragand Drop « oo v oo v i vt i e e v vnnneeeeeoosnnns 363
26 Major and Minor Modes.. o v v v v v v et v v v i i e nnnnn. 365
27 Documentation « o o v o oo v v e oo s veossessssosossens 385
2 T i 1 s 19 15)
29 Backups and Auto-Saving . ..o eev e ittt 425
30 Buffers..oeeee ittt aanns 435
3l WindOWS o v e oo v v v oo s vesssosssscsssssssssssss 449
32 FrameS. .. eeeeeeeeoeeososeeosooeossocossossss 175
33 Consoles and Devices . o v v v oo vvvneeeeesessnns 487

W
=~

il XEmacs Lisp Reference Manual

35 Markers ..ottt i i i e 505
36 TeXt oo o v vesoveeeeeeosoeeosssensssenssssnsns 517
37 Searching and Matchingccvvveen... 555
38 Syntax Tables......veeeeeenninneeiiieeennnns 575
39 Abbrevs And Abbrev Expansion « . o oo v v v v v eeennnns 587
40 EXtents o v v oo v v e oo eeossoesssocossocossossss 593
41 Specifiers o v v v oo v v ittt i i i i e 609
42 Faces and Window-System Objects « v v oo v v v e v v e ven.. 625
S B 8 1) T 635
44 Annotations . v e v v et v e eeeeeereneeooneeeooos 651
45 Emacs Display o oo v v v v i it iiii it i i i 657
46 Hash Tables o v oo oo e e s s it i i eeeeesoonnns 675
A7 Range Tables . o v v v v v vttt iiinnnnnn. 679
48 Databases ¢ v v v v vt v vttt 681
49 PrOCESSES ¢ oo o oo oo oo oo veeeessssssssosnnocessss 683
50 Operating System Interface. « « v v v v v v v v v v v v eeennn 701
51 Functions Specific to the X Window System 723
52 ToolTalk SUPPOTt v v v v v vt ettt ettt seennnn 729
53 LDAP SUpport e e v v v v e oo ittt eeeeeennssssnnns 735
54 Internationalization oo v, 741
55 MULE ¢t vttt et ittt et it e seeeeeoseeossnnns 745
Appendix A Tips and Standards . . o v oo v v v eveeenen. 769
Appendix B Building XEmacs; Allocation of Objects 779
Appendix C Standard Errors . . o oo oo v v v v e e e v eeeenn. 787
Appendix D Buffer-Local Variables. 791
Appendix E Standard Keymaps . « ¢ ¢« o o o e 00 vvvveeeeenns 795
Appendix F' Standard Hooks .+ v v v oo v i e i i i i i a . 799

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble. 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION ... 2
How to Apply These Terms to Your New Programs............. 6

1 Introduction...................., 9
1.1 Caveats ..o 9
1.2 Lisp History ... 10
1.3 Conventionsueiinii 10

1.3.1 Some Terms.........coouiineiiiiniinna 10

1.32 nmiland t.......ooin 10

1.3.3 Evaluation Notation 11

1.3.4 Printing Notation............. 11

1.3.5 Error Messagesoouuiuniiiiinen... 12

1.3.6 Buffer Text Notation........................... 12

1.3.7 Format of Descriptions......................... 12

1.3.7.1 A Sample Function Description 12

1.3.7.2 A Sample Variable Description......... 14

1.4 Acknowledgements, 14

2 LispDataTypes.......covviiiiiiio... 17
2.1 Printed Representation and Read Syntax................. 17
2.2 COmMMENtSottt 18
2.3 Primitive Types. ... 18
2.4 Programming Types.ouueuiimninnnn... 20

2.4.1 Integer Typeo 20
2.4.2 Floating Point Type 20
2.4.3 Character Type ... 21
2.4.4 Symbol Type........cooo i 23
2.4.5 Sequence Typesoviiiiiineineinn... 24
2.4.6 Cons Cell and List Types 24

2.4.6.1 Dotted Pair Notation.................. 26

2.4.6.2 Association List Type 27
24.7 Array Type .o 27
2.4.8 String Type.....oooo 28
249 Vector Type......oovinii i 28
2.4.10 Bit Vector Type ... 29
2.4.11 Function Typeo 29
2.4.12 Macro Type. . ..o 29
2.4.13 Primitive Function Type 30

2.4.14 Compiled-Function Type...................... 30

iii

v

XEmacs Lisp Reference Manual

2.4.15 Autoload Type 30
2.4.16 Char Table Type ..., 31
2.4.17 Hash Table Typeo .. 31
2.4.18 Range Table Type.............o .. 31
2.4.19 Weak List Type ... 32
2.5 Editing Types. ...t 32
2.5.1 Buffer Type. ... 32
2.5.2 Marker Type......oooiii . 33
2.5.3 Extent Type........... ... i 33
254 Window Type..........coiiii i 33
2.5.5 Frame Type.......ooooii i 34
2.5.6 Device Type ... 34
2.5.7 Console Type ... 34
2.5.8 Window Configuration Type.................... 35
259 Event Type..... ..o 35
2.5.10 Process Type.......coooiiiiiiiiii .. 35
2.5.11 Stream Type......coooviiiiiiiiii 36
2.5.12 Keymap Type.....cooviiiii .. 36
2.5.13 Syntax Table Typec .. 36
2.5.14 Display Table Type...............coi... 37
2.5.15 Database Type............. .. 37
2.5.16 Charset Typecovvviiiiiii .. 37
2.5.17 Coding System Type........... 37
2.5.18 ToolTalk Message Typecovoiiia... 37
2.5.19 ToolTalk Pattern Type........................ 37
2.6 Window-System Types 37
2.6.1 Face Typeo 37
2.6.2 Glyph Type......oooo 37
2.6.3 Specifier Type........oiiiii 38
2.6.4 Font Instance Type............. 38
2.6.5 Color Instance Type ..., 38
2.6.6 Image Instance Type............ 38
2.6.7 Toolbar Button Type 38
2.6.8 Subwindow Type 38
2.6.9 X Resource Type.........cooiiiiiiiiii .. 38
2.7 Type Predicates.......... ... oo i 38

2.8 Equality Predicates............ 44

3 Numbers......o.oviiiieeeeeeeeeenenns 47

3.1 Integer Basics..........ooiii 47
3.2 Floating Point Basics............ 48
3.3 Type Predicates for Numbers 48
3.4 Comparison of Numbers 49
3.5 Numeric Conversionsoouineeiineeennn .. 51
3.6 Arithmetic Operations..............., 52
3.7 Rounding Operations............. ..., 55
3.8 Bitwise Operations on Integers 55
3.9 Standard Mathematical Functions 59
3.10 Random Numbers........... 60
4 Strings and Characters.................... 61
4.1 String and Character Basics............................. 61
4.2 The Predicates for Strings 62
4.3 Creating STringsoovuurnn e 62
4.4 The Predicates for Characters........................... 64
4.5 Character Codest 64
4.6 Comparison of Characters and Strings 65
4.7 Conversion of Characters and Strings 67
4.8 Modifying Strings ..o 69
4.9 String Properties........ ... 69
4.10 Formatting Strings i 69
4.11 Character Case ...t 72
4.12 The Case Table i 74
4.13 The Char Table.......... 75
4.13.1 Char Table Types ..., 76

4.13.2 Working With Char Tables.................... 7

5 Lists.....oieiiiiiniiiiiiii i 79
5.1 Listsand Cons Cells........... ... i, 79
5.2 Lists as Linked Pairs of Boxes........................... 79
5.3 Predicateson Lists.......... 80
5.4 Accessing Elements of Lists 81
5.5 Building Cons Cells and Lists 84
5.6 Modifying Existing List Structure 87
5.6.1 Altering List Elements with setcar............. 87

5.6.2 Altering the CDR of a List..................... 88

5.6.3 Functions that Rearrange Lists 90

5.7 Using Lists as Sets ... 92
5.8 Association Lists........ 94
5.9 Property Lists ... i 97
5.9.1 Working With Normal Plists 98

5.9.2 Working With Lax Plists....................... 99

5.9.3 Converting Plists To/From Alists.............. 100

5.10 Weak Lists ... 101

vi XEmacs Lisp Reference Manual

6 Sequences, Arrays, and Vectors........... 103
6.1 SeqUeNCESottt 103

6.2 ATTAYS © 105

6.3 Functions that Operate on Arrays...................... 106

6.4 VeCtorS......ovii 108

6.5 Functions That Operate on Vectors..................... 108

6.6 Bit Vectors......... ..o 110

6.7 Functions That Operate on Bit Vectors................. 110

7 Symbols......... ..ottt 113
7.1 Symbol Components.ouiiiiiiiiinnnaea .. 113

7.2 Defining Symbols 114

7.3 Creating and Interning Symbols........................ 115

7.4 Symbol Properties........ ... i 118

7.4.1 Property Lists and Association Lists........... 118

7.4.2 Property List Functions for Symbols 118

7.4.3 Property Lists Outside Symbols 119

8 Evaluation.............................. 121
8.1 Eval. 122

8.2 Kindsof Forms 123

8.2.1 Self-Evaluating Forms......................... 124

8.2.2 Symbol Forms................... 124

8.2.3 Classification of List Forms.................... 125

8.2.4 Symbol Function Indirection................... 125

8.2.5 Evaluation of Function Forms 126

8.2.6 Lisp Macro Evaluation........................ 126

8.2.7 Special Forms................., 127

8.2.8 Autoloading........... ... 128

8.3 QUOtIngo 129

9 Control Structures....................... 131
9.1 SeqUencCinguuuiiin e 131

9.2 ConditionalS 132

9.3 Constructs for Combining Conditions................... 134

9.4 Tteration...........cc.iim 135

9.5 Nonlocal Exits.............. i 136

9.5.1 Explicit Nonlocal Exits: catch and throw...... 136

9.5.2 Examples of catch and throw................. 137

9.5.3 EITors 138

9.5.3.1 How to Signal an Error............... 139

9.5.3.2 How XEmacs Processes Errors........ 140

9.5.3.3 Writing Code to Handle Errors........ 140

9.5.3.4 Error Symbols and Condition Names .. 143
9.5.4 Cleaning Up from Nonlocal Exits 144

10 Variables.................ciiiiiii.... 147
10.1 Global Variables 147
10.2 Variables That Never Change 147
10.3 Local Variables 148
10.4 When a Variable is “Void” 150
10.5 Defining Global Variables............................. 151
10.6 Accessing Variable Values............................. 153
10.7 How to Alter a Variable Value 154
10.8 Scoping Rules for Variable Bindings 156

10.8.1 SCOPE. -ttt 156
10.8.2 Extent......... ... 157
10.8.3 Implementation of Dynamic Scoping 157
10.8.4 Proper Use of Dynamic Scoping 158
10.9 Buffer-Local Variables................................ 159
10.9.1 Introduction to Buffer-Local Variables......... 159

10.9.2 Creating and Deleting Buffer-Local Bindings. .. 159
10.9.3 The Default Value of a Buffer-Local Variable .. 161

10.10 Variable Aliases.............oo i 163
11 Functionsccoiiiiiinnnna.. 165
11.1 What Is a Function? 165
11.2 Lambda Expressionsco ... 166
11.2.1 Components of a Lambda Expression 166

11.2.2 A Simple Lambda-Expression Example. 167

11.2.3 Advanced Features of Argument Lists......... 168

11.2.4 Documentation Strings of Functions........... 169

11.3 Naming a Function.......... 169
11.4 Defining Functions 170
11.5 Calling Functions i 172
11.6 Mapping Functions............. 173
11.7 Anonymous Functions................................ 174
11.8 Accessing Function Cell Contents...................... 176
11.9 Inline Functions........... 178
11.10 Other Topics Related to Functions 178
12 Macros ..oovviiiiiiiiii i 181
12.1 A Simple Example of a Macro......................... 181
12.2 Expansion of a Macro Call............................ 181
12.3 Macros and Byte Compilation......................... 182
12.4 Defining Macrosot 183
12.5 Backquote........ 183
12.6 Common Problems Using Macros...................... 184
12.6.1 Evaluating Macro Arguments Repeatedly. 184

12.6.2 Local Variables in Macro Expansions.......... 186

12.6.3 Evaluating Macro Arguments in Expansion.... 186
12.6.4 How Many Times is the Macro Expanded? 187

vii

viii XEmacs Lisp Reference Manual

13 Writing Customization Definitions....... 189
13.1 Common Keywords for All Kinds of Items 189
13.2 Defining Custom Groups..............c.coviiiaoo.... 190
13.3 Defining Customization Variables...................... 191
13.4 Customization Types.............o ... 192

13.4.1 Simple Types ... 193
13.4.2 Composite Types. ..., 194
13.4.3 Splicing into Lists 196
13.4.4 Type Keywords 196

14 Loading...........oiiiiieeneeeeeennnnn. 199
14.1 How Programs Do Loading 199
14.2 Autoload 202
14.3 Repeated Loading............ 204
144 Features..........ooiiii 205
14.5 Unloadingoooiii 207
14.6 Hooks for Loading, 208

15 Byte Compilation....................... 209
15.1 Performance of Byte-Compiled Code................... 209
15.2 The Compilation Functions 210
15.3 Documentation Strings and Compilation............... 212
15.4 Dynamic Loading of Individual Functions.............. 213
15.5 Evaluation During Compilation 213
15.6 Compiled-Function Objects 214
15.7 Disassembled Byte-Code.............................. 216

16 Debugging Lisp Programs............... 221
16.1 The Lisp Debugger.......... 221

16.1.1 Entering the Debugger on an Error 221
16.1.2 Debugging Infinite Loops..................... 222
16.1.3 Entering the Debugger on a Function Call. 223
16.1.4 Explicit Entry to the Debugger............... 224
16.1.5 Using the Debugger.......................... 224
16.1.6 Debugger Commands 225
16.1.7 Invoking the Debugger....................... 226
16.1.8 Internals of the Debugger 228
16.2 Debugging Invalid Lisp Syntax 230
16.2.1 Excess Open Parentheses..................... 230
16.2.2 FExcess Close Parentheses..................... 231
16.3 Debugging Problems in Compilation................... 231
16.4 Edebug.........ooo 231
16.4.1 Using Edebug.......... 232
16.4.2 Instrumenting for Edebug................. ... 233
16.4.3 Edebug Execution Modes 234
16.4.4 Jumping..........c.oooiiiii 235

16.4.5 Miscellaneousoiiinn... 236

16.4.6 Breakpoints.................... 237
16.4.6.1 Global Break Condition 237

16.4.6.2 Embedded Breakpoints.............. 238

16.4.7 Trapping Errors........... 238

16.4.8 FEdebug Views............ 239

16.4.9 Evaluation................ 239
16.4.10 Evaluation List Buffer 240
16.4.11 Reading in Edebug 241
16.4.12 Printing in Edebug 241
16.4.13 Tracingcovireineii 242
16.4.14 Coverage Testing 243
16.4.15 The Outside Context 243
16.4.15.1 Checking Whether to Stop.......... 244

16.4.15.2 Edebug Display Update 244

16.4.15.3 Edebug Recursive Edit 244

16.4.16 Instrumenting Macro Calls.................. 245
16.4.16.1 Specification List 246

16.4.16.2 Backtracking 249

16.4.16.3 Debugging Backquote 250

16.4.16.4 Specification Examples............. 251

16.4.17 Edebug Options............................ 252

17 Reading and Printing Lisp Objects 255
17.1 Introduction to Reading and Printing.................. 255
17.2 Input Streamso 255
17.3 Input Functions............, 257
17.4 Output Streams..............viiieeienan.. 258
17.5 Output Functions 260
17.6 Variables Affecting Output............................ 262
18 Minibuffers 265
18.1 Introduction to Minibuffers........................... 265
18.2 Reading Text Strings with the Minibuffer 265
18.3 Reading Lisp Objects with the Minibuffer.............. 267
18.4 Minibuffer History 269
18.5 Completion 270
18.5.1 Basic Completion Functions.................. 270

18.5.2 Completion and the Minibuffer 272

18.5.3 Minibuffer Commands That Do Completion ... 273

18.5.4 High-Level Completion Functions............. 275

18.5.5 Reading File Names 277

18.5.6 Programmed Completion..................... 278

18.6 Yes-or-No Queries..............cooiiiineineneann.. 279
18.7 Asking Multiple Y-or-N Questions..................... 281
18.8 Minibuffer Miscellany................. 282

ix

X XEmacs Lisp Reference Manual

19 Command Loopoo.... 285
19.1 Command Loop Overview 285
19.2 Defining Commands............... 286

19.2.1 Using interactive.................ooooun... 286

19.2.2 Code Characters for interactive 288

19.2.3 Examples of Using interactive.............. 290

19.3 Imteractive Call, 290
19.4 Information from the Command Loop 292
195 Events ... 294
19.5.1 Event Types ..., 295

19.5.2 Contents of the Different Types of Events 295

19.5.3 Event Predicates 298

19.5.4 Accessing the Position of a Mouse Event 299
19.5.4.1 Frame-Level Event Position Info 299

19.5.4.2 Window-Level Event Position Info.... 299

19.5.4.3 Event Text Position Info............. 300

19.5.4.4 Event Glyph Position Info........... 301

19.5.4.5 Event Toolbar Position Info.......... 301

19.5.4.6 Other Event Position Info 301

19.5.5 Accessing the Other Contents of Events 302

19.5.6 Working With Events........................ 302

19.5.7 Converting Events........................... 305

19.6 Reading Input 306
19.6.1 Key Sequence Input 306

19.6.2 Reading One Event.......................... 307

19.6.3 Dispatchingan Event 308

19.6.4 Quoted Character Input 308

19.6.5 Miscellaneous Event Input Features........... 308

19.7 Waiting for Elapsed Time or Input 310
19.8 Quitting. ... 311
19.9 Prefix Command Arguments 312
19.10 Recursive Editing 314
19.11 Disabling Commands............... ..., 316
19.12 Command History 317

19.13 Keyboard Macros i 317

20 Keymaps......ooiiiiiiiinnnnnennnnnns 319
20.1 Keymap Terminology.............oooiiiiniiin... 319

20.2 Format of Keymaps ... 320

20.3 Creating Keymaps oo .. 320

20.4 Inheritance and Keymaps............................. 321

20.5 Key Sequencesoouuii e 322

206 Prefix Keys. ... 323

20.7 Active Keymaps ... 324

20.8 Key Lookup ... 328

20.9 Functions for Key Lookup 329

20.10 Changing Key Bindings 332

20.11 Commands for Binding Keys......................... 335

20.12 Scanning Keymaps....................cooooa... 337

20.13 Other Keymap Functions............................ 340

21 Menusoviiiiiiiiiiiiiiiiiiie. 341
21.1 Format of Menus. ...t 341

21.2 Format of the Menubar............................... 344

21.3 Menubar 344

21.4 Modifying Menusouiiieineiena. 346

21.5 Menu Filters. 348

21.6 Pop-UpMenus...........ooiiiiiiiii ., 349

21.7 Menu Accelerators i 350

21.7.1 Creating Menu Accelerators.................. 350

21.7.2 Keyboard Menu Traversal.................... 350

21.7.3 Menu Accelerator Functions.................. 350

21.8 Buffers Menu.............., 352

22 DialogBoxes..........ciiiiiiiiiii., 353
22.1 Dialog Box Format................................... 353

22.2 Dialog Box Functions................................. 353

23 Toolbar............ ..., 355
23.1 Toolbar Intro 355

23.2 Toolbar Descriptor Format............................ 355

23.3 Specifying the Toolbar................................ 357

23.4 Other Toolbar Variables 358

24 scrollbarsoviiiiii i 361

xi

xii XEmacs Lisp Reference Manual

25 Dragand Drop..........coviiiiinn.. 363
25.1 Supported Protocols........... L. 363
25.1.1 OffiX DND i, 363

25.1.2 CDEdt.......... i 363

25.1.3 MSWindows OLE 364

2514 Loose endS..........oviiiiiiiiiii, 364

25.2 DropInterface....... i 364
25.3 Drag Interface 364
26 Major and Minor Modes................ 365
26.1 Major Modes ...t 365
26.1.1 Major Mode Conventions 366

26.1.2 Major Mode Examples....................... 367

26.1.3 How XEmacs Chooses a Major Mode 370

26.1.4 Getting Help about a Major Mode 373

26.1.5 Defining Derived Modes...................... 374

26.2 Minor Modeso i 374
26.2.1 Conventions for Writing Minor Modes......... 375

26.2.2 Keymaps and Minor Modes 376

26.3 Modeline Format............... 376
26.3.1 The Data Structure of the Modeline 377

26.3.2 Variables Used in the Modeline............... 378

26.3.3 %-Constructs in the ModeLine 380

26.4 HOOKS. ... 382
27 Documentation......................... 385
27.1 Documentation Basics.............. 385
27.2 Access to Documentation Strings...................... 386
27.3 Substituting Key Bindings in Documentation........... 388
27.4 Describing Characters for Help Messages............... 390
27.5 Help Functions................ 391
27.6 ODbsoletenessovut e 393
28 Files...... ..o, 395
28.1 Visiting Files 395
28.1.1 Functions for Visiting Files................... 395

28.1.2 Subroutines of Visiting....................... 397

28.2 Saving Buffers 398
28.3 Reading from Files................., 400
284 Writing to Files........ ... o 400
285 File LOCKS . ..o 401
28.6 Information about Files............................... 402
28.6.1 Testing Accessibility 402

28.6.2 Distinguishing Kinds of Files 404

28.6.3 Truenames...............oiiiiiiiiiiiiiia.. 405

28.6.4 Other Information about Files................ 405

28.7 Changing File Names and Attributes 408

28.8 File Namesoooiii 410
28.8.1 File Name Components 410

28.8.2 Directory Namesoiviiain. .. 411

28.8.3 Absolute and Relative File Names 413

28.8.4 Functions that Expand Filenames............. 413

28.8.5 Generating Unique File Names 415

28.8.6 File Name Completion 415

28.9 Contents of Directories 416
28.10 Creating and Deleting Directories 417
28.11 Making Certain File Names “Magic” 418
28.12 Partial Files ... o 420
28.12.1 Intro to Partial Files........................ 420
28.12.2 Creating a Partial File...................... 420
28.12.3 Detached Partial Files 420

28.13 File Format Conversion.............................. 421
28.14 Filesand MS-DOS 423
29 Backups and Auto-Saving............... 425
29.1 Backup Files...... ... 425
29.1.1 Making Backup Files 425

29.1.2 Backup by Renaming or by Copying? 426

29.1.3 Making and Deleting Numbered Backup Files.. 427

29.1.4 Naming Backup Files........................ 428

29.2 Auto-Saving 429
29.3 Reverting......... ..o 433
30 Buffers.............. .. i, 435
30.1 Buffer Basics 435
30.2 The Current Buffer................................... 435
30.3 Buffer Names........... 437
30.4 Buffer File Name............... 438
30.5 Buffer Modification.............. 440
30.6 Comparison of Modification Time 441
30.7 Read-Only Buffers 442
30.8 The Buffer List i 443
30.9 Creating Buffers 444
30.10 Killing Buffers.......... 445

30.11

Indirect Buffers......... 447

xiii

xiv XEmacs Lisp Reference Manual

31 Windows.......ccoviiiiiiiiiiinnnnnen... 449
31.1 Basic Concepts of Emacs Windows 449
31.2 Splitting Windowsc.oo i 450
31.3 Deleting Windows. ..., 453
31.4 Selecting Windows, 454
31.5 Cyclic Ordering of Windows 455
31.6 Buffers and Windows............. 457
31.7 Displaying Buffers in Windows 457
31.8 Choosing a Window for Display 459
31.9 Windows and Point 462
31.10 The Window Start Position.......................... 463
31.11 Vertical Scrolling. i 464
31.12 Horizontal Scrolling 467
31.13 The Size of a Window 468
31.14 The Position of a Window 470
31.15 Changing the Size of a Window 471
31.16 Window Configurations.............................. 473

32 Frames............... ittt 475
32.1 Creating Frames 475
32.2 Frame Properties.......... 475

32.2.1 Access to Frame Properties................... 476
32.2.2 Initial Frame Properties...................... 476
32.2.3 X Window Frame Properties 477
32.2.4 Frame Size And Position..................... 478

32.2.5 The Name of a Frame (As Opposed to Its Title)
... 479
32.3 Frame Titles. 480
32.4 Deleting Frames i 480
32,5 Finding All Frames................ ... 481
32.6 Frames and Windows. 482
32.7 Minibuffers and Frames............................... 482
32.8 Input Focus i 483
32.9 Visibility of Frames, 484
32.10 Raising and Lowering Frames 484
32.11 Frame Configurations 485
32.12 Hooks for Customizing Frame Behavior............... 486

33 Consoles and Devices................... 487
33.1 Basic Console Functions 487
33.2 Basic Device Functions 488
33.3 Console Types and Device Classes..................... 488
33.4 Connecting to a Console or Device 489
33.5 The Selected Console and Device...................... 490

33.6 Comnsole and Device I/O 491

34 Positions...........oiiiiiiiiiiiiiinnn.. 493
341 Point.o 493
342 MOtION . oot 494

34.2.1 Motion by Characters........................ 494
34.2.2 Motion by Words............................ 495
34.2.3 Motion to an End of the Buffer............... 496
34.2.4 Motion by Text Lines........................ 496
34.2.5 Motion by Screen Lines...................... 498
34.2.6 Moving over Balanced Expressions............ 499
34.2.7 Skipping Characters 500
34.3 EXCUISIONS.oooi 501
34.4 NarrOWingot 502

35 Markers.........oiiiiiiiiiiiiiiiiiaa... 505
35.1 Overview of Markers 505
35.2 Predicates on Markers............ 506
35.3 Functions That Create Markers 507
35.4 Information from Markers 509
35.5 Changing Marker Positions 509
356 The Mark 510
35.7 The Region........ ..o 513

36 Text.......ooviiiiiiiiiiiiiiiiiiiie. 517
36.1 Examining Text Near Point........................ ... 517
36.2 Examining Buffer Contents 518
36.3 Comparing Text ... 519
36.4 Inserting Text i 520
36.5 User-Level Insertion Commands....................... 521
36.6 Deleting Text......... .. i 522
36.7 User-Level Deletion Commands 523
36.8 The Kill Ring........ ... 525

36.8.1 Kill Ring Conceptsoovvivein. ... 526
36.8.2 Functions for Killing......................... 526
36.8.3 Functions for Yanking 527
36.8.4 Low-Level Kill Ring 527
36.8.5 Internals of the Kill Ring..................... 528
36.9 Undo..... ..o 529
36.10 Maintaining Undo Lists................ 531
36.11 Filling.cooo 532
36.12 Margins for Filling 534
36.13 Auto Filling 03D
36.14 Sorting Text 536
36.15 Counting Columns ..., 539
36.16 Indentation................... it 540
36.16.1 Indentation Primitives...................... 540
36.16.2 Indentation Controlled by Major Mode. 540

36.16.3 Indenting an Entire Region.................. 541

XV

xvi XEmacs Lisp Reference Manual

36.16.4 Indentation Relative to Previous Lines....... 542
36.16.5 Adjustable “Tab Stops” 543
36.16.6 Indentation-Based Motion Commands. 544

36.17 Case Changes.oouueeinn e, 544
36.18 Text Properties........... ... i 546
36.18.1 Examining Text Properties.................. 546
36.18.2 Changing Text Properties................... o047
36.18.3 Property Search Functions 548
36.18.4 Properties with Special Meanings............ 549
36.18.5 Saving Text Properties in Files 550

36.19 Substituting for a Character Code.................... 551
36.20 Registers............. . DD
36.21 Transposition of Text............. 552
36.22 Change Hooks i 553
37 Searching and Matching 555
37.1 Searching for Strings 555
37.2 Regular Expressions................... i 556
37.2.1 Syntax of Regular Expressions................ 557

37.2.2 Complex Regexp Example.................... 562

37.3 Regular Expression Searching 563
37.4 POSIX Regular Expression Searching.................. 566
37.5 Search and Replace 566
37.6 The Match Data........... 568
37.6.1 Simple Match Data Access................... 568

37.6.2 Replacing the Text That Matched 569

37.6.3 Accessing the Entire Match Data 570

37.6.4 Saving and Restoring the Match Data......... 571

37.7 Searchingand Caseccoiiiiiiiea... 572
37.8 Standard Regular Expressions Used in Editing 572
38 Syntax Tables.......................... 575
38.1 Syntax Table Conceptsiiiiii. .. 575
38.2 Syntax Descriptors...............oiiiiiiiii 576
38.2.1 Table of Syntax Classes...................... 576

38.2.2 Syntax Flags......., 578

38.3 Syntax Table Functions............................... 579
38.4 Motion and Syntax............ccoiiiiiiiii. 581
38.5 Parsing Balanced Expressions......................... 582
38.6 Some Standard Syntax Tables......................... 584

38.7 Syntax Table Internals................................ 584

xvii

39 Abbrevs And Abbrev Expansion......... 587
39.1 Setting Up Abbrev Mode 587
39.2 Abbrev Tables...........c i 587
39.3 Defining Abbrevs 588
39.4 Saving Abbrevsin Files............. 589
39.5 Looking Up and Expanding Abbreviations 589
39.6 Standard Abbrev Tables.............................. 591

40 Extents............ ..., 593
40.1 Introduction to Extents............. 593
40.2 Creating and Modifying Extents....................... 594
40.3 Extent Endpoints 595
40.4 Finding Extents........ 596
40.5 Mapping Over Extents 597
40.6 Properties of Extents............ 599
40.7 Detached Extents, 604
40.8 Extent Parents.............. 604
40.9 Duplicable Extents 605
40.10 Interaction of Extents with Keyboard and Mouse Events

.. 606
40.11 Atomic Extents......... 606

41 Specifiers i i, 609
41.1 Introduction to Specifiers............ 609
41.2 In-Depth Overview of a Specifier 610
41.3 How a Specifier Is Instanced 611
41.4 Specifier Types ... 612
41.5 Adding specifications to a Specifier 614
41.6 Retrieving the Specifications from a Specifier........... 617
41.7 Working With Specifier Tags.......................... 618
41.8 Functions for Instancing a Specifier.................... 619
41.9 Example of Specifier Usage 620
41.10 Creating New Specifier Objects 621
41.11 Functions for Checking the Validity of Specifier Components

.. 622

41.12 Other Functions for Working with Specifications in a
SPECIET . .\t 623

xviii XEmacs Lisp Reference Manual

42 Faces and Window-System Objects 625
42,1 FaCeS. . oot 625
42.1.1 Merging Faces for Display 625

42.1.2 Basic Functions for Working with Faces....... 626

42.1.3 Face Properties.................... 626

42.1.4 Face Convenience Functions.................. 629

42.1.5 Other Face Display Functions 631

422 Fonts. 631
42.2.1 Font Specifiers, 631

42.2.2 Font Instances......................iin... 631

42.2.3 Font Instance Names 632

42.2.4 Font Instance Size 632

42.2.5 Font Instance Characteristics................. 632

42.2.6 Font Convenience Functions.................. 633

42.3 C0lorS. . oot 633
42.3.1 Color Specifiers. 633

42.3.2 Color Instances...............c.coveiiie... 634

42.3.3 Color Instance Properties 634

42.3.4 Color Convenience Functions 634

43 Glyphs.........c i, 635
43.1 Glyph Functions 635
43.1.1 Creating Glyphs........... 635

43.1.2 Glyph Properties..............., 636

43.1.3 Glyph Convenience Functions 638

43.1.4 Glyph Dimensions........................... 640

43.2 Tmageso 640
43.2.1 TImage Specifiers.......... 640

43.2.2 Image Instantiator Conversion................ 644

43.2.3 Image Instances 645
43.2.3.1 Image Instance Types............... 645

43.2.3.2 Image Instance Functions............ 646

43.3 Glyph Types. ... 648
43.4 Mouse Pointer 649
43.5 Redisplay Glyphs 650
43.6 Subwindows 650
44 Annotations..................iiiii... 651
44.1 Annotation Basics................. 651
44.2 Annotation Primitives..........., 652
44.3 Annotation Properties................... 653
44.4 Locating Annotationscoiiiiiiiao... 654

44.5 Margin Primitives......... 655
44.6 Annotation HOOKS. 655

45

46

47

48

49

Emacs Displayoo. ... 657
45.1 Refreshing the Screen 657
45.2 Truncation 658
45.3 The Echo Area....... ..o oo, 658
454 Warnings.ooouiii i 661
45.5 Invisible Text 663
45.6 Selective Display 664
45.7 The Overlay Arrow., 665
45.8 Temporary Displays.............co i 666
45.9 Blinking Parentheses 667
45.10 Usual Display Conventions. 668
45.11 Display Tables........... i 669

45.11.1 Display Table Format....................... 669

45.11.2 Active Display Table........................ 670

45.11.3 Character Descriptors....................... 670
4512 Beeping ... oo 671
Hash Tables..............t 675
46.1 Introduction to Hash Tables 675
46.2 Working With Hash Tables 676
46.3 Weak Hash Tables, 676
Range Tables........................... 679
47.1 Introduction to Range Tables 679
47.2 Working With Range Tables 679
Databases..................iiiiin... 681
48.1 Connecting to a Database 681
48.2 Working With a Database 681
48.3 Other Database Functions 682
Processesccoiiiiiiiiiiiia., 683
49.1 Functions that Create Subprocesses.................... 683
49.2 Creating a Synchronous Process....................... 684
49.3 MS-DOS Subprocesses.oooiiiineiiiiaaiii... 686
49.4 Creating an Asynchronous Process 687
49.5 Deleting Processes ... 688
49.6 Process Information................ 689
49.7 Sending Input to Processes 691
49.8 Sending Signals to Processes 692
49.9 Receiving Output from Processes...................... 693

49.9.1 Process Buffers.............. 693

49.9.2 Process Filter Functions...................... 694

49.9.3 Accepting Output from Processes............. 696
49.10 Sentinels: Detecting Process Status Changes 697
49.11 Process Window Size 698

49.12 Transaction QUEUESuouineiiineenna... 698

Xix

XX XEmacs Lisp Reference Manual

49.13 Network Connections.oiieeiiinna ... 699
50 Operating System Interface............. 701
50.1 Starting Up XEmacsoiiiiiiin .. 701
50.1.1 Summary: Sequence of Actions at Start Up.... 701

50.1.2 The Init File: ‘.emacs’....................... 702

50.1.3 Terminal-Specific Initialization 703

50.1.4 Command Line Arguments................... 704

50.2 Getting out of XEmacs..................ooo L. 705
50.2.1 Killing XEmacs ..., 706

50.2.2 Suspending XEmacs 706

50.3 Operating System Environment 708
50.4 User Identification 711
50.5 Time of Day....... .o 712
50.6 Time Conversionouuviieiineineennennn.. 713
50.7 Timers for Delayed Execution......................... 715
50.8 Terminal Input 716
50.8.1 Input Modes 716

50.8.2 Translating Input Events..................... 717

50.8.3 Recording Input.............. 719

50.9 Terminal OQutput.......... ... i 719
50.10 Flow Control, 721
50.11 Batch Mode 722

....................................... 723
51.1 X Selectionsoouino 723
D12 X SEIVeT ..t 724
51.2.1 Resources.............ouveiiiiiiiiinia.. 724
51.2.2 Data about the X Server..................... 726

51.2.3 Restricting Access to the Server by Other Apps
... 726
51.3 Miscellaneous X Functions and Variables............... 727
52 ToolTalk Support....................... 729
52.1 XEmacs ToolTalk API Summary...................... 729
52.2 Sending Messages i, 729
52.2.1 Example of Sending Messages 729
52.2.2 Elisp Interface for Sending Messages 730
52.3 Receiving Messages.coveinii i 732
52.3.1 Example of Receiving Messages............... 732

52.3.2 Elisp Interface for Receiving Messages......... 732

53 LDAP Support...............cvven... 735
53.1 Building XEmacs with LDAP support 735
53.2 XEmacs LDAP APIL.... 735

53.2.1 LDAP Variables............................. 735
53.2.2 The High-Level LDAP APL................... 736
53.2.3 The Low-Level LDAP API................... 737
53.2.3.1 The LDAP Lisp Object.............. 737
53.2.3.2 Opening and Closing a LDAP Connection
.. 737

53.2.3.3 Searching on a LDAP Server (Low-level)
.. 738
53.3 Syntax of Search Filters 738

54 Internationalization..................... 741
54.1 TI8N Levels T and 2......... ..., 741
54.2 TI8N Level 3..... ..o 741

54.2.1 Level 3Basics................. .. 741
54.2.2 Level 3 Primitives 741
54.2.3 Dynamic Messaging.......................... 742
54.2.4 Domain Specification 742
54.2.5 Documentation String Extraction............. 743
54.3 TI8N Level 4. o 743

55 MULE........ ... iiiiiiinennnn. 745
55.1 Internationalization Terminology 745
55.2 Charsets.o 747

55.2.1 Charset Properties........................... 747
55.2.2 Basic Charset Functions 749
55.2.3 Charset Property Functions 750
55.2.4 Predefined Charsets 751
55.3 MULE Characters............ccooiiiiniiiin ... 752
55.4 Composite Characters.................oveieeno. ... 752
55.5 ISO 2022 753
55.6 Coding Systems.t 755
55.6.1 Coding System Types........................ 756
55.6.2 EOL Conversion............................ 757
55.6.3 Coding System Properties.................... 757
55.6.4 Basic Coding System Functions............... 759
55.6.5 Coding System Property Functions 760
55.6.6 Encoding and Decoding Text 760
55.6.7 Detection of Textual Encoding................ 760
55.6.8 Bigh and Shift-JIS Functions 761
BD5.7 CCL . 761
55.7.1 CCL Syntaxooiiiiiiinin .. 762
55.7.2 CCL Statements............................. 763
55.7.3 CCL Expressions...............oovuieinn... 765

55.74 Calling CCL 766

poel

xxii XEmacs Lisp Reference Manual

55.75 CCL Examples.............cooiiiiiii... 767

55.8 Category Tables 767
Appendix A Tips and Standards 769
A.1 Writing Clean Lisp Programs.......................... 769

A.2 Tips for Making Compiled Code Fast 772

A.3 Tips for Documentation Strings........................ 772

A.4 Tips on Writing Comments. 774

A.5 Conventional Headers for XEmacs Libraries............. 775

Appendix B Building XEmacs; Allocation of

Objects .. .ovvviiiiiiii i 779
B.1 Building XEmacsooiiiiiiiiiii .. 779
B.2 Pure Storageoo i 781
B.3 Garbage Collection 782
Appendix C Standard Errors............... 787
Appendix D Buffer-Local Variables......... 791
Appendix E Standard Keymaps............ 795
Appendix F Standard Hooks............... 799

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

XEmacs Lisp Reference Manual

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

1.

by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 3

3.

