
XEmacs Lisp Reference Manual
Version 3.4 (for XEmacs 21.1), May 1999

by Ben Wing

Based on the GNU Emacs Lisp Reference Manual
by Bil Lewis, Dan LaLiberte, Richard Stallman
and the GNU Manual Group

Copyright c© 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Copyright
c© 1994, 1995 Sun Microsystems, Inc. Copyright c© 1995, 1996 Ben Wing.

Version 3.3
Revised for XEmacs Versions 21.1,
April 1998.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the Free
Software Foundation instead of in the original English.
Cover art by Etienne Suvasa.

i

Short Contents

GNU GENERAL PUBLIC LICENSE . 1

1 Introduction . 9

2 Lisp Data Types . 17

3 Numbers . 47

4 Strings and Characters . 61

5 Lists . 79

6 Sequences, Arrays, and Vectors . 103

7 Symbols . 113

8 Evaluation . 121

9 Control Structures . 131

10 Variables . 147

11 Functions . 165

12 Macros . 181

13 Writing Customization Definitions 189

14 Loading . 199

15 Byte Compilation . 209

16 Debugging Lisp Programs . 221

17 Reading and Printing Lisp Objects 255

18 Minibuffers . 265

19 Command Loop . 285

20 Keymaps . 319

21 Menus . 341

22 Dialog Boxes. 353

23 Toolbar . 355

24 scrollbars . 361

25 Drag and Drop . 363

26 Major and Minor Modes . 365

27 Documentation . 385

28 Files . 395

29 Backups and Auto-Saving . 425

30 Buffers . 435

31 Windows . 449

32 Frames. 475

33 Consoles and Devices . 487

34 Positions . 493

ii XEmacs Lisp Reference Manual

35 Markers . 505

36 Text . 517

37 Searching and Matching . 555

38 Syntax Tables . 575

39 Abbrevs And Abbrev Expansion 587

40 Extents . 593

41 Specifiers . 609

42 Faces and Window-System Objects 625

43 Glyphs. 635

44 Annotations . 651

45 Emacs Display . 657

46 Hash Tables . 675

47 Range Tables . 679

48 Databases . 681

49 Processes . 683

50 Operating System Interface . 701

51 Functions Specific to the X Window System 723

52 ToolTalk Support . 729

53 LDAP Support . 735

54 Internationalization . 741

55 MULE . 745

Appendix A Tips and Standards . 769

Appendix B Building XEmacs; Allocation of Objects 779

Appendix C Standard Errors . 787

Appendix D Buffer-Local Variables. 791

Appendix E Standard Keymaps . 795

Appendix F Standard Hooks . 799

Index . 807

iii

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 2
How to Apply These Terms to Your New Programs 6

1 Introduction . 9
1.1 Caveats . 9
1.2 Lisp History . 10
1.3 Conventions . 10

1.3.1 Some Terms . 10
1.3.2 nil and t . 10
1.3.3 Evaluation Notation . 11
1.3.4 Printing Notation . 11
1.3.5 Error Messages . 12
1.3.6 Buffer Text Notation . 12
1.3.7 Format of Descriptions . 12

1.3.7.1 A Sample Function Description 12
1.3.7.2 A Sample Variable Description 14

1.4 Acknowledgements . 14

2 Lisp Data Types . 17
2.1 Printed Representation and Read Syntax 17
2.2 Comments . 18
2.3 Primitive Types . 18
2.4 Programming Types . 20

2.4.1 Integer Type . 20
2.4.2 Floating Point Type . 20
2.4.3 Character Type . 21
2.4.4 Symbol Type . 23
2.4.5 Sequence Types . 24
2.4.6 Cons Cell and List Types . 24

2.4.6.1 Dotted Pair Notation 26
2.4.6.2 Association List Type 27

2.4.7 Array Type . 27
2.4.8 String Type . 28
2.4.9 Vector Type . 28
2.4.10 Bit Vector Type . 29
2.4.11 Function Type . 29
2.4.12 Macro Type . 29
2.4.13 Primitive Function Type . 30
2.4.14 Compiled-Function Type . 30

iv XEmacs Lisp Reference Manual

2.4.15 Autoload Type . 30
2.4.16 Char Table Type . 31
2.4.17 Hash Table Type . 31
2.4.18 Range Table Type . 31
2.4.19 Weak List Type . 32

2.5 Editing Types. 32
2.5.1 Buffer Type . 32
2.5.2 Marker Type . 33
2.5.3 Extent Type . 33
2.5.4 Window Type . 33
2.5.5 Frame Type . 34
2.5.6 Device Type . 34
2.5.7 Console Type . 34
2.5.8 Window Configuration Type . 35
2.5.9 Event Type . 35
2.5.10 Process Type . 35
2.5.11 Stream Type . 36
2.5.12 Keymap Type . 36
2.5.13 Syntax Table Type . 36
2.5.14 Display Table Type . 37
2.5.15 Database Type . 37
2.5.16 Charset Type . 37
2.5.17 Coding System Type . 37
2.5.18 ToolTalk Message Type . 37
2.5.19 ToolTalk Pattern Type . 37

2.6 Window-System Types . 37
2.6.1 Face Type . 37
2.6.2 Glyph Type . 37
2.6.3 Specifier Type . 38
2.6.4 Font Instance Type . 38
2.6.5 Color Instance Type . 38
2.6.6 Image Instance Type . 38
2.6.7 Toolbar Button Type . 38
2.6.8 Subwindow Type . 38
2.6.9 X Resource Type . 38

2.7 Type Predicates . 38
2.8 Equality Predicates . 44

v

3 Numbers . 47
3.1 Integer Basics . 47
3.2 Floating Point Basics . 48
3.3 Type Predicates for Numbers . 48
3.4 Comparison of Numbers . 49
3.5 Numeric Conversions . 51
3.6 Arithmetic Operations . 52
3.7 Rounding Operations . 55
3.8 Bitwise Operations on Integers . 55
3.9 Standard Mathematical Functions . 59
3.10 Random Numbers . 60

4 Strings and Characters . 61
4.1 String and Character Basics . 61
4.2 The Predicates for Strings . 62
4.3 Creating Strings . 62
4.4 The Predicates for Characters . 64
4.5 Character Codes . 64
4.6 Comparison of Characters and Strings 65
4.7 Conversion of Characters and Strings . 67
4.8 Modifying Strings . 69
4.9 String Properties . 69
4.10 Formatting Strings . 69
4.11 Character Case . 72
4.12 The Case Table . 74
4.13 The Char Table . 75

4.13.1 Char Table Types . 76
4.13.2 Working With Char Tables . 77

5 Lists . 79
5.1 Lists and Cons Cells . 79
5.2 Lists as Linked Pairs of Boxes . 79
5.3 Predicates on Lists . 80
5.4 Accessing Elements of Lists . 81
5.5 Building Cons Cells and Lists . 84
5.6 Modifying Existing List Structure . 87

5.6.1 Altering List Elements with setcar 87
5.6.2 Altering the CDR of a List . 88
5.6.3 Functions that Rearrange Lists 90

5.7 Using Lists as Sets . 92
5.8 Association Lists . 94
5.9 Property Lists . 97

5.9.1 Working With Normal Plists 98
5.9.2 Working With Lax Plists . 99
5.9.3 Converting Plists To/From Alists 100

5.10 Weak Lists . 101

vi XEmacs Lisp Reference Manual

6 Sequences, Arrays, and Vectors 103
6.1 Sequences . 103
6.2 Arrays . 105
6.3 Functions that Operate on Arrays . 106
6.4 Vectors . 108
6.5 Functions That Operate on Vectors . 108
6.6 Bit Vectors . 110
6.7 Functions That Operate on Bit Vectors 110

7 Symbols. 113
7.1 Symbol Components. 113
7.2 Defining Symbols . 114
7.3 Creating and Interning Symbols . 115
7.4 Symbol Properties. 118

7.4.1 Property Lists and Association Lists 118
7.4.2 Property List Functions for Symbols 118
7.4.3 Property Lists Outside Symbols 119

8 Evaluation . 121
8.1 Eval. 122
8.2 Kinds of Forms . 123

8.2.1 Self-Evaluating Forms . 124
8.2.2 Symbol Forms . 124
8.2.3 Classification of List Forms . 125
8.2.4 Symbol Function Indirection 125
8.2.5 Evaluation of Function Forms 126
8.2.6 Lisp Macro Evaluation . 126
8.2.7 Special Forms . 127
8.2.8 Autoloading . 128

8.3 Quoting . 129

9 Control Structures . 131
9.1 Sequencing . 131
9.2 Conditionals . 132
9.3 Constructs for Combining Conditions 134
9.4 Iteration . 135
9.5 Nonlocal Exits . 136

9.5.1 Explicit Nonlocal Exits: catch and throw 136
9.5.2 Examples of catch and throw 137
9.5.3 Errors . 138

9.5.3.1 How to Signal an Error 139
9.5.3.2 How XEmacs Processes Errors 140
9.5.3.3 Writing Code to Handle Errors 140
9.5.3.4 Error Symbols and Condition Names . . 143

9.5.4 Cleaning Up from Nonlocal Exits 144

vii

10 Variables . 147
10.1 Global Variables . 147
10.2 Variables That Never Change . 147
10.3 Local Variables . 148
10.4 When a Variable is “Void” . 150
10.5 Defining Global Variables . 151
10.6 Accessing Variable Values . 153
10.7 How to Alter a Variable Value . 154
10.8 Scoping Rules for Variable Bindings 156

10.8.1 Scope . 156
10.8.2 Extent . 157
10.8.3 Implementation of Dynamic Scoping 157
10.8.4 Proper Use of Dynamic Scoping 158

10.9 Buffer-Local Variables . 159
10.9.1 Introduction to Buffer-Local Variables. 159
10.9.2 Creating and Deleting Buffer-Local Bindings . . . 159
10.9.3 The Default Value of a Buffer-Local Variable . . 161

10.10 Variable Aliases . 163

11 Functions . 165
11.1 What Is a Function? . 165
11.2 Lambda Expressions . 166

11.2.1 Components of a Lambda Expression 166
11.2.2 A Simple Lambda-Expression Example 167
11.2.3 Advanced Features of Argument Lists 168
11.2.4 Documentation Strings of Functions. 169

11.3 Naming a Function . 169
11.4 Defining Functions . 170
11.5 Calling Functions . 172
11.6 Mapping Functions . 173
11.7 Anonymous Functions . 174
11.8 Accessing Function Cell Contents . 176
11.9 Inline Functions . 178
11.10 Other Topics Related to Functions 178

12 Macros . 181
12.1 A Simple Example of a Macro . 181
12.2 Expansion of a Macro Call . 181
12.3 Macros and Byte Compilation . 182
12.4 Defining Macros . 183
12.5 Backquote . 183
12.6 Common Problems Using Macros . 184

12.6.1 Evaluating Macro Arguments Repeatedly 184
12.6.2 Local Variables in Macro Expansions 186
12.6.3 Evaluating Macro Arguments in Expansion 186
12.6.4 How Many Times is the Macro Expanded? 187

viii XEmacs Lisp Reference Manual

13 Writing Customization Definitions 189
13.1 Common Keywords for All Kinds of Items 189
13.2 Defining Custom Groups. 190
13.3 Defining Customization Variables . 191
13.4 Customization Types . 192

13.4.1 Simple Types . 193
13.4.2 Composite Types . 194
13.4.3 Splicing into Lists . 196
13.4.4 Type Keywords . 196

14 Loading . 199
14.1 How Programs Do Loading . 199
14.2 Autoload . 202
14.3 Repeated Loading . 204
14.4 Features . 205
14.5 Unloading . 207
14.6 Hooks for Loading . 208

15 Byte Compilation. 209
15.1 Performance of Byte-Compiled Code 209
15.2 The Compilation Functions . 210
15.3 Documentation Strings and Compilation 212
15.4 Dynamic Loading of Individual Functions 213
15.5 Evaluation During Compilation . 213
15.6 Compiled-Function Objects . 214
15.7 Disassembled Byte-Code . 216

16 Debugging Lisp Programs 221
16.1 The Lisp Debugger . 221

16.1.1 Entering the Debugger on an Error 221
16.1.2 Debugging Infinite Loops . 222
16.1.3 Entering the Debugger on a Function Call 223
16.1.4 Explicit Entry to the Debugger 224
16.1.5 Using the Debugger . 224
16.1.6 Debugger Commands . 225
16.1.7 Invoking the Debugger . 226
16.1.8 Internals of the Debugger . 228

16.2 Debugging Invalid Lisp Syntax . 230
16.2.1 Excess Open Parentheses . 230
16.2.2 Excess Close Parentheses . 231

16.3 Debugging Problems in Compilation 231
16.4 Edebug . 231

16.4.1 Using Edebug . 232
16.4.2 Instrumenting for Edebug . 233
16.4.3 Edebug Execution Modes . 234
16.4.4 Jumping . 235
16.4.5 Miscellaneous . 236

ix

16.4.6 Breakpoints . 237
16.4.6.1 Global Break Condition 237
16.4.6.2 Embedded Breakpoints 238

16.4.7 Trapping Errors . 238
16.4.8 Edebug Views . 239
16.4.9 Evaluation . 239
16.4.10 Evaluation List Buffer . 240
16.4.11 Reading in Edebug . 241
16.4.12 Printing in Edebug . 241
16.4.13 Tracing . 242
16.4.14 Coverage Testing . 243
16.4.15 The Outside Context . 243

16.4.15.1 Checking Whether to Stop 244
16.4.15.2 Edebug Display Update 244
16.4.15.3 Edebug Recursive Edit 244

16.4.16 Instrumenting Macro Calls 245
16.4.16.1 Specification List 246
16.4.16.2 Backtracking . 249
16.4.16.3 Debugging Backquote 250
16.4.16.4 Specification Examples 251

16.4.17 Edebug Options . 252

17 Reading and Printing Lisp Objects 255
17.1 Introduction to Reading and Printing 255
17.2 Input Streams . 255
17.3 Input Functions . 257
17.4 Output Streams . 258
17.5 Output Functions . 260
17.6 Variables Affecting Output. 262

18 Minibuffers . 265
18.1 Introduction to Minibuffers . 265
18.2 Reading Text Strings with the Minibuffer 265
18.3 Reading Lisp Objects with the Minibuffer 267
18.4 Minibuffer History . 269
18.5 Completion . 270

18.5.1 Basic Completion Functions 270
18.5.2 Completion and the Minibuffer 272
18.5.3 Minibuffer Commands That Do Completion . . . 273
18.5.4 High-Level Completion Functions 275
18.5.5 Reading File Names . 277
18.5.6 Programmed Completion . 278

18.6 Yes-or-No Queries . 279
18.7 Asking Multiple Y-or-N Questions . 281
18.8 Minibuffer Miscellany. 282

x XEmacs Lisp Reference Manual

19 Command Loop . 285
19.1 Command Loop Overview . 285
19.2 Defining Commands . 286

19.2.1 Using interactive . 286
19.2.2 Code Characters for interactive 288
19.2.3 Examples of Using interactive 290

19.3 Interactive Call . 290
19.4 Information from the Command Loop 292
19.5 Events . 294

19.5.1 Event Types . 295
19.5.2 Contents of the Different Types of Events 295
19.5.3 Event Predicates . 298
19.5.4 Accessing the Position of a Mouse Event 299

19.5.4.1 Frame-Level Event Position Info 299
19.5.4.2 Window-Level Event Position Info 299
19.5.4.3 Event Text Position Info. 300
19.5.4.4 Event Glyph Position Info 301
19.5.4.5 Event Toolbar Position Info 301
19.5.4.6 Other Event Position Info 301

19.5.5 Accessing the Other Contents of Events 302
19.5.6 Working With Events . 302
19.5.7 Converting Events . 305

19.6 Reading Input . 306
19.6.1 Key Sequence Input . 306
19.6.2 Reading One Event . 307
19.6.3 Dispatching an Event . 308
19.6.4 Quoted Character Input . 308
19.6.5 Miscellaneous Event Input Features 308

19.7 Waiting for Elapsed Time or Input . 310
19.8 Quitting . 311
19.9 Prefix Command Arguments . 312
19.10 Recursive Editing . 314
19.11 Disabling Commands . 316
19.12 Command History . 317
19.13 Keyboard Macros . 317

xi

20 Keymaps . 319
20.1 Keymap Terminology . 319
20.2 Format of Keymaps . 320
20.3 Creating Keymaps . 320
20.4 Inheritance and Keymaps . 321
20.5 Key Sequences . 322
20.6 Prefix Keys . 323
20.7 Active Keymaps . 324
20.8 Key Lookup . 328
20.9 Functions for Key Lookup . 329
20.10 Changing Key Bindings . 332
20.11 Commands for Binding Keys . 335
20.12 Scanning Keymaps . 337
20.13 Other Keymap Functions . 340

21 Menus . 341
21.1 Format of Menus . 341
21.2 Format of the Menubar . 344
21.3 Menubar . 344
21.4 Modifying Menus . 346
21.5 Menu Filters . 348
21.6 Pop-Up Menus . 349
21.7 Menu Accelerators . 350

21.7.1 Creating Menu Accelerators 350
21.7.2 Keyboard Menu Traversal . 350
21.7.3 Menu Accelerator Functions 350

21.8 Buffers Menu . 352

22 Dialog Boxes . 353
22.1 Dialog Box Format . 353
22.2 Dialog Box Functions . 353

23 Toolbar . 355
23.1 Toolbar Intro . 355
23.2 Toolbar Descriptor Format . 355
23.3 Specifying the Toolbar . 357
23.4 Other Toolbar Variables . 358

24 scrollbars . 361

xii XEmacs Lisp Reference Manual

25 Drag and Drop . 363
25.1 Supported Protocols . 363

25.1.1 OffiX DND . 363
25.1.2 CDE dt . 363
25.1.3 MSWindows OLE . 364
25.1.4 Loose ends . 364

25.2 Drop Interface . 364
25.3 Drag Interface . 364

26 Major and Minor Modes 365
26.1 Major Modes . 365

26.1.1 Major Mode Conventions . 366
26.1.2 Major Mode Examples . 367
26.1.3 How XEmacs Chooses a Major Mode 370
26.1.4 Getting Help about a Major Mode 373
26.1.5 Defining Derived Modes . 374

26.2 Minor Modes . 374
26.2.1 Conventions for Writing Minor Modes 375
26.2.2 Keymaps and Minor Modes 376

26.3 Modeline Format . 376
26.3.1 The Data Structure of the Modeline 377
26.3.2 Variables Used in the Modeline 378
26.3.3 %-Constructs in the ModeLine 380

26.4 Hooks . 382

27 Documentation . 385
27.1 Documentation Basics . 385
27.2 Access to Documentation Strings . 386
27.3 Substituting Key Bindings in Documentation 388
27.4 Describing Characters for Help Messages 390
27.5 Help Functions . 391
27.6 Obsoleteness . 393

28 Files . 395
28.1 Visiting Files . 395

28.1.1 Functions for Visiting Files 395
28.1.2 Subroutines of Visiting . 397

28.2 Saving Buffers . 398
28.3 Reading from Files . 400
28.4 Writing to Files . 400
28.5 File Locks . 401
28.6 Information about Files. 402

28.6.1 Testing Accessibility . 402
28.6.2 Distinguishing Kinds of Files 404
28.6.3 Truenames . 405
28.6.4 Other Information about Files 405

28.7 Changing File Names and Attributes 408

xiii

28.8 File Names . 410
28.8.1 File Name Components . 410
28.8.2 Directory Names . 411
28.8.3 Absolute and Relative File Names 413
28.8.4 Functions that Expand Filenames 413
28.8.5 Generating Unique File Names 415
28.8.6 File Name Completion . 415

28.9 Contents of Directories . 416
28.10 Creating and Deleting Directories . 417
28.11 Making Certain File Names “Magic” 418
28.12 Partial Files . 420

28.12.1 Intro to Partial Files . 420
28.12.2 Creating a Partial File . 420
28.12.3 Detached Partial Files . 420

28.13 File Format Conversion . 421
28.14 Files and MS-DOS . 423

29 Backups and Auto-Saving 425
29.1 Backup Files . 425

29.1.1 Making Backup Files . 425
29.1.2 Backup by Renaming or by Copying? 426
29.1.3 Making and Deleting Numbered Backup Files . . 427
29.1.4 Naming Backup Files . 428

29.2 Auto-Saving . 429
29.3 Reverting . 433

30 Buffers . 435
30.1 Buffer Basics . 435
30.2 The Current Buffer . 435
30.3 Buffer Names . 437
30.4 Buffer File Name . 438
30.5 Buffer Modification. 440
30.6 Comparison of Modification Time . 441
30.7 Read-Only Buffers . 442
30.8 The Buffer List . 443
30.9 Creating Buffers . 444
30.10 Killing Buffers . 445
30.11 Indirect Buffers . 447

xiv XEmacs Lisp Reference Manual

31 Windows . 449
31.1 Basic Concepts of Emacs Windows . 449
31.2 Splitting Windows . 450
31.3 Deleting Windows . 453
31.4 Selecting Windows . 454
31.5 Cyclic Ordering of Windows . 455
31.6 Buffers and Windows . 457
31.7 Displaying Buffers in Windows . 457
31.8 Choosing a Window for Display . 459
31.9 Windows and Point . 462
31.10 The Window Start Position . 463
31.11 Vertical Scrolling . 464
31.12 Horizontal Scrolling . 467
31.13 The Size of a Window . 468
31.14 The Position of a Window . 470
31.15 Changing the Size of a Window . 471
31.16 Window Configurations . 473

32 Frames. 475
32.1 Creating Frames . 475
32.2 Frame Properties . 475

32.2.1 Access to Frame Properties 476
32.2.2 Initial Frame Properties . 476
32.2.3 X Window Frame Properties 477
32.2.4 Frame Size And Position . 478
32.2.5 The Name of a Frame (As Opposed to Its Title)

. 479
32.3 Frame Titles . 480
32.4 Deleting Frames . 480
32.5 Finding All Frames . 481
32.6 Frames and Windows . 482
32.7 Minibuffers and Frames . 482
32.8 Input Focus . 483
32.9 Visibility of Frames . 484
32.10 Raising and Lowering Frames . 484
32.11 Frame Configurations . 485
32.12 Hooks for Customizing Frame Behavior 486

33 Consoles and Devices 487
33.1 Basic Console Functions . 487
33.2 Basic Device Functions . 488
33.3 Console Types and Device Classes . 488
33.4 Connecting to a Console or Device . 489
33.5 The Selected Console and Device . 490
33.6 Console and Device I/O . 491

xv

34 Positions . 493
34.1 Point . 493
34.2 Motion . 494

34.2.1 Motion by Characters . 494
34.2.2 Motion by Words . 495
34.2.3 Motion to an End of the Buffer 496
34.2.4 Motion by Text Lines . 496
34.2.5 Motion by Screen Lines . 498
34.2.6 Moving over Balanced Expressions 499
34.2.7 Skipping Characters . 500

34.3 Excursions . 501
34.4 Narrowing . 502

35 Markers. 505
35.1 Overview of Markers . 505
35.2 Predicates on Markers . 506
35.3 Functions That Create Markers . 507
35.4 Information from Markers . 509
35.5 Changing Marker Positions . 509
35.6 The Mark . 510
35.7 The Region . 513

36 Text . 517
36.1 Examining Text Near Point . 517
36.2 Examining Buffer Contents . 518
36.3 Comparing Text . 519
36.4 Inserting Text . 520
36.5 User-Level Insertion Commands . 521
36.6 Deleting Text . 522
36.7 User-Level Deletion Commands . 523
36.8 The Kill Ring . 525

36.8.1 Kill Ring Concepts . 526
36.8.2 Functions for Killing . 526
36.8.3 Functions for Yanking . 527
36.8.4 Low-Level Kill Ring . 527
36.8.5 Internals of the Kill Ring . 528

36.9 Undo . 529
36.10 Maintaining Undo Lists. 531
36.11 Filling. 532
36.12 Margins for Filling . 534
36.13 Auto Filling . 535
36.14 Sorting Text . 536
36.15 Counting Columns . 539
36.16 Indentation . 540

36.16.1 Indentation Primitives . 540
36.16.2 Indentation Controlled by Major Mode 540
36.16.3 Indenting an Entire Region 541

xvi XEmacs Lisp Reference Manual

36.16.4 Indentation Relative to Previous Lines 542
36.16.5 Adjustable “Tab Stops” . 543
36.16.6 Indentation-Based Motion Commands 544

36.17 Case Changes . 544
36.18 Text Properties . 546

36.18.1 Examining Text Properties 546
36.18.2 Changing Text Properties 547
36.18.3 Property Search Functions 548
36.18.4 Properties with Special Meanings 549
36.18.5 Saving Text Properties in Files 550

36.19 Substituting for a Character Code . 551
36.20 Registers . 551
36.21 Transposition of Text . 552
36.22 Change Hooks . 553

37 Searching and Matching 555
37.1 Searching for Strings . 555
37.2 Regular Expressions . 556

37.2.1 Syntax of Regular Expressions 557
37.2.2 Complex Regexp Example. 562

37.3 Regular Expression Searching . 563
37.4 POSIX Regular Expression Searching 566
37.5 Search and Replace . 566
37.6 The Match Data . 568

37.6.1 Simple Match Data Access 568
37.6.2 Replacing the Text That Matched 569
37.6.3 Accessing the Entire Match Data 570
37.6.4 Saving and Restoring the Match Data 571

37.7 Searching and Case . 572
37.8 Standard Regular Expressions Used in Editing 572

38 Syntax Tables . 575
38.1 Syntax Table Concepts . 575
38.2 Syntax Descriptors . 576

38.2.1 Table of Syntax Classes . 576
38.2.2 Syntax Flags . 578

38.3 Syntax Table Functions . 579
38.4 Motion and Syntax . 581
38.5 Parsing Balanced Expressions . 582
38.6 Some Standard Syntax Tables . 584
38.7 Syntax Table Internals. 584

xvii

39 Abbrevs And Abbrev Expansion. 587
39.1 Setting Up Abbrev Mode . 587
39.2 Abbrev Tables . 587
39.3 Defining Abbrevs . 588
39.4 Saving Abbrevs in Files . 589
39.5 Looking Up and Expanding Abbreviations 589
39.6 Standard Abbrev Tables . 591

40 Extents . 593
40.1 Introduction to Extents . 593
40.2 Creating and Modifying Extents . 594
40.3 Extent Endpoints . 595
40.4 Finding Extents . 596
40.5 Mapping Over Extents . 597
40.6 Properties of Extents . 599
40.7 Detached Extents . 604
40.8 Extent Parents . 604
40.9 Duplicable Extents . 605
40.10 Interaction of Extents with Keyboard and Mouse Events

. 606
40.11 Atomic Extents . 606

41 Specifiers . 609
41.1 Introduction to Specifiers . 609
41.2 In-Depth Overview of a Specifier . 610
41.3 How a Specifier Is Instanced . 611
41.4 Specifier Types . 612
41.5 Adding specifications to a Specifier . 614
41.6 Retrieving the Specifications from a Specifier 617
41.7 Working With Specifier Tags . 618
41.8 Functions for Instancing a Specifier . 619
41.9 Example of Specifier Usage . 620
41.10 Creating New Specifier Objects . 621
41.11 Functions for Checking the Validity of Specifier Components

. 622
41.12 Other Functions for Working with Specifications in a

Specifier . 623

xviii XEmacs Lisp Reference Manual

42 Faces and Window-System Objects 625
42.1 Faces . 625

42.1.1 Merging Faces for Display . 625
42.1.2 Basic Functions for Working with Faces 626
42.1.3 Face Properties . 626
42.1.4 Face Convenience Functions 629
42.1.5 Other Face Display Functions 631

42.2 Fonts. 631
42.2.1 Font Specifiers . 631
42.2.2 Font Instances. 631
42.2.3 Font Instance Names . 632
42.2.4 Font Instance Size . 632
42.2.5 Font Instance Characteristics 632
42.2.6 Font Convenience Functions 633

42.3 Colors . 633
42.3.1 Color Specifiers . 633
42.3.2 Color Instances . 634
42.3.3 Color Instance Properties . 634
42.3.4 Color Convenience Functions 634

43 Glyphs . 635
43.1 Glyph Functions . 635

43.1.1 Creating Glyphs . 635
43.1.2 Glyph Properties . 636
43.1.3 Glyph Convenience Functions 638
43.1.4 Glyph Dimensions . 640

43.2 Images . 640
43.2.1 Image Specifiers . 640
43.2.2 Image Instantiator Conversion 644
43.2.3 Image Instances . 645

43.2.3.1 Image Instance Types 645
43.2.3.2 Image Instance Functions 646

43.3 Glyph Types . 648
43.4 Mouse Pointer . 649
43.5 Redisplay Glyphs . 650
43.6 Subwindows . 650

44 Annotations . 651
44.1 Annotation Basics . 651
44.2 Annotation Primitives . 652
44.3 Annotation Properties . 653
44.4 Locating Annotations . 654
44.5 Margin Primitives . 655
44.6 Annotation Hooks . 655

xix

45 Emacs Display . 657
45.1 Refreshing the Screen . 657
45.2 Truncation . 658
45.3 The Echo Area. 658
45.4 Warnings . 661
45.5 Invisible Text . 663
45.6 Selective Display . 664
45.7 The Overlay Arrow . 665
45.8 Temporary Displays . 666
45.9 Blinking Parentheses . 667
45.10 Usual Display Conventions . 668
45.11 Display Tables . 669

45.11.1 Display Table Format . 669
45.11.2 Active Display Table . 670
45.11.3 Character Descriptors . 670

45.12 Beeping . 671

46 Hash Tables . 675
46.1 Introduction to Hash Tables . 675
46.2 Working With Hash Tables . 676
46.3 Weak Hash Tables . 676

47 Range Tables . 679
47.1 Introduction to Range Tables . 679
47.2 Working With Range Tables . 679

48 Databases . 681
48.1 Connecting to a Database . 681
48.2 Working With a Database . 681
48.3 Other Database Functions . 682

49 Processes . 683
49.1 Functions that Create Subprocesses. 683
49.2 Creating a Synchronous Process . 684
49.3 MS-DOS Subprocesses . 686
49.4 Creating an Asynchronous Process . 687
49.5 Deleting Processes . 688
49.6 Process Information . 689
49.7 Sending Input to Processes . 691
49.8 Sending Signals to Processes . 692
49.9 Receiving Output from Processes . 693

49.9.1 Process Buffers . 693
49.9.2 Process Filter Functions. 694
49.9.3 Accepting Output from Processes 696

49.10 Sentinels: Detecting Process Status Changes 697
49.11 Process Window Size . 698
49.12 Transaction Queues . 698

xx XEmacs Lisp Reference Manual

49.13 Network Connections . 699

50 Operating System Interface 701
50.1 Starting Up XEmacs . 701

50.1.1 Summary: Sequence of Actions at Start Up 701
50.1.2 The Init File: ‘.emacs’ . 702
50.1.3 Terminal-Specific Initialization 703
50.1.4 Command Line Arguments 704

50.2 Getting out of XEmacs . 705
50.2.1 Killing XEmacs . 706
50.2.2 Suspending XEmacs . 706

50.3 Operating System Environment . 708
50.4 User Identification . 711
50.5 Time of Day . 712
50.6 Time Conversion . 713
50.7 Timers for Delayed Execution . 715
50.8 Terminal Input . 716

50.8.1 Input Modes . 716
50.8.2 Translating Input Events . 717
50.8.3 Recording Input . 719

50.9 Terminal Output . 719
50.10 Flow Control . 721
50.11 Batch Mode . 722

51 Functions Specific to the X Window System
. 723
51.1 X Selections . 723
51.2 X Server . 724

51.2.1 Resources . 724
51.2.2 Data about the X Server . 726
51.2.3 Restricting Access to the Server by Other Apps

. 726
51.3 Miscellaneous X Functions and Variables 727

52 ToolTalk Support . 729
52.1 XEmacs ToolTalk API Summary . 729
52.2 Sending Messages . 729

52.2.1 Example of Sending Messages 729
52.2.2 Elisp Interface for Sending Messages 730

52.3 Receiving Messages. 732
52.3.1 Example of Receiving Messages 732
52.3.2 Elisp Interface for Receiving Messages 732

xxi

53 LDAP Support . 735
53.1 Building XEmacs with LDAP support 735
53.2 XEmacs LDAP API . 735

53.2.1 LDAP Variables . 735
53.2.2 The High-Level LDAP API 736
53.2.3 The Low-Level LDAP API 737

53.2.3.1 The LDAP Lisp Object. 737
53.2.3.2 Opening and Closing a LDAP Connection

. 737
53.2.3.3 Searching on a LDAP Server (Low-level)

. 738
53.3 Syntax of Search Filters . 738

54 Internationalization . 741
54.1 I18N Levels 1 and 2 . 741
54.2 I18N Level 3 . 741

54.2.1 Level 3 Basics . 741
54.2.2 Level 3 Primitives . 741
54.2.3 Dynamic Messaging. 742
54.2.4 Domain Specification . 742
54.2.5 Documentation String Extraction 743

54.3 I18N Level 4 . 743

55 MULE . 745
55.1 Internationalization Terminology . 745
55.2 Charsets. 747

55.2.1 Charset Properties . 747
55.2.2 Basic Charset Functions . 749
55.2.3 Charset Property Functions 750
55.2.4 Predefined Charsets . 751

55.3 MULE Characters . 752
55.4 Composite Characters . 752
55.5 ISO 2022 . 753
55.6 Coding Systems . 755

55.6.1 Coding System Types . 756
55.6.2 EOL Conversion . 757
55.6.3 Coding System Properties . 757
55.6.4 Basic Coding System Functions 759
55.6.5 Coding System Property Functions 760
55.6.6 Encoding and Decoding Text 760
55.6.7 Detection of Textual Encoding. 760
55.6.8 Big5 and Shift-JIS Functions 761

55.7 CCL . 761
55.7.1 CCL Syntax . 762
55.7.2 CCL Statements . 763
55.7.3 CCL Expressions . 765
55.7.4 Calling CCL . 766

xxii XEmacs Lisp Reference Manual

55.7.5 CCL Examples . 767
55.8 Category Tables . 767

Appendix A Tips and Standards 769
A.1 Writing Clean Lisp Programs . 769
A.2 Tips for Making Compiled Code Fast 772
A.3 Tips for Documentation Strings . 772
A.4 Tips on Writing Comments . 774
A.5 Conventional Headers for XEmacs Libraries. 775

Appendix B Building XEmacs; Allocation of
Objects . 779
B.1 Building XEmacs . 779
B.2 Pure Storage . 781
B.3 Garbage Collection . 782

Appendix C Standard Errors 787

Appendix D Buffer-Local Variables 791

Appendix E Standard Keymaps 795

Appendix F Standard Hooks 799

Index . 807

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

2 XEmacs Lisp Reference Manual

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 3

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

4 XEmacs Lisp Reference Manual

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 5

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

6 XEmacs Lisp Reference Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 7

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

8 XEmacs Lisp Reference Manual

Chapter 1: Introduction 9

1 Introduction

Most of the XEmacs text editor is written in the programming language called XEmacs
Lisp. You can write new code in XEmacs Lisp and install it as an extension to the editor.
However, XEmacs Lisp is more than a mere “extension language”; it is a full computer
programming language in its own right. You can use it as you would any other programming
language.

Because XEmacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and
so on. XEmacs Lisp is closely integrated with the editing facilities; thus, editing commands
are functions that can also conveniently be called from Lisp programs, and parameters for
customization are ordinary Lisp variables.

This manual describes XEmacs Lisp, presuming considerable familiarity with the use
of XEmacs for editing. (See The XEmacs Reference Manual, for this basic information.)
Generally speaking, the earlier chapters describe features of XEmacs Lisp that have coun-
terparts in many programming languages, and later chapters describe features that are
peculiar to XEmacs Lisp or relate specifically to editing.

This is edition 3.3.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless.
There are a few topics that are not covered, either because we consider them secondary
(such as most of the individual modes) or because they are yet to be written. Because we
are not able to deal with them completely, we have left out several parts intentionally. This
includes most information about usage on VMS.

The manual should be fully correct in what it does cover, and it is therefore open to
criticism on anything it says—from specific examples and descriptive text, to the ordering
of chapters and sections. If something is confusing, or you find that you have to look at
the sources or experiment to learn something not covered in the manual, then perhaps the
manual should be fixed. Please let us know.

As you use the manual, we ask that you mark pages with corrections so you can later
look them up and send them in. If you think of a simple, real-life example for a function
or group of functions, please make an effort to write it up and send it in. Please reference
any comments to the chapter name, section name, and function name, as appropriate, since
page numbers and chapter and section numbers will change and we may have trouble finding
the text you are talking about. Also state the number of the edition you are criticizing.

This manual was originally written for FSF Emacs 19 and was updated by Ben Wing
(wing@666.com) for Lucid Emacs 19.10 and later for XEmacs 19.12, 19.13, 19.14, and 20.0.
It was further updated by the XEmacs Development Team for 19.15, version 20 and 21.
Please send comments and corrections relating to XEmacs-specific portions of this manual
to

10 XEmacs Lisp Reference Manual

xemacs@xemacs.org

or post to the newsgroup
comp.emacs.xemacs

–Ben Wing

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950’s at the Mas-
sachusetts Institute of Technology for research in artificial intelligence. The great power
of the Lisp language makes it superior for other purposes as well, such as writing editing
commands.

Dozens of Lisp implementations have been built over the years, each with its own id-
iosyncrasies. Many of them were inspired by Maclisp, which was written in the 1960’s
at MIT’s Project MAC. Eventually the implementors of the descendants of Maclisp came
together and developed a standard for Lisp systems, called Common Lisp.

XEmacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you know
Common Lisp, you will notice many similarities. However, many of the features of Com-
mon Lisp have been omitted or simplified in order to reduce the memory requirements of
XEmacs. Sometimes the simplifications are so drastic that a Common Lisp user might be
very confused. We will occasionally point out how XEmacs Lisp differs from Common Lisp.
If you don’t know Common Lisp, don’t worry about it; this manual is self-contained.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” are used
to refer to those routines in Lisp that convert textual representations of Lisp objects into
actual Lisp objects, and vice versa. See Section 2.1 [Printed Representation], page 17, for
more details. You, the person reading this manual, are thought of as “the programmer”
and are addressed as “you”. “The user” is the person who uses Lisp programs, including
those you write.

Examples of Lisp code appear in this font or form: (list 1 2 3). Names that represent
arguments or metasyntactic variables appear in this font or form: first-number.

1.3.2 nil and t

In Lisp, the symbol nil has three separate meanings: it is a symbol with the name ‘nil’;
it is the logical truth value false; and it is the empty list—the list of zero elements. When
used as a variable, nil always has the value nil.

Chapter 1: Introduction 11

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the
same object, the symbol nil. The different ways of writing the symbol are intended entirely
for human readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to
determine which representation was actually written by the programmer.

In this manual, we use () when we wish to emphasize that it means the empty list, and
we use nil when we wish to emphasize that it means the truth value false. That is a good
convention to use in Lisp programs also.

(cons ’foo ()) ; Emphasize the empty list
(not nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose
a value which represents true, and there is no other basis for choosing, use t. The symbol
t always has value t.

In XEmacs Lisp, nil and t are special symbols that always evaluate to themselves. This
is so that you do not need to quote them to use them as constants in a program. An attempt
to change their values results in a setting-constant error. See Section 10.6 [Accessing
Variables], page 153.

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always
produces a result, which is a Lisp object. In the examples in this manual, this is indicated
with ‘⇒’:

(car ’(1 2))
⇒ 1

You can read this as “(car ’(1 2)) evaluates to 1”.
When a form is a macro call, it expands into a new form for Lisp to evaluate. We show

the result of the expansion with ‘ 7→’. We may or may not show the actual result of the
evaluation of the expanded form.

(news-cadr ’(a b c))
7→ (car (cdr ’(a b c)))
⇒ b

Sometimes to help describe one form we show another form that produces identical
results. The exact equivalence of two forms is indicated with ‘≡ ’.

(cons ’a nil) ≡ (list ’a)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute
example code in a Lisp Interaction buffer (such as the buffer ‘*scratch*’), the printed text
is inserted into the buffer. If you execute the example by other means (such as by evaluating
the function eval-region), the printed text is displayed in the echo area. You should be
aware that text displayed in the echo area is truncated to a single line.

12 XEmacs Lisp Reference Manual

Examples in this manual indicate printed text with ‘ a ’, irrespective of where that text
goes. The value returned by evaluating the form (here bar) follows on a separate line.

(progn (print ’foo) (print ’bar))
a foo
a bar
⇒ bar

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area.
We show the error message on a line starting with ‘ error ’. Note that ‘ error ’ itself does
not appear in the echo area.

(+ 23 ’x)
error Wrong type argument: integer-or-marker-p, x

1.3.6 Buffer Text Notation

Some examples show modifications to text in a buffer, with “before” and “after” versions
of the text. These examples show the contents of the buffer in question between two lines
of dashes containing the buffer name. In addition, ‘?’ indicates the location of point. (The
symbol for point, of course, is not part of the text in the buffer; it indicates the place between
two characters where point is located.)

---------- Buffer: foo ----------
This is the ?contents of foo.
---------- Buffer: foo ----------

(insert "changed ")
⇒ nil

---------- Buffer: foo ----------
This is the changed ?contents of foo.
---------- Buffer: foo ----------

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described
in this manual in a uniform format. The first line of a description contains the name of the
item followed by its arguments, if any. The category—function, variable, or whatever—is
printed next to the right margin. The description follows on succeeding lines, sometimes
with examples.

1.3.7.1 A Sample Function Description

Chapter 1: Introduction 13

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

The appearance of the keyword &optional in the parameter list indicates that the
arguments for subsequent parameters may be omitted (omitted parameters default to nil).
Do not write &optional when you call the function.

The keyword &rest (which will always be followed by a single parameter) indicates that
any number of arguments can follow. The value of the single following parameter will be a
list of all these arguments. Do not write &rest when you call the function.

Here is a description of an imaginary function foo:

Functionfoo integer1 &optional integer2 &rest integers
The function foo subtracts integer1 from integer2, then adds all the rest of the
arguments to the result. If integer2 is not supplied, then the number 19 is used by
default.

(foo 1 5 3 9)
⇒ 16

(foo 5)
⇒ 14

More generally,
(foo w x y...)
≡
(+ (- x w) y...)

Any parameter whose name contains the name of a type (e.g., integer, integer1 or buffer)
is expected to be of that type. A plural of a type (such as buffers) often means a list of
objects of that type. Parameters named object may be of any type. (See Chapter 2 [Lisp
Data Types], page 17, for a list of XEmacs object types.) Parameters with other sorts of
names (e.g., new-file) are discussed specifically in the description of the function. In some
sections, features common to parameters of several functions are described at the beginning.

See Section 11.2 [Lambda Expressions], page 166, for a more complete description of
optional and rest arguments.

Command, macro, and special form descriptions have the same format, but the word
‘Function’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands
are simply functions that may be called interactively; macros process their arguments dif-
ferently from functions (the arguments are not evaluated), but are presented the same way.

Special form descriptions use a more complex notation to specify optional and repeated
parameters because they can break the argument list down into separate arguments in
more complicated ways. ‘[optional-arg]’ means that optional-arg is optional and ‘repeated-
args...’ stands for zero or more arguments. Parentheses are used when several arguments
are grouped into additional levels of list structure. Here is an example:

Special Formcount-loop (var [from to [inc]]) body . . .
This imaginary special form implements a loop that executes the body forms and
then increments the variable var on each iteration. On the first iteration, the variable

14 XEmacs Lisp Reference Manual

has the value from; on subsequent iterations, it is incremented by 1 (or by inc if that
is given). The loop exits before executing body if var equals to. Here is an example:

(count-loop (i 0 10)
(prin1 i) (princ " ")
(prin1 (aref vector i)) (terpri))

If from and to are omitted, then var is bound to nil before the loop begins, and the
loop exits if var is non-nil at the beginning of an iteration. Here is an example:

(count-loop (done)
(if (pending)

(fixit)
(setq done t)))

In this special form, the arguments from and to are optional, but must both be present
or both absent. If they are present, inc may optionally be specified as well. These
arguments are grouped with the argument var into a list, to distinguish them from
body, which includes all remaining elements of the form.

1.3.7.2 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, certain variables that exist specifically so that users can change them are called user
options. Ordinary variables and user options are described using a format like that for
functions except that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

Variableelectric-future-map
The value of this variable is a full keymap used by Electric Command Future mode.
The functions in this map allow you to edit commands you have not yet thought
about executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Op-
tion’.

1.4 Acknowledgements

This manual was based on the GNU Emacs Lisp Reference Manual, version 2.4, written
by Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman and Chris Welty, the
volunteers of the GNU manual group, in an effort extending over several years. Robert
J. Chassell helped to review and edit the manual, with the support of the Defense Ad-
vanced Research Projects Agency, ARPA Order 6082, arranged by Warren A. Hunt, Jr. of
Computational Logic, Inc.

Ben Wing adapted this manual for XEmacs 19.14 and 20.0, and earlier for Lucid Emacs
19.10, XEmacs 19.12, and XEmacs 19.13. He is the sole author of many of the manual
sections, in particular the XEmacs-specific sections: events, faces, extents, glyphs, specifiers,
toolbar, menubars, scrollbars, dialog boxes, devices, consoles, hash tables, range tables, char

Chapter 1: Introduction 15

tables, databases, and others. The section on annotations was originally written by Chuck
Thompson. Corrections to v3.1 and later were done by Martin Buchholz, Steve Baur, and
Hrvoje Niksic.

Corrections to the original GNU Emacs Lisp Reference Manual were supplied by Karl
Berry, Jim Blandy, Bard Bloom, Stephane Boucher, David Boyes, Alan Carroll, Richard
Davis, Lawrence R. Dodd, Peter Doornbosch, David A. Duff, Chris Eich, Beverly Er-
lebacher, David Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen Gildea, Bob Glickstein, Eric
Hanchrow, George Hartzell, Nathan Hess, Masayuki Ida, Dan Jacobson, Jak Kirman, Bob
Knighten, Frederick M. Korz, Joe Lammens, Glenn M. Lewis, K. Richard Magill, Brian
Marick, Roland McGrath, Skip Montanaro, John Gardiner Myers, Thomas A. Peterson,
Francesco Potorti, Friedrich Pukelsheim, Arnold D. Robbins, Raul Rockwell, Per Starback,
Shinichirou Sugou, Kimmo Suominen, Edward Tharp, Bill Trost, Rickard Westman, Jean
White, Matthew Wilding, Carl Witty, Dale Worley, Rusty Wright, and David D. Zuhn.

16 XEmacs Lisp Reference Manual

Chapter 2: Lisp Data Types 17

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our
purposes, a type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar struc-
tures and may usually be used in the same contexts. Types can overlap, and objects can
belong to two or more types. Consequently, we can ask whether an object belongs to a
particular type, but not for “the” type of an object.

A few fundamental object types are built into XEmacs. These, from which all other
types are constructed, are called primitive types. Each object belongs to one and only one
primitive type. These types include integer, character (starting with XEmacs 20.0), float,
cons, symbol, string, vector, bit-vector, subr, compiled-function, hashtable, range-table,
char-table, weak-list, and several special types, such as buffer, that are related to editing.
(See Section 2.5 [Editing Types], page 32.)

Each primitive type has a corresponding Lisp function that checks whether an object is
a member of that type.

Note that Lisp is unlike many other languages in that Lisp objects are self-typing : the
primitive type of the object is implicit in the object itself. For example, if an object is a
vector, nothing can treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and the
type is known by the compiler but not represented in the data. Such type declarations do
not exist in XEmacs Lisp. A Lisp variable can have any type of value, and it remembers
whatever value you store in it, type and all.

This chapter describes the purpose, printed representation, and read syntax of each of
the standard types in Emacs Lisp. Details on how to use these types can be found in later
chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function prin1) for that object. The read syntax of an object is the format
of the input accepted by the Lisp reader (the function read) for that object. Most objects
have more than one possible read syntax. Some types of object have no read syntax; except
for these cases, the printed representation of an object is also a read syntax for it.

In other languages, an expression is text; it has no other form. In Lisp, an expression
is primarily a Lisp object and only secondarily the text that is the object’s read syntax.
Often there is no need to emphasize this distinction, but you must keep it in the back of
your mind, or you will occasionally be very confused.

Every type has a printed representation. Some types have no read syntax, since it may
not make sense to enter objects of these types directly in a Lisp program. For example, the
buffer type does not have a read syntax. Objects of these types are printed in hash notation:
the characters ‘#<’ followed by a descriptive string (typically the type name followed by the

18 XEmacs Lisp Reference Manual

name of the object), and closed with a matching ‘>’. Hash notation cannot be read at all,
so the Lisp reader signals the error invalid-read-syntax whenever it encounters ‘#<’.

(current-buffer)
⇒ #<buffer "objects.texi">

When you evaluate an expression interactively, the Lisp interpreter first reads the textual
representation of it, producing a Lisp object, and then evaluates that object (see Chapter 8
[Evaluation], page 121). However, evaluation and reading are separate activities. Reading
returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 17.3 [Input Functions], page 258, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (‘;’)
starts a comment if it is not within a string or character constant. The comment continues
to the end of line. The Lisp reader discards comments; they do not become part of the Lisp
objects which represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The XEmacs Lisp byte compiler uses this in
its output files (see Chapter 15 [Byte Compilation], page 209). It isn’t meant for source
files, however.

See Section A.4 [Comment Tips], page 774, for conventions for formatting comments.

2.3 Primitive Types

For reference, here is a list of all the primitive types that may exist in XEmacs. Note
that some of these types may not exist in some XEmacs executables; that depends on the
options that XEmacs was configured with.
• bit-vector
• buffer
• char-table
• character
• charset
• coding-system
• cons
• color-instance
• compiled-function
• console
• database
• device

Chapter 2: Lisp Data Types 19

• event
• extent
• face
• float
• font-instance
• frame
• glyph
• hashtable
• image-instance
• integer
• keymap
• marker
• process
• range-table
• specifier
• string
• subr
• subwindow
• symbol
• toolbar-button
• tooltalk-message
• tooltalk-pattern
• vector
• weak-list
• window
• window-configuration
• x-resource

In addition, the following special types are created internally but will never be seen by
Lisp code. You may encounter them, however, if you are debugging XEmacs. The printed
representation of these objects begins ‘#<INTERNAL EMACS BUG’, which indicates to the Lisp
programmer that he has found an internal bug in XEmacs if he ever encounters any of these
objects.
• char-table-entry
• command-builder
• extent-auxiliary
• extent-info
• lcrecord-list
• lstream
• opaque

20 XEmacs Lisp Reference Manual

• opaque-list
• popup-data
• symbol-value-buffer-local
• symbol-value-forward
• symbol-value-lisp-magic
• symbol-value-varalias
• toolbar-data

2.4 Programming Types

There are two general categories of types in XEmacs Lisp: those having to do with
Lisp programming, and those having to do with editing. The former exist in many Lisp
implementations, in one form or another. The latter are unique to XEmacs Lisp.

2.4.1 Integer Type

The range of values for integers in XEmacs Lisp is −134217728 to 134217727 (28 bits;
i.e., −227 to 228−1) on most machines. (Some machines, in particular 64-bit machines such
as the DEC Alpha, may provide a wider range.) It is important to note that the XEmacs
Lisp arithmetic functions do not check for overflow. Thus (1+ 134217727) is −134217728
on most machines. (However, you will get an error if you attempt to read an out-of-range
number using the Lisp reader.)

The read syntax for integers is a sequence of (base ten) digits with an optional sign at
the beginning. (The printed representation produced by the Lisp interpreter never has a
leading ‘+’.)

-1 ; The integer -1.
1 ; The integer 1.
+1 ; Also the integer 1.
268435457 ; Causes an error on a 28-bit implementation.

See Chapter 3 [Numbers], page 47, for more information.

2.4.2 Floating Point Type

XEmacs supports floating point numbers. The precise range of floating point numbers
is machine-specific.

The printed representation for floating point numbers requires either a decimal point
(with at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’,
‘15.0e2’, ‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value
is 1500. They are all equivalent.

See Chapter 3 [Numbers], page 47, for more information.

Chapter 2: Lisp Data Types 21

2.4.3 Character Type

In XEmacs version 19, and in all versions of FSF GNU Emacs, a character in XEmacs
Lisp is nothing more than an integer. This is yet another holdover from XEmacs Lisp’s
derivation from vintage-1980 Lisps; modern versions of Lisp consider this equivalence a bad
idea, and have separate character types. In XEmacs version 20, the modern convention is
followed, and characters are their own primitive types. (This change was necessary in order
for MULE, i.e. Asian-language, support to be correctly implemented.)

Even in XEmacs version 20, remnants of the equivalence between characters and integers
still exist; this is termed the char-int confoundance disease. In particular, many functions
such as eq, equal, and memq have equivalent functions (old-eq, old-equal, old-memq,
etc.) that pretend like characters are integers are the same. Byte code compiled under any
version 19 Emacs will have all such functions mapped to their old- equivalents when the
byte code is read into XEmacs 20. This is to preserve compatibility – Emacs 19 converts all
constant characters to the equivalent integer during byte-compilation, and thus there is no
other way to preserve byte-code compatibility even if the code has specifically been written
with the distinction between characters and integers in mind.

Every character has an equivalent integer, called the character code. For example, the
character A is represented as the integer 65, following the standard ASCII representation of
characters. If XEmacs was not compiled with MULE support, the range of this integer will
always be 0 to 255 – eight bits, or one byte. (Integers outside this range are accepted but
silently truncated; however, you should most decidedly not rely on this, because it will not
work under XEmacs with MULE support.) When MULE support is present, the range of
character codes is much larger. (Currently, 19 bits are used.)

FSF GNU Emacs uses kludgy character codes above 255 to represent keyboard input
of ASCII characters in combination with certain modifiers. XEmacs does not use this (a
more general mechanism is used that does not distinguish between ASCII keys and other
keys), so you will never find character codes above 255 in a non-MULE XEmacs.

Individual characters are not often used in programs. It is far more common to work
with strings, which are sequences composed of characters. See Section 2.4.8 [String Type],
page 28.

The read syntax for characters begins with a question mark, followed by the character
(if it’s printable) or some symbolic representation of it. In XEmacs 20, where characters
are their own type, this is also the print representation. In XEmacs 19, however, where
characters are really integers, the printed representation of a character is a decimal number.
This is also a possible read syntax for a character, but writing characters that way in Lisp
programs is a very bad idea. You should always use the special read syntax formats that
XEmacs Lisp provides for characters.

The usual read syntax for alphanumeric characters is a question mark followed by the
character; thus, ‘?A’ for the character A, ‘?B’ for the character B, and ‘?a’ for the character
a.

For example:
;; Under XEmacs 20:
?Q ⇒ ?Q ?q ⇒ ?q

22 XEmacs Lisp Reference Manual

(char-int ?Q) ⇒ 81
;; Under XEmacs 19:
?Q ⇒ 81 ?q ⇒ 113

You can use the same syntax for punctuation characters, but it is often a good idea
to add a ‘\’ so that the Emacs commands for editing Lisp code don’t get confused. For
example, ‘?\ ’ is the way to write the space character. If the character is ‘\’, you must use
a second ‘\’ to quote it: ‘?\\’. XEmacs 20 always prints punctuation characters with a ‘\’
in front of them, to avoid confusion.

You can express the characters Control-g, backspace, tab, newline, vertical tab, formfeed,
return, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘?\r’, ‘?\e’, respectively. Their
character codes are 7, 8, 9, 10, 11, 12, 13, and 27 in decimal. Thus,

;; Under XEmacs 20:
?\a ⇒ ?\^G ; C-g
(char-int ?\a) ⇒ 7
?\b ⇒ ?\^H ; backspace, 〈BS〉, C-h
(char-int ?\b) ⇒ 8
?\t ⇒ ?\t ; tab, 〈TAB〉, C-i
(char-int ?\t) ⇒ 9
?\n ⇒ ?\n ; newline, 〈LFD〉, C-j
?\v ⇒ ?\^K ; vertical tab, C-k
?\f ⇒ ?\^L ; formfeed character, C-l
?\r ⇒ ?\r ; carriage return, 〈RET〉, C-m
?\e ⇒ ?\^[; escape character, 〈ESC〉, C-[
?\\ ⇒ ?\\ ; backslash character, \
;; Under XEmacs 19:
?\a ⇒ 7 ; C-g
?\b ⇒ 8 ; backspace, 〈BS〉, C-h
?\t ⇒ 9 ; tab, 〈TAB〉, C-i
?\n ⇒ 10 ; newline, 〈LFD〉, C-j
?\v ⇒ 11 ; vertical tab, C-k
?\f ⇒ 12 ; formfeed character, C-l
?\r ⇒ 13 ; carriage return, 〈RET〉, C-m
?\e ⇒ 27 ; escape character, 〈ESC〉, C-[
?\\ ⇒ 92 ; backslash character, \

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an escape character; this usage has nothing to do with the
character 〈ESC〉.

Control characters may be represented using yet another read syntax. This consists of a
question mark followed by a backslash, caret, and the corresponding non-control character,
in either upper or lower case. For example, both ‘?\^I’ and ‘?\^i’ are valid read syntax
for the character C-i, the character whose value is 9.

Instead of the ‘^’, you can use ‘C-’; thus, ‘?\C-i’ is equivalent to ‘?\^I’ and to ‘?\^i’:
;; Under XEmacs 20:
?\^I ⇒ ?\t ?\C-I ⇒ ?\t
(char-int ?\^I) ⇒ 9
;; Under XEmacs 19:
?\^I ⇒ 9 ?\C-I ⇒ 9

Chapter 2: Lisp Data Types 23

There is also a character read syntax beginning with ‘\M-’. This sets the high bit of the
character code (same as adding 128 to the character code). For example, ‘?\M-A’ stands for
the character with character code 193, or 128 plus 65. You should not use this syntax in
your programs. It is a holdover of yet another confoundance disease from earlier Emacsen.
(This was used to represent keyboard input with the 〈META〉 key set, thus the ‘M’; however, it
conflicts with the legitimate ISO-8859-1 interpretation of the character code. For example,
character code 193 is a lowercase ‘a’ with an acute accent, in ISO-8859-1.)

Finally, the most general read syntax consists of a question mark followed by a backslash
and the character code in octal (up to three octal digits); thus, ‘?\101’ for the character A,
‘?\001’ for the character C-a, and ?\002 for the character C-b. Although this syntax can
represent any ASCII character, it is preferred only when the precise octal value is more
important than the ASCII representation.

;; Under XEmacs 20:
?\012 ⇒ ?\n ?\n ⇒ ?\n ?\C-j ⇒ ?\n
?\101 ⇒ ?A ?A ⇒ ?A
;; Under XEmacs 19:
?\012 ⇒ 10 ?\n ⇒ 10 ?\C-j ⇒ 10
?\101 ⇒ 65 ?A ⇒ 65

A backslash is allowed, and harmless, preceding any character without a special escape
meaning; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most
characters. However, you should add a backslash before any of the characters ‘()\|;’‘"#.,’
to avoid confusing the Emacs commands for editing Lisp code. Also add a backslash before
whitespace characters such as space, tab, newline and formfeed. However, it is cleaner to
use one of the easily readable escape sequences, such as ‘\t’, instead of an actual whitespace
character such as a tab.

2.4.4 Symbol Type

A symbol in XEmacs Lisp is an object with a name. The symbol name serves as the
printed representation of the symbol. In ordinary use, the name is unique—no two symbols
have the same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or
it may serve only to be distinct from all other Lisp objects, so that its presence in a data
structure may be recognized reliably. In a given context, usually only one of these uses is
intended. But you can use one symbol in all of these ways, independently.

A symbol name can contain any characters whatever. Most symbol names are written
with letters, digits, and the punctuation characters ‘-+=*/’. Such names require no special
punctuation; the characters of the name suffice as long as the name does not look like a
number. (If it does, write a ‘\’ at the beginning of the name to force interpretation as a
symbol.) The characters ‘_~!@$%^&:<>{}’ are less often used but also require no special
punctuation. Any other characters may be included in a symbol’s name by escaping them
with a backslash. In contrast to its use in strings, however, a backslash in the name of a
symbol simply quotes the single character that follows the backslash. For example, in a
string, ‘\t’ represents a tab character; in the name of a symbol, however, ‘\t’ merely quotes

24 XEmacs Lisp Reference Manual

the letter t. To have a symbol with a tab character in its name, you must actually use a
tab (preceded with a backslash). But it’s rare to do such a thing.

Common Lisp note: In Common Lisp, lower case letters are always “folded” to
upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and
lower case letters are distinct.

Here are several examples of symbol names. Note that the ‘+’ in the fifth example is
escaped to prevent it from being read as a number. This is not necessary in the sixth
example because the rest of the name makes it invalid as a number.

foo ; A symbol named ‘foo’.
FOO ; A symbol named ‘FOO’, different from ‘foo’.
char-to-string ; A symbol named ‘char-to-string’.
1+ ; A symbol named ‘1+’

; (not ‘+1’, which is an integer).
\+1 ; A symbol named ‘+1’

; (not a very readable name).
\(*\ 1\ 2\) ; A symbol named ‘(* 1 2)’ (a worse name).
+-*/_~!@$%^&=:<>{} ; A symbol named ‘+-*/_~!@$%^&=:<>{}’.

; These characters need not be escaped.

2.4.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two
kinds of sequence in XEmacs Lisp, lists and arrays. Thus, an object of type list or of type
array is also considered a sequence.

Arrays are further subdivided into strings, vectors, and bit vectors. Vectors can hold
elements of any type, but string elements must be characters, and bit vector elements must
be either 0 or 1. However, the characters in a string can have extents (see Chapter 40
[Extents], page 593) and text properties (see Section 36.18 [Text Properties], page 546) like
characters in a buffer; vectors do not support extents or text properties even when their
elements happen to be characters.

Lists, strings, vectors, and bit vectors are different, but they have important similarities.
For example, all have a length l, and all have elements which can be indexed from zero to l
minus one. Also, several functions, called sequence functions, accept any kind of sequence.
For example, the function elt can be used to extract an element of a sequence, given its
index. See Chapter 6 [Sequences Arrays Vectors], page 103.

It is impossible to read the same sequence twice, since sequences are always created anew
upon reading. If you read the read syntax for a sequence twice, you get two sequences with
equal contents. There is one exception: the empty list () always stands for the same object,
nil.

2.4.6 Cons Cell and List Types

A cons cell is an object comprising two pointers named the car and the cdr. Each of
them can point to any Lisp object.

Chapter 2: Lisp Data Types 25

A list is a series of cons cells, linked together so that the cdr of each cons cell points
either to another cons cell or to the empty list. See Chapter 5 [Lists], page 79, for functions
that work on lists. Because most cons cells are used as part of lists, the phrase list structure
has come to refer to any structure made out of cons cells.

The names car and cdr have only historical meaning now. The original Lisp imple-
mentation ran on an IBM 704 computer which divided words into two parts, called the
“address” part and the “decrement”; car was an instruction to extract the contents of the
address part of a register, and cdr an instruction to extract the contents of the decrement.
By contrast, “cons cells” are named for the function cons that creates them, which in turn
is named for its purpose, the construction of cells.

Because cons cells are so central to Lisp, we also have a word for “an object which is not
a cons cell”. These objects are called atoms.

The read syntax and printed representation for lists are identical, and consist of a left
parenthesis, an arbitrary number of elements, and a right parenthesis.

Upon reading, each object inside the parentheses becomes an element of the list. That
is, a cons cell is made for each element. The car of the cons cell points to the element,
and its cdr points to the next cons cell of the list, which holds the next element in the list.
The cdr of the last cons cell is set to point to nil.

A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes.
(The Lisp reader cannot read such an illustration; unlike the textual notation, which can be
understood by both humans and computers, the box illustrations can be understood only
by humans.) The following represents the three-element list (rose violet buttercup):

___ ___ ___ ___ ___ ___
|___|___|--> |___|___|--> |___|___|--> nil

| | |
| | |
--> rose --> violet --> buttercup

In this diagram, each box represents a slot that can refer to any Lisp object. Each pair
of boxes represents a cons cell. Each arrow is a reference to a Lisp object, either an atom
or another cons cell.

In this example, the first box, the car of the first cons cell, refers to or “contains” rose
(a symbol). The second box, the cdr of the first cons cell, refers to the next pair of boxes,
the second cons cell. The car of the second cons cell refers to violet and the cdr refers
to the third cons cell. The cdr of the third (and last) cons cell refers to nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a dif-
ferent manner:

--------------- ---------------- -------------------
car	cdr		car	cdr		car	cdr
rose	o-------->	violet	o-------->	buttercup	nil		
--------------- ---------------- -------------------

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here are examples of lists written in Lisp syntax:

26 XEmacs Lisp Reference Manual

(A 2 "A") ; A list of three elements.
() ; A list of no elements (the empty list).
nil ; A list of no elements (the empty list).
("A ()") ; A list of one element: the string "A ()".
(A ()) ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.
((A B C)) ; A list of one element

; (which is a list of three elements).

Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

___ ___ ___ ___
|___|___|--> |___|___|--> nil

| |
| |
--> A --> nil

2.4.6.1 Dotted Pair Notation

Dotted pair notation is an alternative syntax for cons cells that represents the car and
cdr explicitly. In this syntax, (a . b) stands for a cons cell whose car is the object a, and
whose cdr is the object b. Dotted pair notation is therefore more general than list syntax.
In the dotted pair notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For
nil-terminated lists, the two notations produce the same result, but list notation is usually
clearer and more convenient when it is applicable. When printing a list, the dotted pair
notation is only used if the cdr of a cell is not a list.

Here’s how box notation can illustrate dotted pairs. This example shows the pair (rose
. violet):

___ ___
|___|___|--> violet
|
|
--> rose

Dotted pair notation can be combined with list notation to represent a chain of cons
cells with a non-nil final cdr. For example, (rose violet . buttercup) is equivalent to
(rose . (violet . buttercup)). The object looks like this:

___ ___ ___ ___
|___|___|--> |___|___|--> buttercup

| |
| |
--> rose --> violet

These diagrams make it evident why (rose . violet . buttercup) is invalid syntax; it
would require a cons cell that has three parts rather than two.

The list (rose violet) is equivalent to (rose . (violet)) and looks like this:

Chapter 2: Lisp Data Types 27

___ ___ ___ ___
|___|___|--> |___|___|--> nil

| |
| |
--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose .
(violet . (buttercup))).

2.4.6.2 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells.
In each element, the car is considered a key, and the cdr is considered an associated value.
(In some cases, the associated value is stored in the car of the cdr.) Association lists are
often used as stacks, since it is easy to add or remove associations at the front of the list.