4.

5.

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

XEmacs Lisp Reference Manual

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Fach version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 5

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

6 XEmacs Lisp Reference Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 7

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

XEmacs Lisp Reference Manual

Chapter 1: Introduction 9

1 Introduction

Most of the XEmacs text editor is written in the programming language called XEmacs
Lisp. You can write new code in XEmacs Lisp and install it as an extension to the editor.
However, XEmacs Lisp is more than a mere “extension language”; it is a full computer
programming language in its own right. You can use it as you would any other programming
language.

Because XEmacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and
so on. XEmacs Lisp is closely integrated with the editing facilities; thus, editing commands
are functions that can also conveniently be called from Lisp programs, and parameters for
customization are ordinary Lisp variables.

This manual describes XEmacs Lisp, presuming considerable familiarity with the use
of XEmacs for editing. (See The XEmacs Reference Manual, for this basic information.)
Generally speaking, the earlier chapters describe features of XEmacs Lisp that have coun-
terparts in many programming languages, and later chapters describe features that are
peculiar to XEmacs Lisp or relate specifically to editing.

This is edition 3.3.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless.
There are a few topics that are not covered, either because we consider them secondary
(such as most of the individual modes) or because they are yet to be written. Because we
are not able to deal with them completely, we have left out several parts intentionally. This
includes most information about usage on VMS.

The manual should be fully correct in what it does cover, and it is therefore open to
criticism on anything it says—from specific examples and descriptive text, to the ordering
of chapters and sections. If something is confusing, or you find that you have to look at
the sources or experiment to learn something not covered in the manual, then perhaps the
manual should be fixed. Please let us know.

As you use the manual, we ask that you mark pages with corrections so you can later
look them up and send them in. If you think of a simple, real-life example for a function
or group of functions, please make an effort to write it up and send it in. Please reference
any comments to the chapter name, section name, and function name, as appropriate, since
page numbers and chapter and section numbers will change and we may have trouble finding
the text you are talking about. Also state the number of the edition you are criticizing.

This manual was originally written for FSF Emacs 19 and was updated by Ben Wing
(wing@666.com) for Lucid Emacs 19.10 and later for XEmacs 19.12, 19.13, 19.14, and 20.0.
It was further updated by the XEmacs Development Team for 19.15, version 20 and 21.
Please send comments and corrections relating to XEmacs-specific portions of this manual
to

10 XEmacs Lisp Reference Manual

xemacs@xemacs.org
or post to the newsgroup

comp.emacs .xemacs
—Ben Wing

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950’s at the Mas-
sachusetts Institute of Technology for research in artificial intelligence. The great power
of the Lisp language makes it superior for other purposes as well, such as writing editing
commands.

Dozens of Lisp implementations have been built over the years, each with its own id-
iosyncrasies. Many of them were inspired by Maclisp, which was written in the 1960’s
at MIT’s Project MAC. Eventually the implementors of the descendants of Maclisp came
together and developed a standard for Lisp systems, called Common Lisp.

XEmacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you know
Common Lisp, you will notice many similarities. However, many of the features of Com-
mon Lisp have been omitted or simplified in order to reduce the memory requirements of
XEmacs. Sometimes the simplifications are so drastic that a Common Lisp user might be
very confused. We will occasionally point out how XEmacs Lisp differs from Common Lisp.
If you don’t know Common Lisp, don’t worry about it; this manual is self-contained.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” are used
to refer to those routines in Lisp that convert textual representations of Lisp objects into
actual Lisp objects, and vice versa. See Section 2.1 [Printed Representation|, page 17, for
more details. You, the person reading this manual, are thought of as “the programmer”
and are addressed as “you”. “The user” is the person who uses Lisp programs, including
those you write.

Examples of Lisp code appear in this font or form: (1ist 1 2 3). Names that represent
arguments or metasyntactic variables appear in this font or form: first-number.

1.3.2 nil and t

In Lisp, the symbol nil has three separate meanings: it is a symbol with the name ‘nil’;
it is the logical truth value false; and it is the empty list—the list of zero elements. When
used as a variable, nil always has the value nil.

Chapter 1: Introduction 11

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the
same object, the symbol nil. The different ways of writing the symbol are intended entirely
for human readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to
determine which representation was actually written by the programmer.

In this manual, we use () when we wish to emphasize that it means the empty list, and
we use nil when we wish to emphasize that it means the truth value false. That is a good
convention to use in Lisp programs also.

(cons ’foo () ; Emphasize the empty list
(not nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose
a value which represents true, and there is no other basis for choosing, use t. The symbol
t always has value t.

In XEmacs Lisp, nil and t are special symbols that always evaluate to themselves. This
is so that you do not need to quote them to use them as constants in a program. An attempt
to change their values results in a setting-constant error. See Section 10.6 [Accessing
Variables|, page 153.

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always
produces a result, which is a Lisp object. In the examples in this manual, this is indicated
with ‘=":

(car ’(1 2))
=1

You can read this as “(car (1 2)) evaluates to 1”.

When a form is a macro call, it expands into a new form for Lisp to evaluate. We show
the result of the expansion with ‘+—’. We may or may not show the actual result of the
evaluation of the expanded form.

(news-cadr ’(a b ¢))
— (car (cdr ’(a b ¢)))
=D

Sometimes to help describe one form we show another form that produces identical
results. The exact equivalence of two forms is indicated with ‘=".

(cons ’a nil) = (list ’a)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute
example code in a Lisp Interaction buffer (such as the buffer ‘*scratch*’), the printed text
is inserted into the buffer. If you execute the example by other means (such as by evaluating
the function eval-region), the printed text is displayed in the echo area. You should be
aware that text displayed in the echo area is truncated to a single line.

12 XEmacs Lisp Reference Manual

Examples in this manual indicate printed text with ‘ -7, irrespective of where that text
goes. The value returned by evaluating the form (here bar) follows on a separate line.

(progn (print ’foo) (print ’bar))
- foo
- bar
= bar

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area.
We show the error message on a line starting with ". Note that * ” itself does
not appear in the echo area.

(+ 23 ’x)
Wrong type argument: integer-or-marker-p, x

1.3.6 Buffer Text Notation

Some examples show modifications to text in a buffer, with “before” and “after” versions
of the text. These examples show the contents of the buffer in question between two lines
of dashes containing the buffer name. In addition, ‘*’ indicates the location of point. (The
symbol for point, of course, is not part of the text in the buffer; it indicates the place between
two characters where point is located.)

—————————— Buffer: foo --———=—--—-
This is the xcontents of foo.
—————————— Buffer: foo -————————-

(insert "changed ")

= nil
—————————— Buffer: foo —-———=-----
This is the changed *contents of foo.
—————————— Buffer: foo --——————-—-

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described
in this manual in a uniform format. The first line of a description contains the name of the
item followed by its arguments, if any. The category—function, variable, or whatever—is
printed next to the right margin. The description follows on succeeding lines, sometimes
with examples.

1.3.7.1 A Sample Function Description

Chapter 1: Introduction 13

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

The appearance of the keyword &optional in the parameter list indicates that the
arguments for subsequent parameters may be omitted (omitted parameters default to nil).
Do not write &optional when you call the function.

The keyword &rest (which will always be followed by a single parameter) indicates that
any number of arguments can follow. The value of the single following parameter will be a
list of all these arguments. Do not write &rest when you call the function.

Here is a description of an imaginary function foo:

foo integerl &optional integer2 &rest integers Function
The function foo subtracts integerl from integer2, then adds all the rest of the
arguments to the result. If integer2 is not supplied, then the number 19 is used by
default.
(foo 1 5 3 9)
= 16
(foo 5)
= 14
More generally,

(foo w x y...)

(_+ -xw) y...)

Any parameter whose name contains the name of a type (e.g., integer, integerl or buffer)
is expected to be of that type. A plural of a type (such as buffers) often means a list of
objects of that type. Parameters named object may be of any type. (See Chapter 2 [Lisp
Data Types|, page 17, for a list of XEmacs object types.) Parameters with other sorts of
names (e.g., new-file) are discussed specifically in the description of the function. In some
sections, features common to parameters of several functions are described at the beginning.

See Section 11.2 [Lambda Expressions|, page 166, for a more complete description of
optional and rest arguments.

Command, macro, and special form descriptions have the same format, but the word
‘Function’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands
are simply functions that may be called interactively; macros process their arguments dif-
ferently from functions (the arguments are not evaluated), but are presented the same way.

Special form descriptions use a more complex notation to specify optional and repeated
parameters because they can break the argument list down into separate arguments in
more complicated ways. ‘[optional-arg]’ means that optional-arg is optional and ‘repeated-
args. .. stands for zero or more arguments. Parentheses are used when several arguments
are grouped into additional levels of list structure. Here is an example:

count-loop (var [from to [inc]]) body. . . Special Form
This imaginary special form implements a loop that executes the body forms and
then increments the variable var on each iteration. On the first iteration, the variable

14 XEmacs Lisp Reference Manual

has the value from; on subsequent iterations, it is incremented by 1 (or by inc if that
is given). The loop exits before executing body if var equals to. Here is an example:
(count-loop (i 0 10)
(prinil i) (princ " ")
(prinl (aref vector i)) (terpri))
If from and to are omitted, then var is bound to nil before the loop begins, and the
loop exits if var is non-nil at the beginning of an iteration. Here is an example:
(count-loop (done)
(if (pending)
(fixit)
(setq done t)))
In this special form, the arguments from and to are optional, but must both be present
or both absent. If they are present, inc may optionally be specified as well. These
arguments are grouped with the argument var into a list, to distinguish them from
body, which includes all remaining elements of the form.

1.3.7.2 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, certain variables that exist specifically so that users can change them are called user
options. Ordinary variables and user options are described using a format like that for
functions except that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

electric-future-map Variable
The value of this variable is a full keymap used by Electric Command Future mode.
The functions in this map allow you to edit commands you have not yet thought
about executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Op-
tion’.

1.4 Acknowledgements

This manual was based on the GNU Emacs Lisp Reference Manual, version 2.4, written
by Robert Krawitz, Bil Lewis, Dan LalLiberte, Richard M. Stallman and Chris Welty, the
volunteers of the GNU manual group, in an effort extending over several years. Robert
J. Chassell helped to review and edit the manual, with the support of the Defense Ad-
vanced Research Projects Agency, ARPA Order 6082, arranged by Warren A. Hunt, Jr. of
Computational Logic, Inc.

Ben Wing adapted this manual for XEmacs 19.14 and 20.0, and earlier for Lucid Emacs
19.10, XEmacs 19.12, and XEmacs 19.13. He is the sole author of many of the manual
sections, in particular the XEmacs-specific sections: events, faces, extents, glyphs, specifiers,
toolbar, menubars, scrollbars, dialog boxes, devices, consoles, hash tables, range tables, char

Chapter 1: Introduction 15

tables, databases, and others. The section on annotations was originally written by Chuck
Thompson. Corrections to v3.1 and later were done by Martin Buchholz, Steve Baur, and
Hrvoje Niksic.

Corrections to the original GNU Emacs Lisp Reference Manual were supplied by Karl
Berry, Jim Blandy, Bard Bloom, Stephane Boucher, David Boyes, Alan Carroll, Richard
Davis, Lawrence R. Dodd, Peter Doornbosch, David A. Duff, Chris Eich, Beverly FEr-
lebacher, David Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen Gildea, Bob Glickstein, Eric
Hanchrow, George Hartzell, Nathan Hess, Masayuki Ida, Dan Jacobson, Jak Kirman, Bob
Knighten, Frederick M. Korz, Joe Lammens, Glenn M. Lewis, K. Richard Magill, Brian
Marick, Roland McGrath, Skip Montanaro, John Gardiner Myers, Thomas A. Peterson,
Francesco Potorti, Friedrich Pukelsheim, Arnold D. Robbins, Raul Rockwell, Per Starback,
Shinichirou Sugou, Kimmo Suominen, Edward Tharp, Bill Trost, Rickard Westman, Jean
White, Matthew Wilding, Carl Witty, Dale Worley, Rusty Wright, and David D. Zuhn.

16

XEmacs Lisp Reference Manual

Chapter 2: Lisp Data Types 17

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our
purposes, a type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar struc-
tures and may usually be used in the same contexts. Types can overlap, and objects can
belong to two or more types. Consequently, we can ask whether an object belongs to a
particular type, but not for “the” type of an object.

A few fundamental object types are built into XEmacs. These, from which all other
types are constructed, are called primitive types. Each object belongs to one and only one
primitive type. These types include integer, character (starting with XEmacs 20.0), float,
cons, symbol, string, vector, bit-vector, subr, compiled-function, hashtable, range-table,
char-table, weak-list, and several special types, such as buffer, that are related to editing.
(See Section 2.5 [Editing Types|, page 32.)

Each primitive type has a corresponding Lisp function that checks whether an object is
a member of that type.

Note that Lisp is unlike many other languages in that Lisp objects are self-typing: the
primitive type of the object is implicit in the object itself. For example, if an object is a
vector, nothing can treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and the
type is known by the compiler but not represented in the data. Such type declarations do
not exist in XEmacs Lisp. A Lisp variable can have any type of value, and it remembers
whatever value you store in it, type and all.

This chapter describes the purpose, printed representation, and read syntax of each of
the standard types in Emacs Lisp. Details on how to use these types can be found in later
chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function prinil) for that object. The read syntax of an object is the format
of the input accepted by the Lisp reader (the function read) for that object. Most objects
have more than one possible read syntax. Some types of object have no read syntax; except
for these cases, the printed representation of an object is also a read syntax for it.

In other languages, an expression is text; it has no other form. In Lisp, an expression
is primarily a Lisp object and only secondarily the text that is the object’s read syntax.
Often there is no need to emphasize this distinction, but you must keep it in the back of
your mind, or you will occasionally be very confused.

Every type has a printed representation. Some types have no read syntax, since it may
not make sense to enter objects of these types directly in a Lisp program. For example, the
buffer type does not have a read syntax. Objects of these types are printed in hash notation:
the characters ‘#<’ followed by a descriptive string (typically the type name followed by the

18 XEmacs Lisp Reference Manual

name of the object), and closed with a matching ‘>’. Hash notation cannot be read at all,
so the Lisp reader signals the error invalid-read-syntax whenever it encounters ‘#<’.

(current-buffer)
= #<buffer "objects.texi">

When you evaluate an expression interactively, the Lisp interpreter first reads the textual
representation of it, producing a Lisp object, and then evaluates that object (see Chapter &
Evaluation], page 121). However, evaluation and reading are separate activities. Reading
returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 17.3 [Input Functions|, page 258, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (‘;’)
starts a comment if it is not within a string or character constant. The comment continues
to the end of line. The Lisp reader discards comments; they do not become part of the Lisp
objects which represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The XEmacs Lisp byte compiler uses this in
its output files (see Chapter 15 [Byte Compilation], page 209). It isn’t meant for source
files, however.

See Section A.4 [Comment Tips|, page 774, for conventions for formatting comments.

2.3 Primitive Types

For reference, here is a list of all the primitive types that may exist in XEmacs. Note
that some of these types may not exist in some XEmacs executables; that depends on the
options that XEmacs was configured with.

e bit-vector

e Dbuffer

e char-table

e character

e charset

e coding-system
e cons

e color-instance
e compiled-function
e console

e database

e device

Chapter 2: Lisp Data Types

event

extent

face

float
font-instance
frame

glyph

hashtable
image-instance
integer

keymap

marker

process
range-table
specifier

string

subr

subwindow
symbol
toolbar-button
tooltalk-message
tooltalk-pattern
vector

weak-list
window
window-configuration

X-resource

19

In addition, the following special types are created internally but will never be seen by

Lisp code. You may encounter them, however, if you are debugging XEmacs. The printed
representation of these objects begins ‘#<INTERNAL EMACS BUG’, which indicates to the Lisp
programmer that he has found an internal bug in XEmagcs if he ever encounters any of these
objects.

char-table-entry
command-builder
extent-auxiliary
extent-info
lcrecord-list
Istream

opaque

20 XEmacs Lisp Reference Manual

e opaque-list

e popup-data

e symbol-value-buffer-local
e symbol-value-forward

e symbol-value-lisp-magic
e symbol-value-varalias

e toolbar-data

2.4 Programming Types

There are two general categories of types in XEmacs Lisp: those having to do with
Lisp programming, and those having to do with editing. The former exist in many Lisp
implementations, in one form or another. The latter are unique to XEmacs Lisp.

2.4.1 Integer Type

The range of values for integers in XEmacs Lisp is —134217728 to 134217727 (28 bits;
i.e., —2%7 to 2%® — 1) on most machines. (Some machines, in particular 64-bit machines such
as the DEC Alpha, may provide a wider range.) It is important to note that the XEmacs
Lisp arithmetic functions do not check for overflow. Thus (1+ 134217727) is —134217728
on most machines. (However, you will get an error if you attempt to read an out-of-range
number using the Lisp reader.)

The read syntax for integers is a sequence of (base ten) digits with an optional sign at
the beginning. (The printed representation produced by the Lisp interpreter never has a
leading ‘+’.)

-1 ; The integer -1.

1 ; The integer 1.

+1 ; Also the integer 1.

268435457 ; Causes an error on a 28-bit implementation.

See Chapter 3 [Numbers|, page 47, for more information.

2.4.2 Floating Point Type

XEmacs supports floating point numbers. The precise range of floating point numbers
is machine-specific.

The printed representation for floating point numbers requires either a decimal point
(with at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’,
‘15.0e2’, ‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value
is 1500. They are all equivalent.

See Chapter 3 [Numbers|, page 47, for more information.

Chapter 2: Lisp Data Types 21

2.4.3 Character Type

In XEmacs version 19, and in all versions of FSF GNU Emacs, a character in XEmacs
Lisp is nothing more than an integer. This is yet another holdover from XEmacs Lisp’s
derivation from vintage-1980 Lisps; modern versions of Lisp consider this equivalence a bad
idea, and have separate character types. In XEmacs version 20, the modern convention is
followed, and characters are their own primitive types. (This change was necessary in order
for MULE, i.e. Asian-language, support to be correctly implemented.)

Even in XEmacs version 20, remnants of the equivalence between characters and integers
still exist; this is termed the char-int confoundance disease. In particular, many functions
such as eq, equal, and memq have equivalent functions (old-eq, old-equal, old-memq,
etc.) that pretend like characters are integers are the same. Byte code compiled under any
version 19 Emacs will have all such functions mapped to their old- equivalents when the
byte code is read into XEmacs 20. This is to preserve compatibility — Emacs 19 converts all
constant characters to the equivalent integer during byte-compilation, and thus there is no
other way to preserve byte-code compatibility even if the code has specifically been written
with the distinction between characters and integers in mind.

Every character has an equivalent integer, called the character code. For example, the
character 4 is represented as the integer 65, following the standard ASCII representation of
characters. If XEmacs was not compiled with MULE support, the range of this integer will
always be 0 to 255 — eight bits, or one byte. (Integers outside this range are accepted but
silently truncated; however, you should most decidedly not rely on this, because it will not
work under XEmacs with MULE support.) When MULE support is present, the range of
character codes is much larger. (Currently, 19 bits are used.)

FSF GNU Emacs uses kludgy character codes above 255 to represent keyboard input
of ASCII characters in combination with certain modifiers. XEmacs does not use this (a
more general mechanism is used that does not distinguish between ASCII keys and other
keys), so you will never find character codes above 255 in a non-MULE XEmacs.

Individual characters are not often used in programs. It is far more common to work
with strings, which are sequences composed of characters. See Section 2.4.8 [String Type],
page 28.

The read syntax for characters begins with a question mark, followed by the character
(if it’s printable) or some symbolic representation of it. In XEmacs 20, where characters
are their own type, this is also the print representation. In XEmacs 19, however, where
characters are really integers, the printed representation of a character is a decimal number.
This is also a possible read syntax for a character, but writing characters that way in Lisp
programs is a very bad idea. You should always use the special read syntax formats that
XEmacs Lisp provides for characters.

The usual read syntax for alphanumeric characters is a question mark followed by the
character; thus, ‘?A’ for the character A, ‘7B’ for the character B, and ‘?a’ for the character
a.

For example:

;3 Under XEmacs 20:
70 = 7Q ?7q = 7q

22 XEmacs Lisp Reference Manual

(char-int 7Q) = 81

;3 Under XEmacs 19:

70 = 81 7q = 113

You can use the same syntax for punctuation characters, but it is often a good idea

to add a ‘\’ so that the Emacs commands for editing Lisp code don’t get confused. For
example, ‘?\ ’ is the way to write the space character. If the character is ‘\’, you must use
a second ‘\’ to quote it: ‘?\\’. XEmacs 20 always prints punctuation characters with a ‘\’
in front of them, to avoid confusion.

You can express the characters Control-g, backspace, tab, newline, vertical tab, formfeed,
return, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘?\r’, ‘?\e’, respectively. Their
character codes are 7, 8, 9, 10, 11, 12, 13, and 27 in decimal. Thus,

;3 Under XEmacs 20:

\a = 7\"G ; C-g

(char-int ?\a) = 7

?\b = ?\"H ; backspace, BS), C-h
(char-int ?\b) = 8

2\t = 7\t ; tab, (TAB), C-i

(char-int ?\t) = 9

?\n = 7\n ; newline, (LFD), C-j

2\v = 7\K ; vertical tab, C-k

2\f = 7\'L ; formfeed character, C-1
\r = ?\r ; carriage return, RET), C-m
2Ne = 7\ [; escape character, (ESC), C-[
2\\ = 7\\ ; backslash character, \

;3 Under XEmacs 19:

Na = 7 ; C-g

?\b = 8 ; backspace, BS), C-h

2\t = 9 ; tab, (TAB), C-1i

?\n = 10 ; newline, (LFD), C-j

\v = 11 ; vertical tab, C-k

2\f = 12 ; formfeed character, C-1
\r = 13 ; carriage return, RET), C-m
2\e = 27 ; escape character, (ESC), C-[
2\\ = 92 ; backslash character, \

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an escape character; this usage has nothing to do with the

character (ESC).

Control characters may be represented using yet another read syntax. This consists of a
question mark followed by a backslash, caret, and the corresponding non-control character,
in either upper or lower case. For example, both ‘?\"I" and ‘?\"i’ are valid read syntax
for the character C-i, the character whose value is 9.

Instead of the ‘~’, you can use ‘C-’; thus, ‘?\C-1i’ is equivalent to ‘?\"I’ and to ‘?\"1i’:

;5 Under XEmacs 20:

"I = 7\t 7?\C-I = 7\t
(char-int ?\"I) = 9

;5 Under XEmacs 19:

2\"I = 9 ?2\C-I = 9

Chapter 2: Lisp Data Types 23

There is also a character read syntax beginning with ‘\M-’. This sets the high bit of the
character code (same as adding 128 to the character code). For example, ‘?\M-A’ stands for
the character with character code 193, or 128 plus 65. You should not use this syntax in
your programs. It is a holdover of yet another confoundance disease from earlier Emacsen.
(This was used to represent keyboard input with the key set, thus the ‘M’; however, it
conflicts with the legitimate ISO-8859-1 interpretation of the character code. For example,
character code 193 is a lowercase ‘a’ with an acute accent, in ISO-8859-1.)

Finally, the most general read syntax consists of a question mark followed by a backslash
and the character code in octal (up to three octal digits); thus, ‘?\101’ for the character 4,
“?\001’ for the character C-a, and ?\002 for the character C-b. Although this syntax can
represent any ASCII character, it is preferred only when the precise octal value is more
important than the ASCII representation.

;3 Under XEmacs 20:

?\012 = 7\n \n = ?\n 7\C-j = ?\n
?\101 = 7A ?7A = 7A

;3 Under XEmacs 19:

?2\012 = 10 \n = 10 ?\C-j = 10
?\101 = 65 ?A = 65

A backslash is allowed, and harmless, preceding any character without a special escape
meaning; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most
characters. However, you should add a backslash before any of the characters ‘O\|;? “"#.,’
to avoid confusing the Emacs commands for editing Lisp code. Also add a backslash before
whitespace characters such as space, tab, newline and formfeed. However, it is cleaner to
use one of the easily readable escape sequences, such as ‘\t’, instead of an actual whitespace
character such as a tab.

2.4.4 Symbol Type

A symbol in XEmacs Lisp is an object with a name. The symbol name serves as the
printed representation of the symbol. In ordinary use, the name is unique—mno two symbols
have the same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or
it may serve only to be distinct from all other Lisp objects, so that its presence in a data
structure may be recognized reliably. In a given context, usually only one of these uses is
intended. But you can use one symbol in all of these ways, independently.

A symbol name can contain any characters whatever. Most symbol names are written
with letters, digits, and the punctuation characters ‘=+=%/’. Such names require no special
punctuation; the characters of the name suffice as long as the name does not look like a
number. (If it does, write a ‘\’ at the beginning of the name to force interpretation as a
symbol.) The characters ‘_~10@$%&:<>{}’ are less often used but also require no special
punctuation. Any other characters may be included in a symbol’s name by escaping them
with a backslash. In contrast to its use in strings, however, a backslash in the name of a
symbol simply quotes the single character that follows the backslash. For example, in a

string, ‘\t’ represents a tab character; in the name of a symbol, however, ‘\t’ merely quotes

24 XEmacs Lisp Reference Manual

the letter t. To have a symbol with a tab character in its name, you must actually use a
tab (preceded with a backslash). But it’s rare to do such a thing.
Common Lisp note: In Common Lisp, lower case letters are always “folded” to

upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and
lower case letters are distinct.

Here are several examples of symbol names. Note that the ‘+’ in the fifth example is
escaped to prevent it from being read as a number. This is not necessary in the sixth
example because the rest of the name makes it invalid as a number.

foo ;A symbol named ‘foo’.
FOO ;A symbol named ‘F0O0’, different from ‘foo’.
char-to-string ;A symbol named ‘char-to-string’.
1+ ;A symbol named ‘1+’
; (not ‘+1’, which is an integer).
\+1 ;A symbol named ‘+1’
; (not a very readable name).
NG\ 1\ 2)) ; A symbol named ‘(* 1 2)’ (a worse name).

+-x/_"10$%"&=:<>{} ; A symbol named ‘“+-x/_"10$%"&=:<>{}".
; These characters need not be escaped.

2.4.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two
kinds of sequence in XEmacs Lisp, lists and arrays. Thus, an object of type list or of type
array is also considered a sequence.

Arrays are further subdivided into strings, vectors, and bit vectors. Vectors can hold
elements of any type, but string elements must be characters, and bit vector elements must
be either 0 or 1. However, the characters in a string can have extents (see Chapter 40
[Extents|, page 593) and text properties (see Section 36.18 [Text Properties|, page 546) like
characters in a buffer; vectors do not support extents or text properties even when their
elements happen to be characters.

Lists, strings, vectors, and bit vectors are different, but they have important similarities.
For example, all have a length I, and all have elements which can be indexed from zero to I
minus one. Also, several functions, called sequence functions, accept any kind of sequence.
For example, the function elt can be used to extract an element of a sequence, given its
index. See Chapter 6 [Sequences Arrays Vectors|, page 103.

It is impossible to read the same sequence twice, since sequences are always created anew
upon reading. If you read the read syntax for a sequence twice, you get two sequences with
equal contents. There is one exception: the empty list () always stands for the same object,
nil.

2.4.6 Cons Cell and List Types

A cons cell is an object comprising two pointers named the CAR and the CDR. Each of
them can point to any Lisp object.

Chapter 2: Lisp Data Types 25

A list is a series of cons cells, linked together so that the CDR of each cons cell points
either to another cons cell or to the empty list. See Chapter 5 [Lists|, page 79, for functions
that work on lists. Because most cons cells are used as part of lists, the phrase list structure
has come to refer to any structure made out of cons cells.

The names CAR and CDR have only historical meaning now. The original Lisp imple-
mentation ran on an IBM 704 computer which divided words into two parts, called the
“address” part and the “decrement”; CAR was an instruction to extract the contents of the
address part of a register, and CDR an instruction to extract the contents of the decrement.
By contrast, “cons cells” are named for the function cons that creates them, which in turn
is named for its purpose, the construction of cells.

Because cons cells are so central to Lisp, we also have a word for “an object which is not
a cons cell”. These objects are called atoms.

The read syntax and printed representation for lists are identical, and consist of a left
parenthesis, an arbitrary number of elements, and a right parenthesis.

Upon reading, each object inside the parentheses becomes an element of the list. That
is, a cons cell is made for each element. The CAR of the cons cell points to the element,
and its CDR points to the next cons cell of the list, which holds the next element in the list.
The CDR of the last cons cell is set to point to nil.

A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes.
(The Lisp reader cannot read such an illustration; unlike the textual notation, which can be
understood by both humans and computers, the box illustrations can be understood only
by humans.) The following represents the three-element list (rose violet buttercup):

--> rose --> violet --> buttercup

In this diagram, each box represents a slot that can refer to any Lisp object. Each pair
of boxes represents a cons cell. Each arrow is a reference to a Lisp object, either an atom
or another cons cell.

In this example, the first box, the CAR of the first cons cell, refers to or “contains” rose
(a symbol). The second box, the CDR of the first cons cell, refers to the next pair of boxes,
the second cons cell. The CAR of the second cons cell refers to violet and the CDR refers
to the third cons cell. The CDR of the third (and last) cons cell refers to nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a dif-
ferent manner:

| car | cdr | | car | cdr | | car | cdr |

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here are examples of lists written in Lisp syntax:

26 XEmacs Lisp Reference Manual

(A2 "A"M) ; A list of three elements.

O ; A list of no elements (the empty list).

nil ; A list of no elements (the empty list).

(Mma O™ ;A list of one element: the string "A ().

@ O) ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.

((A B Q) ;A list of one element

; (which is a list of three elements).

Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

2.4.6.1 Dotted Pair Notation

Dotted pair notation is an alternative syntax for cons cells that represents the CAR and
CDR explicitly. In this syntax, (a . b) stands for a cons cell whose CAR is the object a, and
whose CDR is the object b. Dotted pair notation is therefore more general than list syntax.
In the dotted pair notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For
nil-terminated lists, the two notations produce the same result, but list notation is usually
clearer and more convenient when it is applicable. When printing a list, the dotted pair
notation is only used if the CDR of a cell is not a list.

Here’s how box notation can illustrate dotted pairs. This example shows the pair (rose
. violet):

[___l___|--> violet
|
|

-=> rose

Dotted pair notation can be combined with list notation to represent a chain of cons
cells with a non-nil final CDR. For example, (rose violet . buttercup) is equivalent to
(rose . (violet . buttercup)). The object looks like this:

|___l___I-—> |___l___|--> buttercup
| |
| |

--> rose --> violet

These diagrams make it evident why (rose . violet . buttercup) is invalid syntax; it
would require a cons cell that has three parts rather than two.

The list (rose violet) is equivalent to (rose . (violet)) and looks like this:

Chapter 2: Lisp Data Types 27

--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose .
(violet . (buttercup))).

2.4.6.2 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells.
In each element, the CAR is considered a key, and the CDR is considered an associated value.
(In some cases, the associated value is stored in the CAR of the CDR.) Association lists are
often used as stacks, since it is easy to add or remove associations at the front of the list.

For example,

(setq alist-of-colors
>((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose
is the key and red is the value.

See Section 5.8 [Association Lists|, page 94, for a further explanation of alists and for
functions that work on alists.

2.4.7 Array Type

An array is composed of an arbitrary number of slots for referring to other Lisp objects,
arranged in a contiguous block of memory. Accessing any element of an array takes the
same amount of time. In contrast, accessing an element of a list requires time proportional
to the position of the element in the list. (Elements at the end of a list take longer to access
than elements at the beginning of a list.)

XEmacs defines three types of array, strings, vectors, and bit vectors. A string is an array
of characters, a vector is an array of arbitrary objects, and a bit vector is an array of 1’s and
0’s. All are one-dimensional. (Most other programming languages support multidimensional
arrays, but they are not essential; you can get the same effect with an array of arrays.) Each
type of array has its own read syntax; see Section 2.4.8 [String Typel, page 28, Section 2.4.9
[Vector Typel, page 28, and Section 2.4.10 [Bit Vector Type|, page 29.

An array may have any length up to the largest integer; but once created, it has a fixed
size. The first element of an array has index zero, the second element has index 1, and so
on. This is called zero-origin indexing. For example, an array of four elements has indices
0,1, 2, and 3.

The array type is contained in the sequence type and contains the string type, the vector
type, and the bit vector type.

28 XEmacs Lisp Reference Manual

2.4.8 String Type

A string is an array of characters. Strings are used for many purposes in XEmacs, as
can be expected in a text editor; for example, as the names of Lisp symbols, as messages
for the user, and to represent text extracted from buffers. Strings in Lisp are constants:
evaluation of a string returns the same string.

The read syntax for strings is a double-quote, an arbitrary number of characters, and
another double-quote, "1like this". The Lisp reader accepts the same formats for reading
the characters of a string as it does for reading single characters (without the question
mark that begins a character literal). You can enter a nonprinting character such as tab
or C-a using the convenient escape sequences, like this: "\t, \C-a". You can include a
double-quote in a string by preceding it with a backslash; thus, "\"" is a string containing
just a single double-quote character. (See Section 2.4.3 [Character Type|, page 21, for a
description of the read syntax for characters.)

The printed representation of a string consists of a double-quote, the characters it con-
tains, and another double-quote. However, you must escape any backslash or double-quote
characters in the string with a backslash, like this: "this \" is an embedded quote".

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—
one that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores
an escaped newline while reading a string.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."
= "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

A string can hold extents and properties of the text it contains, in addition to the
characters themselves. This enables programs that copy text between strings and buffers
to preserve the extents and properties with no special effort. See Chapter 40 [Extents],
page 593, See Section 36.18 [Text Properties], page 546.

Note that FSF GNU Emacs has a special read and print syntax for strings with text
properties, but XEmacs does not currently implement this. It was judged better not to
include this in XEmacs because it entails that equal return nil when passed a string with
text properties and the equivalent string without text properties, which is often counter-
intuitive.

See Chapter 4 [Strings and Characters|, page 61, for functions that work on strings.

2.4.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount
of time to access any element of a vector. (In a list, the access time of an element is
proportional to the distance of the element from the beginning of the list.)

Chapter 2: Lisp Data Types 29

The printed representation of a vector consists of a left square bracket, the elements,
and a right square bracket. This is also the read syntax. Like numbers and strings, vectors
are considered constants for evaluation.

[1 "two" (three)] ;A vector of three elements.
= [1 "two" (three)]

See Section 6.4 [Vectors|, page 108, for functions that work with vectors.

2.4.10 Bit Vector Type

A bit vector is a one-dimensional array of 1’s and 0’s. It takes a constant amount of
time to access any element of a bit vector, as for vectors. Bit vectors have an extremely
compact internal representation (one machine bit per element), which makes them ideal for
keeping track of unordered sets, large collections of boolean values, etc.

The printed representation of a bit vector consists of ‘#*’ followed by the bits in the
vector. This is also the read syntax. Like numbers, strings, and vectors, bit vectors are
considered constants for evaluation.

#x00101000 ; A bit vector of eight elements.
= #x00101000

See Section 6.6 [Bit Vectors|, page 110, for functions that work with bit vectors.

2.4.11 Function Type

Just as functions in other programming languages are executable, Lisp function objects
are pieces of executable code. However, functions in Lisp are primarily Lisp objects, and only
secondarily the text which represents them. These Lisp objects are lambda expressions: lists
whose first element is the symbol lambda (see Section 11.2 [Lambda Expressions|, page 166).

In most programming languages, it is impossible to have a function without a name. In
Lisp, a function has no intrinsic name. A lambda expression is also called an anonymous
function (see Section 11.7 [Anonymous Functions|, page 174). A named function in Lisp

is actually a symbol with a valid function in its function cell (see Section 11.4 |[Defining
Functions], page 170).

Most of the time, functions are called when their names are written in Lisp expressions
in Lisp programs. However, you can construct or obtain a function object at run time
and then call it with the primitive functions funcall and apply. See Section 11.5 [Calling
Functions], page 172.

2.4.12 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented
as an object much like a function, but with different parameter-passing semantics. A Lisp
macro has the form of a list whose first element is the symbol macro and whose CDR is a
Lisp function object, including the lambda symbol.

30 XEmacs Lisp Reference Manual

Lisp macro objects are usually defined with the built-in defmacro function, but any list
that begins with macro is a macro as far as XEmacs is concerned. See Chapter 12 [Macros|,
page 181, for an explanation of how to write a macro.

2.4.13 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming
language. Primitive functions are also called subrs or built-in functions. (The word “subr”
is derived from “subroutine”.) Most primitive functions evaluate all their arguments when
they are called. A primitive function that does not evaluate all its arguments is called a
special form (see Section 8.2.7 [Special Forms|, page 127).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to substitute a function written in Lisp for a primitive of the
same name. The reason is that the primitive function may be called directly from C code.
Calls to the redefined function from Lisp will use the new definition, but calls from C code
may still use the built-in definition.

The term function refers to all Emacs functions, whether written in Lisp or C. See
Section 2.4.11 [Function Type|, page 29, for information about the functions written in
Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

(symbol-function ’car) ; Access the function cell
; of the symbol.
= #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?
= t 5 Yes.

2.4.14 Compiled-Function Type

The byte compiler produces compiled-function objects. The evaluator handles this data
type specially when it appears as a function to be called. See Chapter 15 [Byte Compilation],
page 209, for information about the byte compiler.

The printed representation for a compiled-function object is normally
‘#<compiled-function...>’. If print-readably is true, however, it is ‘#[...]".

2.4.15 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as
the function definition of a symbol as a placeholder for the real definition; it says that the
real definition is found in a file of Lisp code that should be loaded when necessary. The
autoload object contains the name of the file, plus some other information about the real
definition.

Chapter 2: Lisp Data Types 31

After the file has been loaded, the symbol should have a new function definition that is
not an autoload object. The new definition is then called as if it had been there to begin
with. From the user’s point of view, the function call works as expected, using the function
definition in the loaded file.

An autoload object is usually created with the function autoload, which stores the
object in the function cell of a symbol. See Section 14.2 [Autoload], page 202, for more
details.

2.4.16 Char Table Type

(not yet documented)

2.4.17 Hash Table Type

A hash table is a table providing an arbitrary mapping from one Lisp object to another,
using an internal indexing method called hashing. Hash tables are very fast (much more
efficient that using an association list, when there are a large number of elements in the
table).

Hash tables have no read syntax. They print in hash notation (The “hash” in “hash
notation” has nothing to do with the “hash” in “hash table”), giving the number of elements,
total space allocated for elements, and a unique number assigned at the time the hash table
was created. (Hash tables automatically resize as necessary so there is no danger of running
out of space for elements.)

(make-hashtable 50)
= #<hashtable 0/71 0x313a>

See Chapter 46 [Hash Tables|, page 675, for information on how to create and work with
hash tables.

2.4.18 Range Table Type

A range table is a table that maps from ranges of integers to arbitrary Lisp objects.
Range tables automatically combine overlapping ranges that map to the same Lisp object,
and operations are provided for mapping over all of the ranges in a range table.

Range tables have a special read syntax beginning with ‘#s(range-table’ (this is an
example of structure read syntax, which is also used for char tables and faces).
(setq x (make-range-table))
(put-range-table 20 50 ’foo x)
(put-range-table 100 200 "bar" x)
X
= #s(range-table data ((20 50) foo (100 200) "bar"))

See Chapter 47 [Range Tables|, page 679, for information on how to create and work
with range tables.

32 XEmacs Lisp Reference Manual

2.4.19 Weak List Type

(not yet documented)

2.5 Editing Types

The types in the previous section are common to many Lisp dialects. XEmacs Lisp
provides several additional data types for purposes connected with editing.

2.5.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 30 [Buffers|,
page 435). Most buffers hold the contents of a disk file (see Chapter 28 [Files|, page 395)
so they can be edited, but some are used for other purposes. Most buffers are also meant
to be seen by the user, and therefore displayed, at some time, in a window (see Chapter 31
(Windows|, page 449). But a buffer need not be displayed in any window.

The contents of a buffer are much like a string, but buffers are not used like strings
in XEmacs Lisp, and the available operations are different. For example, insertion of text
into a buffer is very efficient, whereas “inserting” text into a string requires concatenating
substrings, and the result is an entirely new string object.

Each buffer has a designated position called point (see Chapter 34 [Positions|, page 493).
At any time, one buffer is the current buffer. Most editing commands act on the contents
of the current buffer in the neighborhood of point. Many of the standard Emacs functions
manipulate or test the characters in the current buffer; a whole chapter in this manual is
devoted to describing these functions (see Chapter 36 [Text|, page 517).

Several other data structures are associated with each buffer:
e a local syntax table (see Chapter 38 [Syntax Tables|, page 575);
e alocal keymap (see Chapter 20 [Keymaps|, page 319);
e a local variable binding list (see Section 10.9 [Buffer-Local Variables|, page 159);
e a list of extents (see Chapter 40 [Extents|, page 593);
e and various other related properties.
The local keymap and variable list contain entries that individually override global bindings

or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer. See Sec-
tion 30.11 [Indirect Buffers], page 447.
Buffers have no read syntax. They print in hash notation, showing the buffer name.

(current-buffer)
= #<buffer "objects.texi">

Chapter 2: Lisp Data Types 33

2.5.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components:
one for the buffer, and one for the position. Changes in the buffer’s text automatically
relocate the position value as necessary to ensure that the marker always points between
the same two characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.
(point-marker)
= #<marker at 50661 in objects.texi>
See Chapter 35 [Markers|, page 505, for information on how to test, create, copy, and
move markers.

2.5.3 Extent Type

An extent specifies temporary alteration of the display appearance of a part of a buffer
(or string). It contains markers delimiting a range of the buffer, plus a property list (a list
whose elements are alternating property names and values). Extents are used to present
parts of the buffer temporarily in a different display style. They have no read syntax, and
print in hash notation, giving the buffer name and range of positions.

Extents can exist over strings as well as buffers; the primary use of this is to preserve
extent and text property information as text is copied from one buffer to another or between
different parts of a buffer.

Extents have no read syntax. They print in hash notation, giving the range of text they
cover, the name of the buffer or string they are in, the address in core, and a summary of
some of the properties attached to the extent.

(extent-at (point))
= #<extent [51742, 51748) font-lock text-prop 0x90121e0 in buffer objects.texi>

See Chapter 40 [Extents|, page 593, for how to create and use extents.

Extents are used to implement text properties. See Section 36.18 [Text Properties|,
page 546.

2.5.4 Window Type

A window describes the portion of the frame that XEmacs uses to display a buffer.
(In standard window-system usage, a window is what XEmacs calls a frame; XEmacs
confusingly uses the term “window” to refer to what is called a pane in standard window-
system usage.) Every window has one associated buffer, whose contents appear in the
window. By contrast, a given buffer may appear in one window, no window, or several
windows.

Though many windows may exist simultaneously, at any time one window is designated
the selected window. This is the window where the cursor is (usually) displayed when

34 XEmacs Lisp Reference Manual

XEmacs is ready for a command. The selected window usually displays the current buffer,
but this is not necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only
one frame. See Section 2.5.5 [Frame Type], page 34.

Windows have no read syntax. They print in hash notation, giving the name of the
buffer being displayed and a unique number assigned at the time the window was created.
(This number can be useful because the buffer displayed in any given window can change
frequently.)

(selected-window)
= #<window on "objects.texi" 0x266c>

See Chapter 31 [Windows|, page 449, for a description of the functions that work on

windows.

2.5.5 Frame Type

A frame is a rectangle on the screen (a window in standard window-system terminology)
that contains one or more non-overlapping Emacs windows (panes in standard window-
system terminology). A frame initially contains a single main window (plus perhaps a
minibuffer window) which you can subdivide vertically or horizontally into smaller windows.

Frames have no read syntax. They print in hash notation, giving the frame’s type, name
as used for resourcing, and a unique number assigned at the time the frame was created.

(selected-frame)
= #<x-frame "emacs" 0x9db>

See Chapter 32 [Frames|, page 475, for a description of the functions that work on frames.

2.5.6 Device Type

A device represents a single display on which frames exist. Normally, there is only
one device object, but there may be more than one if XEmacs is being run on a multi-
headed display (e.g. an X server with attached color and mono screens) or if XEmacs is
simultaneously driving frames attached to different consoles, e.g. an X display and a TTY
connection.

Devices do not have a read syntax. They print in hash notation, giving the device’s
type, connection name, and a unique number assigned at the time the device was created.

(selected-device)
= #<x-device on ":0.0" 0x5b9>

See Chapter 33 [Consoles and Devices|, page 487, for a description of several functions

related to devices.

2.5.7 Console Type

A console represents a single keyboard to which devices (i.e. displays on which frames
exist) are connected. Normally, there is only one console object, but there may be more

Chapter 2: Lisp Data Types 35

than one if XEmacs is simultaneously driving frames attached to different X servers and/or
TTY connections. (XEmacs is capable of driving multiple X and TTY connections at the
same time, and provides a robust mechanism for handling the differing display capabilities
of such heterogeneous environments. A buffer with embedded glyphs and multiple fonts
and colors, for example, will display reasonably if it simultaneously appears on a frame on
a color X display, a frame on a mono X display, and a frame on a TTY connection.)

Consoles do not have a read syntax. They print in hash notation, giving the console’s
type, connection name, and a unique number assigned at the time the console was created.

(selected-console)
= #<x-console on "localhost:0" 0x5b7>

See Chapter 33 [Consoles and Devices|, page 487, for a description of several functions
related to consoles.

2.5.8 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of
the windows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax. They print in hash notation, giving
a unique number assigned at the time the window configuration was created.

(current-window-configuration)
= #<window-configuration 0Ox2db4>

See Section 31.16 [Window Configurations|, page 473, for a description of several func-
tions related to window configurations.

2.5.9 Event Type

(not yet documented)

2.5.10 Process Type

The word process usually means a running program. XEmacs itself runs in a process of
this sort. However, in XEmacs Lisp, a process is a Lisp object that designates a subprocess
created by the XEmacs process. Programs such as shells, GDB, ftp, and compilers, running
in subprocesses of XEmacs, extend the capabilities of XEmacs.

An Emacs subprocess takes textual input from Emacs and returns textual output to
Emacs for further manipulation. Emacs can also send signals to the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of
the process, its associated process ID, and the current state of the process:

(process-list)
= (#<process "shell" pid 2909 state:run>)

See Chapter 49 [Processes|, page 683, for information about functions that create, delete,

return information about, send input or signals to, and receive output from processes.

36 XEmacs Lisp Reference Manual

2.5.11 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this
way: markers, buffers, strings, and functions. Most often, input streams (character sources)
obtain characters from the keyboard, a buffer, or a file, and output streams (character sinks)
send characters to a buffer, such as a ‘*Help*’ buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands
for the value of the variable standard-input or standard-output. Also, the object t as
a stream specifies input using the minibuffer (see Chapter 18 [Minibuffers|, page 265) or
output in the echo area (see Section 45.3 [The Echo Areal, page 658).

Streams have no special printed representation or read syntax, and print as whatever
primitive type they are.

See Chapter 17 [Read and Print], page 255, for a description of functions related to
streams, including parsing and printing functions.

2.5.12 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the
user’s command input is executed.

NOTE: In XEmacs, a keymap is a separate primitive type. In FSF GNU Emacs, a
keymap is actually a list whose CAR is the symbol keymap.

See Chapter 20 [Keymaps|, page 319, for information about creating keymaps, handling
prefix keys, local as well as global keymaps, and changing key bindings.

2.5.13 Syntax Table Type

Under XEmacs 20, a syntax table is a particular type of char table. Under XEmacs 19, a
syntax table a vector of 256 integers. In both cases, each element defines how one character
is interpreted when it appears in a buffer. For example, in C mode (see Section 26.1 [Major
Modes|, page 365), the ‘+” character is punctuation, but in Lisp mode it is a valid character
in a symbol. These modes specify different interpretations by changing the syntax table
entry for ‘+’.

Syntax tables are used only for scanning text in buffers, not for reading Lisp expressions.
The table the Lisp interpreter uses to read expressions is built into the XEmacs source code
and cannot be changed; thus, to change the list delimiters to be ‘{’ and ‘}’ instead of ‘(’
and ‘)’ would be impossible.

See Chapter 38 [Syntax Tables|, page 575, for details about syntax classes and how to
make and modify syntax tables.

Chapter 2: Lisp Data Types 37

2.5.14 Display Table Type

A display table specifies how to display each character code. Each buffer and each
window can have its own display table. A display table is actually a vector of length
256, although in XEmacs 20 this may change to be a particular type of char table. See
Section 45.11 [Display Tables|, page 669.

2.5.15 Database Type

(not yet documented)

2.5.16 Charset Type

(not yet documented)

2.5.17 Coding System Type

(not yet documented)

2.5.18 ToolTalk Message Type

(not yet documented)

2.5.19 ToolTalk Pattern Type

(not yet documented)

2.6 Window-System Types

XEmacs also has some types that represent objects such as faces (collections of display
characters), fonts, and pixmaps that are commonly found in windowing systems.

2.6.1 Face Type

(not yet documented)

2.6.2 Glyph Type

(not yet documented)

38

2.6.3 Specifier Type

(not yet documented)

2.6.4 Font Instance Type

(not yet documented)

2.6.5 Color Instance Type

(not yet documented)

2.6.6 Image Instance Type

(not yet documented)

2.6.7 Toolbar Button Type

(not yet documented)

2.6.8 Subwindow Type

(not yet documented)

2.6.9 X Resource Type

(not yet documented)

2.7 Type Predicates

XEmacs Lisp Reference Manual

The XEmacs Lisp interpreter itself does not perform type checking on the actual argu-
ments passed to functions when they are called. It could not do so, since function arguments
in Lisp do not have declared data types, as they do in other programming languages. It is
therefore up to the individual function to test whether each actual argument belongs to a

type that the function can use.

All built-in functions do check the types of their actual arguments when appropriate,
and signal a wrong-type-argument error if an argument is of the wrong type. For example,
here is what happens if you pass an argument to + that it cannot handle:

Chapter 2: Lisp Data Types 39

(+ 2 ’a)
Wrong type argument: integer-or-marker-p, a
If you want your program to handle different types differently, you must do explicit
type checking. The most common way to check the type of an object is to call a type
predicate function. Emacs has a type predicate for each type, as well as some predicates
for combinations of types.

A type predicate function takes one argument; it returns t if the argument belongs to
the appropriate type, and nil otherwise. Following a general Lisp convention for predicate
functions, most type predicates’ names end with ‘p’.

Here is an example which uses the predicates 1istp to check for a list and symbolp to
check for a symbol.
(defun add-on (x)
(cond ((symbolp x)

;3 If X is a symbol, put it on LIST.
(setq list (cons x list)))
((listp x)
;; If X is a list, add its elements to LIST.
(setq list (append x list)))

(t
;; We only handle symbols and lists.
(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to
further information.

annotationp
See Section 44.2 [Annotation Primitives], page 652.

arrayp See Section 6.3 [Array Functions], page 106.
atom See Section 5.3 [List-related Predicates|, page 80.

bit-vector-p
See Section 6.7 [Bit Vector Functions], page 110.

bitp See Section 6.7 [Bit Vector Functions], page 110.

boolean-specifier—p

See Section 41.4 [Specifier Types|, page 612.
buffer-glyph-p

See Section 43.3 [Glyph Types|, page 648.

buffer-live-p
See Section 30.10 [Killing Buffers], page 445.

bufferp See Section 30.1 [Buffer Basics|, page 435.

button-event-p
See Section 19.5.3 [Event Predicates], page 298.

button-press-event-p
See Section 19.5.3 [Event Predicates], page 298.

40 XEmacs Lisp Reference Manual

button-release-event-p
See Section 19.5.3 [Event Predicates], page 298.

case-table-p

See Section 4.12 [Case Tables], page 74.
char-int-p

See Section 4.5 [Character Codes|, page 64.
char-or-char-int-p

See Section 4.5 [Character Codes|, page 64.
char-or-string-p

See Section 4.2 [Predicates for Strings|, page 62.

char-table-p
See Section 4.13 [Char Tables], page 75.

characterp
See Section 4.4 [Predicates for Characters|, page 64.

color-instance-p

See Section 42.3 [Colors|, page 633.
color-pixmap-image-instance-p

See Section 43.2.3.1 [Image Instance Types], page 645.
color-specifier-p

See Section 41.4 [Specifier Types], page 612.

commandp See Section 19.3 [Interactive Call], page 290.

compiled-function-p

See Section 2.4.14 [Compiled-Function Type], page 30.
console-live-p

See Section 33.4 [Connecting to a Console or Device], page 489.
consolep See Chapter 33 [Consoles and Devices|, page 487.

consp See Section 5.3 [List-related Predicates], page 80.

)

database-live-p
See Section 48.1 [Connecting to a Database], page 681.

databasep
See Chapter 48 [Databases], page 681.

device-live-p
See Section 33.4 [Connecting to a Console or Device|, page 489.

device-or-frame-p
See Section 33.2 [Basic Device Functions], page 488.

devicep See Chapter 33 [Consoles and Devices], page 487.

eval-event-p
See Section 19.5.3 [Event Predicates], page 298.

Chapter 2: Lisp Data Types

event-live-p
See Section 19.5.3 [Event Predicates], page 298.

eventp See Section 19.5 [Events], page 294.

extent-live-p
See Section 40.2 [Creating and Modifying Extents], page 594.

extentp See Chapter 40 [Extents|, page 593.

face-boolean-specifier-p
See Section 41.4 [Specifier Types|, page 612.

facep See Section 42.1.2 [Basic Face Functions], page 626.

floatp See Section 3.3 [Predicates on Numbers], page 48.

font-instance-p
See Section 42.2 [Fonts|, page 631.

font-specifier-p

See Section 41.4 [Specifier Types|, page 612.
frame-live-p

See Section 32.4 [Deleting Frames|, page 480.

framep See Chapter 32 [Frames|, page 475.

functionp
(not yet documented)

generic-specifier-p
See Section 41.4 [Specifier Types|, page 612.

glyphp See Chapter 43 [Glyphs], page 635.

hashtablep

See Chapter 46 [Hash Tables|, page 675.
icon-glyph-p

See Section 43.3 [Glyph Types|, page 648.
image-instance-p

See Section 43.2 [Images], page 640.
image-specifier-p

See Section 41.4 [Specifier Types|, page 612.
integer—-char-or-marker-p

See Section 35.2 [Predicates on Markers|, page 506.
integer—-or-char-p

See Section 4.4 [Predicates for Characters|, page 64.
integer-or-marker-p

See Section 35.2 [Predicates on Markers|, page 506.
integer—-specifier-p

See Section 41.4 [Specifier Types|, page 612.

42 XEmacs Lisp Reference Manual

integerp See Section 3.3 [Predicates on Numbers|, page 48.
itimerp (not yet documented)

key-press—-event-p

See Section 19.5.3 [Event Predicates], page 298.
keymapp See Section 20.3 [Creating Keymaps|, page 320.
keywordp (not yet documented)
listp See Section 5.3 [List-related Predicates], page 80.
markerp See Section 35.2 [Predicates on Markers|, page 506.

misc-user—-event-p
See Section 19.5.3 [Event Predicates], page 298.

mono-pixmap-image-instance-p
See Section 43.2.3.1 [Image Instance Types|, page 645.

motion-event-p
See Section 19.5.3 [Event Predicates], page 298.

mouse-event-p
See Section 19.5.3 [Event Predicates], page 298.

natnum-specifier-p

See Section 41.4 [Specifier Types|, page 612.
natnump See Section 3.3 [Predicates on Numbers|, page 48.
nlistp See Section 5.3 [List-related Predicates], page 80.

)

nothing-image-instance-p
See Section 43.2.3.1 [Image Instance Types|, page 645.

number-char-or-marker-p
See Section 35.2 [Predicates on Markers|, page 506.

number-or-marker-p
See Section 35.2 [Predicates on Markers|, page 506.

numberp See Section 3.3 [Predicates on Numbers|, page 48.

pointer-glyph-p
See Section 43.3 [Glyph Types], page 648.

pointer-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

process—-event-p
See Section 19.5.3 [Event Predicates], page 298.

processp See Chapter 49 [Processes|, page 683.

range—-table-p
See Chapter 47 [Range Tables], page 679.

ringp (not yet documented)

Chapter 2: Lisp Data Types 43

sequencep
See Section 6.1 [Sequence Functions], page 103.

specifierp
See Chapter 41 [Specifiers], page 609.

stringp See Section 4.2 [Predicates for Strings|, page 62.
subrp See Section 11.8 [Function Cells], page 176.

subwindow-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

subwindowp
See Section 43.6 [Subwindows|, page 650.
symbolp See Chapter 7 [Symbols|, page 113.
syntax-table-p
See Chapter 38 [Syntax Tables], page 575.
text-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

timeout-event-p
See Section 19.5.3 [Event Predicates], page 298.

toolbar-button-p
See Chapter 23 [Toolbar]|, page 355.

toolbar-specifier-p
See Chapter 23 [Toolbar]|, page 355.

user-variable-p
See Section 10.5 [Defining Variables|, page 151.
vectorp See Section 6.4 [Vectors], page 108.
weak-list-p
See Section 5.10 [Weak Lists|, page 101.
window-configuration-p
See Section 31.16 [Window Configurations], page 473.
window-live-p
See Section 31.3 [Deleting Windows], page 453.
windowp See Section 31.1 [Basic Windows], page 449.
The most general way to check the type of an object is to call the function type-of.
Recall that each object belongs to one and only one primitive type; type-of tells you which

one (see Chapter 2 [Lisp Data Types|, page 17). But type-of knows nothing about non-
primitive types. In most cases, it is more convenient to use type predicates than type-of.

type-of object Function
This function returns a symbol naming the primitive type of object. The value is
one of bit-vector, buffer, char-table, character, charset, coding-system,

44 XEmacs Lisp Reference Manual

cons, color-instance, compiled-function, console, database, device, event,
extent, face, float, font-instance, frame, glyph, hashtable, image-instance,
integer, keymap, marker, process, range-table, specifier, string, subr,
subwindow, symbol, toolbar-button, tooltalk-message, tooltalk-pattern,
vector, weak-1list, window, window-configuration, or x-resource.
(type-of 1)
= integer
(type-of ’nil)
= symbol
(type-of () ; O isnil.
= symbol
(type-of ’(x))
= cons

2.8 Equality Predicates

Here we describe two functions that test for equality between any two objects. Other
functions test equality between objects of specific types, e.g., strings. For these predicates,
see the appropriate chapter describing the data type.

eq objectl object2 Function
This function returns t if objectl and object2 are the same object, nil otherwise.
The “same object” means that a change in one will be reflected by the same change
in the other.

eq returns t if object] and object2 are integers with the same value. Also, since
symbol names are normally unique, if the arguments are symbols with the same
name, they are eq. For other types (e.g., lists, vectors, strings), two arguments with
the same contents or elements are not necessarily eq to each other: they are eq only
if they are the same object.

(The make-symbol function returns an uninterned symbol that is not interned in the
standard obarray. When uninterned symbols are in use, symbol names are no longer
unique. Distinct symbols with the same name are not eq. See Section 7.3 [Creating
Symbols], page 115.)

NOTE: Under XEmacs 19, characters are really just integers, and thus characters
and integers are eq. Under XEmacs 20, it was necessary to preserve remnants of this
in function such as old-eq in order to maintain byte-code compatibility. Byte code
compiled under any Emacs 19 will automatically have calls to eq mapped to old-eq
when executed under XEmacs 20.

(eq foo ’foo)
=t

(eq 456 456)
=t

(eq "asdf" "asdf")
= nil

Chapter 2: Lisp Data Types 45

(eq 7(1 (2 (3))) (1 (2 (3N
= nil
(setq foo (1 (2 (3))))
= (1 (2 (3)))
(eq foo foo)
= t
(eq foo (1 (2 (3))))
= nil
(eq [(1 2) 3] [(12) 3]
= nil

(eq (point-marker) (point-marker))
= nil

old-eq objl obj2 Function
This function exists under XEmacs 20 and is exactly like eq except that it suffers from
the char-int confoundance disease. In other words, it returns t if given a character
and the equivalent integer, even though the objects are of different types! You should
not ever call this function explicitly in your code. However, be aware that all calls to
eq in byte code compiled under version 19 map to old-eq in XEmacs 20. (Likewise
for old-equal, old-memq, old-member, old-assq and old-assoc.)

;5 Remember, this does not apply under XEmacs 19.

7A
= 7A
(char-int 7A)
= 65
(old-eq ?7A 65)
=t ; Eek, we’ve been infected.
(eq 7A 65)
= nil ; We are still healthy.
equal objectl object2 Function

This function returns t if objectl and object2 have equal components, nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical
arguments to see if their elements are the same. So, if two objects are eq, they are
equal, but the converse is not always true.

(equal ’foo ’foo)
=t

(equal 456 456)
=t

(equal "asdf" "asdf")
=t

(eq "asdf" "asdf")
= nil

(equal ’(1 (2 (3))) (1 (2 (3))))
=t

46 XEmacs Lisp Reference Manual

(eq 7(1 (2 (3))) >(1 (2 (3))))

= nil

(equal [(1 2) 3] [(1 2) 31)
= t

(eq [(1 2) 3] [(1 2) 31)
= nil

(equal (point-marker) (point-marker))
=t

(eq (point-marker) (point-marker))
= nil
Comparison of strings is case-sensitive.
Note that in FSF GNU Emacs, comparison of strings takes into account their text
properties, and you have to use string-equal if you want only the strings themselves
compared. This difference does not exist in XEmacs; equal and string-equal always
return the same value on the same strings.
(equal "asdf" "ASDF")
= nil
Two distinct buffers are never equal, even if their contents are the same.

The test for equality is implemented recursively, and circular lists may therefore cause
infinite recursion (leading to an error).

Chapter 3: Numbers 47

3 Numbers

XEmacs supports two numeric data types: integers and floating point numbers. Integers
are whole numbers such as —3, 0, #b0111, #xFEED, #0744. Their values are exact. The
number prefixes ‘#b’, ‘#0’, and ‘#x’ are supported to represent numbers in binary, octal,
and hexadecimal notation (or radix). Floating point numbers are numbers with fractional
parts, such as —4.5, 0.0, or 2.71828. They can also be expressed in exponential notation:
1.5e2 equals 150; in this example, ‘€2’ stands for ten to the second power, and is multiplied
by 1.5. Floating point values are not exact; they have a fixed, limited amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is
—134217728 to 134217727 (28 bits; i.e., —227 to 227 — 1), but some machines may provide a
wider range. Many examples in this chapter assume an integer has 28 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and
optional final period.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer —1.
268435457 ; Also the integer 1, due to overflow.
0 ; The integer 0.
-0 ; The integer 0.

To understand how various functions work on integers, especially the bitwise operators
(see Section 3.8 [Bitwise Operations|, page 55), it is often helpful to view the numbers in
their binary form.

In 28-bit binary, the decimal integer 5 looks like this:

0000 0000 0000 0000 0000 0000 0101

(We have inserted spaces between groups of 4 bits, and two spaces between groups of 8 bits,
to make the binary integer easier to read.)