For example,

(setq alist-of-colors
’((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose
is the key and red is the value.

See Section 5.8 [Association Lists], page 94, for a further explanation of alists and for
functions that work on alists.

2.4.7 Array Type

An array is composed of an arbitrary number of slots for referring to other Lisp objects,
arranged in a contiguous block of memory. Accessing any element of an array takes the
same amount of time. In contrast, accessing an element of a list requires time proportional
to the position of the element in the list. (Elements at the end of a list take longer to access
than elements at the beginning of a list.)

XEmacs defines three types of array, strings, vectors, and bit vectors. A string is an array
of characters, a vector is an array of arbitrary objects, and a bit vector is an array of 1’s and
0’s. All are one-dimensional. (Most other programming languages support multidimensional
arrays, but they are not essential; you can get the same effect with an array of arrays.) Each
type of array has its own read syntax; see Section 2.4.8 [String Type], page 28, Section 2.4.9
[Vector Type], page 28, and Section 2.4.10 [Bit Vector Type], page 29.

An array may have any length up to the largest integer; but once created, it has a fixed
size. The first element of an array has index zero, the second element has index 1, and so
on. This is called zero-origin indexing. For example, an array of four elements has indices
0, 1, 2, and 3.

The array type is contained in the sequence type and contains the string type, the vector
type, and the bit vector type.

28 XEmacs Lisp Reference Manual

2.4.8 String Type

A string is an array of characters. Strings are used for many purposes in XEmacs, as
can be expected in a text editor; for example, as the names of Lisp symbols, as messages
for the user, and to represent text extracted from buffers. Strings in Lisp are constants:
evaluation of a string returns the same string.

The read syntax for strings is a double-quote, an arbitrary number of characters, and
another double-quote, "like this". The Lisp reader accepts the same formats for reading
the characters of a string as it does for reading single characters (without the question
mark that begins a character literal). You can enter a nonprinting character such as tab
or C-a using the convenient escape sequences, like this: "\t, \C-a". You can include a
double-quote in a string by preceding it with a backslash; thus, "\"" is a string containing
just a single double-quote character. (See Section 2.4.3 [Character Type], page 21, for a
description of the read syntax for characters.)

The printed representation of a string consists of a double-quote, the characters it con-
tains, and another double-quote. However, you must escape any backslash or double-quote
characters in the string with a backslash, like this: "this \" is an embedded quote".

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—
one that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores
an escaped newline while reading a string.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."

⇒ "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

A string can hold extents and properties of the text it contains, in addition to the
characters themselves. This enables programs that copy text between strings and buffers
to preserve the extents and properties with no special effort. See Chapter 40 [Extents],
page 593, See Section 36.18 [Text Properties], page 546.

Note that FSF GNU Emacs has a special read and print syntax for strings with text
properties, but XEmacs does not currently implement this. It was judged better not to
include this in XEmacs because it entails that equal return nil when passed a string with
text properties and the equivalent string without text properties, which is often counter-
intuitive.

See Chapter 4 [Strings and Characters], page 61, for functions that work on strings.

2.4.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount
of time to access any element of a vector. (In a list, the access time of an element is
proportional to the distance of the element from the beginning of the list.)

Chapter 2: Lisp Data Types 29

The printed representation of a vector consists of a left square bracket, the elements,
and a right square bracket. This is also the read syntax. Like numbers and strings, vectors
are considered constants for evaluation.

[1 "two" (three)] ; A vector of three elements.
⇒ [1 "two" (three)]

See Section 6.4 [Vectors], page 108, for functions that work with vectors.

2.4.10 Bit Vector Type

A bit vector is a one-dimensional array of 1’s and 0’s. It takes a constant amount of
time to access any element of a bit vector, as for vectors. Bit vectors have an extremely
compact internal representation (one machine bit per element), which makes them ideal for
keeping track of unordered sets, large collections of boolean values, etc.

The printed representation of a bit vector consists of ‘#*’ followed by the bits in the
vector. This is also the read syntax. Like numbers, strings, and vectors, bit vectors are
considered constants for evaluation.

#*00101000 ; A bit vector of eight elements.
⇒ #*00101000

See Section 6.6 [Bit Vectors], page 110, for functions that work with bit vectors.

2.4.11 Function Type

Just as functions in other programming languages are executable, Lisp function objects
are pieces of executable code. However, functions in Lisp are primarily Lisp objects, and only
secondarily the text which represents them. These Lisp objects are lambda expressions: lists
whose first element is the symbol lambda (see Section 11.2 [Lambda Expressions], page 166).

In most programming languages, it is impossible to have a function without a name. In
Lisp, a function has no intrinsic name. A lambda expression is also called an anonymous
function (see Section 11.7 [Anonymous Functions], page 174). A named function in Lisp
is actually a symbol with a valid function in its function cell (see Section 11.4 [Defining
Functions], page 170).

Most of the time, functions are called when their names are written in Lisp expressions
in Lisp programs. However, you can construct or obtain a function object at run time
and then call it with the primitive functions funcall and apply. See Section 11.5 [Calling
Functions], page 172.

2.4.12 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented
as an object much like a function, but with different parameter-passing semantics. A Lisp
macro has the form of a list whose first element is the symbol macro and whose cdr is a
Lisp function object, including the lambda symbol.

30 XEmacs Lisp Reference Manual

Lisp macro objects are usually defined with the built-in defmacro function, but any list
that begins with macro is a macro as far as XEmacs is concerned. See Chapter 12 [Macros],
page 181, for an explanation of how to write a macro.

2.4.13 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming
language. Primitive functions are also called subrs or built-in functions. (The word “subr”
is derived from “subroutine”.) Most primitive functions evaluate all their arguments when
they are called. A primitive function that does not evaluate all its arguments is called a
special form (see Section 8.2.7 [Special Forms], page 127).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to substitute a function written in Lisp for a primitive of the
same name. The reason is that the primitive function may be called directly from C code.
Calls to the redefined function from Lisp will use the new definition, but calls from C code
may still use the built-in definition.

The term function refers to all Emacs functions, whether written in Lisp or C. See
Section 2.4.11 [Function Type], page 29, for information about the functions written in
Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

(symbol-function ’car) ; Access the function cell
; of the symbol.

⇒ #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?

⇒ t ; Yes.

2.4.14 Compiled-Function Type

The byte compiler produces compiled-function objects. The evaluator handles this data
type specially when it appears as a function to be called. See Chapter 15 [Byte Compilation],
page 209, for information about the byte compiler.

The printed representation for a compiled-function object is normally
‘#<compiled-function...>’. If print-readably is true, however, it is ‘#[...]’.

2.4.15 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as
the function definition of a symbol as a placeholder for the real definition; it says that the
real definition is found in a file of Lisp code that should be loaded when necessary. The
autoload object contains the name of the file, plus some other information about the real
definition.

Chapter 2: Lisp Data Types 31

After the file has been loaded, the symbol should have a new function definition that is
not an autoload object. The new definition is then called as if it had been there to begin
with. From the user’s point of view, the function call works as expected, using the function
definition in the loaded file.

An autoload object is usually created with the function autoload, which stores the
object in the function cell of a symbol. See Section 14.2 [Autoload], page 202, for more
details.

2.4.16 Char Table Type

(not yet documented)

2.4.17 Hash Table Type

A hash table is a table providing an arbitrary mapping from one Lisp object to another,
using an internal indexing method called hashing. Hash tables are very fast (much more
efficient that using an association list, when there are a large number of elements in the
table).

Hash tables have no read syntax. They print in hash notation (The “hash” in “hash
notation” has nothing to do with the “hash” in “hash table”), giving the number of elements,
total space allocated for elements, and a unique number assigned at the time the hash table
was created. (Hash tables automatically resize as necessary so there is no danger of running
out of space for elements.)

(make-hashtable 50)
⇒ #<hashtable 0/71 0x313a>

See Chapter 46 [Hash Tables], page 675, for information on how to create and work with
hash tables.

2.4.18 Range Table Type

A range table is a table that maps from ranges of integers to arbitrary Lisp objects.
Range tables automatically combine overlapping ranges that map to the same Lisp object,
and operations are provided for mapping over all of the ranges in a range table.

Range tables have a special read syntax beginning with ‘#s(range-table’ (this is an
example of structure read syntax, which is also used for char tables and faces).

(setq x (make-range-table))
(put-range-table 20 50 ’foo x)
(put-range-table 100 200 "bar" x)
x

⇒ #s(range-table data ((20 50) foo (100 200) "bar"))

See Chapter 47 [Range Tables], page 679, for information on how to create and work
with range tables.

32 XEmacs Lisp Reference Manual

2.4.19 Weak List Type

(not yet documented)

2.5 Editing Types

The types in the previous section are common to many Lisp dialects. XEmacs Lisp
provides several additional data types for purposes connected with editing.

2.5.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 30 [Buffers],
page 435). Most buffers hold the contents of a disk file (see Chapter 28 [Files], page 395)
so they can be edited, but some are used for other purposes. Most buffers are also meant
to be seen by the user, and therefore displayed, at some time, in a window (see Chapter 31
[Windows], page 449). But a buffer need not be displayed in any window.

The contents of a buffer are much like a string, but buffers are not used like strings
in XEmacs Lisp, and the available operations are different. For example, insertion of text
into a buffer is very efficient, whereas “inserting” text into a string requires concatenating
substrings, and the result is an entirely new string object.

Each buffer has a designated position called point (see Chapter 34 [Positions], page 493).
At any time, one buffer is the current buffer. Most editing commands act on the contents
of the current buffer in the neighborhood of point. Many of the standard Emacs functions
manipulate or test the characters in the current buffer; a whole chapter in this manual is
devoted to describing these functions (see Chapter 36 [Text], page 517).

Several other data structures are associated with each buffer:

• a local syntax table (see Chapter 38 [Syntax Tables], page 575);

• a local keymap (see Chapter 20 [Keymaps], page 319);

• a local variable binding list (see Section 10.9 [Buffer-Local Variables], page 159);

• a list of extents (see Chapter 40 [Extents], page 593);

• and various other related properties.

The local keymap and variable list contain entries that individually override global bindings
or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer. See Sec-
tion 30.11 [Indirect Buffers], page 447.

Buffers have no read syntax. They print in hash notation, showing the buffer name.

(current-buffer)
⇒ #<buffer "objects.texi">

Chapter 2: Lisp Data Types 33

2.5.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components:
one for the buffer, and one for the position. Changes in the buffer’s text automatically
relocate the position value as necessary to ensure that the marker always points between
the same two characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.

(point-marker)
⇒ #<marker at 50661 in objects.texi>

See Chapter 35 [Markers], page 505, for information on how to test, create, copy, and
move markers.

2.5.3 Extent Type

An extent specifies temporary alteration of the display appearance of a part of a buffer
(or string). It contains markers delimiting a range of the buffer, plus a property list (a list
whose elements are alternating property names and values). Extents are used to present
parts of the buffer temporarily in a different display style. They have no read syntax, and
print in hash notation, giving the buffer name and range of positions.

Extents can exist over strings as well as buffers; the primary use of this is to preserve
extent and text property information as text is copied from one buffer to another or between
different parts of a buffer.

Extents have no read syntax. They print in hash notation, giving the range of text they
cover, the name of the buffer or string they are in, the address in core, and a summary of
some of the properties attached to the extent.

(extent-at (point))
⇒ #<extent [51742, 51748) font-lock text-prop 0x90121e0 in buffer objects.texi>

See Chapter 40 [Extents], page 593, for how to create and use extents.
Extents are used to implement text properties. See Section 36.18 [Text Properties],

page 546.

2.5.4 Window Type

A window describes the portion of the frame that XEmacs uses to display a buffer.
(In standard window-system usage, a window is what XEmacs calls a frame; XEmacs
confusingly uses the term “window” to refer to what is called a pane in standard window-
system usage.) Every window has one associated buffer, whose contents appear in the
window. By contrast, a given buffer may appear in one window, no window, or several
windows.

Though many windows may exist simultaneously, at any time one window is designated
the selected window. This is the window where the cursor is (usually) displayed when

34 XEmacs Lisp Reference Manual

XEmacs is ready for a command. The selected window usually displays the current buffer,
but this is not necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only
one frame. See Section 2.5.5 [Frame Type], page 34.

Windows have no read syntax. They print in hash notation, giving the name of the
buffer being displayed and a unique number assigned at the time the window was created.
(This number can be useful because the buffer displayed in any given window can change
frequently.)

(selected-window)
⇒ #<window on "objects.texi" 0x266c>

See Chapter 31 [Windows], page 449, for a description of the functions that work on
windows.

2.5.5 Frame Type

A frame is a rectangle on the screen (a window in standard window-system terminology)
that contains one or more non-overlapping Emacs windows (panes in standard window-
system terminology). A frame initially contains a single main window (plus perhaps a
minibuffer window) which you can subdivide vertically or horizontally into smaller windows.

Frames have no read syntax. They print in hash notation, giving the frame’s type, name
as used for resourcing, and a unique number assigned at the time the frame was created.

(selected-frame)
⇒ #<x-frame "emacs" 0x9db>

See Chapter 32 [Frames], page 475, for a description of the functions that work on frames.

2.5.6 Device Type

A device represents a single display on which frames exist. Normally, there is only
one device object, but there may be more than one if XEmacs is being run on a multi-
headed display (e.g. an X server with attached color and mono screens) or if XEmacs is
simultaneously driving frames attached to different consoles, e.g. an X display and a TTY

connection.
Devices do not have a read syntax. They print in hash notation, giving the device’s

type, connection name, and a unique number assigned at the time the device was created.
(selected-device)

⇒ #<x-device on ":0.0" 0x5b9>

See Chapter 33 [Consoles and Devices], page 487, for a description of several functions
related to devices.

2.5.7 Console Type

A console represents a single keyboard to which devices (i.e. displays on which frames
exist) are connected. Normally, there is only one console object, but there may be more

Chapter 2: Lisp Data Types 35

than one if XEmacs is simultaneously driving frames attached to different X servers and/or
TTY connections. (XEmacs is capable of driving multiple X and TTY connections at the
same time, and provides a robust mechanism for handling the differing display capabilities
of such heterogeneous environments. A buffer with embedded glyphs and multiple fonts
and colors, for example, will display reasonably if it simultaneously appears on a frame on
a color X display, a frame on a mono X display, and a frame on a TTY connection.)

Consoles do not have a read syntax. They print in hash notation, giving the console’s
type, connection name, and a unique number assigned at the time the console was created.

(selected-console)
⇒ #<x-console on "localhost:0" 0x5b7>

See Chapter 33 [Consoles and Devices], page 487, for a description of several functions
related to consoles.

2.5.8 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of
the windows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax. They print in hash notation, giving
a unique number assigned at the time the window configuration was created.

(current-window-configuration)
⇒ #<window-configuration 0x2db4>

See Section 31.16 [Window Configurations], page 473, for a description of several func-
tions related to window configurations.

2.5.9 Event Type

(not yet documented)

2.5.10 Process Type

The word process usually means a running program. XEmacs itself runs in a process of
this sort. However, in XEmacs Lisp, a process is a Lisp object that designates a subprocess
created by the XEmacs process. Programs such as shells, GDB, ftp, and compilers, running
in subprocesses of XEmacs, extend the capabilities of XEmacs.

An Emacs subprocess takes textual input from Emacs and returns textual output to
Emacs for further manipulation. Emacs can also send signals to the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of
the process, its associated process ID, and the current state of the process:

(process-list)
⇒ (#<process "shell" pid 2909 state:run>)

See Chapter 49 [Processes], page 683, for information about functions that create, delete,
return information about, send input or signals to, and receive output from processes.

36 XEmacs Lisp Reference Manual

2.5.11 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this
way: markers, buffers, strings, and functions. Most often, input streams (character sources)
obtain characters from the keyboard, a buffer, or a file, and output streams (character sinks)
send characters to a buffer, such as a ‘*Help*’ buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands
for the value of the variable standard-input or standard-output. Also, the object t as
a stream specifies input using the minibuffer (see Chapter 18 [Minibuffers], page 265) or
output in the echo area (see Section 45.3 [The Echo Area], page 658).

Streams have no special printed representation or read syntax, and print as whatever
primitive type they are.

See Chapter 17 [Read and Print], page 255, for a description of functions related to
streams, including parsing and printing functions.

2.5.12 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the
user’s command input is executed.

NOTE: In XEmacs, a keymap is a separate primitive type. In FSF GNU Emacs, a
keymap is actually a list whose car is the symbol keymap.

See Chapter 20 [Keymaps], page 319, for information about creating keymaps, handling
prefix keys, local as well as global keymaps, and changing key bindings.

2.5.13 Syntax Table Type

Under XEmacs 20, a syntax table is a particular type of char table. Under XEmacs 19, a
syntax table a vector of 256 integers. In both cases, each element defines how one character
is interpreted when it appears in a buffer. For example, in C mode (see Section 26.1 [Major
Modes], page 365), the ‘+’ character is punctuation, but in Lisp mode it is a valid character
in a symbol. These modes specify different interpretations by changing the syntax table
entry for ‘+’.

Syntax tables are used only for scanning text in buffers, not for reading Lisp expressions.
The table the Lisp interpreter uses to read expressions is built into the XEmacs source code
and cannot be changed; thus, to change the list delimiters to be ‘{’ and ‘}’ instead of ‘(’
and ‘)’ would be impossible.

See Chapter 38 [Syntax Tables], page 575, for details about syntax classes and how to
make and modify syntax tables.

Chapter 2: Lisp Data Types 37

2.5.14 Display Table Type

A display table specifies how to display each character code. Each buffer and each
window can have its own display table. A display table is actually a vector of length
256, although in XEmacs 20 this may change to be a particular type of char table. See
Section 45.11 [Display Tables], page 669.

2.5.15 Database Type

(not yet documented)

2.5.16 Charset Type

(not yet documented)

2.5.17 Coding System Type

(not yet documented)

2.5.18 ToolTalk Message Type

(not yet documented)

2.5.19 ToolTalk Pattern Type

(not yet documented)

2.6 Window-System Types

XEmacs also has some types that represent objects such as faces (collections of display
characters), fonts, and pixmaps that are commonly found in windowing systems.

2.6.1 Face Type

(not yet documented)

2.6.2 Glyph Type

(not yet documented)

38 XEmacs Lisp Reference Manual

2.6.3 Specifier Type

(not yet documented)

2.6.4 Font Instance Type

(not yet documented)

2.6.5 Color Instance Type

(not yet documented)

2.6.6 Image Instance Type

(not yet documented)

2.6.7 Toolbar Button Type

(not yet documented)

2.6.8 Subwindow Type

(not yet documented)

2.6.9 X Resource Type

(not yet documented)

2.7 Type Predicates

The XEmacs Lisp interpreter itself does not perform type checking on the actual argu-
ments passed to functions when they are called. It could not do so, since function arguments
in Lisp do not have declared data types, as they do in other programming languages. It is
therefore up to the individual function to test whether each actual argument belongs to a
type that the function can use.

All built-in functions do check the types of their actual arguments when appropriate,
and signal a wrong-type-argument error if an argument is of the wrong type. For example,
here is what happens if you pass an argument to + that it cannot handle:

Chapter 2: Lisp Data Types 39

(+ 2 ’a)
error Wrong type argument: integer-or-marker-p, a

If you want your program to handle different types differently, you must do explicit
type checking. The most common way to check the type of an object is to call a type
predicate function. Emacs has a type predicate for each type, as well as some predicates
for combinations of types.

A type predicate function takes one argument; it returns t if the argument belongs to
the appropriate type, and nil otherwise. Following a general Lisp convention for predicate
functions, most type predicates’ names end with ‘p’.

Here is an example which uses the predicates listp to check for a list and symbolp to
check for a symbol.

(defun add-on (x)
(cond ((symbolp x)

;; If X is a symbol, put it on LIST.
(setq list (cons x list)))
((listp x)
;; If X is a list, add its elements to LIST.
(setq list (append x list)))

(t
;; We only handle symbols and lists.
(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to
further information.

annotationp
See Section 44.2 [Annotation Primitives], page 652.

arrayp See Section 6.3 [Array Functions], page 106.

atom See Section 5.3 [List-related Predicates], page 80.

bit-vector-p
See Section 6.7 [Bit Vector Functions], page 110.

bitp See Section 6.7 [Bit Vector Functions], page 110.

boolean-specifier-p
See Section 41.4 [Specifier Types], page 612.

buffer-glyph-p
See Section 43.3 [Glyph Types], page 648.

buffer-live-p
See Section 30.10 [Killing Buffers], page 445.

bufferp See Section 30.1 [Buffer Basics], page 435.

button-event-p
See Section 19.5.3 [Event Predicates], page 298.

button-press-event-p
See Section 19.5.3 [Event Predicates], page 298.

40 XEmacs Lisp Reference Manual

button-release-event-p
See Section 19.5.3 [Event Predicates], page 298.

case-table-p
See Section 4.12 [Case Tables], page 74.

char-int-p
See Section 4.5 [Character Codes], page 64.

char-or-char-int-p
See Section 4.5 [Character Codes], page 64.

char-or-string-p
See Section 4.2 [Predicates for Strings], page 62.

char-table-p
See Section 4.13 [Char Tables], page 75.

characterp
See Section 4.4 [Predicates for Characters], page 64.

color-instance-p
See Section 42.3 [Colors], page 633.

color-pixmap-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

color-specifier-p
See Section 41.4 [Specifier Types], page 612.

commandp See Section 19.3 [Interactive Call], page 290.

compiled-function-p
See Section 2.4.14 [Compiled-Function Type], page 30.

console-live-p
See Section 33.4 [Connecting to a Console or Device], page 489.

consolep See Chapter 33 [Consoles and Devices], page 487.

consp See Section 5.3 [List-related Predicates], page 80.

database-live-p
See Section 48.1 [Connecting to a Database], page 681.

databasep
See Chapter 48 [Databases], page 681.

device-live-p
See Section 33.4 [Connecting to a Console or Device], page 489.

device-or-frame-p
See Section 33.2 [Basic Device Functions], page 488.

devicep See Chapter 33 [Consoles and Devices], page 487.

eval-event-p
See Section 19.5.3 [Event Predicates], page 298.

Chapter 2: Lisp Data Types 41

event-live-p
See Section 19.5.3 [Event Predicates], page 298.

eventp See Section 19.5 [Events], page 294.

extent-live-p
See Section 40.2 [Creating and Modifying Extents], page 594.

extentp See Chapter 40 [Extents], page 593.

face-boolean-specifier-p
See Section 41.4 [Specifier Types], page 612.

facep See Section 42.1.2 [Basic Face Functions], page 626.

floatp See Section 3.3 [Predicates on Numbers], page 48.

font-instance-p
See Section 42.2 [Fonts], page 631.

font-specifier-p
See Section 41.4 [Specifier Types], page 612.

frame-live-p
See Section 32.4 [Deleting Frames], page 480.

framep See Chapter 32 [Frames], page 475.

functionp
(not yet documented)

generic-specifier-p
See Section 41.4 [Specifier Types], page 612.

glyphp See Chapter 43 [Glyphs], page 635.

hashtablep
See Chapter 46 [Hash Tables], page 675.

icon-glyph-p
See Section 43.3 [Glyph Types], page 648.

image-instance-p
See Section 43.2 [Images], page 640.

image-specifier-p
See Section 41.4 [Specifier Types], page 612.

integer-char-or-marker-p
See Section 35.2 [Predicates on Markers], page 506.

integer-or-char-p
See Section 4.4 [Predicates for Characters], page 64.

integer-or-marker-p
See Section 35.2 [Predicates on Markers], page 506.

integer-specifier-p
See Section 41.4 [Specifier Types], page 612.

42 XEmacs Lisp Reference Manual

integerp See Section 3.3 [Predicates on Numbers], page 48.

itimerp (not yet documented)

key-press-event-p
See Section 19.5.3 [Event Predicates], page 298.

keymapp See Section 20.3 [Creating Keymaps], page 320.

keywordp (not yet documented)

listp See Section 5.3 [List-related Predicates], page 80.

markerp See Section 35.2 [Predicates on Markers], page 506.

misc-user-event-p
See Section 19.5.3 [Event Predicates], page 298.

mono-pixmap-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

motion-event-p
See Section 19.5.3 [Event Predicates], page 298.

mouse-event-p
See Section 19.5.3 [Event Predicates], page 298.

natnum-specifier-p
See Section 41.4 [Specifier Types], page 612.

natnump See Section 3.3 [Predicates on Numbers], page 48.

nlistp See Section 5.3 [List-related Predicates], page 80.

nothing-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

number-char-or-marker-p
See Section 35.2 [Predicates on Markers], page 506.

number-or-marker-p
See Section 35.2 [Predicates on Markers], page 506.

numberp See Section 3.3 [Predicates on Numbers], page 48.

pointer-glyph-p
See Section 43.3 [Glyph Types], page 648.

pointer-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

process-event-p
See Section 19.5.3 [Event Predicates], page 298.

processp See Chapter 49 [Processes], page 683.

range-table-p
See Chapter 47 [Range Tables], page 679.

ringp (not yet documented)

Chapter 2: Lisp Data Types 43

sequencep
See Section 6.1 [Sequence Functions], page 103.

specifierp
See Chapter 41 [Specifiers], page 609.

stringp See Section 4.2 [Predicates for Strings], page 62.

subrp See Section 11.8 [Function Cells], page 176.

subwindow-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

subwindowp
See Section 43.6 [Subwindows], page 650.

symbolp See Chapter 7 [Symbols], page 113.

syntax-table-p
See Chapter 38 [Syntax Tables], page 575.

text-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 645.

timeout-event-p
See Section 19.5.3 [Event Predicates], page 298.

toolbar-button-p
See Chapter 23 [Toolbar], page 355.

toolbar-specifier-p
See Chapter 23 [Toolbar], page 355.

user-variable-p
See Section 10.5 [Defining Variables], page 151.

vectorp See Section 6.4 [Vectors], page 108.

weak-list-p
See Section 5.10 [Weak Lists], page 101.

window-configuration-p
See Section 31.16 [Window Configurations], page 473.

window-live-p
See Section 31.3 [Deleting Windows], page 453.

windowp See Section 31.1 [Basic Windows], page 449.

The most general way to check the type of an object is to call the function type-of.
Recall that each object belongs to one and only one primitive type; type-of tells you which
one (see Chapter 2 [Lisp Data Types], page 17). But type-of knows nothing about non-
primitive types. In most cases, it is more convenient to use type predicates than type-of.

Functiontype-of object
This function returns a symbol naming the primitive type of object. The value is
one of bit-vector, buffer, char-table, character, charset, coding-system,

44 XEmacs Lisp Reference Manual

cons, color-instance, compiled-function, console, database, device, event,
extent, face, float, font-instance, frame, glyph, hashtable, image-instance,
integer, keymap, marker, process, range-table, specifier, string, subr,
subwindow, symbol, toolbar-button, tooltalk-message, tooltalk-pattern,
vector, weak-list, window, window-configuration, or x-resource.

(type-of 1)
⇒ integer

(type-of ’nil)
⇒ symbol

(type-of ’()) ; () is nil.
⇒ symbol

(type-of ’(x))
⇒ cons

2.8 Equality Predicates

Here we describe two functions that test for equality between any two objects. Other
functions test equality between objects of specific types, e.g., strings. For these predicates,
see the appropriate chapter describing the data type.

Functioneq object1 object2
This function returns t if object1 and object2 are the same object, nil otherwise.
The “same object” means that a change in one will be reflected by the same change
in the other.
eq returns t if object1 and object2 are integers with the same value. Also, since
symbol names are normally unique, if the arguments are symbols with the same
name, they are eq. For other types (e.g., lists, vectors, strings), two arguments with
the same contents or elements are not necessarily eq to each other: they are eq only
if they are the same object.
(The make-symbol function returns an uninterned symbol that is not interned in the
standard obarray. When uninterned symbols are in use, symbol names are no longer
unique. Distinct symbols with the same name are not eq. See Section 7.3 [Creating
Symbols], page 115.)
NOTE: Under XEmacs 19, characters are really just integers, and thus characters
and integers are eq. Under XEmacs 20, it was necessary to preserve remnants of this
in function such as old-eq in order to maintain byte-code compatibility. Byte code
compiled under any Emacs 19 will automatically have calls to eq mapped to old-eq
when executed under XEmacs 20.

(eq ’foo ’foo)
⇒ t

(eq 456 456)
⇒ t

(eq "asdf" "asdf")
⇒ nil

Chapter 2: Lisp Data Types 45

(eq ’(1 (2 (3))) ’(1 (2 (3))))
⇒ nil

(setq foo ’(1 (2 (3))))
⇒ (1 (2 (3)))

(eq foo foo)
⇒ t

(eq foo ’(1 (2 (3))))
⇒ nil

(eq [(1 2) 3] [(1 2) 3])
⇒ nil

(eq (point-marker) (point-marker))
⇒ nil

Functionold-eq obj1 obj2
This function exists under XEmacs 20 and is exactly like eq except that it suffers from
the char-int confoundance disease. In other words, it returns t if given a character
and the equivalent integer, even though the objects are of different types! You should
not ever call this function explicitly in your code. However, be aware that all calls to
eq in byte code compiled under version 19 map to old-eq in XEmacs 20. (Likewise
for old-equal, old-memq, old-member, old-assq and old-assoc.)

;; Remember, this does not apply under XEmacs 19.
?A

⇒ ?A
(char-int ?A)

⇒ 65
(old-eq ?A 65)

⇒ t ; Eek, we’ve been infected.
(eq ?A 65)

⇒ nil ; We are still healthy.

Functionequal object1 object2
This function returns t if object1 and object2 have equal components, nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical
arguments to see if their elements are the same. So, if two objects are eq, they are
equal, but the converse is not always true.

(equal ’foo ’foo)
⇒ t

(equal 456 456)
⇒ t

(equal "asdf" "asdf")
⇒ t

(eq "asdf" "asdf")
⇒ nil

(equal ’(1 (2 (3))) ’(1 (2 (3))))
⇒ t

46 XEmacs Lisp Reference Manual

(eq ’(1 (2 (3))) ’(1 (2 (3))))
⇒ nil

(equal [(1 2) 3] [(1 2) 3])
⇒ t

(eq [(1 2) 3] [(1 2) 3])
⇒ nil

(equal (point-marker) (point-marker))
⇒ t

(eq (point-marker) (point-marker))
⇒ nil

Comparison of strings is case-sensitive.
Note that in FSF GNU Emacs, comparison of strings takes into account their text
properties, and you have to use string-equal if you want only the strings themselves
compared. This difference does not exist in XEmacs; equal and string-equal always
return the same value on the same strings.

(equal "asdf" "ASDF")
⇒ nil

Two distinct buffers are never equal, even if their contents are the same.

The test for equality is implemented recursively, and circular lists may therefore cause
infinite recursion (leading to an error).

Chapter 3: Numbers 47

3 Numbers

XEmacs supports two numeric data types: integers and floating point numbers. Integers
are whole numbers such as −3, 0, #b0111, #xFEED, #o744. Their values are exact. The
number prefixes ‘#b’, ‘#o’, and ‘#x’ are supported to represent numbers in binary, octal,
and hexadecimal notation (or radix). Floating point numbers are numbers with fractional
parts, such as −4.5, 0.0, or 2.71828. They can also be expressed in exponential notation:
1.5e2 equals 150; in this example, ‘e2’ stands for ten to the second power, and is multiplied
by 1.5. Floating point values are not exact; they have a fixed, limited amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is
−134217728 to 134217727 (28 bits; i.e., −227 to 227− 1), but some machines may provide a
wider range. Many examples in this chapter assume an integer has 28 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and
optional final period.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer −1.
268435457 ; Also the integer 1, due to overflow.
0 ; The integer 0.
-0 ; The integer 0.

To understand how various functions work on integers, especially the bitwise operators
(see Section 3.8 [Bitwise Operations], page 55), it is often helpful to view the numbers in
their binary form.

In 28-bit binary, the decimal integer 5 looks like this:
0000 0000 0000 0000 0000 0000 0101

(We have inserted spaces between groups of 4 bits, and two spaces between groups of 8 bits,
to make the binary integer easier to read.)

The integer −1 looks like this:
1111 1111 1111 1111 1111 1111 1111

−1 is represented as 28 ones. (This is called two’s complement notation.)
The negative integer, −5, is creating by subtracting 4 from −1. In binary, the decimal

integer 4 is 100. Consequently, −5 looks like this:
1111 1111 1111 1111 1111 1111 1011

In this implementation, the largest 28-bit binary integer is the decimal integer
134,217,727. In binary, it looks like this:

0111 1111 1111 1111 1111 1111 1111

Since the arithmetic functions do not check whether integers go outside their range,
when you add 1 to 134,217,727, the value is the negative integer −134,217,728:

48 XEmacs Lisp Reference Manual

(+ 1 134217727)
⇒ -134217728
⇒ 1000 0000 0000 0000 0000 0000 0000

Many of the following functions accept markers for arguments as well as integers. (See
Chapter 35 [Markers], page 505.) More precisely, the actual arguments to such functions
may be either integers or markers, which is why we often give these arguments the name
int-or-marker. When the argument value is a marker, its position value is used and its
buffer is ignored.

3.2 Floating Point Basics

XEmacs supports floating point numbers. The precise range of floating point numbers
is machine-specific; it is the same as the range of the C data type double on the machine
in question.

The printed representation for floating point numbers requires either a decimal point
(with at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’,
‘15.0e2’, ‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value
is 1500. They are all equivalent. You can also use a minus sign to write negative floating
point numbers, as in ‘-1.0’.

Most modern computers support the IEEE floating point standard, which provides for
positive infinity and negative infinity as floating point values. It also provides for a class
of values called NaN or “not-a-number”; numerical functions return such values in cases
where there is no correct answer. For example, (sqrt -1.0) returns a NaN. For practical
purposes, there’s no significant difference between different NaN values in XEmacs Lisp,
and there’s no rule for precisely which NaN value should be used in a particular case, so
this manual doesn’t try to distinguish them. XEmacs Lisp has no read syntax for NaNs or
infinities; perhaps we should create a syntax in the future.

You can use logb to extract the binary exponent of a floating point number (or estimate
the logarithm of an integer):

Functionlogb number
This function returns the binary exponent of number. More precisely, the value is the
logarithm of number base 2, rounded down to an integer.

3.3 Type Predicates for Numbers

The functions in this section test whether the argument is a number or whether it is
a certain sort of number. The functions integerp and floatp can take any type of Lisp
object as argument (the predicates would not be of much use otherwise); but the zerop
predicate requires a number as its argument. See also integer-or-marker-p, integer-
char-or-marker-p, number-or-marker-p and number-char-or-marker-p, in Section 35.2
[Predicates on Markers], page 506.

Chapter 3: Numbers 49

Functionfloatp object
This predicate tests whether its argument is a floating point number and returns t if
so, nil otherwise.
floatp does not exist in Emacs versions 18 and earlier.

Functionintegerp object
This predicate tests whether its argument is an integer, and returns t if so, nil
otherwise.

Functionnumberp object
This predicate tests whether its argument is a number (either integer or floating
point), and returns t if so, nil otherwise.

Functionnatnump object
The natnump predicate (whose name comes from the phrase “natural-number-p”)
tests to see whether its argument is a nonnegative integer, and returns t if so, nil
otherwise. 0 is considered non-negative.

Functionzerop number
This predicate tests whether its argument is zero, and returns t if so, nil otherwise.
The argument must be a number.
These two forms are equivalent: (zerop x) ≡ (= x 0).

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can
be many distinct floating point number objects with the same numeric value. If you use
eq to compare them, then you test whether two values are the same object. By contrast, =
compares only the numeric values of the objects.

At present, each integer value has a unique Lisp object in XEmacs Lisp. Therefore, eq
is equivalent to = where integers are concerned. It is sometimes convenient to use eq for
comparing an unknown value with an integer, because eq does not report an error if the
unknown value is not a number—it accepts arguments of any type. By contrast, = signals
an error if the arguments are not numbers or markers. However, it is a good idea to use = if
you can, even for comparing integers, just in case we change the representation of integers
in a future XEmacs version.

There is another wrinkle: because floating point arithmetic is not exact, it is often a
bad idea to check for equality of two floating point values. Usually it is better to test for
approximate equality. Here’s a function to do this:

(defconst fuzz-factor 1.0e-6)
(defun approx-equal (x y)

(or (and (= x 0) (= y 0))
(< (/ (abs (- x y))

(max (abs x) (abs y)))

50 XEmacs Lisp Reference Manual

fuzz-factor)))

Common Lisp note: Comparing numbers in Common Lisp always requires =
because Common Lisp implements multi-word integers, and two distinct integer
objects can have the same numeric value. XEmacs Lisp can have just one integer
object for any given value because it has a limited range of integer values.

In addition to numbers, all of the following functions also accept characters and markers
as arguments, and treat them as their number equivalents.

Function= number &rest more-numbers
This function returns t if all of its arguments are numerically equal, nil otherwise.

(= 5)
⇒ t

(= 5 6)
⇒ nil

(= 5 5.0)
⇒ t

(= 5 5 6)
⇒ nil

Function/= number &rest more-numbers
This function returns t if no two arguments are numerically equal, nil otherwise.

(/= 5 6)
⇒ t

(/= 5 5 6)
⇒ nil

(/= 5 6 1)
⇒ t

Function< number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically increasing,
nil otherwise.

(< 5 6)
⇒ t

(< 5 6 6)
⇒ nil

(< 5 6 7)
⇒ t

Function<= number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically nondecreas-
ing, nil otherwise.

(<= 5 6)
⇒ t

(<= 5 6 6)
⇒ t

(<= 5 6 5)
⇒ nil

Chapter 3: Numbers 51

Function> number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically decreasing,
nil otherwise.

Function>= number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically nonincreas-
ing, nil otherwise.

Functionmax number &rest more-numbers
This function returns the largest of its arguments.

(max 20)
⇒ 20

(max 1 2.5)
⇒ 2.5

(max 1 3 2.5)
⇒ 3

Functionmin number &rest more-numbers
This function returns the smallest of its arguments.

(min -4 1)
⇒ -4

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

Functionfloat number
This returns number converted to floating point. If number is already a floating point
number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in
how they round. These functions accept integer arguments also, and return such arguments
unchanged.

Functiontruncate number
This returns number, converted to an integer by rounding towards zero.

Functionfloor number &optional divisor
This returns number, converted to an integer by rounding downward (towards nega-
tive infinity).

If divisor is specified, number is divided by divisor before the floor is taken; this is
the division operation that corresponds to mod. An arith-error results if divisor is
0.

52 XEmacs Lisp Reference Manual

Functionceiling number
This returns number, converted to an integer by rounding upward (towards positive
infinity).

Functionround number
This returns number, converted to an integer by rounding towards the nearest integer.
Rounding a value equidistant between two integers may choose the integer closer to
zero, or it may prefer an even integer, depending on your machine.

3.6 Arithmetic Operations

XEmacs Lisp provides the traditional four arithmetic operations: addition, subtraction,
multiplication, and division. Remainder and modulus functions supplement the division
functions. The functions to add or subtract 1 are provided because they are traditional in
Lisp and commonly used.

All of these functions except % return a floating point value if any argument is floating.
It is important to note that in XEmacs Lisp, arithmetic functions do not check for

overflow. Thus (1+ 134217727) may evaluate to −134217728, depending on your hardware.

Function1+ number-or-marker
This function returns number-or-marker plus 1. For example,

(setq foo 4)
⇒ 4

(1+ foo)
⇒ 5

This function is not analogous to the C operator ++—it does not increment a variable.
It just computes a sum. Thus, if we continue,

foo
⇒ 4

If you want to increment the variable, you must use setq, like this:
(setq foo (1+ foo))

⇒ 5

Now that the cl package is always available from lisp code, a more convenient and
natural way to increment a variable is (incf foo).

Function1- number-or-marker
This function returns number-or-marker minus 1.

Functionabs number
This returns the absolute value of number.

Function+ &rest numbers-or-markers
This function adds its arguments together. When given no arguments, + returns 0.

Chapter 3: Numbers 53

(+)
⇒ 0

(+ 1)
⇒ 1

(+ 1 2 3 4)
⇒ 10

Function- &optional number-or-marker &rest other-numbers-or-markers
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple ar-
guments, - subtracts each of the other-numbers-or-markers from number-or-marker,
cumulatively. If there are no arguments, the result is 0.

(- 10 1 2 3 4)
⇒ 0

(- 10)
⇒ -10

(-)
⇒ 0

Function* &rest numbers-or-markers
This function multiplies its arguments together, and returns the product. When given
no arguments, * returns 1.

(*)
⇒ 1

(* 1)
⇒ 1

(* 1 2 3 4)
⇒ 24

Function/ dividend divisor &rest divisors
This function divides dividend by divisor and returns the quotient. If there are
additional arguments divisors, then it divides dividend by each divisor in turn. Each
argument may be a number or a marker.
If all the arguments are integers, then the result is an integer too. This means the
result has to be rounded. On most machines, the result is rounded towards zero after
each division, but some machines may round differently with negative arguments.
This is because the Lisp function / is implemented using the C division operator,
which also permits machine-dependent rounding. As a practical matter, all known
machines round in the standard fashion.
If you divide by 0, an arith-error error is signaled. (See Section 9.5.3 [Errors],
page 138.)

(/ 6 2)
⇒ 3

(/ 5 2)
⇒ 2

(/ 25 3 2)
⇒ 4

54 XEmacs Lisp Reference Manual

(/ -17 6)
⇒ -2

The result of (/ -17 6) could in principle be -3 on some machines.

Function% dividend divisor
This function returns the integer remainder after division of dividend by divisor. The
arguments must be integers or markers.
For negative arguments, the remainder is in principle machine-dependent since the
quotient is; but in practice, all known machines behave alike.
An arith-error results if divisor is 0.

(% 9 4)
⇒ 1

(% -9 4)
⇒ -1

(% 9 -4)
⇒ 1

(% -9 -4)
⇒ -1

For any two integers dividend and divisor,
(+ (% dividend divisor)

(* (/ dividend divisor) divisor))

always equals dividend.

Functionmod dividend divisor
This function returns the value of dividend modulo divisor; in other words, the re-
mainder after division of dividend by divisor, but with the same sign as divisor. The
arguments must be numbers or markers.
Unlike %, mod returns a well-defined result for negative arguments. It also permits
floating point arguments; it rounds the quotient downward (towards minus infinity)
to an integer, and uses that quotient to compute the remainder.
An arith-error results if divisor is 0.

(mod 9 4)
⇒ 1

(mod -9 4)
⇒ 3

(mod 9 -4)
⇒ -3

(mod -9 -4)
⇒ -1

(mod 5.5 2.5)
⇒ .5

For any two numbers dividend and divisor,
(+ (mod dividend divisor)

(* (floor dividend divisor) divisor))

always equals dividend, subject to rounding error if either argument is floating point.
For floor, see Section 3.5 [Numeric Conversions], page 51.

Chapter 3: Numbers 55

3.7 Rounding Operations

The functions ffloor, fceiling, fround and ftruncate take a floating point argument
and return a floating point result whose value is a nearby integer. ffloor returns the
nearest integer below; fceiling, the nearest integer above; ftruncate, the nearest integer
in the direction towards zero; fround, the nearest integer.

Functionffloor float
This function rounds float to the next lower integral value, and returns that value as
a floating point number.

Functionfceiling float
This function rounds float to the next higher integral value, and returns that value
as a floating point number.

Functionftruncate float
This function rounds float towards zero to an integral value, and returns that value
as a floating point number.

Functionfround float
This function rounds float to the nearest integral value, and returns that value as a
floating point number.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits
which are either zero or one). A bitwise operation acts on the individual bits of such a
sequence. For example, shifting moves the whole sequence left or right one or more places,
reproducing the same pattern “moved over”.

The bitwise operations in XEmacs Lisp apply only to integers.

Functionlsh integer1 count
lsh, which is an abbreviation for logical shift, shifts the bits in integer1 to the left
count places, or to the right if count is negative, bringing zeros into the vacated bits.
If count is negative, lsh shifts zeros into the leftmost (most-significant) bit, producing
a positive result even if integer1 is negative. Contrast this with ash, below.

Here are two examples of lsh, shifting a pattern of bits one place to the left. We
show only the low-order eight bits of the binary pattern; the rest are all zero.

56 XEmacs Lisp Reference Manual

(lsh 5 1)
⇒ 10

;; Decimal 5 becomes decimal 10.
00000101 ⇒ 00001010

(lsh 7 1)
⇒ 14

;; Decimal 7 becomes decimal 14.
00000111 ⇒ 00001110

As the examples illustrate, shifting the pattern of bits one place to the left produces
a number that is twice the value of the previous number.
Shifting a pattern of bits two places to the left produces results like this (with 8-bit
binary numbers):

(lsh 3 2)
⇒ 12

;; Decimal 3 becomes decimal 12.
00000011 ⇒ 00001100

On the other hand, shifting one place to the right looks like this:
(lsh 6 -1)

⇒ 3
;; Decimal 6 becomes decimal 3.
00000110 ⇒ 00000011

(lsh 5 -1)
⇒ 2

;; Decimal 5 becomes decimal 2.
00000101 ⇒ 00000010

As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.
The function lsh, like all XEmacs Lisp arithmetic functions, does not check for over-
flow, so shifting left can discard significant bits and change the sign of the number.
For example, left shifting 134,217,727 produces −2 on a 28-bit machine:

(lsh 134217727 1) ; left shift
⇒ -2

In binary, in the 28-bit implementation, the argument looks like this:
;; Decimal 134,217,727
0111 1111 1111 1111 1111 1111 1111

which becomes the following when left shifted:
;; Decimal −2
1111 1111 1111 1111 1111 1111 1110

Functionash integer1 count
ash (arithmetic shift) shifts the bits in integer1 to the left count places, or to the
right if count is negative.
ash gives the same results as lsh except when integer1 and count are both negative.
In that case, ash puts ones in the empty bit positions on the left, while lsh puts zeros
in those bit positions.

Chapter 3: Numbers 57

Thus, with ash, shifting the pattern of bits one place to the right looks like this:
(ash -6 -1) ⇒ -3
;; Decimal −6 becomes decimal −3.
1111 1111 1111 1111 1111 1111 1010

⇒
1111 1111 1111 1111 1111 1111 1101

In contrast, shifting the pattern of bits one place to the right with lsh looks like this:
(lsh -6 -1) ⇒ 134217725
;; Decimal −6 becomes decimal 134,217,725.
1111 1111 1111 1111 1111 1111 1010

⇒
0111 1111 1111 1111 1111 1111 1101

Here are other examples:
; 28-bit binary values

(lsh 5 2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
⇒ 20 ; = 0000 0000 0000 0000 0000 0001 0100

(ash 5 2)
⇒ 20

(lsh -5 2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ -20 ; = 1111 1111 1111 1111 1111 1110 1100

(ash -5 2)
⇒ -20

(lsh 5 -2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
⇒ 1 ; = 0000 0000 0000 0000 0000 0000 0001

(ash 5 -2)
⇒ 1

(lsh -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ 4194302 ; = 0011 1111 1111 1111 1111 1111 1110

(ash -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ -2 ; = 1111 1111 1111 1111 1111 1111 1110

Functionlogand &rest ints-or-markers
This function returns the “logical and” of the arguments: the nth bit is set in the
result if, and only if, the nth bit is set in all the arguments. (“Set” means that the
value of the bit is 1 rather than 0.)
For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100. In both the binary numbers, the leftmost two
bits are set (i.e., they are 1’s), so the leftmost two bits of the returned value are set.
However, for the rightmost two bits, each is zero in at least one of the arguments, so
the rightmost two bits of the returned value are 0’s.
Therefore,

(logand 13 12)
⇒ 12

If logand is not passed any argument, it returns a value of −1. This number is an
identity element for logand because its binary representation consists entirely of ones.
If logand is passed just one argument, it returns that argument.

58 XEmacs Lisp Reference Manual

; 28-bit binary values

(logand 14 13) ; 14 = 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101

⇒ 12 ; 12 = 0000 0000 0000 0000 0000 0000 1100

(logand 14 13 4) ; 14 = 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101
; 4 = 0000 0000 0000 0000 0000 0000 0100

⇒ 4 ; 4 = 0000 0000 0000 0000 0000 0000 0100

(logand)
⇒ -1 ; -1 = 1111 1111 1111 1111 1111 1111 1111

Functionlogior &rest ints-or-markers
This function returns the “inclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in at least one of the arguments. If there are
no arguments, the result is zero, which is an identity element for this operation. If
logior is passed just one argument, it returns that argument.

; 28-bit binary values

(logior 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101

⇒ 13 ; 13 = 0000 0000 0000 0000 0000 0000 1101

(logior 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101
; 7 = 0000 0000 0000 0000 0000 0000 0111

⇒ 15 ; 15 = 0000 0000 0000 0000 0000 0000 1111

Functionlogxor &rest ints-or-markers
This function returns the “exclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in an odd number of the arguments. If there
are no arguments, the result is 0, which is an identity element for this operation. If
logxor is passed just one argument, it returns that argument.

; 28-bit binary values

(logxor 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101

⇒ 9 ; 9 = 0000 0000 0000 0000 0000 0000 1001

(logxor 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101
; 7 = 0000 0000 0000 0000 0000 0000 0111

⇒ 14 ; 14 = 0000 0000 0000 0000 0000 0000 1110

Functionlognot integer
This function returns the logical complement of its argument: the nth bit is one in
the result if, and only if, the nth bit is zero in integer, and vice-versa.

Chapter 3: Numbers 59

(lognot 5)
⇒ -6

;; 5 = 0000 0000 0000 0000 0000 0000 0101
;; becomes
;; -6 = 1111 1111 1111 1111 1111 1111 1010

3.9 Standard Mathematical Functions

These mathematical functions are available if floating point is supported (which is the
normal state of affairs). They allow integers as well as floating point numbers as arguments.

Functionsin arg
Functioncos arg
Functiontan arg

These are the ordinary trigonometric functions, with argument measured in radians.

Functionasin arg
The value of (asin arg) is a number between −pi/2 and pi/2 (inclusive) whose sine
is arg ; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

Functionacos arg
The value of (acos arg) is a number between 0 and pi (inclusive) whose cosine is
arg ; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

Functionatan arg
The value of (atan arg) is a number between −pi/2 and pi/2 (exclusive) whose
tangent is arg.

Functionsinh arg
Functioncosh arg
Functiontanh arg

These are the ordinary hyperbolic trigonometric functions.

Functionasinh arg
Functionacosh arg
Functionatanh arg

These are the inverse hyperbolic trigonometric functions.

Functionexp arg
This is the exponential function; it returns e to the power arg. e is a fundamental
mathematical constant also called the base of natural logarithms.

Functionlog arg &optional base
This function returns the logarithm of arg, with base base. If you don’t specify base,
the base e is used. If arg is negative, the result is a NaN.

60 XEmacs Lisp Reference Manual

Functionlog10 arg
This function returns the logarithm of arg, with base 10. If arg is negative, the result
is a NaN. (log10 x) ≡ (log x 10), at least approximately.

Functionexpt x y
This function returns x raised to power y. If both arguments are integers and y is
positive, the result is an integer; in this case, it is truncated to fit the range of possible
integer values.

Functionsqrt arg
This returns the square root of arg. If arg is negative, the value is a NaN.

Functioncube-root arg
This returns the cube root of arg.

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most
purposes, pseudo-random numbers suffice. A series of pseudo-random numbers is generated
in a deterministic fashion. The numbers are not truly random, but they have certain
properties that mimic a random series. For example, all possible values occur equally often
in a pseudo-random series.

In XEmacs, pseudo-random numbers are generated from a “seed” number. Starting
from any given seed, the random function always generates the same sequence of numbers.
XEmacs always starts with the same seed value, so the sequence of values of random is
actually the same in each XEmacs run! For example, in one operating system, the first call
to (random) after you start XEmacs always returns -1457731, and the second one always
returns -7692030. This repeatability is helpful for debugging.

If you want truly unpredictable random numbers, execute (random t). This chooses a
new seed based on the current time of day and on XEmacs’s process id number.

Functionrandom &optional limit
This function returns a pseudo-random integer. Repeated calls return a series of
pseudo-random integers.
If limit is a positive integer, the value is chosen to be nonnegative and less than limit.
If limit is t, it means to choose a new seed based on the current time of day and on
XEmacs’s process id number.
On some machines, any integer representable in Lisp may be the result of random.
On other machines, the result can never be larger than a certain maximum or less
than a certain (negative) minimum.

Chapter 4: Strings and Characters 61

4 Strings and Characters

A string in XEmacs Lisp is an array that contains an ordered sequence of characters.
Strings are used as names of symbols, buffers, and files, to send messages to users, to hold
text being copied between buffers, and for many other purposes. Because strings are so
important, XEmacs Lisp has many functions expressly for manipulating them. XEmacs
Lisp programs use strings more often than individual characters.

4.1 String and Character Basics

Strings in XEmacs Lisp are arrays that contain an ordered sequence of characters. Char-
acters are their own primitive object type in XEmacs 20. However, in XEmacs 19, characters
are represented in XEmacs Lisp as integers; whether an integer was intended as a character
or not is determined only by how it is used. See Section 2.4.3 [Character Type], page 21.

The length of a string (like any array) is fixed and independent of the string contents,
and cannot be altered. Strings in Lisp are not terminated by a distinguished character
code. (By contrast, strings in C are terminated by a character with ASCII code 0.) This
means that any character, including the null character (ASCII code 0), is a valid element
of a string.

Since strings are considered arrays, you can operate on them with the general array
functions. (See Chapter 6 [Sequences Arrays Vectors], page 103.) For example, you can
access or change individual characters in a string using the functions aref and aset (see
Section 6.3 [Array Functions], page 106).

Strings use an efficient representation for storing the characters in them, and thus take
up much less memory than a vector of the same length.

Sometimes you will see strings used to hold key sequences. This exists for backward
compatibility with Emacs 18, but should not be used in new code, since many key chords
can’t be represented at all and others (in particular meta key chords) are confused with
accented characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings (see Section 37.3 [Regexp Search], page 563). The functions match-string
(see Section 37.6.1 [Simple Match Data], page 568) and replace-match (see Section 37.6.2
[Replacing Match], page 569) are useful for decomposing and modifying strings based on
regular expression matching.

Like a buffer, a string can contain extents in it. These extents are created when a function
such as buffer-substring is called on a region with duplicable extents in it. When the
string is inserted into a buffer, the extents are inserted along with it. See Section 40.9
[Duplicable Extents], page 605.

See Chapter 36 [Text], page 517, for information about functions that display strings
or copy them into buffers. See Section 2.4.3 [Character Type], page 21, and Section 2.4.8
[String Type], page 28, for information about the syntax of characters and strings.

62 XEmacs Lisp Reference Manual

4.2 The Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Se-
quences Arrays Vectors], page 103, and Section 6.2 [Arrays], page 105.

Functionstringp object
This function returns t if object is a string, nil otherwise.

Functionchar-or-string-p object
This function returns t if object is a string or a character, nil otherwise.
In XEmacs addition, this function also returns t if object is an integer that can be
represented as a character. This is because of compatibility with previous XEmacs
and should not be depended on.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together,
or by taking them apart.

Functionstring &rest characters
This function returns a new string made up of characters.

(string ?X ?E ?m ?a ?c ?s)
⇒ "XEmacs"

(string)
⇒ ""

Analogous functions operating on other data types include list, cons (see Section 5.5
[Building Lists], page 84), vector (see Section 6.4 [Vectors], page 108) and bit-
vector (see Section 6.6 [Bit Vectors], page 110). This function has not been available
in XEmacs prior to 21.0 and FSF Emacs prior to 20.3.

Functionmake-string count character
This function returns a string made up of count repetitions of character. If count is
negative, an error is signaled.

(make-string 5 ?x)
⇒ "xxxxx"

(make-string 0 ?x)
⇒ ""

Other functions to compare with this one include char-to-string (see Section 4.7
[String Conversion], page 67), make-vector (see Section 6.4 [Vectors], page 108), and
make-list (see Section 5.5 [Building Lists], page 84).

Functionsubstring string start &optional end
This function returns a new string which consists of those characters from string in
the range from (and including) the character at the index start up to (but excluding)
the character at the index end. The first character is at index zero.

Chapter 4: Strings and Characters 63

(substring "abcdefg" 0 3)
⇒ "abc"

Here the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2. Thus,
three letters, ‘abc’, are copied from the string "abcdefg". The index 3 marks the
character position up to which the substring is copied. The character whose index is
3 is actually the fourth character in the string.
A negative number counts from the end of the string, so that −1 signifies the index
of the last character of the string. For example:

(substring "abcdefg" -3 -1)
⇒ "ef"

In this example, the index for ‘e’ is −3, the index for ‘f’ is −2, and the index for ‘g’
is −1. Therefore, ‘e’ and ‘f’ are included, and ‘g’ is excluded.
When nil is used as an index, it stands for the length of the string. Thus,

(substring "abcdefg" -3 nil)
⇒ "efg"

Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)
⇒ "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Func-
tions], page 103).
If the characters copied from string have duplicable extents or text properties, those
are copied into the new string also. See Section 40.9 [Duplicable Extents], page 605.
A wrong-type-argument error is signaled if either start or end is not an integer or
nil. An args-out-of-range error is signaled if start indicates a character following
end, or if either integer is out of range for string.
Contrast this function with buffer-substring (see Section 36.2 [Buffer Contents],
page 518), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

Functionconcat &rest sequences
This function returns a new string consisting of the characters in the arguments passed
to it (along with their text properties, if any). The arguments may be strings, lists of
numbers, or vectors of numbers; they are not themselves changed. If concat receives
no arguments, it returns an empty string.

(concat "abc" "-def")
⇒ "abc-def"

(concat "abc" (list 120 (+ 256 121)) [122])
⇒ "abcxyz"

;; nil is an empty sequence.
(concat "abc" nil "-def")

⇒ "abc-def"
(concat "The " "quick brown " "fox.")

⇒ "The quick brown fox."
(concat)

64 XEmacs Lisp Reference Manual

⇒ ""

The second example above shows how characters stored in strings are taken modulo
256. In other words, each character in the string is stored in one byte.
The concat function always constructs a new string that is not eq to any existing
string.
When an argument is an integer (not a sequence of integers), it is converted to a
string of digits making up the decimal printed representation of the integer. Don’t
use this feature; we plan to eliminate it. If you already use this feature, change your
programs now! The proper way to convert an integer to a decimal number in this way
is with format (see Section 4.10 [Formatting Strings], page 69) or number-to-string
(see Section 4.7 [String Conversion], page 67).

(concat 137)
⇒ "137"

(concat 54 321)
⇒ "54321"

For information about other concatenation functions, see the description of mapconcat
in Section 11.6 [Mapping Functions], page 173, vconcat in Section 6.4 [Vectors],
page 108, bvconcat in Section 6.6 [Bit Vectors], page 110, and append in Section 5.5
[Building Lists], page 84.

4.4 The Predicates for Characters

Functioncharacterp object
This function returns t if object is a character.
Some functions that work on integers (e.g. the comparison functions <, <=, =, /=,
etc. and the arithmetic functions +, -, *, etc.) accept characters and implicitly convert
them into integers. In general, functions that work on characters also accept char-ints
and implicitly convert them into characters. WARNING: Neither of these behaviors
is very desirable, and they are maintained for backward compatibility with old E-Lisp
programs that confounded characters and integers willy-nilly. These behaviors may
change in the future; therefore, do not rely on them. Instead, convert the characters
explicitly using char-int.

Functioninteger-or-char-p object
This function returns t if object is an integer or character.

4.5 Character Codes

Functionchar-int ch
This function converts a character into an equivalent integer. The resulting integer
will always be non-negative. The integers in the range 0 - 255 map to characters as
follows:

Chapter 4: Strings and Characters 65

0 - 31 Control set 0

32 - 127 ASCII

128 - 159 Control set 1

160 - 255 Right half of ISO-8859-1

If support for MULE does not exist, these are the only valid character values. When
MULE support exists, the values assigned to other characters may vary depending
on the particular version of XEmacs, the order in which character sets were loaded,
etc., and you should not depend on them.

Functionint-char integer
This function converts an integer into the equivalent character. Not all integers
correspond to valid characters; use char-int-p to determine whether this is the case.
If the integer cannot be converted, nil is returned.

Functionchar-int-p object
This function returns t if object is an integer that can be converted into a character.

Functionchar-or-char-int-p object
This function returns t if object is a character or an integer that can be converted
into one.

4.6 Comparison of Characters and Strings

Functionchar-equal character1 character2
This function returns t if the arguments represent the same character, nil otherwise.
This function ignores differences in case if case-fold-search is non-nil.

(char-equal ?x ?x)
⇒ t

(let ((case-fold-search t))
(char-equal ?x ?X))
⇒ t

(let ((case-fold-search nil))
(char-equal ?x ?X))
⇒ nil

Functionchar= character1 character2
This function returns t if the arguments represent the same character, nil otherwise.
Case is significant.

(char= ?x ?x)
⇒ t

(char= ?x ?X)
⇒ nil

66 XEmacs Lisp Reference Manual

(let ((case-fold-search t))
(char-equal ?x ?X))
⇒ nil

(let ((case-fold-search nil))
(char-equal ?x ?X))
⇒ nil

Functionstring= string1 string2
This function returns t if the characters of the two strings match exactly; case is
significant.

(string= "abc" "abc")
⇒ t

(string= "abc" "ABC")
⇒ nil

(string= "ab" "ABC")
⇒ nil

Functionstring-equal string1 string2
string-equal is another name for string=.

Functionstring< string1 string2
This function compares two strings a character at a time. First it scans both the
strings at once to find the first pair of corresponding characters that do not match. If
the lesser character of those two is the character from string1, then string1 is less, and
this function returns t. If the lesser character is the one from string2, then string1 is
greater, and this function returns nil. If the two strings match entirely, the value is
nil.

Pairs of characters are compared by their ASCII codes. Keep in mind that lower
case letters have higher numeric values in the ASCII character set than their upper
case counterparts; numbers and many punctuation characters have a lower numeric
value than upper case letters.

(string< "abc" "abd")
⇒ t

(string< "abd" "abc")
⇒ nil

(string< "123" "abc")
⇒ t

When the strings have different lengths, and they match up to the length of string1,
then the result is t. If they match up to the length of string2, the result is nil. A
string of no characters is less than any other string.

Chapter 4: Strings and Characters 67

(string< "" "abc")
⇒ t

(string< "ab" "abc")
⇒ t

(string< "abc" "")
⇒ nil

(string< "abc" "ab")
⇒ nil

(string< "" "")
⇒ nil

Functionstring-lessp string1 string2
string-lessp is another name for string<.

See also compare-buffer-substrings in Section 36.3 [Comparing Text], page 519, for
a way to compare text in buffers. The function string-match, which matches a regular
expression against a string, can be used for a kind of string comparison; see Section 37.3
[Regexp Search], page 563.

4.7 Conversion of Characters and Strings

This section describes functions for conversions between characters, strings and integers.
format and prin1-to-string (see Section 17.5 [Output Functions], page 260) can also
convert Lisp objects into strings. read-from-string (see Section 17.3 [Input Functions],
page 258) can “convert” a string representation of a Lisp object into an object.

See Chapter 27 [Documentation], page 385, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-
char-description). These functions are used primarily for making help messages.

Functionchar-to-string character
This function returns a new string with a length of one character. The value of
character, modulo 256, is used to initialize the element of the string.
This function is similar to make-string with an integer argument of 1. (See Sec-
tion 4.3 [Creating Strings], page 62.) This conversion can also be done with format
using the ‘%c’ format specification. (See Section 4.10 [Formatting Strings], page 69.)

(char-to-string ?x)
⇒ "x"

(char-to-string (+ 256 ?x))
⇒ "x"

(make-string 1 ?x)
⇒ "x"

Functionstring-to-char string
This function returns the first character in string. If the string is empty, the function
returns 0. (Under XEmacs 19, the value is also 0 when the first character of string is
the null character, ASCII code 0.)

68 XEmacs Lisp Reference Manual

(string-to-char "ABC")
⇒ ?A ;; Under XEmacs 20.
⇒ 65 ;; Under XEmacs 19.

(string-to-char "xyz")
⇒ ?x ;; Under XEmacs 20.
⇒ 120 ;; Under XEmacs 19.

(string-to-char "")
⇒ 0

(string-to-char "\000")
⇒ ?\^ ;; Under XEmacs 20.
⇒ 0 ;; Under XEmacs 20.

This function may be eliminated in the future if it does not seem useful enough to
retain.

Functionnumber-to-string number
This function returns a string consisting of the printed representation of number,
which may be an integer or a floating point number. The value starts with a sign if
the argument is negative.

(number-to-string 256)
⇒ "256"

(number-to-string -23)
⇒ "-23"

(number-to-string -23.5)
⇒ "-23.5"

int-to-string is a semi-obsolete alias for this function.
See also the function format in Section 4.10 [Formatting Strings], page 69.

Functionstring-to-number string &optional base
This function returns the numeric value of the characters in string, read in base. It
skips spaces and tabs at the beginning of string, then reads as much of string as it can
interpret as a number. (On some systems it ignores other whitespace at the beginning,
not just spaces and tabs.) If the first character after the ignored whitespace is not a
digit or a minus sign, this function returns 0.
If base is not specified, it defaults to ten. With base other than ten, only integers
can be read.

(string-to-number "256")
⇒ 256

(string-to-number "25 is a perfect square.")
⇒ 25

(string-to-number "X256")
⇒ 0

(string-to-number "-4.5")
⇒ -4.5

(string-to-number "ffff" 16)
⇒ 65535

string-to-int is an obsolete alias for this function.

Chapter 4: Strings and Characters 69

4.8 Modifying Strings

You can modify a string using the general array-modifying primitives. See Section 6.2
[Arrays], page 105. The function aset modifies a single character; the function fillarray
sets all characters in the string to a specified character.

Each string has a tick counter that starts out at zero (when the string is created) and is
incremented each time a change is made to that string.

Functionstring-modified-tick string
This function returns the tick counter for ‘string’.

4.9 String Properties

Similar to symbols, extents, faces, and glyphs, you can attach additional information to
strings in the form of string properties. These differ from text properties, which are logically
attached to particular characters in the string.

To attach a property to a string, use put. To retrieve a property from a string, use get.
You can also use remprop to remove a property from a string and object-props to retrieve
a list of all the properties in a string.

4.10 Formatting Strings

Formatting means constructing a string by substitution of computed values at various
places in a constant string. This string controls how the other values are printed as well as
where they appear; it is called a format string.

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from
format only in how they use the result of formatting.