The integer —1 looks like this:
1111 1111 1111 1111 1111 1111 1111
—1 is represented as 28 ones. (This is called two’s complement notation.)

The negative integer, —5, is creating by subtracting 4 from —1. In binary, the decimal
integer 4 is 100. Consequently, —5 looks like this:

1111 1111 1111 1111 1111 1111 1011

In this implementation, the largest 28-bit binary integer is the decimal integer
134,217,727. In binary, it looks like this:

0111 1111 1111 1111 1111 1111 1111

Since the arithmetic functions do not check whether integers go outside their range,
when you add 1 to 134,217,727, the value is the negative integer —134,217,728:

48 XEmacs Lisp Reference Manual

(+ 1 134217727)
= -134217728
= 1000 0000 0000 0000 0000 0000 0000

Many of the following functions accept markers for arguments as well as integers. (See
Chapter 35 [Markers|, page 505.) More precisely, the actual arguments to such functions
may be either integers or markers, which is why we often give these arguments the name
int-or-marker. When the argument value is a marker, its position value is used and its
buffer is ignored.

3.2 Floating Point Basics

XEmacs supports floating point numbers. The precise range of floating point numbers
is machine-specific; it is the same as the range of the C data type double on the machine
in question.

The printed representation for floating point numbers requires either a decimal point
(with at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’,
‘15.0e2’, ‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value
is 1500. They are all equivalent. You can also use a minus sign to write negative floating
point numbers, as in ‘=1.0’.

Most modern computers support the IEEE floating point standard, which provides for
positive infinity and negative infinity as floating point values. It also provides for a class
of values called NaN or “not-a-number”; numerical functions return such values in cases
where there is no correct answer. For example, (sqrt -1.0) returns a NaN. For practical
purposes, there’s no significant difference between different NaN values in XEmacs Lisp,
and there’s no rule for precisely which NaN value should be used in a particular case, so
this manual doesn’t try to distinguish them. XEmacs Lisp has no read syntax for NaNs or
infinities; perhaps we should create a syntax in the future.

You can use logb to extract the binary exponent of a floating point number (or estimate
the logarithm of an integer):

logb number Function
This function returns the binary exponent of number. More precisely, the value is the
logarithm of number base 2, rounded down to an integer.

3.3 Type Predicates for Numbers

The functions in this section test whether the argument is a number or whether it is
a certain sort of number. The functions integerp and floatp can take any type of Lisp
object as argument (the predicates would not be of much use otherwise); but the zerop
predicate requires a number as its argument. See also integer-or-marker-p, integer-
char-or-marker-p, number-or-marker-p and number-char-or-marker-p, in Section 35.2
[Predicates on Markers], page 506.

Chapter 3: Numbers 49

floatp object Function
This predicate tests whether its argument is a floating point number and returns t if
so, nil otherwise.

floatp does not exist in Emacs versions 18 and earlier.

integerp object Function
This predicate tests whether its argument is an integer, and returns t if so, nil
otherwise.

numberp object Function

This predicate tests whether its argument is a number (either integer or floating
point), and returns t if so, nil otherwise.

natnump object Function
The natnump predicate (whose name comes from the phrase “natural-number-p”)
tests to see whether its argument is a nonnegative integer, and returns t if so, nil
otherwise. 0 is considered non-negative.

zerop number Function
This predicate tests whether its argument is zero, and returns t if so, nil otherwise.
The argument must be a number.

These two forms are equivalent: (zerop x) = (=x 0).

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can
be many distinct floating point number objects with the same numeric value. If you use
eq to compare them, then you test whether two values are the same object. By contrast, =
compares only the numeric values of the objects.

At present, each integer value has a unique Lisp object in XEmacs Lisp. Therefore, eq
is equivalent to = where integers are concerned. It is sometimes convenient to use eq for
comparing an unknown value with an integer, because eq does not report an error if the
unknown value is not a number—it accepts arguments of any type. By contrast, = signals
an error if the arguments are not numbers or markers. However, it is a good idea to use = if
you can, even for comparing integers, just in case we change the representation of integers
in a future XEmacs version.

There is another wrinkle: because floating point arithmetic is not exact, it is often a
bad idea to check for equality of two floating point values. Usually it is better to test for
approximate equality. Here’s a function to do this:

(defconst fuzz-factor 1.0e-6)
(defun approx-equal (x y)
(or (and (= x 0) (=y 0))
(< (/ (abs (- x ¥))
(max (abs x) (abs y)))

50 XEmacs Lisp Reference Manual

fuzz-factor)))
Common Lisp note: Comparing numbers in Common Lisp always requires =
because Common Lisp implements multi-word integers, and two distinct integer
objects can have the same numeric value. XEmacs Lisp can have just one integer
object for any given value because it has a limited range of integer values.

In addition to numbers, all of the following functions also accept characters and markers
as arguments, and treat them as their number equivalents.

= number &rest more-numbers Function
This function returns t if all of its arguments are numerically equal, nil otherwise.
(= 5)
=t
(= 5 6)
= nil
(= 55.0)
= t
(=55 6)
= nil

/ = number &rest more-numbers Function
This function returns t if no two arguments are numerically equal, nil otherwise.
(/=5 6)
= t
55 6)
= nil
(/=56 1)
= t

/

< number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically increasing,
nil otherwise.
(< 5 6)
=t
(< 56 6)
= nil
(<567
=t

<= number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically nondecreas-
ing, nil otherwise.

(<= 5 6)
= t

(<= 5 6 6)
=t

(<= 5 6 5)

= nil

Chapter 3: Numbers 51

> number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically decreasing,
nil otherwise.

>= number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically nonincreas-
ing, nil otherwise.

max number &rest more-numbers Function
This function returns the largest of its arguments.

(max 20)
= 20
(max 1 2.5)
= 2.5
(max 1 3 2.5)
= 3

min number &rest more-numbers Function
This function returns the smallest of its arguments.
(min -4 1)
= -4

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

float number Function
This returns number converted to floating point. If number is already a floating point
number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in
how they round. These functions accept integer arguments also, and return such arguments
unchanged.

truncate number Function
This returns number, converted to an integer by rounding towards zero.

floor number &optional divisor Function
This returns number, converted to an integer by rounding downward (towards nega-
tive infinity).
If divisor is specified, number is divided by divisor before the floor is taken; this is

the division operation that corresponds to mod. An arith-error results if divisor is
0.

52 XEmacs Lisp Reference Manual

ceiling number Function
This returns number, converted to an integer by rounding upward (towards positive
infinity).

round number Function

This returns number, converted to an integer by rounding towards the nearest integer.
Rounding a value equidistant between two integers may choose the integer closer to
zero, or it may prefer an even integer, depending on your machine.

3.6 Arithmetic Operations

XEmacs Lisp provides the traditional four arithmetic operations: addition, subtraction,
multiplication, and division. Remainder and modulus functions supplement the division
functions. The functions to add or subtract 1 are provided because they are traditional in
Lisp and commonly used.

All of these functions except % return a floating point value if any argument is floating.

It is important to note that in XEmacs Lisp, arithmetic functions do not check for
overflow. Thus (1+ 134217727) may evaluate to —134217728, depending on your hardware.

1+ number-or-marker Function
This function returns number-or-marker plus 1. For example,
(setq foo 4)
= 4
(1+ foo)
= 5
This function is not analogous to the C operator ++—it does not increment a variable.
It just computes a sum. Thus, if we continue,

foo
= 4

If you want to increment the variable, you must use setq, like this:

(setq foo (1+ foo))
= 5

Now that the c1 package is always available from lisp code, a more convenient and
natural way to increment a variable is (incf foo).

1- number-or-marker Function
This function returns number-or-marker minus 1.

abs number Function
This returns the absolute value of number.

+ &rest numbers-or-markers Function
This function adds its arguments together. When given no arguments, + returns 0.

Chapter 3: Numbers 53

(+)

= 0
+ 1

= 1
(+1234)

= 10

- &optional number-or-marker &rest other-numbers-or-markers Function
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple ar-
guments, - subtracts each of the other-numbers-or-markers from number-or-marker,
cumulatively. If there are no arguments, the result is 0.

(-101 2 3 4)
= 0
(- 10)
= -10
=)
= 0

* &rest numbers-or-markers Function
This function multiplies its arguments together, and returns the product. When given
no arguments, * returns 1.
(%)
=1
(x 1)
=1
(* 123 4)
= 24

/ dividend divisor &rest divisors Function
This function divides dividend by divisor and returns the quotient. If there are
additional arguments divisors, then it divides dividend by each divisor in turn. Each
argument may be a number or a marker.

If all the arguments are integers, then the result is an integer too. This means the
result has to be rounded. On most machines, the result is rounded towards zero after
each division, but some machines may round differently with negative arguments.
This is because the Lisp function / is implemented using the C division operator,
which also permits machine-dependent rounding. As a practical matter, all known
machines round in the standard fashion.

If you divide by 0, an arith-error error is signaled. (See Section 9.5.3 [Errors|,
page 138.)
(/ 6 2)
= 3
(/ 52)
= 2
(/ 25 3 2)
= 4

54 XEmacs Lisp Reference Manual

(/ -17 6)
= -2
The result of (/ =17 6) could in principle be -3 on some machines.

% dividend divisor Function
This function returns the integer remainder after division of dividend by divisor. The
arguments must be integers or markers.

For negative arguments, the remainder is in principle machine-dependent since the
quotient is; but in practice, all known machines behave alike.

An arith-error results if divisor is 0.

(h 9 4
=1
(h -9 4)
= -1
(% 9 -4)
=1
Ch -9 -4)
= -1

For any two integers dividend and divisor,
(+ (% dividend divisor)
(x (/ dividend divisor) divisor))

always equals dividend.

mod dividend divisor Function
This function returns the value of dividend modulo divisor; in other words, the re-
mainder after division of dividend by divisor, but with the same sign as divisor. The
arguments must be numbers or markers.

Unlike %, mod returns a well-defined result for negative arguments. It also permits
floating point arguments; it rounds the quotient downward (towards minus infinity)
to an integer, and uses that quotient to compute the remainder.
An arith-error results if divisor is 0.
(mod 9 4)
=1
(mod -9 4)
= 3
(mod 9 -4)
= -3
(mod -9 -4)
= -1
(mod 5.5 2.5)
= .5
For any two numbers dividend and divisor,
(+ (mod dividend divisor)
(* (floor dividend divisor) divisor))
always equals dividend, subject to rounding error if either argument is floating point.
For floor, see Section 3.5 [Numeric Conversions|, page 51.

Chapter 3: Numbers 55

3.7 Rounding Operations

The functions ffloor, fceiling, fround and ftruncate take a floating point argument
and return a floating point result whose value is a nearby integer. ffloor returns the
nearest integer below; fceiling, the nearest integer above; ftruncate, the nearest integer
in the direction towards zero; fround, the nearest integer.

fHoor float Function
This function rounds float to the next lower integral value, and returns that value as
a floating point number.

fceiling float Function
This function rounds float to the next higher integral value, and returns that value
as a floating point number.

ftruncate float Function
This function rounds float towards zero to an integral value, and returns that value
as a floating point number.

fround float Function
This function rounds float to the nearest integral value, and returns that value as a
floating point number.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits
which are either zero or one). A bitwise operation acts on the individual bits of such a
sequence. For example, shifting moves the whole sequence left or right one or more places,
reproducing the same pattern “moved over”.

The bitwise operations in XEmacs Lisp apply only to integers.

Ish integerl count Function
1sh, which is an abbreviation for logical shift, shifts the bits in integerl to the left
count places, or to the right if count is negative, bringing zeros into the vacated bits.

If count is negative, 1sh shifts zeros into the leftmost (most-significant) bit, producing
a positive result even if integerl is negative. Contrast this with ash, below.

Here are two examples of 1sh, shifting a pattern of bits one place to the left. We
show only the low-order eight bits of the binary pattern; the rest are all zero.

56 XEmacs Lisp Reference Manual

(1sh 5 1)

= 10
;3 Decimal 5 becomes decimal 10.
00000101 = 00001010

(1sh 7 1)
= 14
;3 Decimal 7 becomes decimal 14.
00000111 = 00001110
As the examples illustrate, shifting the pattern of bits one place to the left produces
a number that is twice the value of the previous number.

Shifting a pattern of bits two places to the left produces results like this (with 8-bit
binary numbers):
(1sh 3 2)
= 12
;3 Decimal 3 becomes decimal 12.
00000011 = 00001100
On the other hand, shifting one place to the right looks like this:
(1sh 6 -1)
= 3
;3 Decimal 6 becomes decimal 3.
00000110 = 00000011

(1sh 5 -1)
= 2
;3 Decimal 5 becomes decimal 2.
00000101 = 00000010
As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.

The function 1sh, like all XEmacs Lisp arithmetic functions, does not check for over-
flow, so shifting left can discard significant bits and change the sign of the number.
For example, left shifting 134,217,727 produces —2 on a 28-bit machine:

(1sh 134217727 1) ; left shift

= -2

In binary, in the 28-bit implementation, the argument looks like this:

;3 Decimal 134,217,727

0111 1111 1111 1111 1111 1111 1111
which becomes the following when left shifted:

;3 Decimal —2

1111 1111 1111 1111 1111 1111 1110

ash integerl count Function
ash (arithmetic shift) shifts the bits in integerl to the left count places, or to the
right if count is negative.

ash gives the same results as 1sh except when integerl and count are both negative.
In that case, ash puts ones in the empty bit positions on the left, while 1sh puts zeros
in those bit positions.

Chapter 3: Numbers 57

Thus, with ash, shifting the pattern of bits one place to the right looks like this:
(ash -6 -1) = -3
;3 Decimal —6 becomes decimal —3.
1111 1111 1111 1111 1111 1111 1010
=
1111 1111 1111 1111 1111 1111 1101
In contrast, shifting the pattern of bits one place to the right with 1sh looks like this:
(1sh -6 -1) = 134217725
;5 Decimal —6 becomes decimal 134,217,725.
1111 1111 1111 1111 1111 1111 1010
=
0111 1111 1111 1111 1111 1111 1101
Here are other examples:

; 28-bit binary values

(1sh 5 2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
= 20 ; = (0000 0000 0000 0000 0000 0001 0100
(ash 5 2)
= 20
(1sh -5 2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= -20 ; = 1111 1111 1111 1111 1111 1110 1100
(ash -5 2)
= -20
(1sh 5 -2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
=1 ; = (0000 0000 0000 0000 0000 0000 0001
(ash 5 -2)
=1
(1sh -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= 4194302 ; = 0011 1111 1111 1111 1111 1111 1110
(ash -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= -2 ; = 1111 1111 1111 1111 1111 1111 1110
logand &rest ints-or-markers Function

This function returns the “logical and” of the arguments: the nth bit is set in the
result if, and only if, the nth bit is set in all the arguments. (“Set” means that the
value of the bit is 1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100. In both the binary numbers, the leftmost two
bits are set (i.e., they are 1’s), so the leftmost two bits of the returned value are set.
However, for the rightmost two bits, each is zero in at least one of the arguments, so
the rightmost two bits of the returned value are 0’s.

Therefore,

(logand 13 12)
= 12
If logand is not passed any argument, it returns a value of —1. This number is an
identity element for logand because its binary representation consists entirely of ones.
If logand is passed just one argument, it returns that argument.

58

(logand 14 13) ;

= 12 ;
(logand 14 13 4)

= 4 ;

(logand)
= -1 ;

logior &rest ints-or-markers

XEmacs Lisp Reference Manual

28-bit binary values

0000
0000
0000

0000
0000
0000
0000

1111

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

1111 1111

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

1111 1111

0000 1110
0000 1101
0000 1100

0000 1110
0000 1101
0000 0100
0000 0100

1111 1111

Function

This function returns the “inclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in at least one of the arguments. If there are
no arguments, the result is zero, which is an identity element for this operation. If
logior is passed just one argument, it returns that argument.

(logior 12 5) ;

= 13 ;
(logior 12 5 7) ;

= 15 ;

logxor &rest ints-or-markers

12

13
12

15

28-bit binary values

0000
0000
0000

0000
0000
0000
0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

0000 1100
0000 0101
0000 1101

0000 1100
0000 0101
0000 0111
0000 1111

Function

This function returns the “exclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in an odd number of the arguments. If there
are no arguments, the result is 0, which is an identity element for this operation. If
logxor is passed just one argument, it returns that argument.

(logxor 12 5) ;

= 9 ;
(logxor 12 5 7) ;

= 14 ;

lognot integer

28-bit binary values

0000
0000
0000

0000
0000
0000
0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

0000 1100
0000 0101
0000 1001

0000 1100
0000 0101
0000 0111
0000 1110

Function

This function returns the logical complement of its argument: the nth bit is one in
the result if, and only if, the nth bit is zero in integer, and vice-versa.

Chapter 3: Numbers 59

(lognot 5)
= -6
;5 5 = 0000 0000 0000 0000 0000 0000 0101
;3 becomes
;; -6 = 1111 1111 1111 1111 1111 1111 1010

3.9 Standard Mathematical Functions

These mathematical functions are available if floating point is supported (which is the
normal state of affairs). They allow integers as well as floating point numbers as arguments.

sin arg Function
Cos arg Function
tan arg Function

These are the ordinary trigonometric functions, with argument measured in radians.

asin arg Function
The value of (asin arg) is a number between —pi/2 and pi/2 (inclusive) whose sine
is arg; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

acos arg Function
The value of (acos arg) is a number between 0 and pi (inclusive) whose cosine is
arg; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

atan arg Function
The value of (atan arg) is a number between —pi/2 and pi/2 (exclusive) whose
tangent is arg.

sinh arg Function
cosh arg Function
tanh arg Function

These are the ordinary hyperbolic trigonometric functions.

asinh arg Function
acosh arg Function
atanh arg Function

These are the inverse hyperbolic trigonometric functions.

exp arg Function
This is the exponential function; it returns e to the power arg. e is a fundamental
mathematical constant also called the base of natural logarithms.

log arg &optional base Function
This function returns the logarithm of arg, with base base. If you don’t specify base,
the base e is used. If arg is negative, the result is a NaN.

60 XEmacs Lisp Reference Manual

log10 arg Function
This function returns the logarithm of arg, with base 10. If arg is negative, the result
is a NaN. (1logl10 x) = (log x 10), at least approximately.

expt xy Function
This function returns x raised to power y. If both arguments are integers and y is
positive, the result is an integer; in this case, it is truncated to fit the range of possible
integer values.

sqrt arg Function
This returns the square root of arg. If arg is negative, the value is a NaN.

cube-root arg Function
This returns the cube root of arg.

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most
purposes, pseudo-random numbers suffice. A series of pseudo-random numbers is generated
in a deterministic fashion. The numbers are not truly random, but they have certain
properties that mimic a random series. For example, all possible values occur equally often
in a pseudo-random series.

In XEmacs, pseudo-random numbers are generated from a “seed” number. Starting
from any given seed, the random function always generates the same sequence of numbers.
XEmacs always starts with the same seed value, so the sequence of values of random is
actually the same in each XEmacs run! For example, in one operating system, the first call
to (random) after you start XEmacs always returns -1457731, and the second one always
returns -7692030. This repeatability is helpful for debugging.

If you want truly unpredictable random numbers, execute (random t). This chooses a
new seed based on the current time of day and on XEmacs’s process ID number.

random &optional limit Function
This function returns a pseudo-random integer. Repeated calls return a series of
pseudo-random integers.

If limit is a positive integer, the value is chosen to be nonnegative and less than limit.

If Iimit is t, it means to choose a new seed based on the current time of day and on
XEmacs’s process ID number.

On some machines, any integer representable in Lisp may be the result of random.
On other machines, the result can never be larger than a certain maximum or less
than a certain (negative) minimum.

Chapter 4: Strings and Characters 61

4 Strings and Characters

A string in XEmacs Lisp is an array that contains an ordered sequence of characters.
Strings are used as names of symbols, buffers, and files, to send messages to users, to hold
text being copied between buffers, and for many other purposes. Because strings are so
important, XEmacs Lisp has many functions expressly for manipulating them. XEmacs
Lisp programs use strings more often than individual characters.

4.1 String and Character Basics

Strings in XEmacs Lisp are arrays that contain an ordered sequence of characters. Char-
acters are their own primitive object type in XEmacs 20. However, in XEmacs 19, characters
are represented in XEmacs Lisp as integers; whether an integer was intended as a character
or not is determined only by how it is used. See Section 2.4.3 [Character Typel, page 21.

The length of a string (like any array) is fixed and independent of the string contents,
and cannot be altered. Strings in Lisp are not terminated by a distinguished character
code. (By contrast, strings in C are terminated by a character with ASCII code 0.) This
means that any character, including the null character (ASCII code 0), is a valid element
of a string.

Since strings are considered arrays, you can operate on them with the general array
functions. (See Chapter 6 [Sequences Arrays Vectors|, page 103.) For example, you can
access or change individual characters in a string using the functions aref and aset (see
Section 6.3 [Array Functions], page 106).

Strings use an efficient representation for storing the characters in them, and thus take
up much less memory than a vector of the same length.

Sometimes you will see strings used to hold key sequences. This exists for backward
compatibility with Emacs 18, but should not be used in new code, since many key chords
can’t be represented at all and others (in particular meta key chords) are confused with
accented characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings (see Section 37.3 [Regexp Search|, page 563). The functions match-string
(see Section 37.6.1 [Simple Match Datal, page 568) and replace-match (see Section 37.6.2
Replacing Match], page 569) are useful for decomposing and modifying strings based on
regular expression matching.

Like a buffer, a string can contain extents in it. These extents are created when a function
such as buffer-substring is called on a region with duplicable extents in it. When the
string is inserted into a buffer, the extents are inserted along with it. See Section 40.9
[Duplicable Extents], page 605.

See Chapter 36 [Text], page 517, for information about functions that display strings
or copy them into buffers. See Section 2.4.3 [Character Typel, page 21, and Section 2.4.8
[String Typel, page 28, for information about the syntax of characters and strings.

62 XEmacs Lisp Reference Manual

4.2 The Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Se-
quences Arrays Vectors], page 103, and Section 6.2 [Arrays|, page 105.

stringp object Function
This function returns t if object is a string, nil otherwise.

char-or-string-p object Function
This function returns t if object is a string or a character, nil otherwise.

In XEmacs addition, this function also returns t if object is an integer that can be
represented as a character. This is because of compatibility with previous XEmacs
and should not be depended on.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together,
or by taking them apart.

string &rest characters Function
This function returns a new string made up of characters.
(string 7?X 7E ?m %a ?c 7s)
= "XEmacs"
(string)
:> nn
Analogous functions operating on other data types include 1ist, cons (see Section 5.5
[Building Lists], page 84), vector (see Section 6.4 [Vectors], page 108) and bit-
vector (see Section 6.6 [Bit Vectors|, page 110). This function has not been available
in XEmacs prior to 21.0 and FSF Emacs prior to 20.3.

make-string count character Function
This function returns a string made up of count repetitions of character. If count is
negative, an error is signaled.
(make-string 5 7x)
= "xxxxx"
(make-string 0 7x)
:> nn
Other functions to compare with this one include char-to-string (see Section 4.7
[String Conversion], page 67), make-vector (see Section 6.4 [Vectors|, page 108), and
make-list (see Section 5.5 [Building Lists], page 84).

substring string start &optional end Function
This function returns a new string which consists of those characters from string in
the range from (and including) the character at the index start up to (but excluding)
the character at the index end. The first character is at index zero.

Chapter 4: Strings and Characters 63

(substring "abcdefg" 0 3)
= "abc"
Here the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2. Thus,
three letters, ‘abc’, are copied from the string "abcdefg". The index 3 marks the
character position up to which the substring is copied. The character whose index is
3 is actually the fourth character in the string.

A negative number counts from the end of the string, so that —1 signifies the index
of the last character of the string. For example:
(substring "abcdefg" -3 -1)
= Mef"
In this example, the index for ‘e’ is —3, the index for ‘f’ is —2, and the index for ‘g’
is —1. Therefore, ‘e’ and ‘f’ are included, and ‘g’ is excluded.

When nil is used as an index, it stands for the length of the string. Thus,
(substring "abcdefg" -3 nil)
= 'efg"
Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)
= "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Func-
tions], page 103).

If the characters copied from string have duplicable extents or text properties, those
are copied into the new string also. See Section 40.9 [Duplicable Extents|, page 605.

A wrong-type-argument error is signaled if either start or end is not an integer or
nil. An args-out-of-range error is signaled if start indicates a character following
end, or if either integer is out of range for string.

Contrast this function with buffer-substring (see Section 36.2 [Buffer Contents|,
page 518), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

concat &rest sequences Function
This function returns a new string consisting of the characters in the arguments passed
to it (along with their text properties, if any). The arguments may be strings, lists of
numbers, or vectors of numbers; they are not themselves changed. If concat receives
no arguments, it returns an empty string.

(concat "abc" "-def")
= "abc-def"

(concat "abc" (list 120 (+ 256 121)) [122])
= "abcxyz"

;5 nil is an empty sequence.
(concat "abc" nil "-def")
= "abc-def"
(concat "The " "quick brown " "fox.")
= "The quick brown fox."
(concat)

64 XEmacs Lisp Reference Manual

= nn

The second example above shows how characters stored in strings are taken modulo
256. In other words, each character in the string is stored in one byte.

The concat function always constructs a new string that is not eq to any existing
string.

When an argument is an integer (not a sequence of integers), it is converted to a
string of digits making up the decimal printed representation of the integer. Don’t
use this feature; we plan to eliminate it. If you already use this feature, change your
programs now! The proper way to convert an integer to a decimal number in this way
is with format (see Section 4.10 [Formatting Strings|, page 69) or number-to-string
(see Section 4.7 [String Conversion], page 67).

(concat 137)

= 137"
(concat 54 321)
= "b4321"

For information about other concatenation functions, see the description of mapconcat
in Section 11.6 [Mapping Functions|, page 173, vconcat in Section 6.4 [Vectors],
page 108, bvconcat in Section 6.6 [Bit Vectors|, page 110, and append in Section 5.5
[Building Lists], page 84.

4.4 The Predicates for Characters

characterp object Function
This function returns t if object is a character.

Some functions that work on integers (e.g. the comparison functions <, <=, =, /=,
etc. and the arithmetic functions +, -, *, etc.) accept characters and implicitly convert
them into integers. In general, functions that work on characters also accept char-ints
and implicitly convert them into characters. WARNING: Neither of these behaviors
is very desirable, and they are maintained for backward compatibility with old E-Lisp
programs that confounded characters and integers willy-nilly. These behaviors may
change in the future; therefore, do not rely on them. Instead, convert the characters
explicitly using char-int.

integer-or-char-p object Function
This function returns t if object is an integer or character.

4.5 Character Codes

char-int ch Function
This function converts a character into an equivalent integer. The resulting integer
will always be non-negative. The integers in the range 0 - 255 map to characters as
follows:

Chapter 4: Strings and Characters 65

0-31 Control set 0

32 - 127 ASCII

128 - 159 Control set 1

160 - 255 Right half of ISO-8859-1

If support for MULE does not exist, these are the only valid character values. When
MULE support exists, the values assigned to other characters may vary depending
on the particular version of XEmacs, the order in which character sets were loaded,
etc., and you should not depend on them.

int-char integer Function
This function converts an integer into the equivalent character. Not all integers
correspond to valid characters; use char-int-p to determine whether this is the case.
If the integer cannot be converted, nil is returned.

char-int-p object Function
This function returns t if object is an integer that can be converted into a character.

char-or-char-int-p object Function
This function returns t if object is a character or an integer that can be converted
into one.

4.6 Comparison of Characters and Strings

char-equal characterl character2 Function
This function returns t if the arguments represent the same character, nil otherwise.
This function ignores differences in case if case-fold-search is non-nil.

(char-equal 7x 7x)
=t
(let ((case-fold-search t))
(char-equal ?x 7X))
= t
(let ((case-fold-search nil))
(char-equal 7x 7X))
= nil

char= characterl character2 Function
This function returns t if the arguments represent the same character, nil otherwise.
Case is significant.
(char= 7x 7x)
=t
(char= 7x 7X)
= nil

66 XEmacs Lisp Reference Manual

(let ((case-fold-search t))
(char-equal 7x 7X))
= nil
(let ((case-fold-search nil))
(char-equal 7x 7X))

= nil
string= stringl string2 Function
This function returns t if the characters of the two strings match exactly; case is

significant.

(string= "abc" "abc")
=t

(string= "abc" "ABC")
= nil

(string= "ab" "ABC")
= nil

string-equal stringl string?2 Function
string-equal is another name for string=.

string< stringl string2 Function
This function compares two strings a character at a time. First it scans both the
strings at once to find the first pair of corresponding characters that do not match. If
the lesser character of those two is the character from stringl, then stringl is less, and
this function returns t. If the lesser character is the one from string2, then stringl is
greater, and this function returns nil. If the two strings match entirely, the value is
nil.

Pairs of characters are compared by their ASCII codes. Keep in mind that lower
case letters have higher numeric values in the ASCII character set than their upper
case counterparts; numbers and many punctuation characters have a lower numeric
value than upper case letters.

(string< "abc" "abd")

=t

(string< "abd" "abc")
= nil

(string< "123" "abc")
=t

When the strings have different lengths, and they match up to the length of stringl,
then the result is t. If they match up to the length of string2, the result is nil. A
string of no characters is less than any other string.

Chapter 4: Strings and Characters 67

(Strlng< nn "abC")
=t

(string< "ab" "abc")
= t

(string< "abc“ nn)
= nil

(string< "abc" "ab")
= nil

(Strlng< nn n ll)
= nil

string-lessp stringl string2 Function
string-lessp is another name for string<.

See also compare-buffer-substrings in Section 36.3 [Comparing Text|, page 519, for
a way to compare text in buffers. The function string-match, which matches a regular
expression against a string, can be used for a kind of string comparison; see Section 37.3
[Regexp Search], page 563.

4.7 Conversion of Characters and Strings

This section describes functions for conversions between characters, strings and integers.
format and prinl-to-string (see Section 17.5 [Output Functions|, page 260) can also
convert Lisp objects into strings. read-from-string (see Section 17.3 [Input Functions],
page 258) can “convert” a string representation of a Lisp object into an object.

See Chapter 27 [Documentation]|, page 385, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-
char-description). These functions are used primarily for making help messages.

char-to-string character Function
This function returns a new string with a length of one character. The value of
character, modulo 256, is used to initialize the element of the string.

This function is similar to make-string with an integer argument of 1. (See Sec-
tion 4.3 [Creating Strings|, page 62.) This conversion can also be done with format
using the ‘%c’ format specification. (See Section 4.10 [Formatting Strings|, page 69.)
(char-to-string 7x)
:> "X"
(char-to-string (+ 256 7x))
:> "X"
(make-string 1 ?7x)
j IIX"

string-to-char string Function
This function returns the first character in string. If the string is empty, the function
returns 0. (Under XEmacs 19, the value is also 0 when the first character of string is
the null character, ASCII code 0.)

68 XEmacs Lisp Reference Manual

(string-to-char "ABC")

= 7A ;3 Under XEmacs 20.

= 65 ;3 Under XEmacs 19.
(string-to-char "xyz")

= 7x ;3 Under XEmacs 20.

= 120 ;; Under XEmacs 19.
(string-to-char "")

= 0

(string-to-char "\000")
= 7\~ ;; Under XEmacs 20.

= 0 ;3 Under XEmacs 20.
This function may be eliminated in the future if it does not seem useful enough to
retain.
number-to-string number Function

This function returns a string consisting of the printed representation of number,
which may be an integer or a floating point number. The value starts with a sign if
the argument is negative.

(number-to-string 256)

= "256"

(number-to-string -23)
= n-23"

(number-to-string -23.5)
= "-23.5"

int-to-string is a semi-obsolete alias for this function.

See also the function format in Section 4.10 [Formatting Strings|, page 69.

string-to-number string &optional base Function
This function returns the numeric value of the characters in string, read in base. It
skips spaces and tabs at the beginning of string, then reads as much of string as it can
interpret as a number. (On some systems it ignores other whitespace at the beginning,
not just spaces and tabs.) If the first character after the ignored whitespace is not a
digit or a minus sign, this function returns 0.

If base is not specified, it defaults to ten. With base other than ten, only integers
can be read.

(string-to-number "256")
= 256
(string-to-number "25 is a perfect square.")
= 25
(string-to-number "X256")
= 0
(string-to-number "-4.5")
= -4.5
(string-to-number "ffff" 16)
= 65535

string-to-int is an obsolete alias for this function.

Chapter 4: Strings and Characters 69

4.8 Modifying Strings

You can modify a string using the general array-modifying primitives. See Section 6.2
Arrays|, page 105. The function aset modifies a single character; the function fillarray
sets all characters in the string to a specified character.

Each string has a tick counter that starts out at zero (when the string is created) and is
incremented each time a change is made to that string.

string-modified-tick string Function
This function returns the tick counter for ‘string’.

4.9 String Properties

Similar to symbols, extents, faces, and glyphs, you can attach additional information to
strings in the form of string properties. These differ from text properties, which are logically
attached to particular characters in the string.

To attach a property to a string, use put. To retrieve a property from a string, use get.
You can also use remprop to remove a property from a string and object-props to retrieve
a list of all the properties in a string.

4.10 Formatting Strings

Formatting means constructing a string by substitution of computed values at various
places in a constant string. This string controls how the other values are printed as well as
where they appear; it is called a format string.

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from
format only in how they use the result of formatting.

format string &rest objects Function
This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The
arguments objects are the computed values to be formatted.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there
is a ‘%d’ in string, the format function replaces it with the printed representation of one of
the values to be formatted (one of the arguments objects). For example:

(format "The value of fill-column is %d." fill-column)
= "The value of fill-column is 72."

If string contains more than one format specification, the format specifications corre-
spond with successive values from objects. Thus, the first format specification in string
uses the first such value, the second format specification uses the second such value, and

70

XEmacs Lisp Reference Manual

so on. Any extra format specifications (those for which there are no corresponding values)
cause unpredictable behavior. Any extra values to be formatted are ignored.