Functionformat string &rest objects
This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The
arguments objects are the computed values to be formatted.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there
is a ‘%d’ in string, the format function replaces it with the printed representation of one of
the values to be formatted (one of the arguments objects). For example:

(format "The value of fill-column is %d." fill-column)
⇒ "The value of fill-column is 72."

If string contains more than one format specification, the format specifications corre-
spond with successive values from objects. Thus, the first format specification in string
uses the first such value, the second format specification uses the second such value, and

70 XEmacs Lisp Reference Manual

so on. Any extra format specifications (those for which there are no corresponding values)
cause unpredictable behavior. Any extra values to be formatted are ignored.

Certain format specifications require values of particular types. However, no error is
signaled if the value actually supplied fails to have the expected type. Instead, the output
is likely to be meaningless.

Here is a table of valid format specifications:

‘%s’ Replace the specification with the printed representation of the object, made
without quoting. Thus, strings are represented by their contents alone, with no
‘"’ characters, and symbols appear without ‘\’ characters. This is equivalent to
printing the object with princ.

If there is no corresponding object, the empty string is used.

‘%S’ Replace the specification with the printed representation of the object, made
with quoting. Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters
appear where necessary before special characters. This is equivalent to printing
the object with prin1.

If there is no corresponding object, the empty string is used.

‘%o’ Replace the specification with the base-eight representation of an integer.

‘%d’
‘%i’ Replace the specification with the base-ten representation of an integer.

‘%x’ Replace the specification with the base-sixteen representation of an integer,
using lowercase letters.

‘%X’ Replace the specification with the base-sixteen representation of an integer,
using uppercase letters.

‘%c’ Replace the specification with the character which is the value given.

‘%e’ Replace the specification with the exponential notation for a floating point
number (e.g. ‘7.85200e+03’).

‘%f’ Replace the specification with the decimal-point notation for a floating point
number.

‘%g’ Replace the specification with notation for a floating point number, using a
“pretty format”. Either exponential notation or decimal-point notation will be
used (usually whichever is shorter), and trailing zeroes are removed from the
fractional part.

‘%%’ A single ‘%’ is placed in the string. This format specification is unusual in that
it does not use a value. For example, (format "%% %d" 30) returns "% 30".

Any other format character results in an ‘Invalid format operation’ error.

Here are several examples:

Chapter 4: Strings and Characters 71

(format "The name of this buffer is %s." (buffer-name))
⇒ "The name of this buffer is strings.texi."

(format "The buffer object prints as %s." (current-buffer))
⇒ "The buffer object prints as #<buffer strings.texi>."

(format "The octal value of %d is %o,
and the hex value is %x." 18 18 18)

⇒ "The octal value of 18 is 22,
and the hex value is 12."

There are many additional flags and specifications that can occur between the ‘%’ and
the format character, in the following order:
1. An optional repositioning specification, which is a positive integer followed by a ‘$’.
2. Zero or more of the optional flag characters ‘-’, ‘+’, ‘ ’, ‘0’, and ‘#’.
3. An asterisk (‘*’, meaning that the field width is now assumed to have been specified

as an argument.
4. An optional minimum field width.
5. An optional precision, preceded by a ‘.’ character.

A repositioning specification changes which argument to format is used by the cur-
rent and all following format specifications. Normally the first specification uses the first
argument, the second specification uses the second argument, etc. Using a repositioning
specification, you can change this. By placing a number N followed by a ‘$’ between the ‘%’
and the format character, you cause the specification to use the Nth argument. The next
specification will use the N+1’th argument, etc.

For example:
(format "Can’t find file ‘%s’ in directory ‘%s’."

"ignatius.c" "loyola/")
⇒ "Can’t find file ‘ignatius.c’ in directory ‘loyola/’."

(format "In directory ‘%2$s’, the file ‘%1$s’ was not found."
"ignatius.c" "loyola/")

⇒ "In directory ‘loyola/’, the file ‘ignatius.c’ was not found."

(format
"The numbers %d and %d are %1$x and %x in hex and %1$o and %o in octal."
37 12)

⇒ "The numbers 37 and 12 are 25 and c in hex and 45 and 14 in octal."

As you can see, this lets you reprocess arguments more than once or reword a format
specification (thereby moving the arguments around) without having to actually reorder the
arguments. This is especially useful in translating messages from one language to another:
Different languages use different word orders, and this sometimes entails changing the order
of the arguments. By using repositioning specifications, this can be accomplished without
having to embed knowledge of particular languages into the location in the program’s code
where the message is displayed.

All the specification characters allow an optional numeric prefix between the ‘%’ and
the character, and following any repositioning specification or flag. The optional numeric

72 XEmacs Lisp Reference Manual

prefix defines the minimum width for the object. If the printed representation of the object
contains fewer characters than this, then it is padded. The padding is normally on the left,
but will be on the right if the ‘-’ flag character is given. The padding character is normally
a space, but if the ‘0’ flag character is given, zeros are used for padding.

(format "%06d is padded on the left with zeros" 123)
⇒ "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)
⇒ "123 is padded on the right"

format never truncates an object’s printed representation, no matter what width you
specify. Thus, you can use a numeric prefix to specify a minimum spacing between columns
with no risk of losing information.

In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first case,
the string inserted in place of ‘%7s’ has only 3 letters, so 4 blank spaces are inserted for
padding. In the second case, the string "specification" is 13 letters wide but is not
truncated. In the third case, the padding is on the right.

(format "The word ‘%7s’ actually has %d letters in it."
"foo" (length "foo"))

⇒ "The word ‘ foo’ actually has 3 letters in it."

(format "The word ‘%7s’ actually has %d letters in it."
"specification" (length "specification"))

⇒ "The word ‘specification’ actually has 13 letters in it."

(format "The word ‘%-7s’ actually has %d letters in it."
"foo" (length "foo"))

⇒ "The word ‘foo ’ actually has 3 letters in it."

After any minimum field width, a precision may be specified by preceding it with a ‘.’
character. The precision specifies the minimum number of digits to appear in ‘%d’, ‘%i’,
‘%o’, ‘%x’, and ‘%X’ conversions (the number is padded on the left with zeroes as necessary);
the number of digits printed after the decimal point for ‘%f’, ‘%e’, and ‘%E’ conversions; the
number of significant digits printed in ‘%g’ and ‘%G’ conversions; and the maximum number
of non-padding characters printed in ‘%s’ and ‘%S’ conversions. The default precision for
floating-point conversions is six.

The other flag characters have the following meanings:
• The ‘ ’ flag means prefix non-negative numbers with a space.
• The ‘+’ flag means prefix non-negative numbers with a plus sign.
• The ‘#’ flag means print numbers in an alternate, more verbose format: octal numbers

begin with zero; hex numbers begin with a ‘0x’ or ‘0X’; a decimal point is printed in
‘%f’, ‘%e’, and ‘%E’ conversions even if no numbers are printed after it; and trailing
zeroes are not omitted in ‘%g’ and ‘%G’ conversions.

4.11 Character Case

The character case functions change the case of single characters or of the contents of
strings. The functions convert only alphabetic characters (the letters ‘A’ through ‘Z’ and

Chapter 4: Strings and Characters 73

‘a’ through ‘z’); other characters are not altered. The functions do not modify the strings
that are passed to them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have ASCII codes 88 and 120
respectively.

Functiondowncase string-or-char
This function converts a character or a string to lower case.
When the argument to downcase is a string, the function creates and returns a new
string in which each letter in the argument that is upper case is converted to lower
case. When the argument to downcase is a character, downcase returns the corre-
sponding lower case character. (This value is actually an integer under XEmacs 19.)
If the original character is lower case, or is not a letter, then the value equals the
original character.

(downcase "The cat in the hat")
⇒ "the cat in the hat"

(downcase ?X)
⇒ ?x ;; Under XEmacs 20.
⇒ 120 ;; Under XEmacs 19.

Functionupcase string-or-char
This function converts a character or a string to upper case.
When the argument to upcase is a string, the function creates and returns a new
string in which each letter in the argument that is lower case is converted to upper
case.
When the argument to upcase is a character, upcase returns the corresponding upper
case character. (This value is actually an integer under XEmacs 19.) If the original
character is upper case, or is not a letter, then the value equals the original character.

(upcase "The cat in the hat")
⇒ "THE CAT IN THE HAT"

(upcase ?x)
⇒ ?X ;; Under XEmacs 20.
⇒ 88 ;; Under XEmacs 19.

Functioncapitalize string-or-char
This function capitalizes strings or characters. If string-or-char is a string, the func-
tion creates and returns a new string, whose contents are a copy of string-or-char in
which each word has been capitalized. This means that the first character of each
word is converted to upper case, and the rest are converted to lower case.
The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 38.2.1
[Syntax Class Table], page 576).
When the argument to capitalize is a character, capitalize has the same result
as upcase.

74 XEmacs Lisp Reference Manual

(capitalize "The cat in the hat")
⇒ "The Cat In The Hat"

(capitalize "THE 77TH-HATTED CAT")
⇒ "The 77th-Hatted Cat"

(capitalize ?x)
⇒ ?X ;; Under XEmacs 20.
⇒ 88 ;; Under XEmacs 19.

4.12 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the string and
character case conversion functions (see the previous section) and those that apply to text
in the buffer (see Section 36.17 [Case Changes], page 544). You need a case table if you are
using a language which has letters other than the standard ASCII letters.

A case table is a list of this form:
(downcase upcase canonicalize equivalences)

where each element is either nil or a string of length 256. The element downcase says
how to map each character to its lower-case equivalent. The element upcase maps each
character to its upper-case equivalent. If lower and upper case characters are in one-to-one
correspondence, use nil for upcase; then XEmacs deduces the upcase table from downcase.

For some languages, upper and lower case letters are not in one-to-one correspondence.
There may be two different lower case letters with the same upper case equivalent. In these
cases, you need to specify the maps for both directions.

The element canonicalize maps each character to a canonical equivalent; any two char-
acters that are related by case-conversion have the same canonical equivalent character.

The element equivalences is a map that cyclicly permutes each equivalence class (of
characters with the same canonical equivalent). (For ordinary ASCII, this would map ‘a’
into ‘A’ and ‘A’ into ‘a’, and likewise for each set of equivalent characters.)

When you construct a case table, you can provide nil for canonicalize; then Emacs
fills in this string from upcase and downcase. You can also provide nil for equivalences;
then Emacs fills in this string from canonicalize. In a case table that is actually in use,
those components are non-nil. Do not try to specify equivalences without also specifying
canonicalize.

Each buffer has a case table. XEmacs also has a standard case table which is copied into
each buffer when you create the buffer. Changing the standard case table doesn’t affect any
existing buffers.

Here are the functions for working with case tables:

Functioncase-table-p object
This predicate returns non-nil if object is a valid case table.

Chapter 4: Strings and Characters 75

Functionset-standard-case-table table
This function makes table the standard case table, so that it will apply to any buffers
created subsequently.

Functionstandard-case-table
This returns the standard case table.

Functioncurrent-case-table
This function returns the current buffer’s case table.

Functionset-case-table table
This sets the current buffer’s case table to table.

The following three functions are convenient subroutines for packages that define non-
ASCII character sets. They modify a string downcase-table provided as an argument; this
should be a string to be used as the downcase part of a case table. They also modify the
standard syntax table. See Chapter 38 [Syntax Tables], page 575.

Functionset-case-syntax-pair uc lc downcase-table
This function specifies a pair of corresponding letters, one upper case and one lower
case.

Functionset-case-syntax-delims l r downcase-table
This function makes characters l and r a matching pair of case-invariant delimiters.

Functionset-case-syntax char syntax downcase-table
This function makes char case-invariant, with syntax syntax.

Commanddescribe-buffer-case-table
This command displays a description of the contents of the current buffer’s case table.

You can load the library ‘iso-syntax’ to set up the standard syntax table and define a
case table for the 8-bit ISO Latin 1 character set.

4.13 The Char Table

A char table is a table that maps characters (or ranges of characters) to values. Char
tables are specialized for characters, only allowing particular sorts of ranges to be assigned
values. Although this loses in generality, it makes for extremely fast (constant-time) lookups,
and thus is feasible for applications that do an extremely large number of lookups (e.g.
scanning a buffer for a character in a particular syntax, where a lookup in the syntax table
must occur once per character).

Note that char tables as a primitive type, and all of the functions in this section, exist
only in XEmacs 20. In XEmacs 19, char tables are generally implemented using a vector of
256 elements.

When MULE support exists, the types of ranges that can be assigned values are

76 XEmacs Lisp Reference Manual

• all characters

• an entire charset

• a single row in a two-octet charset

• a single character

When MULE support is not present, the types of ranges that can be assigned values
are

• all characters

• a single character

Functionchar-table-p object
This function returns non-nil if object is a char table.

4.13.1 Char Table Types

Each char table type is used for a different purpose and allows different sorts of values.
The different char table types are

category Used for category tables, which specify the regexp categories that a character
is in. The valid values are nil or a bit vector of 95 elements. Higher-level Lisp
functions are provided for working with category tables. Currently categories
and category tables only exist when MULE support is present.

char A generalized char table, for mapping from one character to another. Used
for case tables, syntax matching tables, keyboard-translate-table, etc. The
valid values are characters.

generic An even more generalized char table, for mapping from a character to anything.

display Used for display tables, which specify how a particular character is to appear
when displayed. #### Not yet implemented.

syntax Used for syntax tables, which specify the syntax of a particular character.
Higher-level Lisp functions are provided for working with syntax tables. The
valid values are integers.

Functionchar-table-type table
This function returns the type of char table table.

Functionchar-table-type-list
This function returns a list of the recognized char table types.

Functionvalid-char-table-type-p type
This function returns t if type if a recognized char table type.

Chapter 4: Strings and Characters 77

4.13.2 Working With Char Tables

Functionmake-char-table type
This function makes a new, empty char table of type type. type should be a symbol,
one of char, category, display, generic, or syntax.

Functionput-char-table range val table
This function sets the value for chars in range to be val in table.
range specifies one or more characters to be affected and should be one of the following:
• t (all characters are affected)
• A charset (only allowed when MULE support is present)
• A vector of two elements: a two-octet charset and a row number (only allowed

when MULE support is present)
• A single character

val must be a value appropriate for the type of table.

Functionget-char-table ch table
This function finds the value for char ch in table.

Functionget-range-char-table range table &optional multi
This function finds the value for a range in table. If there is more than one value,
multi is returned (defaults to nil).

Functionreset-char-table table
This function resets a char table to its default state.

Functionmap-char-table function table &optional range
This function maps function over entries in table, calling it with two args, each key
and value in the table.
range specifies a subrange to map over and is in the same format as the range argu-
ment to put-range-table. If omitted or t, it defaults to the entire table.

Functionvalid-char-table-value-p value char-table-type
This function returns non-nil if value is a valid value for char-table-type.

Functioncheck-valid-char-table-value value char-table-type
This function signals an error if value is not a valid value for char-table-type.

78 XEmacs Lisp Reference Manual

Chapter 5: Lists 79

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects).
The important difference between lists and vectors is that two or more lists can share part
of their structure; in addition, you can insert or delete elements in a list without copying
the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells. A cons cell
is a data object that represents an ordered pair. It records two Lisp objects, one labeled as
the car, and the other labeled as the cdr. These names are traditional; see Section 2.4.6
[Cons Cell Type], page 24. cdr is pronounced “could-er.”

A list is a series of cons cells chained together, one cons cell per element of the list. By
convention, the cars of the cons cells are the elements of the list, and the cdrs are used
to chain the list: the cdr of each cons cell is the following cons cell. The cdr of the last
cons cell is nil. This asymmetry between the car and the cdr is entirely a matter of
convention; at the level of cons cells, the car and cdr slots have the same characteristics.

Because most cons cells are used as part of lists, the phrase list structure has come to
mean any structure made out of cons cells.

The symbol nil is considered a list as well as a symbol; it is the list with no elements.
For convenience, the symbol nil is considered to have nil as its cdr (and also as its car).

The cdr of any nonempty list l is a list containing all the elements of l except the first.

5.2 Lists as Linked Pairs of Boxes

A cons cell can be illustrated as a pair of boxes. The first box represents the car and
the second box represents the cdr. Here is an illustration of the two-element list, (tulip
lily), made from two cons cells:

--------------- ---------------
car	cdr		car	cdr
tulip	o---------->	lily	nil	
--------------- ---------------

Each pair of boxes represents a cons cell. Each box “refers to”, “points to” or “contains”
a Lisp object. (These terms are synonymous.) The first box, which is the car of the first
cons cell, contains the symbol tulip. The arrow from the cdr of the first cons cell to the
second cons cell indicates that the cdr of the first cons cell points to the second cons cell.

The same list can be illustrated in a different sort of box notation like this:
___ ___ ___ ___
|___|___|--> |___|___|--> nil
| |
| |
--> tulip --> lily

80 XEmacs Lisp Reference Manual

Here is a more complex illustration, showing the three-element list, ((pine needles)
oak maple), the first element of which is a two-element list:

___ ___ ___ ___ ___ ___
|___|___|--> |___|___|--> |___|___|--> nil
| | |
| | |
| --> oak --> maple
|
| ___ ___ ___ ___
--> |___|___|--> |___|___|--> nil

| |
| |
--> pine --> needles

The same list represented in the first box notation looks like this:

-------------- -------------- --------------
car	cdr		car	cdr		car	cdr	
o	o------->	oak	o------->	maple	nil			
-- | --------- -------------- --------------

|
|
| -------------- ----------------
| | car | cdr | | car | cdr |
------>| pine | o------->| needles | nil |

| | | | | |
-------------- ----------------

See Section 2.4.6 [Cons Cell Type], page 24, for the read and print syntax of cons cells
and lists, and for more “box and arrow” illustrations of lists.

5.3 Predicates on Lists

The following predicates test whether a Lisp object is an atom, is a cons cell or is a list,
or whether it is the distinguished object nil. (Many of these predicates can be defined in
terms of the others, but they are used so often that it is worth having all of them.)

Functionconsp object
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,
although it is a list.

Functionatom object
This function returns t if object is an atom, nil otherwise. All objects except cons
cells are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object
that is both.

(atom object) ≡ (not (consp object))

Chapter 5: Lists 81

Functionlistp object
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.

(listp ’(1))
⇒ t

(listp ’())
⇒ t

Functionnlistp object
This function is the opposite of listp: it returns t if object is not a list. Otherwise,
it returns nil.

(listp object) ≡ (not (nlistp object))

Functionnull object
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a
list and not when it is considered a truth value (see not in Section 9.3 [Combining
Conditions], page 134).

(null ’(1))
⇒ nil

(null ’())
⇒ t

5.4 Accessing Elements of Lists

Functioncar cons-cell
This function returns the value pointed to by the first pointer of the cons cell cons-cell.
Expressed another way, this function returns the car of cons-cell.
As a special case, if cons-cell is nil, then car is defined to return nil; therefore, any
list is a valid argument for car. An error is signaled if the argument is not a cons cell
or nil.

(car ’(a b c))
⇒ a

(car ’())
⇒ nil

Functioncdr cons-cell
This function returns the value pointed to by the second pointer of the cons cell
cons-cell. Expressed another way, this function returns the cdr of cons-cell.
As a special case, if cons-cell is nil, then cdr is defined to return nil; therefore, any
list is a valid argument for cdr. An error is signaled if the argument is not a cons cell
or nil.

(cdr ’(a b c))
⇒ (b c)

(cdr ’())
⇒ nil

82 XEmacs Lisp Reference Manual

Functioncar-safe object
This function lets you take the car of a cons cell while avoiding errors for other data
types. It returns the car of object if object is a cons cell, nil otherwise. This is in
contrast to car, which signals an error if object is not a list.

(car-safe object)
≡
(let ((x object))

(if (consp x)
(car x)

nil))

Functioncdr-safe object
This function lets you take the cdr of a cons cell while avoiding errors for other data
types. It returns the cdr of object if object is a cons cell, nil otherwise. This is in
contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)
≡
(let ((x object))

(if (consp x)
(cdr x)

nil))

Functionnth n list
This function returns the nth element of list. Elements are numbered starting with
zero, so the car of list is element number zero. If the length of list is n or less, the
value is nil.
If n is negative, nth returns the first element of list.

(nth 2 ’(1 2 3 4))
⇒ 3

(nth 10 ’(1 2 3 4))
⇒ nil

(nth -3 ’(1 2 3 4))
⇒ 1

(nth n x) ≡ (car (nthcdr n x))

Functionnthcdr n list
This function returns the nth cdr of list. In other words, it removes the first n links
of list and returns what follows.
If n is zero or negative, nthcdr returns all of list. If the length of list is n or less,
nthcdr returns nil.

(nthcdr 1 ’(1 2 3 4))
⇒ (2 3 4)

(nthcdr 10 ’(1 2 3 4))
⇒ nil

(nthcdr -3 ’(1 2 3 4))
⇒ (1 2 3 4)

Chapter 5: Lists 83

Many convenience functions are provided to make it easier for you to access particular
elements in a nested list. All of these can be rewritten in terms of the functions just
described.

Functioncaar cons-cell
Functioncadr cons-cell
Functioncdar cons-cell
Functioncddr cons-cell
Functioncaaar cons-cell
Functioncaadr cons-cell
Functioncadar cons-cell
Functioncaddr cons-cell
Functioncdaar cons-cell
Functioncdadr cons-cell
Functioncddar cons-cell
Functioncdddr cons-cell
Functioncaaaar cons-cell
Functioncaaadr cons-cell
Functioncaadar cons-cell
Functioncaaddr cons-cell
Functioncadaar cons-cell
Functioncadadr cons-cell
Functioncaddar cons-cell
Functioncadddr cons-cell
Functioncdaaar cons-cell
Functioncdaadr cons-cell
Functioncdadar cons-cell
Functioncdaddr cons-cell
Functioncddaar cons-cell
Functioncddadr cons-cell
Functioncdddar cons-cell
Functioncddddr cons-cell

Each of these functions is equivalent to one or more applications of car and/or cdr.
For example,

(cadr x)

is equivalent to

(car (cdr x))

and

(cdaddr x)

is equivalent to

(cdr (car (cdr (cdr x))))

That is to say, read the a’s and d’s from right to left and apply a car or cdr for each
a or d found, respectively.

84 XEmacs Lisp Reference Manual

Functionfirst list
This is equivalent to (nth 0 list), i.e. the first element of list. (Note that this is also
equivalent to car.)

Functionsecond list
This is equivalent to (nth 1 list), i.e. the second element of list.

Functionthird list
Functionfourth list
Functionfifth list
Functionsixth list
Functionseventh list
Functioneighth list
Functionninth list
Functiontenth list

These are equivalent to (nth 2 list) through (nth 9 list) respectively, i.e. the third
through tenth elements of list.

5.5 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the funda-
mental list-building function; however, it is interesting to note that list is used more times
in the source code for Emacs than cons.

Functioncons object1 object2
This function is the fundamental function used to build new list structure. It creates
a new cons cell, making object1 the car, and object2 the cdr. It then returns the
new cons cell. The arguments object1 and object2 may be any Lisp objects, but most
often object2 is a list.

(cons 1 ’(2))
⇒ (1 2)

(cons 1 ’())
⇒ (1)

(cons 1 2)
⇒ (1 . 2)

cons is often used to add a single element to the front of a list. This is called consing
the element onto the list. For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example
and the function named list described below; any symbol can serve both purposes.

Functionlist &rest objects
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.

Chapter 5: Lists 85

(list 1 2 3 4 5)
⇒ (1 2 3 4 5)

(list 1 2 ’(3 4 5) ’foo)
⇒ (1 2 (3 4 5) foo)

(list)
⇒ nil

Functionmake-list length object
This function creates a list of length length, in which all the elements have the iden-
tical value object. Compare make-list with make-string (see Section 4.3 [Creating
Strings], page 62).

(make-list 3 ’pigs)
⇒ (pigs pigs pigs)

(make-list 0 ’pigs)
⇒ nil

Functionappend &rest sequences
This function returns a list containing all the elements of sequences. The sequences
may be lists, vectors, or strings, but the last one should be a list. All arguments
except the last one are copied, so none of them are altered.

More generally, the final argument to append may be any Lisp object. The final
argument is not copied or converted; it becomes the cdr of the last cons cell in
the new list. If the final argument is itself a list, then its elements become in effect
elements of the result list. If the final element is not a list, the result is a “dotted
list” since its final cdr is not nil as required in a true list.

See nconc in Section 5.6.3 [Rearrangement], page 90, for a way to join lists with no
copying.

Here is an example of using append:

(setq trees ’(pine oak))
⇒ (pine oak)

(setq more-trees (append ’(maple birch) trees))
⇒ (maple birch pine oak)

trees
⇒ (pine oak)

more-trees
⇒ (maple birch pine oak)

(eq trees (cdr (cdr more-trees)))
⇒ t

You can see how append works by looking at a box diagram. The variable trees is
set to the list (pine oak) and then the variable more-trees is set to the list (maple
birch pine oak). However, the variable trees continues to refer to the original list:

86 XEmacs Lisp Reference Manual

more-trees trees
| |
| ___ ___ ___ ___ -> ___ ___ ___ ___
--> |___|___|--> |___|___|--> |___|___|--> |___|___|--> nil

| | | |
| | | |
--> maple -->birch --> pine --> oak

An empty sequence contributes nothing to the value returned by append. As a con-
sequence of this, a final nil argument forces a copy of the previous argument.

trees
⇒ (pine oak)

(setq wood (append trees ()))
⇒ (pine oak)

wood
⇒ (pine oak)

(eq wood trees)
⇒ nil

This once was the usual way to copy a list, before the function copy-sequence was
invented. See Chapter 6 [Sequences Arrays Vectors], page 103.

With the help of apply, we can append all the lists in a list of lists:

(apply ’append ’((a b c) nil (x y z) nil))
⇒ (a b c x y z)

If no sequences are given, nil is returned:

(append)
⇒ nil

Here are some examples where the final argument is not a list:

(append ’(x y) ’z)
⇒ (x y . z)

(append ’(x y) [z])
⇒ (x y . [z])

The second example shows that when the final argument is a sequence but not a list,
the sequence’s elements do not become elements of the resulting list. Instead, the
sequence becomes the final cdr, like any other non-list final argument.

The append function also allows integers as arguments. It converts them to strings
of digits, making up the decimal print representation of the integer, and then uses
the strings instead of the original integers. Don’t use this feature; we plan to elim-
inate it. If you already use this feature, change your programs now! The proper
way to convert an integer to a decimal number in this way is with format (see Sec-
tion 4.10 [Formatting Strings], page 69) or number-to-string (see Section 4.7 [String
Conversion], page 67).

Functionreverse list
This function creates a new list whose elements are the elements of list, but in reverse
order. The original argument list is not altered.

Chapter 5: Lists 87

(setq x ’(1 2 3 4))
⇒ (1 2 3 4)

(reverse x)
⇒ (4 3 2 1)

x
⇒ (1 2 3 4)

5.6 Modifying Existing List Structure

You can modify the car and cdr contents of a cons cell with the primitives setcar and
setcdr.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter
list structure; they change structure the same way as setcar and setcdr, but
the Common Lisp functions return the cons cell while setcar and setcdr return
the new car or cdr.

5.6.1 Altering List Elements with setcar

Changing the car of a cons cell is done with setcar. When used on a list, setcar
replaces one element of a list with a different element.

Functionsetcar cons object
This function stores object as the new car of cons, replacing its previous car. It
returns the value object. For example:

(setq x ’(1 2))
⇒ (1 2)

(setcar x 4)
⇒ 4

x
⇒ (4 2)

When a cons cell is part of the shared structure of several lists, storing a new car into
the cons changes one element of each of these lists. Here is an example:

;; Create two lists that are partly shared.
(setq x1 ’(a b c))

⇒ (a b c)
(setq x2 (cons ’z (cdr x1)))

⇒ (z b c)

;; Replace the car of a shared link.
(setcar (cdr x1) ’foo)

⇒ foo
x1 ; Both lists are changed.

⇒ (a foo c)
x2

⇒ (z foo c)

88 XEmacs Lisp Reference Manual

;; Replace the car of a link that is not shared.
(setcar x1 ’baz)

⇒ baz
x1 ; Only one list is changed.

⇒ (baz foo c)
x2

⇒ (z foo c)

Here is a graphical depiction of the shared structure of the two lists in the variables x1
and x2, showing why replacing b changes them both:

___ ___ ___ ___ ___ ___
x1---> |___|___|----> |___|___|--> |___|___|--> nil

| --> | |
| | | |
--> a | --> b --> c

|
___ ___ |

x2--> |___|___|--
|
|
--> z

Here is an alternative form of box diagram, showing the same relationship:
x1:
-------------- -------------- --------------
car	cdr		car	cdr		car	cdr
a	o------->	b	o------->	c	nil		
		-->					
-------------- | -------------- --------------

|
x2:
car
z

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a cdr is setcdr:

Functionsetcdr cons object
This function stores object as the new cdr of cons, replacing its previous cdr. It
returns the value object.

Here is an example of replacing the cdr of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element
is unchanged, because it resides in the car of the list, and is not reached via the cdr.

Chapter 5: Lists 89

(setq x ’(1 2 3))
⇒ (1 2 3)

(setcdr x ’(4))
⇒ (4)

x
⇒ (1 4)

You can delete elements from the middle of a list by altering the cdrs of the cons cells
in the list. For example, here we delete the second element, b, from the list (a b c), by
changing the cdr of the first cell:

(setq x1 ’(a b c))
⇒ (a b c)

(setcdr x1 (cdr (cdr x1)))
⇒ (c)

x1
⇒ (a c)

Here is the result in box notation:

| |

-------------- | -------------- | --------------
| car | cdr | | | car | cdr | -->| car | cdr |
| a | o----- | b | o-------->| c | nil |
| | | | | | | | |
-------------- -------------- --------------

The second cons cell, which previously held the element b, still exists and its car is still b,
but it no longer forms part of this list.

It is equally easy to insert a new element by changing cdrs:

(setq x1 ’(a b c))
⇒ (a b c)

(setcdr x1 (cons ’d (cdr x1)))
⇒ (d b c)

x1
⇒ (a d b c)

Here is this result in box notation:

-------------- ------------- -------------
car	cdr		car	cdr		car	cdr		
a	o	-->	b	o------->	c	nil			
--------- | -- | ------------- -------------

| |
----- --------
-->| d | o------

| | |

90 XEmacs Lisp Reference Manual

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the cdrs of
their component cons cells. We call these functions “destructive” because they chew up the
original lists passed to them as arguments, to produce a new list that is the returned value.

The function delq in the following section is another example of destructive list manip-
ulation.

Functionnconc &rest lists
This function returns a list containing all the elements of lists. Unlike append (see
Section 5.5 [Building Lists], page 84), the lists are not copied. Instead, the last cdr

of each of the lists is changed to refer to the following list. The last of the lists is not
altered. For example:

(setq x ’(1 2 3))
⇒ (1 2 3)

(nconc x ’(4 5))
⇒ (1 2 3 4 5)

x
⇒ (1 2 3 4 5)

Since the last argument of nconc is not itself modified, it is reasonable to use a
constant list, such as ’(4 5), as in the above example. For the same reason, the last
argument need not be a list:

(setq x ’(1 2 3))
⇒ (1 2 3)

(nconc x ’z)
⇒ (1 2 3 . z)

x
⇒ (1 2 3 . z)

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If
you do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ; We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo)) x))

(setq xx (add-foo ’(1 2))) ; It seems to work.
⇒ (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
⇒ (foo 1 2 3 4)

(eq xx xy)
⇒ t

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

Chapter 5: Lists 91

Functionnreverse list
This function reverses the order of the elements of list. Unlike reverse, nreverse
alters its argument by reversing the cdrs in the cons cells forming the list. The cons
cell that used to be the last one in list becomes the first cell of the value.
For example:

(setq x ’(1 2 3 4))
⇒ (1 2 3 4)

x
⇒ (1 2 3 4)

(nreverse x)
⇒ (4 3 2 1)

;; The cell that was first is now last.
x

⇒ (1)

To avoid confusion, we usually store the result of nreverse back in the same variable
which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b c), presented graphically:
Original list head: Reversed list:
------------- ------------- ------------

| car | cdr | | car | cdr | | car | cdr |
| a | nil |<-- | b | o |<-- | c | o |
| | | | | | | | | | | | |
------------- | --------- | - | -------- | -

| | | |
------------- ------------

Functionsort list predicate
This function sorts list stably, though destructively, and returns the sorted list. It
compares elements using predicate. A stable sort is one in which elements with equal
sort keys maintain their relative order before and after the sort. Stability is important
when successive sorts are used to order elements according to different criteria.
The argument predicate must be a function that accepts two arguments. It is called
with two elements of list. To get an increasing order sort, the predicate should return
t if the first element is “less than” the second, or nil if not.
The destructive aspect of sort is that it rearranges the cons cells forming list by
changing cdrs. A nondestructive sort function would create new cons cells to store the
elements in their sorted order. If you wish to make a sorted copy without destroying
the original, copy it first with copy-sequence and then sort.
Sorting does not change the cars of the cons cells in list; the cons cell that originally
contained the element a in list still has a in its car after sorting, but it now appears
in a different position in the list due to the change of cdrs. For example:

(setq nums ’(1 3 2 6 5 4 0))
⇒ (1 3 2 6 5 4 0)

(sort nums ’<)
⇒ (0 1 2 3 4 5 6)

92 XEmacs Lisp Reference Manual

nums
⇒ (1 2 3 4 5 6)

Note that the list in nums no longer contains 0; this is the same cons cell that it
was before, but it is no longer the first one in the list. Don’t assume a variable that
formerly held the argument now holds the entire sorted list! Instead, save the result
of sort and use that. Most often we store the result back into the variable that held
the original list:

(setq nums (sort nums ’<))

See Section 36.14 [Sorting], page 536, for more functions that perform sorting. See
documentation in Section 27.2 [Accessing Documentation], page 386, for a useful
example of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element
of a set if it appears in the list, and ignore the order of the list. To form the union of
two sets, use append (as long as you don’t mind having duplicate elements). Other useful
functions for sets include memq and delq, and their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate
elements) and intersection for set operations, but XEmacs Lisp does not have
them. You can write them in Lisp if you wish.

Functionmemq object list
This function tests to see whether object is a member of list. If it is, memq returns a
list starting with the first occurrence of object. Otherwise, it returns nil. The letter
‘q’ in memq says that it uses eq to compare object against the elements of the list. For
example:

(memq ’b ’(a b c b a))
⇒ (b c b a)

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

Functiondelq object list
This function destructively removes all elements eq to object from list. The letter ‘q’
in delq says that it uses eq to compare object against the elements of the list, like
memq.

When delq deletes elements from the front of the list, it does so simply by advancing
down the list and returning a sublist that starts after those elements:

(delq ’a ’(a b c)) ≡ (cdr ’(a b c))

When an element to be deleted appears in the middle of the list, removing it involves
changing the cdrs (see Section 5.6.2 [Setcdr], page 88).

(setq sample-list ’(a b c (4)))
⇒ (a b c (4))

Chapter 5: Lists 93

(delq ’a sample-list)
⇒ (b c (4))

sample-list
⇒ (a b c (4))

(delq ’c sample-list)
⇒ (a b (4))

sample-list
⇒ (a b (4))

Note that (delq ’c sample-list) modifies sample-list to splice out the third element,
but (delq ’a sample-list) does not splice anything—it just returns a shorter list. Don’t
assume that a variable which formerly held the argument list now has fewer elements, or
that it still holds the original list! Instead, save the result of delq and use that. Most often
we store the result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the
sample-list are not eq:

(delq ’(4) sample-list)
⇒ (a c (4))

The following two functions are like memq and delq but use equal rather than eq to
compare elements. They are new in Emacs 19.

Functionmember object list
The function member tests to see whether object is a member of list, comparing
members with object using equal. If object is a member, member returns a list
starting with its first occurrence in list. Otherwise, it returns nil.
Compare this with memq:

(member ’(2) ’((1) (2))) ; (2) and (2) are equal.
⇒ ((2))

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

;; Two strings with the same contents are equal.
(member "foo" ’("foo" "bar"))

⇒ ("foo" "bar")

Functiondelete object list
This function destructively removes all elements equal to object from list. It is to
delq as member is to memq: it uses equal to compare elements with object, like
member; when it finds an element that matches, it removes the element just as delq
would. For example:

(delete ’(2) ’((2) (1) (2)))
⇒ ’((1))

Common Lisp note: The functions member and delete in XEmacs Lisp are
derived from Maclisp, not Common Lisp. The Common Lisp versions do not
use equal to compare elements.

See also the function add-to-list, in Section 10.7 [Setting Variables], page 154, for
another way to add an element to a list stored in a variable.

94 XEmacs Lisp Reference Manual

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a
list of cons cells called associations: the car of each cell is the key, and the cdr is the
associated value.1

Here is an example of an alist. The key pine is associated with the value cones; the key
oak is associated with acorns; and the key maple is associated with seeds.

’((pine . cones)
(oak . acorns)
(maple . seeds))

The associated values in an alist may be any Lisp objects; so may the keys. For example,
in the following alist, the symbol a is associated with the number 1, and the string "b" is
associated with the list (2 3), which is the cdr of the alist element:

((a . 1) ("b" 2 3))

Sometimes it is better to design an alist to store the associated value in the car of the
cdr of the element. Here is an example:

’((rose red) (lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this method is that
you can store other related information—even a list of other items—in the cdr of the cdr.
One disadvantage is that you cannot use rassq (see below) to find the element containing
a given value. When neither of these considerations is important, the choice is a matter of
taste, as long as you are consistent about it for any given alist.

Note that the same alist shown above could be regarded as having the associated value
in the cdr of the element; the value associated with rose would be the list (red).

Association lists are often used to record information that you might otherwise keep on
a stack, since new associations may be added easily to the front of the list. When searching
an association list for an association with a given key, the first one found is returned, if
there is more than one.

In XEmacs Lisp, it is not an error if an element of an association list is not a cons cell.
The alist search functions simply ignore such elements. Many other versions of Lisp signal
errors in such cases.

Note that property lists are similar to association lists in several respects. A property
list behaves like an association list in which each key can occur only once. See Section 5.9
[Property Lists], page 98, for a comparison of property lists and association lists.

Functionassoc key alist
This function returns the first association for key in alist. It compares key against
the alist elements using equal (see Section 2.8 [Equality Predicates], page 44). It
returns nil if no association in alist has a car equal to key. For example:

1 This usage of “key” is not related to the term “key sequence”; it means a value used to
look up an item in a table. In this case, the table is the alist, and the alist associations
are the items.

Chapter 5: Lists 95

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assoc ’oak trees)
⇒ (oak . acorns)

(cdr (assoc ’oak trees))
⇒ acorns

(assoc ’birch trees)
⇒ nil

Here is another example, in which the keys and values are not symbols:
(setq needles-per-cluster

’((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
⇒ ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
⇒ ("Austrian Pine" "Red Pine")

Functionrassoc value alist
This function returns the first association with value value in alist. It returns nil if
no association in alist has a cdr equal to value.

rassoc is like assoc except that it compares the cdr of each alist association instead
of the car. You can think of this as “reverse assoc”, finding the key for a given
value.

Functionassq key alist
This function is like assoc in that it returns the first association for key in alist, but
it makes the comparison using eq instead of equal. assq returns nil if no association
in alist has a car eq to key. This function is used more often than assoc, since eq
is faster than equal and most alists use symbols as keys. See Section 2.8 [Equality
Predicates], page 44.

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assq ’pine trees)
⇒ (pine . cones)

On the other hand, assq is not usually useful in alists where the keys may not be
symbols:

(setq leaves
’(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)
⇒ nil

(assoc "simple leaves" leaves)
⇒ ("simple leaves" . oak)

96 XEmacs Lisp Reference Manual

Functionrassq value alist
This function returns the first association with value value in alist. It returns nil if
no association in alist has a cdr eq to value.
rassq is like assq except that it compares the cdr of each alist association instead
of the car. You can think of this as “reverse assq”, finding the key for a given value.
For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
⇒ (oak . acorns)

(rassq ’spores trees)
⇒ nil

Note that rassq cannot search for a value stored in the car of the cdr of an element:
(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
⇒ nil

In this case, the cdr of the association (lily white) is not the symbol white, but
rather the list (white). This becomes clearer if the association is written in dotted
pair notation:

(lily white) ≡ (lily . (white))

Functionremassoc key alist
This function deletes by side effect any associations with key key in alist – i.e. it
removes any elements from alist whose car is equal to key. The modified alist is
returned.
If the first member of alist has a car that is equal to key, there is no way to remove it
by side effect; therefore, write (setq foo (remassoc key foo)) to be sure of changing
the value of foo.

Functionremassq key alist
This function deletes by side effect any associations with key key in alist – i.e. it
removes any elements from alist whose car is eq to key. The modified alist is returned.
This function is exactly like remassoc, but comparisons between key and keys in alist
are done using eq instead of equal.

Functionremrassoc value alist
This function deletes by side effect any associations with value value in alist – i.e. it
removes any elements from alist whose cdr is equal to value. The modified alist is
returned.
If the first member of alist has a car that is equal to value, there is no way to remove
it by side effect; therefore, write (setq foo (remassoc value foo)) to be sure of
changing the value of foo.
remrassoc is like remassoc except that it compares the cdr of each alist associa-
tion instead of the car. You can think of this as “reverse remassoc”, removing an
association based on its value instead of its key.

Chapter 5: Lists 97

Functionremrassq value alist
This function deletes by side effect any associations with value value in alist – i.e.
it removes any elements from alist whose cdr is eq to value. The modified alist is
returned.

This function is exactly like remrassoc, but comparisons between value and values
in alist are done using eq instead of equal.

Functioncopy-alist alist
This function returns a two-level deep copy of alist: it creates a new copy of each
association, so that you can alter the associations of the new alist without changing
the old one.

(setq needles-per-cluster
’((2 . ("Austrian Pine" "Red Pine"))

(3 . ("Pitch Pine"))
(5 . ("White Pine"))))

⇒
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
⇒
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(eq needles-per-cluster copy)
⇒ nil

(equal needles-per-cluster copy)
⇒ t

(eq (car needles-per-cluster) (car copy))
⇒ nil

(cdr (car (cdr needles-per-cluster)))
⇒ ("Pitch Pine")

(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
⇒ t

This example shows how copy-alist makes it possible to change the associations of
one copy without affecting the other:

(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))
(cdr (assq 3 needles-per-cluster))

⇒ ("Pitch Pine")

5.9 Property Lists

98 XEmacs Lisp Reference Manual

A property list (or plist) is another way of representing a mapping from keys to values.
Instead of the list consisting of conses of a key and a value, the keys and values alternate
as successive entries in the list. Thus, the association list

((a . 1) (b . 2) (c . 3))

has the equivalent property list form
(a 1 b 2 c 3)

Property lists are used to represent the properties associated with various sorts of objects,
such as symbols, strings, frames, etc. The convention is that property lists can be modified
in-place, while association lists generally are not.

Plists come in two varieties: normal plists, whose keys are compared with eq, and lax
plists, whose keys are compared with equal,

Functionvalid-plist-p plist
Given a plist, this function returns non-nil if its format is correct. If it returns
nil, check-valid-plist will signal an error when given the plist; that means it’s a
malformed or circular plist or has non-symbols as keywords.

Functioncheck-valid-plist plist
Given a plist, this function signals an error if there is anything wrong with it. This
means that it’s a malformed or circular plist.

5.9.1 Working With Normal Plists

Functionplist-get plist prop &optional default
This function extracts a value from a property list. The function returns the value
corresponding to the given prop, or default if prop is not one of the properties on the
list.

Functionplist-put plist prop val
This function changes the value in plist of prop to val. If prop is already a property
on the list, its value is set to val, otherwise the new prop val pair is added. The new
plist is returned; use (setq x (plist-put x prop val)) to be sure to use the new
value. The plist is modified by side effects.

Functionplist-remprop plist prop
This function removes from plist the property prop and its value. The new plist is
returned; use (setq x (plist-remprop x prop val)) to be sure to use the new value.
The plist is modified by side effects.

Functionplist-member plist prop
This function returns t if prop has a value specified in plist.

Chapter 5: Lists 99

In the following functions, if optional arg nil-means-not-present is non-nil, then a prop-
erty with a nil value is ignored or removed. This feature is a virus that has infected old
Lisp implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but
should not be used except for backward compatibility.

Functionplists-eq a b &optional nil-means-not-present
This function returns non-nil if property lists A and B are eq (i.e. their values are
eq).

Functionplists-equal a b &optional nil-means-not-present
This function returns non-nil if property lists A and B are equal (i.e. their values
are equal; their keys are still compared using eq).

Functioncanonicalize-plist plist &optional nil-means-not-present
This function destructively removes any duplicate entries from a plist. In such cases,
the first entry applies.
The new plist is returned. If nil-means-not-present is given, the return value may not
be eq to the passed-in value, so make sure to setq the value back into where it came
from.

5.9.2 Working With Lax Plists

Recall that a lax plist is a property list whose keys are compared using equal instead of
eq.

Functionlax-plist-get lax-plist prop &optional default
This function extracts a value from a lax property list. The function returns the value
corresponding to the given prop, or default if prop is not one of the properties on the
list.

Functionlax-plist-put lax-plist prop val
This function changes the value in lax-plist of prop to val.

Functionlax-plist-remprop lax-plist prop
This function removes from lax-plist the property prop and its value. The new plist is
returned; use (setq x (lax-plist-remprop x prop val)) to be sure to use the new
value. The lax-plist is modified by side effects.

Functionlax-plist-member lax-plist prop
This function returns t if prop has a value specified in lax-plist.

In the following functions, if optional arg nil-means-not-present is non-nil, then a prop-
erty with a nil value is ignored or removed. This feature is a virus that has infected old
Lisp implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but
should not be used except for backward compatibility.

100 XEmacs Lisp Reference Manual

Functionlax-plists-eq a b &optional nil-means-not-present
This function returns non-nil if lax property lists A and B are eq (i.e. their values
are eq; their keys are still compared using equal).

Functionlax-plists-equal a b &optional nil-means-not-present
This function returns non-nil if lax property lists A and B are equal (i.e. their values
are equal).

Functioncanonicalize-lax-plist lax-plist &optional nil-means-not-present
This function destructively removes any duplicate entries from a lax plist. In such
cases, the first entry applies.
The new plist is returned. If nil-means-not-present is given, the return value may not
be eq to the passed-in value, so make sure to setq the value back into where it came
from.

5.9.3 Converting Plists To/From Alists

Functionalist-to-plist alist
This function converts association list alist into the equivalent property-list form. The
plist is returned. This converts from

((a . 1) (b . 2) (c . 3))

into
(a 1 b 2 c 3)

The original alist is not modified.

Functionplist-to-alist plist
This function converts property list plist into the equivalent association-list form.
The alist is returned. This converts from

(a 1 b 2 c 3)

into
((a . 1) (b . 2) (c . 3))

The original plist is not modified.

The following two functions are equivalent to the preceding two except that they de-
structively modify their arguments, using cons cells from the original list to form the new
list rather than allocating new cons cells.

Functiondestructive-alist-to-plist alist
This function destructively converts association list alist into the equivalent property-
list form. The plist is returned.

Functiondestructive-plist-to-alist plist
This function destructively converts property list plist into the equivalent association-
list form. The alist is returned.

Chapter 5: Lists 101

5.10 Weak Lists

A weak list is a special sort of list whose members are not counted as references for the
purpose of garbage collection. This means that, for any object in the list, if there are no
references to the object anywhere outside of the list (or other weak list or weak hash table),
that object will disappear the next time a garbage collection happens. Weak lists can be
useful for keeping track of things such as unobtrusive lists of another function’s buffers or
markers. When that function is done with the elements, they will automatically disappear
from the list.

Weak lists are used internally, for example, to manage the list holding the children of
an extent – an extent that is unused but has a parent will still be reclaimed, and will
automatically be removed from its parent’s list of children.

Weak lists are similar to weak hash tables (see Section 46.3 [Weak Hash Tables],
page 676).

Functionweak-list-p object
This function returns non-nil if object is a weak list.

Weak lists come in one of four types:

simple Objects in the list disappear if not referenced outside of the list.

assoc Objects in the list disappear if they are conses and either the car or the cdr of
the cons is not referenced outside of the list.

key-assoc
Objects in the list disappear if they are conses and the car is not referenced
outside of the list.

value-assoc
Objects in the list disappear if they are conses and the cdr is not referenced
outside of the list.

Functionmake-weak-list &optional type
This function creates a new weak list of type type. type is a symbol (one of simple,
assoc, key-assoc, or value-assoc, as described above) and defaults to simple.

Functionweak-list-type weak
This function returns the type of the given weak-list object.

Functionweak-list-list weak
This function returns the list contained in a weak-list object.

Functionset-weak-list-list weak new-list
This function changes the list contained in a weak-list object.

102 XEmacs Lisp Reference Manual

Chapter 6: Sequences, Arrays, and Vectors 103

6 Sequences, Arrays, and Vectors

Recall that the sequence type is the union of four other Lisp types: lists, vectors, bit
vectors, and strings. In other words, any list is a sequence, any vector is a sequence, any bit
vector is a sequence, and any string is a sequence. The common property that all sequences
have is that each is an ordered collection of elements.

An array is a single primitive object that has a slot for each elements. All the elements
are accessible in constant time, but the length of an existing array cannot be changed.
Strings, vectors, and bit vectors are the three types of arrays.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons
cells, one cell per element. Finding the nth element requires looking through n cons cells,
so elements farther from the beginning of the list take longer to access. But it is possible
to add elements to the list, or remove elements.

The following diagram shows the relationship between these types:

| |
| Sequence |
| ______ ______________________ |
	List		Array					
			________ _______					

		Vector		String				
		________		_______				

		Bit Vector						

The elements of vectors and lists may be any Lisp objects. The elements of strings are
all characters. The elements of bit vectors are the numbers 0 and 1.

6.1 Sequences

In XEmacs Lisp, a sequence is either a list, a vector, a bit vector, or a string. The
common property that all sequences have is that each is an ordered collection of elements.
This section describes functions that accept any kind of sequence.

Functionsequencep object
Returns t if object is a list, vector, bit vector, or string, nil otherwise.

104 XEmacs Lisp Reference Manual

Functioncopy-sequence sequence
Returns a copy of sequence. The copy is the same type of object as the original
sequence, and it has the same elements in the same order.
Storing a new element into the copy does not affect the original sequence, and vice
versa. However, the elements of the new sequence are not copies; they are identical
(eq) to the elements of the original. Therefore, changes made within these elements,
as found via the copied sequence, are also visible in the original sequence.
If the sequence is a string with extents or text properties, the extents and text prop-
erties in the copy are also copied, not shared with the original. (This means that
modifying the extents or text properties of the original will not affect the copy.)
However, the actual values of the properties are shared. See Chapter 40 [Extents],
page 593, See Section 36.18 [Text Properties], page 546.
See also append in Section 5.5 [Building Lists], page 84, concat in Section 4.3 [Cre-
ating Strings], page 62, vconcat in Section 6.4 [Vectors], page 108, and bvconcat in
Section 6.6 [Bit Vectors], page 110, for other ways to copy sequences.

(setq bar ’(1 2))
⇒ (1 2)

(setq x (vector ’foo bar))
⇒ [foo (1 2)]

(setq y (copy-sequence x))
⇒ [foo (1 2)]

(eq x y)
⇒ nil

(equal x y)
⇒ t

(eq (elt x 1) (elt y 1))
⇒ t

;; Replacing an element of one sequence.
(aset x 0 ’quux)
x ⇒ [quux (1 2)]
y ⇒ [foo (1 2)]

;; Modifying the inside of a shared element.
(setcar (aref x 1) 69)
x ⇒ [quux (69 2)]
y ⇒ [foo (69 2)]

;; Creating a bit vector.
(bit-vector 1 0 1 1 0 1 0 0)

⇒ #*10110100

Functionlength sequence
Returns the number of elements in sequence. If sequence is a cons cell that is not a
list (because the final cdr is not nil), a wrong-type-argument error is signaled.

(length ’(1 2 3))
⇒ 3

(length ())
⇒ 0

Chapter 6: Sequences, Arrays, and Vectors 105

(length "foobar")
⇒ 6

(length [1 2 3])
⇒ 3

(length #*01101)
⇒ 5

Functionelt sequence index
This function returns the element of sequence indexed by index. Legitimate values
of index are integers ranging from 0 up to one less than the length of sequence. If
sequence is a list, then out-of-range values of index return nil; otherwise, they trigger
an args-out-of-range error.

(elt [1 2 3 4] 2)
⇒ 3

(elt ’(1 2 3 4) 2)
⇒ 3

(char-to-string (elt "1234" 2))
⇒ "3"

(elt #*00010000 3)
⇒ 1

(elt [1 2 3 4] 4)
error Args out of range: [1 2 3 4], 4

(elt [1 2 3 4] -1)
error Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions], page 106) and nth
(see Section 5.4 [List Elements], page 81).

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements
of the array. Any element of an array may be accessed in constant time. In contrast, an
element of a list requires access time that is proportional to the position of the element in
the list.

When you create an array, you must specify how many elements it has. The amount of
space allocated depends on the number of elements. Therefore, it is impossible to change
the size of an array once it is created; you cannot add or remove elements. However, you
can replace an element with a different value.

XEmacs defines three types of array, all of which are one-dimensional: strings, vectors,
and bit vectors. A vector is a general array; its elements can be any Lisp objects. A string
is a specialized array; its elements must be characters. A bit vector is another specialized
array; its elements must be bits (an integer, either 0 or 1). Each type of array has its own
read syntax. See Section 2.4.8 [String Type], page 28, Section 2.4.9 [Vector Type], page 28,
and Section 2.4.10 [Bit Vector Type], page 29.

All kinds of array share these characteristics:

106 XEmacs Lisp Reference Manual

• The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices
0, 1, 2, and 3.

• The elements of an array may be referenced or changed with the functions aref and
aset, respectively (see Section 6.3 [Array Functions], page 106).

In principle, if you wish to have an array of text characters, you could use either a string
or a vector. In practice, we always choose strings for such applications, for four reasons:

• They usually occupy one-fourth the space of a vector of the same elements. (This is
one-eighth the space for 64-bit machines such as the DEC Alpha, and may also be
different when MULE support is compiled into XEmacs.)

• Strings are printed in a way that shows the contents more clearly as characters.

• Strings can hold extent and text properties. See Chapter 40 [Extents], page 593, See
Section 36.18 [Text Properties], page 546.

• Many of the specialized editing and I/O facilities of XEmacs accept only strings. For
example, you cannot insert a vector of characters into a buffer the way you can insert
a string. See Chapter 4 [Strings and Characters], page 61.

By contrast, for an array of keyboard input characters (such as a key sequence), a
vector may be necessary, because many keyboard input characters are non-printable and
are represented with symbols rather than with characters. See Section 19.6.1 [Key Sequence
Input], page 306.

Similarly, when representing an array of bits, a bit vector has the following advantages
over a regular vector:

• They occupy 1/32nd the space of a vector of the same elements. (1/64th on 64-bit
machines such as the DEC Alpha.)

• Bit vectors are printed in a way that shows the contents more clearly as bits.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept strings, vectors, and bit vectors.

Functionarrayp object
This function returns t if object is an array (i.e., a string, vector, or bit vector).

(arrayp "asdf")
⇒ t
(arrayp [a])
⇒ t
(arrayp #*101)
⇒ t

Functionaref array index
This function returns the indexth element of array. The first element is at index zero.

Chapter 6: Sequences, Arrays, and Vectors 107

(setq primes [2 3 5 7 11 13])
⇒ [2 3 5 7 11 13]

(aref primes 4)
⇒ 11

(elt primes 4)
⇒ 11

(aref "abcdefg" 1)
⇒ ?b

(aref #*1101 2)
⇒ 0

See also the function elt, in Section 6.1 [Sequence Functions], page 103.

Functionaset array index object
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])
⇒ [foo bar baz]

(aset w 0 ’fu)
⇒ fu

w
⇒ [fu bar baz]

(setq x "asdfasfd")
⇒ "asdfasfd"

(aset x 3 ?Z)
⇒ ?Z

x
⇒ "asdZasfd"

(setq bv #*1111)
⇒ #*1111

(aset bv 2 0)
⇒ 0

bv
⇒ #*1101

If array is a string and object is not a character, a wrong-type-argument error results.

Functionfillarray array object
This function fills the array array with object, so that each element of array is object.
It returns array.

(setq a [a b c d e f g])
⇒ [a b c d e f g]

(fillarray a 0)
⇒ [0 0 0 0 0 0 0]

a
⇒ [0 0 0 0 0 0 0]

(setq s "When in the course")
⇒ "When in the course"

(fillarray s ?-)
⇒ "------------------"

108 XEmacs Lisp Reference Manual

(setq bv #*1101)
⇒ #*1101

(fillarray bv 0)
⇒ #*0000

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects
known to be arrays. See Section 6.1 [Sequence Functions], page 103.

6.4 Vectors

Arrays in Lisp, like arrays in most languages, are blocks of memory whose elements can
be accessed in constant time. A vector is a general-purpose array; its elements can be any
Lisp objects. (The other kind of array in XEmacs Lisp is the string, whose elements must
be characters.) Vectors in XEmacs serve as obarrays (vectors of symbols), although this is a
shortcoming that should be fixed. They are also used internally as part of the representation
of a byte-compiled function; if you print such a function, you will see a vector in it.

In XEmacs Lisp, the indices of the elements of a vector start from zero and count up
from there.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b a]. You can write vectors in the
same way in Lisp input.

A vector, like a string or a number, is considered a constant for evaluation: the result
of evaluating it is the same vector. This does not evaluate or even examine the elements of
the vector. See Section 8.2.1 [Self-Evaluating Forms], page 124.

Here are examples of these principles:
(setq avector [1 two ’(three) "four" [five]])

⇒ [1 two (quote (three)) "four" [five]]
(eval avector)

⇒ [1 two (quote (three)) "four" [five]]
(eq avector (eval avector))

⇒ t

6.5 Functions That Operate on Vectors

Here are some functions that relate to vectors:

Functionvectorp object
This function returns t if object is a vector.

(vectorp [a])
⇒ t

(vectorp "asdf")
⇒ nil

Chapter 6: Sequences, Arrays, and Vectors 109

Functionvector &rest objects
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
⇒ [foo 23 [bar baz] "rats"]

(vector)
⇒ []

Functionmake-vector length object
This function returns a new vector consisting of length elements, each initialized to
object.

(setq sleepy (make-vector 9 ’Z))
⇒ [Z Z Z Z Z Z Z Z Z]

Functionvconcat &rest sequences
This function returns a new vector containing all the elements of the sequences. The
arguments sequences may be lists, vectors, or strings. If no sequences are given, an
empty vector is returned.

The value is a newly constructed vector that is not eq to any existing vector.

(setq a (vconcat ’(A B C) ’(D E F)))
⇒ [A B C D E F]

(eq a (vconcat a))
⇒ nil

(vconcat)
⇒ []

(vconcat [A B C] "aa" ’(foo (6 7)))
⇒ [A B C 97 97 foo (6 7)]

The vconcat function also allows integers as arguments. It converts them to strings
of digits, making up the decimal print representation of the integer, and then uses
the strings instead of the original integers. Don’t use this feature; we plan to elim-
inate it. If you already use this feature, change your programs now! The proper
way to convert an integer to a decimal number in this way is with format (see Sec-
tion 4.10 [Formatting Strings], page 69) or number-to-string (see Section 4.7 [String
Conversion], page 67).

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Func-
tions], page 173, concat in Section 4.3 [Creating Strings], page 62, append in Sec-
tion 5.5 [Building Lists], page 84, and bvconcat in Section 6.7 [Bit Vector Functions],
page 110.

The append function provides a way to convert a vector into a list with the same elements
(see Section 5.5 [Building Lists], page 84):

(setq avector [1 two (quote (three)) "four" [five]])
⇒ [1 two (quote (three)) "four" [five]]

(append avector nil)
⇒ (1 two (quote (three)) "four" [five])

110 XEmacs Lisp Reference Manual

6.6 Bit Vectors

Bit vectors are specialized vectors that can only represent arrays of 1’s and 0’s. Bit
vectors have a very efficient representation and are useful for representing sets of boolean
(true or false) values.

There is no limit on the size of a bit vector. You could, for example, create a bit vector
with 100,000 elements if you really wanted to.

Bit vectors have a special printed representation consisting of ‘#*’ followed by the bits
of the vector. For example, a bit vector whose elements are 0, 1, 1, 0, and 1, respectively,
is printed as

#*01101

Bit vectors are considered constants for evaluation, like vectors, strings, and numbers.
See Section 8.2.1 [Self-Evaluating Forms], page 124.

6.7 Functions That Operate on Bit Vectors

Here are some functions that relate to bit vectors:

Functionbit-vector-p object
This function returns t if object is a bit vector.

(bit-vector-p #*01)
⇒ t

(bit-vector-p [0 1])
⇒ nil

(bit-vector-p "01")
⇒ nil

Functionbitp object
This function returns t if object is either 0 or 1.

Functionbit-vector &rest objects
This function creates and returns a bit vector whose elements are the arguments
objects. The elements must be either of the two integers 0 or 1.

(bit-vector 0 0 0 1 0 0 0 0 1 0)
⇒ #*0001000010

(bit-vector)
⇒ #*

Functionmake-bit-vector length object
This function creates and returns a bit vector consisting of length elements, each
initialized to object.

(setq picket-fence (make-bit-vector 9 1))
⇒ #*111111111

Chapter 6: Sequences, Arrays, and Vectors 111

Functionbvconcat &rest sequences
This function returns a new bit vector containing all the elements of the sequences.
The arguments sequences may be lists, vectors, or bit vectors, all of whose elements
are the integers 0 or 1. If no sequences are given, an empty bit vector is returned.
The value is a newly constructed bit vector that is not eq to any existing bit vector.

(setq a (bvconcat ’(1 1 0) ’(0 0 1)))
⇒ #*110001

(eq a (bvconcat a))
⇒ nil

(bvconcat)
⇒ #*

(bvconcat [1 0 0 0 0] #*111 ’(0 0 0 0 1))
⇒ #*1000011100001

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Func-
tions], page 173, concat in Section 4.3 [Creating Strings], page 62, vconcat in Sec-
tion 6.5 [Vector Functions], page 108, and append in Section 5.5 [Building Lists],
page 84.

The append function provides a way to convert a bit vector into a list with the same
elements (see Section 5.5 [Building Lists], page 84):

(setq bv #*00001110)
⇒ #*00001110

(append bv nil)
⇒ (0 0 0 0 1 1 1 0)

112 XEmacs Lisp Reference Manual

Chapter 7: Symbols 113

7 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their com-
ponents, their property lists, and how they are created and interned. Separate chapters
describe the use of symbols as variables and as function names; see Chapter 10 [Variables],
page 147, and Chapter 11 [Functions], page 165. For the precise read syntax for symbols,
see Section 2.4.4 [Symbol Type], page 23.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

Functionsymbolp object
This function returns t if object is a symbol, nil otherwise.

7.1 Symbol Components

Each symbol has four components (or “cells”), each of which references another object:

Print name
The print name cell holds a string that names the symbol for reading and
printing. See symbol-name in Section 7.3 [Creating Symbols], page 115.

Value The value cell holds the current value of the symbol as a variable. When a
symbol is used as a form, the value of the form is the contents of the symbol’s
value cell. See symbol-value in Section 10.6 [Accessing Variables], page 153.

Function The function cell holds the function definition of the symbol. When a symbol
is used as a function, its function definition is used in its place. This cell is
also used to make a symbol stand for a keymap or a keyboard macro, for editor
command execution. Because each symbol has separate value and function
cells, variables and function names do not conflict. See symbol-function in
Section 11.8 [Function Cells], page 176.

Property list
The property list cell holds the property list of the symbol. See symbol-plist
in Section 7.4 [Symbol Properties], page 118.

The print name cell always holds a string, and cannot be changed. The other three cells
can be set individually to any specified Lisp object.

The print name cell holds the string that is the name of the symbol. Since symbols are
represented textually by their names, it is important not to have two symbols with the same
name. The Lisp reader ensures this: every time it reads a symbol, it looks for an existing
symbol with the specified name before it creates a new one. (In XEmacs Lisp, this lookup
uses a hashing algorithm and an obarray; see Section 7.3 [Creating Symbols], page 115.)

In normal usage, the function cell usually contains a function or macro, as that is what
the Lisp interpreter expects to see there (see Chapter 8 [Evaluation], page 121). Key-
board macros (see Section 19.13 [Keyboard Macros], page 317), keymaps (see Chapter 20
[Keymaps], page 319) and autoload objects (see Section 8.2.8 [Autoloading], page 128) are

114 XEmacs Lisp Reference Manual

also sometimes stored in the function cell of symbols. We often refer to “the function foo”
when we really mean the function stored in the function cell of the symbol foo. We make
the distinction only when necessary.

The property list cell normally should hold a correctly formatted property list (see
Section 5.9 [Property Lists], page 98), as a number of functions expect to see a property
list there.

The function cell or the value cell may be void, which means that the cell does not
reference any object. (This is not the same thing as holding the symbol void, nor the
same as holding the symbol nil.) Examining a cell that is void results in an error, such as
‘Symbol’s value as variable is void’.

The four functions symbol-name, symbol-value, symbol-plist, and symbol-function
return the contents of the four cells of a symbol. Here as an example we show the contents
of the four cells of the symbol buffer-file-name:

(symbol-name ’buffer-file-name)
⇒ "buffer-file-name"

(symbol-value ’buffer-file-name)
⇒ "/gnu/elisp/symbols.texi"

(symbol-plist ’buffer-file-name)
⇒ (variable-documentation 29529)

(symbol-function ’buffer-file-name)
⇒ #<subr buffer-file-name>

Because this symbol is the variable which holds the name of the file being visited in the cur-
rent buffer, the value cell contents we see are the name of the source file of this chapter of the
XEmacs Lisp Manual. The property list cell contains the list (variable-documentation
29529) which tells the documentation functions where to find the documentation string for
the variable buffer-file-name in the ‘DOC’ file. (29529 is the offset from the beginning of
the ‘DOC’ file to where that documentation string begins.) The function cell contains the
function for returning the name of the file. buffer-file-name names a primitive function,
which has no read syntax and prints in hash notation (see Section 2.4.13 [Primitive Func-
tion Type], page 30). A symbol naming a function written in Lisp would have a lambda
expression (or a byte-code object) in this cell.

7.2 Defining Symbols

A definition in Lisp is a special form that announces your intention to use a certain
symbol in a particular way. In XEmacs Lisp, you can define a symbol as a variable, or
define it as a function (or macro), or both independently.