Certain format specifications require values of particular types. However, no error is
signaled if the value actually supplied fails to have the expected type. Instead, the output
is likely to be meaningless.

Here is a table of valid format specifications:

4%57

6%37

(%07
‘%d’
Uyoi?
‘%X,

L%X’

‘%C’

(%e7

‘%f’

c%ga

4%%7

Replace the specification with the printed representation of the object, made
without quoting. Thus, strings are represented by their contents alone, with no
‘" characters, and symbols appear without ‘\’ characters. This is equivalent to
printing the object with princ.

If there is no corresponding object, the empty string is used.
Replace the specification with the printed representation of the object, made
with quoting. Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters

appear where necessary before special characters. This is equivalent to printing
the object with prini.

If there is no corresponding object, the empty string is used.

Replace the specification with the base-eight representation of an integer.

Replace the specification with the base-ten representation of an integer.

Replace the specification with the base-sixteen representation of an integer,
using lowercase letters.

Replace the specification with the base-sixteen representation of an integer,
using uppercase letters.

Replace the specification with the character which is the value given.

Replace the specification with the exponential notation for a floating point
number (e.g. ‘7.85200e+03’).

Replace the specification with the decimal-point notation for a floating point
number.

Replace the specification with notation for a floating point number, using a
“pretty format”. Either exponential notation or decimal-point notation will be
used (usually whichever is shorter), and trailing zeroes are removed from the
fractional part.

A single ‘%’ is placed in the string. This format specification is unusual in that
it does not use a value. For example, (format "%% %d" 30) returns "% 30".

Any other format character results in an ‘Invalid format operation’ error.

Here are several examples:

Chapter 4: Strings and Characters 71

(format "The name of this buffer is %s." (buffer—-name))
= "The name of this buffer is strings.texi."

(format "The buffer object prints as %s." (current-buffer))
= "The buffer object prints as #<buffer strings.texi>."

(format "The octal value of %d is %o,
and the hex value is %x." 18 18 18)
= "The octal value of 18 is 22,
and the hex value is 12."
There are many additional flags and specifications that can occur between the ‘%’ and
the format character, in the following order:

1. An optional repositioning specification, which is a positive integer followed by a ‘$’.
2. Zero or more of the optional flag characters ‘=7, ‘+’, ¢’ ‘0", and ‘#’.

3. An asterisk (‘*¥’, meaning that the field width is now assumed to have been specified
as an argument.

4. An optional minimum field width.
5. An optional precision, preceded by a ‘.’ character.

A repositioning specification changes which argument to format is used by the cur-
rent and all following format specifications. Normally the first specification uses the first
argument, the second specification uses the second argument, etc. Using a repositioning
specification, you can change this. By placing a number N followed by a ‘$’ between the ‘%’
and the format character, you cause the specification to use the Nth argument. The next
specification will use the N+1’th argument, etc.

For example:

(format "Can’t find file ‘%s’ in directory ‘%s’."
"ignatius.c" "loyola/")
= "Can’t find file ‘ignatius.c’ in directory ‘loyola/’."

(format "In directory ‘%2$s’, the file ‘%1$s’ was not found."
"ignatius.c" "loyola/")
= "In directory ‘loyola/’, the file ‘ignatius.c’ was not found."

(format
"The numbers %d and %d are %1$x and %x in hex and %1$o0 and %o in octal."
37 12)
= "The numbers 37 and 12 are 25 and ¢ in hex and 45 and 14 in octal."
As you can see, this lets you reprocess arguments more than once or reword a format
specification (thereby moving the arguments around) without having to actually reorder the
arguments. This is especially useful in translating messages from one language to another:
Different languages use different word orders, and this sometimes entails changing the order
of the arguments. By using repositioning specifications, this can be accomplished without
having to embed knowledge of particular languages into the location in the program’s code
where the message is displayed.

All the specification characters allow an optional numeric prefix between the ‘%’ and
the character, and following any repositioning specification or flag. The optional numeric

72 XEmacs Lisp Reference Manual

prefix defines the minimum width for the object. If the printed representation of the object
contains fewer characters than this, then it is padded. The padding is normally on the left,
but will be on the right if the ‘=’ flag character is given. The padding character is normally
a space, but if the ‘0’ flag character is given, zeros are used for padding.
(format "%06d is padded on the left with zeros" 123)
= "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)
= "123 is padded on the right"

format never truncates an object’s printed representation, no matter what width you
specify. Thus, you can use a numeric prefix to specify a minimum spacing between columns
with no risk of losing information.

In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first case,
the string inserted in place of ‘%7s’ has only 3 letters, so 4 blank spaces are inserted for
padding. In the second case, the string "specification" is 13 letters wide but is not
truncated. In the third case, the padding is on the right.

(format "The word ‘%7s’ actually has %d letters in it."

"foo" (length "foo"))
= "The word ¢ foo’ actually has 3 letters in it."

(format "The word ‘%7s’ actually has J%d letters in it."
"specification" (length "specification"))
= "The word ‘specification’ actually has 13 letters in it."
(format "The word ‘%-7s’ actually has %d letters in it."
"foo" (length "foo"))
= "The word ‘foo > actually has 3 letters in it."

After any minimum field width, a precision may be specified by preceding it with a ‘.’
character. The precision specifies the minimum number of digits to appear in ‘%d’, ‘%i’,
‘%0’, ‘hx’, and ‘%X’ conversions (the number is padded on the left with zeroes as necessary);
the number of digits printed after the decimal point for ‘%f’, ‘%e’, and ‘%E’ conversions; the
number of significant digits printed in ‘%g’ and ‘%G’ conversions; and the maximum number
of non-padding characters printed in ‘%s’ and ‘%S’ conversions. The default precision for
floating-point conversions is six.

The other flag characters have the following meanings:
e The ‘' flag means prefix non-negative numbers with a space.
e The ‘+’ flag means prefix non-negative numbers with a plus sign.

e The ‘#’ flag means print numbers in an alternate, more verbose format: octal numbers
begin with zero; hex numbers begin with a ‘0x’ or ‘0X’; a decimal point is printed in
“hE’, ‘%e’, and ‘%E’ conversions even if no numbers are printed after it; and trailing
zeroes are not omitted in ‘%g’ and ‘%G’ conversions.

4.11 Character Case

The character case functions change the case of single characters or of the contents of
strings. The functions convert only alphabetic characters (the letters ‘A’ through ‘Z’ and

Chapter 4: Strings and Characters 73

‘a’ through ‘z’); other characters are not altered. The functions do not modify the strings
that are passed to them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have ASCII codes 88 and 120
respectively.

downcase string-or-char Function
This function converts a character or a string to lower case.

When the argument to downcase is a string, the function creates and returns a new
string in which each letter in the argument that is upper case is converted to lower
case. When the argument to downcase is a character, downcase returns the corre-
sponding lower case character. (This value is actually an integer under XEmacs 19.)
If the original character is lower case, or is not a letter, then the value equals the
original character.
(downcase "The cat in the hat")
= "the cat in the hat"

(downcase 7X)

= 7x ;3 Under XEmacs 20.
= 120 ;; Under XEmacs 19.
upcase string-or-char Function

This function converts a character or a string to upper case.

When the argument to upcase is a string, the function creates and returns a new
string in which each letter in the argument that is lower case is converted to upper
case.

When the argument to upcase is a character, upcase returns the corresponding upper
case character. (This value is actually an integer under XEmacs 19.) If the original
character is upper case, or is not a letter, then the value equals the original character.

(upcase "The cat in the hat")
= "THE CAT IN THE HAT"

(upcase 7x)

= 7X ;3 Under XEmacs 20.
= 88 ;3 Under XEmacs 19.
capitalize string-or-char Function

This function capitalizes strings or characters. If string-or-char is a string, the func-
tion creates and returns a new string, whose contents are a copy of string-or-char in
which each word has been capitalized. This means that the first character of each
word is converted to upper case, and the rest are converted to lower case.

The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 38.2.1
[Syntax Class Table], page 576).

When the argument to capitalize is a character, capitalize has the same result
as upcase.

74 XEmacs Lisp Reference Manual

(capitalize "The cat in the hat")
= "The Cat In The Hat"

(capitalize "THE 77TH-HATTED CAT")
= "The 77th-Hatted Cat"

(capitalize 7x)
= 7X ;3 Under XEmacs 20.
= 88 ;3 Under XEmacs 19.

4.12 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the string and
character case conversion functions (see the previous section) and those that apply to text
in the buffer (see Section 36.17 [Case Changes|, page 544). You need a case table if you are
using a language which has letters other than the standard ASCII letters.

A case table is a list of this form:
(downcase upcase canonicalize equivalences)

where each element is either nil or a string of length 256. The element downcase says
how to map each character to its lower-case equivalent. The element upcase maps each
character to its upper-case equivalent. If lower and upper case characters are in one-to-one
correspondence, use nil for upcase; then XEmacs deduces the upcase table from downcase.

For some languages, upper and lower case letters are not in one-to-one correspondence.
There may be two different lower case letters with the same upper case equivalent. In these
cases, you need to specify the maps for both directions.

The element canonicalize maps each character to a canonical equivalent; any two char-
acters that are related by case-conversion have the same canonical equivalent character.

The element equivalences is a map that cyclicly permutes each equivalence class (of
characters with the same canonical equivalent). (For ordinary ASCII, this would map ‘a’
into ‘A’ and ‘A’ into ‘a’, and likewise for each set of equivalent characters.)

When you construct a case table, you can provide nil for canonicalize; then Emacs
fills in this string from upcase and downcase. You can also provide nil for equivalences;
then Emacs fills in this string from canonicalize. In a case table that is actually in use,
those components are non-nil. Do not try to specify equivalences without also specifying
canonicalize.

Each buffer has a case table. XEmacs also has a standard case table which is copied into
each buffer when you create the buffer. Changing the standard case table doesn’t affect any
existing buffers.

Here are the functions for working with case tables:

case-table-p object Function
This predicate returns non-nil if object is a valid case table.

Chapter 4: Strings and Characters 75

set-standard-case-table table Function
This function makes table the standard case table, so that it will apply to any buffers
created subsequently.

standard-case-table Function
This returns the standard case table.

current-case-table Function
This function returns the current buffer’s case table.

set-case-table table Function
This sets the current buffer’s case table to table.

The following three functions are convenient subroutines for packages that define non-
ASCII character sets. They modify a string downcase-table provided as an argument; this
should be a string to be used as the downcase part of a case table. They also modify the
standard syntax table. See Chapter 38 [Syntax Tables|, page 575.

set-case-syntax-pair uc Ic downcase-table Function
This function specifies a pair of corresponding letters, one upper case and one lower
case.

set-case-syntax-delims | r downcase-table Function

This function makes characters I and r a matching pair of case-invariant delimiters.

set-case-syntax char syntax downcase-table Function
This function makes char case-invariant, with syntax syntax.

describe-buffer-case-table Command
This command displays a description of the contents of the current buffer’s case table.

You can load the library ‘iso-syntax’ to set up the standard syntax table and define a
case table for the 8-bit ISO Latin 1 character set.

4.13 The Char Table

A char table is a table that maps characters (or ranges of characters) to values. Char
tables are specialized for characters, only allowing particular sorts of ranges to be assigned
values. Although this loses in generality, it makes for extremely fast (constant-time) lookups,
and thus is feasible for applications that do an extremely large number of lookups (e.g.
scanning a buffer for a character in a particular syntax, where a lookup in the syntax table
must occur once per character).

Note that char tables as a primitive type, and all of the functions in this section, exist
only in XEmacs 20. In XEmacs 19, char tables are generally implemented using a vector of
256 elements.

When MULE support exists, the types of ranges that can be assigned values are

76 XEmacs Lisp Reference Manual

e all characters
e an entire charset
e a single row in a two-octet charset
e a single character
When MULE support is not present, the types of ranges that can be assigned values
are
e all characters

e a single character

char-table-p object Function
This function returns non-nil if object is a char table.

4.13.1 Char Table Types

Each char table type is used for a different purpose and allows different sorts of values.
The different char table types are

category Used for category tables, which specify the regexp categories that a character
is in. The valid values are nil or a bit vector of 95 elements. Higher-level Lisp
functions are provided for working with category tables. Currently categories
and category tables only exist when MULE support is present.

char A generalized char table, for mapping from one character to another. Used
for case tables, syntax matching tables, keyboard-translate-table, etc. The
valid values are characters.

generic An even more generalized char table, for mapping from a character to anything.

display Used for display tables, which specify how a particular character is to appear
when displayed. ###%# Not yet implemented.

syntax Used for syntax tables, which specify the syntax of a particular character.
Higher-level Lisp functions are provided for working with syntax tables. The
valid values are integers.

char-table-type table Function
This function returns the type of char table table.

char-table-type-list Function
This function returns a list of the recognized char table types.

valid-char-table-type-p type Function
This function returns t if type if a recognized char table type.

Chapter 4: Strings and Characters 7

4.13.2 Working With Char Tables

make-char-table type Function
This function makes a new, empty char table of type type. type should be a symbol,
one of char, category, display, generic, or syntax.

put-char-table range val table Function
This function sets the value for chars in range to be val in table.

range specifies one or more characters to be affected and should be one of the following:
e t (all characters are affected)
e A charset (only allowed when MULE support is present)

e A vector of two elements: a two-octet charset and a row number (only allowed
when MULE support is present)

e A single character

val must be a value appropriate for the type of table.

get-char-table ch table Function
This function finds the value for char ch in table.

get-range-char-table range table &optional multi Function
This function finds the value for a range in table. If there is more than one value,
multi is returned (defaults to nil).

reset-char-table table Function
This function resets a char table to its default state.

map-char-table function table &optional range Function
This function maps function over entries in table, calling it with two args, each key
and value in the table.
range specifies a subrange to map over and is in the same format as the range argu-
ment to put-range-table. If omitted or t, it defaults to the entire table.

valid-char-table-value-p value char-table-type Function
This function returns non-nil if value is a valid value for char-table-type.

check-valid-char-table-value value char-table-type Function
This function signals an error if value is not a valid value for char-table-type.

78

XEmacs Lisp Reference Manual

Chapter 5: Lists 79

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects).
The important difference between lists and vectors is that two or more lists can share part
of their structure; in addition, you can insert or delete elements in a list without copying
the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells. A cons cell
is a data object that represents an ordered pair. It records two Lisp objects, one labeled as
the CAR, and the other labeled as the CDR. These names are traditional; see Section 2.4.6
(Cons Cell Type|, page 24. CDR is pronounced “could-er.”

A list is a series of cons cells chained together, one cons cell per element of the list. By
convention, the CARs of the cons cells are the elements of the list, and the CDRs are used
to chain the list: the CDR of each cons cell is the following cons cell. The CDR of the last
cons cell is nil. This asymmetry between the CAR and the CDR is entirely a matter of
convention; at the level of cons cells, the CAR and CDR slots have the same characteristics.

Because most cons cells are used as part of lists, the phrase list structure has come to
mean any structure made out of cons cells.

The symbol nil is considered a list as well as a symbol; it is the list with no elements.
For convenience, the symbol nil is considered to have nil as its CDR (and also as its CAR).

The CDR of any nonempty list I is a list containing all the elements of I except the first.

5.2 Lists as Linked Pairs of Boxes

A cons cell can be illustrated as a pair of boxes. The first box represents the CAR and
the second box represents the CDR. Here is an illustration of the two-element list, (tulip
1ily), made from two cons cells:

Each pair of boxes represents a cons cell. Each box “refers to”, “points to” or “contains”
a Lisp object. (These terms are synonymous.) The first box, which is the CAR of the first
cons cell, contains the symbol tulip. The arrow from the CDR of the first cons cell to the
second cons cell indicates that the CDR of the first cons cell points to the second cons cell.

The same list can be illustrated in a different sort of box notation like this:

80 XEmacs Lisp Reference Manual

Here is a more complex illustration, showing the three-element list, ((pine needles)
oak maple), the first element of which is a two-element list:

|l l==> Il __I=-=> |___I___|-=> nil
I I I
I I I
| --> oak --> maple
I
- - o
> |___l___|-—> |___l___l--> nil
I I
I I
--> pine --> needles

The same list represented in the first box notation looks like this:

| car | cdr | | car | cdr | | car | cdr |
[o) | o—————-- >| oak | o—————-- >| maple | nil |
[I I [| [| I | [
e | e e

I

I

| ______________________________

I | car | cdr | | car | cdr |

—————— >| pine | o----—--->| needles | nil |

See Section 2.4.6 [Cons Cell Typel, page 24, for the read and print syntax of cons cells
and lists, and for more “box and arrow” illustrations of lists.

5.3 Predicates on Lists

The following predicates test whether a Lisp object is an atom, is a cons cell or is a list,
or whether it is the distinguished object nil. (Many of these predicates can be defined in
terms of the others, but they are used so often that it is worth having all of them.)

consp object Function
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,
although it is a list.

atom object Function
This function returns t if object is an atom, nil otherwise. All objects except cons
cells are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object
that is both.

(atom object) = (not (consp object))

Chapter 5: Lists 81

listp object Function
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.

(1istp > (1))

=t
(1istp >)
=t
nlistp object Function

This function is the opposite of listp: it returns t if object is not a list. Otherwise,
it returns nil.

(listp object) = (not (nlistp object))

null object Function
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a
list and not when it is considered a truth value (see not in Section 9.3 [Combining
Conditions|, page 134).
(null (1))
= nil
(null > ()
=t

5.4 Accessing Elements of Lists

car cons-cell Function
This function returns the value pointed to by the first pointer of the cons cell cons-cell.
Expressed another way, this function returns the CAR of cons-cell.

As a special case, if cons-cell is nil, then car is defined to return nil; therefore, any
list is a valid argument for car. An error is signaled if the argument is not a cons cell
or nil.
(car ’(a b ¢))
= a

(car > ()
= nil

cdr cons-cell Function
This function returns the value pointed to by the second pointer of the cons cell
cons-cell. Expressed another way, this function returns the CDR of cons-cell.
As a special case, if cons-cell is nil, then cdr is defined to return nil; therefore, any
list is a valid argument for cdr. An error is signaled if the argument is not a cons cell
or nil.
(cdr ’(a b c))
= (b ¢)
(cdr > ()
= nil

82 XEmacs Lisp Reference Manual

car-safe object Function
This function lets you take the CAR of a cons cell while avoiding errors for other data
types. It returns the CAR of object if object is a cons cell, nil otherwise. This is in
contrast to car, which signals an error if object is not a list.

(car-safe object)

(let ((x object))
(if (consp x)
(car x)
nil))

cdr-safe object Function
This function lets you take the CDR of a cons cell while avoiding errors for other data
types. It returns the CDR of object if object is a cons cell, nil otherwise. This is in
contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)

(let ((x object))
(if (consp x)
(cdr x)
nil))

nth n list Function
This function returns the nth element of list. Elements are numbered starting with
zero, so the CAR of list is element number zero. If the length of list is n or less, the
value is nil.
If n is negative, nth returns the first element of list.
(nth 2 ’(1 2 3 4))
= 3
(nth 10 °(1 2 3 4))
= nil
(nth -3 (1 2 3 4))
=1

(nth n x) = (car (nthcdr n x))

nthedr n list Function
This function returns the nth CDR of list. In other words, it removes the first n links
of list and returns what follows.

If n is zero or negative, nthcdr returns all of list. If the length of list is n or less,
nthcdr returns nil.

(nthcdr 1 °(1 2 3 4))

= (2 3 4)
(nthcdr 10 (1 2 3 4))
= nil

(nthcdr -3 °(1 2 3 4))
= (1234

Chapter 5: Lists

83

Many convenience functions are provided to make it easier for you to access particular
elements in a nested list. All of these can be rewritten in terms of the functions just

described.

caar cons-cell
cadr cons-cell
cdar cons-cell
cddr cons-cell
caaar cons-cell
caadr cons-cell
cadar cons-cell
caddr cons-cell
cdaar cons-cell
cdadr cons-cell
cddar cons-cell
cdddr cons-cell
caaaar cons-cell
caaadr cons-cell
caadar cons-cell
caaddr cons-cell
cadaar cons-cell
cadadr cons-cell
caddar cons-cell
cadddr cons-cell
cdaaar cons-cell
cdaadr cons-cell
cdadar cons-cell
cdaddr cons-cell
cddaar cons-cell
cddadr cons-cell
cdddar cons-cell
cddddr cons-cell

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

Each of these functions is equivalent to one or more applications of car and/or cdr.

For example,
(cadr x)
is equivalent to
(car (cdr x))
and
(cdaddr x)
is equivalent to

(cdr (car (cdr (cdr x))))

That is to say, read the a’s and d’s from right to left and apply a car or cdr for each

a or d found, respectively.

84 XEmacs Lisp Reference Manual

first list Function
This is equivalent to (nth 0 list), i.e. the first element of list. (Note that this is also
equivalent to car.)

second list Function
This is equivalent to (nth 1 list), i.e. the second element of list.

third Iist Function
fourth Iist Function
fifth Iist Function
sixth Iist Function
seventh Iist Function
eighth Iist Function
ninth Iist Function
tenth Iist Function

These are equivalent to (nth 2 list) through (nth 9 list) respectively, i.e. the third
through tenth elements of list.

5.5 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the funda-
mental list-building function; however, it is interesting to note that 1ist is used more times
in the source code for Emacs than cons.

cons objectl object?2 Function
This function is the fundamental function used to build new list structure. It creates
a new cons cell, making object]l the CAR, and object2 the CDR. It then returns the
new cons cell. The arguments objectl and object2 may be any Lisp objects, but most
often object2 is a list.
(cons 1 ’(2))
= (1 2)
(cons 1 ()
= (1)
(cons 1 2)
= (1.2
cons is often used to add a single element to the front of a list. This is called consing
the element onto the list. For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example
and the function named 1ist described below; any symbol can serve both purposes.

list &rest objects Function
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.

Chapter 5: Lists 85

(list 1 2 3 4 5)

= (1 2345)
(1ist 1 2 (3 4 5) ’foo)

= (1 2 (3 4 5) foo)
(1list)

= nil

make-list length object Function
This function creates a list of length length, in which all the elements have the iden-
tical value object. Compare make-1list with make-string (see Section 4.3 [Creating
Strings|, page 62).

(make-list 3 ’pigs)

= (pigs pigs pigs)
(make-list 0 ’pigs)

= nil

append &rest sequences Function
This function returns a list containing all the elements of sequences. The sequences
may be lists, vectors, or strings, but the last one should be a list. All arguments
except the last one are copied, so none of them are altered.

More generally, the final argument to append may be any Lisp object. The final
argument is not copied or converted; it becomes the CDR of the last cons cell in
the new list. If the final argument is itself a list, then its elements become in effect
elements of the result list. If the final element is not a list, the result is a “dotted
list” since its final CDR is not nil as required in a true list.

See nconc in Section 5.6.3 [Rearrangement|, page 90, for a way to join lists with no
copying.

Here is an example of using append:

(setq trees ’(pine oak))
= (pine oak)

(setq more-trees (append ’(maple birch) trees))
= (maple birch pine oak)

trees
= (pine oak)
more-trees
= (maple birch pine oak)
(eq trees (cdr (cdr more-trees)))
=t

You can see how append works by looking at a box diagram. The variable trees is
set to the list (pine oak) and then the variable more-trees is set to the list (maple
birch pine oak). However, the variable trees continues to refer to the original list:

86 XEmacs Lisp Reference Manual

more—-trees trees

--> maple -->birch --> pine --> oak

An empty sequence contributes nothing to the value returned by append. As a con-
sequence of this, a final nil argument forces a copy of the previous argument.

trees
= (pine oak)
(setq wood (append trees ()))
= (pine oak)
wood
= (pine oak)
(eq wood trees)
= nil
This once was the usual way to copy a list, before the function copy-sequence was
invented. See Chapter 6 [Sequences Arrays Vectors|, page 103.

With the help of apply, we can append all the lists in a list of lists:

(apply ’append ’((a b ¢) nil (x y z) nil))
= (abcxy z)

If no sequences are given, nil is returned:
(append)
= nil
Here are some examples where the final argument is not a list:
(append ’(x y) ’z)
= xy . 2)
(append ’(x y) [z])
= (xy . [2DD
The second example shows that when the final argument is a sequence but not a list,

the sequence’s elements do not become elements of the resulting list. Instead, the
sequence becomes the final CDR, like any other non-list final argument.

The append function also allows integers as arguments. It converts them to strings
of digits, making up the decimal print representation of the integer, and then uses
the strings instead of the original integers. Don’t use this feature; we plan to elim-
inate it. If you already use this feature, change your programs now! The proper
way to convert an integer to a decimal number in this way is with format (see Sec-
tion 4.10 [Formatting Strings|, page 69) or number-to-string (see Section 4.7 [String
Conversion|, page 67).

reverse list Function
This function creates a new list whose elements are the elements of list, but in reverse
order. The original argument list is not altered.

Chapter 5: Lists 87

(setq x ’(1 2 3 4))

= (1 2 3 4)
(reverse x)

= (4321
X

= (1 2 3 4)

5.6 Modifying Existing List Structure

You can modify the CAR and CDR contents of a cons cell with the primitives setcar and

setcdr.
Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter
list structure; they change structure the same way as setcar and setcdr, but
the Common Lisp functions return the cons cell while setcar and setcdr return

the new CAR or CDR.

5.6.1 Altering List Elements with setcar

Changing the CAR of a cons cell is done with setcar. When used on a list, setcar
replaces one element of a list with a different element.
setcar cons object Function
This function stores object as the new CAR of cons, replacing its previous CAR. It
returns the value object. For example:

(setq x (1 2))

= (1 2)
(setcar x 4)
= 4
X
= (4 2)

When a cons cell is part of the shared structure of several lists, storing a new CAR into
the cons changes one element of each of these lists. Here is an example:

;5 Create two lists that are partly shared.
(setq x1 ’(a b c))

= (a b c)
(setq x2 (cons ’z (cdr x1)))

= (z b c)

;5 Replace the CAR of a shared link.

(setcar (cdr x1) ’foo)
= foo

x1 ; Both lists are changed.
= (a foo ¢)

x2
= (z foo ¢)

88 XEmacs Lisp Reference Manual

;5 Replace the CAR of a link that is not shared.

(setcar x1 ’baz)
= baz

x1 ; Only one list is changed.
= (baz foo c)

x2
= (z foo ¢)

Here is a graphical depiction of the shared structure of the two lists in the variables x1
and x2, showing why replacing b changes them both:

-=> z

x1:
| car | cdr | | car | cdr | | car | cdr |
| a | o——————— >| b | o——————- >| ¢ | nil |
[| [> | | | | |
______________ | e e
|
xX2: |
______________ |
| car | cdr | |
Iz | o

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a CDR is setcdr:

setcdr cons object Function
This function stores object as the new CDR of cons, replacing its previous CDR. It
returns the value object.

Here is an example of replacing the CDR of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element
is unchanged, because it resides in the CAR of the list, and is not reached via the CDR.

Chapter 5: Lists 89

(setq x ’(1 2 3))

= (12 3)
(setcdr x ’(4))
= (4)

X
= (1 4)

You can delete elements from the middle of a list by altering the CDRs of the cons cells
in the list. For example, here we delete the second element, b, from the list (a b c), by
changing the CDR of the first cell:

(setq x1 ’(a b ¢))

= (a b c)

(setcdr x1 (cdr (cdr x1)))
= (c)

x1
= (a c)

Here is the result in box notation:

The second cons cell, which previously held the element b, still exists and its CAR is still b,
but it no longer forms part of this list.

It is equally easy to insert a new element by changing CDRs:

(setq x1 ’(a b c))

= (a b c)

(setcdr x1 (cons ’d (cdr x1)))
= (d b c)

x1
= (adbc)

Here is this result in box notation:

| car | cdr | | car | cdr | | car | cdr |
[a | o) [-—>| b | o=———=== >| c | mnil |
| | | [| | | | | |
_________ | _ | e e
| |

| |

| - |

| | car | cdr [

90 XEmacs Lisp Reference Manual

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the CDRs of
their component cons cells. We call these functions “destructive” because they chew up the
original lists passed to them as arguments, to produce a new list that is the returned value.

The function delq in the following section is another example of destructive list manip-
ulation.

nconc &rest lists Function
This function returns a list containing all the elements of lists. Unlike append (see
Section 5.5 [Building Lists|, page 84), the lists are not copied. Instead, the last CDR
of each of the lists is changed to refer to the following list. The last of the lists is not
altered. For example:
(setq x °(1 2 3))
= (1 23)
(nconc x ’(4 5))
= (1 2345)

= (1 23 45)
Since the last argument of nconc is not itself modified, it is reasonable to use a
constant list, such as ’> (4 5), as in the above example. For the same reason, the last
argument need not be a list:
(setq x ’(1 2 3))
= (12 3)

(nconc x ’z)
= (123 . 2)

= (123. 2)

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If
you do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ; We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo0)) x))

(setq xx (add-foo ’(1 2))) ; It seems to work.
= (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
= (foo 1 2 3 4)

(eq xx xy)
= t

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

Chapter 5: Lists 91

nreverse list Function
This function reverses the order of the elements of list. Unlike reverse, nreverse
alters its argument by reversing the CDRs in the cons cells forming the list. The cons
cell that used to be the last one in list becomes the first cell of the value.

For example:
(setq x ’(1 2 3 4))

= (123 4)
x
= (1 23 4)
(nreverse x)
= (4321)
;3 The cell that was first is now last.
x

= (1)
To avoid confusion, we usually store the result of nreverse back in the same variable
which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b ¢), presented graphically:

Original list head: Reversed list:
| car | cdr | | car | cdr | | car | cdr |
| a | nil |<-- | b | o |<-- | c | o |
| | | I | I (. | (.
------------- | e | - | -
| | | |
sort list predicate Function

This function sorts list stably, though destructively, and returns the sorted list. It
compares elements using predicate. A stable sort is one in which elements with equal
sort keys maintain their relative order before and after the sort. Stability is important
when successive sorts are used to order elements according to different criteria.

The argument predicate must be a function that accepts two arguments. It is called
with two elements of list. To get an increasing order sort, the predicate should return
t if the first element is “less than” the second, or nil if not.

The destructive aspect of sort is that it rearranges the cons cells forming list by
changing ¢DRs. A nondestructive sort function would create new cons cells to store the
elements in their sorted order. If you wish to make a sorted copy without destroying
the original, copy it first with copy-sequence and then sort.

Sorting does not change the CARs of the cons cells in list; the cons cell that originally
contained the element a in list still has a in its CAR after sorting, but it now appears
in a different position in the list due to the change of CDRs. For example:
(setq nums ’(1 3 2 6 5 4 0))
= (1326540
(sort nums ’<)
= (0123456

92 XEmacs Lisp Reference Manual

nums
= (12345 6)
Note that the list in nums no longer contains 0; this is the same cons cell that it
was before, but it is no longer the first one in the list. Don’t assume a variable that
formerly held the argument now holds the entire sorted list! Instead, save the result
of sort and use that. Most often we store the result back into the variable that held
the original list:

(setq nums (sort nums ’<))

See Section 36.14 [Sorting]|, page 536, for more functions that perform sorting. See
documentation in Section 27.2 [Accessing Documentation|, page 386, for a useful
example of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element
of a set if it appears in the list, and ignore the order of the list. To form the union of
two sets, use append (as long as you don’t mind having duplicate elements). Other useful
functions for sets include memq and delq, and their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate
elements) and intersection for set operations, but XEmacs Lisp does not have
them. You can write them in Lisp if you wish.

memgq object list Function
This function tests to see whether object is a member of list. If it is, memq returns a
list starting with the first occurrence of object. Otherwise, it returns nil. The letter
‘q’ in memq says that it uses eq to compare object against the elements of the list. For
example:
(memg ’b ’(a b c b a))
= (b cba
(memg ’(2) ’((1) (2))) ; (2) and (2) are not eq.
= nil

delq object list Function
This function destructively removes all elements eq to object from list. The letter ‘q’
in delq says that it uses eq to compare object against the elements of the list, like
memgq.

When delq deletes elements from the front of the list, it does so simply by advancing
down the list and returning a sublist that starts after those elements:

(delq ’a ’(a b c)) = (cdr ’(a b c))

When an element to be deleted appears in the middle of the list, removing it involves
changing the CDRs (see Section 5.6.2 [Setcdr], page 88).
(setq sample-list ’(a b ¢ (4)))
= (abc (4)

Chapter 5: Lists 93

(delq ’a sample-list)
= (b c (4)
sample-list
= (abc (D))
(delq ’c sample-list)
= (a b (4)
sample-list
= (a b (4)

Note that (delq ’c sample-list) modifies sample-1ist to splice out the third element,
but (delq ’a sample-1list) does not splice anything—it just returns a shorter list. Don’t
assume that a variable which formerly held the argument list now has fewer elements, or
that it still holds the original list! Instead, save the result of delq and use that. Most often
we store the result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the
sample-list are not eq:
(delq ’(4) sample-list)
= (a c (1)
The following two functions are like memq and delq but use equal rather than eq to
compare elements. They are new in Emacs 19.

member object list Function
The function member tests to see whether object is a member of list, comparing
members with object using equal. If object is a member, member returns a list
starting with its first occurrence in list. Otherwise, it returns nil.
Compare this with memq:
(member ’(2) > ((1) (2))) ; (2) and (2) are equal.
= ((2))
(memg ’(2) > ((1) (2))) ; (2) and (2) are not eq.
= nil
;5 Two strings with the same contents are equal.
(member "foo" ’("foo" "bar"))
: ("fooll llbarll)

delete object list Function
This function destructively removes all elements equal to object from list. It is to
delq as member is to memq: it uses equal to compare elements with object, like
member; when it finds an element that matches, it removes the element just as delq
would. For example:
(delete ’(2) > ((2) (1) (2)))
= 2 ((1))

Common Lisp note: The functions member and delete in XEmacs Lisp are
derived from Maclisp, not Common Lisp. The Common Lisp versions do not
use equal to compare elements.
See also the function add-to-1list, in Section 10.7 [Setting Variables|, page 154, for
another way to add an element to a list stored in a variable.