A definition construct typically specifies a value or meaning for the symbol for one kind
of use, plus documentation for its meaning when used in this way. Thus, when you define a
symbol as a variable, you can supply an initial value for the variable, plus documentation
for the variable.

defvar and defconst are special forms that define a symbol as a global variable. They
are documented in detail in Section 10.5 [Defining Variables], page 151.

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of

Chapter 7: Symbols 115

the symbol. (The term “function definition”, meaning the contents of the function cell, is
derived from the idea that defun gives the symbol its definition as a function.) defsubst,
define-function and defalias are other ways of defining a function. See Chapter 11
[Functions], page 165.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the
function cell of the symbol. Note that a given symbol can be a macro or a function, but
not both at once, because both macro and function definitions are kept in the function cell,
and that cell can hold only one Lisp object at any given time. See Chapter 12 [Macros],
page 181.

In XEmacs Lisp, a definition is not required in order to use a symbol as a variable or
function. Thus, you can make a symbol a global variable with setq, whether you define
it first or not. The real purpose of definitions is to guide programmers and programming
tools. They inform programmers who read the code that certain symbols are intended to be
used as variables, or as functions. In addition, utilities such as ‘etags’ and ‘make-docfile’
recognize definitions, and add appropriate information to tag tables and the ‘DOC’ file. See
Section 27.2 [Accessing Documentation], page 386.

7.3 Creating and Interning Symbols

To understand how symbols are created in XEmacs Lisp, you must know how Lisp reads
them. Lisp must ensure that it finds the same symbol every time it reads the same set of
characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then
it “hashes” those characters to find an index in a table called an obarray. Hashing is an
efficient method of looking something up. For example, instead of searching a telephone
book cover to cover when looking up Jan Jones, you start with the J’s and go from there.
That is a simple version of hashing. Each element of the obarray is a bucket which holds
all the symbols with a given hash code; to look for a given name, it is sufficient to look
through all the symbols in the bucket for that name’s hash code.

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to
the obarray. Finding or adding a symbol with a certain name is called interning it, and the
symbol is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the
value of a variable.

In XEmacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol

116 XEmacs Lisp Reference Manual

in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, and you can create an obarray with (make-
vector length 0). This is the only valid way to create an obarray. Prime numbers as
lengths tend to result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern can
enter a symbol in an obarray properly. Do not try to intern one symbol in two obarrays.
This would garble both obarrays, because a symbol has just one slot to hold the following
symbol in the obarray bucket. The results would be unpredictable.

It is possible for two different symbols to have the same name in different obarrays; these
symbols are not eq or equal. However, this normally happens only as part of the abbrev
mechanism (see Chapter 39 [Abbrevs], page 587).

Common Lisp note: In Common Lisp, a single symbol may be interned in
several obarrays.

Most of the functions below take a name and sometimes an obarray as arguments. A
wrong-type-argument error is signaled if the name is not a string, or if the obarray is not
a vector.

Functionsymbol-name symbol
This function returns the string that is symbol’s name. For example:

(symbol-name ’foo)
⇒ "foo"

Changing the string by substituting characters, etc, does change the name of the
symbol, but fails to update the obarray, so don’t do it!

Functionmake-symbol name
This function returns a newly-allocated, uninterned symbol whose name is name
(which must be a string). Its value and function definition are void, and its property
list is nil. In the example below, the value of sym is not eq to foo because it is a
distinct uninterned symbol whose name is also ‘foo’.

(setq sym (make-symbol "foo"))
⇒ foo

(eq sym ’foo)
⇒ nil

Functionintern name &optional obarray
This function returns the interned symbol whose name is name. If there is no such
symbol in the obarray obarray, intern creates a new one, adds it to the obarray, and
returns it. If obarray is omitted, the value of the global variable obarray is used.

(setq sym (intern "foo"))
⇒ foo

(eq sym ’foo)
⇒ t

(setq sym1 (intern "foo" other-obarray))

Chapter 7: Symbols 117

⇒ foo
(eq sym ’foo)

⇒ nil

Functionintern-soft name &optional obarray
This function returns the symbol in obarray whose name is name, or nil if obarray
has no symbol with that name. Therefore, you can use intern-soft to test whether
a symbol with a given name is already interned. If obarray is omitted, the value of
the global variable obarray is used.

(intern-soft "frazzle") ; No such symbol exists.
⇒ nil

(make-symbol "frazzle") ; Create an uninterned one.
⇒ frazzle

(intern-soft "frazzle") ; That one cannot be found.
⇒ nil

(setq sym (intern "frazzle")) ; Create an interned one.
⇒ frazzle

(intern-soft "frazzle") ; That one can be found!
⇒ frazzle

(eq sym ’frazzle) ; And it is the same one.
⇒ t

Variableobarray
This variable is the standard obarray for use by intern and read.

Functionmapatoms function &optional obarray
This function calls function for each symbol in the obarray obarray. It returns nil.
If obarray is omitted, it defaults to the value of obarray, the standard obarray for
ordinary symbols.

(setq count 0)
⇒ 0

(defun count-syms (s)
(setq count (1+ count)))
⇒ count-syms

(mapatoms ’count-syms)
⇒ nil

count
⇒ 1871

See documentation in Section 27.2 [Accessing Documentation], page 386, for another
example using mapatoms.

Functionunintern symbol &optional obarray
This function deletes symbol from the obarray obarray. If symbol is not actually in
the obarray, unintern does nothing. If obarray is nil, the current obarray is used.
If you provide a string instead of a symbol as symbol, it stands for a symbol name.
Then unintern deletes the symbol (if any) in the obarray which has that name. If
there is no such symbol, unintern does nothing.
If unintern does delete a symbol, it returns t. Otherwise it returns nil.

118 XEmacs Lisp Reference Manual

7.4 Symbol Properties

A property list (plist for short) is a list of paired elements stored in the property list
cell of a symbol. Each of the pairs associates a property name (usually a symbol) with a
property or value. Property lists are generally used to record information about a symbol,
such as its documentation as a variable, the name of the file where it was defined, or perhaps
even the grammatical class of the symbol (representing a word) in a language-understanding
system.

Many objects other than symbols can have property lists associated with them, and
XEmacs provides a full complement of functions for working with property lists. See Sec-
tion 5.9 [Property Lists], page 98.

The property names and values in a property list can be any Lisp objects, but the names
are usually symbols. They are compared using eq. Here is an example of a property list,
found on the symbol progn when the compiler is loaded:

(lisp-indent-function 0 byte-compile byte-compile-progn)

Here lisp-indent-function and byte-compile are property names, and the other two
elements are the corresponding values.

7.4.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists], page 94) are very similar to property
lists. In contrast to association lists, the order of the pairs in the property list is not
significant since the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If all the associations are recorded in one association list, the
program will need to search that entire list each time a function or variable is to be operated
on. By contrast, if the information is recorded in the property lists of the function names
or variables themselves, each search will scan only the length of one property list, which
is usually short. This is why the documentation for a variable is recorded in a property
named variable-documentation. The byte compiler likewise uses properties to record
those functions needing special treatment.

However, association lists have their own advantages. Depending on your application,
it may be faster to add an association to the front of an association list than to update
a property. All properties for a symbol are stored in the same property list, so there is a
possibility of a conflict between different uses of a property name. (For this reason, it is
a good idea to choose property names that are probably unique, such as by including the
name of the library in the property name.) An association list may be used like a stack
where associations are pushed on the front of the list and later discarded; this is not possible
with a property list.

7.4.2 Property List Functions for Symbols

Chapter 7: Symbols 119

Functionsymbol-plist symbol
This function returns the property list of symbol.

Functionsetplist symbol plist
This function sets symbol’s property list to plist. Normally, plist should be a well-
formed property list, but this is not enforced.

(setplist ’foo ’(a 1 b (2 3) c nil))
⇒ (a 1 b (2 3) c nil)

(symbol-plist ’foo)
⇒ (a 1 b (2 3) c nil)

For symbols in special obarrays, which are not used for ordinary purposes, it may
make sense to use the property list cell in a nonstandard fashion; in fact, the abbrev
mechanism does so (see Chapter 39 [Abbrevs], page 587).

Functionget symbol property
This function finds the value of the property named property in symbol’s property
list. If there is no such property, nil is returned. Thus, there is no distinction between
a value of nil and the absence of the property.
The name property is compared with the existing property names using eq, so any
object is a legitimate property.
See put for an example.

Functionput symbol property value
This function puts value onto symbol’s property list under the property name prop-
erty, replacing any previous property value. The put function returns value.

(put ’fly ’verb ’transitive)
⇒’transitive

(put ’fly ’noun ’(a buzzing little bug))
⇒ (a buzzing little bug)

(get ’fly ’verb)
⇒ transitive

(symbol-plist ’fly)
⇒ (verb transitive noun (a buzzing little bug))

7.4.3 Property Lists Outside Symbols

These functions are useful for manipulating property lists that are stored in places other
than symbols:

Functiongetf plist property &optional default
This returns the value of the property property stored in the property list plist. For
example,

(getf ’(foo 4) ’foo)
⇒ 4

120 XEmacs Lisp Reference Manual

Functionputf plist property value
This stores value as the value of the property property in the property list plist.
It may modify plist destructively, or it may construct a new list structure without
altering the old. The function returns the modified property list, so you can store
that back in the place where you got plist. For example,

(setq my-plist ’(bar t foo 4))
⇒ (bar t foo 4)

(setq my-plist (putf my-plist ’foo 69))
⇒ (bar t foo 69)

(setq my-plist (putf my-plist ’quux ’(a)))
⇒ (quux (a) bar t foo 5)

Functionplists-eq a b
This function returns non-nil if property lists a and b are eq. This means that the
property lists have the same values for all the same properties, where comparison
between values is done using eq.

Functionplists-equal a b
This function returns non-nil if property lists a and b are equal.

Both of the above functions do order-insensitive comparisons.
(plists-eq ’(a 1 b 2 c nil) ’(b 2 a 1))

⇒ t
(plists-eq ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))

⇒ nil
(plists-equal ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))

⇒ t

Chapter 8: Evaluation 121

8 Evaluation

The evaluation of expressions in XEmacs Lisp is performed by the Lisp interpreter—a
program that receives a Lisp object as input and computes its value as an expression. How
it does this depends on the data type of the object, according to rules described in this
chapter. The interpreter runs automatically to evaluate portions of your program, but can
also be called explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called an expression or a form. The
fact that expressions are data objects and not merely text is one of the fundamental differ-
ences between Lisp-like languages and typical programming languages. Any object can be
evaluated, but in practice only numbers, symbols, lists and strings are evaluated very often.

It is very common to read a Lisp expression and then evaluate the expression, but reading
and evaluation are separate activities, and either can be performed alone. Reading per se
does not evaluate anything; it converts the printed representation of a Lisp object to the
object itself. It is up to the caller of read whether this object is a form to be evaluated, or
serves some entirely different purpose. See Section 17.3 [Input Functions], page 258.

Do not confuse evaluation with command key interpretation. The editor command
loop translates keyboard input into a command (an interactively callable function) using
the active keymaps, and then uses call-interactively to invoke the command. The
execution of the command itself involves evaluation if the command is written in Lisp, but
that is not a part of command key interpretation itself. See Chapter 19 [Command Loop],
page 285.

Evaluation is a recursive process. That is, evaluation of a form may call eval to evaluate
parts of the form. For example, evaluation of a function call first evaluates each argument
of the function call, and then evaluates each form in the function body. Consider evaluation
of the form (car x): the subform x must first be evaluated recursively, so that its value can
be passed as an argument to the function car.

Evaluation of a function call ultimately calls the function specified in it. See Chapter 11
[Functions], page 165. The execution of the function may itself work by evaluating the
function definition; or the function may be a Lisp primitive implemented in C, or it may be
a byte-compiled function (see Chapter 15 [Byte Compilation], page 209).

The evaluation of forms takes place in a context called the environment, which consists of
the current values and bindings of all Lisp variables.1 Whenever the form refers to a variable
without creating a new binding for it, the value of the binding in the current environment
is used. See Chapter 10 [Variables], page 147.

Evaluation of a form may create new environments for recursive evaluation by binding
variables (see Section 10.3 [Local Variables], page 148). These environments are temporary
and vanish by the time evaluation of the form is complete. The form may also make changes
that persist; these changes are called side effects. An example of a form that produces side
effects is (setq foo 1).

The details of what evaluation means for each kind of form are described below (see
Section 8.2 [Forms], page 123).

1 This definition of “environment” is specifically not intended to include all the data that
can affect the result of a program.

122 XEmacs Lisp Reference Manual

8.1 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program
being run. On rare occasions, you may need to write code that evaluates a form that is
computed at run time, such as after reading a form from text being edited or getting one
from a property list. On these occasions, use the eval function.

Please note: it is generally cleaner and more flexible to call functions that are stored
in data structures, rather than to evaluate expressions stored in data structures. Using
functions provides the ability to pass information to them as arguments.

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation
(see Chapter 14 [Loading], page 199).

Functioneval form
This is the basic function for performing evaluation. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the
type of the object (see Section 8.2 [Forms], page 123).
Since eval is a function, the argument expression that appears in a call to eval is
evaluated twice: once as preparation before eval is called, and again by the eval
function itself. Here is an example:

(setq foo ’bar)
⇒ bar

(setq bar ’baz)
⇒ baz

;; eval receives argument bar, which is the value of foo
(eval foo)

⇒ baz
(eval ’foo)

⇒ bar

The number of currently active calls to eval is limited to max-lisp-eval-depth (see
below).

Commandeval-region start end &optional stream
This function evaluates the forms in the current buffer in the region defined by the
positions start and end. It reads forms from the region and calls eval on them until
the end of the region is reached, or until an error is signaled and not handled.
If stream is supplied, standard-output is bound to it during the evaluation.
You can use the variable load-read-function to specify a function for eval-region
to use instead of read for reading expressions. See Section 14.1 [How Programs Do
Loading], page 199.
eval-region always returns nil.

Commandeval-buffer buffer &optional stream
This is like eval-region except that it operates on the whole contents of buffer.

Chapter 8: Evaluation 123

Variablemax-lisp-eval-depth
This variable defines the maximum depth allowed in calls to eval, apply, and funcall
before an error is signaled (with error message "Lisp nesting exceeds max-lisp-
eval-depth"). This counts internal uses of those functions, such as for calling the
functions mentioned in Lisp expressions, and recursive evaluation of function call
arguments and function body forms.

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.

The default value of this variable is 500. If you set it to a value less than 100, Lisp
will reset it to 100 if the given value is reached.

max-specpdl-size provides another limit on nesting. See Section 10.3 [Local Vari-
ables], page 148.

Variablevalues
The value of this variable is a list of the values returned by all the expressions that were
read from buffers (including the minibuffer), evaluated, and printed. The elements
are ordered most recent first.

(setq x 1)
⇒ 1

(list ’A (1+ 2) auto-save-default)
⇒ (A 3 t)

values
⇒ ((A 3 t) 1 ...)

This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;; Refer to the most recent evaluation result.
(nth 0 values)

⇒ (A 3 t)
;; That put a new element on,
;; so all elements move back one.
(nth 1 values)

⇒ (A 3 t)
;; This gets the element that was next-to-most-recent
;; before this example.
(nth 3 values)

⇒ 1

8.2 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form. How XEmacs evaluates a
form depends on its data type. XEmacs has three different kinds of form that are evaluated
differently: symbols, lists, and “all other types”. This section describes all three kinds,
starting with “all other types” which are self-evaluating forms.

124 XEmacs Lisp Reference Manual

8.2.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms
evaluate to themselves: the result of evaluation is the same object that was evaluated.
Thus, the number 25 evaluates to 25, and the string "foo" evaluates to the string "foo".
Likewise, evaluation of a vector does not cause evaluation of the elements of the vector—it
returns the same vector with its contents unchanged.

’123 ; An object, shown without evaluation.
⇒ 123

123 ; Evaluated as usual—result is the same.
⇒ 123

(eval ’123) ; Evaluated “by hand”—result is the same.
⇒ 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
⇒ 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for
types that lack a read syntax, because there’s no way to write them textually. It is possible
to construct Lisp expressions containing these types by means of a Lisp program. Here is
an example:

;; Build an expression containing a buffer object.
(setq buffer (list ’print (current-buffer)))

⇒ (print #<buffer eval.texi>)
;; Evaluate it.
(eval buffer)

a #<buffer eval.texi>
⇒ #<buffer eval.texi>

8.2.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s
value, if it has one. If it has none (if its value cell is void), an error is signaled. For more
information on the use of variables, see Chapter 10 [Variables], page 147.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)
⇒ 123

(eval ’a)
⇒ 123

a
⇒ 123

The symbols nil and t are treated specially, so that the value of nil is always nil, and
the value of t is always t; you cannot set or bind them to any other values. Thus, these two
symbols act like self-evaluating forms, even though eval treats them like any other symbol.

Chapter 8: Evaluation 125

8.2.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form,
according to its first element. These three kinds of forms are evaluated in different ways,
described below. The remaining list elements constitute the arguments for the function,
macro, or special form.

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

8.2.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function
cell, and uses its contents instead of the original symbol. If the contents are another symbol,
this process, called symbol function indirection, is repeated until it obtains a non-symbol.
See Section 11.3 [Function Names], page 169, for more information about using a symbol
as a name for a function stored in the function cell of the symbol.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Or a symbol may have a void function cell, in
which case the subroutine symbol-function signals a void-function error. But if neither
of these things happens, we eventually obtain a non-symbol, which ought to be a function
or other suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of
these types, the error invalid-function is signaled.

The following example illustrates the symbol indirection process. We use fset to set
the function cell of a symbol and symbol-function to get the function cell contents (see
Section 11.8 [Function Cells], page 176). Specifically, we store the symbol car into the
function cell of first, and the symbol first into the function cell of erste.

;; Build this function cell linkage:
;; ------------- ----- ------- -------
;; | #<subr car> | <-- | car | <-- | first | <-- | erste |
;; ------------- ----- ------- -------

(symbol-function ’car)
⇒ #<subr car>

(fset ’first ’car)
⇒ car

(fset ’erste ’first)
⇒ first

(erste ’(1 2 3)) ; Call the function referenced by erste.
⇒ 1

By contrast, the following example calls a function without any symbol function indi-
rection, because the first element is an anonymous Lisp function, not a symbol.

126 XEmacs Lisp Reference Manual

((lambda (arg) (erste arg))
’(1 2 3))

⇒ 1

Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

The built-in function indirect-function provides an easy way to perform symbol func-
tion indirection explicitly.

Functionindirect-function function
This function returns the meaning of function as a function. If function is a symbol,
then it finds function’s function definition and starts over with that value. If function
is not a symbol, then it returns function itself.
Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)

(indirect-function (symbol-function function))
function))

8.2.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object
or primitive function object, then that list is a function call. For example, here is a call to
the function +:

(+ 1 x)

The first step in evaluating a function call is to evaluate the remaining elements of
the list from left to right. The results are the actual argument values, one value for each
list element. The next step is to call the function with this list of arguments, effectively
using the function apply (see Section 11.5 [Calling Functions], page 172). If the function
is written in Lisp, the arguments are used to bind the argument variables of the function
(see Section 11.2 [Lambda Expressions], page 166); then the forms in the function body are
evaluated in order, and the value of the last body form becomes the value of the function
call.

8.2.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro
call. When a macro call is evaluated, the elements of the rest of the list are not initially
evaluated. Instead, these elements themselves are used as the arguments of the macro. The
macro definition computes a replacement form, called the expansion of the macro, to be
evaluated in place of the original form. The expansion may be any sort of form: a self-
evaluating constant, a symbol, or a list. If the expansion is itself a macro call, this process
of expansion repeats until some other sort of form results.

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the
macro expansion is not necessarily evaluated right away, or at all, because other programs
also expand macro calls, and they may or may not evaluate the expansions.

Chapter 8: Evaluation 127

Normally, the argument expressions are not evaluated as part of computing the macro
expansion, but instead appear as part of the expansion, so they are computed when the
expansion is computed.

For example, given a macro defined as follows:
(defmacro cadr (x)

(list ’car (list ’cdr x)))

an expression such as (cadr (assq ’handler list)) is a macro call, and its expansion is:
(car (cdr (assq ’handler list)))

Note that the argument (assq ’handler list) appears in the expansion.

See Chapter 12 [Macros], page 181, for a complete description of XEmacs Lisp macros.

8.2.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all
evaluated. Most special forms define control structures or perform variable bindings—things
which functions cannot do.

Each special form has its own rules for which arguments are evaluated and which are
used without evaluation. Whether a particular argument is evaluated may depend on the
results of evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in XEmacs Lisp with a
reference to where each is described.

and see Section 9.3 [Combining Conditions], page 134

catch see Section 9.5.1 [Catch and Throw], page 136

cond see Section 9.2 [Conditionals], page 132

condition-case
see Section 9.5.3.3 [Handling Errors], page 140

defconst see Section 10.5 [Defining Variables], page 151

defmacro see Section 12.4 [Defining Macros], page 183

defun see Section 11.4 [Defining Functions], page 170

defvar see Section 10.5 [Defining Variables], page 151

function see Section 11.7 [Anonymous Functions], page 174

if see Section 9.2 [Conditionals], page 132

interactive
see Section 19.3 [Interactive Call], page 290

let
let* see Section 10.3 [Local Variables], page 148

or see Section 9.3 [Combining Conditions], page 134

128 XEmacs Lisp Reference Manual

prog1
prog2
progn see Section 9.1 [Sequencing], page 131

quote see Section 8.3 [Quoting], page 129

save-current-buffer
see Section 34.3 [Excursions], page 501

save-excursion
see Section 34.3 [Excursions], page 501

save-restriction
see Section 34.4 [Narrowing], page 502

save-selected-window
see Section 34.3 [Excursions], page 501

save-window-excursion
see Section 31.16 [Window Configurations], page 473

setq see Section 10.7 [Setting Variables], page 154

setq-default
see Section 10.9.2 [Creating Buffer-Local], page 159

unwind-protect
see Section 9.5 [Nonlocal Exits], page 136

while see Section 9.4 [Iteration], page 135

with-output-to-temp-buffer
see Section 45.8 [Temporary Displays], page 666

Common Lisp note: here are some comparisons of special forms in XEmacs Lisp
and Common Lisp. setq, if, and catch are special forms in both XEmacs Lisp
and Common Lisp. defun is a special form in XEmacs Lisp, but a macro in
Common Lisp. save-excursion is a special form in XEmacs Lisp, but doesn’t
exist in Common Lisp. throw is a special form in Common Lisp (because it
must be able to throw multiple values), but it is a function in XEmacs Lisp
(which doesn’t have multiple values).

8.2.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition has
not yet been loaded into XEmacs. It specifies which file contains the definition. When an
autoload object appears as a symbol’s function definition, calling that symbol as a function
automatically loads the specified file; then it calls the real definition loaded from that file.
See Section 14.2 [Autoload], page 202.

Chapter 8: Evaluation 129

8.3 Quoting

The special form quote returns its single argument, as written, without evaluating it.
This provides a way to include constant symbols and lists, which are not self-evaluating
objects, in a program. (It is not necessary to quote self-evaluating objects such as numbers,
strings, and vectors.)

Special Formquote object
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for
it. An apostrophe character (‘’’) followed by a Lisp object (in read syntax) expands to a
list whose first element is quote, and whose second element is the object. Thus, the read
syntax ’x is an abbreviation for (quote x).

Here are some examples of expressions that use quote:
(quote (+ 1 2))

⇒ (+ 1 2)
(quote foo)

⇒ foo
’foo

⇒ foo
’’foo

⇒ (quote foo)
’(quote foo)

⇒ (quote foo)
[’foo]

⇒ [(quote foo)]

Other quoting constructs include function (see Section 11.7 [Anonymous Functions],
page 174), which causes an anonymous lambda expression written in Lisp to be compiled,
and ‘‘’ (see Section 12.5 [Backquote], page 183), which is used to quote only part of a list,
while computing and substituting other parts.

130 XEmacs Lisp Reference Manual

Chapter 9: Control Structures 131

9 Control Structures

A Lisp program consists of expressions or forms (see Section 8.2 [Forms], page 123). We
control the order of execution of the forms by enclosing them in control structures. Control
structures are special forms which control when, whether, or how many times to execute
the forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and
so on. This is what happens when you write several forms in succession in the body of a
function, or at top level in a file of Lisp code—the forms are executed in the order written.
We call this textual order. For example, if a function body consists of two forms a and b,
evaluation of the function evaluates first a and then b, and the function’s value is the value
of b.

Explicit control structures make possible an order of execution other than sequential.

XEmacs Lisp provides several kinds of control structure, including other varieties of
sequencing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-
in control structures are special forms since their subforms are not necessarily evaluated
or not evaluated sequentially. You can use macros to define your own control structure
constructs (see Chapter 12 [Macros], page 181).

9.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes
from one form to another. In some contexts, such as in a function body, this happens
automatically. Elsewhere you must use a control structure construct to do this: progn, the
simplest control construct of Lisp.

A progn special form looks like this:

(progn a b c ...)

and it says to execute the forms a, b, c and so on, in that order. These forms are called the
body of the progn form. The value of the last form in the body becomes the value of the
entire progn.

In the early days of Lisp, progn was the only way to execute two or more forms in
succession and use the value of the last of them. But programmers found they often needed
to use a progn in the body of a function, where (at that time) only one form was allowed.
So the body of a function was made into an “implicit progn”: several forms are allowed
just as in the body of an actual progn. Many other control structures likewise contain an
implicit progn. As a result, progn is not used as often as it used to be. It is needed now
most often inside an unwind-protect, and, or, or in the then-part of an if.

Special Formprogn forms. . .
This special form evaluates all of the forms, in textual order, returning the result of
the final form.

132 XEmacs Lisp Reference Manual

(progn (print "The first form")
(print "The second form")
(print "The third form"))
a "The first form"
a "The second form"
a "The third form"

⇒ "The third form"

Two other control constructs likewise evaluate a series of forms but return a different
value:

Special Formprog1 form1 forms. . .
This special form evaluates form1 and all of the forms, in textual order, returning the
result of form1.

(prog1 (print "The first form")
(print "The second form")
(print "The third form"))
a "The first form"
a "The second form"
a "The third form"

⇒ "The first form"

Here is a way to remove the first element from a list in the variable x, then return
the value of that former element:

(prog1 (car x) (setq x (cdr x)))

Special Formprog2 form1 form2 forms. . .
This special form evaluates form1, form2, and all of the following forms, in textual
order, returning the result of form2.

(prog2 (print "The first form")
(print "The second form")
(print "The third form"))
a "The first form"
a "The second form"
a "The third form"

⇒ "The second form"

9.2 Conditionals

Conditional control structures choose among alternatives. XEmacs Lisp has two con-
ditional forms: if, which is much the same as in other languages, and cond, which is a
generalized case statement.

Special Formif condition then-form else-forms. . .
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one

Chapter 9: Control Structures 133

is returned. (The else part of if is an example of an implicit progn. See Section 9.1
[Sequencing], page 131.)
If condition has the value nil, and no else-forms are given, if returns nil.
if is a special form because the branch that is not selected is never evaluated—it
is ignored. Thus, in the example below, true is not printed because print is never
called.

(if nil
(print ’true)

’very-false)
⇒ very-false

Special Formcond clause. . .
cond chooses among an arbitrary number of alternatives. Each clause in the cond
must be a list. The car of this list is the condition; the remaining elements, if any,
the body-forms. Thus, a clause looks like this:

(condition body-forms...)

cond tries the clauses in textual order, by evaluating the condition of each clause.
If the value of condition is non-nil, the clause “succeeds”; then cond evaluates its
body-forms, and the value of the last of body-forms becomes the value of the cond.
The remaining clauses are ignored.
If the value of condition is nil, the clause “fails”, so the cond moves on to the following
clause, trying its condition.
If every condition evaluates to nil, so that every clause fails, cond returns nil.
A clause may also look like this:

(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value
of the cond form.
The following example has four clauses, which test for the cases where the value of x
is a number, string, buffer and symbol, respectively:

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause
((symbolp x) (symbol-value x)))

Often we want to execute the last clause whenever none of the previous clauses was
successful. To do this, we use t as the condition of the last clause, like this: (t
body-forms). The form t evaluates to t, which is never nil, so this clause never
fails, provided the cond gets to it at all.
For example,

(cond ((eq a ’hack) ’foo)
(t "default"))

⇒ "default"

This expression is a cond which returns foo if the value of a is 1, and returns the
string "default" otherwise.

134 XEmacs Lisp Reference Manual

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:

(if a b c)
≡
(cond (a b) (t c))

9.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to
express complicated conditions. The constructs and and or can also be used individually
as kinds of multiple conditional constructs.

Functionnot condition
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using the
name null if you are testing for an empty list.

Special Formand conditions. . .
The and special form tests whether all the conditions are true. It works by evaluating
the conditions one by one in the order written.

If any of the conditions evaluates to nil, then the result of the and must be nil re-
gardless of the remaining conditions; so and returns right away, ignoring the remaining
conditions.

If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form.

Here is an example. The first condition returns the integer 1, which is not nil.
Similarly, the second condition returns the integer 2, which is not nil. The third
condition is nil, so the remaining condition is never evaluated.

(and (print 1) (print 2) nil (print 3))
a 1
a 2

⇒ nil

Here is a more realistic example of using and:
(if (and (consp foo) (eq (car foo) ’x))

(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an
error.

and can be expressed in terms of either if or cond. For example:
(and arg1 arg2 arg3)
≡
(if arg1 (if arg2 arg3))
≡
(cond (arg1 (cond (arg2 arg3))))

Chapter 9: Control Structures 135

Special Formor conditions. . .
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.

If any of the conditions evaluates to a non-nil value, then the result of the or must
be non-nil; so or returns right away, ignoring the remaining conditions. The value
it returns is the non-nil value of the condition just evaluated.

If all the conditions turn out nil, then the or expression returns nil.

For example, this expression tests whether x is either 0 or nil:

(or (eq x nil) (eq x 0))

Like the and construct, or can be written in terms of cond. For example:

(or arg1 arg2 arg3)
≡
(cond (arg1)

(arg2)
(arg3))

You could almost write or in terms of if, but not quite:

(if arg1 arg1
(if arg2 arg2

arg3))

This is not completely equivalent because it can evaluate arg1 or arg2 twice. By
contrast, (or arg1 arg2 arg3) never evaluates any argument more than once.

9.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want
to repeat some computation once for each element of a list, or once for each integer from 0
to n. You can do this in XEmacs Lisp with the special form while:

Special Formwhile condition forms. . .
while first evaluates condition. If the result is non-nil, it evaluates forms in textual
order. Then it reevaluates condition, and if the result is non-nil, it evaluates forms
again. This process repeats until condition evaluates to nil.

There is no limit on the number of iterations that may occur. The loop will continue
until either condition evaluates to nil or until an error or throw jumps out of it (see
Section 9.5 [Nonlocal Exits], page 136).

The value of a while form is always nil.

(setq num 0)
⇒ 0

136 XEmacs Lisp Reference Manual

(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))
a Iteration 0.
a Iteration 1.
a Iteration 2.
a Iteration 3.
⇒ nil

If you would like to execute something on each iteration before the end-test, put it
together with the end-test in a progn as the first argument of while, as shown here:

(while (progn
(forward-line 1)
(not (looking-at "^$"))))

This moves forward one line and continues moving by lines until it reaches an empty.
It is unusual in that the while has no body, just the end test (which also does the
real work of moving point).

9.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote
point. Nonlocal exits can occur in XEmacs Lisp as a result of errors; you can also use them
under explicit control. Nonlocal exits unbind all variable bindings made by the constructs
being exited.

9.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The
function throw is the exception to this rule of normal program execution: it performs a
nonlocal exit on request. (There are other exceptions, but they are for error handling only.)
throw is used inside a catch, and jumps back to that catch. For example:

(catch ’foo
(progn

...
(throw ’foo t)
...))

The throw transfers control straight back to the corresponding catch, which returns im-
mediately. The code following the throw is not executed. The second argument of throw
is used as the return value of the catch.

The throw and the catch are matched through the first argument: throw searches for
a catch whose first argument is eq to the one specified. Thus, in the above example, the
throw specifies foo, and the catch specifies the same symbol, so that catch is applicable.
If there is more than one applicable catch, the innermost one takes precedence.

Executing throw exits all Lisp constructs up to the matching catch, including function
calls. When binding constructs such as let or function calls are exited in this way, the

Chapter 9: Control Structures 137

bindings are unbound, just as they are when these constructs exit normally (see Section 10.3
[Local Variables], page 148). Likewise, throw restores the buffer and position saved by
save-excursion (see Section 34.3 [Excursions], page 501), and the narrowing status saved
by save-restriction and the window selection saved by save-window-excursion (see
Section 31.16 [Window Configurations], page 473). It also runs any cleanups established
with the unwind-protect special form when it exits that form (see Section 9.5.4 [Cleanups],
page 144).

The throw need not appear lexically within the catch that it jumps to. It can equally
well be called from another function called within the catch. As long as the throw takes
place chronologically after entry to the catch, and chronologically before exit from it, it
has access to that catch. This is why throw can be used in commands such as exit-
recursive-edit that throw back to the editor command loop (see Section 19.10 [Recursive
Editing], page 314).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have
several ways of transferring control nonsequentially: return, return-from, and
go, for example. XEmacs Lisp has only throw.

Special Formcatch tag body. . .
catch establishes a return point for the throw function. The return point is distin-
guished from other such return points by tag, which may be any Lisp object. The
argument tag is evaluated normally before the return point is established.

With the return point in effect, catch evaluates the forms of the body in textual
order. If the forms execute normally, without error or nonlocal exit, the value of the
last body form is returned from the catch.

If a throw is done within body specifying the same value tag, the catch exits im-
mediately; the value it returns is whatever was specified as the second argument of
throw.

Functionthrow tag value
The purpose of throw is to return from a return point previously established with
catch. The argument tag is used to choose among the various existing return points;
it must be eq to the value specified in the catch. If multiple return points match tag,
the innermost one is used.

The argument value is used as the value to return from that catch.

If no return point is in effect with tag tag, then a no-catch error is signaled with
data (tag value).

9.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages,
this would be done with a “go to”.) Here we compute (foo i j) for i and j varying from 0
to 9:

138 XEmacs Lisp Reference Manual

(defun search-foo ()
(catch ’loop

(let ((i 0))
(while (< i 10)

(let ((j 0))
(while (< j 10)

(if (foo i j)
(throw ’loop (list i j)))

(setq j (1+ j))))
(setq i (1+ i))))))

If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always
returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,
two return points with the same tag, hack:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))

⇒ catch2

(catch ’hack
(print (catch2 ’hack))
’no)
a yes
⇒ no

Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value
is printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:
(defun catch2 (tag)

(catch tag
(throw ’hack ’yes)))

⇒ catch2

(catch ’hack
(print (catch2 ’quux))
’no)

⇒ yes

We still have two return points, but this time only the outer one has the tag hack; the inner
one has the tag quux instead. Therefore, throw makes the outer catch return the value
yes. The function print is never called, and the body-form ’no is never evaluated.

9.5.3 Errors

When XEmacs Lisp attempts to evaluate a form that, for some reason, cannot be eval-
uated, it signals an error.

Chapter 9: Control Structures 139

When an error is signaled, XEmacs’s default reaction is to print an error message and
terminate execution of the current command. This is the right thing to do in most cases,
such as if you type C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example,
the program may have made temporary changes in data structures, or created temporary
buffers that should be deleted before the program is finished. In such cases, you would
use unwind-protect to establish cleanup expressions to be evaluated in case of error. (See
Section 9.5.4 [Cleanups], page 144.) Occasionally, you may wish the program to continue
execution despite an error in a subroutine. In these cases, you would use condition-case
to establish error handlers to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the
program to another; use catch and throw instead. See Section 9.5.1 [Catch and Throw],
page 136.

9.5.3.1 How to Signal an Error

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the car of an integer or move forward a character at
the end of the buffer; you can also signal errors explicitly with the functions error and
signal.

Quitting, which happens when the user types C-g, is not considered an error, but it is
handled almost like an error. See Section 19.8 [Quitting], page 311.

Functionerror format-string &rest args
This function signals an error with an error message constructed by applying format
(see Section 4.7 [String Conversion], page 67) to format-string and args.
These examples show typical uses of error:

(error "You have committed an error.
Try something else.")

error You have committed an error.
Try something else.

(error "You have committed %d errors." 10)
error You have committed 10 errors.

error works by calling signal with two arguments: the error symbol error, and a
list containing the string returned by format.
If you want to use your own string as an error message verbatim, don’t just write
(error string). If string contains ‘%’, it will be interpreted as a format specifier, with
undesirable results. Instead, use (error "%s" string).

Functionsignal error-symbol data
This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.
The argument error-symbol must be an error symbol—a symbol bearing a property
error-conditions whose value is a list of condition names. This is how XEmacs
Lisp classifies different sorts of errors.

140 XEmacs Lisp Reference Manual

The number and significance of the objects in data depends on error-symbol. For
example, with a wrong-type-arg error, there are two objects in the list: a predicate
that describes the type that was expected, and the object that failed to fit that type.
See Section 9.5.3.4 [Error Symbols], page 143, for a description of error symbols.
Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data)
(see Section 9.5.3.3 [Handling Errors], page 140). If the error is not handled, these
two values are used in printing the error message.
The function signal never returns (though in older Emacs versions it could sometimes
return).

(signal ’wrong-number-of-arguments ’(x y))
error Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition."))
error peculiar error: "My unknown error condition."

Common Lisp note: XEmacs Lisp has nothing like the Common Lisp concept
of continuable errors.

9.5.3.2 How XEmacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler
is a sequence of Lisp expressions designated to be executed if an error happens in part of
the Lisp program. If the error has an applicable handler, the handler is executed, and
control resumes following the handler. The handler executes in the environment of the
condition-case that established it; all functions called within that condition-case have
already been exited, and the handler cannot return to them.

If there is no applicable handler for the error, the current command is terminated and
control returns to the editor command loop, because the command loop has an implicit
handler for all kinds of errors. The command loop’s handler uses the error symbol and
associated data to print an error message.

An error that has no explicit handler may call the Lisp debugger. The debugger is
enabled if the variable debug-on-error (see Section 16.1.1 [Error Debugging], page 221) is
non-nil. Unlike error handlers, the debugger runs in the environment of the error, so that
you can examine values of variables precisely as they were at the time of the error.

9.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and
return immediately to the XEmacs editor command loop. You can arrange to trap errors
occurring in a part of your program by establishing an error handler, with the special form
condition-case. A simple example looks like this:

(condition-case nil
(delete-file filename)

(error nil))

Chapter 9: Control Structures 141

This deletes the file named filename, catching any error and returning nil if an error occurs.

The second argument of condition-case is called the protected form. (In the example
above, the protected form is a call to delete-file.) The error handlers go into effect when
this form begins execution and are deactivated when this form returns. They remain in
effect for all the intervening time. In particular, they are in effect during the execution
of functions called by this form, in their subroutines, and so on. This is a good thing,
since, strictly speaking, errors can be signaled only by Lisp primitives (including signal
and error) called by the protected form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more
condition names (which are symbols) to specify which errors it will handle. The error
symbol specified when an error is signaled also defines a list of condition names. A handler
applies to an error if they have any condition names in common. In the example above,
there is one handler, and it specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle
the same error, the inner of the two will actually handle it.

When an error is handled, control returns to the handler. Before this happens, XEmacs
unbinds all variable bindings made by binding constructs that are being exited and executes
the cleanups of all unwind-protect forms that are exited. Once control arrives at the
handler, the body of the handler is executed.

After execution of the handler body, execution continues by returning from the
condition-case form. Because the protected form is exited completely before execution
of the handler, the handler cannot resume execution at the point of the error, nor can it
examine variable bindings that were made within the protected form. All it can do is clean
up and proceed.

condition-case is often used to trap errors that are predictable, such as failure to open
a file in a call to insert-file-contents. It is also used to trap errors that are totally
unpredictable, such as when the program evaluates an expression read from the user.

Error signaling and handling have some resemblance to throw and catch, but they are
entirely separate facilities. An error cannot be caught by a catch, and a throw cannot be
handled by an error handler (though using throw when there is no suitable catch signals
an error that can be handled).

Special Formcondition-case var protected-form handlers. . .
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.
The condition-case form makes a difference when an error occurs during protected-
form.

Each of the handlers is a list of the form (conditions body...). Here conditions is
an error condition name to be handled, or a list of condition names; body is one or
more Lisp expressions to be executed when this handler handles an error. Here are
examples of handlers:

142 XEmacs Lisp Reference Manual

(error nil)

(arith-error (message "Division by zero"))

((arith-error file-error)
(message
"Either division by zero or failure to open a file"))

Each error that occurs has an error symbol that describes what kind of error it is.
The error-conditions property of this symbol is a list of condition names (see
Section 9.5.3.4 [Error Symbols], page 143). Emacs searches all the active condition-
case forms for a handler that specifies one or more of these condition names; the
innermost matching condition-case handles the error. Within this condition-
case, the first applicable handler handles the error.
After executing the body of the handler, the condition-case returns normally, using
the value of the last form in the handler body as the overall value.
The argument var is a variable. condition-case does not bind this variable when
executing the protected-form, only when it handles an error. At that time, it binds
var locally to a list of the form (error-symbol . data), giving the particulars of the
error. The handler can refer to this list to decide what to do. For example, if the
error is for failure opening a file, the file name is the second element of data—the
third element of var.
If var is nil, that means no variable is bound. Then the error symbol and associated
data are not available to the handler.

Here is an example of using condition-case to handle the error that results from
dividing by zero. The handler prints out a warning message and returns a very large
number.

(defun safe-divide (dividend divisor)
(condition-case err

;; Protected form.
(/ dividend divisor)

;; The handler.
(arith-error ; Condition.
(princ (format "Arithmetic error: %s" err))
1000000)))

⇒ safe-divide

(safe-divide 5 0)
a Arithmetic error: (arith-error)

⇒ 1000000

The handler specifies condition name arith-error so that it will handle only division-by-
zero errors. Other kinds of errors will not be handled, at least not by this condition-case.
Thus,

(safe-divide nil 3)
error Wrong type argument: integer-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those signaled with
error:

Chapter 9: Control Structures 143

(setq baz 34)
⇒ 34

(condition-case err
(if (eq baz 35)

t
;; This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))

;; This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))

2))
a The error was: (error "Rats! The variable baz was 34, not 35")
⇒ 2

9.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you
have in mind. Each error has one and only one error symbol to categorize it. This is the
finest classification of errors defined by the XEmacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error
conditions, identified by condition names. The narrowest such classes belong to the error
symbols themselves: each error symbol is also a condition name. There are also condition
names for more extensive classes, up to the condition name error which takes in all kinds
of errors. Thus, each error has one or more condition names: error, the error symbol if
that is distinct from error, and perhaps some intermediate classifications.

In order for a symbol to be an error symbol, it must have an error-conditions property
which gives a list of condition names. This list defines the conditions that this kind of error
belongs to. (The error symbol itself, and the symbol error, should always be members
of this list.) Thus, the hierarchy of condition names is defined by the error-conditions
properties of the error symbols.

In addition to the error-conditions list, the error symbol should have an error-
message property whose value is a string to be printed when that error is signaled but
not handled. If the error-message property exists, but is not a string, the error message
‘peculiar error’ is used.

Here is how we define a new error symbol, new-error:

(put ’new-error
’error-conditions
’(error my-own-errors new-error))

⇒ (error my-own-errors new-error)
(put ’new-error ’error-message "A new error")
⇒ "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-
errors, which we imagine is a wider classification; and error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period.
This is for consistency with the rest of Emacs.

144 XEmacs Lisp Reference Manual

Naturally, XEmacs will never signal new-error on its own; only an explicit call to signal
(see Section 9.5.3.1 [Signaling Errors], page 139) in your code can do this:

(signal ’new-error ’(x y))
error A new error: x, y

This error can be handled through any of the three condition names. This example
handles new-error and any other errors in the class my-own-errors:

(condition-case foo
(bar nil t)

(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names
used to match errors with handlers. An error symbol serves only as a convenient way to
specify the intended error message and list of condition names. It would be cumbersome to
give signal a list of condition names rather than one error symbol.

By contrast, using only error symbols without condition names would seriously decrease
the power of condition-case. Condition names make it possible to categorize errors at
various levels of generality when you write an error handler. Using error symbols alone
would eliminate all but the narrowest level of classification.

See Appendix C [Standard Errors], page 787, for a list of all the standard error symbols
and their conditions.

9.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data struc-
ture in an inconsistent state; it permits you to ensure the data are consistent in the event
of an error or throw.

Special Formunwind-protect body cleanup-forms. . .
unwind-protect executes the body with a guarantee that the cleanup-forms will
be evaluated if control leaves body, no matter how that happens. The body may
complete normally, or execute a throw out of the unwind-protect, or cause an error;
in all cases, the cleanup-forms will be evaluated.
If the body forms finish normally, unwind-protect returns the value of the last body
form, after it evaluates the cleanup-forms. If the body forms do not finish, unwind-
protect does not return any value in the normal sense.
Only the body is actually protected by the unwind-protect. If any of the cleanup-
forms themselves exits nonlocally (e.g., via a throw or an error), unwind-protect is
not guaranteed to evaluate the rest of them. If the failure of one of the cleanup-forms
has the potential to cause trouble, then protect it with another unwind-protect
around that form.
The number of currently active unwind-protect forms counts, together with the num-
ber of local variable bindings, against the limit max-specpdl-size (see Section 10.3
[Local Variables], page 148).

For example, here we make an invisible buffer for temporary use, and make sure to kill
it before finishing:

Chapter 9: Control Structures 145

(save-excursion
(let ((buffer (get-buffer-create " *temp*")))

(set-buffer buffer)
(unwind-protect

body
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and
dispense with the variable buffer. However, the way shown above is safer, if body happens
to get an error after switching to a different buffer! (Alternatively, you could write another
save-excursion around the body, to ensure that the temporary buffer becomes current in
time to kill it.)

Here is an actual example taken from the file ‘ftp.el’. It creates a process (see Chap-
ter 49 [Processes], page 683) to try to establish a connection to a remote machine. As the
function ftp-login is highly susceptible to numerous problems that the writer of the func-
tion cannot anticipate, it is protected with a form that guarantees deletion of the process
in the event of failure. Otherwise, XEmacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect

(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))

(message "Logged in")
(error "Ftp login failed")))

(or win (and process (delete-process process)))))

This example actually has a small bug: if the user types C-g to quit, and the quit
happens immediately after the function ftp-setup-buffer returns but before the variable
process is set, the process will not be killed. There is no easy way to fix this bug, but at
least it is very unlikely.

Here is another example which uses unwind-protect to make sure to kill a temporary
buffer. In this example, the value returned by unwind-protect is used.

(defun shell-command-string (cmd)
"Return the output of the shell command CMD, as a string."
(save-excursion

(set-buffer (generate-new-buffer " OS*cmd"))
(shell-command cmd t)
(unwind-protect

(buffer-string)
(kill-buffer (current-buffer)))))

146 XEmacs Lisp Reference Manual

Chapter 10: Variables 147

10 Variables

A variable is a name used in a program to stand for a value. Nearly all programming
languages have variables of some sort. In the text of a Lisp program, variables are written
using the syntax for symbols.

In Lisp, unlike most programming languages, programs are represented primarily as Lisp
objects and only secondarily as text. The Lisp objects used for variables are symbols: the
symbol name is the variable name, and the variable’s value is stored in the value cell of the
symbol. The use of a symbol as a variable is independent of its use as a function name. See
Section 7.1 [Symbol Components], page 113.

The Lisp objects that constitute a Lisp program determine the textual form of the
program—it is simply the read syntax for those Lisp objects. This is why, for example,
a variable in a textual Lisp program is written using the read syntax for the symbol that
represents the variable.

10.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just
one value at a time, and this value is in effect (at least for the moment) throughout the
Lisp system. The value remains in effect until you specify a new one. When a new value
replaces the old one, no trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,
(setq x ’(a b))

gives the variable x the value (a b). Note that setq does not evaluate its first argument,
the name of the variable, but it does evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol by itself as an
expression. Thus,

x ⇒ (a b)

assuming the setq form shown above has already been executed.
If you do another setq, the new value replaces the old one:

x
⇒ (a b)

(setq x 4)
⇒ 4

x
⇒ 4

10.2 Variables That Never Change

In XEmacs Lisp, some symbols always evaluate to themselves: the two special symbols
nil and t, as well as keyword symbols, that is, symbols whose name begins with the

148 XEmacs Lisp Reference Manual

character ‘:’. These symbols cannot be rebound, nor can their value cells be changed. An
attempt to change the value of nil or t signals a setting-constant error.

nil ≡ ’nil
⇒ nil

(setq nil 500)
error Attempt to set constant symbol: nil

10.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Some-
times it is useful to create variable values that exist temporarily—only while within a certain
part of the program. These values are called local, and the variables so used are called local
variables.

For example, when a function is called, its argument variables receive new local values
that last until the function exits. The let special form explicitly establishes new local
values for specified variables; these last until exit from the let form.

Establishing a local value saves away the previous value (or lack of one) of the variable.
When the life span of the local value is over, the previous value is restored. In the mean
time, we say that the previous value is shadowed and not visible. Both global and local
values may be shadowed (see Section 10.8.1 [Scope], page 156).

If you set a variable (such as with setq) while it is local, this replaces the local value; it
does not alter the global value, or previous local values that are shadowed. To model this
behavior, we speak of a local binding of the variable as well as a local value.

The local binding is a conceptual place that holds a local value. Entry to a function, or
a special form such as let, creates the local binding; exit from the function or from the let
removes the local binding. As long as the local binding lasts, the variable’s value is stored
within it. Use of setq or set while there is a local binding stores a different value into the
local binding; it does not create a new binding.

We also speak of the global binding, which is where (conceptually) the global value is
kept.

A variable can have more than one local binding at a time (for example, if there are nested
let forms that bind it). In such a case, the most recently created local binding that still
exists is the current binding of the variable. (This is called dynamic scoping ; see Section 10.8
[Variable Scoping], page 156.) If there are no local bindings, the variable’s global binding
is its current binding. We also call the current binding the most-local existing binding, for
emphasis. Ordinary evaluation of a symbol always returns the value of its current binding.

The special forms let and let* exist to create local bindings.

Special Formlet (bindings. . .) forms. . .
This special form binds variables according to bindings and then evaluates all of the
forms in textual order. The let-form returns the value of the last form in forms.
Each of the bindings is either (i) a symbol, in which case that symbol is bound to
nil; or (ii) a list of the form (symbol value-form), in which case symbol is bound to
the result of evaluating value-form. If value-form is omitted, nil is used.

Chapter 10: Variables 149

All of the value-forms in bindings are evaluated in the order they appear and before
any of the symbols are bound. Here is an example of this: Z is bound to the old value
of Y, which is 2, not the new value, 1.

(setq Y 2)
⇒ 2

(let ((Y 1)
(Z Y))

(list Y Z))
⇒ (1 2)

Special Formlet* (bindings. . .) forms. . .
This special form is like let, but it binds each variable right after computing its local
value, before computing the local value for the next variable. Therefore, an expression
in bindings can reasonably refer to the preceding symbols bound in this let* form.
Compare the following example with the example above for let.

(setq Y 2)
⇒ 2

(let* ((Y 1)
(Z Y)) ; Use the just-established value of Y.

(list Y Z))
⇒ (1 1)

Here is a complete list of the other facilities that create local bindings:

• Function calls (see Chapter 11 [Functions], page 165).

• Macro calls (see Chapter 12 [Macros], page 181).

• condition-case (see Section 9.5.3 [Errors], page 138).

Variables can also have buffer-local bindings (see Section 10.9 [Buffer-Local Variables],
page 159). These kinds of bindings work somewhat like ordinary local bindings, but they
are localized depending on “where” you are in Emacs, rather than localized in time.

Variablemax-specpdl-size
This variable defines the limit on the total number of local variable bindings and
unwind-protect cleanups (see Section 9.5 [Nonlocal Exits], page 136) that are al-
lowed before signaling an error (with data "Variable binding depth exceeds max-
specpdl-size").

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.

The default value is 600.

max-lisp-eval-depth provides another limit on depth of nesting. See Section 8.1
[Eval], page 122.

150 XEmacs Lisp Reference Manual

10.4 When a Variable is “Void”

If you have never given a symbol any value as a global variable, we say that that symbol’s
global value is void. In other words, the symbol’s value cell does not have any Lisp object
in it. If you try to evaluate the symbol, you get a void-variable error rather than a value.

Note that a value of nil is not the same as void. The symbol nil is a Lisp object and
can be the value of a variable just as any other object can be; but it is a value. A void
variable does not have any value.

After you have given a variable a value, you can make it void once more using
makunbound.

Functionmakunbound symbol
This function makes the current binding of symbol void. Subsequent attempts to use
this symbol’s value as a variable will signal the error void-variable, unless or until
you set it again.
makunbound returns symbol.

(makunbound ’x) ; Make the global value
; of x void.

⇒ x
x

error Symbol’s value as variable is void: x

If symbol is locally bound, makunbound affects the most local existing binding. This
is the only way a symbol can have a void local binding, since all the constructs that
create local bindings create them with values. In this case, the voidness lasts at
most as long as the binding does; when the binding is removed due to exit from the
construct that made it, the previous or global binding is reexposed as usual, and the
variable is no longer void unless the newly reexposed binding was void all along.

(setq x 1) ; Put a value in the global binding.
⇒ 1

(let ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)

error Symbol’s value as variable is void: x
x ; The global binding is unchanged.

⇒ 1

(let ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

error Symbol’s value as variable is void: x

(let ((x 2))
(let ((x 3))

(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
⇒ 2

Chapter 10: Variables 151

A variable that has been made void with makunbound is indistinguishable from one that
has never received a value and has always been void.

You can use the function boundp to test whether a variable is currently void.

Functionboundp variable
boundp returns t if variable (a symbol) is not void; more precisely, if its current
binding is not void. It returns nil otherwise.

(boundp ’abracadabra) ; Starts out void.
⇒ nil

(let ((abracadabra 5)) ; Locally bind it.
(boundp ’abracadabra))
⇒ t

(boundp ’abracadabra) ; Still globally void.
⇒ nil

(setq abracadabra 5) ; Make it globally nonvoid.
⇒ 5

(boundp ’abracadabra)
⇒ t

10.5 Defining Global Variables

You may announce your intention to use a symbol as a global variable with a variable
definition: a special form, either defconst or defvar.

In XEmacs Lisp, definitions serve three purposes. First, they inform people who read
the code that certain symbols are intended to be used a certain way (as variables). Second,
they inform the Lisp system of these things, supplying a value and documentation. Third,
they provide information to utilities such as etags and make-docfile, which create data
bases of the functions and variables in a program.

The difference between defconst and defvar is primarily a matter of intent, serving to
inform human readers of whether programs will change the variable. XEmacs Lisp does not
restrict the ways in which a variable can be used based on defconst or defvar declarations.
However, it does make a difference for initialization: defconst unconditionally initializes
the variable, while defvar initializes it only if it is void.

One would expect user option variables to be defined with defconst, since programs do
not change them. Unfortunately, this has bad results if the definition is in a library that is
not preloaded: defconst would override any prior value when the library is loaded. Users
would like to be able to set user options in their init files, and override the default values
given in the definitions. For this reason, user options must be defined with defvar.

Special Formdefvar symbol [value [doc-string]]
This special form defines symbol as a value and initializes it. The definition informs
a person reading your code that symbol is used as a variable that programs are likely
to set or change. It is also used for all user option variables except in the preloaded
parts of XEmacs. Note that symbol is not evaluated; the symbol to be defined must
appear explicitly in the defvar.

152 XEmacs Lisp Reference Manual

If symbol already has a value (i.e., it is not void), value is not even evaluated, and
symbol’s value remains unchanged. If symbol is void and value is specified, defvar
evaluates it and sets symbol to the result. (If value is omitted, the value of symbol
is not changed in any case.)
When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-
defun), a special feature of eval-defun evaluates it as a defconst. The purpose of
this is to make sure the variable’s value is reinitialized, when you ask for it specifically.
If symbol has a buffer-local binding in the current buffer, defvar sets the default
value, not the local value. See Section 10.9 [Buffer-Local Variables], page 159.
If the doc-string argument appears, it specifies the documentation for the variable.
(This opportunity to specify documentation is one of the main benefits of defining
the variable.) The documentation is stored in the symbol’s variable-documentation
property. The XEmacs help functions (see Chapter 27 [Documentation], page 385)
look for this property.
If the first character of doc-string is ‘*’, it means that this variable is considered a
user option. This lets users set the variable conveniently using the commands set-
variable and edit-options.
For example, this form defines foo but does not set its value:

(defvar foo)
⇒ foo

The following example sets the value of bar to 23, and gives it a documentation string:
(defvar bar 23

"The normal weight of a bar.")
⇒ bar

The following form changes the documentation string for bar, making it a user option,
but does not change the value, since bar already has a value. (The addition (1+ 23)
is not even performed.)

(defvar bar (1+ 23)
"*The normal weight of a bar.")
⇒ bar

bar
⇒ 23

Here is an equivalent expression for the defvar special form:
(defvar symbol value doc-string)
≡
(progn

(if (not (boundp ’symbol))
(setq symbol value))

(put ’symbol ’variable-documentation ’doc-string)
’symbol)

The defvar form returns symbol, but it is normally used at top level in a file where
its value does not matter.

Special Formdefconst symbol [value [doc-string]]
This special form defines symbol as a value and initializes it. It informs a person
reading your code that symbol has a global value, established here, that will not

Chapter 10: Variables 153

normally be changed or locally bound by the execution of the program. The user,
however, may be welcome to change it. Note that symbol is not evaluated; the symbol
to be defined must appear explicitly in the defconst.

defconst always evaluates value and sets the global value of symbol to the result,
provided value is given. If symbol has a buffer-local binding in the current buffer,
defconst sets the default value, not the local value.

Please note: Don’t use defconst for user option variables in libraries that are not
standardly preloaded. The user should be able to specify a value for such a variable
in the ‘.emacs’ file, so that it will be in effect if and when the library is loaded later.

Here, pi is a constant that presumably ought not to be changed by anyone (attempts
by the Indiana State Legislature notwithstanding). As the second form illustrates,
however, this is only advisory.

(defconst pi 3.1415 "Pi to five places.")
⇒ pi

(setq pi 3)
⇒ pi

pi
⇒ 3

Functionuser-variable-p variable
This function returns t if variable is a user option—a variable intended to be set by
the user for customization—and nil otherwise. (Variables other than user options
exist for the internal purposes of Lisp programs, and users need not know about
them.)

User option variables are distinguished from other variables by the first character of
the variable-documentation property. If the property exists and is a string, and
its first character is ‘*’, then the variable is a user option.

If a user option variable has a variable-interactive property, the set-variable
command uses that value to control reading the new value for the variable. The property’s
value is used as if it were the argument to interactive.

Warning: If the defconst and defvar special forms are used while the variable has a
local binding, they set the local binding’s value; the global binding is not changed. This is
not what we really want. To prevent it, use these special forms at top level in a file, where
normally no local binding is in effect, and make sure to load the file before making a local
binding for the variable.

10.6 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it (see Sec-
tion 8.2.2 [Symbol Forms], page 124). This requires you to specify the variable name when
you write the program. Usually that is exactly what you want to do. Occasionally you need
to choose at run time which variable to reference; then you can use symbol-value.

154 XEmacs Lisp Reference Manual

Functionsymbol-value symbol
This function returns the value of symbol. This is the value in the innermost local
binding of the symbol, or its global value if it has no local bindings.

(setq abracadabra 5)
⇒ 5

(setq foo 9)
⇒ 9

;; Here the symbol abracadabra
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))

(symbol-value ’abracadabra))
⇒ foo

;; Here the value of abracadabra,
;; which is foo,
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))

(symbol-value abracadabra))
⇒ 9

(symbol-value ’abracadabra)
⇒ 5

A void-variable error is signaled if symbol has neither a local binding nor a global
value.

10.7 How to Alter a Variable Value

The usual way to change the value of a variable is with the special form setq. When
you need to compute the choice of variable at run time, use the function set.

Special Formsetq [symbol form]. . .
This special form is the most common method of changing a variable’s value. Each
symbol is given a new value, which is the result of evaluating the corresponding form.
The most-local existing binding of the symbol is changed.
setq does not evaluate symbol; it sets the symbol that you write. We say that this
argument is automatically quoted. The ‘q’ in setq stands for “quoted.”
The value of the setq form is the value of the last form.

(setq x (1+ 2))
⇒ 3

x ; x now has a global value.
⇒ 3

(let ((x 5))
(setq x 6) ; The local binding of x is set.
x)
⇒ 6

x ; The global value is unchanged.
⇒ 3

Chapter 10: Variables 155

Note that the first form is evaluated, then the first symbol is set, then the second
form is evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ x)) ; the value of y is computed.
⇒ 11

Functionset symbol value
This function sets symbol’s value to value, then returns value. Since set is a function,
the expression written for symbol is evaluated to obtain the symbol to set.
The most-local existing binding of the variable is the binding that is set; shadowed
bindings are not affected.

(set one 1)
error Symbol’s value as variable is void: one
(set ’one 1)

⇒ 1
(set ’two ’one)

⇒ one
(set two 2) ; two evaluates to symbol one.

⇒ 2
one ; So it is one that was set.

⇒ 2
(let ((one 1)) ; This binding of one is set,

(set ’one 3) ; not the global value.
one)
⇒ 3

one
⇒ 2

If symbol is not actually a symbol, a wrong-type-argument error is signaled.
(set ’(x y) ’z)

error Wrong type argument: symbolp, (x y)

Logically speaking, set is a more fundamental primitive than setq. Any use of setq
can be trivially rewritten to use set; setq could even be defined as a macro, given
the availability of set. However, set itself is rarely used; beginners hardly need to
know about it. It is useful only for choosing at run time which variable to set. For
example, the command set-variable, which reads a variable name from the user
and then sets the variable, needs to use set.

Common Lisp note: In Common Lisp, set always changes the symbol’s
special value, ignoring any lexical bindings. In XEmacs Lisp, all variables
and all bindings are (in effect) special, so set always affects the most local
existing binding.

One other function for setting a variable is designed to add an element to a list if it is
not already present in the list.

Functionadd-to-list symbol element
This function sets the variable symbol by consing element onto the old value, if
element is not already a member of that value. It returns the resulting list, whether
updated or not. The value of symbol had better be a list already before the call.

156 XEmacs Lisp Reference Manual

The argument symbol is not implicitly quoted; add-to-list is an ordinary function,
like set and unlike setq. Quote the argument yourself if that is what you want.
Here’s a scenario showing how to use add-to-list:

(setq foo ’(a b))
⇒ (a b)

(add-to-list ’foo ’c) ;; Add c.
⇒ (c a b)

(add-to-list ’foo ’b) ;; No effect.
⇒ (c a b)

foo ;; foo was changed.
⇒ (c a b)

An equivalent expression for (add-to-list ’var value) is this:
(or (member value var)

(setq var (cons value var)))

10.8 Scoping Rules for Variable Bindings

A given symbol foo may have several local variable bindings, established at different
places in the Lisp program, as well as a global binding. The most recently established
binding takes precedence over the others.

Local bindings in XEmacs Lisp have indefinite scope and dynamic extent. Scope refers
to where textually in the source code the binding can be accessed. Indefinite scope means
that any part of the program can potentially access the variable binding. Extent refers
to when, as the program is executing, the binding exists. Dynamic extent means that the
binding lasts as long as the activation of the construct that established it.

The combination of dynamic extent and indefinite scope is called dynamic scoping. By
contrast, most programming languages use lexical scoping, in which references to a local
variable must be located textually within the function or block that binds the variable.

Common Lisp note: Variables declared “special” in Common Lisp are dynam-
ically scoped, like variables in XEmacs Lisp.

10.8.1 Scope

XEmacs Lisp uses indefinite scope for local variable bindings. This means that any
function anywhere in the program text might access a given binding of a variable. Consider
the following function definitions:

(defun binder (x) ; x is bound in binder.
(foo 5)) ; foo is some other function.

(defun user () ; x is used in user.
(list x))

Chapter 10: Variables 157

In a lexically scoped language, the binding of x in binder would never be accessible
in user, because user is not textually contained within the function binder. However, in
dynamically scoped XEmacs Lisp, user may or may not refer to the binding of x established
in binder, depending on circumstances:

• If we call user directly without calling binder at all, then whatever binding of x is
found, it cannot come from binder.

• If we define foo as follows and call binder, then the binding made in binder will be
seen in user:

(defun foo (lose)
(user))

• If we define foo as follows and call binder, then the binding made in binder will not
be seen in user:

(defun foo (x)
(user))

Here, when foo is called by binder, it binds x. (The binding in foo is said to shadow
the one made in binder.) Therefore, user will access the x bound by foo instead of
the one bound by binder.

10.8.2 Extent

Extent refers to the time during program execution that a variable name is valid. In
XEmacs Lisp, a variable is valid only while the form that bound it is executing. This is
called dynamic extent. “Local” or “automatic” variables in most languages, including C
and Pascal, have dynamic extent.

One alternative to dynamic extent is indefinite extent. This means that a variable
binding can live on past the exit from the form that made the binding. Common Lisp and
Scheme, for example, support this, but XEmacs Lisp does not.

To illustrate this, the function below, make-add, returns a function that purports to
add n to its own argument m. This would work in Common Lisp, but it does not work
as intended in XEmacs Lisp, because after the call to make-add exits, the variable n is no
longer bound to the actual argument 2.

(defun make-add (n)
(function (lambda (m) (+ n m)))) ; Return a function.
⇒ make-add

(fset ’add2 (make-add 2)) ; Define function add2
; with (make-add 2).

⇒ (lambda (m) (+ n m))
(add2 4) ; Try to add 2 to 4.

error Symbol’s value as variable is void: n

Some Lisp dialects have “closures”, objects that are like functions but record additional
variable bindings. XEmacs Lisp does not have closures.

10.8.3 Implementation of Dynamic Scoping

158 XEmacs Lisp Reference Manual

A simple sample implementation (which is not how XEmacs Lisp actually works) may
help you understand dynamic binding. This technique is called deep binding and was used
in early Lisp systems.

Suppose there is a stack of bindings: variable-value pairs. At entry to a function or to
a let form, we can push bindings on the stack for the arguments or local variables created
there. We can pop those bindings from the stack at exit from the binding construct.

We can find the value of a variable by searching the stack from top to bottom for a
binding for that variable; the value from that binding is the value of the variable. To set
the variable, we search for the current binding, then store the new value into that binding.

As you can see, a function’s bindings remain in effect as long as it continues execution,
even during its calls to other functions. That is why we say the extent of the binding is
dynamic. And any other function can refer to the bindings, if it uses the same variables
while the bindings are in effect. That is why we say the scope is indefinite.

The actual implementation of variable scoping in XEmacs Lisp uses a technique called
shallow binding. Each variable has a standard place in which its current value is always
found—the value cell of the symbol.

In shallow binding, setting the variable works by storing a value in the value cell. Cre-
ating a new binding works by pushing the old value (belonging to a previous binding) on a
stack, and storing the local value in the value cell. Eliminating a binding works by popping
the old value off the stack, into the value cell.

We use shallow binding because it has the same results as deep binding, but runs faster,
since there is never a need to search for a binding.

10.8.4 Proper Use of Dynamic Scoping

Binding a variable in one function and using it in another is a powerful technique, but
if used without restraint, it can make programs hard to understand. There are two clean
ways to use this technique:
• Use or bind the variable only in a few related functions, written close together in one

file. Such a variable is used for communication within one program.
You should write comments to inform other programmers that they can see all uses of
the variable before them, and to advise them not to add uses elsewhere.

• Give the variable a well-defined, documented meaning, and make all appropriate func-
tions refer to it (but not bind it or set it) wherever that meaning is relevant. For
example, the variable case-fold-search is defined as “non-nil means ignore case
when searching”; various search and replace functions refer to it directly or through
their subroutines, but do not bind or set it.
Then you can bind the variable in other programs, knowing reliably what the effect
will be.

In either case, you should define the variable with defvar. This helps other people
understand your program by telling them to look for inter-function usage. It also avoids a
warning from the byte compiler. Choose the variable’s name to avoid name conflicts—don’t
use short names like x.

Chapter 10: Variables 159

10.9 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form
or another. XEmacs also supports another, unusual kind of variable binding: buffer-local
bindings, which apply only to one buffer. XEmacs Lisp is meant for programming editing
commands, and having different values for a variable in different buffers is an important
customization method.

10.9.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The
binding is in effect when that buffer is current; otherwise, it is not in effect. If you set the
variable while a buffer-local binding is in effect, the new value goes in that binding, so the
global binding is unchanged; this means that the change is visible in that buffer alone.

A variable may have buffer-local bindings in some buffers but not in others. The global
binding is shared by all the buffers that don’t have their own bindings. Thus, if you set the
variable in a buffer that does not have a buffer-local binding for it, the new value is visible
in all buffers except those with buffer-local bindings. (Here we are assuming that there are
no let-style local bindings to complicate the issue.)

The most common use of buffer-local bindings is for major modes to change variables
that control the behavior of commands. For example, C mode and Lisp mode both set the
variable paragraph-start to specify that only blank lines separate paragraphs. They do
this by making the variable buffer-local in the buffer that is being put into C mode or Lisp
mode, and then setting it to the new value for that mode.

The usual way to make a buffer-local binding is with make-local-variable, which is
what major mode commands use. This affects just the current buffer; all other buffers
(including those yet to be created) continue to share the global value.

A more powerful operation is to mark the variable as automatically buffer-local by calling
make-variable-buffer-local. You can think of this as making the variable local in all
buffers, even those yet to be created. More precisely, the effect is that setting the variable
automatically makes the variable local to the current buffer if it is not already so. All
buffers start out by sharing the global value of the variable as usual, but any setq creates
a buffer-local binding for the current buffer. The new value is stored in the buffer-local
binding, leaving the (default) global binding untouched. The global value can no longer be
changed with setq; you need to use setq-default to do that.

Local variables in a file you edit are also represented by buffer-local bindings for the
buffer that holds the file within XEmacs. See Section 26.1.3 [Auto Major Mode], page 370.

10.9.2 Creating and Deleting Buffer-Local Bindings

Commandmake-local-variable variable
This function creates a buffer-local binding in the current buffer for variable (a sym-
bol). Other buffers are not affected. The value returned is variable.

160 XEmacs Lisp Reference Manual

The buffer-local value of variable starts out as the same value variable previously
had. If variable was void, it remains void.

;; In buffer ‘b1’:
(setq foo 5) ; Affects all buffers.

⇒ 5
(make-local-variable ’foo) ; Now it is local in ‘b1’.

⇒ foo
foo ; That did not change

⇒ 5 ; the value.
(setq foo 6) ; Change the value

⇒ 6 ; in ‘b1’.
foo

⇒ 6

;; In buffer ‘b2’, the value hasn’t changed.
(save-excursion

(set-buffer "b2")
foo)
⇒ 5

Making a variable buffer-local within a let-binding for that variable does not work.
This is because let does not distinguish between different kinds of bindings; it knows
only which variable the binding was made for.
Please note: do not use make-local-variable for a hook variable. Instead, use
make-local-hook. See Section 26.4 [Hooks], page 382.

Commandmake-variable-buffer-local variable
This function marks variable (a symbol) automatically buffer-local, so that any sub-
sequent attempt to set it will make it local to the current buffer at the time.
The value returned is variable.

Functionlocal-variable-p variable &optional buffer
This returns t if variable is buffer-local in buffer buffer (which defaults to the current
buffer); otherwise, nil.

Functionbuffer-local-variables &optional buffer
This function returns a list describing the buffer-local variables in buffer buffer. It
returns an association list (see Section 5.8 [Association Lists], page 94) in which
each association contains one buffer-local variable and its value. When a buffer-local
variable is void in buffer, then it appears directly in the resulting list. If buffer is
omitted, the current buffer is used.

(make-local-variable ’foobar)
(makunbound ’foobar)
(make-local-variable ’bind-me)
(setq bind-me 69)
(setq lcl (buffer-local-variables))

;; First, built-in variables local in all buffers:
⇒ ((mark-active . nil)

Chapter 10: Variables 161

(buffer-undo-list nil)
(mode-name . "Fundamental")
...
;; Next, non-built-in local variables.
;; This one is local and void:
foobar
;; This one is local and nonvoid:
(bind-me . 69))

Note that storing new values into the cdrs of cons cells in this list does not change
the local values of the variables.

Commandkill-local-variable variable
This function deletes the buffer-local binding (if any) for variable (a symbol) in the
current buffer. As a result, the global (default) binding of variable becomes visible in
this buffer. Usually this results in a change in the value of variable, since the global
value is usually different from the buffer-local value just eliminated.
If you kill the local binding of a variable that automatically becomes local when set,
this makes the global value visible in the current buffer. However, if you set the
variable again, that will once again create a local binding for it.
kill-local-variable returns variable.
This function is a command because it is sometimes useful to kill one buffer-local
variable interactively, just as it is useful to create buffer-local variables interactively.

Functionkill-all-local-variables
This function eliminates all the buffer-local variable bindings of the current buffer
except for variables marked as “permanent”. As a result, the buffer will see the
default values of most variables.
This function also resets certain other information pertaining to the buffer: it sets
the local keymap to nil, the syntax table to the value of standard-syntax-table,
and the abbrev table to the value of fundamental-mode-abbrev-table.
Every major mode command begins by calling this function, which has the effect of
switching to Fundamental mode and erasing most of the effects of the previous major
mode. To ensure that this does its job, the variables that major modes set should
not be marked permanent.
kill-all-local-variables returns nil.

A local variable is permanent if the variable name (a symbol) has a permanent-local
property that is non-nil. Permanent locals are appropriate for data pertaining to where
the file came from or how to save it, rather than with how to edit the contents.

10.9.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value,
because it is the value that is in effect except when specifically overridden.

162 XEmacs Lisp Reference Manual

The functions default-value and setq-default access and change a variable’s default
value regardless of whether the current buffer has a buffer-local binding. For example, you
could use setq-default to change the default setting of paragraph-start for most buffers;
and this would work even when you are in a C or Lisp mode buffer that has a buffer-local
value for this variable.

The special forms defvar and defconst also set the default value (if they set the variable
at all), rather than any local value.

Functiondefault-value symbol
This function returns symbol’s default value. This is the value that is seen in buffers
that do not have their own values for this variable. If symbol is not buffer-local, this
is equivalent to symbol-value (see Section 10.6 [Accessing Variables], page 153).

Functiondefault-boundp symbol
The function default-boundp tells you whether symbol’s default value is nonvoid.
If (default-boundp ’foo) returns nil, then (default-value ’foo) would get an
error.
default-boundp is to default-value as boundp is to symbol-value.

Special Formsetq-default symbol value
This sets the default value of symbol to value. It does not evaluate symbol, but does
evaluate value. The value of the setq-default form is value.
If a symbol is not buffer-local for the current buffer, and is not marked automatically
buffer-local, setq-default has the same effect as setq. If symbol is buffer-local for
the current buffer, then this changes the value that other buffers will see (as long as
they don’t have a buffer-local value), but not the value that the current buffer sees.

;; In buffer ‘foo’:
(make-local-variable ’local)

⇒ local
(setq local ’value-in-foo)

⇒ value-in-foo
(setq-default local ’new-default)

⇒ new-default
local

⇒ value-in-foo
(default-value ’local)

⇒ new-default

;; In (the new) buffer ‘bar’:
local

⇒ new-default
(default-value ’local)

⇒ new-default
(setq local ’another-default)

⇒ another-default
(default-value ’local)

⇒ another-default

Chapter 10: Variables 163

;; Back in buffer ‘foo’:
local

⇒ value-in-foo
(default-value ’local)

⇒ another-default

Functionset-default symbol value
This function is like setq-default, except that symbol is evaluated.

(set-default (car ’(a b c)) 23)
⇒ 23

(default-value ’a)
⇒ 23

10.10 Variable Aliases

You can define a variable as an alias for another. Any time you reference the former
variable, the current value of the latter is returned. Any time you change the value of the
former variable, the value of the latter is actually changed. This is useful in cases where
you want to rename a variable but still make old code work (see Section 27.6 [Obsoleteness],
page 393).

Functiondefvaralias variable alias
This function defines variable as an alias for alias. Thenceforth, any operations per-
formed on variable will actually be performed on alias. Both variable and alias should
be symbols. If alias is nil, remove any aliases for variable. alias can itself be aliased,
and the chain of variable aliases will be followed appropriately. If variable already
has a value, this value will be shadowed until the alias is removed, at which point it
will be restored. Currently variable cannot be a built-in variable, a variable that has
a buffer-local value in any buffer, or the symbols nil or t.

Functionvariable-alias variable
If variable is aliased to another variable, this function returns that variable. variable
should be a symbol. If variable is not aliased, this function returns nil.

Functionindirect-variable object
This function returns the variable at the end of object’s variable-alias chain. If object
is a symbol, follow all variable aliases and return the final (non-aliased) symbol. If
object is not a symbol, just return it. Signal a cyclic-variable-indirection error
if there is a loop in the variable chain of symbols.

164 XEmacs Lisp Reference Manual

Chapter 11: Functions 165

11 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what
functions are, how they accept arguments, and how to define them.

11.1 What Is a Function?

In a general sense, a function is a rule for carrying on a computation given several values
called arguments. The result of the computation is called the value of the function. The
computation can also have side effects: lasting changes in the values of variables or the
contents of data structures.

Here are important terms for functions in XEmacs Lisp and for other function-like ob-
jects.

function In XEmacs Lisp, a function is anything that can be applied to arguments in
a Lisp program. In some cases, we use it more specifically to mean a function
written in Lisp. Special forms and macros are not functions.

primitive A primitive is a function callable from Lisp that is written in C, such as car
or append. These functions are also called built-in functions or subrs. (Special
forms are also considered primitives.)
Usually the reason that a function is a primitives is because it is fundamental,
because it provides a low-level interface to operating system services, or because
it needs to run fast. Primitives can be modified or added only by changing the
C sources and recompiling the editor. See section “Writing Lisp Primitives” in
XEmacs Internals Manual.

lambda expression
A lambda expression is a function written in Lisp. These are described in the
following section.

special form
A special form is a primitive that is like a function but does not evaluate all of
its arguments in the usual way. It may evaluate only some of the arguments, or
may evaluate them in an unusual order, or several times. Many special forms
are described in Chapter 9 [Control Structures], page 131.

macro A macro is a construct defined in Lisp by the programmer. It differs from a
function in that it translates a Lisp expression that you write into an equivalent
expression to be evaluated instead of the original expression. Macros enable Lisp
programmers to do the sorts of things that special forms can do. See Chapter 12
[Macros], page 181, for how to define and use macros.

command A command is an object that command-execute can invoke; it is a possible
definition for a key sequence. Some functions are commands; a function written
in Lisp is a command if it contains an interactive declaration (see Section 19.2
[Defining Commands], page 286). Such a function can be called from Lisp

166 XEmacs Lisp Reference Manual

expressions like other functions; in this case, the fact that the function is a
command makes no difference.
Keyboard macros (strings and vectors) are commands also, even though they
are not functions. A symbol is a command if its function definition is a com-
mand; such symbols can be invoked with M-x. The symbol is a function as well
if the definition is a function. See Section 19.1 [Command Overview], page 285.

keystroke command
A keystroke command is a command that is bound to a key sequence (typically
one to three keystrokes). The distinction is made here merely to avoid confusion
with the meaning of “command” in non-Emacs editors; for Lisp programs, the
distinction is normally unimportant.

compiled function
A compiled function is a function that has been compiled by the byte compiler.
See Section 2.4.14 [Compiled-Function Type], page 30.

Functionsubrp object
This function returns t if object is a built-in function (i.e., a Lisp primitive).

(subrp ’message) ; message is a symbol,
⇒ nil ; not a subr object.

(subrp (symbol-function ’message))
⇒ t

Functioncompiled-function-p object
This function returns t if object is a compiled function. For example:

(compiled-function-p (symbol-function ’next-line))
⇒ t

11.2 Lambda Expressions

A function written in Lisp is a list that looks like this:
(lambda (arg-variables...)

[documentation-string]
[interactive-declaration]
body-forms...)

Such a list is called a lambda expression. In XEmacs Lisp, it actually is valid as an
expression—it evaluates to itself. In some other Lisp dialects, a lambda expression is not a
valid expression at all. In either case, its main use is not to be evaluated as an expression,
but to be called as a function.

11.2.1 Components of a Lambda Expression

The first element of a lambda expression is always the symbol lambda. This indicates
that the list represents a function. The reason functions are defined to start with lambda
is so that other lists, intended for other uses, will not accidentally be valid as functions.

Chapter 11: Functions 167

The second element is a list of symbols–the argument variable names. This is called the
lambda list. When a Lisp function is called, the argument values are matched up against
the variables in the lambda list, which are given local bindings with the values provided.
See Section 10.3 [Local Variables], page 148.

The documentation string is a Lisp string object placed within the function definition
to describe the function for the XEmacs help facilities. See Section 11.2.4 [Function Docu-
mentation], page 169.

The interactive declaration is a list of the form (interactive code-string). This de-
clares how to provide arguments if the function is used interactively. Functions with this
declaration are called commands; they can be called using M-x or bound to a key. Func-
tions not intended to be called in this way should not have interactive declarations. See
Section 19.2 [Defining Commands], page 286, for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of
the function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The
value returned by the function is the value returned by the last element of the body.

11.2.2 A Simple Lambda-Expression Example

Consider for example the following function:

(lambda (a b c) (+ a b c))

We can call this function by writing it as the car of an expression, like this:

((lambda (a b c) (+ a b c))
1 2 3)

This call evaluates the body of the lambda expression with the variable a bound to 1, b
bound to 2, and c bound to 3. Evaluation of the body adds these three numbers, producing
the result 6; therefore, this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:

((lambda (a b c) (+ a b c))
1 (* 2 3) (- 5 4))

This evaluates the arguments 1, (* 2 3), and (- 5 4) from left to right. Then it applies
the lambda expression to the argument values 1, 6 and 1 to produce the value 8.

It is not often useful to write a lambda expression as the car of a form in this way. You
can get the same result, of making local variables and giving them values, using the special
form let (see Section 10.3 [Local Variables], page 148). And let is clearer and easier to
use. In practice, lambda expressions are either stored as the function definitions of symbols,
to produce named functions, or passed as arguments to other functions (see Section 11.7
[Anonymous Functions], page 174).

However, calls to explicit lambda expressions were very useful in the old days of Lisp,
before the special form let was invented. At that time, they were the only way to bind
and initialize local variables.

168 XEmacs Lisp Reference Manual

11.2.3 Advanced Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ a b c)), specifies three argument vari-
ables, so it must be called with three arguments: if you try to call it with only two arguments
or four arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted.
For example, the function substring accepts three arguments—a string, the start index
and the end index—but the third argument defaults to the length of the string if you omit
it. It is also convenient for certain functions to accept an indefinite number of arguments,
as the functions list and + do.

To specify optional arguments that may be omitted when a function is called, simply
include the keyword &optional before the optional arguments. To specify a list of zero or
more extra arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:
(required-vars...
[&optional optional-vars...]
[&rest rest-var])

The square brackets indicate that the &optional and &rest clauses, and the variables that
follow them, are optional.

A call to the function requires one actual argument for each of the required-vars. There
may be actual arguments for zero or more of the optional-vars, and there cannot be any
actual arguments beyond that unless the lambda list uses &rest. In that case, there may
be any number of extra actual arguments.

If actual arguments for the optional and rest variables are omitted, then they always
default to nil. There is no way for the function to distinguish between an explicit argument
of nil and an omitted argument. However, the body of the function is free to consider nil
an abbreviation for some other meaningful value. This is what substring does; nil as the
third argument to substring means to use the length of the string supplied.

Common Lisp note: Common Lisp allows the function to specify what default
value to use when an optional argument is omitted; XEmacs Lisp always uses
nil.

For example, an argument list that looks like this:
(a b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more
arguments are provided, c and d are bound to them respectively; any arguments after the
first four are collected into a list and e is bound to that list. If there are only two arguments,
c is nil; if two or three arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make
sense. To see why this must be so, suppose that c in the example were optional and d
were required. Suppose three actual arguments are given; which variable would the third
argument be for? Similarly, it makes no sense to have any more arguments (either required
or optional) after a &rest argument.

Here are some examples of argument lists and proper calls:

Chapter 11: Functions 169

((lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.

⇒ 2
((lambda (n &optional n1) ; One required and one optional:

(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.
1 2)

⇒ 3
((lambda (n &rest ns) ; One required and one rest:

(+ n (apply ’+ ns))) ; 1 or more arguments.
1 2 3 4 5)

⇒ 15

11.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda
list. This string does not affect execution of the function; it is a kind of comment, but
a systematized comment which actually appears inside the Lisp world and can be used
by the XEmacs help facilities. See Chapter 27 [Documentation], page 385, for how the
documentation-string is accessed.

It is a good idea to provide documentation strings for all the functions in your program,
even those that are only called from within your program. Documentation strings are like
comments, except that they are easier to access.

The first line of the documentation string should stand on its own, because apropos
displays just this first line. It should consist of one or two complete sentences that summarize
the function’s purpose.

The start of the documentation string is usually indented in the source file, but since
these spaces come before the starting double-quote, they are not part of the string. Some
people make a practice of indenting any additional lines of the string so that the text lines
up in the program source. This is a mistake. The indentation of the following lines is inside
the string; what looks nice in the source code will look ugly when displayed by the help
commands.

You may wonder how the documentation string could be optional, since there are re-
quired components of the function that follow it (the body). Since evaluation of a string
returns that string, without any side effects, it has no effect if it is not the last form in the
body. Thus, in practice, there is no confusion between the first form of the body and the
documentation string; if the only body form is a string then it serves both as the return
value and as the documentation.

11.3 Naming a Function

In most computer languages, every function has a name; the idea of a function without
a name is nonsensical. In Lisp, a function in the strictest sense has no name. It is simply a
list whose first element is lambda, or a primitive subr-object.

170 XEmacs Lisp Reference Manual

However, a symbol can serve as the name of a function. This happens when you put
the function in the symbol’s function cell (see Section 7.1 [Symbol Components], page 113).
Then the symbol itself becomes a valid, callable function, equivalent to the list or subr-
object that its function cell refers to. The contents of the function cell are also called the
symbol’s function definition. The procedure of using a symbol’s function definition in place
of the symbol is called symbol function indirection; see Section 8.2.4 [Function Indirection],
page 125.

In practice, nearly all functions are given names in this way and referred to through their
names. For example, the symbol car works as a function and does what it does because
the primitive subr-object #<subr car> is stored in its function cell.

We give functions names because it is convenient to refer to them by their names in Lisp
expressions. For primitive subr-objects such as #<subr car>, names are the only way you
can refer to them: there is no read syntax for such objects. For functions written in Lisp,
the name is more convenient to use in a call than an explicit lambda expression. Also, a
function with a name can refer to itself—it can be recursive. Writing the function’s name
in its own definition is much more convenient than making the function definition point to
itself (something that is not impossible but that has various disadvantages in practice).

We often identify functions with the symbols used to name them. For example, we often
speak of “the function car”, not distinguishing between the symbol car and the primitive
subr-object that is its function definition. For most purposes, there is no need to distinguish.

Even so, keep in mind that a function need not have a unique name. While a given
function object usually appears in the function cell of only one symbol, this is just a matter
of convenience. It is easy to store it in several symbols using fset; then each of the symbols
is equally well a name for the same function.

A symbol used as a function name may also be used as a variable; these two uses of a
symbol are independent and do not conflict.

11.4 Defining Functions

We usually give a name to a function when it is first created. This is called defining a
function, and it is done with the defun special form.

Special Formdefun name argument-list body-forms
defun is the usual way to define new Lisp functions. It defines the symbol name as
a function that looks like this:

(lambda argument-list . body-forms)

defun stores this lambda expression in the function cell of name. It returns the value
name, but usually we ignore this value.

As described previously (see Section 11.2 [Lambda Expressions], page 166), argument-
list is a list of argument names and may include the keywords &optional and &rest.
Also, the first two forms in body-forms may be a documentation string and an inter-
active declaration.

Chapter 11: Functions 171

There is no conflict if the same symbol name is also used as a variable, since the
symbol’s value cell is independent of the function cell. See Section 7.1 [Symbol Com-
ponents], page 113.

Here are some examples:

(defun foo () 5)
⇒ foo

(foo)
⇒ 5

(defun bar (a &optional b &rest c)
(list a b c))
⇒ bar

(bar 1 2 3 4 5)
⇒ (1 2 (3 4 5))

(bar 1)
⇒ (1 nil nil)

(bar)
error Wrong number of arguments.

(defun capitalize-backwards ()
"Upcase the last letter of a word."
(interactive)
(backward-word 1)
(forward-word 1)
(backward-char 1)
(capitalize-word 1))
⇒ capitalize-backwards

Be careful not to redefine existing functions unintentionally. defun redefines even
primitive functions such as car without any hesitation or notification. Redefining a
function already defined is often done deliberately, and there is no way to distinguish
deliberate redefinition from unintentional redefinition.

Functiondefine-function name definition
Functiondefalias name definition

These equivalent special forms define the symbol name as a function, with definition
definition (which can be any valid Lisp function).

The proper place to use define-function or defalias is where a specific function
name is being defined—especially where that name appears explicitly in the source
file being loaded. This is because define-function and defalias record which file
defined the function, just like defun. (see Section 14.5 [Unloading], page 207).

By contrast, in programs that manipulate function definitions for other purposes, it
is better to use fset, which does not keep such records.

See also defsubst, which defines a function like defun and tells the Lisp compiler to
open-code it. See Section 11.9 [Inline Functions], page 178.

172 XEmacs Lisp Reference Manual

11.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call
them, i.e., tell them to run. Calling a function is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example,
evaluating the list (concat "a" "b") calls the function concat with arguments "a" and
"b". See Chapter 8 [Evaluation], page 121, for a description of evaluation.

When you write a list as an expression in your program, the function name is part of the
program. This means that you choose which function to call, and how many arguments to
give it, when you write the program. Usually that’s just what you want. Occasionally you
need to decide at run time which function to call. To do that, use the functions funcall
and apply.

Functionfuncall function &rest arguments
funcall calls function with arguments, and returns whatever function returns.

Since funcall is a function, all of its arguments, including function, are evaluated
before funcall is called. This means that you can use any expression to obtain the
function to be called. It also means that funcall does not see the expressions you
write for the arguments, only their values. These values are not evaluated a second
time in the act of calling function; funcall enters the normal procedure for calling a
function at the place where the arguments have already been evaluated.

The argument function must be either a Lisp function or a primitive function. Special
forms and macros are not allowed, because they make sense only when given the
“unevaluated” argument expressions. funcall cannot provide these because, as we
saw above, it never knows them in the first place.

(setq f ’list)
⇒ list

(funcall f ’x ’y ’z)
⇒ (x y z)

(funcall f ’x ’y ’(z))
⇒ (x y (z))

(funcall ’and t nil)
error Invalid function: #<subr and>

Compare these example with the examples of apply.

Functionapply function &rest arguments
apply calls function with arguments, just like funcall but with one difference: the
last of arguments is a list of arguments to give to function, rather than a single
argument. We also say that apply spreads this list so that each individual element
becomes an argument.

apply returns the result of calling function. As with funcall, function must either
be a Lisp function or a primitive function; special forms and macros do not make
sense in apply.

Chapter 11: Functions 173

(setq f ’list)
⇒ list

(apply f ’x ’y ’z)
error Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))

⇒ 10
(apply ’+ ’(1 2 3 4))

⇒ 10

(apply ’append ’((a b c) nil (x y z) nil))
⇒ (a b c x y z)

For an interesting example of using apply, see the description of mapcar, in Sec-
tion 11.6 [Mapping Functions], page 173.

It is common for Lisp functions to accept functions as arguments or find them in data
structures (especially in hook variables and property lists) and call them using funcall or
apply. Functions that accept function arguments are often called functionals.

Sometimes, when you call a functional, it is useful to supply a no-op function as the
argument. Here are two different kinds of no-op function:

Functionidentity arg
This function returns arg and has no side effects.

Functionignore &rest args
This function ignores any arguments and returns nil.

11.6 Mapping Functions

A mapping function applies a given function to each element of a list or other collec-
tion. XEmacs Lisp has three such functions; mapcar and mapconcat, which scan a list,
are described here. For the third mapping function, mapatoms, see Section 7.3 [Creating
Symbols], page 115.

Functionmapcar function sequence
mapcar applies function to each element of sequence in turn, and returns a list of the
results.
The argument sequence may be a list, a vector, or a string. The result is always a
list. The length of the result is the same as the length of sequence.
For example:

(mapcar ’car ’((a b) (c d) (e f)))
⇒ (a c e)

(mapcar ’1+ [1 2 3])
⇒ (2 3 4)

(mapcar ’char-to-string "abc")
⇒ ("a" "b" "c")

174 XEmacs Lisp Reference Manual

;; Call each function in my-hooks.
(mapcar ’funcall my-hooks)

(defun mapcar* (f &rest args)
"Apply FUNCTION to successive cars of all ARGS.

Return the list of results."
;; If no list is exhausted,
(if (not (memq ’nil args))

;; apply function to CARs.
(cons (apply f (mapcar ’car args))

(apply ’mapcar* f
;; Recurse for rest of elements.
(mapcar ’cdr args)))))

(mapcar* ’cons ’(a b c) ’(1 2 3 4))
⇒ ((a . 1) (b . 2) (c . 3))

Functionmapconcat function sequence separator
mapconcat applies function to each element of sequence: the results, which must
be strings, are concatenated. Between each pair of result strings, mapconcat inserts
the string separator. Usually separator contains a space or comma or other suitable
punctuation.
The argument function must be a function that can take one argument and return a
string.

(mapconcat ’symbol-name
’(The cat in the hat)
" ")

⇒ "The cat in the hat"

(mapconcat (function (lambda (x) (format "%c" (1+ x))))
"HAL-8000"
"")

⇒ "IBM.9111"

11.7 Anonymous Functions

In Lisp, a function is a list that starts with lambda, a byte-code function compiled from
such a list, or alternatively a primitive subr-object; names are “extra”. Although usually
functions are defined with defun and given names at the same time, it is occasionally more
concise to use an explicit lambda expression—an anonymous function. Such a list is valid
wherever a function name is.

Any method of creating such a list makes a valid function. Even this:
(setq silly (append ’(lambda (x)) (list (list ’+ (* 3 4) ’x))))
⇒ (lambda (x) (+ 12 x))

This computes a list that looks like (lambda (x) (+ 12 x)) and makes it the value (not the
function definition!) of silly.

Here is how we might call this function:

Chapter 11: Functions 175

(funcall silly 1)
⇒ 13

(It does not work to write (silly 1), because this function is not the function definition
of silly. We have not given silly any function definition, just a value as a variable.)

Most of the time, anonymous functions are constants that appear in your program. For
example, you might want to pass one as an argument to the function mapcar, which applies
any given function to each element of a list. Here we pass an anonymous function that
multiplies a number by two:

(defun double-each (list)
(mapcar ’(lambda (x) (* 2 x)) list))

⇒ double-each
(double-each ’(2 11))
⇒ (4 22)

In such cases, we usually use the special form function instead of simple quotation to quote
the anonymous function.

Special Formfunction function-object
This special form returns function-object without evaluating it. In this, it is equivalent
to quote. However, it serves as a note to the XEmacs Lisp compiler that function-
object is intended to be used only as a function, and therefore can safely be compiled.
Contrast this with quote, in Section 8.3 [Quoting], page 129.

Using function instead of quote makes a difference inside a function or macro that you
are going to compile. For example:

(defun double-each (list)
(mapcar (function (lambda (x) (* 2 x))) list))

⇒ double-each
(double-each ’(2 11))
⇒ (4 22)

If this definition of double-each is compiled, the anonymous function is compiled as well.
By contrast, in the previous definition where ordinary quote is used, the argument passed
to mapcar is the precise list shown:

(lambda (x) (* x 2))

The Lisp compiler cannot assume this list is a function, even though it looks like one, since
it does not know what mapcar does with the list. Perhaps mapcar will check that the car

of the third element is the symbol *! The advantage of function is that it tells the compiler
to go ahead and compile the constant function.

We sometimes write function instead of quote when quoting the name of a function,
but this usage is just a sort of comment.

(function symbol) ≡ (quote symbol) ≡ ’symbol

See documentation in Section 27.2 [Accessing Documentation], page 386, for a realistic
example using function and an anonymous function.

176 XEmacs Lisp Reference Manual

11.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol.
The functions described here access, test, and set the function cell of symbols.

See also the function indirect-function in Section 8.2.4 [Function Indirection],
page 125.

Functionsymbol-function symbol
This returns the object in the function cell of symbol. If the symbol’s function cell is
void, a void-function error is signaled.
This function does not check that the returned object is a legitimate function.

(defun bar (n) (+ n 2))
⇒ bar

(symbol-function ’bar)
⇒ (lambda (n) (+ n 2))

(fset ’baz ’bar)
⇒ bar

(symbol-function ’baz)
⇒ bar

If you have never given a symbol any function definition, we say that that symbol’s
function cell is void. In other words, the function cell does not have any Lisp object in it.
If you try to call such a symbol as a function, it signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void
are Lisp objects, and can be stored into a function cell just as any other object can be (and
they can be valid functions if you define them in turn with defun). A void function cell
contains no object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have
given a symbol a function definition, you can make it void once more using fmakunbound.

Functionfboundp symbol
This function returns t if the symbol has an object in its function cell, nil otherwise.
It does not check that the object is a legitimate function.

Functionfmakunbound symbol
This function makes symbol’s function cell void, so that a subsequent attempt to ac-
cess this cell will cause a void-function error. (See also makunbound, in Section 10.3
[Local Variables], page 148.)

(defun foo (x) x)
⇒ x

(foo 1)
⇒1

(fmakunbound ’foo)
⇒ x

(foo 1)
error Symbol’s function definition is void: foo

Chapter 11: Functions 177

Functionfset symbol object
This function stores object in the function cell of symbol. The result is object. Nor-
mally object should be a function or the name of a function, but this is not checked.
There are three normal uses of this function:
• Copying one symbol’s function definition to another. (In other words, making

an alternate name for a function.)
• Giving a symbol a function definition that is not a list and therefore cannot be

made with defun. For example, you can use fset to give a symbol s1 a function
definition which is another symbol s2; then s1 serves as an alias for whatever
definition s2 presently has.

• In constructs for defining or altering functions. If defun were not a primitive, it
could be written in Lisp (as a macro) using fset.

Here are examples of the first two uses:
;; Give first the same definition car has.
(fset ’first (symbol-function ’car))

⇒ #<subr car>
(first ’(1 2 3))

⇒ 1

;; Make the symbol car the function definition of xfirst.
(fset ’xfirst ’car)

⇒ car
(xfirst ’(1 2 3))

⇒ 1
(symbol-function ’xfirst)

⇒ car
(symbol-function (symbol-function ’xfirst))

⇒ #<subr car>

;; Define a named keyboard macro.
(fset ’kill-two-lines "\^u2\^k")

⇒ "\^u2\^k"

See also the related functions define-function and defalias, in Section 11.4 [Defin-
ing Functions], page 170.

When writing a function that extends a previously defined function, the following idiom
is sometimes used:

(fset ’old-foo (symbol-function ’foo))
(defun foo ()

"Just like old-foo, except more so."
(old-foo)
(more-so))

This does not work properly if foo has been defined to autoload. In such a case, when foo
calls old-foo, Lisp attempts to define old-foo by loading a file. Since this presumably
defines foo rather than old-foo, it does not produce the proper results. The only way to
avoid this problem is to make sure the file is loaded before moving aside the old definition
of foo.

178 XEmacs Lisp Reference Manual

But it is unmodular and unclean, in any case, for a Lisp file to redefine a function defined
elsewhere.

11.9 Inline Functions

You can define an inline function by using defsubst instead of defun. An inline function
works just like an ordinary function except for one thing: when you compile a call to the
function, the function’s definition is open-coded into the caller.

Making a function inline makes explicit calls run faster. But it also has disadvantages.
For one thing, it reduces flexibility; if you change the definition of the function, calls already
inlined still use the old definition until you recompile them. Since the flexibility of redefining
functions is an important feature of XEmacs, you should not make a function inline unless
its speed is really crucial.

Another disadvantage is that making a large function inline can increase the size of
compiled code both in files and in memory. Since the speed advantage of inline functions
is greatest for small functions, you generally should not make large functions inline.

It’s possible to define a macro to expand into the same code that an inline function would
execute. But the macro would have a limitation: you can use it only explicitly—a macro
cannot be called with apply, mapcar and so on. Also, it takes some work to convert an
ordinary function into a macro. (See Chapter 12 [Macros], page 181.) To convert it into an
inline function is very easy; simply replace defun with defsubst. Since each argument of
an inline function is evaluated exactly once, you needn’t worry about how many times the
body uses the arguments, as you do for macros. (See Section 12.6.1 [Argument Evaluation],
page 184.)

Inline functions can be used and open-coded later on in the same file, following the
definition, just like macros.

11.10 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.

apply See Section 11.5 [Calling Functions], page 172.

autoload See Section 14.2 [Autoload], page 202.

call-interactively
See Section 19.3 [Interactive Call], page 290.

commandp See Section 19.3 [Interactive Call], page 290.

documentation
See Section 27.2 [Accessing Documentation], page 386.

eval See Section 8.1 [Eval], page 122.

funcall See Section 11.5 [Calling Functions], page 172.

Chapter 11: Functions 179

ignore See Section 11.5 [Calling Functions], page 172.

indirect-function
See Section 8.2.4 [Function Indirection], page 125.

interactive
See Section 19.2.1 [Using Interactive], page 286.

interactive-p
See Section 19.3 [Interactive Call], page 290.

mapatoms See Section 7.3 [Creating Symbols], page 115.

mapcar See Section 11.6 [Mapping Functions], page 173.

mapconcat
See Section 11.6 [Mapping Functions], page 173.

undefined
See Section 20.8 [Key Lookup], page 328.

180 XEmacs Lisp Reference Manual

Chapter 12: Macros 181

12 Macros

Macros enable you to define new control constructs and other language features. A
macro is defined much like a function, but instead of telling how to compute a value, it tells
how to compute another Lisp expression which will in turn compute the value. We call this
expression the expansion of the macro.

Macros can do this because they operate on the unevaluated expressions for the ar-
guments, not on the argument values as functions do. They can therefore construct an
expansion containing these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the
sake of speed, consider using an inline function instead. See Section 11.9 [Inline Functions],
page 178.

12.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much
like the ++ operator in C. We would like to write (inc x) and have the effect of (setq x
(1+ x)). Here’s a macro definition that does the job:

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

When this is called with (inc x), the argument var has the value x—not the value
of x. The body of the macro uses this to construct the expansion, which is (setq x (1+
x)). Once the macro definition returns this expansion, Lisp proceeds to evaluate it, thus
incrementing x.

12.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name
of the macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one
crucial difference: the macro arguments are the actual expressions appearing in the macro
call. They are not evaluated before they are given to the macro definition. By contrast, the
arguments of a function are results of evaluating the elements of the function call list.

Having obtained the arguments, Lisp invokes the macro definition just as a function is
invoked. The argument variables of the macro are bound to the argument values from the
macro call, or to a list of them in the case of a &rest argument. And the macro body
executes and returns its value just as a function body does.

The second crucial difference between macros and functions is that the value returned
by the macro body is not the value of the macro call. Instead, it is an alternate expression
for computing that value, also known as the expansion of the macro. The Lisp interpreter
proceeds to evaluate the expansion as soon as it comes back from the macro.

182 XEmacs Lisp Reference Manual

Since the expansion is evaluated in the normal manner, it may contain calls to other
macros. It may even be a call to the same macro, though this is unusual.

You can see the expansion of a given macro call by calling macroexpand.

Functionmacroexpand form &optional environment
This function expands form, if it is a macro call. If the result is another macro call,
it is expanded in turn, until something which is not a macro call results. That is
the value returned by macroexpand. If form is not a macro call to begin with, it is
returned as given.
Note that macroexpand does not look at the subexpressions of form (although some
macro definitions may do so). Even if they are macro calls themselves, macroexpand
does not expand them.
The function macroexpand does not expand calls to inline functions. Normally there
is no need for that, since a call to an inline function is no harder to understand than
a call to an ordinary function.
If environment is provided, it specifies an alist of macro definitions that shadow the
currently defined macros. Byte compilation uses this feature.

(defmacro inc (var)
(list ’setq var (list ’1+ var)))
⇒ inc

(macroexpand ’(inc r))
⇒ (setq r (1+ r))

(defmacro inc2 (var1 var2)
(list ’progn (list ’inc var1) (list ’inc var2)))
⇒ inc2

(macroexpand ’(inc2 r s))
⇒ (progn (inc r) (inc s)) ; inc not expanded here.

12.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then
evaluate the expansion. Why not have the macro body produce the desired results directly?
The reason has to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls
the macro definition just as the interpreter would, and receives an expansion. But instead
of evaluating this expansion, it compiles the expansion as if it had appeared directly in the
program. As a result, the compiled code produces the value and side effects intended for
the macro, but executes at full compiled speed. This would not work if the macro body
computed the value and side effects itself—they would be computed at compile time, which
is not useful.

In order for compilation of macro calls to work, the macros must be defined in Lisp when
the calls to them are compiled. The compiler has a special feature to help you do this: if a
file being compiled contains a defmacro form, the macro is defined temporarily for the rest

Chapter 12: Macros 183

of the compilation of that file. To use this feature, you must define the macro in the same
file where it is used and before its first use.

Byte-compiling a file executes any require calls at top-level in the file. This is in case the
file needs the required packages for proper compilation. One way to ensure that necessary
macro definitions are available during compilation is to require the files that define them
(see Section 14.4 [Named Features], page 205). To avoid loading the macro definition files
when someone runs the compiled program, write eval-when-compile around the require
calls (see Section 15.5 [Eval During Compile], page 213).

12.4 Defining Macros

A Lisp macro is a list whose car is macro. Its cdr should be a function; expansion of
the macro works by applying the function (with apply) to the list of unevaluated argument-
expressions from the macro call.

It is possible to use an anonymous Lisp macro just like an anonymous function, but this
is never done, because it does not make sense to pass an anonymous macro to functionals
such as mapcar. In practice, all Lisp macros have names, and they are usually defined with
the special form defmacro.

Special Formdefmacro name argument-list body-forms. . .
defmacro defines the symbol name as a macro that looks like this:

(macro lambda argument-list . body-forms)

This macro object is stored in the function cell of name. The value returned by
evaluating the defmacro form is name, but usually we ignore this value.
The shape and meaning of argument-list is the same as in a function, and the keywords
&rest and &optional may be used (see Section 11.2.3 [Argument List], page 168).
Macros may have a documentation string, but any interactive declaration is ignored
since macros cannot be called interactively.

12.5 Backquote

Macros often need to construct large list structures from a mixture of constants and
nonconstant parts. To make this easier, use the macro ‘‘’ (often called backquote).

Backquote allows you to quote a list, but selectively evaluate elements of that list. In the
simplest case, it is identical to the special form quote (see Section 8.3 [Quoting], page 129).
For example, these two forms yield identical results:

‘(a list of (+ 2 3) elements)
⇒ (a list of (+ 2 3) elements)

’(a list of (+ 2 3) elements)
⇒ (a list of (+ 2 3) elements)

The special marker ‘,’ inside of the argument to backquote indicates a value that isn’t
constant. Backquote evaluates the argument of ‘,’ and puts the value in the list structure:

184 XEmacs Lisp Reference Manual

(list ’a ’list ’of (+ 2 3) ’elements)
⇒ (a list of 5 elements)

‘(a list of ,(+ 2 3) elements)
⇒ (a list of 5 elements)

You can also splice an evaluated value into the resulting list, using the special marker
‘,@’. The elements of the spliced list become elements at the same level as the other elements
of the resulting list. The equivalent code without using ‘‘’ is often unreadable. Here are
some examples:

(setq some-list ’(2 3))
⇒ (2 3)

(cons 1 (append some-list ’(4) some-list))
⇒ (1 2 3 4 2 3)

‘(1 ,@some-list 4 ,@some-list)
⇒ (1 2 3 4 2 3)

(setq list ’(hack foo bar))
⇒ (hack foo bar)

(cons ’use
(cons ’the
(cons ’words (append (cdr list) ’(as elements)))))
⇒ (use the words foo bar as elements)

‘(use the words ,@(cdr list) as elements)
⇒ (use the words foo bar as elements)

Before Emacs version 19.29, ‘‘’ used a different syntax which required an extra
level of parentheses around the entire backquote construct. Likewise, each ‘,’
or ‘,@’ substitution required an extra level of parentheses surrounding both the
‘,’ or ‘,@’ and the following expression. The old syntax required whitespace
between the ‘‘’, ‘,’ or ‘,@’ and the following expression.

This syntax is still accepted, but no longer recommended except for compati-
bility with old Emacs versions.

12.6 Common Problems Using Macros

The basic facts of macro expansion have counterintuitive consequences. This section
describes some important consequences that can lead to trouble, and rules to follow to
avoid trouble.

12.6.1 Evaluating Macro Arguments Repeatedly

When defining a macro you must pay attention to the number of times the arguments
will be evaluated when the expansion is executed. The following macro (used to facilitate
iteration) illustrates the problem. This macro allows us to write a simple “for” loop such
as one might find in Pascal.

Chapter 12: Macros 185

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."
(list ’let (list (list var init))

(cons ’while (cons (list ’<= var final)
(append body (list (list ’inc var)))))))

⇒ for

(for i from 1 to 3 do
(setq square (* i i))
(princ (format "\n%d %d" i square)))

7→
(let ((i 1))

(while (<= i 3)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc i)))

a 1 1
a 2 4
a 3 9

⇒ nil

(The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely
ignored. The idea is that you will write noise words (such as from, to, and do) in those
positions in the macro call.)

Here’s an equivalent definition simplified through use of backquote:
(defmacro for (var from init to final do &rest body)

"Execute a simple \"for\" loop.
For example, (for i from 1 to 10 do (print i))."

‘(let ((,var ,init))
(while (<= ,var ,final)

,@body
(inc ,var))))

Both forms of this definition (with backquote and without) suffer from the defect that
final is evaluated on every iteration. If final is a constant, this is not a problem. If it is a
more complex form, say (long-complex-calculation x), this can slow down the execution
significantly. If final has side effects, executing it more than once is probably incorrect.

A well-designed macro definition takes steps to avoid this problem by producing an
expansion that evaluates the argument expressions exactly once unless repeated evaluation
is part of the intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((i 1)
(max 3))

(while (<= i max)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc i)))

Here is a macro definition that creates this expansion:

186 XEmacs Lisp Reference Manual

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
‘(let ((,var ,init)

(max ,final))
(while (<= ,var max)
,@body
(inc ,var))))

Unfortunately, this introduces another problem.

12.6.2 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max
which the user does not expect. This causes trouble in examples such as the following:

(let ((max 0))
(for x from 0 to 10 do

(let ((this (frob x)))
(if (< max this)

(setq max this)))))

The references to max inside the body of the for, which are supposed to refer to the user’s
binding of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 7.3
[Creating Symbols], page 115). The uninterned symbol can be bound and referred to just
like any other symbol, but since it is created by for, we know that it cannot already appear
in the user’s program. Since it is not interned, there is no way the user can put it into the
program later. It will never appear anywhere except where put by for. Here is a definition
of for that works this way:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(let ((tempvar (make-symbol "max")))

‘(let ((,var ,init)
(,tempvar ,final))

(while (<= ,var ,tempvar)
,@body
(inc ,var)))))

This creates an uninterned symbol named max and puts it in the expansion instead of the
usual interned symbol max that appears in expressions ordinarily.

12.6.3 Evaluating Macro Arguments in Expansion

Another problem can happen if you evaluate any of the macro argument expressions
during the computation of the expansion, such as by calling eval (see Section 8.1 [Eval],
page 122). If the argument is supposed to refer to the user’s variables, you may have
trouble if the user happens to use a variable with the same name as one of the macro
arguments. Inside the macro body, the macro argument binding is the most local binding

Chapter 12: Macros 187

of this variable, so any references inside the form being evaluated do refer to it. Here is an
example:

(defmacro foo (a)
(list ’setq (eval a) t))
⇒ foo

(setq x ’b)
(foo x) 7→ (setq b t)

⇒ t ; and b has been set.
;; but
(setq a ’c)
(foo a) 7→ (setq a t)

⇒ t ; but this set a, not c.

It makes a difference whether the user’s variable is named a or x, because a conflicts
with the macro argument variable a.

Another reason not to call eval in a macro definition is that it probably won’t do what
you intend in a compiled program. The byte-compiler runs macro definitions while compiling
the program, when the program’s own computations (which you might have wished to access
with eval) don’t occur and its local variable bindings don’t exist.

The safe way to work with the run-time value of an expression is to put the expression
into the macro expansion, so that its value is computed as part of executing the expansion.

12.6.4 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it
is evaluated in an interpreted function, but is expanded only once (during compilation)
for a compiled function. If the macro definition has side effects, they will work differently
depending on how many times the macro is expanded.

In particular, constructing objects is a kind of side effect. If the macro is called once,
then the objects are constructed only once. In other words, the same structure of objects is
used each time the macro call is executed. In interpreted operation, the macro is reexpanded
each time, producing a fresh collection of objects each time. Usually this does not matter—
the objects have the same contents whether they are shared or not. But if the surrounding
program does side effects on the objects, it makes a difference whether they are shared.
Here is an example:

(defmacro empty-object ()
(list ’quote (cons nil nil)))

(defun initialize (condition)
(let ((object (empty-object)))

(if condition
(setcar object condition))

object))

If initialize is interpreted, a new list (nil) is constructed each time initialize is
called. Thus, no side effect survives between calls. If initialize is compiled, then the

188 XEmacs Lisp Reference Manual

macro empty-object is expanded during compilation, producing a single “constant” (nil)
that is reused and altered each time initialize is called.

One way to avoid pathological cases like this is to think of empty-object as a funny
kind of constant, not as a memory allocation construct. You wouldn’t use setcar on a
constant such as ’(nil), so naturally you won’t use it on (empty-object) either.

Chapter 13: Writing Customization Definitions 189

13 Writing Customization Definitions

This chapter describes how to declare user options for customization, and also customiza-
tion groups for classifying them. We use the term customization item to include both kinds
of customization definitions—as well as face definitions.

13.1 Common Keywords for All Kinds of Items

All kinds of customization declarations (for variables and groups, and for faces) accept
keyword arguments for specifying various information. This section describes some keywords
that apply to all kinds.

All of these keywords, except :tag, can be used more than once in a given item. Each
use of the keyword has an independent effect. The keyword :tag is an exception because
any given item can only display one name.

:tag name
Use name, a string, instead of the item’s name, to label the item in customiza-
tion menus and buffers.

:group group
Put this customization item in group group. When you use :group in a
defgroup, it makes the new group a subgroup of group.
If you use this keyword more than once, you can put a single item into more
than one group. Displaying any of those groups will show this item. Be careful
not to overdo this!

:link link-data
Include an external link after the documentation string for this item. This is a
sentence containing an active field which references some other documentation.
There are three alternatives you can use for link-data:

(custom-manual info-node)
Link to an Info node; info-node is a string which specifies the node
name, as in "(emacs)Top". The link appears as ‘[manual]’ in the
customization buffer.

(info-link info-node)
Like custom-manual except that the link appears in the customiza-
tion buffer with the Info node name.

(url-link url)
Link to a web page; url is a string which specifies the url. The
link appears in the customization buffer as url.

You can specify the text to use in the customization buffer by adding :tag
name after the first element of the link-data; for example, (info-link :tag
"foo" "(emacs)Top") makes a link to the Emacs manual which appears in the
buffer as ‘foo’.

190 XEmacs Lisp Reference Manual

An item can have more than one external link; however, most items have none
at all.

:load file Load file file (a string) before displaying this customization item. Loading is
done with load-library, and only if the file is not already loaded.

:require feature
Require feature feature (a symbol) when installing a value for this item (an
option or a face) that was saved using the customization feature. This is done
by calling require.
The most common reason to use :require is when a variable enables a feature
such as a minor mode, and just setting the variable won’t have any effect unless
the code which implements the mode is loaded.

13.2 Defining Custom Groups

Each Emacs Lisp package should have one main customization group which contains all
the options, faces and other groups in the package. If the package has a small number of
options and faces, use just one group and put everything in it. When there are more than
twelve or so options and faces, then you should structure them into subgroups, and put
the subgroups under the package’s main customization group. It is OK to put some of the
options and faces in the package’s main group alongside the subgroups.

The package’s main or only group should be a member of one or more of the standard
customization groups. (To display the full list of them, use M-x customize.) Choose one
or more of them (but not too many), and add your group to each of them using the :group
keyword.

The way to declare new customization groups is with defgroup.

Macrodefgroup group members doc [keyword value]...
Declare group as a customization group containing members. Do not quote the symbol
group. The argument doc specifies the documentation string for the group.
The argument members is a list specifying an initial set of customization items to
be members of the group. However, most often members is nil, and you specify the
group’s members by using the :group keyword when defining those members.
If you want to specify group members through members, each element should have the
form (name widget). Here name is a symbol, and widget is a widget type for editing
that symbol. Useful widgets are custom-variable for a variable, custom-face for a
face, and custom-group for a group.
In addition to the common keywords (see Section 13.1 [Common Keywords],
page 189), you can use this keyword in defgroup:

:prefix prefix
If the name of an item in the group starts with prefix, then the tag for
that item is constructed (by default) by omitting prefix.
One group can have any number of prefixes.

Chapter 13: Writing Customization Definitions 191

13.3 Defining Customization Variables

Use defcustom to declare user-editable variables.

Macrodefcustom option default doc [keyword value]...
Declare option as a customizable user option variable. Do not quote option. The
argument doc specifies the documentation string for the variable.

If option is void, defcustom initializes it to default. default should be an expression
to compute the value; be careful in writing it, because it can be evaluated on more
than one occasion.

The following additional keywords are defined:

:type type
Use type as the data type for this option. It specifies which values are
legitimate, and how to display the value. See Section 13.4 [Customization
Types], page 192, for more information.

:options list
Specify list as the list of reasonable values for use in this option.

Currently this is meaningful only when the type is hook. In that case,
the elements of list should be functions that are useful as elements of the
hook value. The user is not restricted to using only these functions, but
they are offered as convenient alternatives.

:version version
This option specifies that the variable was first introduced, or its default
value was changed, in Emacs version version. The value version must be
a string. For example,

(defcustom foo-max 34
"*Maximum number of foo’s allowed."
:type ’integer
:group ’foo
:version "20.3")

:set setfunction
Specify setfunction as the way to change the value of this option. The
function setfunction should take two arguments, a symbol and the new
value, and should do whatever is necessary to update the value properly
for this option (which may not mean simply setting the option as a Lisp
variable). The default for setfunction is set-default.

:get getfunction
Specify getfunction as the way to extract the value of this option. The
function getfunction should take one argument, a symbol, and should re-
turn the “current value” for that symbol (which need not be the symbol’s
Lisp value). The default is default-value.

192 XEmacs Lisp Reference Manual

:initialize function
function should be a function used to initialize the variable when the
defcustom is evaluated. It should take two arguments, the symbol and
value. Here are some predefined functions meant for use in this way:

custom-initialize-set
Use the variable’s :set function to initialize the variable,
but do not reinitialize it if it is already non-void. This is the
default :initialize function.

custom-initialize-default
Like custom-initialize-set, but use the function set-
default to set the variable, instead of the variable’s :set
function. This is the usual choice for a variable whose :set
function enables or disables a minor mode; with this choice,
defining the variable will not call the minor mode function,
but customizing the variable will do so.

custom-initialize-reset
Always use the :set function to initialize the variable. If the
variable is already non-void, reset it by calling the :set func-
tion using the current value (returned by the :get method).

custom-initialize-changed
Use the :set function to initialize the variable, if it is already
set or has been customized; otherwise, just use set-default.

The :require option is useful for an option that turns on the operation of a certain
feature. Assuming that the package is coded to check the value of the option, you still need
to arrange for the package to be loaded. You can do that with :require. See Section 13.1
[Common Keywords], page 189. Here is an example, from the library ‘paren.el’:

(defcustom show-paren-mode nil
"Toggle Show Paren mode...."
:set (lambda (symbol value)
(show-paren-mode (or value 0)))
:initialize ’custom-initialize-default
:type ’boolean
:group ’paren-showing
:require ’paren)

Internally, defcustom uses the symbol property standard-value to record the expres-
sion for the default value, and saved-value to record the value saved by the user with the
customization buffer. The saved-value property is actually a list whose car is an expression
which evaluates to the value.

13.4 Customization Types

When you define a user option with defcustom, you must specify its customization type.
That is a Lisp object which describes (1) which values are legitimate and (2) how to display
the value in the customization buffer for editing.

Chapter 13: Writing Customization Definitions 193

You specify the customization type in defcustom with the :type keyword. The argument
of :type is evaluated; since types that vary at run time are rarely useful, normally you use
a quoted constant. For example:

(defcustom diff-command "diff"
"*The command to use to run diff."
:type ’(string)
:group ’diff)

In general, a customization type is a list whose first element is a symbol, one of the cus-
tomization type names defined in the following sections. After this symbol come a number
of arguments, depending on the symbol. Between the type symbol and its arguments, you
can optionally write keyword-value pairs (see Section 13.4.4 [Type Keywords], page 196).

Some of the type symbols do not use any arguments; those are called simple types. For
a simple type, if you do not use any keyword-value pairs, you can omit the parentheses
around the type symbol. For example just string as a customization type is equivalent to
(string).

13.4.1 Simple Types

This section describes all the simple customization types.

sexp The value may be any Lisp object that can be printed and read back. You can
use sexp as a fall-back for any option, if you don’t want to take the time to
work out a more specific type to use.

integer The value must be an integer, and is represented textually in the customization
buffer.

number The value must be a number, and is represented textually in the customization
buffer.

string The value must be a string, and the customization buffer shows just the con-
tents, with no delimiting ‘"’ characters and no quoting with ‘\’.

regexp Like string except that the string must be a valid regular expression.

character
The value must be a character code. A character code is actually an integer,
but this type shows the value by inserting the character in the buffer, rather
than by showing the number.

file The value must be a file name, and you can do completion with M-〈TAB〉.

(file :must-match t)
The value must be a file name for an existing file, and you can do completion
with M-〈TAB〉.

directory
The value must be a directory name, and you can do completion with M-〈TAB〉.

symbol The value must be a symbol. It appears in the customization buffer as the
name of the symbol.

194 XEmacs Lisp Reference Manual

function The value must be either a lambda expression or a function name. When it is
a function name, you can do completion with M-〈TAB〉.

variable The value must be a variable name, and you can do completion with M-〈TAB〉.

face The value must be a symbol which is a face name.

boolean The value is boolean—either nil or t. Note that by using choice and const
together (see the next section), you can specify that the value must be nil or
t, but also specify the text to describe each value in a way that fits the specific
meaning of the alternative.

13.4.2 Composite Types

When none of the simple types is appropriate, you can use composite types, which build
new types from other types. Here are several ways of doing that:

(restricted-sexp :match-alternatives criteria)
The value may be any Lisp object that satisfies one of criteria. criteria should
be a list, and each elements should be one of these possibilities:
• A predicate—that is, a function of one argument that returns non-nil if

the argument fits a certain type. This means that objects of that type are
acceptable.

• A quoted constant—that is, ’object. This means that object itself is an
acceptable value.

For example,
(restricted-sexp :match-alternatives (integerp ’t ’nil))

allows integers, t and nil as legitimate values.
The customization buffer shows all legitimate values using their read syntax,
and the user edits them textually.

(cons car-type cdr-type)
The value must be a cons cell, its car must fit car-type, and its cdr must fit
cdr-type. For example, (cons string symbol) is a customization type which
matches values such as ("foo" . foo).
In the customization buffer, the car and the cdr are displayed and edited
separately, each according to the type that you specify for it.

(list element-types...)
The value must be a list with exactly as many elements as the element-types
you have specified; and each element must fit the corresponding element-type.
For example, (list integer string function) describes a list of three ele-
ments; the first element must be an integer, the second a string, and the third
a function.
In the customization buffer, the each element is displayed and edited separately,
according to the type specified for it.

Chapter 13: Writing Customization Definitions 195

(vector element-types...)
Like list except that the value must be a vector instead of a list. The elements
work the same as in list.

(choice alternative-types...)
The value must fit at least one of alternative-types. For example, (choice
integer string) allows either an integer or a string.
In the customization buffer, the user selects one of the alternatives using a
menu, and can then edit the value in the usual way for that alternative.
Normally the strings in this menu are determined automatically from the
choices; however, you can specify different strings for the menu by including
the :tag keyword in the alternatives. For example, if an integer stands for a
number of spaces, while a string is text to use verbatim, you might write the
customization type this way,

(choice (integer :tag "Number of spaces")
(string :tag "Literal text"))

so that the menu offers ‘Number of spaces’ and ‘Literal Text’.
In any alternative for which nil is not a valid value, other than a const, you
should specify a valid default for that alternative using the :value keyword.
See Section 13.4.4 [Type Keywords], page 196.

(const value)
The value must be value—nothing else is allowed.
The main use of const is inside of choice. For example, (choice integer
(const nil)) allows either an integer or nil.
:tag is often used with const, inside of choice. For example,

(choice (const :tag "Yes" t)
(const :tag "No" nil)
(const :tag "Ask" foo))

(function-item function)
Like const, but used for values which are functions. This displays the docu-
mentation string as well as the function name. The documentation string is
either the one you specify with :doc, or function’s own documentation string.

(variable-item variable)
Like const, but used for values which are variable names. This displays the
documentation string as well as the variable name. The documentation string
is either the one you specify with :doc, or variable’s own documentation string.

(set elements...)
The value must be a list and each element of the list must be one of the elements
specified. This appears in the customization buffer as a checklist.

(repeat element-type)
The value must be a list and each element of the list must fit the type element-
type. This appears in the customization buffer as a list of elements, with ‘[INS]’
and ‘[DEL]’ buttons for adding more elements or removing elements.

196 XEmacs Lisp Reference Manual

13.4.3 Splicing into Lists

The :inline feature lets you splice a variable number of elements into the middle of
a list or vector. You use it in a set, choice or repeat type which appears among the
element-types of a list or vector.

Normally, each of the element-types in a list or vector describes one and only one
element of the list or vector. Thus, if an element-type is a repeat, that specifies a list of
unspecified length which appears as one element.

But when the element-type uses :inline, the value it matches is merged directly into the
containing sequence. For example, if it matches a list with three elements, those become
three elements of the overall sequence. This is analogous to using ‘,@’ in the backquote
construct.

For example, to specify a list whose first element must be t and whose remaining argu-
ments should be zero or more of foo and bar, use this customization type:

(list (const t) (set :inline t foo bar))

This matches values such as (t), (t foo), (t bar) and (t foo bar).
When the element-type is a choice, you use :inline not in the choice itself, but in

(some of) the alternatives of the choice. For example, to match a list which must start
with a file name, followed either by the symbol t or two strings, use this customization
type:

(list file
(choice (const t)

(list :inline t string string)))

If the user chooses the first alternative in the choice, then the overall list has two elements
and the second element is t. If the user chooses the second alternative, then the overall list
has three elements and the second and third must be strings.

13.4.4 Type Keywords

You can specify keyword-argument pairs in a customization type after the type name
symbol. Here are the keywords you can use, and their meanings:

:value default
This is used for a type that appears as an alternative inside of choice; it
specifies the default value to use, at first, if and when the user selects this
alternative with the menu in the customization buffer.
Of course, if the actual value of the option fits this alternative, it will appear
showing the actual value, not default.
If nil is not a valid value for the alternative, then it is essential to specify a
valid default with :value.

:format format-string
This string will be inserted in the buffer to represent the value corresponding
to the type. The following ‘%’ escapes are available for use in format-string :

Chapter 13: Writing Customization Definitions 197

‘%[button%]’
Display the text button marked as a button. The :action attribute
specifies what the button will do if the user invokes it; its value is a
function which takes two arguments—the widget which the button
appears in, and the event.
There is no way to specify two different buttons with different ac-
tions.

‘%{sample%}’
Show sample in a special face specified by :sample-face.

‘%v’ Substitute the item’s value. How the value is represented depends
on the kind of item, and (for variables) on the customization type.

‘%d’ Substitute the item’s documentation string.

‘%h’ Like ‘%d’, but if the documentation string is more than one line,
add an active field to control whether to show all of it or just the
first line.

‘%t’ Substitute the tag here. You specify the tag with the :tag keyword.

‘%%’ Display a literal ‘%’.

:action action
Perform action if the user clicks on a button.

:button-face face
Use the face face (a face name or a list of face names) for button text displayed
with ‘%[...%]’.

:button-prefix prefix
:button-suffix suffix

These specify the text to display before and after a button. Each can be:

nil No text is inserted.

a string The string is inserted literally.

a symbol The symbol’s value is used.

:tag tag Use tag (a string) as the tag for the value (or part of the value) that corresponds
to this type.

:doc doc Use doc as the documentation string for this value (or part of the value) that
corresponds to this type. In order for this to work, you must specify a value
for :format, and use ‘%d’ or ‘%h’ in that value.
The usual reason to specify a documentation string for a type is to provide
more information about the meanings of alternatives inside a :choice type or
the parts of some other composite type.

:help-echo motion-doc
When you move to this item with widget-forward or widget-backward, it will
display the string motion-doc in the echo area.

198 XEmacs Lisp Reference Manual

:match function
Specify how to decide whether a value matches the type. The corresponding
value, function, should be a function that accepts two arguments, a widget and
a value; it should return non-nil if the value is acceptable.

Chapter 14: Loading 199

14 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the
form of Lisp objects. XEmacs finds and opens the file, reads the text, evaluates each form,
and then closes the file.

The load functions evaluate all the expressions in a file just as the eval-current-buffer
function evaluates all the expressions in a buffer. The difference is that the load functions
read and evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or as byte-compiled
code. Each form in the file is called a top-level form. There is no special format for the
forms in a loadable file; any form in a file may equally well be typed directly into a buffer
and evaluated there. (Indeed, most code is tested this way.) Most often, the forms are
function definitions and variable definitions.

A file containing Lisp code is often called a library. Thus, the “Rmail library” is a file
containing code for Rmail mode. Similarly, a “Lisp library directory” is a directory of files
containing Lisp code.

14.1 How Programs Do Loading

XEmacs Lisp has several interfaces for loading. For example, autoload creates a place-
holder object for a function in a file; trying to call the autoloading function loads the file
to get the function’s real definition (see Section 14.2 [Autoload], page 202). require loads
a file if it isn’t already loaded (see Section 14.4 [Named Features], page 205). Ultimately,
all these facilities call the load function to do the work.

Functionload filename &optional missing-ok nomessage nosuffix
This function finds and opens a file of Lisp code, evaluates all the forms in it, and
closes the file.
To find the file, load first looks for a file named ‘filename.elc’, that is, for a file
whose name is filename with ‘.elc’ appended. If such a file exists, it is loaded. If
there is no file by that name, then load looks for a file named ‘filename.el’. If that
file exists, it is loaded. Finally, if neither of those names is found, load looks for
a file named filename with nothing appended, and loads it if it exists. (The load
function is not clever about looking at filename. In the perverse case of a file named
‘foo.el.el’, evaluation of (load "foo.el") will indeed find it.)
If the optional argument nosuffix is non-nil, then the suffixes ‘.elc’ and ‘.el’ are
not tried. In this case, you must specify the precise file name you want.
If filename is a relative file name, such as ‘foo’ or ‘baz/foo.bar’, load searches for
the file using the variable load-path. It appends filename to each of the directories
listed in load-path, and loads the first file it finds whose name matches. The current
default directory is tried only if it is specified in load-path, where nil stands for
the default directory. load tries all three possible suffixes in the first directory in
load-path, then all three suffixes in the second directory, and so on.

200 XEmacs Lisp Reference Manual

If you get a warning that ‘foo.elc’ is older than ‘foo.el’, it means you should
consider recompiling ‘foo.el’. See Chapter 15 [Byte Compilation], page 209.
Messages like ‘Loading foo...’ and ‘Loading foo...done’ appear in the echo area
during loading unless nomessage is non-nil.
Any unhandled errors while loading a file terminate loading. If the load was done for
the sake of autoload, any function definitions made during the loading are undone.
If load can’t find the file to load, then normally it signals the error file-error
(with ‘Cannot open load file filename’). But if missing-ok is non-nil, then load
just returns nil.
You can use the variable load-read-function to specify a function for load to use
instead of read for reading expressions. See below.
load returns t if the file loads successfully.