94 XEmacs Lisp Reference Manual

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a
list of cons cells called associations: the CAR of each cell is the key, and the CDR is the
associated value.!

Here is an example of an alist. The key pine is associated with the value cones; the key
oak is associated with acorns; and the key maple is associated with seeds.

>((pine . comnes)
(oak . acorns)
(maple . seeds))

The associated values in an alist may be any Lisp objects; so may the keys. For example,
in the following alist, the symbol a is associated with the number 1, and the string "b" is
associated with the list (2 3), which is the CDR of the alist element:

((a . 1) ("b" 2 3))

Sometimes it is better to design an alist to store the associated value in the CAR of the
CDR of the element. Here is an example:

>((rose red) (lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this method is that
you can store other related information—even a list of other items—in the CDR of the CDR.
One disadvantage is that you cannot use rassq (see below) to find the element containing
a given value. When neither of these considerations is important, the choice is a matter of
taste, as long as you are consistent about it for any given alist.

Note that the same alist shown above could be regarded as having the associated value
in the CDR of the element; the value associated with rose would be the list (red).

Association lists are often used to record information that you might otherwise keep on
a stack, since new associations may be added easily to the front of the list. When searching
an association list for an association with a given key, the first one found is returned, if
there is more than one.

In XEmacs Lisp, it is not an error if an element of an association list is not a cons cell.
The alist search functions simply ignore such elements. Many other versions of Lisp signal
errors in such cases.

Note that property lists are similar to association lists in several respects. A property
list behaves like an association list in which each key can occur only once. See Section 5.9
Property Lists|, page 98, for a comparison of property lists and association lists.

assoc key alist Function
This function returns the first association for key in alist. It compares key against
the alist elements using equal (see Scction 2.8 [Equality Predicates|, page 44). It

returns nil if no association in alist has a CAR equal to key. For example:

)

! This usage of “key” is not related to the term “key sequence”; it means a value used to
look up an item in a table. In this case, the table is the alist, and the alist associations
are the items.

Chapter 5: Lists 95

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . cones) (oak . acorns) (maple . seeds))
(assoc ’oak trees)
= (oak . acorns)
(cdr (assoc ’oak trees))
= acorns
(assoc ’birch trees)
= nil
Here is another example, in which the keys and values are not symbols:

(setq needles-per-cluster
>((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(6 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
= ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
= ("Austrian Pine" "Red Pine")

rassoc value alist Function
This function returns the first association with value value in alist. It returns nil if
no association in alist has a CDR equal to value.

rassoc is like assoc except that it compares the CDR of each alist association instead
of the CAR. You can think of this as “reverse assoc”, finding the key for a given
value.

assq key alist Function
This function is like assoc in that it returns the first association for key in alist, but
it makes the comparison using eq instead of equal. assq returns nil if no association
in alist has a CAR eq to key. This function is used more often than assoc, since eq
is faster than equal and most alists use symbols as keys. See Section 2.8 [Equality
Predicates|, page 44.
(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . cones) (oak . acorns) (maple . seeds))
(assq ’pine trees)
= (pine . cones)

On the other hand, assq is not usually useful in alists where the keys may not be

symbols:
(setq leaves
>(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)
= nil

(assoc "simple leaves" leaves)
= ("simple leaves" . oak)

96 XEmacs Lisp Reference Manual

rassq value alist Function
This function returns the first association with value value in alist. It returns nil if
no association in alist has a CDR eq to value.

rassq is like assq except that it compares the CDR of each alist association instead
of the CAR. You can think of this as “reverse assq”, finding the key for a given value.

For example:
(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
= (oak . acorns)
(rassq ’spores trees)
= nil
Note that rassq cannot search for a value stored in the CAR of the CDR of an element:
(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
= nil
In this case, the CDR of the association (1ily white) is not the symbol white, but
rather the list (white). This becomes clearer if the association is written in dotted
pair notation:
(1ily white) = (lily . (white))

remassoc key alist Function
This function deletes by side effect any associations with key key in alist — i.e. it
removes any elements from alist whose car is equal to key. The modified alist is
returned.

If the first member of alist has a car that is equal to key, there is no way to remove it
by side effect; therefore, write (setq foo (remassoc key foo)) to be sure of changing
the value of foo.

remassq key alist Function
This function deletes by side effect any associations with key key in alist — i.e. it
removes any elements from alist whose car is eq to key. The modified alist is returned.

This function is exactly like remassoc, but comparisons between key and keys in alist
are done using eq instead of equal.

remrassoc value alist Function
This function deletes by side effect any associations with value value in alist — i.e. it
removes any elements from alist whose cdr is equal to value. The modified alist is
returned.

If the first member of alist has a car that is equal to value, there is no way to remove
it by side effect; therefore, write (setq foo (remassoc value foo)) to be sure of
changing the value of foo.

remrassoc is like remassoc except that it compares the CDR of each alist associa-
tion instead of the CAR. You can think of this as “reverse remassoc”, removing an
association based on its value instead of its key.

Chapter 5: Lists 97

remrassq value alist Function
This function deletes by side effect any associations with value value in alist — i.e.

it removes any elements from alist whose cdr is eq to value. The modified alist is
returned.

This function is exactly like remrassoc, but comparisons between value and values
in alist are done using eq instead of equal.

copy-alist alist Function
This function returns a two-level deep copy of alist: it creates a new copy of each

association, so that you can alter the associations of the new alist without changing
the old one.

(setq needles-per-cluster
>((2 . ("Austrian Pine" "Red Pine"))
(3 . ("Pitch Pine"))
(5 . ("White Pine"))))
=
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
=

((2 "Austrian Pine" "Red Pine")

(3 "Pitch Pine")

(6 "White Pine"))

(eq needles-per-cluster copy)
= nil

(equal needles-per-cluster copy)
=t

(eq (car needles-per-cluster) (car copy))
= nil

(cdr (car (cdr needles-per-cluster)))
= ("Pitch Pine")

(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
=t

This example shows how copy-alist makes it possible to change the associations of
one copy without affecting the other:

(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))
(cdr (assq 3 needles-per-cluster))
= ("Pitch Pine")

5.9 Property Lists

98 XEmacs Lisp Reference Manual

A property list (or plist) is another way of representing a mapping from keys to values.
Instead of the list consisting of conses of a key and a value, the keys and values alternate
as successive entries in the list. Thus, the association list

(a. 1) (.2 (c .3
has the equivalent property list form
(a1b2c3)

Property lists are used to represent the properties associated with various sorts of objects,
such as symbols, strings, frames, etc. The convention is that property lists can be modified
in-place, while association lists generally are not.

Plists come in two varieties: normal plists, whose keys are compared with eq, and lax
plists, whose keys are compared with equal,

valid-plist-p plist Function
Given a plist, this function returns non-nil if its format is correct. If it returns
nil, check-valid-plist will signal an error when given the plist; that means it’s a
malformed or circular plist or has non-symbols as keywords.

check-valid-plist plist Function
Given a plist, this function signals an error if there is anything wrong with it. This
means that it’s a malformed or circular plist.

5.9.1 Working With Normal Plists

plist-get plist prop &optional default Function
This function extracts a value from a property list. The function returns the value
corresponding to the given prop, or default if prop is not one of the properties on the
list.

plist-put plist prop val Function
This function changes the value in plist of prop to val. If prop is already a property
on the list, its value is set to val, otherwise the new prop val pair is added. The new
plist is returned; use (setq x (plist-put x prop val)) to be sure to use the new
value. The plist is modified by side effects.

plist-remprop plist prop Function
This function removes from plist the property prop and its value. The new plist is
returned; use (setq x (plist-remprop x prop val)) to be sure to use the new value.
The plist is modified by side effects.

plist-member plist prop Function
This function returns t if prop has a value specified in plist.

Chapter 5: Lists 99

In the following functions, if optional arg nil-means-not-present is non-nil, then a prop-
erty with a nil value is ignored or removed. This feature is a virus that has infected old
Lisp implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but
should not be used except for backward compatibility.

plists-eq a b &optional nil-means-not-present Function
This function returns non-nil if property lists A and B are eq (i.e. their values are
eq).

plists-equal a b &optional nil-means-not-present Function

This function returns non-nil if property lists A and B are equal (i.e. their values
are equal; their keys are still compared using eq).

canonicalize-plist plist &optional nil-means-not-present Function
This function destructively removes any duplicate entries from a plist. In such cases,
the first entry applies.

The new plist is returned. If nil-means-not-present is given, the return value may not
be eq to the passed-in value, so make sure to setq the value back into where it came
from.

5.9.2 Working With Lax Plists

Recall that a lax plist is a property list whose keys are compared using equal instead of
eq.

lax-plist-get lax-plist prop &optional default Function
This function extracts a value from a lax property list. The function returns the value
corresponding to the given prop, or default if prop is not one of the properties on the
list.

lax-plist-put lax-plist prop val Function
This function changes the value in lax-plist of prop to val.

lax-plist-remprop lax-plist prop Function
This function removes from lax-plist the property prop and its value. The new plist is
returned; use (setq x (lax-plist-remprop x prop val)) to be sure to use the new
value. The lax-plist is modified by side effects.

lax-plist-member lax-plist prop Function
This function returns t if prop has a value specified in lax-plist.

In the following functions, if optional arg nil-means-not-present is non-nil, then a prop-
erty with a nil value is ignored or removed. This feature is a virus that has infected old
Lisp implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but
should not be used except for backward compatibility.

100 XEmacs Lisp Reference Manual

lax-plists-eq a b &optional nil-means-not-present Function
This function returns non-nil if lax property lists A and B are eq (i.e. their values
are eq; their keys are still compared using equal).

lax-plists-equal a b &optional nil-means-not-present Function
This function returns non-nil if lax property lists A and B are equal (i.e. their values
are equal).

canonicalize-lax-plist lax-plist &optional nil-means-not-present Function

This function destructively removes any duplicate entries from a lax plist. In such
cases, the first entry applies.

The new plist is returned. If nil-means-not-present is given, the return value may not
be eq to the passed-in value, so make sure to setq the value back into where it came
from.

5.9.3 Converting Plists To/From Alists

alist-to-plist alist Function
This function converts association list alist into the equivalent property-list form. The
plist is returned. This converts from

((a . 1) (b.2) (c.3))
into

(al1b2c3)
The original alist is not modified.

plist-to-alist plist Function
This function converts property list plist into the equivalent association-list form.
The alist is returned. This converts from
(a1b2c3)
into
(a. 1) (.2 (c .3
The original plist is not modified.

The following two functions are equivalent to the preceding two except that they de-
structively modify their arguments, using cons cells from the original list to form the new
list rather than allocating new cons cells.

destructive-alist-to-plist alist Function
This function destructively converts association list alist into the equivalent property-
list form. The plist is returned.

destructive-plist-to-alist plist Function
This function destructively converts property list plist into the equivalent association-
list form. The alist is returned.

Chapter 5: Lists 101

5.10 Weak Lists

A weak list is a special sort of list whose members are not counted as references for the
purpose of garbage collection. This means that, for any object in the list, if there are no
references to the object anywhere outside of the list (or other weak list or weak hash table),
that object will disappear the next time a garbage collection happens. Weak lists can be
useful for keeping track of things such as unobtrusive lists of another function’s buffers or
markers. When that function is done with the elements, they will automatically disappear
from the list.

Weak lists are used internally, for example, to manage the list holding the children of
an extent — an extent that is unused but has a parent will still be reclaimed, and will
automatically be removed from its parent’s list of children.

Weak lists are similar to weak hash tables (see Section 46.3 [Weak Hash Tables]
page 676).

weak-list-p object Function
This function returns non-nil if object is a weak list.

Weak lists come in one of four types:
simple Objects in the list disappear if not referenced outside of the list.

assoc Objects in the list disappear if they are conses and either the car or the cdr of
the cons is not referenced outside of the list.

key-assoc
Objects in the list disappear if they are conses and the car is not referenced
outside of the list.

value-assoc
Objects in the list disappear if they are conses and the cdr is not referenced
outside of the list.

make-weak-list &optional type Function
This function creates a new weak list of type type. type is a symbol (one of simple,
assoc, key-assoc, or value-assoc, as described above) and defaults to simple.

weak-list-type weak Function
This function returns the type of the given weak-list object.

weak-list-list weak Function
This function returns the list contained in a weak-list object.

set-weak-list-list weak new-list Function
This function changes the list contained in a weak-list object.

102 XEmacs Lisp Reference Manual

Chapter 6: Sequences, Arrays, and Vectors 103

6 Sequences, Arrays, and Vectors

Recall that the sequence type is the union of four other Lisp types: lists, vectors, bit
vectors, and strings. In other words, any list is a sequence, any vector is a sequence, any bit
vector is a sequence, and any string is a sequence. The common property that all sequences
have is that each is an ordered collection of elements.

An array is a single primitive object that has a slot for each elements. All the elements
are accessible in constant time, but the length of an existing array cannot be changed.
Strings, vectors, and bit vectors are the three types of arrays.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons
cells, one cell per element. Finding the nth element requires looking through n cons cells,
so elements farther from the beginning of the list take longer to access. But it is possible
to add elements to the list, or remove elements.

The following diagram shows the relationship between these types:

The elements of vectors and lists may be any Lisp objects. The elements of strings are
all characters. The elements of bit vectors are the numbers 0 and 1.

6.1 Sequences

In XEmacs Lisp, a sequence is either a list, a vector, a bit vector, or a string. The
common property that all sequences have is that each is an ordered collection of elements.
This section describes functions that accept any kind of sequence.

sequencep object Function
Returns t if object is a list, vector, bit vector, or string, nil otherwise.

104 XEmacs Lisp Reference Manual

copy-sequence sequence Function
Returns a copy of sequence. The copy is the same type of object as the original
sequence, and it has the same elements in the same order.

Storing a new element into the copy does not affect the original sequence, and vice
versa. However, the elements of the new sequence are not copies; they are identical
(eq) to the elements of the original. Therefore, changes made within these elements,
as found via the copied sequence, are also visible in the original sequence.

If the sequence is a string with extents or text properties, the extents and text prop-
erties in the copy are also copied, not shared with the original. (This means that
modifying the extents or text properties of the original will not affect the copy.)
However, the actual values of the properties are shared. See Chapter 40 [Extents]
page 593, See Section 36.18 [Text Properties|, page 546.

See also append in Section 5.5 [Building Lists|, page 84, concat in Section 4.3 [Cre-
ating Strings|, page 62, veoncat in Section 6.4 [Vectors|, page 108, and bvconcat in
Section 6.6 [Bit Vectors|, page 110, for other ways to copy sequences.
(setq bar ’(1 2))
= (12)
(setq x (vector ’foo bar))
= [foo (1 2)]
(setq y (copy-sequence x))
= [foo (1 2)]
(eq x y)
= nil
(equal x y)
=t
(eq (elt x 1) (elt y 1))
=t

; ;5 Replacing an element of one sequence.
(aset x 0 ’quux)

x = [quux (1 2)]

y = [foo (1 2)]

;35 Modifying the inside of a shared element.
(setcar (aref x 1) 69)

x = [quux (69 2)]

y = [foo (69 2)]

;3 Creating a bit vector.
(bit-vector 1 01 1 010 0)
= #x%x10110100

length sequence Function
Returns the number of elements in sequence. If sequence is a cons cell that is not a
list (because the final CDR is not nil), a wrong-type-argument error is signaled.
(length > (1 2 3))
= 3
(length O))
= 0

Chapter 6: Sequences, Arrays, and Vectors 105

(length "foobar")
= 6

(length [1 2 3])
= 3

(length #%01101)
= 5

elt sequence index Function
This function returns the element of sequence indexed by index. Legitimate values
of index are integers ranging from 0 up to one less than the length of sequence. If
sequence is a list, then out-of-range values of index return nil; otherwise, they trigger
an args—-out—-of-range error.
(elt [1 2 3 4] 2)
= 3
(elt (1 2 3 4) 2)
= 3
(char-to-string (elt "1234" 2))
= "3"
(elt #x00010000 3)
=1
(elt [1 2 3 4] 4)
Args out of range: [1 2 3 4], 4
(elt [1 2 3 4] -1
Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions|, page 106) and nth
(see Section 5.4 [List Elements|, page 81).

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements
of the array. Any element of an array may be accessed in constant time. In contrast, an
element of a list requires access time that is proportional to the position of the element in
the list.

When you create an array, you must specify how many elements it has. The amount of
space allocated depends on the number of elements. Therefore, it is impossible to change
the size of an array once it is created; you cannot add or remove elements. However, you
can replace an element with a different value.

XEmacs defines three types of array, all of which are one-dimensional: strings, vectors,
and bit vectors. A vector is a general array; its elements can be any Lisp objects. A string
is a specialized array; its elements must be characters. A bit vector is another specialized
array; its elements must be bits (an integer, either 0 or 1). Each type of array has its own
read syntax. See Section 2.4.8 [String Type|, page 28, Section 2.4.9 [Vector Type], page 28,
and Section 2.4.10 [Bit Vector Type], page 29.

All kinds of array share these characteristics:

106 XEmacs Lisp Reference Manual

e The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices
0,1, 2, and 3.

e The elements of an array may be referenced or changed with the functions aref and
aset, respectively (see Section 6.3 [Array Functions|, page 106).

In principle, if you wish to have an array of text characters, you could use either a string
or a vector. In practice, we always choose strings for such applications, for four reasons:

e They usually occupy one-fourth the space of a vector of the same elements. (This is
one-eighth the space for 64-bit machines such as the DEC Alpha, and may also be
different when MULE support is compiled into XEmacs.)

e Strings are printed in a way that shows the contents more clearly as characters.

e Strings can hold extent and text properties. See Chapter 40 [Extents|, page 593, See
Section 36.18 [Text Properties|, page 546.

e Many of the specialized editing and I/O facilities of XEmacs accept only strings. For
example, you cannot insert a vector of characters into a buffer the way you can insert
a string. See Chapter 4 [Strings and Characters|, page 61.

By contrast, for an array of keyboard input characters (such as a key sequence), a
vector may be necessary, because many keyboard input characters are non-printable and
are represented with symbols rather than with characters. See Section 19.6.1 [Key Sequence
Input], page 306.

Similarly, when representing an array of bits, a bit vector has the following advantages
over a regular vector:

e They occupy 1/32nd the space of a vector of the same elements. (1/64th on 64-bit
machines such as the DEC Alpha.)

e Bit vectors are printed in a way that shows the contents more clearly as bits.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept strings, vectors, and bit vectors.

arrayp object Function
This function returns t if object is an array (i.e., a string, vector, or bit vector).

(arrayp "asdf")
=t

(arrayp [al)
=t

(arrayp #x%101)
=t

aref array index Function
This function returns the indexth element of array. The first element is at index zero.

Chapter 6: Sequences, Arrays, and Vectors 107

(setq primes [2 3 5 7 11 13])
= [2 357 11 13]

(aref primes 4)
= 11

(elt primes 4)
= 11

(aref "abcdefg" 1)
= 7b

(aref #x1101 2)
=0

See also the function elt, in Section 6.1 [Sequence Functions|, page 103.

aset array index object Function
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])
= [foo bar baz]
(aset w 0 ’fu)
= fu
W
= [fu bar baz]

(setq x "asdfasfd")
= "asdfasfd"
(aset x 3 7Z)
= 77
X
= "asdZasfd"

(setq bv #x1111)

= #x1111
(aset bv 2 0)
= 0
bv
= #x1101

If array is a string and object is not a character, a wrong-type-argument error results.

fillarray array object Function
This function fills the array array with object, so that each element of array is object.
It returns array.
(setqga [abcde fgl)
= [abcdef gl
(fillarray a 0)
= [00000 0 0]
a
= [00000 0 0]

(setq s "When in the course")
= "When in the course"
(fillarray s ?7-)

108 XEmacs Lisp Reference Manual

(setq bv #x1101)
= #x1101

(fillarray bv 0)
= #x0000

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects
known to be arrays. See Section 6.1 [Sequence Functions], page 103.

6.4 Vectors

Arrays in Lisp, like arrays in most languages, are blocks of memory whose elements can
be accessed in constant time. A vector is a general-purpose array; its elements can be any
Lisp objects. (The other kind of array in XEmacs Lisp is the string, whose elements must
be characters.) Vectors in XEmacs serve as obarrays (vectors of symbols), although this is a
shortcoming that should be fixed. They are also used internally as part of the representation
of a byte-compiled function; if you print such a function, you will see a vector in it.

In XEmacs Lisp, the indices of the elements of a vector start from zero and count up
from there.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b al. You can write vectors in the
same way in Lisp input.

A vector, like a string or a number, is considered a constant for evaluation: the result
of evaluating it is the same vector. This does not evaluate or even examine the elements of
the vector. See Section 8.2.1 [Self-Evaluating Forms|, page 124.

Here are examples of these principles:

(setq avector [1 two ’(three) "four" [fivell)
= [1 two (quote (three)) "four" [fivell]
(eval avector)
= [1 two (quote (three)) "four" [fivell

(eq avector (eval avector))
=t

6.5 Functions That Operate on Vectors

Here are some functions that relate to vectors:

vectorp object Function
This function returns t if object is a vector.
(vectorp [al)
=t
(vectorp "asdf")
= nil

Chapter 6: Sequences, Arrays, and Vectors 109

vector &rest objects Function
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
= [foo 23 [bar baz] "rats"]

(vector)
= [
make-vector length object Function
This function returns a new vector consisting of length elements, each initialized to
object.

(setq sleepy (make-vector 9 ’Z))
= [2222272727717Z]

vconcat &rest sequences Function
This function returns a new vector containing all the elements of the sequences. The
arguments sequences may be lists, vectors, or strings. If no sequences are given, an
empty vector is returned.

The value is a newly constructed vector that is not eq to any existing vector.

(setq a (vconcat (A B C) (D E F)))
= [ABCDEF]

(eq a (vconcat a))
= nil

(vconcat)
= []

(vconcat [A B C] "aa" ’(foo (6 7)))
= [A B C 97 97 foo (6 7)]

The vconcat function also allows integers as arguments. It converts them to strings
of digits, making up the decimal print representation of the integer, and then uses
the strings instead of the original integers. Don’t use this feature; we plan to elim-
inate it. If you already use this feature, change your programs now! The proper
way to convert an integer to a decimal number in this way is with format (see Sec-
tion 4.10 [Formatting Strings|, page 69) or number-to-string (see Section 4.7 [String
Conversion|, page 67).

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Func-
tions|, page 173, concat in Section 4.3 [Creating Strings|, page 62, append in Sec-
tion 5.5 [Building Lists], page 84, and bvconcat in Section 6.7 [Bit Vector Functions],
page 110.

The append function provides a way to convert a vector into a list with the same elements
(see Section 5.5 [Building Lists], page 84):

(setq avector [1 two (quote (three)) "four" [five]l)
= [1 two (quote (three)) "four" [fivel]
(append avector nil)
= (1 two (quote (three)) "four" [five])

110 XEmacs Lisp Reference Manual

6.6 Bit Vectors

Bit vectors are specialized vectors that can only represent arrays of 1’s and 0’s. Bit
vectors have a very efficient representation and are useful for representing sets of boolean
(true or false) values.

There is no limit on the size of a bit vector. You could, for example, create a bit vector
with 100,000 elements if you really wanted to.

Bit vectors have a special printed representation consisting of ‘#*’ followed by the bits
of the vector. For example, a bit vector whose elements are 0, 1, 1, 0, and 1, respectively,
is printed as

#+01101

Bit vectors are considered constants for evaluation, like vectors, strings, and numbers.
See Section 8.2.1 [Self-Evaluating Forms], page 124.

6.7 Functions That Operate on Bit Vectors

Here are some functions that relate to bit vectors:

bit-vector-p object Function
This function returns t if object is a bit vector.

(bit-vector-p #*01)

=t
(bit-vector-p [0 1]1)
= nil
(bit-vector-p "01")
= nil
bitp object Function

This function returns t if object is either 0 or 1.

bit-vector &rest objects Function
This function creates and returns a bit vector whose elements are the arguments
objects. The elements must be either of the two integers 0 or 1.
(bit-vector 0 0 01 0 00 0 1 0)
= #*%0001000010
(bit-vector)
= #*

make-bit-vector length object Function
This function creates and returns a bit vector consisting of length elements, each
initialized to object.

(setq picket-fence (make-bit-vector 9 1))
= #x111111111

Chapter 6: Sequences, Arrays, and Vectors 111

bvconcat &rest sequences Function
This function returns a new bit vector containing all the elements of the sequences.
The arguments sequences may be lists, vectors, or bit vectors, all of whose elements
are the integers 0 or 1. If no sequences are given, an empty bit vector is returned.
The value is a newly constructed bit vector that is not eq to any existing bit vector.
(setq a (bvconcat ’(1 1 0) (0 0 1)))
= #x110001
(eq a (bvconcat a))
= nil
(bvconcat)
= #x
(bvconcat [1 0 0 0 O] #x111 (0 0 0 0 1))
= #%x1000011100001

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Func-
tions], page 173, concat in Section 4.3 [Creating Strings|, page 62, vconcat in Sec-
tion 6.5 [Vector Functions|, page 108, and append in Section 5.5 [Building Lists],
page 84.

The append function provides a way to convert a bit vector into a list with the same
elements (see Section 5.5 [Building Lists|, page 84):
(setq bv #x00001110)
= #x00001110
(append bv nil)
= (00001110

112 XEmacs Lisp Reference Manual

Chapter 7: Symbols 113

7 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their com-
ponents, their property lists, and how they are created and interned. Separate chapters
describe the use of symbols as variables and as function names; see Chapter 10 [Variables],
page 147, and Chapter 11 [Functions|, page 165. For the precise read syntax for symbols,

see Section 2.4.4 [Symbol Type|, page 23.
You can test whether an arbitrary Lisp object is a symbol with symbolp:

symbolp object Function
This function returns t if object is a symbol, nil otherwise.

7.1 Symbol Components

Each symbol has four components (or “cells”), each of which references another object:

Print name
The print name cell holds a string that names the symbol for reading and
printing. See symbol-name in Section 7.3 [Creating Symbols|, page 115.

Value The value cell holds the current value of the symbol as a variable. When a
symbol is used as a form, the value of the form is the contents of the symbol’s
value cell. See symbol-value in Section 10.6 [Accessing Variables|, page 153.

Function The function cell holds the function definition of the symbol. When a symbol
is used as a function, its function definition is used in its place. This cell is
also used to make a symbol stand for a keymap or a keyboard macro, for editor
command execution. Because each symbol has separate value and function
cells, variables and function names do not conflict. See symbol-function in
Section 11.8 [Function Cells|, page 176.

Property list
The property list cell holds the property list of the symbol. See symbol-plist
in Section 7.4 [Symbol Properties|, page 118.

The print name cell always holds a string, and cannot be changed. The other three cells
can be set individually to any specified Lisp object.

The print name cell holds the string that is the name of the symbol. Since symbols are
represented textually by their names, it is important not to have two symbols with the same
name. The Lisp reader ensures this: every time it reads a symbol, it looks for an existing
symbol with the specified name before it creates a new one. (In XEmacs Lisp, this lookup
uses a hashing algorithm and an obarray; see Section 7.3 [Creating Symbols|, page 115.)

In normal usage, the function cell usually contains a function or macro, as that is what
the Lisp interpreter expects to see there (see Chapter 8 [Evaluation], page 121). Key-
board macros (see Section 19.13 [Keyboard Macros|, page 317), keymaps (see Chapter 20
[Keymaps|, page 319) and autoload objects (see Section 8.2.8 [Autoloading], page 128) are

114 XEmacs Lisp Reference Manual

also sometimes stored in the function cell of symbols. We often refer to “the function foo”
when we really mean the function stored in the function cell of the symbol foo. We make
the distinction only when necessary.

The property list cell normally should hold a correctly formatted property list (see
Section 5.9 [Property Lists|, page 98), as a number of functions expect to see a property
list there.

The function cell or the value cell may be void, which means that the cell does not
reference any object. (This is not the same thing as holding the symbol void, nor the
same as holding the symbol nil.) Examining a cell that is void results in an error, such as
‘Symbol’s value as variable is void’.

The four functions symbol-name, symbol-value, symbol-plist, and symbol-function
return the contents of the four cells of a symbol. Here as an example we show the contents
of the four cells of the symbol buffer-file-name:

(symbol-name ’buffer-file-name)
= "buffer-file-name"
(symbol-value ’buffer-file-name)
= "/gnu/elisp/symbols.texi"
(symbol-plist ’buffer-file-name)
= (variable-documentation 29529)
(symbol-function ’buffer-file-name)
= #<subr buffer-file-name>
Because this symbol is the variable which holds the name of the file being visited in the cur-
rent buffer, the value cell contents we see are the name of the source file of this chapter of the
XEmacs Lisp Manual. The property list cell contains the list (variable-documentation
29529) which tells the documentation functions where to find the documentation string for
the variable buffer-file-name in the ‘DOC’ file. (29529 is the offset from the beginning of
the ‘DOC’ file to where that documentation string begins.) The function cell contains the
function for returning the name of the file. buffer-file-name names a primitive function,
which has no read syntax and prints in hash notation (see Section 2.4.13 [Primitive Func-
tion Type|, page 30). A symbol naming a function written in Lisp would have a lambda
expression (or a byte-code object) in this cell.

7.2 Defining Symbols

A definition in Lisp is a special form that announces your intention to use a certain
symbol in a particular way. In XEmacs Lisp, you can define a symbol as a variable, or
define it as a function (or macro), or both independently.

A definition construct typically specifies a value or meaning for the symbol for one kind
of use, plus documentation for its meaning when used in this way. Thus, when you define a
symbol as a variable, you can supply an initial value for the variable, plus documentation
for the variable.

defvar and defconst are special forms that define a symbol as a global variable. They
are documented in detail in Section 10.5 [Defining Variables|, page 151.

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of

Chapter 7: Symbols 115

the symbol. (The term “function definition”, meaning the contents of the function cell, is
derived from the idea that defun gives the symbol its definition as a function.) defsubst,
define-function and defalias are other ways of defining a function. See Chapter 11
[Functions], page 165.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the
function cell of the symbol. Note that a given symbol can be a macro or a function, but
not both at once, because both macro and function definitions are kept in the function cell,
and that cell can hold only one Lisp object at any given time. See Chapter 12 [Macros|,
page 181.

In XEmacs Lisp, a definition is not required in order to use a symbol as a variable or
function. Thus, you can make a symbol a global variable with setq, whether you define
it first or not. The real purpose of definitions is to guide programmers and programming
tools. They inform programmers who read the code that certain symbols are intended to be
used as variables, or as functions. In addition, utilities such as ‘etags’ and ‘make-docfile’
recognize definitions, and add appropriate information to tag tables and the ‘DOC’ file. See
Section 27.2 [Accessing Documentation|, page 386.

7.3 Creating and Interning Symbols

To understand how symbols are created in XEmacs Lisp, you must know how Lisp reads
them. Lisp must ensure that it finds the same symbol every time it reads the same set of
characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then
it “hashes” those characters to find an index in a table called an obarray. Hashing is an
efficient method of looking something up. For example, instead of searching a telephone
book cover to cover when looking up Jan Jones, you start with the J’s and go from there.
That is a simple version of hashing. Each element of the obarray is a bucket which holds
all the symbols with a given hash code; to look for a given name, it is sufficient to look
through all the symbols in the bucket for that name’s hash code.

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to
the obarray. Finding or adding a symbol with a certain name is called interning it, and the
symbol is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the
value of a variable.

In XEmacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol

116 XEmacs Lisp Reference Manual

in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, and you can create an obarray with (make-
vector length 0). This is the only valid way to create an obarray. Prime numbers as
lengths tend to result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern can
enter a symbol in an obarray properly. Do not try to intern one symbol in two obarrays.
This would garble both obarrays, because a symbol has just one slot to hold the following
symbol in the obarray bucket. The results would be unpredictable.

It is possible for two different symbols to have the same name in different obarrays; these
symbols are not eq or equal. However, this normally happens only as part of the abbrev
mechanism (see Chapter 39 [Abbrevs|, page 587).

Common Lisp note: In Common Lisp, a single symbol may be interned in
several obarrays.

Most of the functions below take a name and sometimes an obarray as arguments. A
wrong-type-argument error is signaled if the name is not a string, or if the obarray is not
a vector.

symbol-name symbol Function
This function returns the string that is symbol’s name. For example:
(symbol-name ’foo)
= "foo"
Changing the string by substituting characters, etc, does change the name of the
symbol, but fails to update the obarray, so don’t do it!

make-symbol name Function
This function returns a newly-allocated, uninterned symbol whose name is name
(which must be a string). Its value and function definition are void, and its property
list is nil. In the example below, the value of sym is not eq to foo because it is a
distinct uninterned symbol whose name is also ‘foo’.
(setq sym (make-symbol "foo"))
= foo
(eq sym ’foo)
= nil

intern name &optional obarray Function
This function returns the interned symbol whose name is name. If there is no such
symbol in the obarray obarray, intern creates a new one, adds it to the obarray, and
returns it. If obarray is omitted, the value of the global variable obarray is used.
(setq sym (intern "foo"))
= foo
(eq sym ’foo)
=t

(setq syml (intern "foo" other-obarray))

Chapter 7: Symbols 117

= foo
(eq sym ’foo)
= nil

intern-soft name &optional obarray Function
This function returns the symbol in obarray whose name is name, or nil if obarray
has no symbol with that name. Therefore, you can use intern-soft to test whether
a symbol with a given name is already interned. If obarray is omitted, the value of
the global variable obarray is used.

(intern-soft "frazzle") ; No such symbol exists.
= nil

(make-symbol "frazzle") ; Create an uninterned one.
= frazzle

(intern-soft "frazzle") ; That one cannot be found.
= nil

(setq sym (intern "frazzle")) ; Create an interned one.
= frazzle

(intern-soft "frazzle") ; That one can be found!
= frazzle

(eq sym ’frazzle) ; And it is the same one.
=t

obarray Variable

This variable is the standard obarray for use by intern and read.

mapatoms function &optional obarray Function
This function calls function for each symbol in the obarray obarray. It returns nil.
If obarray is omitted, it defaults to the value of obarray, the standard obarray for
ordinary symbols.
(setq count 0)
= 0
(defun count-syms (s)
(setq count (1+ count)))
= count-syms
(mapatoms ’count-syms)
= nil
count
= 1871

See documentation in Section 27.2 [Accessing Documentation|, page 386, for another
example using mapatoms.

unintern symbol &optional obarray Function
This function deletes symbol from the obarray obarray. If symbol is not actually in
the obarray, unintern does nothing. If obarray is nil, the current obarray is used.