User Optionload-path
The value of this variable is a list of directories to search when loading files with
load. Each element is a string (which must be a directory name) or nil (which
stands for the current working directory). The value of load-path is initialized from
the environment variable EMACSLOADPATH, if that exists; otherwise its default value is
specified in ‘emacs/src/paths.h’ when XEmacs is built.
The syntax of EMACSLOADPATH is the same as used for PATH; ‘:’ (or ‘;’, according
to the operating system) separates directory names, and ‘.’ is used for the current
default directory. Here is an example of how to set your EMACSLOADPATH variable from
a csh ‘.login’ file:

setenv EMACSLOADPATH .:/user/bil/emacs:/usr/lib/emacs/lisp

Here is how to set it using sh:
export EMACSLOADPATH
EMACSLOADPATH=.:/user/bil/emacs:/usr/local/lib/emacs/lisp

Here is an example of code you can place in a ‘.emacs’ file to add several directories
to the front of your default load-path:

(setq load-path
(append (list nil "/user/bil/emacs"

"/usr/local/lisplib"
"~/emacs")

load-path))

In this example, the path searches the current working directory first, followed then
by the ‘/user/bil/emacs’ directory, the ‘/usr/local/lisplib’ directory, and the
‘~/emacs’ directory, which are then followed by the standard directories for Lisp
code.
The command line options ‘-l’ or ‘-load’ specify a Lisp library to load as part of
Emacs startup. Since this file might be in the current directory, Emacs 18 temporarily
adds the current directory to the front of load-path so the file can be found there.
Newer Emacs versions also find such files in the current directory, but without altering
load-path.
Dumping Emacs uses a special value of load-path. If the value of load-path at
the end of dumping is unchanged (that is, still the same special value), the dumped

Chapter 14: Loading 201

Emacs switches to the ordinary load-path value when it starts up, as described
above. But if load-path has any other value at the end of dumping, that value is
used for execution of the dumped Emacs also.
Therefore, if you want to change load-path temporarily for loading a few libraries
in ‘site-init.el’ or ‘site-load.el’, you should bind load-path locally with let
around the calls to load.

Functionlocate-file filename path-list &optional suffixes mode
This function searches for a file in the same way that load does, and returns the
file found (if any). (In fact, load uses this function to search through load-path.)
It searches for filename through path-list, expanded by one of the optional suf-
fixes (string of suffixes separated by ‘:’s), checking for access mode (0|1|2|4 =
exists|executable|writeable|readable), default readable.
locate-file keeps hash tables of the directories it searches through, in order to
speed things up. It tries valiantly to not get confused in the face of a changing and
unpredictable environment, but can occasionally get tripped up. In this case, you will
have to call locate-file-clear-hashing to get it back on track. See that function
for details.

Functionlocate-file-clear-hashing path
This function clears the hash records for the specified list of directories. locate-
file uses a hashing scheme to speed lookup, and will correctly track the following
environmental changes:
• changes of any sort to the list of directories to be searched.
• addition and deletion of non-shadowing files (see below) from the directories in

the list.
• byte-compilation of a .el file into a .elc file.

locate-file will primarily get confused if you add a file that shadows (i.e. has the
same name as) another file further down in the directory list. In this case, you must
call locate-file-clear-hashing.

Variableload-in-progress
This variable is non-nil if Emacs is in the process of loading a file, and it is nil
otherwise.

Variableload-read-function
This variable specifies an alternate expression-reading function for load and eval-
region to use instead of read. The function should accept one argument, just as
read does.
Normally, the variable’s value is nil, which means those functions should use read.

User Optionload-warn-when-source-newer
This variable specifies whether load should check whether the source is newer than
the binary. If this variable is true, then when a ‘.elc’ file is being loaded and the
corresponding ‘.el’ is newer, a warning message will be printed. The default is nil,
but it is bound to t during the initial loadup.

202 XEmacs Lisp Reference Manual

User Optionload-warn-when-source-only
This variable specifies whether load should warn when loading a ‘.el’ file instead of
an ‘.elc’. If this variable is true, then when load is called with a filename without
an extension, and the ‘.elc’ version doesn’t exist but the ‘.el’ version does, then a
message will be printed. If an explicit extension is passed to load, no warning will
be printed. The default is nil, but it is bound to t during the initial loadup.

User Optionload-ignore-elc-files
This variable specifies whether load should ignore ‘.elc’ files when a suffix is not
given. This is normally used only to bootstrap the ‘.elc’ files when building XEmacs,
when you use the command ‘make all-elc’. (This forces the ‘.el’ versions to be
loaded in the process of compiling those same files, so that existing out-of-date ‘.elc’
files do not make it mess things up.)

To learn how load is used to build XEmacs, see Section B.1 [Building XEmacs], page 779.

14.2 Autoload

The autoload facility allows you to make a function or macro known in Lisp, but put off
loading the file that defines it. The first call to the function automatically reads the proper
file to install the real definition and other associated code, then runs the real definition as
if it had been loaded all along.

There are two ways to set up an autoloaded function: by calling autoload, and by
writing a special “magic” comment in the source before the real definition. autoload is
the low-level primitive for autoloading; any Lisp program can call autoload at any time.
Magic comments do nothing on their own; they serve as a guide for the command update-
file-autoloads, which constructs calls to autoload and arranges to execute them when
Emacs is built. Magic comments are the most convenient way to make a function autoload,
but only for packages installed along with Emacs.

Functionautoload function filename &optional docstring interactive type
This function defines the function (or macro) named function so as to load automat-
ically from filename. The string filename specifies the file to load to get the real
definition of function.

The argument docstring is the documentation string for the function. Normally, this is
the identical to the documentation string in the function definition itself. Specifying
the documentation string in the call to autoload makes it possible to look at the
documentation without loading the function’s real definition.

If interactive is non-nil, then the function can be called interactively. This lets
completion in M-x work without loading the function’s real definition. The complete
interactive specification need not be given here; it’s not needed unless the user actually
calls function, and when that happens, it’s time to load the real definition.

You can autoload macros and keymaps as well as ordinary functions. Specify type
as macro if function is really a macro. Specify type as keymap if function is really a

Chapter 14: Loading 203

keymap. Various parts of Emacs need to know this information without loading the
real definition.
An autoloaded keymap loads automatically during key lookup when a prefix key’s
binding is the symbol function. Autoloading does not occur for other kinds of access
to the keymap. In particular, it does not happen when a Lisp program gets the
keymap from the value of a variable and calls define-key; not even if the variable
name is the same symbol function.
If function already has a non-void function definition that is not an autoload object,
autoload does nothing and returns nil. If the function cell of function is void, or is
already an autoload object, then it is defined as an autoload object like this:

(autoload filename docstring interactive type)

For example,
(symbol-function ’run-prolog)

⇒ (autoload "prolog" 169681 t nil)

In this case, "prolog" is the name of the file to load, 169681 refers to the documen-
tation string in the ‘DOC’ file (see Section 27.1 [Documentation Basics], page 385), t
means the function is interactive, and nil that it is not a macro or a keymap.

The autoloaded file usually contains other definitions and may require or provide one
or more features. If the file is not completely loaded (due to an error in the evaluation of
its contents), any function definitions or provide calls that occurred during the load are
undone. This is to ensure that the next attempt to call any function autoloading from this
file will try again to load the file. If not for this, then some of the functions in the file might
appear defined, but they might fail to work properly for the lack of certain subroutines
defined later in the file and not loaded successfully.

XEmacs as distributed comes with many autoloaded functions. The calls to autoload
are in the file ‘loaddefs.el’. There is a convenient way of updating them automatically.

If the autoloaded file fails to define the desired Lisp function or macro, then an error is
signaled with data "Autoloading failed to define function function-name".

A magic autoload comment looks like ‘;;;###autoload’, on a line by itself, just before
the real definition of the function in its autoloadable source file. The command M-x update-

file-autoloads writes a corresponding autoload call into ‘loaddefs.el’. Building Emacs
loads ‘loaddefs.el’ and thus calls autoload. M-x update-directory-autoloads is even
more powerful; it updates autoloads for all files in the current directory.

The same magic comment can copy any kind of form into ‘loaddefs.el’. If the form
following the magic comment is not a function definition, it is copied verbatim. You can
also use a magic comment to execute a form at build time without executing it when the file
itself is loaded. To do this, write the form on the same line as the magic comment. Since it
is in a comment, it does nothing when you load the source file; but update-file-autoloads
copies it to ‘loaddefs.el’, where it is executed while building Emacs.

The following example shows how doctor is prepared for autoloading with a magic
comment:

;;;###autoload
(defun doctor ()

204 XEmacs Lisp Reference Manual

"Switch to *doctor* buffer and start giving psychotherapy."
(interactive)
(switch-to-buffer "*doctor*")
(doctor-mode))

Here’s what that produces in ‘loaddefs.el’:
(autoload ’doctor "doctor"
"\

Switch to *doctor* buffer and start giving psychotherapy."
t)

The backslash and newline immediately following the double-quote are a convention used
only in the preloaded Lisp files such as ‘loaddefs.el’; they tell make-docfile to put the
documentation string in the ‘DOC’ file. See Section B.1 [Building XEmacs], page 779.

14.3 Repeated Loading

You may load one file more than once in an Emacs session. For example, after you have
rewritten and reinstalled a function definition by editing it in a buffer, you may wish to
return to the original version; you can do this by reloading the file it came from.

When you load or reload files, bear in mind that the load and load-library functions
automatically load a byte-compiled file rather than a non-compiled file of similar name.
If you rewrite a file that you intend to save and reinstall, remember to byte-compile it if
necessary; otherwise you may find yourself inadvertently reloading the older, byte-compiled
file instead of your newer, non-compiled file!

When writing the forms in a Lisp library file, keep in mind that the file might be loaded
more than once. For example, the choice of defvar vs. defconst for defining a variable
depends on whether it is desirable to reinitialize the variable if the library is reloaded:
defconst does so, and defvar does not. (See Section 10.5 [Defining Variables], page 151.)

The simplest way to add an element to an alist is like this:
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist))

But this would add multiple elements if the library is reloaded. To avoid the problem, write
this:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist)))

To add an element to a list just once, use add-to-list (see Section 10.7 [Setting Vari-
ables], page 154).

Occasionally you will want to test explicitly whether a library has already been loaded.
Here’s one way to test, in a library, whether it has been loaded before:

(defvar foo-was-loaded)

(if (not (boundp ’foo-was-loaded))
execute-first-time-only)

Chapter 14: Loading 205

(setq foo-was-loaded t)

If the library uses provide to provide a named feature, you can use featurep to test
whether the library has been loaded.

14.4 Features

provide and require are an alternative to autoload for loading files automatically.
They work in terms of named features. Autoloading is triggered by calling a specific func-
tion, but a feature is loaded the first time another program asks for it by name.

A feature name is a symbol that stands for a collection of functions, variables, etc. The
file that defines them should provide the feature. Another program that uses them may
ensure they are defined by requiring the feature. This loads the file of definitions if it hasn’t
been loaded already.

To require the presence of a feature, call require with the feature name as argument.
require looks in the global variable features to see whether the desired feature has been
provided already. If not, it loads the feature from the appropriate file. This file should call
provide at the top level to add the feature to features; if it fails to do so, require signals
an error.

Features are normally named after the files that provide them, so that require need not
be given the file name.

For example, in ‘emacs/lisp/prolog.el’, the definition for run-prolog includes the
following code:

(defun run-prolog ()
"Run an inferior Prolog process, input and output via buffer *prolog*."
(interactive)
(require ’comint)
(switch-to-buffer (make-comint "prolog" prolog-program-name))
(inferior-prolog-mode))

The expression (require ’comint) loads the file ‘comint.el’ if it has not yet been loaded.
This ensures that make-comint is defined.

The ‘comint.el’ file contains the following top-level expression:
(provide ’comint)

This adds comint to the global features list, so that (require ’comint) will henceforth
know that nothing needs to be done.

When require is used at top level in a file, it takes effect when you byte-compile that
file (see Chapter 15 [Byte Compilation], page 209) as well as when you load it. This is in
case the required package contains macros that the byte compiler must know about.

Although top-level calls to require are evaluated during byte compilation, provide
calls are not. Therefore, you can ensure that a file of definitions is loaded before it is byte-
compiled by including a provide followed by a require for the same feature, as in the
following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.

(require ’my-feature) ; Evaluated by byte compiler.

206 XEmacs Lisp Reference Manual

The compiler ignores the provide, then processes the require by loading the file in ques-
tion. Loading the file does execute the provide call, so the subsequent require call does
nothing while loading.

Functionprovide feature
This function announces that feature is now loaded, or being loaded, into the current
XEmacs session. This means that the facilities associated with feature are or will be
available for other Lisp programs.
The direct effect of calling provide is to add feature to the front of the list features
if it is not already in the list. The argument feature must be a symbol. provide
returns feature.

features
⇒ (bar bish)

(provide ’foo)
⇒ foo

features
⇒ (foo bar bish)

When a file is loaded to satisfy an autoload, and it stops due to an error in the
evaluating its contents, any function definitions or provide calls that occurred during
the load are undone. See Section 14.2 [Autoload], page 202.

Functionrequire feature &optional filename
This function checks whether feature is present in the current XEmacs session (using
(featurep feature); see below). If it is not, then require loads filename with load.
If filename is not supplied, then the name of the symbol feature is used as the file
name to load.
If loading the file fails to provide feature, require signals an error, ‘Required feature
feature was not provided’.

Functionfeaturep fexp
This function returns t if feature fexp is present in this Emacs. Use this to condition-
alize execution of lisp code based on the presence or absence of emacs or environment
extensions.
fexp can be a symbol, a number, or a list.
If fexp is a symbol, it is looked up in the ‘features’ variable, and t is returned if it is
found, nil otherwise.
If fexp is a number, the function returns t if this Emacs has an equal or greater
number than fexp, nil otherwise. Note that minor Emacs version is expected to
be 2 decimal places wide, so (featurep 20.4) will return nil on XEmacs 20.4—you
must write (featurep 20.04), unless you wish to match for XEmacs 20.40.
If fexp is a list whose car is the symbol and, the function returns t if all the features
in its cdr are present, nil otherwise.
If fexp is a list whose car is the symbol or, the function returns t if any the features
in its cdr are present, nil otherwise.

Chapter 14: Loading 207

If fexp is a list whose car is the symbol not, the function returns t if the feature is
not present, nil otherwise.

Examples:

(featurep ’xemacs)
⇒ ; t on XEmacs.

(featurep ’(and xemacs gnus))
⇒ ; t on XEmacs with Gnus loaded.

(featurep ’(or tty-frames (and emacs 19.30)))
⇒ ; t if this Emacs supports TTY frames.

(featurep ’(or (and xemacs 19.15) (and emacs 19.34)))
⇒ ; t on XEmacs 19.15 and later, or on

; FSF Emacs 19.34 and later.

Please note: The advanced arguments of this function (anything other
than a symbol) are not yet supported by FSF Emacs. If you feel they are
useful for supporting multiple Emacs variants, lobby Richard Stallman at
‘<bug-gnu-emacs@prep.ai.mit.edu>’.

Variablefeatures
The value of this variable is a list of symbols that are the features loaded in the
current XEmacs session. Each symbol was put in this list with a call to provide.
The order of the elements in the features list is not significant.

14.5 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for
other Lisp objects. To do this, use the function unload-feature:

Commandunload-feature feature &optional force
This command unloads the library that provided feature feature. It undefines all func-
tions, macros, and variables defined in that library with defconst, defvar, defun,
defmacro, defsubst, definf-function and defalias. It then restores any autoloads
formerly associated with those symbols. (Loading saves these in the autoload prop-
erty of the symbol.)

Ordinarily, unload-feature refuses to unload a library on which other loaded libraries
depend. (A library a depends on library b if a contains a require for b.) If the
optional argument force is non-nil, dependencies are ignored and you can unload
any library.

The unload-feature function is written in Lisp; its actions are based on the variable
load-history.

208 XEmacs Lisp Reference Manual

Variableload-history
This variable’s value is an alist connecting library names with the names of functions
and variables they define, the features they provide, and the features they require.
Each element is a list and describes one library. The car of the list is the name of
the library, as a string. The rest of the list is composed of these kinds of objects:
• Symbols that were defined by this library.
• Lists of the form (require . feature) indicating features that were required.
• Lists of the form (provide . feature) indicating features that were provided.

The value of load-history may have one element whose car is nil. This element
describes definitions made with eval-buffer on a buffer that is not visiting a file.

The command eval-region updates load-history, but does so by adding the symbols
defined to the element for the file being visited, rather than replacing that element.

14.6 Hooks for Loading

Variableafter-load-alist
An alist of expressions to evaluate if and when particular libraries are loaded. Each
element looks like this:

(filename forms...)

When load is run and the file-name argument is filename, the forms in the corre-
sponding element are executed at the end of loading.
filename must match exactly! Normally filename is the name of a library, with no
directory specified, since that is how load is normally called. An error in forms does
not undo the load, but does prevent execution of the rest of the forms.

Chapter 15: Byte Compilation 209

15 Byte Compilation

XEmacs Lisp has a compiler that translates functions written in Lisp into a special
representation called byte-code that can be executed more efficiently. The compiler replaces
Lisp function definitions with byte-code. When a byte-coded function is called, its definition
is evaluated by the byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of
being executed directly by the machine’s hardware (as true compiled code is), byte-code
is completely transportable from machine to machine without recompilation. It is not,
however, as fast as true compiled code.

In general, any version of Emacs can run byte-compiled code produced by recent earlier
versions of Emacs, but the reverse is not true. In particular, if you compile a program with
XEmacs 20, the compiled code may not run in earlier versions. See Section 15.3 [Docs and
Compilation], page 212.

See Section 16.3 [Compilation Errors], page 231, for how to investigate errors occurring
in byte compilation.

15.1 Performance of Byte-Compiled Code

A byte-compiled function is not as efficient as a primitive function written in C, but runs
much faster than the version written in Lisp. Here is an example:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))

(while (> (setq n (1- n))
0))

(list t1 (current-time-string))))
⇒ silly-loop

(silly-loop 5000000)
⇒ ("Fri Nov 28 20:56:16 1997"

"Fri Nov 28 20:56:39 1997") ; 23 seconds

(byte-compile ’silly-loop)
⇒ #<compiled-function
(from "loadup.el")
(n)
"...(23)"
[current-time-string t1 n 0]
2
"Return time before and after N iterations of a loop.">

(silly-loop 5000000)
⇒ ("Fri Nov 28 20:57:49 1997"

"Fri Nov 28 20:57:55 1997") ; 6 seconds

210 XEmacs Lisp Reference Manual

In this example, the interpreted code required 23 seconds to run, whereas the byte-
compiled code required 6 seconds. These results are representative, but actual results will
vary greatly.

15.2 The Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile
function. You can compile a whole file with byte-compile-file, or several files with
byte-recompile-directory or batch-byte-compile.

When you run the byte compiler, you may get warnings in a buffer called
‘*Compile-Log*’. These report things in your program that suggest a problem but are not
necessarily erroneous.

Be careful when byte-compiling code that uses macros. Macro calls are expanded when
they are compiled, so the macros must already be defined for proper compilation. For more
details, see Section 12.3 [Compiling Macros], page 182.

Normally, compiling a file does not evaluate the file’s contents or load the file. But it
does execute any require calls at top level in the file. One way to ensure that necessary
macro definitions are available during compilation is to require the file that defines them
(see Section 14.4 [Named Features], page 205). To avoid loading the macro definition files
when someone runs the compiled program, write eval-when-compile around the require
calls (see Section 15.5 [Eval During Compile], page 213).

Functionbyte-compile symbol
This function byte-compiles the function definition of symbol, replacing the previous
definition with the compiled one. The function definition of symbol must be the
actual code for the function; i.e., the compiler does not follow indirection to another
symbol. byte-compile returns the new, compiled definition of symbol.

If symbol’s definition is a compiled-function object, byte-compile does nothing and
returns nil. Lisp records only one function definition for any symbol, and if that is
already compiled, non-compiled code is not available anywhere. So there is no way
to “compile the same definition again.”

(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))

⇒ factorial

(byte-compile ’factorial)
⇒ #<compiled-function
(from "loadup.el")
(integer)
"...(21)"
[integer 1 factorial]
3
"Compute factorial of INTEGER.">

Chapter 15: Byte Compilation 211

The result is a compiled-function object. The string it contains is the actual byte-
code; each character in it is an instruction or an operand of an instruction. The vector
contains all the constants, variable names and function names used by the function,
except for certain primitives that are coded as special instructions.

Commandcompile-defun &optional arg
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install
a compiled version of that function.
If arg is non-nil, the result is inserted in the current buffer after the form; otherwise,
it is printed in the minibuffer.

Commandbyte-compile-file filename &optional load
This function compiles a file of Lisp code named filename into a file of byte-code. The
output file’s name is made by appending ‘c’ to the end of filename.
If load is non-nil, the file is loaded after having been compiled.
Compilation works by reading the input file one form at a time. If it is a definition
of a function or macro, the compiled function or macro definition is written out.
Other forms are batched together, then each batch is compiled, and written so that
its compiled code will be executed when the file is read. All comments are discarded
when the input file is read.
This command returns t. When called interactively, it prompts for the file name.

% ls -l push*
-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el

(byte-compile-file "~/emacs/push.el")
⇒ t

% ls -l push*
-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc

Commandbyte-recompile-directory directory &optional flag
This function recompiles every ‘.el’ file in directory that needs recompilation. A file
needs recompilation if a ‘.elc’ file exists but is older than the ‘.el’ file.
When a ‘.el’ file has no corresponding ‘.elc’ file, then flag says what to do. If it
is nil, these files are ignored. If it is non-nil, the user is asked whether to compile
each such file.
The returned value of this command is unpredictable.

Functionbatch-byte-compile
This function runs byte-compile-file on files specified on the command line. This
function must be used only in a batch execution of Emacs, as it kills Emacs on
completion. An error in one file does not prevent processing of subsequent files. (The
file that gets the error will not, of course, produce any compiled code.)

% emacs -batch -f batch-byte-compile *.el

212 XEmacs Lisp Reference Manual

Functionbatch-byte-recompile-directory
This function is similar to batch-byte-compile but runs the command
byte-recompile-directory on the files remaining on the command line.

Variablebyte-recompile-directory-ignore-errors-p
If non-nil, this specifies that byte-recompile-directory will continue compiling
even when an error occurs in a file. This is normally nil, but is bound to t by
batch-byte-recompile-directory.

Functionbyte-code code-string data-vector max-stack
This function actually interprets byte-code. A byte-compiled function is actually
defined with a body that calls byte-code. Don’t call this function yourself. Only the
byte compiler knows how to generate valid calls to this function.
In newer Emacs versions (19 and up), byte-code is usually executed as part of a
compiled-function object, and only rarely due to an explicit call to byte-code.

15.3 Documentation Strings and Compilation

Functions and variables loaded from a byte-compiled file access their documentation
strings dynamically from the file whenever needed. This saves space within Emacs, and
makes loading faster because the documentation strings themselves need not be processed
while loading the file. Actual access to the documentation strings becomes slower as a
result, but normally not enough to bother users.

Dynamic access to documentation strings does have drawbacks:
• If you delete or move the compiled file after loading it, Emacs can no longer access the

documentation strings for the functions and variables in the file.
• If you alter the compiled file (such as by compiling a new version), then further access

to documentation strings in this file will give nonsense results.

If your site installs Emacs following the usual procedures, these problems will never
normally occur. Installing a new version uses a new directory with a different name; as
long as the old version remains installed, its files will remain unmodified in the places where
they are expected to be.

However, if you have built Emacs yourself and use it from the directory where you built
it, you will experience this problem occasionally if you edit and recompile Lisp files. When
it happens, you can cure the problem by reloading the file after recompiling it.

Byte-compiled files made with Emacs 19.29 will not load into older versions because the
older versions don’t support this feature. You can turn off this feature by setting byte-
compile-dynamic-docstrings to nil. Once this is done, you can compile files that will
load into older Emacs versions. You can do this globally, or for one source file by specifying
a file-local binding for the variable. Here’s one way to do that:

-*-byte-compile-dynamic-docstrings: nil;-*-

Variablebyte-compile-dynamic-docstrings
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic loading of documentation strings.

Chapter 15: Byte Compilation 213

The dynamic documentation string feature writes compiled files that use a special Lisp
reader construct, ‘#@count’. This construct skips the next count characters. It also uses
the ‘#$’ construct, which stands for “the name of this file, as a string.” It is best not to use
these constructs in Lisp source files.

15.4 Dynamic Loading of Individual Functions

When you compile a file, you can optionally enable the dynamic function loading feature
(also known as lazy loading). With dynamic function loading, loading the file doesn’t fully
read the function definitions in the file. Instead, each function definition contains a place-
holder which refers to the file. The first time each function is called, it reads the full
definition from the file, to replace the place-holder.

The advantage of dynamic function loading is that loading the file becomes much faster.
This is a good thing for a file which contains many separate commands, provided that using
one of them does not imply you will soon (or ever) use the rest. A specialized mode which
provides many keyboard commands often has that usage pattern: a user may invoke the
mode, but use only a few of the commands it provides.

The dynamic loading feature has certain disadvantages:
• If you delete or move the compiled file after loading it, Emacs can no longer load the

remaining function definitions not already loaded.
• If you alter the compiled file (such as by compiling a new version), then trying to load

any function not already loaded will get nonsense results.

If you compile a new version of the file, the best thing to do is immediately load the new
compiled file. That will prevent any future problems.

The byte compiler uses the dynamic function loading feature if the variable byte-
compile-dynamic is non-nil at compilation time. Do not set this variable globally, since
dynamic loading is desirable only for certain files. Instead, enable the feature for specific
source files with file-local variable bindings, like this:

-*-byte-compile-dynamic: t;-*-

Variablebyte-compile-dynamic
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic function loading.

Functionfetch-bytecode function
This immediately finishes loading the definition of function from its byte-compiled file,
if it is not fully loaded already. The argument function may be a compiled-function
object or a function name.

15.5 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

214 XEmacs Lisp Reference Manual

Special Formeval-and-compile body
This form marks body to be evaluated both when you compile the containing code
and when you run it (whether compiled or not).
You can get a similar result by putting body in a separate file and referring to that
file with require. Using require is preferable if there is a substantial amount of
code to be executed in this way.

Special Formeval-when-compile body
This form marks body to be evaluated at compile time and not when the compiled
program is loaded. The result of evaluation by the compiler becomes a constant which
appears in the compiled program. When the program is interpreted, not compiled at
all, body is evaluated normally.
At top level, this is analogous to the Common Lisp idiom (eval-when (compile
eval) ...). Elsewhere, the Common Lisp ‘#.’ reader macro (but not when inter-
preting) is closer to what eval-when-compile does.

15.6 Compiled-Function Objects

Byte-compiled functions have a special data type: they are compiled-function objects.
A compiled-function object is a bit like a vector; however, the evaluator handles this

data type specially when it appears as a function to be called. The printed representation
for a compiled-function object normally begins with ‘#<compiled-function’ and ends with
‘>’. However, if the variable print-readably is non-nil, the object is printed beginning
with ‘#[’ and ending with ‘]’. This representation can be read directly by the Lisp reader,
and is used in byte-compiled files (those ending in ‘.elc’).

In Emacs version 18, there was no compiled-function object data type; compiled functions
used the function byte-code to run the byte code.

A compiled-function object has a number of different elements. They are:

arglist The list of argument symbols.

instructions
The string containing the byte-code instructions.

constants The vector of Lisp objects referenced by the byte code. These include symbols
used as function names and variable names.

stacksize The maximum stack size this function needs.

doc-string The documentation string (if any); otherwise, nil. The value may be a number
or a list, in case the documentation string is stored in a file. Use the function
documentation to get the real documentation string (see Section 27.2 [Access-
ing Documentation], page 386).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is
nil for a function that isn’t interactive.

Chapter 15: Byte Compilation 215

domain The domain (if any). This is only meaningful if I18N3 (message-translation)
support was compiled into XEmacs. This is a string defining which domain to
find the translation for the documentation string and interactive prompt. See
Section 54.2.4 [Domain Specification], page 742.

Here’s an example of a compiled-function object, in printed representation. It is the
definition of the command backward-sexp.

#<compiled-function
(from "lisp.elc")
(&optional arg)
"...(15)" [arg 1 forward-sexp] 2 854740 "_p">

The primitive way to create a compiled-function object is with make-byte-code:

Functionmake-byte-code &rest elements
This function constructs and returns a compiled-function object with elements as its
elements.
Please note: Unlike all other Emacs-lisp functions, calling this with five arguments
is not the same as calling it with six arguments, the last of which is nil. If the
interactive arg is specified as nil, then that means that this function was defined
with (interactive). If the arg is not specified, then that means the function is
not interactive. This is terrible behavior which is retained for compatibility with old
‘.elc’ files which expected these semantics.

You should not try to come up with the elements for a compiled-function object yourself,
because if they are inconsistent, XEmacs may crash when you call the function. Always
leave it to the byte compiler to create these objects; it makes the elements consistent (we
hope).

The following primitives are provided for accessing the elements of a compiled-function
object.

Functioncompiled-function-arglist function
This function returns the argument list of compiled-function object function.

Functioncompiled-function-instructions function
This function returns a string describing the byte-code instructions of compiled-
function object function.

Functioncompiled-function-constants function
This function returns the vector of Lisp objects referenced by compiled-function object
function.

Functioncompiled-function-stack-size function
This function returns the maximum stack size needed by compiled-function object
function.

Functioncompiled-function-doc-string function
This function returns the doc string of compiled-function object function, if available.

216 XEmacs Lisp Reference Manual

Functioncompiled-function-interactive function
This function returns the interactive spec of compiled-function object function, if any.
The return value is nil or a two-element list, the first element of which is the symbol
interactive and the second element is the interactive spec (a string or Lisp form).

Functioncompiled-function-domain function
This function returns the domain of compiled-function object function, if any. The
result will be a string or nil. See Section 54.2.4 [Domain Specification], page 742.

15.7 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide
a disassembler to satisfy a cat-like curiosity. The disassembler converts the byte-compiled
code into humanly readable form.

The byte-code interpreter is implemented as a simple stack machine. It pushes values
onto a stack of its own, then pops them off to use them in calculations whose results are
themselves pushed back on the stack. When a byte-code function returns, it pops a value
off the stack and returns it as the value of the function.

In addition to the stack, byte-code functions can use, bind, and set ordinary Lisp vari-
ables, by transferring values between variables and the stack.

Commanddisassemble object &optional stream
This function prints the disassembled code for object. If stream is supplied, then out-
put goes there. Otherwise, the disassembled code is printed to the stream standard-
output. The argument object can be a function name or a lambda expression.
As a special exception, if this function is used interactively, it outputs to a buffer
named ‘*Disassemble*’.

Here are two examples of using the disassemble function. We have added explanatory
comments to help you relate the byte-code to the Lisp source; these do not appear in the
output of disassemble. These examples show unoptimized byte-code. Nowadays byte-code
is usually optimized, but we did not want to rewrite these examples, since they still serve
their purpose.

(defun factorial (integer)
"Compute factorial of an integer."
(if (= 1 integer) 1

(* integer (factorial (1- integer)))))
⇒ factorial

(factorial 4)
⇒ 24

(disassemble ’factorial)
a byte-code for factorial:

doc: Compute factorial of an integer.
args: (integer)

Chapter 15: Byte Compilation 217

0 constant 1 ; Push 1 onto stack.

1 varref integer ; Get value of integer
; from the environment
; and push the value
; onto the stack.

2 eqlsign ; Pop top two values off stack,
; compare them,
; and push result onto stack.

3 goto-if-nil 10 ; Pop and test top of stack;
; if nil, go to 10,
; else continue.

6 constant 1 ; Push 1 onto top of stack.

7 goto 17 ; Go to 17 (in this case, 1 will be
; returned by the function).

10 constant * ; Push symbol * onto stack.

11 varref integer ; Push value of integer onto stack.

12 constant factorial ; Push factorial onto stack.

13 varref integer ; Push value of integer onto stack.

14 sub1 ; Pop integer, decrement value,
; push new value onto stack.

; Stack now contains:
; − decremented value of integer
; − factorial
; − value of integer
; − *

15 call 1 ; Call function factorial using
; the first (i.e., the top) element
; of the stack as the argument;
; push returned value onto stack.

; Stack now contains:
; − result of recursive
; call to factorial
; − value of integer
; − *

16 call 2 ; Using the first two
; (i.e., the top two)
; elements of the stack
; as arguments,
; call the function *,
; pushing the result onto the stack.

218 XEmacs Lisp Reference Manual

17 return ; Return the top element
; of the stack.

⇒ nil

The silly-loop function is somewhat more complex:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))

(while (> (setq n (1- n))
0))

(list t1 (current-time-string))))
⇒ silly-loop

(disassemble ’silly-loop)
a byte-code for silly-loop:

doc: Return time before and after N iterations of a loop.
args: (n)

0 constant current-time-string ; Push
; current-time-string
; onto top of stack.

1 call 0 ; Call current-time-string
; with no argument,
; pushing result onto stack.

2 varbind t1 ; Pop stack and bind t1
; to popped value.

3 varref n ; Get value of n from
; the environment and push
; the value onto the stack.

4 sub1 ; Subtract 1 from top of stack.

5 dup ; Duplicate the top of the stack;
; i.e., copy the top of
; the stack and push the
; copy onto the stack.

6 varset n ; Pop the top of the stack,
; and bind n to the value.

; In effect, the sequence dup varset
; copies the top of the stack
; into the value of n
; without popping it.

7 constant 0 ; Push 0 onto stack.

8 gtr ; Pop top two values off stack,
; test if n is greater than 0
; and push result onto stack.

Chapter 15: Byte Compilation 219

9 goto-if-nil-else-pop 17 ; Goto 17 if n <= 0
; (this exits the while loop).
; else pop top of stack
; and continue

12 constant nil ; Push nil onto stack
; (this is the body of the loop).

13 discard ; Discard result of the body
; of the loop (a while loop
; is always evaluated for
; its side effects).

14 goto 3 ; Jump back to beginning
; of while loop.

17 discard ; Discard result of while loop
; by popping top of stack.
; This result is the value nil that
; was not popped by the goto at 9.

18 varref t1 ; Push value of t1 onto stack.

19 constant current-time-string ; Push
; current-time-string
; onto top of stack.

20 call 0 ; Call current-time-string again.

21 list2 ; Pop top two elements off stack,
; create a list of them,
; and push list onto stack.

22 unbind 1 ; Unbind t1 in local environment.

23 return ; Return value of the top of stack.

⇒ nil

220 XEmacs Lisp Reference Manual

Chapter 16: Debugging Lisp Programs 221

16 Debugging Lisp Programs

There are three ways to investigate a problem in an XEmacs Lisp program, depending
on what you are doing with the program when the problem appears.
• If the problem occurs when you run the program, you can use a Lisp debugger (either

the default debugger or Edebug) to investigate what is happening during execution.
• If the problem is syntactic, so that Lisp cannot even read the program, you can use

the XEmacs facilities for editing Lisp to localize it.
• If the problem occurs when trying to compile the program with the byte compiler, you

need to know how to examine the compiler’s input buffer.

Another useful debugging tool is the dribble file. When a dribble file is open, XEmacs
copies all keyboard input characters to that file. Afterward, you can examine the file to
find out what input was used. See Section 50.8 [Terminal Input], page 716.

For debugging problems in terminal descriptions, the open-termscript function can be
useful. See Section 50.9 [Terminal Output], page 719.

16.1 The Lisp Debugger

The Lisp debugger provides the ability to suspend evaluation of a form. While evaluation
is suspended (a state that is commonly known as a break), you may examine the run time
stack, examine the values of local or global variables, or change those values. Since a break
is a recursive edit, all the usual editing facilities of XEmacs are available; you can even run
programs that will enter the debugger recursively. See Section 19.10 [Recursive Editing],
page 314.

16.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This
allows you to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
frequently get Lisp errors when invoked in inappropriate contexts (such as C-f at the end of
the buffer) and during ordinary editing it would be very unpleasant to enter the debugger
each time this happens. If you want errors to enter the debugger, set the variable debug-
on-error to non-nil.

User Optiondebug-on-error
This variable determines whether the debugger is called when an error is signaled and
not handled. If debug-on-error is t, all errors call the debugger. If it is nil, none
call the debugger.
The value can also be a list of error conditions that should call the debugger. For
example, if you set it to the list (void-variable), then only errors about a variable
that has no value invoke the debugger.

222 XEmacs Lisp Reference Manual

When this variable is non-nil, Emacs does not catch errors that happen in process
filter functions and sentinels. Therefore, these errors also can invoke the debugger.
See Chapter 49 [Processes], page 683.

User Optiondebug-ignored-errors
This variable specifies certain kinds of errors that should not enter the debugger. Its
value is a list of error condition symbols and/or regular expressions. If the error has
any of those condition symbols, or if the error message matches any of the regular
expressions, then that error does not enter the debugger, regardless of the value of
debug-on-error.
The normal value of this variable lists several errors that happen often during editing
but rarely result from bugs in Lisp programs.

To debug an error that happens during loading of the ‘.emacs’ file, use the option
‘-debug-init’, which binds debug-on-error to t while ‘.emacs’ is loaded and inhibits use
of condition-case to catch init file errors.

If your ‘.emacs’ file sets debug-on-error, the effect may not last past the end of loading
‘.emacs’. (This is an undesirable byproduct of the code that implements the ‘-debug-init’
command line option.) The best way to make ‘.emacs’ set debug-on-error permanently
is with after-init-hook, like this:

(add-hook ’after-init-hook
’(lambda () (setq debug-on-error t)))

User Optiondebug-on-signal
This variable is similar to debug-on-error but breaks whenever an error is signalled,
regardless of whether it would be handled.

16.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the
loop. On most operating systems, you can do this with C-g, which causes quit.

Ordinary quitting gives no information about why the program was looping. To get more
information, you can set the variable debug-on-quit to non-nil. Quitting with C-g is not
considered an error, and debug-on-error has no effect on the handling of C-g. Likewise,
debug-on-quit has no effect on errors.

Once you have the debugger running in the middle of the infinite loop, you can proceed
from the debugger using the stepping commands. If you step through the entire loop, you
will probably get enough information to solve the problem.

User Optiondebug-on-quit
This variable determines whether the debugger is called when quit is signaled and
not handled. If debug-on-quit is non-nil, then the debugger is called whenever you
quit (that is, type C-g). If debug-on-quit is nil, then the debugger is not called
when you quit. See Section 19.8 [Quitting], page 311.

Chapter 16: Debugging Lisp Programs 223

16.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is
to enter the debugger whenever a certain function is called. You can do this to the function
in which the problem occurs, and then step through the function, or you can do this to a
function called shortly before the problem, step quickly over the call to that function, and
then step through its caller.

Commanddebug-on-entry function-name
This function requests function-name to invoke the debugger each time it is called. It
works by inserting the form (debug ’debug) into the function definition as the first
form.
Any function defined as Lisp code may be set to break on entry, regardless of whether
it is interpreted code or compiled code. If the function is a command, it will enter
the debugger when called from Lisp and when called interactively (after the reading
of the arguments). You can’t debug primitive functions (i.e., those written in C) this
way.
When debug-on-entry is called interactively, it prompts for function-name in the
minibuffer.
If the function is already set up to invoke the debugger on entry, debug-on-entry
does nothing.
Please note: if you redefine a function after using debug-on-entry on it, the code to
enter the debugger is lost.
debug-on-entry returns function-name.

(defun fact (n)
(if (zerop n) 1

(* n (fact (1- n)))))
⇒ fact

(debug-on-entry ’fact)
⇒ fact

(fact 3)

------ Buffer: *Backtrace* ------
Entering:
* fact(3)

eval-region(4870 4878 t)
byte-code("...")
eval-last-sexp(nil)
(let ...)
eval-insert-last-sexp(nil)

* call-interactively(eval-insert-last-sexp)
------ Buffer: *Backtrace* ------

(symbol-function ’fact)
⇒ (lambda (n)

(debug (quote debug))
(if (zerop n) 1 (* n (fact (1- n)))))

224 XEmacs Lisp Reference Manual

Commandcancel-debug-on-entry function-name
This function undoes the effect of debug-on-entry on function-name. When called
interactively, it prompts for function-name in the minibuffer. If function-name is nil
or the empty string, it cancels debugging for all functions.

If cancel-debug-on-entry is called more than once on the same function, the second
call does nothing. cancel-debug-on-entry returns function-name.

16.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’
at the proper place, and type C-M-x. Be sure to undo this insertion before you save the file!

The place where you insert ‘(debug)’ must be a place where an additional form can
be evaluated and its value ignored. (If the value of (debug) isn’t ignored, it will alter the
execution of the program!) The most common suitable places are inside a progn or an
implicit progn (see Section 9.1 [Sequencing], page 131).

16.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window
and a buffer named ‘*Backtrace*’ in another window. The backtrace buffer contains one
line for each level of Lisp function execution currently going on. At the beginning of this
buffer is a message describing the reason that the debugger was invoked (such as the error
message and associated data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in
which letters are defined as debugger commands. The usual XEmacs editing commands are
available; thus, you can switch windows to examine the buffer that was being edited at the
time of the error, switch buffers, visit files, or do any other sort of editing. However, the
debugger is a recursive editing level (see Section 19.10 [Recursive Editing], page 314) and
it is wise to go back to the backtrace buffer and exit the debugger (with the q command)
when you are finished with it. Exiting the debugger gets out of the recursive edit and kills
the backtrace buffer.

The backtrace buffer shows you the functions that are executing and their argument
values. It also allows you to specify a stack frame by moving point to the line describing
that frame. (A stack frame is the place where the Lisp interpreter records information
about a particular invocation of a function.) The frame whose line point is on is considered
the current frame. Some of the debugger commands operate on the current frame.

The debugger itself must be run byte-compiled, since it makes assumptions about how
many stack frames are used for the debugger itself. These assumptions are false if the
debugger is running interpreted.

Chapter 16: Debugging Lisp Programs 225

16.1.6 Debugger Commands

Inside the debugger (in Debugger mode), these special commands are available in addi-
tion to the usual cursor motion commands. (Keep in mind that all the usual facilities of
XEmacs, such as switching windows or buffers, are still available.)

The most important use of debugger commands is for stepping through code, so that
you can see how control flows. The debugger can step through the control structures of an
interpreted function, but cannot do so in a byte-compiled function. If you would like to
step through a byte-compiled function, replace it with an interpreted definition of the same
function. (To do this, visit the source file for the function and type C-M-x on its definition.)

Here is a list of Debugger mode commands:

c Exit the debugger and continue execution. This resumes execution of the pro-
gram as if the debugger had never been entered (aside from the effect of any
variables or data structures you may have changed while inside the debugger).

Continuing when an error or quit was signalled will cause the normal action
of the signalling to take place. If you do not want this to happen, but instead
want the program execution to continue as if the call to signal did not occur,
use the r command.

d Continue execution, but enter the debugger the next time any Lisp function is
called. This allows you to step through the subexpressions of an expression,
seeing what values the subexpressions compute, and what else they do.

The stack frame made for the function call which enters the debugger in this
way will be flagged automatically so that the debugger will be called again when
the frame is exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame
is exited. Frames flagged in this way are marked with stars in the backtrace
buffer.

u Don’t enter the debugger when the current frame is exited. This cancels a b

command on that frame.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
echo area. The debugger alters certain important variables, and the current
buffer, as part of its operation; e temporarily restores their outside-the-debugger
values so you can examine them. This makes the debugger more transparent.
By contrast, M-: does nothing special in the debugger; it shows you the variable
values within the debugger.

q Terminate the program being debugged; return to top-level XEmacs command
execution.

If the debugger was entered due to a C-g but you really want to quit, and not
debug, use the q command.

226 XEmacs Lisp Reference Manual

r Return a value from the debugger. The value is computed by reading an ex-
pression with the minibuffer and evaluating it.
The r command is useful when the debugger was invoked due to exit from a
Lisp call frame (as requested with b); then the value specified in the r command
is used as the value of that frame. It is also useful if you call debug and use its
return value.
If the debugger was entered at the beginning of a function call, r has the same
effect as c, and the specified return value does not matter.
If the debugger was entered through a call to signal (i.e. as a result of an
error or quit), then returning a value will cause the call to signal itself to
return, rather than throwing to top-level or invoking a handler, as is normal.
This allows you to correct an error (e.g. the type of an argument was wrong)
or continue from a debug-on-quit as if it never happened.
Note that some errors (e.g. any error signalled using the error function, and
many errors signalled from a primitive function) are not continuable. If you
return a value from them and continue execution, then the error will immedi-
ately be signalled again. Other errors (e.g. wrong-type-argument errors) will
be continually resignalled until the problem is corrected.

16.1.7 Invoking the Debugger

Here we describe fully the function used to invoke the debugger.

Functiondebug &rest debugger-args
This function enters the debugger. It switches buffers to a buffer named
‘*Backtrace*’ (or ‘*Backtrace*<2>’ if it is the second recursive entry to the
debugger, etc.), and fills it with information about the stack of Lisp function calls.
It then enters a recursive edit, showing the backtrace buffer in Debugger mode.
The Debugger mode c and r commands exit the recursive edit; then debug switches
back to the previous buffer and returns to whatever called debug. This is the only
way the function debug can return to its caller.
If the first of the debugger-args passed to debug is nil (or if it is not one of the special
values in the table below), then debug displays the rest of its arguments at the top of
the ‘*Backtrace*’ buffer. This mechanism is used to display a message to the user.
However, if the first argument passed to debug is one of the following special values,
then it has special significance. Normally, these values are passed to debug only by
the internals of XEmacs and the debugger, and not by programmers calling debug.
The special values are:

lambda A first argument of lambda means debug was called because of entry to a
function when debug-on-next-call was non-nil. The debugger displays
‘Entering:’ as a line of text at the top of the buffer.

debug debug as first argument indicates a call to debug because of entry to
a function that was set to debug on entry. The debugger displays

Chapter 16: Debugging Lisp Programs 227

‘Entering:’, just as in the lambda case. It also marks the stack frame
for that function so that it will invoke the debugger when exited.

t When the first argument is t, this indicates a call to debug due to evalu-
ation of a list form when debug-on-next-call is non-nil. The debugger
displays the following as the top line in the buffer:

Beginning evaluation of function call form:

exit When the first argument is exit, it indicates the exit of a stack frame
previously marked to invoke the debugger on exit. The second argument
given to debug in this case is the value being returned from the frame.
The debugger displays ‘Return value:’ on the top line of the buffer,
followed by the value being returned.

error When the first argument is error, the debugger indicates that it is being
entered because an error or quit was signaled and not handled, by dis-
playing ‘Signaling:’ followed by the error signaled and any arguments
to signal. For example,

(let ((debug-on-error t))
(/ 1 0))

------ Buffer: *Backtrace* ------
Signaling: (arith-error)

/(1 0)
...
------ Buffer: *Backtrace* ------

If an error was signaled, presumably the variable debug-on-error is non-
nil. If quit was signaled, then presumably the variable debug-on-quit
is non-nil.

nil Use nil as the first of the debugger-args when you want to enter the
debugger explicitly. The rest of the debugger-args are printed on the
top line of the buffer. You can use this feature to display messages—for
example, to remind yourself of the conditions under which debug is called.

228 XEmacs Lisp Reference Manual

16.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

Variabledebugger
The value of this variable is the function to call to invoke the debugger. Its value
must be a function of any number of arguments (or, more typically, the name of a
function). Presumably this function will enter some kind of debugger. The default
value of the variable is debug.

The first argument that Lisp hands to the function indicates why it was called. The
convention for arguments is detailed in the description of debug.

Commandbacktrace &optional stream detailed
This function prints a trace of Lisp function calls currently active. This is the function
used by debug to fill up the ‘*Backtrace*’ buffer. It is written in C, since it must
have access to the stack to determine which function calls are active. The return
value is always nil.

The backtrace is normally printed to standard-output, but this can be changed
by specifying a value for stream. If detailed is non-nil, the backtrace also shows
places where currently active variable bindings, catches, condition-cases, and unwind-
protects were made as well as function calls.

In the following example, a Lisp expression calls backtrace explicitly. This
prints the backtrace to the stream standard-output: in this case, to the buffer
‘backtrace-output’. Each line of the backtrace represents one function call. The
line shows the values of the function’s arguments if they are all known. If they are
still being computed, the line says so. The arguments of special forms are elided.

(with-output-to-temp-buffer "backtrace-output"
(let ((var 1))

(save-excursion
(setq var (eval ’(progn

(1+ var)
(list ’testing (backtrace))))))))

⇒ nil

Chapter 16: Debugging Lisp Programs 229

----------- Buffer: backtrace-output ------------
backtrace()
(list ...computing arguments...)
(progn ...)
eval((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)
(save-excursion ...)
(let ...)
(with-output-to-temp-buffer ...)
eval-region(1973 2142 #<buffer *scratch*>)
byte-code("... for eval-print-last-sexp ...")
eval-print-last-sexp(nil)

* call-interactively(eval-print-last-sexp)
----------- Buffer: backtrace-output ------------

The character ‘*’ indicates a frame whose debug-on-exit flag is set.

Variabledebug-on-next-call
If this variable is non-nil, it says to call the debugger before the next eval, apply
or funcall. Entering the debugger sets debug-on-next-call to nil.
The d command in the debugger works by setting this variable.

Functionbacktrace-debug level flag
This function sets the debug-on-exit flag of the stack frame level levels down the stack,
giving it the value flag. If flag is non-nil, this will cause the debugger to be entered
when that frame later exits. Even a nonlocal exit through that frame will enter the
debugger.
This function is used only by the debugger.

Variablecommand-debug-status
This variable records the debugging status of the current interactive command. Each
time a command is called interactively, this variable is bound to nil. The debugger
can set this variable to leave information for future debugger invocations during the
same command.
The advantage, for the debugger, of using this variable rather than another global
variable is that the data will never carry over to a subsequent command invocation.

Functionbacktrace-frame frame-number
The function backtrace-frame is intended for use in Lisp debuggers. It returns
information about what computation is happening in the stack frame frame-number
levels down.
If that frame has not evaluated the arguments yet (or is a special form), the value is
(nil function arg-forms...).
If that frame has evaluated its arguments and called its function already, the value is
(t function arg-values...).
In the return value, function is whatever was supplied as the car of the evaluated
list, or a lambda expression in the case of a macro call. If the function has a &rest
argument, that is represented as the tail of the list arg-values.

230 XEmacs Lisp Reference Manual

If frame-number is out of range, backtrace-frame returns nil.

16.2 Debugging Invalid Lisp Syntax

The Lisp reader reports invalid syntax, but cannot say where the real problem is. For
example, the error “End of file during parsing” in evaluating an expression indicates an
excess of open parentheses (or square brackets). The reader detects this imbalance at the
end of the file, but it cannot figure out where the close parenthesis should have been.
Likewise, “Invalid read syntax: ")"” indicates an excess close parenthesis or missing open
parenthesis, but does not say where the missing parenthesis belongs. How, then, to find
what to change?

If the problem is not simply an imbalance of parentheses, a useful technique is to try
C-M-e at the beginning of each defun, and see if it goes to the place where that defun
appears to end. If it does not, there is a problem in that defun.

However, unmatched parentheses are the most common syntax errors in Lisp, and we
can give further advice for those cases.

16.2.1 Excess Open Parentheses

The first step is to find the defun that is unbalanced. If there is an excess open parenthe-
sis, the way to do this is to insert a close parenthesis at the end of the file and type C-M-b

(backward-sexp). This will move you to the beginning of the defun that is unbalanced.
(Then type C-〈SPC〉 C-_ C-u C-〈SPC〉 to set the mark there, undo the insertion of the close
parenthesis, and finally return to the mark.)

The next step is to determine precisely what is wrong. There is no way to be sure of
this except to study the program, but often the existing indentation is a clue to where the
parentheses should have been. The easiest way to use this clue is to reindent with C-M-q

and see what moves.

Before you do this, make sure the defun has enough close parentheses. Otherwise, C-M-q
will get an error, or will reindent all the rest of the file until the end. So move to the end of
the defun and insert a close parenthesis there. Don’t use C-M-e to move there, since that
too will fail to work until the defun is balanced.

Now you can go to the beginning of the defun and type C-M-q. Usually all the lines from
a certain point to the end of the function will shift to the right. There is probably a missing
close parenthesis, or a superfluous open parenthesis, near that point. (However, don’t
assume this is true; study the code to make sure.) Once you have found the discrepancy,
undo the C-M-q with C-_, since the old indentation is probably appropriate to the intended
parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fit the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

Chapter 16: Debugging Lisp Programs 231

16.2.2 Excess Close Parentheses

To deal with an excess close parenthesis, first insert an open parenthesis at the beginning
of the file, back up over it, and type C-M-f to find the end of the unbalanced defun.
(Then type C-〈SPC〉 C-_ C-u C-〈SPC〉 to set the mark there, undo the insertion of the open
parenthesis, and finally return to the mark.)

Then find the actual matching close parenthesis by typing C-M-f at the beginning of the
defun. This will leave you somewhere short of the place where the defun ought to end. It
is possible that you will find a spurious close parenthesis in that vicinity.

If you don’t see a problem at that point, the next thing to do is to type C-M-q at
the beginning of the defun. A range of lines will probably shift left; if so, the missing
open parenthesis or spurious close parenthesis is probably near the first of those lines.
(However, don’t assume this is true; study the code to make sure.) Once you have found
the discrepancy, undo the C-M-q with C-_, since the old indentation is probably appropriate
to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fit the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

16.3 Debugging Problems in Compilation

When an error happens during byte compilation, it is normally due to invalid syntax
in the program you are compiling. The compiler prints a suitable error message in the
‘*Compile-Log*’ buffer, and then stops. The message may state a function name in which
the error was found, or it may not. Either way, here is how to find out where in the file the
error occurred.

What you should do is switch to the buffer ‘ *Compiler Input*’. (Note that the buffer
name starts with a space, so it does not show up in M-x list-buffers.) This buffer contains
the program being compiled, and point shows how far the byte compiler was able to read.

If the error was due to invalid Lisp syntax, point shows exactly where the invalid syntax
was detected. The cause of the error is not necessarily near by! Use the techniques in the
previous section to find the error.

If the error was detected while compiling a form that had been read successfully, then
point is located at the end of the form. In this case, this technique can’t localize the error
precisely, but can still show you which function to check.

16.4 Edebug

Edebug is a source-level debugger for XEmacs Lisp programs that provides the following
features:

• Step through evaluation, stopping before and after each expression.

232 XEmacs Lisp Reference Manual

• Set conditional or unconditional breakpoints, install embedded breakpoints, or a global
break event.

• Trace slow or fast stopping briefly at each stop point, or each breakpoint.
• Display expression results and evaluate expressions as if outside of Edebug. Interface

with the custom printing package for printing circular structures.
• Automatically reevaluate a list of expressions and display their results each time Edebug

updates the display.
• Output trace info on function enter and exit.
• Errors stop before the source causing the error.
• Display backtrace without Edebug calls.
• Allow specification of argument evaluation for macros and defining forms.
• Provide rudimentary coverage testing and display of frequency counts.

The first three sections should tell you enough about Edebug to enable you to use it.

16.4.1 Using Edebug

To debug an XEmacs Lisp program with Edebug, you must first instrument the Lisp
code that you want to debug. If you want to just try it now, load ‘edebug.el’, move point
into a definition and do C-u C-M-x (eval-defun with a prefix argument). See Section 16.4.2
[Instrumenting], page 233 for alternative ways to instrument code.

Once a function is instrumented, any call to the function activates Edebug. Activating
Edebug may stop execution and let you step through the function, or it may update the
display and continue execution while checking for debugging commands, depending on the
selected Edebug execution mode. The initial execution mode is step, by default, which
does stop execution. See Section 16.4.3 [Edebug Execution Modes], page 234.

Within Edebug, you normally view an XEmacs buffer showing the source of the Lisp
function you are debugging. This is referred to as the source code buffer—but note that it
is not always the same buffer depending on which function is currently being executed.

An arrow at the left margin indicates the line where the function is executing. Point
initially shows where within the line the function is executing, but you can move point
yourself.

If you instrument the definition of fac (shown below) and then execute (fac 3), here is
what you normally see. Point is at the open-parenthesis before if.

(defun fac (n)
=>?(if (< 0 n)

(* n (fac (1- n)))
1))

The places within a function where Edebug can stop execution are called stop points.
These occur both before and after each subexpression that is a list, and also after each
variable reference. Here we show with periods the stop points found in the function fac:

(defun fac (n)
.(if .(< 0 n.).

Chapter 16: Debugging Lisp Programs 233

.(* n. .(fac (1- n.).).).
1).)

While the source code buffer is selected, the special commands of Edebug are available
in it, in addition to the commands of XEmacs Lisp mode. (The buffer is temporarily made
read-only, however.) For example, you can type the Edebug command 〈SPC〉 to execute until
the next stop point. If you type 〈SPC〉 once after entry to fac, here is the display you will
see:

(defun fac (n)
=>(if ?(< 0 n)

(* n (fac (1- n)))
1))

When Edebug stops execution after an expression, it displays the expression’s value in
the echo area.

Other frequently used commands are b to set a breakpoint at a stop point, g to execute
until a breakpoint is reached, and q to exit to the top-level command loop. Type ? to
display a list of all Edebug commands.

16.4.2 Instrumenting for Edebug

In order to use Edebug to debug Lisp code, you must first instrument the code. Instru-
menting a form inserts additional code into it which invokes Edebug at the proper places.
Furthermore, if Edebug detects a syntax error while instrumenting, point is left at the
erroneous code and an invalid-read-syntax error is signaled.

Once you have loaded Edebug, the command C-M-x (eval-defun) is redefined so that
when invoked with a prefix argument on a definition, it instruments the definition before
evaluating it. (The source code itself is not modified.) If the variable edebug-all-defs
is non-nil, that inverts the meaning of the prefix argument: then C-M-x instruments the
definition unless it has a prefix argument. The default value of edebug-all-defs is nil.
The command M-x edebug-all-defs toggles the value of the variable edebug-all-defs.

If edebug-all-defs is non-nil, then the commands eval-region, eval-current-
buffer, and eval-buffer also instrument any definitions they evaluate. Similarly, edebug-
all-forms controls whether eval-region should instrument any form, even non-defining
forms. This doesn’t apply to loading or evaluations in the minibuffer. The command M-x

edebug-all-forms toggles this option.

Another command, M-x edebug-eval-top-level-form, is available to instrument any
top-level form regardless of the value of edebug-all-defs or edebug-all-forms.

Just before Edebug instruments any code, it calls any functions in the variable edebug-
setup-hook and resets its value to nil. You could use this to load up Edebug specifications
associated with a package you are using but only when you also use Edebug. For example,
‘my-specs.el’ may be loaded automatically when you use my-package with Edebug by
including the following code in ‘my-package.el’.

(add-hook ’edebug-setup-hook
(function (lambda () (require ’my-specs))))

234 XEmacs Lisp Reference Manual

While Edebug is active, the command I (edebug-instrument-callee) instruments the
definition of the function or macro called by the list form after point, if is not already
instrumented. If the location of the definition is not known to Edebug, this command
cannot be used. After loading Edebug, eval-region records the position of every definition
it evaluates, even if not instrumenting it. Also see the command i (Section 16.4.4 [Jumping],
page 235) which steps into the callee.

Edebug knows how to instrument all the standard special forms, an interactive form
with an expression argument, anonymous lambda expressions, and other defining forms.
(Specifications for macros defined by ‘cl.el’ (version 2.03) are provided in ‘cl-specs.el’.)
Edebug cannot know what a user-defined macro will do with the arguments of a macro
call so you must tell it. See Section 16.4.16 [Instrumenting Macro Calls], page 245 for the
details.

Note that a couple ways remain to evaluate expressions without instrumenting them.
Loading a file via the load subroutine does not instrument expressions for Edebug. Evalu-
ations in the minibuffer via eval-expression (M-ESC) are not instrumented.

To remove instrumentation from a definition, simply reevaluate it with one of the non-
instrumenting commands, or reload the file.

See Section 16.4.9 [Edebug Eval], page 239 for other evaluation functions available inside
of Edebug.

16.4.3 Edebug Execution Modes

Edebug supports several execution modes for running the program you are debugging.
We call these alternatives Edebug execution modes; do not confuse them with major or
minor modes. The current Edebug execution mode determines how Edebug displays the
progress of the evaluation, whether it stops at each stop point, or continues to the next
breakpoint, for example.

Normally, you specify the Edebug execution mode by typing a command to continue the
program in a certain mode. Here is a table of these commands. All except for S resume
execution of the program, at least for a certain distance.

S Stop: don’t execute any more of the program for now, just wait for more Edebug
commands (edebug-stop).

〈SPC〉 Step: stop at the next stop point encountered (edebug-step-mode).

n Next: stop at the next stop point encountered after an expression (edebug-
next-mode). Also see edebug-forward-sexp in Section 16.4.5 [Edebug Misc],
page 236.

t Trace: pause one second at each Edebug stop point (edebug-trace-mode).

T Rapid trace: update at each stop point, but don’t actually pause (edebug-
Trace-fast-mode).

g Go: run until the next breakpoint (edebug-go-mode). See Section 16.4.6
[Breakpoints], page 237.

Chapter 16: Debugging Lisp Programs 235

c Continue: pause for one second at each breakpoint, but don’t stop (edebug-
continue-mode).

C Rapid continue: update at each breakpoint, but don’t actually pause (edebug-
Continue-fast-mode).

G Go non-stop: ignore breakpoints (edebug-Go-nonstop-mode). You can still
stop the program by hitting any key.

In general, the execution modes earlier in the above list run the program more slowly or
stop sooner.

When you enter a new Edebug level, the initial execution mode comes from the value of
the variable edebug-initial-mode. By default, this specifies step mode. Note that you
may reenter the same Edebug level several times if, for example, an instrumented function
is called several times from one command.

While executing or tracing, you can interrupt the execution by typing any Edebug com-
mand. Edebug stops the program at the next stop point and then executes the command
that you typed. For example, typing t during execution switches to trace mode at the next
stop point. You can use S to stop execution without doing anything else.

If your function happens to read input, a character you hit intending to interrupt execu-
tion may be read by the function instead. You can avoid such unintended results by paying
attention to when your program wants input.

Keyboard macros containing Edebug commands do not work; when you exit from Ede-
bug, to resume the program, whether you are defining or executing a keyboard macro is
forgotten. Also, defining or executing a keyboard macro outside of Edebug does not affect
the command loop inside Edebug. This is usually an advantage. But see edebug-continue-
kbd-macro.

16.4.4 Jumping

Commands described here let you jump to a specified location. All, except i, use tempo-
rary breakpoints to establish the stop point and then switch to go mode. Any other break-
point reached before the intended stop point will also stop execution. See Section 16.4.6
[Breakpoints], page 237 for the details on breakpoints.

f Run the program forward over one expression (edebug-forward-sexp). More
precisely, set a temporary breakpoint at the position that C-M-f would reach,
then execute in go mode so that the program will stop at breakpoints.
With a prefix argument n, the temporary breakpoint is placed n sexps beyond
point. If the containing list ends before n more elements, then the place to stop
is after the containing expression.
Be careful that the position C-M-f finds is a place that the program will really
get to; this may not be true in a cond, for example.
This command does forward-sexp starting at point rather than the stop point.
If you want to execute one expression from the current stop point, type w first,
to move point there.

236 XEmacs Lisp Reference Manual

o Continue “out of” an expression (edebug-step-out). It places a temporary
breakpoint at the end of the sexp containing point.

If the containing sexp is a function definition itself, it continues until just before
the last sexp in the definition. If that is where you are now, it returns from
the function and then stops. In other words, this command does not exit the
currently executing function unless you are positioned after the last sexp.

I Step into the function or macro after point after first ensuring that it is in-
strumented. It does this by calling edebug-on-entry and then switching to go
mode.

Although the automatic instrumentation is convenient, it is not later automat-
ically uninstrumented.

h Proceed to the stop point near where point is using a temporary breakpoint
(edebug-goto-here).

All the commands in this section may fail to work as expected in case of nonlocal
exit, because a nonlocal exit can bypass the temporary breakpoint where you expected the
program to stop.

16.4.5 Miscellaneous

Some miscellaneous commands are described here.

? Display the help message for Edebug (edebug-help).

C-] Abort one level back to the previous command level (abort-recursive-edit).

q Return to the top level editor command loop (top-level). This exits all re-
cursive editing levels, including all levels of Edebug activity. However, instru-
mented code protected with unwind-protect or condition-case forms may
resume debugging.

Q Like q but don’t stop even for protected code (top-level-nonstop).

r Redisplay the most recently known expression result in the echo area (edebug-
previous-result).

d Display a backtrace, excluding Edebug’s own functions for clarity (edebug-
backtrace).

You cannot use debugger commands in the backtrace buffer in Edebug as you
would in the standard debugger.

The backtrace buffer is killed automatically when you continue execution.

From the Edebug recursive edit, you may invoke commands that activate Edebug again
recursively. Any time Edebug is active, you can quit to the top level with q or abort one
recursive edit level with C-]. You can display a backtrace of all the pending evaluations
with d.

Chapter 16: Debugging Lisp Programs 237

16.4.6 Breakpoints

There are three more ways to stop execution once it has started: breakpoints, the global
break condition, and embedded breakpoints.

While using Edebug, you can specify breakpoints in the program you are testing: points
where execution should stop. You can set a breakpoint at any stop point, as defined in
Section 16.4.1 [Using Edebug], page 232. For setting and unsetting breakpoints, the stop
point that is affected is the first one at or after point in the source code buffer. Here are
the Edebug commands for breakpoints:

b Set a breakpoint at the stop point at or after point (edebug-set-breakpoint).
If you use a prefix argument, the breakpoint is temporary (it turns off the first
time it stops the program).

u Unset the breakpoint (if any) at the stop point at or after the current point
(edebug-unset-breakpoint).

x condition 〈RET〉
Set a conditional breakpoint which stops the program only if condition evaluates
to a non-nil value (edebug-set-conditional-breakpoint). If you use a prefix
argument, the breakpoint is temporary (it turns off the first time it stops the
program).

B Move point to the next breakpoint in the definition (edebug-next-
breakpoint).

While in Edebug, you can set a breakpoint with b and unset one with u. First you must
move point to a position at or before the desired Edebug stop point, then hit the key to
change the breakpoint. Unsetting a breakpoint that has not been set does nothing.

Reevaluating or reinstrumenting a definition clears all its breakpoints.
A conditional breakpoint tests a condition each time the program gets there. To set

a conditional breakpoint, use x, and specify the condition expression in the minibuffer.
Setting a conditional breakpoint at a stop point that already has a conditional breakpoint
puts the current condition expression in the minibuffer so you can edit it.

You can make both conditional and unconditional breakpoints temporary by using a
prefix arg to the command to set the breakpoint. After breaking at a temporary breakpoint,
it is automatically cleared.

Edebug always stops or pauses at a breakpoint except when the Edebug mode is Go-
nonstop. In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use B, which moves point to the next break-
point in the definition following point, or to the first breakpoint if there are no following
breakpoints. This command does not continue execution—it just moves point in the buffer.

16.4.6.1 Global Break Condition

In contrast to breaking when execution reaches specified locations, you can also cause
a break when a certain event occurs. The global break condition is a condition that is

238 XEmacs Lisp Reference Manual

repeatedly evaluated at every stop point. If it evaluates to a non-nil value, then execution
is stopped or paused depending on the execution mode, just like a breakpoint. Any errors
that might occur as a result of evaluating the condition are ignored, as if the result were
nil.

You can set or edit the condition expression, stored in edebug-global-break-
condition, using X (edebug-set-global-break-condition).

Using the global break condition is perhaps the fastest way to find where in your code
some event occurs, but since it is rather expensive you should reset the condition to nil
when not in use.

16.4.6.2 Embedded Breakpoints

Since all breakpoints in a definition are cleared each time you reinstrument it, you might
rather create an embedded breakpoint which is simply a call to the function edebug. You
can, of course, make such a call conditional. For example, in the fac function, insert the
first line as shown below to stop when the argument reaches zero:

(defun fac (n)
(if (= n 0) (edebug))
(if (< 0 n)

(* n (fac (1- n)))
1))

When the fac definition is instrumented and the function is called, Edebug will stop
before the call to edebug. Depending on the execution mode, Edebug will stop or pause.

However, if no instrumented code is being executed, calling edebug will instead invoke
debug. Calling debug will always invoke the standard backtrace debugger.

16.4.7 Trapping Errors

An error may be signaled by subroutines or XEmacs Lisp code. If a signal is not handled
by a condition-case, this indicates an unrecognized situation has occurred. If Edebug is
not active when an unhandled error is signaled, debug is run normally (if debug-on-error
is non-nil). But while Edebug is active, debug-on-error and debug-on-quit are bound to
edebug-on-error and edebug-on-quit, which are both t by default. Actually, if debug-
on-error already has a non-nil value, that value is still used.

It is best to change the values of edebug-on-error or edebug-on-quit when Edebug is
not active since their values won’t be used until the next time Edebug is invoked at a deeper
command level. If you only change debug-on-error or debug-on-quit while Edebug is
active, these changes will be forgotten when Edebug becomes inactive. Furthermore, during
Edebug’s recursive edit, these variables are bound to the values they had outside of Edebug.

Edebug shows you the last stop point that it knew about before the error was signaled.
This may be the location of a call to a function which was not instrumented, within which
the error actually occurred. For an unbound variable error, the last known stop point might
be quite distant from the offending variable. If the cause of the error is not obvious at first,

Chapter 16: Debugging Lisp Programs 239

note that you can also get a full backtrace inside of Edebug (see Section 16.4.5 [Edebug
Misc], page 236).

Edebug can also trap signals even if they are handled. If debug-on-error is a list of
signal names, Edebug will stop when any of these errors are signaled. Edebug shows you
the last known stop point just as for unhandled errors. After you continue execution, the
error is signaled again (but without being caught by Edebug). Edebug can only trap errors
that are handled if they are signaled in Lisp code (not subroutines) since it does so by
temporarily replacing the signal function.

16.4.8 Edebug Views

The following Edebug commands let you view aspects of the buffer and window status
that obtained before entry to Edebug.

v View the outside window configuration (edebug-view-outside).

p Temporarily display the outside current buffer with point at its outside position
(edebug-bounce-point). If prefix arg is supplied, sit for that many seconds
instead.

w Move point back to the current stop point (edebug-where) in the source code
buffer. Also, if you use this command in another window displaying the same
buffer, this window will be used instead to display the buffer in the future.

W Toggle the edebug-save-windows variable which indicates whether the outside
window configuration is saved and restored (edebug-toggle-save-windows).
Also, each time it is toggled on, make the outside window configuration the
same as the current window configuration.
With a prefix argument, edebug-toggle-save-windows only toggles saving and
restoring of the selected window. To specify a window that is not displaying
the source code buffer, you must use C-xXW from the global keymap.

You can view the outside window configuration with v or just bounce to the current
point in the current buffer with p, even if it is not normally displayed. After moving point,
you may wish to pop back to the stop point with w from a source code buffer.

By using W twice, Edebug again saves and restores the outside window configuration, but
to the current configuration. This is a convenient way to, for example, add another buffer
to be displayed whenever Edebug is active. However, the automatic redisplay of ‘*edebug*’
and ‘*edebug-trace*’ may conflict with the buffers you wish to see unless you have enough
windows open.

16.4.9 Evaluation

While within Edebug, you can evaluate expressions “as if” Edebug were not running.
Edebug tries to be invisible to the expression’s evaluation and printing. Evaluation of
expressions that cause side effects will work as expected except for things that Edebug
explicitly saves and restores. See Section 16.4.15 [The Outside Context], page 243 for details

240 XEmacs Lisp Reference Manual

on this process. Also see Section 16.4.11 [Reading in Edebug], page 241 and Section 16.4.12
[Printing in Edebug], page 241 for topics related to evaluation.

e exp 〈RET〉
Evaluate expression exp in the context outside of Edebug (edebug-eval-
expression). In other words, Edebug tries to avoid altering the effect of
exp.

M-〈ESC〉 exp 〈RET〉
Evaluate expression exp in the context of Edebug itself.

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

Edebug supports evaluation of expressions containing references to lexically bound sym-
bols created by the following constructs in ‘cl.el’ (version 2.03 or later): lexical-let,
macrolet, and symbol-macrolet.

16.4.10 Evaluation List Buffer

You can use the evaluation list buffer, called ‘*edebug*’, to evaluate expressions interac-
tively. You can also set up the evaluation list of expressions to be evaluated automatically
each time Edebug updates the display.

E Switch to the evaluation list buffer ‘*edebug*’ (edebug-visit-eval-list).

In the ‘*edebug*’ buffer you can use the commands of Lisp Interaction as well as these
special commands:

LFD Evaluate the expression before point, in the outside context, and insert the
value in the buffer (edebug-eval-print-last-sexp).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

C-c C-u Build a new evaluation list from the first expression of each group, reevaluate
and redisplay (edebug-update-eval-list). Groups are separated by comment
lines.

C-c C-d Delete the evaluation list group that point is in (edebug-delete-eval-item).

C-c C-w Switch back to the source code buffer at the current stop point (edebug-where).

You can evaluate expressions in the evaluation list window with LFD or C-x C-e, just as
you would in ‘*scratch*’; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue
execution unless you add them to the evaluation list with C-c C-u. This command builds
a new list from the first expression of each evaluation list group. Groups are separated by
comment lines. Be careful not to add expressions that execute instrumented code otherwise
an infinite loop will result.

When the evaluation list is redisplayed, each expression is displayed followed by the
result of evaluating it, and a comment line. If an error occurs during an evaluation, the

Chapter 16: Debugging Lisp Programs 241

error message is displayed in a string as if it were the result. Therefore expressions that,
for example, use variables not currently valid do not interrupt your debugging.

Here is an example of what the evaluation list window looks like after several expressions
have been added to it:

(current-buffer)
#<buffer *scratch*>
;---
(selected-window)
#<window 16 on *scratch*>
;---
(point)
196
;---
bad-var
"Symbol’s value as variable is void: bad-var"
;---
(recursion-depth)
0
;---
this-command
eval-last-sexp
;---

To delete a group, move point into it and type C-c C-d, or simply delete the text for the
group and update the evaluation list with C-c C-u. When you add a new group, be sure it
is separated from its neighbors by a comment line.

After selecting ‘*edebug*’, you can return to the source code buffer with C-c C-w. The
‘*edebug*’ buffer is killed when you continue execution, and recreated next time it is needed.

16.4.11 Reading in Edebug

To instrument a form, Edebug first reads the whole form. Edebug replaces the standard
Lisp Reader with its own reader that remembers the positions of expressions. This reader is
used by the Edebug replacements for eval-region, eval-defun, eval-buffer, and eval-
current-buffer.

Another package, ‘cl-read.el’, replaces the standard reader with one that understands
Common Lisp reader macros. If you use that package, Edebug will automatically load
‘edebug-cl-read.el’ to provide corresponding reader macros that remember positions of
expressions. If you define new reader macros, you will have to define similar reader macros
for Edebug.

16.4.12 Printing in Edebug

If the result of an expression in your program contains a circular reference, you may get
an error when Edebug attempts to print it. You can set print-length to a non-zero value
to limit the print length of lists (the number of cdrs), and in Emacs 19, set print-level to

242 XEmacs Lisp Reference Manual

a non-zero value to limit the print depth of lists. But you can print such circular structures
and structures that share elements more informatively by using the ‘cust-print’ package.

To load ‘cust-print’ and activate custom printing only for Edebug, simply use the com-
mand M-x edebug-install-custom-print. To restore the standard print functions, use
M-x edebug-uninstall-custom-print. You can also activate custom printing for printing
in any Lisp code; see the package for details.

Here is an example of code that creates a circular structure:
(progn

(edebug-install-custom-print)
(setq a ’(x y))
(setcar a a))

Edebug will print the result of the setcar as ‘Result: #1=(#1# y)’. The ‘#1=’ notation
names the structure that follows it, and the ‘#1#’ notation references the previously named
structure. This notation is used for any shared elements of lists or vectors.

Independent of whether ‘cust-print’ is active, while printing results Edebug binds
print-length, print-level, and print-circle to edebug-print-length (50), edebug-
print-level (50), and edebug-print-circle (t) respectively, if these values are non-
nil. Also, print-readably is bound to nil since some objects simply cannot be printed
readably.

16.4.13 Tracing

In addition to automatic stepping through source code, which is also called tracing (see
Section 16.4.3 [Edebug Execution Modes], page 234), Edebug can produce a traditional
trace listing of execution in a separate buffer, ‘*edebug-trace*’.

If the variable edebug-trace is non-nil, each function entry and exit adds lines to the
trace buffer. On function entry, Edebug prints ‘::::{’ followed by the function name and
argument values. On function exit, Edebug prints ‘::::}’ followed by the function name
and result of the function. The number of ‘:’s is computed from the recursion depth. The
balanced braces in the trace buffer can be used to find the matching beginning or end of
function calls. These displays may be customized by replacing the functions edebug-print-
trace-before and edebug-print-trace-after, which take an arbitrary message string to
print.

The macro edebug-tracing provides tracing similar to function enter and exit tracing,
but for arbitrary expressions. This macro should be explicitly inserted by you around
expressions you wish to trace the execution of. The first argument is a message string
(evaluated), and the rest are expressions to evaluate. The result of the last expression is
returned.

Finally, you can insert arbitrary strings into the trace buffer with explicit calls to edebug-
trace. The arguments of this function are the same as for message, but a newline is always
inserted after each string printed in this way.

edebug-tracing and edebug-trace insert lines in the trace buffer even if Edebug is not
active. Every time the trace buffer is added to, the window is scrolled to show the last lines
inserted. (There may be some display problems if you use tracing along with the evaluation
list.)

Chapter 16: Debugging Lisp Programs 243

16.4.14 Coverage Testing

Edebug provides a rudimentary coverage tester and display of execution frequency. Fre-
quency counts are always accumulated, both before and after evaluation of each instru-
mented expression, even if the execution mode is Go-nonstop. Coverage testing is only
done if the option edebug-test-coverage is non-nil because this is relatively expensive.
Both data sets are displayed by M-x edebug-display-freq-count.

Commandedebug-display-freq-count
Display the frequency count data for each line of the current definition. The frequency
counts are inserted as comment lines after each line, and you can undo all insertions
with one undo command. The counts are inserted starting under the (before an
expression or the) after an expression, or on the last char of a symbol. The counts
are only displayed when they differ from previous counts on the same line.

If coverage is being tested, whenever all known results of an expression are eq, the
char = will be appended after the count for that expression. Note that this is always
the case for an expression only evaluated once.

To clear the frequency count and coverage data for a definition, reinstrument it.

For example, after evaluating (fac 5) with an embedded breakpoint, and setting
edebug-test-coverage to t, when the breakpoint is reached, the frequency data is looks
like this:

(defun fac (n)
(if (= n 0) (edebug))

;#6 1 0 =5
(if (< 0 n)

;#5 =
(* n (fac (1- n)))

;# 5 0
1))

;# 0

The comment lines show that fac has been called 6 times. The first if statement has
returned 5 times with the same result each time, and the same is true for the condition on
the second if. The recursive call of fac has not returned at all.

16.4.15 The Outside Context

Edebug tries to be transparent to the program you are debugging. In addition, most
evaluations you do within Edebug (see Section 16.4.9 [Edebug Eval], page 239) occur in
the same outside context which is temporarily restored for the evaluation. But Edebug is
not completely successful and this section explains precisely how it fails. Edebug operation
unavoidably alters some data in XEmacs, and this can interfere with debugging certain
programs. Also notice that Edebug’s protection against change of outside data means that
any side effects intended by the user in the course of debugging will be defeated.

244 XEmacs Lisp Reference Manual

16.4.15.1 Checking Whether to Stop

Whenever Edebug is entered just to think about whether to take some action, it needs
to save and restore certain data.
• max-lisp-eval-depth and max-specpdl-size are both incremented one time to re-

duce Edebug’s impact on the stack. You could, however, still run out of stack space
when using Edebug.

• The state of keyboard macro execution is saved and restored. While Edebug is active,
executing-macro is bound to edebug-continue-kbd-macro.

16.4.15.2 Edebug Display Update

When Edebug needs to display something (e.g., in trace mode), it saves the current
window configuration from “outside” Edebug. When you exit Edebug (by continuing the
program), it restores the previous window configuration.

XEmacs redisplays only when it pauses. Usually, when you continue execution, the
program comes back into Edebug at a breakpoint or after stepping without pausing or
reading input in between. In such cases, XEmacs never gets a chance to redisplay the
“outside” configuration. What you see is the same window configuration as the last time
Edebug was active, with no interruption.

Entry to Edebug for displaying something also saves and restores the following data, but
some of these are deliberately not restored if an error or quit signal occurs.
• Which buffer is current, and where point and mark are in the current buffer are saved

and restored.
• The Edebug Display Update, is saved and restored if edebug-save-windows is non-nil.

It is not restored on error or quit, but the outside selected window is reselected even on
error or quit in case a save-excursion is active. If the value of edebug-save-windows
is a list, only the listed windows are saved and restored.
The window start and horizontal scrolling of the source code buffer are not restored,
however, so that the display remains coherent.

• The value of point in each displayed buffer is saved and restored if edebug-save-
displayed-buffer-points is non-nil.

• The variables overlay-arrow-position and overlay-arrow-string are saved and
restored. So you can safely invoke Edebug from the recursive edit elsewhere in the
same buffer.

• cursor-in-echo-area is locally bound to nil so that the cursor shows up in the
window.

16.4.15.3 Edebug Recursive Edit

When Edebug is entered and actually reads commands from the user, it saves (and later
restores) these additional data:

Chapter 16: Debugging Lisp Programs 245

• The current match data, for whichever buffer was current.
• last-command, this-command, last-command-char, last-input-char, last-input-

event, last-command-event, last-event-frame, last-nonmenu-event, and track-
mouse . Commands used within Edebug do not affect these variables outside of Edebug.
The key sequence returned by this-command-keys is changed by executing commands
within Edebug and there is no way to reset the key sequence from Lisp.
For Emacs 18, Edebug cannot save and restore the value of unread-command-char.
Entering Edebug while this variable has a nontrivial value can interfere with execution
of the program you are debugging.

• Complex commands executed while in Edebug are added to the variable command-
history. In rare cases this can alter execution.

• Within Edebug, the recursion depth appears one deeper than the recursion depth
outside Edebug. This is not true of the automatically updated evaluation list window.

• standard-output and standard-input are bound to nil by the recursive-edit, but
Edebug temporarily restores them during evaluations.

• The state of keyboard macro definition is saved and restored. While Edebug is active,
defining-kbd-macro is bound to edebug-continue-kbd-macro.

16.4.16 Instrumenting Macro Calls

When Edebug instruments an expression that calls a Lisp macro, it needs additional
advice to do the job properly. This is because there is no way to tell which subexpressions
of the macro call may be evaluated. (Evaluation may occur explicitly in the macro body, or
when the resulting expansion is evaluated, or any time later.) You must explain the format
of macro call arguments by using def-edebug-spec to define an Edebug specification for
each macro.

Macrodef-edebug-spec macro specification
Specify which expressions of a call to macro macro are forms to be evaluated. For
simple macros, the specification often looks very similar to the formal argument list of
the macro definition, but specifications are much more general than macro arguments.
The macro argument may actually be any symbol, not just a macro name.
Unless you are using Emacs 19 or XEmacs, this macro is only defined in Edebug, so
you may want to use the following which is equivalent: (put ’macro ’edebug-form-
spec ’specification)

Here is a simple example that defines the specification for the for macro described in
the XEmacs Lisp Reference Manual, followed by an alternative, equivalent specification.

(def-edebug-spec for
(symbolp "from" form "to" form "do" &rest form))

(def-edebug-spec for
(symbolp [’from form] [’to form] [’do body]))

Here is a table of the possibilities for specification and how each directs processing of
arguments.

246 XEmacs Lisp Reference Manual

•t All arguments are instrumented for evaluation.

•0 None of the arguments is instrumented.

•a symbol The symbol must have an Edebug specification which is used instead. This
indirection is repeated until another kind of specification is found. This allows
you to inherit the specification for another macro.

•a list The elements of the list describe the types of the arguments of a calling form.
The possible elements of a specification list are described in the following sec-
tions.

16.4.16.1 Specification List

A specification list is required for an Edebug specification if some arguments of a macro
call are evaluated while others are not. Some elements in a specification list match one or
more arguments, but others modify the processing of all following elements. The latter,
called keyword specifications, are symbols beginning with ‘&’ (e.g. &optional).

A specification list may contain sublists which match arguments that are themselves
lists, or it may contain vectors used for grouping. Sublists and groups thus subdivide
the specification list into a hierarchy of levels. Keyword specifications only apply to the
remainder of the sublist or group they are contained in and there is an implicit grouping
around a keyword specification and all following elements in the sublist or group.

If a specification list fails at some level, then backtracking may be invoked to find some
alternative at a higher level, or if no alternatives remain, an error will be signaled. See
Section 16.4.16.2 [Backtracking], page 249 for more details.

Edebug specifications provide at least the power of regular expression matching. Some
context-free constructs are also supported: the matching of sublists with balanced paren-
theses, recursive processing of forms, and recursion via indirect specifications.

Each element of a specification list may be one of the following, with the corresponding
type of argument:

sexp A single unevaluated expression.

form A single evaluated expression, which is instrumented.

place A place as in the Common Lisp setf place argument. It will be instrumented
just like a form, but the macro is expected to strip the instrumentation. Two
functions, edebug-unwrap and edebug-unwrap*, are provided to strip the in-
strumentation one level or recursively at all levels.

body Short for &rest form. See &rest below.

function-form
A function form: either a quoted function symbol, a quoted lambda expression,
or a form (that should evaluate to a function symbol or lambda expression).
This is useful when function arguments might be quoted with quote rather than
function since the body of a lambda expression will be instrumented either
way.

Chapter 16: Debugging Lisp Programs 247

lambda-expr
An unquoted anonymous lambda expression.

&optional
All following elements in the specification list are optional; as soon as one does
not match, Edebug stops matching at this level.
To make just a few elements optional followed by non-optional elements, use
[&optional specs...]. To specify that several elements should all succeed
together, use &optional [specs...]. See the defun example below.

&rest All following elements in the specification list are repeated zero or more times.
All the elements need not match in the last repetition, however.
To repeat only a few elements, use [&rest specs...]. To specify all elements
must match on every repetition, use &rest [specs...].

&or Each of the following elements in the specification list is an alternative, pro-
cessed left to right until one matches. One of the alternatives must match
otherwise the &or specification fails.
Each list element following &or is a single alternative even if it is a keyword
specification. (This breaks the implicit grouping rule.) To group two or more
list elements as a single alternative, enclose them in [...].

¬ Each of the following elements is matched as alternatives as if by using &or, but
if any of them match, the specification fails. If none of them match, nothing is
matched, but the ¬ specification succeeds.

&define Indicates that the specification is for a defining form. The defining form itself
is not instrumented (i.e. Edebug does not stop before and after the defining
form), but forms inside it typically will be instrumented. The &define keyword
should be the first element in a list specification.
Additional specifications that may only appear after &define are described
here. See the defun example below.

name The argument, a symbol, is the name of the defining form. But
a defining form need not be named at all, in which case a unique
name will be created for it.
The name specification may be used more than once in the specifica-
tion and each subsequent use will append the corresponding symbol
argument to the previous name with ‘@’ between them. This is use-
ful for generating unique but meaningful names for definitions such
as defadvice and defmethod.

:name The element following :name should be a symbol; it is used as an
additional name component for the definition. This is useful to add
a unique, static component to the name of the definition. It may
be used more than once. No argument is matched.

arg The argument, a symbol, is the name of an argument of the defining
form. However, lambda list keywords (symbols starting with ‘&’)
are not allowed. See lambda-list and the example below.

248 XEmacs Lisp Reference Manual

lambda-list
This matches the whole argument list of an XEmacs Lisp lambda
expression, which is a list of symbols and the keywords &optional
and &rest

def-body The argument is the body of code in a definition. This is like body,
described above, but a definition body must be instrumented with a
different Edebug call that looks up information associated with the
definition. Use def-body for the highest level list of forms within
the definition.

def-form The argument is a single, highest-level form in a definition. This
is like def-body, except use this to match a single form rather
than a list of forms. As a special case, def-form also means that
tracing information is not output when the form is executed. See
the interactive example below.

nil This is successful when there are no more arguments to match at the current ar-
gument list level; otherwise it fails. See sublist specifications and the backquote
example below.

gate No argument is matched but backtracking through the gate is disabled while
matching the remainder of the specifications at this level. This is primarily
used to generate more specific syntax error messages. See Section 16.4.16.2
[Backtracking], page 249 for more details. Also see the let example below.

other-symbol
Any other symbol in a specification list may be a predicate or an indirect
specification.
If the symbol has an Edebug specification, this indirect specification should
be either a list specification that is used in place of the symbol, or a function
that is called to process the arguments. The specification may be defined with
def-edebug-spec just as for macros. See the defun example below.
Otherwise, the symbol should be a predicate. The predicate is called with the
argument and the specification fails if the predicate fails. The argument is not
instrumented.
Predicates that may be used include: symbolp, integerp, stringp, vectorp,
atom (which matches a number, string, symbol, or vector), keywordp, and
lambda-list-keywordp. The last two, defined in ‘edebug.el’, test whether
the argument is a symbol starting with ‘:’ and ‘&’ respectively.

[elements...]
Rather than matching a vector argument, a vector treats the elements as a
single group specification.

"string" The argument should be a symbol named string. This specification is equivalent
to the quoted symbol, ’symbol, where the name of symbol is the string, but
the string form is preferred.

’symbol or (quote symbol)
The argument should be the symbol symbol. But use a string specification
instead.

Chapter 16: Debugging Lisp Programs 249

(vector elements...)
The argument should be a vector whose elements must match the elements in
the specification. See the backquote example below.

(elements...)
Any other list is a sublist specification and the argument must be a list whose
elements match the specification elements.

A sublist specification may be a dotted list and the corresponding list argu-
ment may then be a dotted list. Alternatively, the last cdr of a dotted list
specification may be another sublist specification (via a grouping or an indi-
rect specification, e.g. (spec . [(more specs...)])) whose elements match
the non-dotted list arguments. This is useful in recursive specifications such as
in the backquote example below. Also see the description of a nil specification
above for terminating such recursion.

Note that a sublist specification of the form (specs . nil) means the same as
(specs), and (specs . (sublist-elements...)) means the same as (specs
sublist-elements...).

16.4.16.2 Backtracking

If a specification fails to match at some point, this does not necessarily mean a syntax
error will be signaled; instead, backtracking will take place until all alternatives have been
exhausted. Eventually every element of the argument list must be matched by some ele-
ment in the specification, and every required element in the specification must match some
argument.

Backtracking is disabled for the remainder of a sublist or group when certain conditions
occur, described below. Backtracking is reenabled when a new alternative is established by
&optional, &rest, or &or. It is also reenabled initially when processing a sublist or group
specification or an indirect specification.

You might want to disable backtracking to commit to some alternative so that Edebug
can provide a more specific syntax error message. Normally, if no alternative matches,
Edebug reports that none matched, but if one alternative is committed to, Edebug can
report how it failed to match.

First, backtracking is disabled while matching any of the form specifications (i.e. form,
body, def-form, and def-body). These specifications will match any form so any error
must be in the form itself rather than at a higher level.

Second, backtracking is disabled after successfully matching a quoted symbol or string
specification, since this usually indicates a recognized construct. If you have a set of alter-
native constructs that all begin with the same symbol, you can usually work around this
constraint by factoring the symbol out of the alternatives, e.g., ["foo" &or [first case]
[second case] ...].

Third, backtracking may be explicitly disabled by using the gate specification. This is
useful when you know that no higher alternatives may apply.

250 XEmacs Lisp Reference Manual

16.4.16.3 Debugging Backquote

Backquote (‘) is a macro that results in an expression that may or may not be evaluated.
It is often used to simplify the definition of a macro to return an expression that is evaluated,
but Edebug does not know when this is the case. However, the forms inside unquotes (,
and ,@) are evaluated and Edebug instruments them.

Nested backquotes are supported by Edebug, but there is a limit on the support of quotes
inside of backquotes. Quoted forms (with ’) are not normally evaluated, but if the quoted
form appears immediately within , and ,@ forms, Edebug treats this as a backquoted form
at the next higher level (even if there is not a next higher level - this is difficult to fix).

If the backquoted forms happen to be code intended to be evaluated, you can have
Edebug instrument them by using edebug-‘ instead of the regular ‘. Unquoted forms can
always appear inside edebug-‘ anywhere a form is normally allowed. But (, form) may be
used in two other places specially recognized by Edebug: wherever a predicate specification
would match, and at the head of a list form in place of a function name or lambda expression.
The form inside a spliced unquote, (,@ form), will be wrapped, but the unquote form itself
will not be wrapped since this would interfere with the splicing.

There is one other complication with using edebug-‘. If the edebug-‘ call is in a macro
and the macro may be called from code that is also instrumented, and if unquoted forms
contain any macro arguments bound to instrumented forms, then you should modify the
specification for the macro as follows: the specifications for those arguments must use def-
form instead of form. (This is to reestablish the Edebugging context for those external
forms.)

For example, the for macro (see section “Problems with Macros” in XEmacs Lisp Ref-
erence Manual) is shown here but with edebug-‘ substituted for regular ‘.

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

(defmacro for (var from init to final do &rest body)
(let ((tempvar (make-symbol "max")))

(edebug-‘ (let (((, var) (, init))
((, tempvar) (, final)))

(while (<= (, var) (, tempvar))
(, body)
(inc (, var)))))))

Here is the corresponding modified Edebug specification and some code that calls the
macro:

(def-edebug-spec for
(symbolp "from" def-form "to" def-form "do" &rest def-form))

(let ((n 5))
(for i from n to (* n (+ n 1)) do

(message "%s" i)))

After instrumenting the for macro and the macro call, Edebug first steps to the be-
ginning of the macro call, then into the macro body, then through each of the unquoted

Chapter 16: Debugging Lisp Programs 251

expressions in the backquote showing the expressions that will be embedded in the back-
quote form. Then when the macro expansion is evaluated, Edebug will step through the
let form and each time it gets to an unquoted form, it will jump back to an argument of the
macro call to step through that expression. Finally stepping will continue after the macro
call. Even more convoluted execution paths may result when using anonymous functions.

When the result of an expression is an instrumented expression, it is difficult to see the
expression inside the instrumentation. So you may want to set the option edebug-unwrap-
results to a non-nil value while debugging such expressions, but it would slow Edebug
down to always do this.

16.4.16.4 Specification Examples

Here we provide several examples of Edebug specifications to show many of its capabil-
ities.

A let special form has a sequence of bindings and a body. Each of the bindings is either
a symbol or a sublist with a symbol and optional value. In the specification below, notice
the gate inside of the sublist to prevent backtracking.

(def-edebug-spec let
((&rest

&or symbolp (gate symbolp &optional form))
body))

Edebug uses the following specifications for defun and defmacro and the associated
argument list and interactive specifications. It is necessary to handle the expression
argument of an interactive form specially since it is actually evaluated outside of the function
body.

(def-edebug-spec defmacro defun) ; Indirect ref to defun spec
(def-edebug-spec defun

(&define name lambda-list
[&optional stringp] ; Match the doc string, if present.
[&optional ("interactive" interactive)]
def-body))

(def-edebug-spec lambda-list
(([&rest arg]
[&optional ["&optional" arg &rest arg]]
&optional ["&rest" arg]
)))

(def-edebug-spec interactive
(&optional &or stringp def-form)) ; Notice: def-form

The specification for backquote below illustrates how to match dotted lists and use nil
to terminate recursion. It also illustrates how components of a vector may be matched.
(The actual specification provided by Edebug does not support dotted lists because doing
so causes very deep recursion that could fail.)

(def-edebug-spec ‘ (backquote-form)) ;; alias just for clarity

252 XEmacs Lisp Reference Manual

(def-edebug-spec backquote-form
(&or ([&or "," ",@"] &or ("quote" backquote-form) form)

(backquote-form . [&or nil backquote-form])
(vector &rest backquote-form)
sexp))

16.4.17 Edebug Options

These options affect the behavior of Edebug:

User Optionedebug-setup-hook
Functions to call before Edebug is used. Each time it is set to a new value, Edebug
will call those functions once and then edebug-setup-hook is reset to nil. You could
use this to load up Edebug specifications associated with a package you are using but
only when you also use Edebug. See Section 16.4.2 [Instrumenting], page 233.

User Optionedebug-all-defs
If non-nil, normal evaluation of any defining forms (e.g. defun and defmacro) will
instrument them for Edebug. This applies to eval-defun, eval-region, and eval-
current-buffer.
Use the command M-x edebug-all-defs to toggle the value of this variable. You
may want to make this variable local to each buffer by calling (make-local-variable
’edebug-all-defs) in your emacs-lisp-mode-hook. See Section 16.4.2 [Instrument-
ing], page 233.

User Optionedebug-all-forms
If non-nil, normal evaluation of any forms by eval-defun, eval-region, and eval-
current-buffer will instrument them for Edebug.
Use the command M-x edebug-all-forms to toggle the value of this option. See
Section 16.4.2 [Instrumenting], page 233.

User Optionedebug-save-windows
If non-nil, save and restore window configuration on Edebug calls. It takes some time
to do this, so if your program does not care what happens to data about windows,
you may want to set this variable to nil.
If the value is a list, only the listed windows are saved and restored.
M-x edebug-toggle-save-windows may be used to change this variable. This com-
mand is bound to W in source code buffers. See Section 16.4.15.2 [Edebug Display
Update], page 244.

User Optionedebug-save-displayed-buffer-points
If non-nil, save and restore point in all displayed buffers. This is necessary if you are
debugging code that changes the point of a buffer which is displayed in a non-selected

Chapter 16: Debugging Lisp Programs 253

window. If Edebug or the user then selects the window, the buffer’s point will be
changed to the window’s point.
This is an expensive operation since it visits each window and therefore each displayed
buffer twice for each Edebug activation, so it is best to avoid it if you can. See
Section 16.4.15.2 [Edebug Display Update], page 244.

User Optionedebug-initial-mode
If this variable is non-nil, it specifies the initial execution mode for Edebug when it is
first activated. Possible values are step, next, go, Go-nonstop, trace, Trace-fast,
continue, and Continue-fast.
The default value is step. See Section 16.4.3 [Edebug Execution Modes], page 234.

User Optionedebug-trace
Non-nil means display a trace of function entry and exit. Tracing output is displayed
in a buffer named ‘*edebug-trace*’, one function entry or exit per line, indented by
the recursion level.
The default value is nil.
Also see edebug-tracing. See Section 16.4.13 [Tracing], page 242.

User Optionedebug-test-coverage
If non-nil, Edebug tests coverage of all expressions debugged. This is done by com-
paring the result of each expression with the previous result. Coverage is considered
OK if two different results are found. So to sufficiently test the coverage of your code,
try to execute it under conditions that evaluate all expressions more than once, and
produce different results for each expression.
Use M-x edebug-display-freq-count to display the frequency count and coverage
information for a definition. See Section 16.4.14 [Coverage Testing], page 243.

User Optionedebug-continue-kbd-macro
If non-nil, continue defining or executing any keyboard macro that is executing
outside of Edebug. Use this with caution since it is not debugged. See Section 16.4.3
[Edebug Execution Modes], page 234.

User Optionedebug-print-length
If non-nil, bind print-length to this while printing results in Edebug. The default
value is 50. See Section 16.4.12 [Printing in Edebug], page 241.

User Optionedebug-print-level
If non-nil, bind print-level to this while printing results in Edebug. The default
value is 50.

User Optionedebug-print-circle
If non-nil, bind print-circle to this while printing results in Edebug. The default
value is nil.

254 XEmacs Lisp Reference Manual

User Optionedebug-on-error
debug-on-error is bound to this while Edebug is active. See Section 16.4.7 [Trapping
Errors], page 238.

User Optionedebug-on-quit
debug-on-quit is bound to this while Edebug is active. See Section 16.4.7 [Trapping
Errors], page 238.

User Optionedebug-unwrap-results
Non-nil if Edebug should unwrap results of expressions. This is useful when de-
bugging macros where the results of expressions are instrumented expressions. But
don’t do this when results might be circular or an infinite loop will result. See Sec-
tion 16.4.16.3 [Debugging Backquote], page 250.

User Optionedebug-global-break-condition
If non-nil, an expression to test for at every stop point. If the result is non-nil, then
break. Errors are ignored. See Section 16.4.6.1 [Global Break Condition], page 237.

Chapter 17: Reading and Printing Lisp Objects 255

17 Reading and Printing Lisp Objects

Printing and reading are the operations of converting Lisp objects to textual form and
vice versa. They use the printed representations and read syntax described in Chapter 2
[Lisp Data Types], page 17.

This chapter describes the Lisp functions for reading and printing. It also describes
streams, which specify where to get the text (if reading) or where to put it (if printing).

17.1 Introduction to Reading and Printing

Reading a Lisp object means parsing a Lisp expression in textual form and producing a
corresponding Lisp object. This is how Lisp programs get into Lisp from files of Lisp code.
We call the text the read syntax of the object. For example, the text ‘(a . 5)’ is the read
syntax for a cons cell whose car is a and whose cdr is the number 5.

Printing a Lisp object means producing text that represents that object—converting the
object to its printed representation. Printing the cons cell described above produces the
text ‘(a . 5)’.

Reading and printing are more or less inverse operations: printing the object that results
from reading a given piece of text often produces the same text, and reading the text that
results from printing an object usually produces a similar-looking object. For example,
printing the symbol foo produces the text ‘foo’, and reading that text returns the symbol
foo. Printing a list whose elements are a and b produces the text ‘(a b)’, and reading that
text produces a list (but not the same list) with elements a and b.

However, these two operations are not precisely inverses. There are three kinds of ex-
ceptions:
• Printing can produce text that cannot be read. For example, buffers, windows, frames,

subprocesses and markers print into text that starts with ‘#’; if you try to read this
text, you get an error. There is no way to read those data types.

• One object can have multiple textual representations. For example, ‘1’ and ‘01’ rep-
resent the same integer, and ‘(a b)’ and ‘(a . (b))’ represent the same list. Reading
will accept any of the alternatives, but printing must choose one of them.

• Comments can appear at certain points in the middle of an object’s read sequence
without affecting the result of reading it.

17.2 Input Streams

Most of the Lisp functions for reading text take an input stream as an argument. The
input stream specifies where or how to get the characters of the text to be read. Here are
the possible types of input stream:

buffer The input characters are read from buffer, starting with the character directly
after point. Point advances as characters are read.

256 XEmacs Lisp Reference Manual

marker The input characters are read from the buffer that marker is in, starting with the
character directly after the marker. The marker position advances as characters
are read. The value of point in the buffer has no effect when the stream is a
marker.

string The input characters are taken from string, starting at the first character in the
string and using as many characters as required.

function The input characters are generated by function, one character per call. Nor-
mally function is called with no arguments, and should return a character.

Occasionally function is called with one argument (always a character). When
that happens, function should save the argument and arrange to return it on
the next call. This is called unreading the character; it happens when the Lisp
reader reads one character too many and wants to “put it back where it came
from”.

t t used as a stream means that the input is read from the minibuffer. In fact,
the minibuffer is invoked once and the text given by the user is made into a
string that is then used as the input stream.

nil nil supplied as an input stream means to use the value of standard-input
instead; that value is the default input stream, and must be a non-nil input
stream.

symbol A symbol as input stream is equivalent to the symbol’s function definition (if
any).

Here is an example of reading from a stream that is a buffer, showing where point is
located before and after:

---------- Buffer: foo ----------
This? is the contents of foo.
---------- Buffer: foo ----------

(read (get-buffer "foo"))
⇒ is

(read (get-buffer "foo"))
⇒ the

---------- Buffer: foo ----------
This is the? contents of foo.
---------- Buffer: foo ----------

Note that the first read skips a space. Reading skips any amount of whitespace preceding
the significant text.

In Emacs 18, reading a symbol discarded the delimiter terminating the symbol. Thus,
point would end up at the beginning of ‘contents’ rather than after ‘the’. The Emacs
19 behavior is superior because it correctly handles input such as ‘bar(foo)’, where the
open-parenthesis that ends one object is needed as the beginning of another object.

Here is an example of reading from a stream that is a marker, initially positioned at the
beginning of the buffer shown. The value read is the symbol This.

Chapter 17: Reading and Printing Lisp Objects 257

---------- Buffer: foo ----------
This is the contents of foo.
---------- Buffer: foo ----------

(setq m (set-marker (make-marker) 1 (get-buffer "foo")))
⇒ #<marker at 1 in foo>

(read m)
⇒ This

m
⇒ #<marker at 5 in foo> ;; Before the first space.

Here we read from the contents of a string:

(read "(When in) the course")
⇒ (When in)

The following example reads from the minibuffer. The prompt is: ‘Lisp expression: ’.
(That is always the prompt used when you read from the stream t.) The user’s input is
shown following the prompt.

(read t)
⇒ 23

---------- Buffer: Minibuffer ----------
Lisp expression: 23 〈RET〉
---------- Buffer: Minibuffer ----------

Finally, here is an example of a stream that is a function, named useless-stream.
Before we use the stream, we initialize the variable useless-list to a list of characters.
Then each call to the function useless-stream obtains the next character in the list or
unreads a character by adding it to the front of the list.

(setq useless-list (append "XY()" nil))
⇒ (88 89 40 41)

(defun useless-stream (&optional unread)
(if unread

(setq useless-list (cons unread useless-list))
(prog1 (car useless-list)

(setq useless-list (cdr useless-list)))))
⇒ useless-stream

Now we read using the stream thus constructed:

(read ’useless-stream)
⇒ XY

useless-list
⇒ (40 41)

Note that the open and close parentheses remains in the list. The Lisp reader encountered
the open parenthesis, decided that it ended the input, and unread it. Another attempt to
read from the stream at this point would read ‘()’ and return nil.

17.3 Input Functions

258 XEmacs Lisp Reference Manual

This section describes the Lisp functions and variables that pertain to reading.

In the functions below, stream stands for an input stream (see the previous section). If
stream is nil or omitted, it defaults to the value of standard-input.

An end-of-file error is signaled if reading encounters an unterminated list, vector, or
string.

Functionread &optional stream
This function reads one textual Lisp expression from stream, returning it as a Lisp
object. This is the basic Lisp input function.

Functionread-from-string string &optional start end
This function reads the first textual Lisp expression from the text in string. It returns
a cons cell whose car is that expression, and whose cdr is an integer giving the
position of the next remaining character in the string (i.e., the first one not read).

If start is supplied, then reading begins at index start in the string (where the first
character is at index 0). If end is also supplied, then reading stops just before that
index, as if the rest of the string were not there.

For example:
(read-from-string "(setq x 55) (setq y 5)")

⇒ ((setq x 55) . 11)
(read-from-string "\"A short string\"")

⇒ ("A short string" . 16)

;; Read starting at the first character.
(read-from-string "(list 112)" 0)

⇒ ((list 112) . 10)
;; Read starting at the second character.
(read-from-string "(list 112)" 1)

⇒ (list . 5)
;; Read starting at the seventh character,
;; and stopping at the ninth.
(read-from-string "(list 112)" 6 8)

⇒ (11 . 8)

Variablestandard-input
This variable holds the default input stream—the stream that read uses when the
stream argument is nil.

17.4 Output Streams

An output stream specifies what to do with the characters produced by printing. Most
print functions accept an output stream as an optional argument. Here are the possible
types of output stream:

Chapter 17: Reading and Printing Lisp Objects 259

buffer The output characters are inserted into buffer at point. Point advances as
characters are inserted.

marker The output characters are inserted into the buffer that marker points into, at
the marker position. The marker position advances as characters are inserted.
The value of point in the buffer has no effect on printing when the stream is a
marker.

function The output characters are passed to function, which is responsible for storing
them away. It is called with a single character as argument, as many times as
there are characters to be output, and is free to do anything at all with the
characters it receives.

t The output characters are displayed in the echo area.

nil nil specified as an output stream means to the value of standard-output
instead; that value is the default output stream, and must be a non-nil output
stream.

symbol A symbol as output stream is equivalent to the symbol’s function definition (if
any).

Many of the valid output streams are also valid as input streams. The difference between
input and output streams is therefore mostly one of how you use a Lisp object, not a
distinction of types of object.

Here is an example of a buffer used as an output stream. Point is initially located as
shown immediately before the ‘h’ in ‘the’. At the end, point is located directly before that
same ‘h’.

---------- Buffer: foo ----------
This is t?he contents of foo.
---------- Buffer: foo ----------

(print "This is the output" (get-buffer "foo"))
⇒ "This is the output"

---------- Buffer: foo ----------
This is t
"This is the output"
?he contents of foo.
---------- Buffer: foo ----------

Now we show a use of a marker as an output stream. Initially, the marker is in buffer
foo, between the ‘t’ and the ‘h’ in the word ‘the’. At the end, the marker has advanced over
the inserted text so that it remains positioned before the same ‘h’. Note that the location
of point, shown in the usual fashion, has no effect.

---------- Buffer: foo ----------
"This is the ?output"
---------- Buffer: foo ----------

m
⇒ #<marker at 11 in foo>

(print "More output for foo." m)
⇒ "More output for foo."

260 XEmacs Lisp Reference Manual

---------- Buffer: foo ----------
"This is t
"More output for foo."
he ?output"
---------- Buffer: foo ----------

m
⇒ #<marker at 35 in foo>

The following example shows output to the echo area:
(print "Echo Area output" t)

⇒ "Echo Area output"
---------- Echo Area ----------
"Echo Area output"
---------- Echo Area ----------

Finally, we show the use of a function as an output stream. The function eat-output
takes each character that it is given and conses it onto the front of the list last-output
(see Section 5.5 [Building Lists], page 84). At the end, the list contains all the characters
output, but in reverse order.

(setq last-output nil)
⇒ nil

(defun eat-output (c)
(setq last-output (cons c last-output)))
⇒ eat-output

(print "This is the output" ’eat-output)
⇒ "This is the output"

last-output
⇒ (?\n ?\" ?t ?u ?p ?t ?u ?o ?\ ?e ?h ?t

?\ ?s ?i ?\ ?s ?i ?h ?T ?\" ?\n)

Now we can put the output in the proper order by reversing the list:
(concat (nreverse last-output))

⇒ "
\"This is the output\"
"

Calling concat converts the list to a string so you can see its contents more clearly.

17.5 Output Functions

This section describes the Lisp functions for printing Lisp objects.
Some of the XEmacs printing functions add quoting characters to the output when

necessary so that it can be read properly. The quoting characters used are ‘"’ and ‘\’; they
distinguish strings from symbols, and prevent punctuation characters in strings and symbols
from being taken as delimiters when reading. See Section 2.1 [Printed Representation],
page 17, for full details. You specify quoting or no quoting by the choice of printing
function.

Chapter 17: Reading and Printing Lisp Objects 261

If the text is to be read back into Lisp, then it is best to print with quoting characters
to avoid ambiguity. Likewise, if the purpose is to describe a Lisp object clearly for a Lisp
programmer. However, if the purpose of the output is to look nice for humans, then it is
better to print without quoting.

Printing a self-referent Lisp object requires an infinite amount of text. In certain cases,
trying to produce this text leads to a stack overflow. XEmacs detects such recursion and
prints ‘#level’ instead of recursively printing an object already being printed. For example,
here ‘#0’ indicates a recursive reference to the object at level 0 of the current print operation:

(setq foo (list nil))
⇒ (nil)

(setcar foo foo)
⇒ (#0)

In the functions below, stream stands for an output stream. (See the previous section
for a description of output streams.) If stream is nil or omitted, it defaults to the value of
standard-output.

Functionprint object &optional stream
The print function is a convenient way of printing. It outputs the printed represen-
tation of object to stream, printing in addition one newline before object and another
after it. Quoting characters are used. print returns object. For example:

(progn (print ’The\ cat\ in)
(print "the hat")
(print " came back"))
a
a The\ cat\ in
a
a "the hat"
a
a " came back"
a
⇒ " came back"

Functionprin1 object &optional stream
This function outputs the printed representation of object to stream. It does not
print newlines to separate output as print does, but it does use quoting characters
just like print. It returns object.

(progn (prin1 ’The\ cat\ in)
(prin1 "the hat")
(prin1 " came back"))
a The\ cat\ in"the hat"" came back"
⇒ " came back"

Functionprinc object &optional stream
This function outputs the printed representation of object to stream. It returns
object.

262 XEmacs Lisp Reference Manual

This function is intended to produce output that is readable by people, not by read,
so it doesn’t insert quoting characters and doesn’t put double-quotes around the
contents of strings. It does not add any spacing between calls.

(progn
(princ ’The\ cat)
(princ " in the \"hat\""))
a The cat in the "hat"
⇒ " in the \"hat\""

Functionterpri &optional stream
This function outputs a newline to stream. The name stands for “terminate print”.

Functionwrite-char character &optional stream
This function outputs character to stream. It returns character.

Functionprin1-to-string object &optional noescape
This function returns a string containing the text that prin1 would have printed for
the same argument.

(prin1-to-string ’foo)
⇒ "foo"

(prin1-to-string (mark-marker))
⇒ "#<marker at 2773 in strings.texi>"

If noescape is non-nil, that inhibits use of quoting characters in the output. (This
argument is supported in Emacs versions 19 and later.)

(prin1-to-string "foo")
⇒ "\"foo\""

(prin1-to-string "foo" t)
⇒ "foo"

See format, in Section 4.7 [String Conversion], page 67, for other ways to obtain the
printed representation of a Lisp object as a string.

17.6 Variables Affecting Output

Variablestandard-output
The value of this variable is the default output stream—the stream that print func-
tions use when the stream argument is nil.

Variableprint-escape-newlines
If this variable is non-nil, then newline characters in strings are printed as ‘\n’ and
formfeeds are printed as ‘\f’. Normally these characters are printed as actual newlines
and formfeeds.
This variable affects the print functions prin1 and print, as well as everything that
uses them. It does not affect princ. Here is an example using prin1:

Chapter 17: Reading and Printing Lisp Objects 263

(prin1 "a\nb")
a "a
a b"
⇒ "a

b"

(let ((print-escape-newlines t))
(prin1 "a\nb"))
a "a\nb"
⇒ "a

b"

In the second expression, the local binding of print-escape-newlines is in effect
during the call to prin1, but not during the printing of the result.

Variableprint-readably
If non-nil, then all objects will be printed in a readable form. If an object has
no readable representation, then an error is signalled. When print-readably
is true, compiled-function objects will be written in ‘#[...]’ form instead of in
‘#<compiled-function [...]>’ form, and two-element lists of the form ‘(quote
object)’ will be written as the equivalent ‘’object’. Do not set this variable; bind
it instead.

Variableprint-length
The value of this variable is the maximum number of elements of a list that will be
printed. If a list being printed has more than this many elements, it is abbreviated
with an ellipsis.
If the value is nil (the default), then there is no limit.

(setq print-length 2)
⇒ 2

(print ’(1 2 3 4 5))
a (1 2 ...)
⇒ (1 2 ...)

Variableprint-level
The value of this variable is the maximum depth of nesting of parentheses and brackets
when printed. Any list or vector at a depth exceeding this limit is abbreviated with
an ellipsis. A value of nil (which is the default) means no limit.
This variable exists in version 19 and later versions.

Variableprint-string-length
The value of this variable is the maximum number of characters of a string that
will be printed. If a string being printed has more than this many characters, it is
abbreviated with an ellipsis.

Variableprint-gensym
If non-nil, then uninterned symbols will be printed specially. Uninterned symbols
are those which are not present in obarray, that is, those which were made with
make-symbol or by calling intern with a second argument.

264 XEmacs Lisp Reference Manual

When print-gensym is true, such symbols will be preceded by ‘#:’, which causes
the reader to create a new symbol instead of interning and returning an existing one.
Beware: The ‘#:’ syntax creates a new symbol each time it is seen, so if you print
an object which contains two pointers to the same uninterned symbol, read will not
duplicate that structure.
Also, since XEmacs has no real notion of packages, there is no way for the printer
to distinguish between symbols interned in no obarray, and symbols interned in an
alternate obarray.

Variablefloat-output-format
This variable holds the format descriptor string that Lisp uses to print floats. This
is a ‘%’-spec like those accepted by printf in C, but with some restrictions. It must
start with the two characters ‘%.’. After that comes an integer precision specification,
and then a letter which controls the format. The letters allowed are ‘e’, ‘f’ and ‘g’.
• Use ‘e’ for exponential notation ‘dig.digitseexpt’.
• Use ‘f’ for decimal point notation ‘DIGITS.DIGITS’.
• Use ‘g’ to choose the shorter of those two formats for the number at hand.

The precision in any of these cases is the number of digits following the decimal point.
With ‘f’, a precision of 0 means to omit the decimal point. 0 is not allowed with ‘f’
or ‘g’.
A value of nil means to use ‘%.16g’.
Regardless of the value of float-output-format, a floating point number will never
be printed in such a way that it is ambiguous with an integer; that is, a floating-point
number will always be printed with a decimal point and/or an exponent, even if the
digits following the decimal point are all zero. This is to preserve read-equivalence.

Chapter 18: Minibuffers 265

18 Minibuffers

A minibuffer is a special buffer that XEmacs commands use to read arguments more
complicated than the single numeric prefix argument. These arguments include file names,
buffer names, and command names (as in M-x). The minibuffer is displayed on the bottom
line of the frame, in the same place as the echo area, but only while it is in use for reading
an argument.

18.1 Introduction to Minibuffers

In most ways, a minibuffer is a normal XEmacs buffer. Most operations within a buffer,
such as editing commands, work normally in a minibuffer. However, many operations for
managing buffers do not apply to minibuffers. The name of a minibuffer always has the
form ‘ *Minibuf-number’, and it cannot be changed. Minibuffers are displayed only in
special windows used only for minibuffers; these windows always appear at the bottom of
a frame. (Sometime frames have no minibuffer window, and sometimes a special kind of
frame contains nothing but a minibuffer window; see Section 32.7 [Minibuffers and Frames],
page 482.)

The minibuffer’s window is normally a single line. You can resize it temporarily with
the window sizing commands; it reverts to its normal size when the minibuffer is exited.
You can resize it permanently by using the window sizing commands in the frame’s other
window, when the minibuffer is not active. If the frame contains just a minibuffer, you can
change the minibuffer’s size by changing the frame’s size.

If a command uses a minibuffer while there is an active minibuffer, this is called a
recursive minibuffer. The first minibuffer is named ‘ *Minibuf-0*’. Recursive minibuffers
are named by incrementing the number at the end of the name. (The names begin with a
space so that they won’t show up in normal buffer lists.) Of several recursive minibuffers,
the innermost (or most recently entered) is the active minibuffer. We usually call this
“the” minibuffer. You can permit or forbid recursive minibuffers by setting the variable
enable-recursive-minibuffers.

Like other buffers, a minibuffer may use any of several local keymaps (see Chapter 20
[Keymaps], page 319); these contain various exit commands and in some cases completion
commands (see Section 18.5 [Completion], page 270).

• minibuffer-local-map is for ordinary input (no completion).

• minibuffer-local-ns-map is similar, except that 〈SPC〉 exits just like 〈RET〉. This is
used mainly for Mocklisp compatibility.

• minibuffer-local-completion-map is for permissive completion.

• minibuffer-local-must-match-map is for strict completion and for cautious comple-
tion.

18.2 Reading Text Strings with the Minibuffer

266 XEmacs Lisp Reference Manual

Most often, the minibuffer is used to read text as a string. It can also be used to read a
Lisp object in textual form. The most basic primitive for minibuffer input is read-from-
minibuffer; it can do either one.

In most cases, you should not call minibuffer input functions in the middle of a Lisp
function. Instead, do all minibuffer input as part of reading the arguments for a command,
in the interactive spec. See Section 19.2 [Defining Commands], page 286.

Functionread-from-minibuffer prompt-string &optional initial-contents
keymap read hist

This function is the most general way to get input through the minibuffer. By default,
it accepts arbitrary text and returns it as a string; however, if read is non-nil, then
it uses read to convert the text into a Lisp object (see Section 17.3 [Input Functions],
page 258).
The first thing this function does is to activate a minibuffer and display it with
prompt-string as the prompt. This value must be a string.
Then, if initial-contents is a string, read-from-minibuffer inserts it into the mini-
buffer, leaving point at the end. The minibuffer appears with this text as its contents.
The value of initial-contents may also be a cons cell of the form (string . position).
This means to insert string in the minibuffer but put point position characters from
the beginning, rather than at the end.
If keymap is non-nil, that keymap is the local keymap to use in the minibuffer.
If keymap is omitted or nil, the value of minibuffer-local-map is used as the
keymap. Specifying a keymap is the most important way to customize the minibuffer
for various applications such as completion.
The argument hist specifies which history list variable to use for saving the input and
for history commands used in the minibuffer. It defaults to minibuffer-history.
See Section 18.4 [Minibuffer History], page 269.
When the user types a command to exit the minibuffer, read-from-minibuffer uses
the text in the minibuffer to produce its return value. Normally it simply makes
a string containing that text. However, if read is non-nil, read-from-minibuffer
reads the text and returns the resulting Lisp object, unevaluated. (See Section 17.3
[Input Functions], page 258, for information about reading.)

Functionread-string prompt &optional initial
This function reads a string from the minibuffer and returns it. The arguments prompt
and initial are used as in read-from-minibuffer. The keymap used is minibuffer-
local-map.
This is a simplified interface to the read-from-minibuffer function:

(read-string prompt initial)
≡
(read-from-minibuffer prompt initial nil nil nil)

Variableminibuffer-local-map
This is the default local keymap for reading from the minibuffer. By default, it makes
the following bindings:

Chapter 18: Minibuffers 267

〈LFD〉 exit-minibuffer

〈RET〉 exit-minibuffer

C-g abort-recursive-edit

M-n next-history-element

M-p previous-history-element

M-r next-matching-history-element

M-s previous-matching-history-element

Functionread-no-blanks-input prompt &optional initial
This function reads a string from the minibuffer, but does not allow whitespace char-
acters as part of the input: instead, those characters terminate the input. The argu-
ments prompt and initial are used as in read-from-minibuffer.
This is a simplified interface to the read-from-minibuffer function, and passes the
value of the minibuffer-local-ns-map keymap as the keymap argument for that
function. Since the keymap minibuffer-local-ns-map does not rebind C-q, it is
possible to put a space into the string, by quoting it.

(read-no-blanks-input prompt initial)
≡
(read-from-minibuffer prompt initial minibuffer-local-ns-map)

Variableminibuffer-local-ns-map
This built-in variable is the keymap used as the minibuffer local keymap in the func-
tion read-no-blanks-input. By default, it makes the following bindings, in addition
to those of minibuffer-local-map:

〈SPC〉 exit-minibuffer

〈TAB〉 exit-minibuffer

? self-insert-and-exit

18.3 Reading Lisp Objects with the Minibuffer

This section describes functions for reading Lisp objects with the minibuffer.

Functionread-minibuffer prompt &optional initial
This function reads a Lisp object in the minibuffer and returns it, without evaluating
it. The arguments prompt and initial are used as in read-from-minibuffer.
This is a simplified interface to the read-from-minibuffer function:

(read-minibuffer prompt initial)
≡
(read-from-minibuffer prompt initial nil t)

Here is an example in which we supply the string "(testing)" as initial input:

268 XEmacs Lisp Reference Manual

(read-minibuffer
"Enter an expression: " (format "%s" ’(testing)))

;; Here is how the minibuffer is displayed:

---------- Buffer: Minibuffer ----------
Enter an expression: (testing)?
---------- Buffer: Minibuffer ----------

The user can type 〈RET〉 immediately to use the initial input as a default, or can edit
the input.

Functioneval-minibuffer prompt &optional initial
This function reads a Lisp expression in the minibuffer, evaluates it, then returns the
result. The arguments prompt and initial are used as in read-from-minibuffer.

This function simply evaluates the result of a call to read-minibuffer:

(eval-minibuffer prompt initial)
≡
(eval (read-minibuffer prompt initial))

Functionedit-and-eval-command prompt form
This function reads a Lisp expression in the minibuffer, and then evaluates it. The
difference between this command and eval-minibuffer is that here the initial form is
not optional and it is treated as a Lisp object to be converted to printed representation
rather than as a string of text. It is printed with prin1, so if it is a string, double-
quote characters (‘"’) appear in the initial text. See Section 17.5 [Output Functions],
page 260.

The first thing edit-and-eval-command does is to activate the minibuffer with
prompt as the prompt. Then it inserts the printed representation of form in the
minibuffer, and lets the user edit. When the user exits the minibuffer, the edited
text is read with read and then evaluated. The resulting value becomes the value of
edit-and-eval-command.

In the following example, we offer the user an expression with initial text which is a
valid form already:

(edit-and-eval-command "Please edit: " ’(forward-word 1))

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
Please edit: (forward-word 1)?
---------- Buffer: Minibuffer ----------

Typing 〈RET〉 right away would exit the minibuffer and evaluate the expression, thus
moving point forward one word. edit-and-eval-command returns t in this example.

Chapter 18: Minibuffers 269

18.4 Minibuffer History

A minibuffer history list records previous minibuffer inputs so the user can reuse them
conveniently. A history list is actually a symbol, not a list; it is a variable whose value is a
list of strings (previous inputs), most recent first.

There are many separate history lists, used for different kinds of inputs. It’s the Lisp
programmer’s job to specify the right history list for each use of the minibuffer.

The basic minibuffer input functions read-from-minibuffer and completing-read
both accept an optional argument named hist which is how you specify the history list.
Here are the possible values:

variable Use variable (a symbol) as the history list.

(variable . startpos)
Use variable (a symbol) as the history list, and assume that the initial history
position is startpos (an integer, counting from zero which specifies the most
recent element of the history).
If you specify startpos, then you should also specify that element of the history
as the initial minibuffer contents, for consistency.

If you don’t specify hist, then the default history list minibuffer-history is used. For
other standard history lists, see below. You can also create your own history list variable;
just initialize it to nil before the first use.

Both read-from-minibuffer and completing-read add new elements to the history
list automatically, and provide commands to allow the user to reuse items on the list. The
only thing your program needs to do to use a history list is to initialize it and to pass its
name to the input functions when you wish. But it is safe to modify the list by hand when
the minibuffer input functions are not using it.

Variableminibuffer-history
The default history list for minibuffer history input.

Variablequery-replace-history
A history list for arguments to query-replace (and similar arguments to other com-
mands).

Variablefile-name-history
A history list for file name arguments.

Variableregexp-history
A history list for regular expression arguments.

Variableextended-command-history
A history list for arguments that are names of extended commands.

Variableshell-command-history
A history list for arguments that are shell commands.

270 XEmacs Lisp Reference Manual

Variableread-expression-history
A history list for arguments that are Lisp expressions to evaluate.

VariableInfo-minibuffer-history
A history list for Info mode’s minibuffer.

VariableManual-page-minibuffer-history
A history list for manual-entry.

There are many other minibuffer history lists, defined by various libraries. An M-x

apropos search for ‘history’ should prove fruitful in discovering them.

18.5 Completion

Completion is a feature that fills in the rest of a name starting from an abbreviation
for it. Completion works by comparing the user’s input against a list of valid names and
determining how much of the name is determined uniquely by what the user has typed.
For example, when you type C-x b (switch-to-buffer) and then type the first few letters
of the name of the buffer to which you wish to switch, and then type 〈TAB〉 (minibuffer-
complete), Emacs extends the name as far as it can.

Standard XEmacs commands offer completion for names of symbols, files, buffers, and
processes; with the functions in this section, you can implement completion for other kinds
of names.

The try-completion function is the basic primitive for completion: it returns the longest
determined completion of a given initial string, with a given set of strings to match against.

The function completing-read provides a higher-level interface for completion. A call
to completing-read specifies how to determine the list of valid names. The function then
activates the minibuffer with a local keymap that binds a few keys to commands useful for
completion. Other functions provide convenient simple interfaces for reading certain kinds
of names with completion.

18.5.1 Basic Completion Functions

The two functions try-completion and all-completions have nothing in themselves
to do with minibuffers. We describe them in this chapter so as to keep them near the
higher-level completion features that do use the minibuffer.

Functiontry-completion string collection &optional predicate
This function returns the longest common substring of all possible completions of
string in collection. The value of collection must be an alist, an obarray, or a function
that implements a virtual set of strings (see below).
Completion compares string against each of the permissible completions specified by
collection; if the beginning of the permissible completion equals string, it matches.

Chapter 18: Minibuffers 271

If no permissible completions match, try-completion returns nil. If only one per-
missible completion matches, and the match is exact, then try-completion returns
t. Otherwise, the value is the longest initial sequence common to all the permissible
completions that match.

If collection is an alist (see Section 5.8 [Association Lists], page 94), the cars of the
alist elements form the set of permissible completions.

If collection is an obarray (see Section 7.3 [Creating Symbols], page 115), the names
of all symbols in the obarray form the set of permissible completions. The global
variable obarray holds an obarray containing the names of all interned Lisp symbols.

Note that the only valid way to make a new obarray is to create it empty and then
add symbols to it one by one using intern. Also, you cannot intern a given symbol
in more than one obarray.

If the argument predicate is non-nil, then it must be a function of one argument.
It is used to test each possible match, and the match is accepted only if predicate
returns non-nil. The argument given to predicate is either a cons cell from the alist
(the car of which is a string) or else it is a symbol (not a symbol name) from the
obarray.

You can also use a symbol that is a function as collection. Then the function is
solely responsible for performing completion; try-completion returns whatever this
function returns. The function is called with three arguments: string, predicate and
nil. (The reason for the third argument is so that the same function can be used
in all-completions and do the appropriate thing in either case.) See Section 18.5.6
[Programmed Completion], page 278.

In the first of the following examples, the string ‘foo’ is matched by three of the alist
cars. All of the matches begin with the characters ‘fooba’, so that is the result. In
the second example, there is only one possible match, and it is exact, so the value is
t.

(try-completion
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))

⇒ "fooba"

(try-completion "foo" ’(("barfoo" 2) ("foo" 3)))
⇒ t

In the following example, numerous symbols begin with the characters ‘forw’, and all
of them begin with the word ‘forward’. In most of the symbols, this is followed with
a ‘-’, but not in all, so no more than ‘forward’ can be completed.

(try-completion "forw" obarray)
⇒ "forward"

Finally, in the following example, only two of the three possible matches pass the
predicate test (the string ‘foobaz’ is too short). Both of those begin with the string
‘foobar’.

(defun test (s)
(> (length (car s)) 6))
⇒ test

272 XEmacs Lisp Reference Manual

(try-completion
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)

⇒ "foobar"

Functionall-completions string collection &optional predicate nospace
This function returns a list of all possible completions of string. The parameters to
this function are the same as to try-completion.
If collection is a function, it is called with three arguments: string, predicate and
t; then all-completions returns whatever the function returns. See Section 18.5.6
[Programmed Completion], page 278.
If nospace is non-nil, completions that start with a space are ignored unless string
also starts with a space.
Here is an example, using the function test shown in the example for
try-completion:

(defun test (s)
(> (length (car s)) 6))
⇒ test

(all-completions
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)

⇒ ("foobar1" "foobar2")

Variablecompletion-ignore-case
If the value of this variable is non-nil, XEmacs does not consider case significant in
completion.

18.5.2 Completion and the Minibuffer

This section describes the basic interface for reading from the minibuffer with completion.

Functioncompleting-read prompt collection &optional predicate require-match
initial hist

This function reads a string in the minibuffer, assisting the user by providing com-
pletion. It activates the minibuffer with prompt prompt, which must be a string. If
initial is non-nil, completing-read inserts it into the minibuffer as part of the in-
put. Then it allows the user to edit the input, providing several commands to attempt
completion.
The actual completion is done by passing collection and predicate to the function
try-completion. This happens in certain commands bound in the local keymaps
used for completion.
If require-match is t, the usual minibuffer exit commands won’t exit unless the input
completes to an element of collection. If require-match is neither nil nor t, then

Chapter 18: Minibuffers 273

the exit commands won’t exit unless the input typed is itself an element of collec-
tion. If require-match is nil, the exit commands work regardless of the input in the
minibuffer.
The user can exit with null input by typing 〈RET〉 with an empty minibuffer. Then
completing-read returns nil. This is how the user requests whatever default the
command uses for the value being read. The user can return using 〈RET〉 in this way
regardless of the value of require-match.
The function completing-read works by calling read-minibuffer. It uses
minibuffer-local-completion-map as the keymap if require-match is nil,
and uses minibuffer-local-must-match-map if require-match is non-nil. See
Section 18.5.3 [Completion Commands], page 273.
The argument hist specifies which history list variable to use for saving the input
and for minibuffer history commands. It defaults to minibuffer-history. See Sec-
tion 18.4 [Minibuffer History], page 269.
Completion ignores case when comparing the input against the possible matches, if
the built-in variable completion-ignore-case is non-nil. See Section 18.5.1 [Basic
Completion], page 270.
Here’s an example of using completing-read:

(completing-read
"Complete a foo: "
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
nil t "fo")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
Complete a foo: fo?
---------- Buffer: Minibuffer ----------

If the user then types 〈DEL〉 〈DEL〉 b 〈RET〉, completing-read returns barfoo.
The completing-read function binds three variables to pass informa-
tion to the commands that actually do completion. These variables are
minibuffer-completion-table, minibuffer-completion-predicate and
minibuffer-completion-confirm. For more information about them, see
Section 18.5.3 [Completion Commands], page 273.