If you provide a string instead of a symbol as symbol, it stands for a symbol name.
Then unintern deletes the symbol (if any) in the obarray which has that name. If
there is no such symbol, unintern does nothing.

If unintern does delete a symbol, it returns t. Otherwise it returns nil.

118 XEmacs Lisp Reference Manual

7.4 Symbol Properties

A property list (plist for short) is a list of paired elements stored in the property list
cell of a symbol. Each of the pairs associates a property name (usually a symbol) with a
property or value. Property lists are generally used to record information about a symbol,
such as its documentation as a variable, the name of the file where it was defined, or perhaps
even the grammatical class of the symbol (representing a word) in a language-understanding
system.

Many objects other than symbols can have property lists associated with them, and
XEmacs provides a full complement of functions for working with property lists. See Sec-
tion 5.9 [Property Lists], page 98.

The property names and values in a property list can be any Lisp objects, but the names
are usually symbols. They are compared using eq. Here is an example of a property list,
found on the symbol progn when the compiler is loaded:

(lisp-indent-function O byte-compile byte-compile-progn)

Here lisp-indent-function and byte-compile are property names, and the other two
elements are the corresponding values.

7.4.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists|, page 94) are very similar to property
lists. In contrast to association lists, the order of the pairs in the property list is not
significant since the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If all the associations are recorded in one association list, the
program will need to search that entire list each time a function or variable is to be operated
on. By contrast, if the information is recorded in the property lists of the function names
or variables themselves, each search will scan only the length of one property list, which
is usually short. This is why the documentation for a variable is recorded in a property
named variable-documentation. The byte compiler likewise uses properties to record
those functions needing special treatment.

However, association lists have their own advantages. Depending on your application,
it may be faster to add an association to the front of an association list than to update
a property. All properties for a symbol are stored in the same property list, so there is a
possibility of a conflict between different uses of a property name. (For this reason, it is
a good idea to choose property names that are probably unique, such as by including the
name of the library in the property name.) An association list may be used like a stack
where associations are pushed on the front of the list and later discarded; this is not possible
with a property list.

7.4.2 Property List Functions for Symbols

Chapter 7: Symbols 119

symbol-plist symbol Function
This function returns the property list of symbol.

setplist symbol plist Function
This function sets symbol’s property list to plist. Normally, plist should be a well-

formed property list, but this is not enforced.
(setplist ’foo ’(a 1 b (2 3) c¢ nil))
= (a1b (2 3) cnil)
(symbol-plist ’foo)
= (a1 b (23) cnil)
For symbols in special obarrays, which are not used for ordinary purposes, it may
make sense to use the property list cell in a nonstandard fashion; in fact, the abbrev
mechanism does so (see Chapter 39 [Abbrevs|, page 587).

get symbol property Function
This function finds the value of the property named property in symbol’s property
list. If there is no such property, nil is returned. Thus, there is no distinction between

a value of nil and the absence of the property.

The name property is compared with the existing property names using eq, so any
object is a legitimate property.

See put for an example.

put symbol property value Function

This function puts value onto symbol’s property list under the property name prop-
erty, replacing any previous property value. The put function returns value.

(put ’fly ’verb ’transitive)
=’transitive
(put ’fly ’noun ’(a buzzing little bug))
= (a buzzing little bug)
(get ’fly ’verb)
= transitive
(symbol-plist ’fly)
= (verb transitive noun (a buzzing little bug))

7.4.3 Property Lists Outside Symbols

These functions are useful for manipulating property lists that are stored in places other
than symbols:

getf plist property &optional default Function
This returns the value of the property property stored in the property list plist. For
example,

(getf ’(foo 4) ’foo)
= 4

120 XEmacs Lisp Reference Manual

putf plist property value Function
This stores value as the value of the property property in the property list plist.
It may modify plist destructively, or it may construct a new list structure without
altering the old. The function returns the modified property list, so you can store
that back in the place where you got plist. For example,
(setq my-plist ’(bar t foo 4))
= (bar t foo 4)
(setq my-plist (putf my-plist ’foo 69))
= (bar t foo 69)
(setq my-plist (putf my-plist ’quux ’(a)))
= (quux (a) bar t foo 5)

plists-eq a b Function
This function returns non-nil if property lists a and b are eq. This means that the
property lists have the same values for all the same properties, where comparison
between values is done using eq.

plists-equal a b Function
This function returns non-nil if property lists a and b are equal.

Both of the above functions do order-insensitive comparisons.
(plists-eq (a1 b 2 ¢ nil) (b 2 a 1))
=t
(plists-eq ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))
= nil
(plists-equal ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))
=t

Chapter 8: Evaluation 121

8 Ewvaluation

The evaluation of expressions in XEmacs Lisp is performed by the Lisp interpreter—a
program that receives a Lisp object as input and computes its value as an expression. How
it does this depends on the data type of the object, according to rules described in this
chapter. The interpreter runs automatically to evaluate portions of your program, but can
also be called explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called an expression or a form. The
fact that expressions are data objects and not merely text is one of the fundamental differ-
ences between Lisp-like languages and typical programming languages. Any object can be
evaluated, but in practice only numbers, symbols, lists and strings are evaluated very often.

It is very common to read a Lisp expression and then evaluate the expression, but reading
and evaluation are separate activities, and either can be performed alone. Reading per se
does not evaluate anything; it converts the printed representation of a Lisp object to the
object itself. It is up to the caller of read whether this object is a form to be evaluated, or
serves some entirely different purpose. See Section 17.3 [Input Functions|, page 258.

Do not confuse evaluation with command key interpretation. The editor command
loop translates keyboard input into a command (an interactively callable function) using
the active keymaps, and then uses call-interactively to invoke the command. The
execution of the command itself involves evaluation if the command is written in Lisp, but
that is not a part of command key interpretation itself. See Chapter 19 [Command Loop],
page 285.

Evaluation is a recursive process. That is, evaluation of a form may call eval to evaluate
parts of the form. For example, evaluation of a function call first evaluates each argument
of the function call, and then evaluates each form in the function body. Consider evaluation
of the form (car x): the subform x must first be evaluated recursively, so that its value can
be passed as an argument to the function car.

Evaluation of a function call ultimately calls the function specified in it. See Chapter 11
[Functions|, page 165. The execution of the function may itself work by evaluating the
function definition; or the function may be a Lisp primitive implemented in C, or it may be
a byte-compiled function (see Chapter 15 [Byte Compilation|, page 209).

The evaluation of forms takes place in a context called the environment, which consists of
the current values and bindings of all Lisp variables.! Whenever the form refers to a variable
without creating a new binding for it, the value of the binding in the current environment
is used. See Chapter 10 [Variables], page 147.

Evaluation of a form may create new environments for recursive evaluation by binding
variables (see Section 10.3 [Local Variables|, page 148). These environments are temporary
and vanish by the time evaluation of the form is complete. The form may also make changes
that persist; these changes are called side effects. An example of a form that produces side
effects is (setq foo 1).

The details of what evaluation means for each kind of form are described below (see
Section 8.2 [Forms|, page 123).

! This definition of “environment” is specifically not intended to include all the data that
can affect the result of a program.

122 XEmacs Lisp Reference Manual

8.1 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program
being run. On rare occasions, you may need to write code that evaluates a form that is
computed at run time, such as after reading a form from text being edited or getting one
from a property list. On these occasions, use the eval function.

Please note: it is generally cleaner and more flexible to call functions that are stored
in data structures, rather than to evaluate expressions stored in data structures. Using
functions provides the ability to pass information to them as arguments.

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation
(see Chapter 14 [Loading], page 199).

eval form Function

This is the basic function for performing evaluation. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the
type of the object (see Section 8.2 [Forms|, page 123).
Since eval is a function, the argument expression that appears in a call to eval is
evaluated twice: once as preparation before eval is called, and again by the eval
function itself. Here is an example:
(setq foo ’bar)
= bar
(setq bar ’baz)
= baz
;3 eval receives argument bar, which is the value of foo
(eval foo)

= baz
(eval ’foo)
= bar
The number of currently active calls to eval is limited to max-1lisp-eval-depth (see
below).
eval-region start end &optional stream Command

This function evaluates the forms in the current buffer in the region defined by the
positions start and end. It reads forms from the region and calls eval on them until
the end of the region is reached, or until an error is signaled and not handled.

If stream is supplied, standard-output is bound to it during the evaluation.

You can use the variable load-read-function to specify a function for eval-region
to use instead of read for reading expressions. See Section 14.1 [How Programs Do
Loading], page 199.

eval-region always returns nil.

eval-buffer buffer &optional stream Command

This is like eval-region except that it operates on the whole contents of buffer.

Chapter 8: Evaluation 123

max-lisp-eval-depth Variable
This variable defines the maximum depth allowed in calls to eval, apply, and funcall
before an error is signaled (with error message "Lisp nesting exceeds max-lisp-
eval-depth"). This counts internal uses of those functions, such as for calling the
functions mentioned in Lisp expressions, and recursive evaluation of function call
arguments and function body forms.

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.

The default value of this variable is 500. If you set it to a value less than 100, Lisp
will reset it to 100 if the given value is reached.

max-specpdl-size provides another limit on nesting. See Section 10.3 [Local Vari-
ables]|, page 148.

values Variable
The value of this variable is a list of the values returned by all the expressions that were
read from buffers (including the minibuffer), evaluated, and printed. The elements
are ordered most recent first.

(setq x 1)
= 1

(list ’A (1+ 2) auto-save-default)
= (A 3 t)

values
= ((A31t)1...)

This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;3 Refer to the most recent evaluation result.
(nth 0 values)
= (A 3 t)
;5 That put a new element on,
K so all elements move back one.
(nth 1 values)
= (A 3 t)
;35 This gets the element that was next-to-most-recent
;5 before this example.
(nth 3 values)
=1

8.2 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form. How XEmacs evaluates a
form depends on its data type. XEmacs has three different kinds of form that are evaluated
differently: symbols, lists, and “all other types”. This section describes all three kinds,
starting with “all other types” which are self-evaluating forms.

124 XEmacs Lisp Reference Manual

8.2.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms
evaluate to themselves: the result of evaluation is the same object that was evaluated.
Thus, the number 25 evaluates to 25, and the string "foo" evaluates to the string "foo".
Likewise, evaluation of a vector does not cause evaluation of the elements of the vector—it
returns the same vector with its contents unchanged.

7123 ; An object, shown without evaluation.
= 123

123 ; Evaluated as usual—result is the same.
= 123

(eval ’123) ; Evaluated “by hand”—result is the same.
= 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
= 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for
types that lack a read syntax, because there’s no way to write them textually. It is possible
to construct Lisp expressions containing these types by means of a Lisp program. Here is
an example:

;3 Build an expression containing a buffer object.
(setq buffer (list ’print (current-buffer)))
= (print #<buffer eval.texi>)
;3 Evaluate it.
(eval buffer)
- #<buffer eval.texi>
= #<buffer eval.texi>

8.2.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s
value, if it has one. If it has none (if its value cell is void), an error is signaled. For more
information on the use of variables, see Chapter 10 [Variables|, page 147.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)

= 123
(eval ’a)

= 123
a

= 123

The symbols nil and t are treated specially, so that the value of nil is always nil, and
the value of t is always t; you cannot set or bind them to any other values. Thus, these two
symbols act like self-evaluating forms, even though eval treats them like any other symbol.

Chapter 8: Evaluation 125

8.2.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form,
according to its first element. These three kinds of forms are evaluated in different ways,
described below. The remaining list elements constitute the arguments for the function,
macro, or special form.

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

8.2.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function
cell, and uses its contents instead of the original symbol. If the contents are another symbol,
this process, called symbol function indirection, is repeated until it obtains a non-symbol.
See Section 11.3 [Function Names|, page 169, for more information about using a symbol
as a name for a function stored in the function cell of the symbol.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Or a symbol may have a void function cell, in
which case the subroutine symbol-function signals a void-function error. But if neither
of these things happens, we eventually obtain a non-symbol, which ought to be a function
or other suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of
these types, the error invalid-function is signaled.

The following example illustrates the symbol indirection process. We use fset to set
the function cell of a symbol and symbol-function to get the function cell contents (see
Section 11.8 [Function Cells|, page 176). Specifically, we store the symbol car into the
function cell of first, and the symbol first into the function cell of erste.

;3 | #<subr car> | <—— | car | <-- | first | <-- | erste |
(symbol-function ’car)
= #<subr car>
(fset ’first ’car)
= car
(fset ’erste ’first)
= first
(erste ’(1 2 3)) ; Call the function referenced by erste.
=1
By contrast, the following example calls a function without any symbol function indi-
rection, because the first element is an anonymous Lisp function, not a symbol.

126 XEmacs Lisp Reference Manual

((lambda (arg) (erste arg))
’(1 2 3))
=1
Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

The built-in function indirect-function provides an easy way to perform symbol func-
tion indirection explicitly.

indirect-function function Function

This function returns the meaning of function as a function. If function is a symbol,
then it finds function’s function definition and starts over with that value. If function

is not a symbol, then it returns function itself.

Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)
(indirect-function (symbol-function function))
function))

8.2.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object
or primitive function object, then that list is a function call. For example, here is a call to
the function +:

(+ 1 x)

The first step in evaluating a function call is to evaluate the remaining elements of
the list from left to right. The results are the actual argument values, one value for each
list element. The next step is to call the function with this list of arguments, effectively
using the function apply (see Section 11.5 [Calling Functions|, page 172). If the function
is written in Lisp, the arguments are used to bind the argument variables of the function
(see Section 11.2 [Lambda Expressions|, page 166); then the forms in the function body are
evaluated in order, and the value of the last body form becomes the value of the function
call.

8.2.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro
call. When a macro call is evaluated, the elements of the rest of the list are not initially
evaluated. Instead, these elements themselves are used as the arguments of the macro. The
macro definition computes a replacement form, called the expansion of the macro, to be
evaluated in place of the original form. The expansion may be any sort of form: a self-
evaluating constant, a symbol, or a list. If the expansion is itself a macro call, this process
of expansion repeats until some other sort of form results.

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the
macro expansion is not necessarily evaluated right away, or at all, because other programs
also expand macro calls, and they may or may not evaluate the expansions.

Chapter 8: Evaluation 127

Normally, the argument expressions are not evaluated as part of computing the macro
expansion, but instead appear as part of the expansion, so they are computed when the
expansion is computed.

For example, given a macro defined as follows:

(defmacro cadr (x)
(list ’car (1list ’cdr x)))

an expression such as (cadr (assq *handler list)) is a macro call, and its expansion is:
(car (cdr (assq ’handler list)))
Note that the argument (assq *handler list) appears in the expansion.

See Chapter 12 [Macros|, page 181, for a complete description of XEmacs Lisp macros.

8.2.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all
evaluated. Most special forms define control structures or perform variable bindings—things
which functions cannot do.

Each special form has its own rules for which arguments are evaluated and which are
used without evaluation. Whether a particular argument is evaluated may depend on the
results of evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in XEmacs Lisp with a
reference to where each is described.

and see Section 9.3 [Combining Conditions|, page 134
catch see Section 9.5.1 [Catch and Throw], page 136
cond see Section 9.2 [Conditionals|, page 132

condition-case
see Section 9.5.3.3 [Handling Errors|, page 140

defconst see Section 10.5 [Defining Variables], page 151
defmacro see Section 12.4 [Defining Macros]|, page 183
defun see Section 11.4 [Defining Functions], page 170
defvar see Section 10.5 [Defining Variables], page 151
function see Section 11.7 [Anonymous Functions], page 174
if see Section 9.2 [Conditionals|, page 132

interactive
see Section 19.3 [Interactive Call], page 290

let
letx see Section 10.3 [Local Variables], page 148

or see Section 9.3 [Combining Conditions|, page 134

128 XEmacs Lisp Reference Manual

progl

prog?2

progn see Section 9.1 [Sequencing], page 131
quote see Section 8.3 [Quoting], page 129

save-current-buffer
see Section 34.3 [Excursions], page 501

save-excursion
see Section 34.3 [Excursions], page 501

save-restriction
see Section 34.4 [Narrowing], page 502

save-selected-window
see Section 34.3 [Excursions], page 501

save-window—-excursion
see Section 31.16 [Window Configurations|, page 473

setq see Section 10.7 [Setting Variables], page 154

setq-default
see Section 10.9.2 [Creating Buffer-Local|, page 159

unwind-protect
see Section 9.5 [Nonlocal Exits], page 136

while see Section 9.4 [Iteration], page 135

with-output-to-temp-buffer
see Section 45.8 [Temporary Displays|, page 666

Common Lisp note: here are some comparisons of special forms in XEmacs Lisp
and Common Lisp. setq, if, and catch are special forms in both XEmacs Lisp
and Common Lisp. defun is a special form in XEmacs Lisp, but a macro in
Common Lisp. save-excursion is a special form in XEmacs Lisp, but doesn’t
exist in Common Lisp. throw is a special form in Common Lisp (because it
must be able to throw multiple values), but it is a function in XEmacs Lisp
(which doesn’t have multiple values).

8.2.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition has
not yet been loaded into XEmacs. It specifies which file contains the definition. When an
autoload object appears as a symbol’s function definition, calling that symbol as a function
automatically loads the specified file; then it calls the real definition loaded from that file.
See Section 14.2 [Autoload], page 202.

Chapter 8: Evaluation 129

8.3 Quoting

The special form quote returns its single argument, as written, without evaluating it.
This provides a way to include constant symbols and lists, which are not self-evaluating
objects, in a program. (It is not necessary to quote self-evaluating objects such as numbers,
strings, and vectors.)

quote object Special Form
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for
it. An apostrophe character (‘’’) followed by a Lisp object (in read syntax) expands to a
list whose first element is quote, and whose second element is the object. Thus, the read
syntax ’x is an abbreviation for (quote x).

Here are some examples of expressions that use quote:

(quote (+ 1 2))

= (+12)
(quote foo)

= foo
’foo

= foo
’?foo

= (quote foo)
> (quote foo)

= (quote foo)
[’ fool

= [(quote foo0)]

Other quoting constructs include function (see Section 11.7 [Anonymous Functions,
page 174), which causes an anonymous lambda expression written in Lisp to be compiled,
and ‘7 (see Section 12.5 [Backquotel, page 183), which is used to quote only part of a list,
while computing and substituting other parts.

130 XEmacs Lisp Reference Manual

Chapter 9: Control Structures 131

9 Control Structures

A Lisp program consists of expressions or forms (see Section 8.2 [Forms|, page 123). We
control the order of execution of the forms by enclosing them in control structures. Control
structures are special forms which control when, whether, or how many times to execute
the forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and
so on. This is what happens when you write several forms in succession in the body of a
function, or at top level in a file of Lisp code—the forms are executed in the order written.
We call this textual order. For example, if a function body consists of two forms a and b,
evaluation of the function evaluates first a and then b, and the function’s value is the value
of b.

Explicit control structures make possible an order of execution other than sequential.

XEmacs Lisp provides several kinds of control structure, including other varieties of
sequencing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-
in control structures are special forms since their subforms are not necessarily evaluated
or not evaluated sequentially. You can use macros to define your own control structure
constructs (see Chapter 12 [Macros|, page 181).

9.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes
from one form to another. In some contexts, such as in a function body, this happens
automatically. Elsewhere you must use a control structure construct to do this: progn, the
simplest control construct of Lisp.

A progn special form looks like this:
(progn a b ¢ ...)

and it says to execute the forms a, b, ¢ and so on, in that order. These forms are called the
body of the progn form. The value of the last form in the body becomes the value of the
entire progn.

In the early days of Lisp, progn was the only way to execute two or more forms in
succession and use the value of the last of them. But programmers found they often needed
to use a progn in the body of a function, where (at that time) only one form was allowed.
So the body of a function was made into an “implicit progn”: several forms are allowed
just as in the body of an actual progn. Many other control structures likewise contain an
implicit progn. As a result, progn is not used as often as it used to be. It is needed now
most often inside an unwind-protect, and, or, or in the then-part of an if.

progn forms. . . Special Form
This special form evaluates all of the forms, in textual order, returning the result of
the final form.

132 XEmacs Lisp Reference Manual

(progn (print "The first form")
(print "The second form")
(print "The third form"))
< "The first form"
- "The second form"
- "The third form"
= "The third form"

Two other control constructs likewise evaluate a series of forms but return a different
value:

progl forml forms. . . Special Form
This special form evaluates form1 and all of the forms, in textual order, returning the
result of forml.
(progl (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The first form"
Here is a way to remove the first element from a list in the variable x, then return
the value of that former element:

(progl (car x) (setq x (cdr x)))

prog2 forml form2 forms. . . Special Form
This special form evaluates forml, form2, and all of the following forms, in textual
order, returning the result of form2.
(prog2 (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The second form"

9.2 Conditionals

Conditional control structures choose among alternatives. XEmacs Lisp has two con-
ditional forms: if, which is much the same as in other languages, and cond, which is a
generalized case statement.

if condition then-form else-forms. . . Special Form
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one

Chapter 9: Control Structures 133

is returned. (The else part of if is an example of an implicit progn. See Section 9.1
[Sequencing], page 131.)
If condition has the value nil, and no else-forms are given, if returns nil.

if is a special form because the branch that is not selected is never evaluated—it
is ignored. Thus, in the example below, true is not printed because print is never
called.
(if nil
(print ’true)
>very-false)
= very-false

cond clause. . . Special Form
cond chooses among an arbitrary number of alternatives. Fach clause in the cond
must be a list. The CAR of this list is the condition; the remaining elements, if any,
the body-forms. Thus, a clause looks like this:
(condition body-forms. ..)

cond tries the clauses in textual order, by evaluating the condition of each clause.
If the value of condition is non-nil, the clause “succeeds”; then cond evaluates its
body-forms, and the value of the last of body-forms becomes the value of the cond.
The remaining clauses are ignored.

If the value of condition is nil, the clause “fails”, so the cond moves on to the following
clause, trying its condition.

If every condition evaluates to nil, so that every clause fails, cond returns nil.
A clause may also look like this:
(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value
of the cond form.

The following example has four clauses, which test for the cases where the value of x
is a number, string, buffer and symbol, respectively:

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause
((symbolp x) (symbol-value x)))
Often we want to execute the last clause whenever none of the previous clauses was
successful. To do this, we use t as the condition of the last clause, like this: (t
body-forms). The form t evaluates to t, which is never nil, so this clause never
fails, provided the cond gets to it at all.

For example,
(cond ((eq a ’hack) ’foo)
(t "default"))
= "default"
This expression is a cond which returns foo if the value of a is 1, and returns the
string "default" otherwise.

134 XEmacs Lisp Reference Manual

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:

(if a b ¢)

(cond (a b) (t)

9.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to
express complicated conditions. The constructs and and or can also be used individually
as kinds of multiple conditional constructs.

not condition Function
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using the
name null if you are testing for an empty list.

and conditions. . . Special Form
The and special form tests whether all the conditions are true. It works by evaluating
the conditions one by one in the order written.

If any of the conditions evaluates to nil, then the result of the and must be nil re-
gardless of the remaining conditions; so and returns right away, ignoring the remaining
conditions.

If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form.

Here is an example. The first condition returns the integer 1, which is not nil.
Similarly, the second condition returns the integer 2, which is not nil. The third
condition is nil, so the remaining condition is never evaluated.
(and (print 1) (print 2) nil (print 3))
41
4 2
= nil
Here is a more realistic example of using and:
(if (and (consp foo) (eq (car foo) ’x))
(message "foo is a list starting with x"))
Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an
error.

and can be expressed in terms of either if or cond. For example:

(and argl arg2 arg3)

(_if argl (if arg2 arg3))

(_cond (argl (cond (arg2 arg3))))

Chapter 9: Control Structures 135

or conditions. . . Special Form
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.

If any of the conditions evaluates to a non-nil value, then the result of the or must
be non-nil; so or returns right away, ignoring the remaining conditions. The value
it returns is the non-nil value of the condition just evaluated.

If all the conditions turn out nil, then the or expression returns nil.
For example, this expression tests whether x is either 0 or nil:
(or (eq x nil) (eq x 0))
Like the and construct, or can be written in terms of cond. For example:
(or argl arg2 arg3)
(_cond (argl)

(arg2)
(arg3))

You could almost write or in terms of if, but not quite:

(if argl argl
(if arg2 arg2
arg3))

This is not completely equivalent because it can evaluate argl or arg2 twice. By
contrast, (or argl arg2 arg3) never evaluates any argument more than once.

9.4 Tteration

Iteration means executing part of a program repetitively. For example, you might want
to repeat some computation once for each element of a list, or once for each integer from 0
to n. You can do this in XEmacs Lisp with the special form while:

while condition forms. . . Special Form
while first evaluates condition. If the result is non-nil, it evaluates forms in textual
order. Then it reevaluates condition, and if the result is non-nil, it evaluates forms
again. This process repeats until condition evaluates to nil.

There is no limit on the number of iterations that may occur. The loop will continue
until either condition evaluates to nil or until an error or throw jumps out of it (see
Section 9.5 [Nonlocal Exits], page 136).

The value of a while form is always nil.

(setq num 0)
=0

136 XEmacs Lisp Reference Manual

(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))
- Iteration O.
- Iteration 1.
- Iteration 2.
- Iteration 3.
= nil
If you would like to execute something on each iteration before the end-test, put it
together with the end-test in a progn as the first argument of while, as shown here:
(while (progn
(forward-line 1)
(not (looking-at "~$"))))
This moves forward one line and continues moving by lines until it reaches an empty.
It is unusual in that the while has no body, just the end test (which also does the
real work of moving point).

9.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote
point. Nonlocal exits can occur in XEmacs Lisp as a result of errors; you can also use them
under explicit control. Nonlocal exits unbind all variable bindings made by the constructs
being exited.

9.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The
function throw is the exception to this rule of normal program execution: it performs a
nonlocal exit on request. (There are other exceptions, but they are for error handling only.)
throw is used inside a catch, and jumps back to that catch. For example:

(catch ’foo
(progn

(throw ’foo t)

co2))
The throw transfers control straight back to the corresponding catch, which returns im-
mediately. The code following the throw is not executed. The second argument of throw
is used as the return value of the catch.

The throw and the catch are matched through the first argument: throw searches for
a catch whose first argument is eq to the one specified. Thus, in the above example, the
throw specifies foo, and the catch specifies the same symbol, so that catch is applicable.
If there is more than one applicable catch, the innermost one takes precedence.

Executing throw exits all Lisp constructs up to the matching catch, including function
calls. When binding constructs such as let or function calls are exited in this way, the

Chapter 9: Control Structures 137

bindings are unbound, just as they are when these constructs exit normally (see Section 10.3
Local Variables|, page 148). Likewise, throw restores the buffer and position saved by
save-excursion (see Section 34.3 [Excursions|, page 501), and the narrowing status saved
by save-restriction and the window selection saved by save-window-excursion (see
Section 31.16 [Window Configurations|, page 473). It also runs any cleanups established
with the unwind-protect special form when it exits that form (see Section 9.5.4 [Cleanups]
page 144).

The throw need not appear lexically within the catch that it jumps to. It can equally
well be called from another function called within the catch. As long as the throw takes
place chronologically after entry to the catch, and chronologically before exit from it, it
has access to that catch. This is why throw can be used in commands such as exit-
recursive-edit that throw back to the editor command loop (see Section 19.10 [Recursive
Editing], page 314).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have
several ways of transferring control nonsequentially: return, return-from, and
go, for example. XEmacs Lisp has only throw.

catch tag body. .. Special Form
catch establishes a return point for the throw function. The return point is distin-
guished from other such return points by tag, which may be any Lisp object. The
argument tag is evaluated normally before the return point is established.

With the return point in effect, catch evaluates the forms of the body in textual
order. If the forms execute normally, without error or nonlocal exit, the value of the
last body form is returned from the catch.

If a throw is done within body specifying the same value tag, the catch exits im-
mediately; the value it returns is whatever was specified as the second argument of
throw.

throw tag value Function
The purpose of throw is to return from a return point previously established with
catch. The argument tag is used to choose among the various existing return points;
it must be eq to the value specified in the catch. If multiple return points match tag,
the innermost one is used.

The argument value is used as the value to return from that catch.

If no return point is in effect with tag tag, then a no-catch error is signaled with
data (tag value).

9.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages,
this would be done with a “go to”.) Here we compute (foo i j) for i and j varying from 0
to 9:

138 XEmacs Lisp Reference Manual

(defun search-foo ()
(catch ’loop
(let ((i 0))
(while (< i 10)
(let ((j 0))
(while (< j 10)
(if (foo i j)
(throw ’loop (list i j)))
(setq j (1+ 3))))
(setq i (1+ 1))))))

If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always

returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,
two return points with the same tag, hack:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch2

(catch ’hack
(print (catch2 ’hack))
’no)
- yes
= no
Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value
is printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch?2

(catch ’hack
(print (catch2 ’quux))
’no)
= yes
We still have two return points, but this time only the outer one has the tag hack; the inner
one has the tag quux instead. Therefore, throw makes the outer catch return the value
yes. The function print is never called, and the body-form ’no is never evaluated.

9.5.3 Errors

When XEmacs Lisp attempts to evaluate a form that, for some reason, cannot be eval-
uated, it signals an error.

Chapter 9: Control Structures 139

When an error is signaled, XEmacs’s default reaction is to print an error message and
terminate execution of the current command. This is the right thing to do in most cases,
such as if you type C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example,
the program may have made temporary changes in data structures, or created temporary
buffers that should be deleted before the program is finished. In such cases, you would
use unwind-protect to establish cleanup expressions to be evaluated in case of error. (See
Section 9.5.4 [Cleanups|, page 144.) Occasionally, you may wish the program to continue
execution despite an error in a subroutine. In these cases, you would use condition-case
to establish error handlers to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the
program to another; use catch and throw instead. See Section 9.5.1 [Catch and Throw]
page 136.

9.5.3.1 How to Signal an Error

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the CAR of an integer or move forward a character at
the end of the buffer; you can also signal errors explicitly with the functions error and
signal.

Quitting, which happens when the user types C-g, is not considered an error, but it is
handled almost like an error. See Section 19.8 [Quitting], page 311.

error format-string &rest args Function

This function signals an error with an error message constructed by applying format
(see Section 4.7 [String Conversion|, page 67) to format-string and args.
These examples show typical uses of error:
(error "You have committed an error.
Try something else.")
You have committed an error.
Try something else.

(error "You have committed %d errors." 10)
You have committed 10 errors.
error works by calling signal with two arguments: the error symbol error, and a
list containing the string returned by format.
If you want to use your own string as an error message verbatim, don’t just write
(error string). If string contains ‘%’, it will be interpreted as a format specifier, with
undesirable results. Instead, use (error "%s" string).

signal error-symbol data Function

This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.

The argument error-symbol must be an error symbol—a symbol bearing a property
error-conditions whose value is a list of condition names. This is how XEmacs
Lisp classifies different sorts of errors.

140 XEmacs Lisp Reference Manual

The number and significance of the objects in data depends on error-symbol. For
example, with a wrong-type-arg error, there are two objects in the list: a predicate
that describes the type that was expected, and the object that failed to fit that type.
See Section 9.5.3.4 [Error Symbols|, page 143, for a description of error symbols.
Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data)
(see Section 9.5.3.3 [Handling Errors|, page 140). If the error is not handled, these
two values are used in printing the error message.

The function signal never returns (though in older Emacs versions it could sometimes
return).
(signal ’wrong-number-of-arguments ’(x y))
Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition."))
error| peculiar error: "My unknown error condition."

Common Lisp note: XEmacs Lisp has nothing like the Common Lisp concept
of continuable errors.

9.5.3.2 How XEmacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler
is a sequence of Lisp expressions designated to be executed if an error happens in part of
the Lisp program. If the error has an applicable handler, the handler is executed, and
control resumes following the handler. The handler executes in the environment of the
condition-case that established it; all functions called within that condition-case have
already been exited, and the handler cannot return to them.

If there is no applicable handler for the error, the current command is terminated and
control returns to the editor command loop, because the command loop has an implicit
handler for all kinds of errors. The command loop’s handler uses the error symbol and
associated data to print an error message.

An error that has no explicit handler may call the Lisp debugger. The debugger is
enabled if the variable debug-on-error (see Section 16.1.1 [Error Debugging], page 221) is
non-nil. Unlike error handlers, the debugger runs in the environment of the error, so that
you can examine values of variables precisely as they were at the time of the error.

9.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and
return immediately to the XEmacs editor command loop. You can arrange to trap errors
occurring in a part of your program by establishing an error handler, with the special form
condition-case. A simple example looks like this:

(condition-case nil
(delete-file filename)
(error nil))

Chapter 9: Control Structures 141

This deletes the file named filename, catching any error and returning nil if an error occurs.

The second argument of condition-case is called the protected form. (In the example
above, the protected form is a call to delete-file.) The error handlers go into effect when
this form begins execution and are deactivated when this form returns. They remain in
effect for all the intervening time. In particular, they are in effect during the execution
of functions called by this form, in their subroutines, and so on. This is a good thing,
since, strictly speaking, errors can be signaled only by Lisp primitives (including signal
and error) called by the protected form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more
condition names (which are symbols) to specify which errors it will handle. The error
symbol specified when an error is signaled also defines a list of condition names. A handler
applies to an error if they have any condition names in common. In the example above,
there is one handler, and it specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle
the same error, the inner of the two will actually handle it.

When an error is handled, control returns to the handler. Before this happens, XEmacs
unbinds all variable bindings made by binding constructs that are being exited and executes
the cleanups of all unwind-protect forms that are exited. Once control arrives at the
handler, the body of the handler is executed.

After execution of the handler body, execution continues by returning from the
condition-case form. Because the protected form is exited completely before execution
of the handler, the handler cannot resume execution at the point of the error, nor can it
examine variable bindings that were made within the protected form. All it can do is clean
up and proceed.

condition-case is often used to trap errors that are predictable, such as failure to open
a file in a call to insert-file-contents. It is also used to trap errors that are totally
unpredictable, such as when the program evaluates an expression read from the user.

Error signaling and handling have some resemblance to throw and catch, but they are
entirely separate facilities. An error cannot be caught by a catch, and a throw cannot be
handled by an error handler (though using throw when there is no suitable catch signals
an error that can be handled).

condition-case var protected-form handlers. . . Special Form
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.
The condition-case form makes a difference when an error occurs during protected-
form.

Each of the handlers is a list of the form (conditions body...). Here conditions is
an error condition name to be handled, or a list of condition names; body is one or
more Lisp expressions to be executed when this handler handles an error. Here are
examples of handlers:

142

XEmacs Lisp Reference Manual

(error nil)
(arith-error (message "Division by zero"))

((arith-error file-error)

(message

"Either division by zero or failure to open a file"))
Each error that occurs has an error symbol that describes what kind of error it is.
The error-conditions property of this symbol is a list of condition names (see
Section 9.5.3.4 [Error Symbols|, page 143). Emacs searches all the active condition-
case forms for a handler that specifies one or more of these condition names; the
innermost matching condition-case handles the error. Within this condition-
case, the first applicable handler handles the error.

After executing the body of the handler, the condition-case returns normally, using
the value of the last form in the handler body as the overall value.

The argument var is a variable. condition-case does not bind this variable when
executing the protected-form, only when it handles an error. At that time, it binds
var locally to a list of the form (error-symbol . data), giving the particulars of the
error. The handler can refer to this list to decide what to do. For example, if the
error is for failure opening a file, the file name is the second element of data—the
third element of var.

If var is nil, that means no variable is bound. Then the error symbol and associated
data are not available to the handler.

Here is an example of using condition-case to handle the error that results from
dividing by zero. The handler prints out a warning message and returns a very large
number.

(defun safe-divide (dividend divisor)
(condition-case err
;3 Protected form.
(/ dividend divisor)

;3 The handler.

(arith-error ; Condition.
(princ (format "Arithmetic error: %s" err))
1000000)))

= safe-divide

(safe-divide 5 0)
- Arithmetic error: (arith-error)
= 1000000

The handler specifies condition name arith-error so that it will handle only division-by-
zero errors. Other kinds of errors will not be handled, at least not by this condition-case.

Thus,

(safe-divide nil 3)
Wrong type argument: integer-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those signaled with
error:

Chapter 9: Control Structures 143

(setq baz 34)
= 34

(condition-case err
(if (eq baz 35)
t
;3 This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))
;3 This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))

2))

- The error was: (error "Rats! The variable baz was 34, not 35")
= 2

9.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you
have in mind. Each error has one and only one error symbol to categorize it. This is the
finest classification of errors defined by the XEmacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error
conditions, identified by condition names. The narrowest such classes belong to the error
symbols themselves: each error symbol is also a condition name. There are also condition
names for more extensive classes, up to the condition name error which takes in all kinds
of errors. Thus, each error has one or more condition names: error, the error symbol if
that is distinct from error, and perhaps some intermediate classifications.

In order for a symbol to be an error symbol, it must have an error-conditions property
which gives a list of condition names. This list defines the conditions that this kind of error
belongs to. (The error symbol itself, and the symbol error, should always be members
of this list.) Thus, the hierarchy of condition names is defined by the error-conditions
properties of the error symbols.

In addition to the error-conditions list, the error symbol should have an error-
message property whose value is a string to be printed when that error is signaled but
not handled. If the error-message property exists, but is not a string, the error message
‘peculiar error’ is used.

Here is how we define a new error symbol, new-error:

(put ’new-error
’error-conditions
> (error my-own-errors newW-error))
= (error my-own-errors new-error)
(put ’new-error ’error-message "A new error")
= "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-
errors, which we imagine is a wider classification; and error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period.
This is for consistency with the rest of Emacs.

144 XEmacs Lisp Reference Manual

Naturally, XEmacs will never signal new-error on its own; only an explicit call to signal

(see Section 9.5.3.1 [Signaling Errors|, page 139) in your code can do this:
(signal ’new-error ’(x y))
A new error: x, y
This error can be handled through any of the three condition names. This example
handles new-error and any other errors in the class my-own-errors:
(condition-case foo
(bar nil t)
(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names
used to match errors with handlers. An error symbol serves only as a convenient way to
specify the intended error message and list of condition names. It would be cumbersome to
give signal a list of condition names rather than one error symbol.

By contrast, using only error symbols without condition names would seriously decrease
the power of condition-case. Condition names make it possible to categorize errors at
various levels of generality when you write an error handler. Using error symbols alone
would eliminate all but the narrowest level of classification.

See Appendix C [Standard Errors|, page 787, for a list of all the standard error symbols
and their conditions.

9.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data struc-
ture in an inconsistent state; it permits you to ensure the data are consistent in the event
of an error or throw.

unwind-protect body cleanup-forms. . . Special Form
unwind-protect executes the body with a guarantee that the cleanup-forms will
be evaluated if control leaves body, no matter how that happens. The body may
complete normally, or execute a throw out of the unwind-protect, or cause an error;
in all cases, the cleanup-forms will be evaluated.

If the body forms finish normally, unwind-protect returns the value of the last body
form, after it evaluates the cleanup-forms. If the body forms do not finish, unwind-
protect does not return any value in the normal sense.

Only the body is actually protected by the unwind-protect. If any of the cleanup-
forms themselves exits nonlocally (e.g., via a throw or an error), unwind-protect is
not guaranteed to evaluate the rest of them. If the failure of one of the cleanup-forms
has the potential to cause trouble, then protect it with another unwind-protect
around that form.

The number of currently active unwind-protect forms counts, together with the num-

ber of local variable bindings, against the limit max-specpdl-size (see Section 10.3
[Local Variables], page 148).

For example, here we make an invisible buffer for temporary use, and make sure to kill
it before finishing;:

Chapter 9: Control Structures 145

(save-excursion
(let ((buffer (get-buffer-create " *tempx")))
(set-buffer buffer)
(unwind-protect
body
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and
dispense with the variable buffer. However, the way shown above is safer, if body happens
to get an error after switching to a different buffer! (Alternatively, you could write another
save-excursion around the body, to ensure that the temporary buffer becomes current in
time to kill it.)

Here is an actual example taken from the file ‘ftp.el’. It creates a process (see Chap-
ter 49 [Processes|, page 683) to try to establish a connection to a remote machine. As the
function ftp-login is highly susceptible to numerous problems that the writer of the func-
tion cannot anticipate, it is protected with a form that guarantees deletion of the process
in the event of failure. Otherwise, XEmacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect
(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))
(message "Logged in")
(error "Ftp login failed")))
(or win (and process (delete-process process)))))

This example actually has a small bug: if the user types C-g to quit, and the quit
happens immediately after the function ftp-setup-buffer returns but before the variable
process is set, the process will not be killed. There is no easy way to fix this bug, but at
least it is very unlikely.

Here is another example which uses unwind-protect to make sure to kill a temporary
buffer. In this example, the value returned by unwind-protect is used.

(defun shell-command-string (cmd)

"Return the output of the shell command CMD, as a string."
(save-excursion

(set-buffer (generate-new-buffer " 0S*cmd"))

(shell-command cmd t)

(unwind-protect

(buffer-string)
(kill-buffer (current-buffer)))))

146 XEmacs Lisp Reference Manual

Chapter 10: Variables 147

10 Variables

A variable is a name used in a program to stand for a value. Nearly all programming
languages have variables of some sort. In the text of a Lisp program, variables are written
using the syntax for symbols.

In Lisp, unlike most programming languages, programs are represented primarily as Lisp
objects and only secondarily as text. The Lisp objects used for variables are symbols: the
symbol name is the variable name, and the variable’s value is stored in the value cell of the
symbol. The use of a symbol as a variable is independent of its use as a function name. See
Section 7.1 [Symbol Components|, page 113.

The Lisp objects that constitute a Lisp program determine the textual form of the
program—it is simply the read syntax for those Lisp objects. This is why, for example,
a variable in a textual Lisp program is written using the read syntax for the symbol that
represents the variable.

10.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just
one value at a time, and this value is in effect (at least for the moment) throughout the
Lisp system. The value remains in effect until you specify a new one. When a new value
replaces the old one, no trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,
(setq x ’(a b))

gives the variable x the value (a b). Note that setq does not evaluate its first argument,
the name of the variable, but it does evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol by itself as an
expression. Thus,

x = (a b)
assuming the setq form shown above has already been executed.

If you do another setq, the new value replaces the old one:

X

= (a b)
(setq x 4)

= 4
X

= 4

10.2 Variables That Never Change

In XEmacs Lisp, some symbols always evaluate to themselves: the two special symbols
nil and t, as well as keyword symbols, that is, symbols whose name begins with the

148 XEmacs Lisp Reference Manual

character ‘:’. These symbols cannot be rebound, nor can their value cells be changed. An
attempt to change the value of nil or t signals a setting-constant error.
nil = ’nil
= nil

(setq nil 500)
Attempt to set constant symbol: nil

10.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Some-
times it is useful to create variable values that exist temporarily—only while within a certain
part of the program. These values are called local, and the variables so used are called local
variables.

For example, when a function is called, its argument variables receive new local values
that last until the function exits. The let special form explicitly establishes new local
values for specified variables; these last until exit from the let form.

Establishing a local value saves away the previous value (or lack of one) of the variable.
When the life span of the local value is over, the previous value is restored. In the mean
time, we say that the previous value is shadowed and not visible. Both global and local
values may be shadowed (see Section 10.8.1 [Scope], page 156).

If you set a variable (such as with setq) while it is local, this replaces the local value; it
does not alter the global value, or previous local values that are shadowed. To model this
behavior, we speak of a local binding of the variable as well as a local value.

The local binding is a conceptual place that holds a local value. Entry to a function, or
a special form such as let, creates the local binding; exit from the function or from the let
removes the local binding. As long as the local binding lasts, the variable’s value is stored
within it. Use of setq or set while there is a local binding stores a different value into the
local binding; it does not create a new binding.

We also speak of the global binding, which is where (conceptually) the global value is
kept.

A variable can have more than one local binding at a time (for example, if there are nested
let forms that bind it). In such a case, the most recently created local binding that still
exists is the current binding of the variable. (This is called dynamic scoping; see Section 10.8
[Variable Scoping], page 156.) If there are no local bindings, the variable’s global binding
is its current binding. We also call the current binding the most-local existing binding, for
emphasis. Ordinary evaluation of a symbol always returns the value of its current binding.

The special forms let and let* exist to create local bindings.

let (bindings...) forms. .. Special Form
This special form binds variables according to bindings and then evaluates all of the
forms in textual order. The let-form returns the value of the last form in forms.

Each of the bindings is either (i) a symbol, in which case that symbol is bound to
nil; or (ii) a list of the form (symbol value-form), in which case symbol is bound to
the result of evaluating value-form. If value-form is omitted, nil is used.

Chapter 10: Variables 149

All of the value-forms in bindings are evaluated in the order they appear and before
any of the symbols are bound. Here is an example of this: Z is bound to the old value
of Y, which is 2, not the new value, 1.

(setq Y 2)
= 2
(let ((Y 1)
(Z Y))
(list Y 2))
= (1 2)

let* (bindings. ..) forms. .. Special Form
This special form is like let, but it binds each variable right after computing its local
value, before computing the local value for the next variable. Therefore, an expression
in bindings can reasonably refer to the preceding symbols bound in this let* form.
Compare the following example with the example above for let.

(setq Y 2)
= 2
(let* ((Y 1)
(Zz Y)) ; Use the just-established value of Y.
(list Y 2))
= (11

Here is a complete list of the other facilities that create local bindings:

e Function calls (see Chapter 11 [Functions|, page 165).
e Macro calls (see Chapter 12 [Macros|, page 181).

e condition-case (see Section 9.5.3 [Errors|, page 138).

Variables can also have buffer-local bindings (see Section 10.9 [Buffer-Local Variables|,
page 159). These kinds of bindings work somewhat like ordinary local bindings, but they
are localized depending on “where” you are in Emacs, rather than localized in time.

max-specpdl-size Variable
This variable defines the limit on the total number of local variable bindings and
unwind-protect cleanups (see Section 9.5 [Nonlocal Exits|, page 136) that are al-
lowed before signaling an error (with data "Variable binding depth exceeds max-
specpdl-size").

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.

The default value is 600.

max-lisp-eval-depth provides another limit on depth of nesting. See Section 8.1
[Eval|, page 122.

150 XEmacs Lisp Reference Manual

10.4 When a Variable is “Void”

If you have never given a symbol any value as a global variable, we say that that symbol’s
global value is void. In other words, the symbol’s value cell does not have any Lisp object
in it. If you try to evaluate the symbol, you get a void-variable error rather than a value.

Note that a value of nil is not the same as void. The symbol nil is a Lisp object and
can be the value of a variable just as any other object can be; but it is a value. A void
variable does not have any value.

After you have given a variable a value, you can make it void once more using
makunbound.

makunbound symbol Function
This function makes the current binding of symbol void. Subsequent attempts to use
this symbol’s value as a variable will signal the error void-variable, unless or until
you set it again.
makunbound returns symbol.
(makunbound ’x) ; Make the global value

; of x void.
= X

X
Symbol’s value as variable is void: x

If symbol is locally bound, makunbound affects the most local existing binding. This
is the only way a symbol can have a void local binding, since all the constructs that
create local bindings create them with values. In this case, the voidness lasts at
most as long as the binding does; when the binding is removed due to exit from the
construct that made it, the previous or global binding is reexposed as usual, and the
variable is no longer void unless the newly reexposed binding was void all along.

(setq x 1) ; Put a value in the global binding.
=1
(let ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)
Symbol’s value as variable is void: x
X ; The global binding is unchanged.
=1
(et ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

error] Symbol’s value as variable is void: x

(let ((x 2))
(let ((x 3))
(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
= 2

Chapter 10: Variables 151

A variable that has been made void with makunbound is indistinguishable from one that
has never received a value and has always been void.

You can use the function boundp to test whether a variable is currently void.

boundp variable Function

boundp returns t if variable (a symbol) is not void; more precisely, if its current
binding is not void. It returns nil otherwise.
(boundp ’abracadabra) ; Starts out void.
= nil
(let ((abracadabra 5)) ; Locally bind it.
(boundp ’abracadabra))
= t
(boundp ’abracadabra) ; Still globally void.
= nil
(setq abracadabra 5) ; Make it globally nonvoid.
= 5
(boundp ’abracadabra)
= t

10.5 Defining Global Variables

You may announce your intention to use a symbol as a global variable with a variable
definition: a special form, either defconst or defvar.

In XEmacs Lisp, definitions serve three purposes. First, they inform people who read
the code that certain symbols are intended to be used a certain way (as variables). Second,
they inform the Lisp system of these things, supplying a value and documentation. Third,
they provide information to utilities such as etags and make-docfile, which create data
bases of the functions and variables in a program.

The difference between defconst and defvar is primarily a matter of intent, serving to
inform human readers of whether programs will change the variable. XEmacs Lisp does not
restrict the ways in which a variable can be used based on defconst or defvar declarations.
However, it does make a difference for initialization: defconst unconditionally initializes
the variable, while defvar initializes it only if it is void.

One would expect user option variables to be defined with defconst, since programs do
not change them. Unfortunately, this has bad results if the definition is in a library that is
not preloaded: defconst would override any prior value when the library is loaded. Users
would like to be able to set user options in their init files, and override the default values
given in the definitions. For this reason, user options must be defined with defvar.

defvar symbol [value [doc-string]] Special Form

This special form defines symbol as a value and initializes it. The definition informs
a person reading your code that symbol is used as a variable that programs are likely
to set or change. It is also used for all user option variables except in the preloaded
parts of XEmacs. Note that symbol is not evaluated; the symbol to be defined must
appear explicitly in the defvar.

152 XEmacs Lisp Reference Manual

If symbol already has a value (i.e., it is not void), value is not even evaluated, and
symbol’s value remains unchanged. If symbol is void and value is specified, defvar
evaluates it and sets symbol to the result. (If value is omitted, the value of symbol
is not changed in any case.)

When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-
defun), a special feature of eval-defun evaluates it as a defconst. The purpose of
this is to make sure the variable’s value is reinitialized, when you ask for it specifically.

If symbol has a buffer-local binding in the current buffer, defvar sets the default
value, not the local value. See Section 10.9 [Buffer-Local Variables|, page 159.

If the doc-string argument appears, it specifies the documentation for the variable.
(This opportunity to specify documentation is one of the main benefits of defining
the variable.) The documentation is stored in the symbol’s variable-documentation
property. The XEmacs help functions (see Chapter 27 [Documentation|, page 385)
look for this property.
If the first character of doc-string is ‘*’, it means that this variable is considered a
user option. This lets users set the variable conveniently using the commands set-
variable and edit-options.
For example, this form defines foo but does not set its value:
(defvar foo)
= foo
The following example sets the value of bar to 23, and gives it a documentation string:
(defvar bar 23
"The normal weight of a bar.")
= bar
The following form changes the documentation string for bar, making it a user option,
but does not change the value, since bar already has a value. (The addition (1+ 23)
is not even performed.)
(defvar bar (1+ 23)
"xThe normal weight of a bar.")
= bar
bar
= 23
Here is an equivalent expression for the defvar special form:
(defvar symbol value doc-string)

(progn
(if (not (boundp ’symbol))
(setq symbol value))
(put ’symbol ’variable-documentation ’doc-string)
>symbol)
The defvar form returns symbol, but it is normally used at top level in a file where
its value does not matter.

defconst symbol [value [doc-string]] Special Form
This special form defines symbol as a value and initializes it. It informs a person
reading your code that symbol has a global value, established here, that will not

Chapter 10: Variables 153

normally be changed or locally bound by the execution of the program. The user,
however, may be welcome to change it. Note that symbol is not evaluated; the symbol
to be defined must appear explicitly in the defconst.

defconst always evaluates value and sets the global value of symbol to the result,
provided value is given. If symbol has a buffer-local binding in the current buffer,
defconst sets the default value, not the local value.

Please note: Don’t use defconst for user option variables in libraries that are not
standardly preloaded. The user should be able to specify a value for such a variable
in the ‘.emacs’ file, so that it will be in effect if and when the library is loaded later.

Here, pi is a constant that presumably ought not to be changed by anyone (attempts
by the Indiana State Legislature notwithstanding). As the second form illustrates,
however, this is only advisory.

(defconst pi 3.1415 "Pi to five places.")
= pi

(setq pi 3)
= pi

pi
= 3

user-variable-p variable Function
This function returns t if variable is a user option—a variable intended to be set by
the user for customization—and nil otherwise. (Variables other than user options
exist for the internal purposes of Lisp programs, and users need not know about
them.)

User option variables are distinguished from other variables by the first character of
the variable-documentation property. If the property exists and is a string, and
its first character is ‘*’, then the variable is a user option.

If a user option variable has a variable-interactive property, the set-variable
command uses that value to control reading the new value for the variable. The property’s
value is used as if it were the argument to interactive.

Warning: If the defconst and defvar special forms are used while the variable has a
local binding, they set the local binding’s value; the global binding is not changed. This is
not what we really want. To prevent it, use these special forms at top level in a file, where
normally no local binding is in effect, and make sure to load the file before making a local
binding for the variable.

10.6 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it (see Sec-
tion 8.2.2 [Symbol Forms]|, page 124). This requires you to specify the variable name when
you write the program. Usually that is exactly what you want to do. Occasionally you need
to choose at run time which variable to reference; then you can use symbol-value.

154 XEmacs Lisp Reference Manual

symbol-value symbol Function
This function returns the value of symbol. This is the value in the innermost local
binding of the symbol, or its global value if it has no local bindings.
(setq abracadabra 5)
= b

(setq foo 9)
= 9

;5 Here the symbol abracadabra
s is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value ’abracadabra))
= foo

;5 Here the value of abracadabra,
s which is foo,
3 is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value abracadabra))
= 9

(symbol-value ’abracadabra)
= 5

A void-variable error is signaled if symbol has neither a local binding nor a global
value.

10.7 How to Alter a Variable Value

The usual way to change the value of a variable is with the special form setq. When
you need to compute the choice of variable at run time, use the function set.

setq [symbol form)]. . . Special Form
This special form is the most common method of changing a variable’s value. Each
symbol is given a new value, which is the result of evaluating the corresponding form.
The most-local existing binding of the symbol is changed.
setq does not evaluate symbol; it sets the symbol that you write. We say that this
argument is automatically quoted. The ‘q’ in setq stands for “quoted.”

The value of the setq form is the value of the last form.
(setq x (1+ 2))

= 3
X ; x now has a global value.
= 3
(let ((x 5))
(setq x 6) ; The local binding of x is set.
x)
= 6
X ; The global value is unchanged.

= 3

Chapter 10: Variables 155

Note that the first form is evaluated, then the first symbol is set, then the second
form is evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ %)) ; the value of y is computed.
= 11
set symbol value Function

This function sets symbol’s value to value, then returns value. Since set is a function,
the expression written for symbol is evaluated to obtain the symbol to set.
The most-local existing binding of the variable is the binding that is set; shadowed
bindings are not affected.
(set one 1)
Symbol’s value as variable is void: one
(set ’omne 1)
=1
(set ’two ’one)
= one
(set two 2) ; two evaluates to symbol one.
= 2
one ; So it is one that was set.
= 2
(let ((one 1)) ; This binding of one is set,
(set ’one 3) ; not the global value.
one)
= 3
one
= 2
If symbol is not actually a symbol, a wrong-type-argument error is signaled.
(set > (x y) ’z)
Wrong type argument: symbolp, (x y)
Logically speaking, set is a more fundamental primitive than setq. Any use of setq
can be trivially rewritten to use set; setq could even be defined as a macro, given
the availability of set. However, set itself is rarely used; beginners hardly need to
know about it. It is useful only for choosing at run time which variable to set. For
example, the command set-variable, which reads a variable name from the user
and then sets the variable, needs to use set.
Common Lisp note: In Common Lisp, set always changes the symbol’s
special value, ignoring any lexical bindings. In XEmacs Lisp, all variables
and all bindings are (in effect) special, so set always affects the most local
existing binding.

One other function for setting a variable is designed to add an element to a list if it is
not already present in the list.

add-to-list symbol element Function
This function sets the variable symbol by consing element onto the old value, if
element is not already a member of that value. It returns the resulting list, whether
updated or not. The value of symbol had better be a list already before the call.

156 XEmacs Lisp Reference Manual

The argument symbol is not implicitly quoted; add-to-1ist is an ordinary function,
like set and unlike setq. Quote the argument yourself if that is what you want.

Here’s a scenario showing how to use add-to-1list:
(setq foo ’(a b))

= (a b)
(add-to-list ’foo ’c) ;3 Add c.
= (c a b)
(add-to-1list ’foo ’b) ;5 No effect.
= (c a b)
foo ;35 foo was changed.
= (c a b)

An equivalent expression for (add-to-1list ’var value) is this:

(or (member value var)
(setq var (cons value var)))

10.8 Scoping Rules for Variable Bindings

A given symbol foo may have several local variable bindings, established at different
places in the Lisp program, as well as a global binding. The most recently established
binding takes precedence over the others.

Local bindings in XEmacs Lisp have indefinite scope and dynamic extent. Scope refers
to where textually in the source code the binding can be accessed. Indefinite scope means
that any part of the program can potentially access the variable binding. Extent refers
to when, as the program is executing, the binding exists. Dynamic extent means that the
binding lasts as long as the activation of the construct that established it.

The combination of dynamic extent and indefinite scope is called dynamic scoping. By
contrast, most programming languages use lexical scoping, in which references to a local
variable must be located textually within the function or block that binds the variable.

Common Lisp note: Variables declared “special” in Common Lisp are dynam-
ically scoped, like variables in XEmacs Lisp.

10.8.1 Scope

XEmacs Lisp uses indefinite scope for local variable bindings. This means that any
function anywhere in the program text might access a given binding of a variable. Consider
the following function definitions:

(defun binder (x) ; x is bound in binder.
(foo 5)) ; foo is some other function.
(defun user () ; x is used in user.

(1ist %))

Chapter 10: Variables 157

In a lexically scoped language, the binding of x in binder would never be accessible
in user, because user is not textually contained within the function binder. However, in
dynamically scoped XEmacs Lisp, user may or may not refer to the binding of x established
in binder, depending on circumstances:

e If we call user directly without calling binder at all, then whatever binding of x is
found, it cannot come from binder.

e If we define foo as follows and call binder, then the binding made in binder will be
seen in user:

(defun foo (lose)
(user))
e If we define foo as follows and call binder, then the binding made in binder will not
be seen in user:

(defun foo (x)
(user))

Here, when foo is called by binder, it binds x. (The binding in foo is said to shadow
the one made in binder.) Therefore, user will access the x bound by foo instead of
the one bound by binder.

10.8.2 Extent

Extent refers to the time during program execution that a variable name is valid. In
XEmacs Lisp, a variable is valid only while the form that bound it is executing. This is
called dynamic extent. “Local” or “automatic” variables in most languages, including C
and Pascal, have dynamic extent.

One alternative to dynamic extent is indefinite extent. This means that a variable
binding can live on past the exit from the form that made the binding. Common Lisp and
Scheme, for example, support this, but XEmacs Lisp does not.

To illustrate this, the function below, make-add, returns a function that purports to
add n to its own argument m. This would work in Common Lisp, but it does not work
as intended in XEmacs Lisp, because after the call to make-add exits, the variable n is no
longer bound to the actual argument 2.

(defun make-add (n)
(function (lambda (m) (+ n m)))) ; Return a function.
= make-add
(fset ’add2 (make-add 2)) ; Define function add2
; with (make-add 2).
= (lambda (m) (+ n m))
(add?2 4) ; Try to add 2 to 4.
Symbol’s value as variable is void: n

Some Lisp dialects have “closures”, objects that are like functions but record additional
variable bindings. XEmacs Lisp does not have closures.

10.8.3 Implementation of Dynamic Scoping

158 XEmacs Lisp Reference Manual

A simple sample implementation (which is not how XEmacs Lisp actually works) may
help you understand dynamic binding. This technique is called deep binding and was used
in early Lisp systems.

Suppose there is a stack of bindings: variable-value pairs. At entry to a function or to
a let form, we can push bindings on the stack for the arguments or local variables created
there. We can pop those bindings from the stack at exit from the binding construct.

We can find the value of a variable by searching the stack from top to bottom for a
binding for that variable; the value from that binding is the value of the variable. To set
the variable, we search for the current binding, then store the new value into that binding.

As you can see, a function’s bindings remain in effect as long as it continues execution,
even during its calls to other functions. That is why we say the extent of the binding is
dynamic. And any other function can refer to the bindings, if it uses the same variables
while the bindings are in effect. That is why we say the scope is indefinite.

The actual implementation of variable scoping in XEmacs Lisp uses a technique called
shallow binding. Each variable has a standard place in which its current value is always
found—the value cell of the symbol.

In shallow binding, setting the variable works by storing a value in the value cell. Cre-
ating a new binding works by pushing the old value (belonging to a previous binding) on a
stack, and storing the local value in the value cell. Eliminating a binding works by popping
the old value off the stack, into the value cell.

We use shallow binding because it has the same results as deep binding, but runs faster,
since there is never a need to search for a binding.

10.8.4 Proper Use of Dynamic Scoping

Binding a variable in one function and using it in another is a powerful technique, but
if used without restraint, it can make programs hard to understand. There are two clean
ways to use this technique:

e Use or bind the variable only in a few related functions, written close together in one
file. Such a variable is used for communication within one program.

You should write comments to inform other programmers that they can see all uses of
the variable before them, and to advise them not to add uses elsewhere.

e Give the variable a well-defined, documented meaning, and make all appropriate func-
tions refer to it (but not bind it or set it) wherever that meaning is relevant. For
example, the variable case-fold-search is defined as “non-nil means ignore case
when searching”; various search and replace functions refer to it directly or through
their subroutines, but do not bind or set it.

Then you can bind the variable in other programs, knowing reliably what the effect
will be.

In either case, you should define the variable with defvar. This helps other people
understand your program by telling them to look for inter-function usage. It also avoids a
warning from the byte compiler. Choose the variable’s name to avoid name conflicts—don’t
use short names like x.

Chapter 10: Variables 159

10.9 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form
or another. XEmacs also supports another, unusual kind of variable binding: buffer-local
bindings, which apply only to one buffer. XEmacs Lisp is meant for programming editing
commands, and having different values for a variable in different buffers is an important
customization method.

10.9.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The
binding is in effect when that buffer is current; otherwise, it is not in effect. If you set the
variable while a buffer-local binding is in effect, the new value goes in that binding, so the
global binding is unchanged; this means that the change is visible in that buffer alone.

A variable may have buffer-local bindings in some buffers but not in others. The global
binding is shared by all the buffers that don’t have their own bindings. Thus, if you set the
variable in a buffer that does not have a buffer-local binding for it, the new value is visible
in all buffers except those with buffer-local bindings. (Here we are assuming that there are
no let-style local bindings to complicate the issue.)

The most common use of buffer-local bindings is for major modes to change variables
that control the behavior of commands. For example, C mode and Lisp mode both set the
variable paragraph-start to specify that only blank lines separate paragraphs. They do
this by making the variable buffer-local in the buffer that is being put into C mode or Lisp
mode, and then setting it to the new value for that mode.

The usual way to make a buffer-local binding is with make-local-variable, which is
what major mode commands use. This affects just the current buffer; all other buffers
(including those yet to be created) continue to share the global value.

A more powerful operation is to mark the variable as automatically buffer-local by calling
make-variable-buffer-local. You can think of this as making the variable local in all
buffers, even those yet to be created. More precisely, the effect is that setting the variable
automatically makes the variable local to the current buffer if it is not already so. All
buffers start out by sharing the global value of the variable as usual, but any setq creates
a buffer-local binding for the current buffer. The new value is stored in the buffer-local
binding, leaving the (default) global binding untouched. The global value can no longer be
changed with setq; you need to use setq-default to do that.

Local variables in a file you edit are also represented by buffer-local bindings for the
buffer that holds the file within XEmacs. See Section 26.1.3 [Auto Major Mode|, page 370.

10.9.2 Creating and Deleting Buffer-Local Bindings

make-local-variable variable Command
This function creates a buffer-local binding in the current buffer for variable (a sym-
bol). Other buffers are not affected. The value returned is variable.

160 XEmacs Lisp Reference Manual

The buffer-local value of variable starts out as the same value variable previously
had. If variable was void, it remains void.

;3 In buffer ‘b1’

(setq foo 5) ; Affects all buffers.
= b

(make-local-variable ’foo) ; Now it is local in ‘b1’.
= foo

foo ; That did not change
= 5 ; the value.

(setq foo 6) ; Change the value
= 6 ; in ‘b1’.

foo
= 6

;5 In buffer ‘b2’, the value hasn’t changed.
(save-excursion
(set-buffer "b2")
foo)
= b
Making a variable buffer-local within a let-binding for that variable does not work.
This is because let does not distinguish between different kinds of bindings; it knows
only which variable the binding was made for.

Please note: do not use make-local-variable for a hook variable. Instead, use
make-local-hook. See Section 26.4 [Hooks|, page 382.

make-variable-buffer-local variable Command
This function marks variable (a symbol) automatically buffer-local, so that any sub-
sequent attempt to set it will make it local to the current buffer at the time.

The value returned is variable.

local-variable-p variable &optional buffer Function
This returns t if variable is buffer-local in buffer buffer (which defaults to the current
buffer); otherwise, nil.

buffer-local-variables &optional buffer Function
This function returns a list describing the buffer-local variables in buffer buffer. It
returns an association list (see Section 5.8 [Association Lists], page 94) in which
each association contains one buffer-local variable and its value. When a buffer-local
variable is void in buffer, then it appears directly in the resulting list. If buffer is
omitted, the current buffer is used.

(make-local-variable ’foobar)
(makunbound ’foobar)
(make-local-variable ’bind-me)
(setq bind-me 69)
(setq 1lcl (buffer-local-variables))
;3 First, built-in variables local in all buffers:
= ((mark-active . nil)

Chapter 10: Variables 161

(buffer-undo-1list nil)
(mode-name . "Fundamental")

; 5 Next, non-built-in local variables.

;3 This one is local and void:

foobar

;3 This one is local and nonvoid:

(bind-me . 69))
Note that storing new values into the CDRs of cons cells in this list does not change
the local values of the variables.

kill-local-variable variable Command
This function deletes the buffer-local binding (if any) for variable (a symbol) in the
current buffer. As a result, the global (default) binding of variable becomes visible in
this buffer. Usually this results in a change in the value of variable, since the global
value is usually different from the buffer-local value just eliminated.

If you kill the local binding of a variable that automatically becomes local when set,
this makes the global value visible in the current buffer. However, if you set the
variable again, that will once again create a local binding for it.

kill-local-variable returns variable.

This function is a command because it is sometimes useful to kill one buffer-local
variable interactively, just as it is useful to create buffer-local variables interactively.

kill-all-local-variables Function
This function eliminates all the buffer-local variable bindings of the current buffer
except for variables marked as “permanent”. As a result, the buffer will see the
default values of most variables.

This function also resets certain other information pertaining to the buffer: it sets
the local keymap to nil, the syntax table to the value of standard-syntax-table,
and the abbrev table to the value of fundamental-mode-abbrev-table.

Every major mode command begins by calling this function, which has the effect of
switching to Fundamental mode and erasing most of the effects of the previous major
mode. To ensure that this does its job, the variables that major modes set should
not be marked permanent.

kill-all-local-variables returns nil.

A local variable is permanent if the variable name (a symbol) has a permanent-local
property that is non-nil. Per