18.5.3 Minibuffer Commands That Do Completion

This section describes the keymaps, commands and user options used in the minibuffer
to do completion.

Variableminibuffer-local-completion-map
completing-read uses this value as the local keymap when an exact match of one
of the completions is not required. By default, this keymap makes the following
bindings:

274 XEmacs Lisp Reference Manual

? minibuffer-completion-help

〈SPC〉 minibuffer-complete-word

〈TAB〉 minibuffer-complete

with other characters bound as in minibuffer-local-map (see Section 18.2 [Text
from Minibuffer], page 266).

Variableminibuffer-local-must-match-map
completing-read uses this value as the local keymap when an exact match of one of
the completions is required. Therefore, no keys are bound to exit-minibuffer, the
command that exits the minibuffer unconditionally. By default, this keymap makes
the following bindings:

? minibuffer-completion-help

〈SPC〉 minibuffer-complete-word

〈TAB〉 minibuffer-complete

〈LFD〉 minibuffer-complete-and-exit

〈RET〉 minibuffer-complete-and-exit

with other characters bound as in minibuffer-local-map.

Variableminibuffer-completion-table
The value of this variable is the alist or obarray used for completion in the mini-
buffer. This is the global variable that contains what completing-read passes to
try-completion. It is used by minibuffer completion commands such as minibuffer-
complete-word.

Variableminibuffer-completion-predicate
This variable’s value is the predicate that completing-read passes to try-
completion. The variable is also used by the other minibuffer completion
functions.

Commandminibuffer-complete-word
This function completes the minibuffer contents by at most a single word. Even if
the minibuffer contents have only one completion, minibuffer-complete-word does
not add any characters beyond the first character that is not a word constituent. See
Chapter 38 [Syntax Tables], page 575.

Commandminibuffer-complete
This function completes the minibuffer contents as far as possible.

Commandminibuffer-complete-and-exit
This function completes the minibuffer contents, and exits if confirmation is not
required, i.e., if minibuffer-completion-confirm is non-nil. If confirmation is
required, it is given by repeating this command immediately—the command is pro-
grammed to work without confirmation when run twice in succession.

Chapter 18: Minibuffers 275

Variableminibuffer-completion-confirm
When the value of this variable is non-nil, XEmacs asks for confirmation of a com-
pletion before exiting the minibuffer. The function minibuffer-complete-and-exit
checks the value of this variable before it exits.

Commandminibuffer-completion-help
This function creates a list of the possible completions of the current minibuffer
contents. It works by calling all-completions using the value of the variable
minibuffer-completion-table as the collection argument, and the value of
minibuffer-completion-predicate as the predicate argument. The list of
completions is displayed as text in a buffer named ‘*Completions*’.

Functiondisplay-completion-list completions
This function displays completions to the stream in standard-output, usually a
buffer. (See Chapter 17 [Read and Print], page 255, for more information about
streams.) The argument completions is normally a list of completions just returned
by all-completions, but it does not have to be. Each element may be a symbol or
a string, either of which is simply printed, or a list of two strings, which is printed as
if the strings were concatenated.
This function is called by minibuffer-completion-help. The most common way to
use it is together with with-output-to-temp-buffer, like this:

(with-output-to-temp-buffer "*Completions*"
(display-completion-list
(all-completions (buffer-string) my-alist)))

User Optioncompletion-auto-help
If this variable is non-nil, the completion commands automatically display a list of
possible completions whenever nothing can be completed because the next character
is not uniquely determined.

18.5.4 High-Level Completion Functions

This section describes the higher-level convenient functions for reading certain sorts of
names with completion.

In most cases, you should not call these functions in the middle of a Lisp function. When
possible, do all minibuffer input as part of reading the arguments for a command, in the
interactive spec. See Section 19.2 [Defining Commands], page 286.

Functionread-buffer prompt &optional default existing
This function reads the name of a buffer and returns it as a string. The argument
default is the default name to use, the value to return if the user exits with an empty
minibuffer. If non-nil, it should be a string or a buffer. It is mentioned in the prompt,
but is not inserted in the minibuffer as initial input.
If existing is non-nil, then the name specified must be that of an existing buffer. The
usual commands to exit the minibuffer do not exit if the text is not valid, and 〈RET〉

276 XEmacs Lisp Reference Manual

does completion to attempt to find a valid name. (However, default is not checked
for validity; it is returned, whatever it is, if the user exits with the minibuffer empty.)
In the following example, the user enters ‘minibuffer.t’, and then types 〈RET〉. The
argument existing is t, and the only buffer name starting with the given input is
‘minibuffer.texi’, so that name is the value.

(read-buffer "Buffer name? " "foo" t)
;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Buffer name? (default foo) ?
---------- Buffer: Minibuffer ----------

;; The user types minibuffer.t 〈RET〉.
⇒ "minibuffer.texi"

Functionread-command prompt
This function reads the name of a command and returns it as a Lisp symbol. The
argument prompt is used as in read-from-minibuffer. Recall that a command is
anything for which commandp returns t, and a command name is a symbol for which
commandp returns t. See Section 19.3 [Interactive Call], page 290.

(read-command "Command name? ")

;; After evaluation of the preceding expression,
;; the following prompt appears with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Command name?
---------- Buffer: Minibuffer ----------

If the user types forward-c 〈RET〉, then this function returns forward-char.
The read-command function is a simplified interface to the function completing-read.
It uses the variable obarray so as to complete in the set of extant Lisp symbols, and
it uses the commandp predicate so as to accept only command names:

(read-command prompt)
≡
(intern (completing-read prompt obarray

’commandp t nil))

Functionread-variable prompt
This function reads the name of a user variable and returns it as a symbol.

(read-variable "Variable name? ")

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Variable name? ?
---------- Buffer: Minibuffer ----------

Chapter 18: Minibuffers 277

If the user then types fill-p 〈RET〉, read-variable returns fill-prefix.
This function is similar to read-command, but uses the predicate user-variable-p
instead of commandp:

(read-variable prompt)
≡
(intern
(completing-read prompt obarray

’user-variable-p t nil))

18.5.5 Reading File Names

Here is another high-level completion function, designed for reading a file name. It
provides special features including automatic insertion of the default directory.

Functionread-file-name prompt &optional directory default existing initial
This function reads a file name in the minibuffer, prompting with prompt and pro-
viding completion. If default is non-nil, then the function returns default if the user
just types 〈RET〉. default is not checked for validity; it is returned, whatever it is, if
the user exits with the minibuffer empty.
If existing is non-nil, then the user must specify the name of an existing file; 〈RET〉
performs completion to make the name valid if possible, and then refuses to exit if
it is not valid. If the value of existing is neither nil nor t, then 〈RET〉 also requires
confirmation after completion. If existing is nil, then the name of a nonexistent file
is acceptable.
The argument directory specifies the directory to use for completion of relative file
names. If insert-default-directory is non-nil, directory is also inserted in the
minibuffer as initial input. It defaults to the current buffer’s value of default-
directory.
If you specify initial, that is an initial file name to insert in the buffer (after with
directory, if that is inserted). In this case, point goes at the beginning of initial. The
default for initial is nil—don’t insert any file name. To see what initial does, try the
command C-x C-v.
Here is an example:

(read-file-name "The file is ")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/?
---------- Buffer: Minibuffer ----------

Typing manual 〈TAB〉 results in the following:
---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/manual.texi?
---------- Buffer: Minibuffer ----------

278 XEmacs Lisp Reference Manual

If the user types 〈RET〉, read-file-name returns the file name as the string
"/gp/gnu/elisp/manual.texi".

User Optioninsert-default-directory
This variable is used by read-file-name. Its value controls whether read-file-
name starts by placing the name of the default directory in the minibuffer, plus the
initial file name if any. If the value of this variable is nil, then read-file-name does
not place any initial input in the minibuffer (unless you specify initial input with the
initial argument). In that case, the default directory is still used for completion of
relative file names, but is not displayed.
For example:

;; Here the minibuffer starts out with the default directory.
(let ((insert-default-directory t))

(read-file-name "The file is "))

---------- Buffer: Minibuffer ----------
The file is ~lewis/manual/?
---------- Buffer: Minibuffer ----------

;; Here the minibuffer is empty and only the prompt
;; appears on its line.
(let ((insert-default-directory nil))

(read-file-name "The file is "))

---------- Buffer: Minibuffer ----------
The file is ?
---------- Buffer: Minibuffer ----------

18.5.6 Programmed Completion

Sometimes it is not possible to create an alist or an obarray containing all the intended
possible completions. In such a case, you can supply your own function to compute the
completion of a given string. This is called programmed completion.

To use this feature, pass a symbol with a function definition as the collection argument
to completing-read. The function completing-read arranges to pass your completion
function along to try-completion and all-completions, which will then let your function
do all the work.

The completion function should accept three arguments:
• The string to be completed.
• The predicate function to filter possible matches, or nil if none. Your function should

call the predicate for each possible match, and ignore the possible match if the predicate
returns nil.

• A flag specifying the type of operation.

There are three flag values for three operations:
• nil specifies try-completion. The completion function should return the completion

of the specified string, or t if the string is an exact match already, or nil if the string
matches no possibility.

Chapter 18: Minibuffers 279

• t specifies all-completions. The completion function should return a list of all pos-
sible completions of the specified string.

• lambda specifies a test for an exact match. The completion function should return t if
the specified string is an exact match for some possibility; nil otherwise.

It would be consistent and clean for completion functions to allow lambda expressions
(lists that are functions) as well as function symbols as collection, but this is impossible.
Lists as completion tables are already assigned another meaning—as alists. It would be
unreliable to fail to handle an alist normally because it is also a possible function. So
you must arrange for any function you wish to use for completion to be encapsulated in a
symbol.

Emacs uses programmed completion when completing file names. See Section 28.8.6
[File Name Completion], page 415.

18.6 Yes-or-No Queries

This section describes functions used to ask the user a yes-or-no question. The function
y-or-n-p can be answered with a single character; it is useful for questions where an
inadvertent wrong answer will not have serious consequences. yes-or-no-p is suitable for
more momentous questions, since it requires three or four characters to answer. Variations
of these functions can be used to ask a yes-or-no question using a dialog box, or optionally
using one.

If either of these functions is called in a command that was invoked using the mouse,
then it uses a dialog box or pop-up menu to ask the question. Otherwise, it uses keyboard
input.

Strictly speaking, yes-or-no-p uses the minibuffer and y-or-n-p does not; but it seems
best to describe them together.

Functiony-or-n-p prompt
This function asks the user a question, expecting input in the echo area. It returns
t if the user types y, nil if the user types n. This function also accepts 〈SPC〉 to
mean yes and 〈DEL〉 to mean no. It accepts C-] to mean “quit”, like C-g, because the
question might look like a minibuffer and for that reason the user might try to use
C-] to get out. The answer is a single character, with no 〈RET〉 needed to terminate
it. Upper and lower case are equivalent.
“Asking the question” means printing prompt in the echo area, followed by the string
‘(y or n) ’. If the input is not one of the expected answers (y, n, 〈SPC〉, 〈DEL〉, or
something that quits), the function responds ‘Please answer y or n.’, and repeats
the request.
This function does not actually use the minibuffer, since it does not allow editing
of the answer. It actually uses the echo area (see Section 45.3 [The Echo Area],
page 658), which uses the same screen space as the minibuffer. The cursor moves to
the echo area while the question is being asked.
The answers and their meanings, even ‘y’ and ‘n’, are not hardwired. The keymap
query-replace-map specifies them. See Section 37.5 [Search and Replace], page 566.

280 XEmacs Lisp Reference Manual

In the following example, the user first types q, which is invalid. At the next prompt
the user types y.

(y-or-n-p "Do you need a lift? ")

;; After evaluation of the preceding expression,
;; the following prompt appears in the echo area:

---------- Echo area ----------
Do you need a lift? (y or n)
---------- Echo area ----------

;; If the user then types q, the following appears:

---------- Echo area ----------
Please answer y or n. Do you need a lift? (y or n)
---------- Echo area ----------

;; When the user types a valid answer,
;; it is displayed after the question:

---------- Echo area ----------
Do you need a lift? (y or n) y
---------- Echo area ----------

We show successive lines of echo area messages, but only one actually appears on the
screen at a time.

Functionyes-or-no-p prompt
This function asks the user a question, expecting input in the minibuffer. It returns t
if the user enters ‘yes’, nil if the user types ‘no’. The user must type 〈RET〉 to finalize
the response. Upper and lower case are equivalent.

yes-or-no-p starts by displaying prompt in the echo area, followed by ‘(yes or no) ’.
The user must type one of the expected responses; otherwise, the function responds
‘Please answer yes or no.’, waits about two seconds and repeats the request.

yes-or-no-p requires more work from the user than y-or-n-p and is appropriate for
more crucial decisions.

Here is an example:

(yes-or-no-p "Do you really want to remove everything? ")

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: minibuffer ----------
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------

If the user first types y 〈RET〉, which is invalid because this function demands the entire
word ‘yes’, it responds by displaying these prompts, with a brief pause between them:

Chapter 18: Minibuffers 281

---------- Buffer: minibuffer ----------
Please answer yes or no.
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------

Functionyes-or-no-p-dialog-box prompt
This function asks the user a “y or n” question with a popup dialog box. It returns
t if the answer is “yes”. prompt is the string to display to ask the question.

The following functions ask a question either in the minibuffer or a dialog box, depending
on whether the last user event (which presumably invoked this command) was a keyboard
or mouse event. When XEmacs is running on a window system, the functions y-or-n-p
and yes-or-no-p are replaced with the following functions, so that menu items bring up
dialog boxes instead of minibuffer questions.

Functiony-or-n-p-maybe-dialog-box prompt
This function asks user a “y or n” question, using either a dialog box or the minibuffer,
as appropriate.

Functionyes-or-no-p-maybe-dialog-box prompt
This function asks user a “yes or no” question, using either a dialog box or the
minibuffer, as appropriate.

18.7 Asking Multiple Y-or-N Questions

When you have a series of similar questions to ask, such as “Do you want to save
this buffer” for each buffer in turn, you should use map-y-or-n-p to ask the collection
of questions, rather than asking each question individually. This gives the user certain
convenient facilities such as the ability to answer the whole series at once.

Functionmap-y-or-n-p prompter actor list &optional help action-alist
This function, new in Emacs 19, asks the user a series of questions, reading a single-
character answer in the echo area for each one.
The value of list specifies the objects to ask questions about. It should be either a list
of objects or a generator function. If it is a function, it should expect no arguments,
and should return either the next object to ask about, or nil meaning stop asking
questions.
The argument prompter specifies how to ask each question. If prompter is a string,
the question text is computed like this:

(format prompter object)

where object is the next object to ask about (as obtained from list).
If not a string, prompter should be a function of one argument (the next object to
ask about) and should return the question text. If the value is a string, that is the
question to ask the user. The function can also return t meaning do act on this object
(and don’t ask the user), or nil meaning ignore this object (and don’t ask the user).

282 XEmacs Lisp Reference Manual

The argument actor says how to act on the answers that the user gives. It should be
a function of one argument, and it is called with each object that the user says yes
for. Its argument is always an object obtained from list.

If the argument help is given, it should be a list of this form:
(singular plural action)

where singular is a string containing a singular noun that describes the objects con-
ceptually being acted on, plural is the corresponding plural noun, and action is a
transitive verb describing what actor does.

If you don’t specify help, the default is ("object" "objects" "act on").

Each time a question is asked, the user may enter y, Y, or 〈SPC〉 to act on that object;
n, N, or 〈DEL〉 to skip that object; ! to act on all following objects; 〈ESC〉 or q to exit
(skip all following objects); . (period) to act on the current object and then exit;
or C-h to get help. These are the same answers that query-replace accepts. The
keymap query-replace-map defines their meaning for map-y-or-n-p as well as for
query-replace; see Section 37.5 [Search and Replace], page 566.

You can use action-alist to specify additional possible answers and what they mean.
It is an alist of elements of the form (char function help), each of which defines one
additional answer. In this element, char is a character (the answer); function is a
function of one argument (an object from list); help is a string.

When the user responds with char, map-y-or-n-p calls function. If it returns non-
nil, the object is considered “acted upon”, and map-y-or-n-p advances to the next
object in list. If it returns nil, the prompt is repeated for the same object.

If map-y-or-n-p is called in a command that was invoked using the mouse—more
precisely, if last-nonmenu-event (see Section 19.4 [Command Loop Info], page 292)
is either nil or a list—then it uses a dialog box or pop-up menu to ask the question.
In this case, it does not use keyboard input or the echo area. You can force use of the
mouse or use of keyboard input by binding last-nonmenu-event to a suitable value
around the call.

The return value of map-y-or-n-p is the number of objects acted on.

18.8 Minibuffer Miscellany

This section describes some basic functions and variables related to minibuffers.

Commandexit-minibuffer
This command exits the active minibuffer. It is normally bound to keys in minibuffer
local keymaps.

Commandself-insert-and-exit
This command exits the active minibuffer after inserting the last character typed on
the keyboard (found in last-command-char; see Section 19.4 [Command Loop Info],
page 292).

Chapter 18: Minibuffers 283

Commandprevious-history-element n
This command replaces the minibuffer contents with the value of the nth previous
(older) history element.

Commandnext-history-element n
This command replaces the minibuffer contents with the value of the nth more recent
history element.

Commandprevious-matching-history-element pattern
This command replaces the minibuffer contents with the value of the previous (older)
history element that matches pattern (a regular expression).

Commandnext-matching-history-element pattern
This command replaces the minibuffer contents with the value of the next (newer)
history element that matches pattern (a regular expression).

Functionminibuffer-prompt
This function returns the prompt string of the currently active minibuffer. If no
minibuffer is active, it returns nil.

Functionminibuffer-prompt-width
This function returns the display width of the prompt string of the currently active
minibuffer. If no minibuffer is active, it returns 0.

Variableminibuffer-setup-hook
This is a normal hook that is run whenever the minibuffer is entered. See Section 26.4
[Hooks], page 382.

Variableminibuffer-exit-hook
This is a normal hook that is run whenever the minibuffer is exited. See Section 26.4
[Hooks], page 382.

Variableminibuffer-help-form
The current value of this variable is used to rebind help-form locally inside the
minibuffer (see Section 27.5 [Help Functions], page 391).

Functionactive-minibuffer-window
This function returns the currently active minibuffer window, or nil if none is cur-
rently active.

Functionminibuffer-window &optional frame
This function returns the minibuffer window used for frame frame. If frame is nil,
that stands for the current frame. Note that the minibuffer window used by a frame
need not be part of that frame—a frame that has no minibuffer of its own necessarily
uses some other frame’s minibuffer window.

284 XEmacs Lisp Reference Manual

Functionwindow-minibuffer-p window
This function returns non-nil if window is a minibuffer window.

It is not correct to determine whether a given window is a minibuffer by comparing it
with the result of (minibuffer-window), because there can be more than one minibuffer
window if there is more than one frame.

Functionminibuffer-window-active-p window
This function returns non-nil if window, assumed to be a minibuffer window, is
currently active.

Variableminibuffer-scroll-window
If the value of this variable is non-nil, it should be a window object. When the
function scroll-other-window is called in the minibuffer, it scrolls this window.

Finally, some functions and variables deal with recursive minibuffers (see Section 19.10
[Recursive Editing], page 314):

Functionminibuffer-depth
This function returns the current depth of activations of the minibuffer, a nonnegative
integer. If no minibuffers are active, it returns zero.

User Optionenable-recursive-minibuffers
If this variable is non-nil, you can invoke commands (such as find-file) that use
minibuffers even while in the minibuffer window. Such invocation produces a recursive
editing level for a new minibuffer. The outer-level minibuffer is invisible while you
are editing the inner one.
This variable only affects invoking the minibuffer while the minibuffer window is
selected. If you switch windows while in the minibuffer, you can always invoke mini-
buffer commands while some other window is selected.

In FSF Emacs 19, if a command name has a property enable-recursive-minibuffers
that is non-nil, then the command can use the minibuffer to read arguments even if it is
invoked from the minibuffer. The minibuffer command next-matching-history-element
(normally M-s in the minibuffer) uses this feature.

This is not implemented in XEmacs because it is a kludge. If you want to explicitly set
the value of enable-recursive-minibuffers in this fashion, just use an evaluated inter-
active spec and bind enable-recursive-minibuffers while reading from the minibuffer.
See the definition of next-matching-history-element in ‘lisp/prim/minibuf.el’.

Chapter 19: Command Loop 285

19 Command Loop

When you run XEmacs, it enters the editor command loop almost immediately. This
loop reads events, executes their definitions, and displays the results. In this chapter, we
describe how these things are done, and the subroutines that allow Lisp programs to do
them.

19.1 Command Loop Overview

The command loop in XEmacs is a standard event loop, reading events one at a time
with next-event and handling them with dispatch-event. An event is typically a single
user action, such as a keypress, mouse movement, or menu selection; but they can also
be notifications from the window system, informing XEmacs that (for example) part of its
window was just uncovered and needs to be redrawn. See Section 19.5 [Events], page 294.
Pending events are held in a first-in, first-out list called the event queue: events are read
from the head of the list, and newly arriving events are added to the tail. In this way,
events are always processed in the order in which they arrive.

dispatch-event does most of the work of handling user actions. The first thing it
must do is put the events together into a key sequence, which is a sequence of events that
translates into a command. It does this by consulting the active keymaps, which specify
what the valid key sequences are and how to translate them into commands. See Section 20.8
[Key Lookup], page 328, for information on how this is done. The result of the translation
should be a keyboard macro or an interactively callable function. If the key is M-x, then
it reads the name of another command, which it then calls. This is done by the command
execute-extended-command (see Section 19.3 [Interactive Call], page 290).

To execute a command requires first reading the arguments for it. This is done by calling
command-execute (see Section 19.3 [Interactive Call], page 290). For commands written
in Lisp, the interactive specification says how to read the arguments. This may use the
prefix argument (see Section 19.9 [Prefix Command Arguments], page 312) or may read
with prompting in the minibuffer (see Chapter 18 [Minibuffers], page 265). For example,
the command find-file has an interactive specification which says to read a file name
using the minibuffer. The command’s function body does not use the minibuffer; if you
call this command from Lisp code as a function, you must supply the file name string as an
ordinary Lisp function argument.

If the command is a string or vector (i.e., a keyboard macro) then execute-kbd-macro is
used to execute it. You can call this function yourself (see Section 19.13 [Keyboard Macros],
page 317).

To terminate the execution of a running command, type C-g. This character causes
quitting (see Section 19.8 [Quitting], page 311).

Variablepre-command-hook
The editor command loop runs this normal hook before each command. At that
time, this-command contains the command that is about to run, and last-command
describes the previous command. See Section 26.4 [Hooks], page 382.

286 XEmacs Lisp Reference Manual

Variablepost-command-hook
The editor command loop runs this normal hook after each command. (In FSF Emacs,
it is also run when the command loop is entered, or reentered after an error or quit.)
At that time, this-command describes the command that just ran, and last-command
describes the command before that. See Section 26.4 [Hooks], page 382.

Quitting is suppressed while running pre-command-hook and post-command-hook. If
an error happens while executing one of these hooks, it terminates execution of the hook,
but that is all it does.

19.2 Defining Commands

A Lisp function becomes a command when its body contains, at top level, a form that
calls the special form interactive. This form does nothing when actually executed, but
its presence serves as a flag to indicate that interactive calling is permitted. Its argument
controls the reading of arguments for an interactive call.

19.2.1 Using interactive

This section describes how to write the interactive form that makes a Lisp function
an interactively-callable command.

Special Forminteractive arg-descriptor
This special form declares that the function in which it appears is a command, and
that it may therefore be called interactively (via M-x or by entering a key sequence
bound to it). The argument arg-descriptor declares how to compute the arguments
to the command when the command is called interactively.

A command may be called from Lisp programs like any other function, but then the
caller supplies the arguments and arg-descriptor has no effect.

The interactive form has its effect because the command loop (actually, its sub-
routine call-interactively) scans through the function definition looking for it,
before calling the function. Once the function is called, all its body forms including
the interactive form are executed, but at this time interactive simply returns
nil without even evaluating its argument.

There are three possibilities for the argument arg-descriptor:

• It may be omitted or nil; then the command is called with no arguments. This leads
quickly to an error if the command requires one or more arguments.

• It may be a Lisp expression that is not a string; then it should be a form that is
evaluated to get a list of arguments to pass to the command.
If this expression reads keyboard input (this includes using the minibuffer), keep in
mind that the integer value of point or the mark before reading input may be incorrect
after reading input. This is because the current buffer may be receiving subprocess

Chapter 19: Command Loop 287

output; if subprocess output arrives while the command is waiting for input, it could
relocate point and the mark.

Here’s an example of what not to do:

(interactive
(list (region-beginning) (region-end)

(read-string "Foo: " nil ’my-history)))

Here’s how to avoid the problem, by examining point and the mark only after reading
the keyboard input:

(interactive
(let ((string (read-string "Foo: " nil ’my-history)))

(list (region-beginning) (region-end) string)))

• It may be a string; then its contents should consist of a code character followed by a
prompt (which some code characters use and some ignore). The prompt ends either
with the end of the string or with a newline. Here is a simple example:

(interactive "bFrobnicate buffer: ")

The code letter ‘b’ says to read the name of an existing buffer, with completion. The
buffer name is the sole argument passed to the command. The rest of the string is a
prompt.

If there is a newline character in the string, it terminates the prompt. If the string
does not end there, then the rest of the string should contain another code character
and prompt, specifying another argument. You can specify any number of arguments
in this way.

The prompt string can use ‘%’ to include previous argument values (starting with the
first argument) in the prompt. This is done using format (see Section 4.10 [Formatting
Strings], page 69). For example, here is how you could read the name of an existing
buffer followed by a new name to give to that buffer:

(interactive "bBuffer to rename: \nsRename buffer %s to: ")

If the first character in the string is ‘*’, then an error is signaled if the buffer is read-only.

If the first character in the string is ‘@’, and if the key sequence used to invoke the
command includes any mouse events, then the window associated with the first of
those events is selected before the command is run.

If the first character in the string is ‘_’, then this command will not cause the region to
be deactivated when it completes; that is, zmacs-region-stays will be set to t when
the command exits successfully.

You can use ‘*’, ‘@’, and ‘_’ together; the order does not matter. Actual reading of
arguments is controlled by the rest of the prompt string (starting with the first character
that is not ‘*’, ‘@’, or ‘_’).

Functionfunction-interactive function
This function retrieves the interactive specification of function, which may be any
funcallable object. The specification will be returned as the list of the symbol
interactive and the specs. If function is not interactive, nil will be returned.

288 XEmacs Lisp Reference Manual

19.2.2 Code Characters for interactive

The code character descriptions below contain a number of key words, defined here as
follows:

Completion
Provide completion. 〈TAB〉, 〈SPC〉, and 〈RET〉 perform name completion because
the argument is read using completing-read (see Section 18.5 [Completion],
page 270). ? displays a list of possible completions.

Existing Require the name of an existing object. An invalid name is not accepted; the
commands to exit the minibuffer do not exit if the current input is not valid.

Default A default value of some sort is used if the user enters no text in the minibuffer.
The default depends on the code character.

No I/O This code letter computes an argument without reading any input. Therefore,
it does not use a prompt string, and any prompt string you supply is ignored.

Even though the code letter doesn’t use a prompt string, you must follow it
with a newline if it is not the last code character in the string.

Prompt A prompt immediately follows the code character. The prompt ends either with
the end of the string or with a newline.

Special This code character is meaningful only at the beginning of the interactive string,
and it does not look for a prompt or a newline. It is a single, isolated character.

Here are the code character descriptions for use with interactive:

‘*’ Signal an error if the current buffer is read-only. Special.

‘@’ Select the window mentioned in the first mouse event in the key sequence that
invoked this command. Special.

‘_’ Do not cause the region to be deactivated when this command completes. Spe-
cial.

‘a’ A function name (i.e., a symbol satisfying fboundp). Existing, Completion,
Prompt.

‘b’ The name of an existing buffer. By default, uses the name of the current buffer
(see Chapter 30 [Buffers], page 435). Existing, Completion, Default, Prompt.

‘B’ A buffer name. The buffer need not exist. By default, uses the name of a re-
cently used buffer other than the current buffer. Completion, Default, Prompt.

‘c’ A character. The cursor does not move into the echo area. Prompt.

‘C’ A command name (i.e., a symbol satisfying commandp). Existing, Completion,
Prompt.

‘d’ The position of point, as an integer (see Section 34.1 [Point], page 493). No
I/O.

Chapter 19: Command Loop 289

‘D’ A directory name. The default is the current default directory of the current
buffer, default-directory (see Section 50.3 [System Environment], page 708).
Existing, Completion, Default, Prompt.

‘e’ The last mouse-button or misc-user event in the key sequence that invoked the
command. No I/O.

You can use ‘e’ more than once in a single command’s interactive specification.
If the key sequence that invoked the command has n mouse-button or misc-user
events, the nth ‘e’ provides the nth such event.

‘f’ A file name of an existing file (see Section 28.8 [File Names], page 410). The de-
fault directory is default-directory. Existing, Completion, Default, Prompt.

‘F’ A file name. The file need not exist. Completion, Default, Prompt.

‘k’ A key sequence (see Section 20.1 [Keymap Terminology], page 319). This keeps
reading events until a command (or undefined command) is found in the current
key maps. The key sequence argument is represented as a vector of events. The
cursor does not move into the echo area. Prompt.

This kind of input is used by commands such as describe-key and global-
set-key.

‘K’ A key sequence, whose definition you intend to change. This works like ‘k’,
except that it suppresses, for the last input event in the key sequence, the
conversions that are normally used (when necessary) to convert an undefined
key into a defined one.

‘m’ The position of the mark, as an integer. No I/O.

‘n’ A number read with the minibuffer. If the input is not a number, the user is
asked to try again. The prefix argument, if any, is not used. Prompt.

‘N’ The raw prefix argument. If the prefix argument is nil, then read a number
as with n. Requires a number. See Section 19.9 [Prefix Command Arguments],
page 312. Prompt.

‘p’ The numeric prefix argument. (Note that this ‘p’ is lower case.) No I/O.

‘P’ The raw prefix argument. (Note that this ‘P’ is upper case.) No I/O.

‘r’ Point and the mark, as two numeric arguments, smallest first. This is the only
code letter that specifies two successive arguments rather than one. No I/O.

‘s’ Arbitrary text, read in the minibuffer and returned as a string (see Section 18.2
[Text from Minibuffer], page 266). Terminate the input with either 〈LFD〉 or
〈RET〉. (C-q may be used to include either of these characters in the input.)
Prompt.

‘S’ An interned symbol whose name is read in the minibuffer. Any whitespace char-
acter terminates the input. (Use C-q to include whitespace in the string.) Other
characters that normally terminate a symbol (e.g., parentheses and brackets)
do not do so here. Prompt.

290 XEmacs Lisp Reference Manual

‘v’ A variable declared to be a user option (i.e., satisfying the predicate user-
variable-p). See Section 18.5.4 [High-Level Completion], page 275. Existing,
Completion, Prompt.

‘x’ A Lisp object, specified with its read syntax, terminated with a 〈LFD〉 or
〈RET〉. The object is not evaluated. See Section 18.3 [Object from Minibuffer],
page 267. Prompt.

‘X’ A Lisp form is read as with x, but then evaluated so that its value becomes the
argument for the command. Prompt.

19.2.3 Examples of Using interactive

Here are some examples of interactive:
(defun foo1 () ; foo1 takes no arguments,

(interactive) ; just moves forward two words.
(forward-word 2))
⇒ foo1

(defun foo2 (n) ; foo2 takes one argument,
(interactive "p") ; which is the numeric prefix.
(forward-word (* 2 n)))
⇒ foo2

(defun foo3 (n) ; foo3 takes one argument,
(interactive "nCount:") ; which is read with the Minibuffer.
(forward-word (* 2 n)))
⇒ foo3

(defun three-b (b1 b2 b3)
"Select three existing buffers.

Put them into three windows, selecting the last one."
(interactive "bBuffer1:\nbBuffer2:\nbBuffer3:")
(delete-other-windows)
(split-window (selected-window) 8)
(switch-to-buffer b1)
(other-window 1)
(split-window (selected-window) 8)
(switch-to-buffer b2)
(other-window 1)
(switch-to-buffer b3))
⇒ three-b

(three-b "*scratch*" "declarations.texi" "*mail*")
⇒ nil

19.3 Interactive Call

After the command loop has translated a key sequence into a definition, it invokes that
definition using the function command-execute. If the definition is a function that is a

Chapter 19: Command Loop 291

command, command-execute calls call-interactively, which reads the arguments and
calls the command. You can also call these functions yourself.

Functioncommandp object
Returns t if object is suitable for calling interactively; that is, if object is a command.
Otherwise, returns nil.
The interactively callable objects include strings and vectors (treated as keyboard
macros), lambda expressions that contain a top-level call to interactive, compiled-
function objects made from such lambda expressions, autoload objects that are de-
clared as interactive (non-nil fourth argument to autoload), and some of the prim-
itive functions.
A symbol is commandp if its function definition is commandp.
Keys and keymaps are not commands. Rather, they are used to look up commands
(see Chapter 20 [Keymaps], page 319).
See documentation in Section 27.2 [Accessing Documentation], page 386, for a real-
istic example of using commandp.

Functioncall-interactively command &optional record-flag
This function calls the interactively callable function command, reading arguments
according to its interactive calling specifications. An error is signaled if command is
not a function or if it cannot be called interactively (i.e., is not a command). Note
that keyboard macros (strings and vectors) are not accepted, even though they are
considered commands, because they are not functions.
If record-flag is the symbol lambda, the interactive calling arguments for command are
read and returned as a list, but the function is not called on them.
If record-flag is t, then this command and its arguments are unconditionally added
to the list command-history. Otherwise, the command is added only if it uses the
minibuffer to read an argument. See Section 19.12 [Command History], page 317.

Functioncommand-execute command &optional record-flag
This function executes command as an editing command. The argument command
must satisfy the commandp predicate; i.e., it must be an interactively callable function
or a keyboard macro.
A string or vector as command is executed with execute-kbd-macro. A function is
passed to call-interactively, along with the optional record-flag.
A symbol is handled by using its function definition in its place. A symbol with an
autoload definition counts as a command if it was declared to stand for an interac-
tively callable function. Such a definition is handled by loading the specified library
and then rechecking the definition of the symbol.

Commandexecute-extended-command prefix-argument
This function reads a command name from the minibuffer using completing-read
(see Section 18.5 [Completion], page 270). Then it uses command-execute to call the
specified command. Whatever that command returns becomes the value of execute-
extended-command.

292 XEmacs Lisp Reference Manual

If the command asks for a prefix argument, it receives the value prefix-argument. If
execute-extended-command is called interactively, the current raw prefix argument
is used for prefix-argument, and thus passed on to whatever command is run.
execute-extended-command is the normal definition of M-x, so it uses the string
‘M-x ’ as a prompt. (It would be better to take the prompt from the events used to
invoke execute-extended-command, but that is painful to implement.) A description
of the value of the prefix argument, if any, also becomes part of the prompt.

(execute-extended-command 1)
---------- Buffer: Minibuffer ----------
1 M-x forward-word RET
---------- Buffer: Minibuffer ----------

⇒ t

Functioninteractive-p
This function returns t if the containing function (the one that called interactive-
p) was called interactively, with the function call-interactively. (It makes no
difference whether call-interactively was called from Lisp or directly from the
editor command loop.) If the containing function was called by Lisp evaluation (or
with apply or funcall), then it was not called interactively.
The most common use of interactive-p is for deciding whether to print an infor-
mative message. As a special exception, interactive-p returns nil whenever a
keyboard macro is being run. This is to suppress the informative messages and speed
execution of the macro.
For example:

(defun foo ()
(interactive)
(and (interactive-p)

(message "foo")))
⇒ foo

(defun bar ()
(interactive)
(setq foobar (list (foo) (interactive-p))))
⇒ bar

;; Type M-x foo.
a foo

;; Type M-x bar.
;; This does not print anything.

foobar
⇒ (nil t)

19.4 Information from the Command Loop

The editor command loop sets several Lisp variables to keep status records for itself and
for commands that are run.

Chapter 19: Command Loop 293

Variablelast-command
This variable records the name of the previous command executed by the command
loop (the one before the current command). Normally the value is a symbol with a
function definition, but this is not guaranteed.
The value is copied from this-command when a command returns to the command
loop, except when the command specifies a prefix argument for the following com-
mand.

Variablethis-command
This variable records the name of the command now being executed by the editor
command loop. Like last-command, it is normally a symbol with a function definition.
The command loop sets this variable just before running a command, and copies its
value into last-command when the command finishes (unless the command specifies
a prefix argument for the following command).
Some commands set this variable during their execution, as a flag for whatever com-
mand runs next. In particular, the functions for killing text set this-command to
kill-region so that any kill commands immediately following will know to append
the killed text to the previous kill.

If you do not want a particular command to be recognized as the previous command in
the case where it got an error, you must code that command to prevent this. One way is
to set this-command to t at the beginning of the command, and set this-command back to
its proper value at the end, like this:

(defun foo (args...)
(interactive ...)
(let ((old-this-command this-command))

(setq this-command t)
. . .do the work. . .
(setq this-command old-this-command)))

Functionthis-command-keys
This function returns a vector containing the key and mouse events that invoked the
present command, plus any previous commands that generated the prefix argument
for this command. (Note: this is not the same as in FSF Emacs, which can return a
string.) See Section 19.5 [Events], page 294.
This function copies the vector and the events; it is safe to keep and modify them.

(this-command-keys)
;; Now use C-u C-x C-e to evaluate that.

⇒ [#<keypress-event control-U> #<keypress-event control-X> #<keypress-event control-E>]

Variablelast-command-event
This variable is set to the last input event that was read by the command loop as
part of a command. The principal use of this variable is in self-insert-command,
which uses it to decide which character to insert.
This variable is off limits: you may not set its value or modify the event that is its
value, as it is destructively modified by read-key-sequence. If you want to keep a
pointer to this value, you must use copy-event.

294 XEmacs Lisp Reference Manual

Note that this variable is an alias for last-command-char in FSF Emacs.
last-command-event
;; Now type C-u C-x C-e.

⇒ #<keypress-event control-E>

Variablelast-command-char
If the value of last-command-event is a keyboard event, then this is the nearest char-
acter equivalent to it (or nil if there is no character equivalent). last-command-char
is the character that self-insert-command will insert in the buffer. Remember that
there is not a one-to-one mapping between keyboard events and XEmacs characters:
many keyboard events have no corresponding character, and when the Mule feature
is available, most characters can not be input on standard keyboards, except possi-
bly with help from an input method. So writing code that examines this variable to
determine what key has been typed is bad practice, unless you are certain that it will
be one of a small set of characters.
This variable exists for compatibility with Emacs version 18.

last-command-char
;; Now use C-u C-x C-e to evaluate that.

⇒ ?\^E

Variablecurrent-mouse-event
This variable holds the mouse-button event which invoked this command, or nil.
This is what (interactive "e") returns.

Variableecho-keystrokes
This variable determines how much time should elapse before command characters
echo. Its value must be an integer, which specifies the number of seconds to wait
before echoing. If the user types a prefix key (say C-x) and then delays this many
seconds before continuing, the key C-x is echoed in the echo area. Any subsequent
characters in the same command will be echoed as well.
If the value is zero, then command input is not echoed.

19.5 Events

The XEmacs command loop reads a sequence of events that represent keyboard or mouse
activity. Unlike in Emacs 18 and in FSF Emacs, events are a primitive Lisp type that must
be manipulated using their own accessor and settor primitives. This section describes the
representation and meaning of input events in detail.

A key sequence that starts with a mouse event is read using the keymaps of the buffer
in the window that the mouse was in, not the current buffer. This does not imply that
clicking in a window selects that window or its buffer—that is entirely under the control of
the command binding of the key sequence.

For information about how exactly the XEmacs command loop works, See Section 19.6
[Reading Input], page 306.

Chapter 19: Command Loop 295

Functioneventp object
This function returns non-nil if event is an input event.

19.5.1 Event Types

Events represent keyboard or mouse activity or status changes of various sorts, such as
process input being available or a timeout being triggered. The different event types are as
follows:

key-press event
A key was pressed. Note that modifier keys such as “control”, “shift”, and
“alt” do not generate events; instead, they are tracked internally by XEmacs,
and non-modifier key presses generate events that specify both the key pressed
and the modifiers that were held down at the time.

button-press event
button-release event

A button was pressed or released. Along with the button that was pressed or
released, button events specify the modifier keys that were held down at the
time and the position of the pointer at the time.

motion event
The pointer was moved. Along with the position of the pointer, these events
also specify the modifier keys that were held down at the time.

misc-user event
A menu item was selected, the scrollbar was used, or a drag or a drop occurred.

process event
Input is available on a process.

timeout event
A timeout has triggered.

magic event
Some window-system-specific action (such as a frame being resized or a portion
of a frame needing to be redrawn) has occurred. The contents of this event are
not accessible at the E-Lisp level, but dispatch-event knows what to do with
an event of this type.

eval event This is a special kind of event specifying that a particular function needs to be
called when this event is dispatched. An event of this type is sometimes placed
in the event queue when a magic event is processed. This kind of event should
generally just be passed off to dispatch-event. See Section 19.6.3 [Dispatching
an Event], page 308.

19.5.2 Contents of the Different Types of Events

Every event, no matter what type it is, contains a timestamp (which is typically an offset
in milliseconds from when the X server was started) indicating when the event occurred.

296 XEmacs Lisp Reference Manual

In addition, many events contain a channel, which specifies which frame the event occurred
on, and/or a value indicating which modifier keys (shift, control, etc.) were held down at
the time of the event.

The contents of each event are as follows:

key-press event
channel

timestamp

key Which key was pressed. This is an integer (in the printing ASCII

range: >32 and <127) or a symbol such as left or right. Note
that many physical keys are actually treated as two separate keys,
depending on whether the shift key is pressed; for example, the “a”
key is treated as either “a” or “A” depending on the state of the
shift key, and the “1” key is similarly treated as either “1” or “!”
on most keyboards. In such cases, the shift key does not show up
in the modifier list. For other keys, such as backspace, the shift
key shows up as a regular modifier.

modifiers Which modifier keys were pressed. As mentioned above, the shift
key is not treated as a modifier for many keys and will not show
up in this list in such cases.

button-press event
button-release event

channel

timestamp

button What button went down or up. Buttons are numbered starting at
1.

modifiers Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

x
y The position of the pointer (in pixels) at the time of the event.

pointer-motion event
channel

timestamp

x
y The position of the pointer (in pixels) after it moved.

modifiers Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

misc-user event
timestamp

function The E-Lisp function to call for this event. This is normally either
eval or call-interactively.

Chapter 19: Command Loop 297

object The object to pass to the function. This is normally the callback
that was specified in the menu description.

button What button went down or up. Buttons are numbered starting at
1.

modifiers Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

x
y The position of the pointer (in pixels) at the time of the event.

process event
timestamp

process The Emacs “process” object in question.

timeout event
timestamp

function The E-Lisp function to call for this timeout. It is called with one
argument, the event.

object Some Lisp object associated with this timeout, to make it easier
to tell them apart. The function and object for this event were
specified when the timeout was set.

magic event
timestamp

(The rest of the information in this event is not user-accessible.)

eval event

timestamp

function An E-Lisp function to call when this event is dispatched.

object The object to pass to the function. The function and object are set
when the event is created.

Functionevent-type event
Return the type of event.
This will be a symbol; one of

key-press
A key was pressed.

button-press
A mouse button was pressed.

button-release
A mouse button was released.

motion The mouse moved.

298 XEmacs Lisp Reference Manual

misc-user
Some other user action happened; typically, this is a menu selection,
scrollbar action, or drag and drop action.

process Input is available from a subprocess.

timeout A timeout has expired.

eval This causes a specified action to occur when dispatched.

magic Some window-system-specific event has occurred.

19.5.3 Event Predicates

The following predicates return whether an object is an event of a particular type.

Functionkey-press-event-p object
This is true if object is a key-press event.

Functionbutton-event-p object object
This is true if object is a mouse button-press or button-release event.

Functionbutton-press-event-p object
This is true if object is a mouse button-press event.

Functionbutton-release-event-p object
This is true if object is a mouse button-release event.

Functionmotion-event-p object
This is true if object is a mouse motion event.

Functionmouse-event-p object
This is true if object is a mouse button-press, button-release or motion event.

Functioneval-event-p object
This is true if object is an eval event.

Functionmisc-user-event-p object
This is true if object is a misc-user event.

Functionprocess-event-p object
This is true if object is a process event.

Functiontimeout-event-p object
This is true if object is a timeout event.

Functionevent-live-p object
This is true if object is any event that has not been deallocated.

Chapter 19: Command Loop 299

19.5.4 Accessing the Position of a Mouse Event

Unlike other events, mouse events (i.e. motion, button-press, button-release, and drag or
drop type misc-user events) occur in a particular location on the screen. Many primitives
are provided for determining exactly where the event occurred and what is under that
location.

19.5.4.1 Frame-Level Event Position Info

The following functions return frame-level information about where a mouse event oc-
curred.

Functionevent-frame event
This function returns the “channel” or frame that the given mouse motion, button
press, button release, or misc-user event occurred in. This will be nil for non-mouse
events.

Functionevent-x-pixel event
This function returns the X position in pixels of the given mouse event. The value
returned is relative to the frame the event occurred in. This will signal an error if the
event is not a mouse event.

Functionevent-y-pixel event
This function returns the Y position in pixels of the given mouse event. The value
returned is relative to the frame the event occurred in. This will signal an error if the
event is not a mouse event.

19.5.4.2 Window-Level Event Position Info

The following functions return window-level information about where a mouse event
occurred.

Functionevent-window event
Given a mouse motion, button press, button release, or misc-user event, compute
and return the window on which that event occurred. This may be nil if the event
occurred in the border or over a toolbar. The modeline is considered to be within the
window it describes.

Functionevent-buffer event
Given a mouse motion, button press, button release, or misc-user event, compute and
return the buffer of the window on which that event occurred. This may be nil if
the event occurred in the border or over a toolbar. The modeline is considered to be
within the window it describes. This is equivalent to calling event-window and then
calling window-buffer on the result if it is a window.

300 XEmacs Lisp Reference Manual

Functionevent-window-x-pixel event
This function returns the X position in pixels of the given mouse event. The value
returned is relative to the window the event occurred in. This will signal an error if
the event is not a mouse-motion, button-press, button-release, or misc-user event.

Functionevent-window-y-pixel event
This function returns the Y position in pixels of the given mouse event. The value
returned is relative to the window the event occurred in. This will signal an error if
the event is not a mouse-motion, button-press, button-release, or misc-user event.

19.5.4.3 Event Text Position Info

The following functions return information about the text (including the modeline) that
a mouse event occurred over or near.

Functionevent-over-text-area-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over the text area of a window. Otherwise, nil is returned.
The modeline is not considered to be part of the text area.

Functionevent-over-modeline-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over the modeline of a window. Otherwise, nil is returned.

Functionevent-x event
This function returns the X position of the given mouse-motion, button-press, button-
release, or misc-user event in characters. This is relative to the window the event
occurred over.

Functionevent-y event
This function returns the Y position of the given mouse-motion, button-press, button-
release, or misc-user event in characters. This is relative to the window the event
occurred over.

Functionevent-point event
This function returns the character position of the given mouse-motion, button-press,
button-release, or misc-user event. If the event did not occur over a window, or did
not occur over text, then this returns nil. Otherwise, it returns an index into the
buffer visible in the event’s window.

Functionevent-closest-point event
This function returns the character position of the given mouse-motion, button-press,
button-release, or misc-user event. If the event did not occur over a window or over
text, it returns the closest point to the location of the event. If the Y pixel position
overlaps a window and the X pixel position is to the left of that window, the closest

Chapter 19: Command Loop 301

point is the beginning of the line containing the Y position. If the Y pixel position
overlaps a window and the X pixel position is to the right of that window, the closest
point is the end of the line containing the Y position. If the Y pixel position is above a
window, 0 is returned. If it is below a window, the value of (window-end) is returned.

19.5.4.4 Event Glyph Position Info

The following functions return information about the glyph (if any) that a mouse event
occurred over.

Functionevent-over-glyph-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over a glyph. Otherwise, nil is returned.

Functionevent-glyph-extent event
If the given mouse-motion, button-press, button-release, or misc-user event happened
on top of a glyph, this returns its extent; else nil is returned.

Functionevent-glyph-x-pixel event
Given a mouse-motion, button-press, button-release, or misc-user event over a glyph,
this function returns the X position of the pointer relative to the upper left of the
glyph. If the event is not over a glyph, it returns nil.

Functionevent-glyph-y-pixel event
Given a mouse-motion, button-press, button-release, or misc-user event over a glyph,
this function returns the Y position of the pointer relative to the upper left of the
glyph. If the event is not over a glyph, it returns nil.

19.5.4.5 Event Toolbar Position Info

Functionevent-over-toolbar-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over a toolbar. Otherwise, nil is returned.

Functionevent-toolbar-button event
If the given mouse-motion, button-press, button-release, or misc-user event happened
on top of a toolbar button, this function returns the button. Otherwise, nil is
returned.

19.5.4.6 Other Event Position Info

Functionevent-over-border-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over an internal toolbar. Otherwise, nil is returned.

302 XEmacs Lisp Reference Manual

19.5.5 Accessing the Other Contents of Events

The following functions allow access to the contents of events other than the position
info described in the previous section.

Functionevent-timestamp event
This function returns the timestamp of the given event object.

Functionevent-device event
This function returns the device that the given event occurred on.

Functionevent-key event
This function returns the Keysym of the given key-press event. This will be the
ASCII code of a printing character, or a symbol.

Functionevent-button event
This function returns the button-number of the given button-press or button-release
event.

Functionevent-modifiers event
This function returns a list of symbols, the names of the modifier keys which were
down when the given mouse or keyboard event was produced.

Functionevent-modifier-bits event
This function returns a number representing the modifier keys which were down when
the given mouse or keyboard event was produced.

Functionevent-function event
This function returns the callback function of the given timeout, misc-user, or eval
event.

Functionevent-object event
This function returns the callback function argument of the given timeout, misc-user,
or eval event.

Functionevent-process event
This function returns the process of the given process event.

19.5.6 Working With Events

XEmacs provides primitives for creating, copying, and destroying event objects. Many
functions that return events take an event object as an argument and fill in the fields of this
event; or they make accept either an event object or nil, creating the event object first in
the latter case.

Chapter 19: Command Loop 303

Functionmake-event &optional type plist
This function creates a new event structure. If no arguments are specified, the cre-
ated event will be empty. To specify the event type, use the type argument. The
allowed types are empty, key-press, button-press, button-release, motion, or
misc-user.
plist is a property list, the properties being compatible to those returned by event-
properties. For events other than empty, it is mandatory to specify certain prop-
erties. For empty events, plist must be nil. The list is canonicalized, which means
that if a property keyword is present more than once, only the first instance is taken
into account. Specifying an unknown or illegal property signals an error.
The following properties are allowed:

channel The event channel. This is a frame or a console. For mouse events (of type
button-press, button-release and motion), this must be a frame. For
key-press events, it must be a console. If channel is unspecified by plist,
it will be set to the selected frame or selected console, as appropriate.

key The event key. This is either a symbol or a character. It is allowed (and
required) only for key-press events.

button The event button. This an integer, either 1, 2 or 3. It is allowed only for
button-press and button-release events.

modifiers
The event modifiers. This is a list of modifier symbols. It is allowed for
key-press, button-press, button-release and motion events.

x The event X coordinate. This is an integer. It is relative to the channel’s
root window, and is allowed for button-press, button-release and motion
events.

y The event Y coordinate. This is an integer. It is relative to the chan-
nel’s root window, and is allowed for button-press, button-release and
motion events. This means that, for instance, to access the toolbar, the
y property will have to be negative.

timestamp
The event timestamp, a non-negative integer. Allowed for all types of
events.

WARNING : the event object returned by this function may be a reused one; see the
function deallocate-event.
The events created by make-event can be used as non-interactive arguments to the
functions with an (interactive "e") specification.
Here are some basic examples of usage:

;; Create an empty event.
(make-event)

⇒ #<empty-event>

;; Try creating a key-press event.
(make-event ’key-press)

error Undefined key for keypress event

304 XEmacs Lisp Reference Manual

;; Creating a key-press event, try 2
(make-event ’key-press ’(key home))

⇒ #<keypress-event home>

;; Create a key-press event of dubious fame.
(make-event ’key-press ’(key escape modifiers (meta alt control shift)))

⇒ #<keypress-event control-meta-alt-shift-escape>

;; Create a M-button1 event at coordinates defined by variables
;; x and y.
(make-event ’button-press ‘(button 1 modifiers (meta) x ,x y ,y))

⇒ #<buttondown-event meta-button1>

;; Create a similar button-release event.
(make-event ’button-release ‘(button 1 modifiers (meta) x ,x y ,x))

⇒ #<buttonup-event meta-button1up>

;; Create a mouse-motion event.
(make-event ’motion ’(x 20 y 30))

⇒ #<motion-event 20, 30>

(event-properties (make-event ’motion ’(x 20 y 30)))
⇒ (channel #<x-frame "emacs" 0x8e2> x 20 y 30

modifiers nil timestamp 0)

In conjunction with event-properties, you can use make-event to create modified
copies of existing events. For instance, the following code will return an equal copy
of event:

(make-event (event-type event)
(event-properties event))

Note, however, that you cannot use make-event as the generic replacement for copy-
event, because it does not allow creating all of the event types.
To create a modified copy of an event, you can use the canonicalization feature of
plist. The following example creates a copy of event, but with modifiers reset to
nil.

(make-event (event-type event)
(append ’(modifiers nil)

(event-properties event)))

Functioncopy-event event1 &optional event2
This function makes a copy of the given event object. If a second argument is given,
the first event is copied into the second and the second is returned. If the second
argument is not supplied (or is nil) then a new event will be made.

Functiondeallocate-event event
This function allows the given event structure to be reused. You MUST NOT use this
event object after calling this function with it. You will lose. It is not necessary to call
this function, as event objects are garbage-collected like all other objects; however, it
may be more efficient to explicitly deallocate events when you are sure that that is
safe.

Chapter 19: Command Loop 305

19.5.7 Converting Events

XEmacs provides some auxiliary functions for converting between events and other ways
of representing keys. These are useful when working with ASCII strings and with keymaps.

Functioncharacter-to-event ch &optional event device
This function converts a numeric ASCII value to an event structure, replete with
modifier bits. ch is the character to convert, and event is the event object to fill in.
This function contains knowledge about what the codes “mean” – for example, the
number 9 is converted to the character 〈Tab〉, not the distinct character 〈Control-I〉.

Note that ch does not have to be a numeric value, but can be a symbol such as clear
or a list such as (control backspace).

If event is not nil, it is modified; otherwise, a new event object is created. In both
cases, the event is returned.

Optional third arg device is the device to store in the event; this also affects whether
the high bit is interpreted as a meta key. A value of nil means use the selected device
but always treat the high bit as meta.

Beware that character-to-event and event-to-character are not strictly inverse
functions, since events contain much more information than the ASCII character set
can encode.

Functionevent-to-character event &optional allow-extra-modifiers allow-meta
allow-non-ascii

This function returns the closest ASCII approximation to event. If the event isn’t a
keypress, this returns nil.

If allow-extra-modifiers is non-nil, then this is lenient in its translation; it will ignore
modifier keys other than 〈control〉 and 〈meta〉, and will ignore the 〈shift〉 modifier on those
characters which have no shifted ASCII equivalent (〈Control-Shift-A〉 for example, will
be mapped to the same ASCII code as 〈Control-A〉).

If allow-meta is non-nil, then the 〈Meta〉 modifier will be represented by turning on
the high bit of the byte returned; otherwise, nil will be returned for events containing
the 〈Meta〉 modifier.

If allow-non-ascii is non-nil, then characters which are present in the prevailing
character set (see Chapter 20 [Keymaps], page 319) will be returned as their code in
that character set, instead of the return value being restricted to ASCII.

Note that specifying both allow-meta and allow-non-ascii is ambiguous, as both use
the high bit; 〈M-x〉 and 〈oslash〉 will be indistinguishable.

Functionevents-to-keys events &optional no-mice
Given a vector of event objects, this function returns a vector of key descriptors, or a
string (if they all fit in the ASCII range). Optional arg no-mice means that button
events are not allowed.

306 XEmacs Lisp Reference Manual

19.6 Reading Input

The editor command loop reads keyboard input using the function next-event and
constructs key sequences out of the events using dispatch-event. Lisp programs can also
use the function read-key-sequence, which reads input a key sequence at a time. See also
momentary-string-display in Section 45.8 [Temporary Displays], page 666, and sit-
for in Section 19.7 [Waiting], page 310. See Section 50.8 [Terminal Input], page 716, for
functions and variables for controlling terminal input modes and debugging terminal input.

For higher-level input facilities, see Chapter 18 [Minibuffers], page 265.

19.6.1 Key Sequence Input

Lisp programs can read input a key sequence at a time by calling read-key-sequence;
for example, describe-key uses it to read the key to describe.

Functionread-key-sequence prompt
This function reads a sequence of keystrokes or mouse clicks and returns it as a vector
of events. It keeps reading events until it has accumulated a full key sequence; that
is, enough to specify a non-prefix command using the currently active keymaps.

The vector and the event objects it contains are freshly created, and will not be
side-effected by subsequent calls to this function.

The function read-key-sequence suppresses quitting: C-g typed while reading with
this function works like any other character, and does not set quit-flag. See Sec-
tion 19.8 [Quitting], page 311.

The argument prompt is either a string to be displayed in the echo area as a prompt,
or nil, meaning not to display a prompt.

If the user selects a menu item while we are prompting for a key sequence, the returned
value will be a vector of a single menu-selection event (a misc-user event). An error
will be signalled if you pass this value to lookup-key or a related function.

In the example below, the prompt ‘?’ is displayed in the echo area, and the user types
C-x C-f.

(read-key-sequence "?")

---------- Echo Area ----------
?C-x C-f
---------- Echo Area ----------

⇒ [#<keypress-event control-X> #<keypress-event control-F>]

If an input character is an upper-case letter and has no key binding, but its lower-case
equivalent has one, then read-key-sequence converts the character to lower case. Note
that lookup-key does not perform case conversion in this way.

Chapter 19: Command Loop 307

19.6.2 Reading One Event

The lowest level functions for command input are those which read a single event.
These functions often make a distinction between command events, which are user actions
(keystrokes and mouse actions), and other events, which serve as communication between
XEmacs and the window system.

Functionnext-event &optional event prompt
This function reads and returns the next available event from the window system
or terminal driver, waiting if necessary until an event is available. Pass this object
to dispatch-event to handle it. If an event object is supplied, it is filled in and
returned; otherwise a new event object will be created.
Events can come directly from the user, from a keyboard macro, or from unread-
command-events.
In most cases, the function next-command-event is more appropriate.

Functionnext-command-event &optional event
This function returns the next available “user” event from the window system or
terminal driver. Pass this object to dispatch-event to handle it. If an event object
is supplied, it is filled in and returned, otherwise a new event object will be created.
The event returned will be a keyboard, mouse press, or mouse release event. If there
are non-command events available (mouse motion, sub-process output, etc) then these
will be executed (with dispatch-event) and discarded. This function is provided as
a convenience; it is equivalent to the Lisp code

(while (progn
(next-event event)

(not (or (key-press-event-p event)
(button-press-event-p event)
(button-release-event-p event)
(menu-event-p event))))

(dispatch-event event))

Here is what happens if you call next-command-event and then press the right-arrow
function key:

(next-command-event)
⇒ #<keypress-event right>

Functionread-char
This function reads and returns a character of command input. If a mouse click is
detected, an error is signalled. The character typed is returned as an ASCII value.
This function is retained for compatibility with Emacs 18, and is most likely the
wrong thing for you to be using: consider using next-command-event instead.

Functionenqueue-eval-event function object
This function adds an eval event to the back of the queue. The eval event will be the
next event read after all pending events.

308 XEmacs Lisp Reference Manual

19.6.3 Dispatching an Event

Functiondispatch-event event
Given an event object returned by next-event, this function executes it. This is
the basic function that makes XEmacs respond to user input; it also deals with
notifications from the window system (such as Expose events).

19.6.4 Quoted Character Input

You can use the function read-quoted-char to ask the user to specify a character, and
allow the user to specify a control or meta character conveniently, either literally or as an
octal character code. The command quoted-insert uses this function.

Functionread-quoted-char &optional prompt
This function is like read-char, except that if the first character read is an octal digit
(0-7), it reads up to two more octal digits (but stopping if a non-octal digit is found)
and returns the character represented by those digits in octal.
Quitting is suppressed when the first character is read, so that the user can enter a
C-g. See Section 19.8 [Quitting], page 311.
If prompt is supplied, it specifies a string for prompting the user. The prompt string
is always displayed in the echo area, followed by a single ‘-’.
In the following example, the user types in the octal number 177 (which is 127 in
decimal).

(read-quoted-char "What character")

---------- Echo Area ----------
What character-177
---------- Echo Area ----------

⇒ 127

19.6.5 Miscellaneous Event Input Features

This section describes how to “peek ahead” at events without using them up, how to
check for pending input, and how to discard pending input.

See also the variables last-command-event and last-command-char (Section 19.4
[Command Loop Info], page 292).

Variableunread-command-events
This variable holds a list of events waiting to be read as command input. The events
are used in the order they appear in the list, and removed one by one as they are
used.

Chapter 19: Command Loop 309

The variable is needed because in some cases a function reads a event and then decides
not to use it. Storing the event in this variable causes it to be processed normally, by
the command loop or by the functions to read command input.

For example, the function that implements numeric prefix arguments reads any num-
ber of digits. When it finds a non-digit event, it must unread the event so that it
can be read normally by the command loop. Likewise, incremental search uses this
feature to unread events with no special meaning in a search, because these events
should exit the search and then execute normally.

Variableunread-command-event
This variable holds a single event to be read as command input.

This variable is mostly obsolete now that you can use unread-command-events in-
stead; it exists only to support programs written for versions of XEmacs prior to
19.12.

Functioninput-pending-p
This function determines whether any command input is currently available to be
read. It returns immediately, with value t if there is available input, nil otherwise.
On rare occasions it may return t when no input is available.

Variablelast-input-event
This variable is set to the last keyboard or mouse button event received.

This variable is off limits: you may not set its value or modify the event that is its
value, as it is destructively modified by read-key-sequence. If you want to keep a
pointer to this value, you must use copy-event.

Note that this variable is an alias for last-input-char in FSF Emacs.

In the example below, a character is read (the character 1). It becomes the value
of last-input-event, while C-e (from the C-x C-e command used to evaluate this
expression) remains the value of last-command-event.

(progn (print (next-command-event))
(print last-command-event)
last-input-event)
a #<keypress-event 1>
a #<keypress-event control-E>
⇒ #<keypress-event 1>

Variablelast-input-char
If the value of last-input-event is a keyboard event, then this is the nearest ASCII

equivalent to it. Remember that there is not a 1:1 mapping between keyboard events
and ASCII characters: the set of keyboard events is much larger, so writing code
that examines this variable to determine what key has been typed is bad practice,
unless you are certain that it will be one of a small set of characters.

This function exists for compatibility with Emacs version 18.

310 XEmacs Lisp Reference Manual

Functiondiscard-input
This function discards the contents of the terminal input buffer and cancels any
keyboard macro that might be in the process of definition. It returns nil.

In the following example, the user may type a number of characters right after starting
the evaluation of the form. After the sleep-for finishes sleeping, discard-input
discards any characters typed during the sleep.

(progn (sleep-for 2)
(discard-input))

⇒ nil

19.7 Waiting for Elapsed Time or Input

The wait functions are designed to wait for a certain amount of time to pass or until
there is input. For example, you may wish to pause in the middle of a computation to allow
the user time to view the display. sit-for pauses and updates the screen, and returns
immediately if input comes in, while sleep-for pauses without updating the screen.

Note that in FSF Emacs, the commands sit-for and sleep-for take two arguments
to specify the time (one integer and one float value), instead of a single argument that can
be either an integer or a float.

Functionsit-for seconds &optional nodisp
This function performs redisplay (provided there is no pending input from the user),
then waits seconds seconds, or until input is available. The result is t if sit-for
waited the full time with no input arriving (see input-pending-p in Section 19.6.5
[Peeking and Discarding], page 308). Otherwise, the value is nil.

The argument seconds need not be an integer. If it is a floating point number, sit-
for waits for a fractional number of seconds.

Redisplay is normally preempted if input arrives, and does not happen at all if input
is available before it starts. (You can force screen updating in such a case by using
force-redisplay. See Section 45.1 [Refresh Screen], page 657.) If there is no input
pending, you can force an update with no delay by using (sit-for 0).

If nodisp is non-nil, then sit-for does not redisplay, but it still returns as soon as
input is available (or when the timeout elapses).

The usual purpose of sit-for is to give the user time to read text that you display.

Functionsleep-for seconds
This function simply pauses for seconds seconds without updating the display. This
function pays no attention to available input. It returns nil.

The argument seconds need not be an integer. If it is a floating point number, sleep-
for waits for a fractional number of seconds.

Use sleep-for when you wish to guarantee a delay.

See Section 50.5 [Time of Day], page 712, for functions to get the current time.

Chapter 19: Command Loop 311

19.8 Quitting

Typing C-g while a Lisp function is running causes XEmacs to quit whatever it is doing.
This means that control returns to the innermost active command loop.

Typing C-g while the command loop is waiting for keyboard input does not cause a quit;
it acts as an ordinary input character. In the simplest case, you cannot tell the difference,
because C-g normally runs the command keyboard-quit, whose effect is to quit. However,
when C-g follows a prefix key, the result is an undefined key. The effect is to cancel the
prefix key as well as any prefix argument.

In the minibuffer, C-g has a different definition: it aborts out of the minibuffer. This
means, in effect, that it exits the minibuffer and then quits. (Simply quitting would return
to the command loop within the minibuffer.) The reason why C-g does not quit directly
when the command reader is reading input is so that its meaning can be redefined in the
minibuffer in this way. C-g following a prefix key is not redefined in the minibuffer, and it
has its normal effect of canceling the prefix key and prefix argument. This too would not
be possible if C-g always quit directly.

When C-g does directly quit, it does so by setting the variable quit-flag to t. XEmacs
checks this variable at appropriate times and quits if it is not nil. Setting quit-flag
non-nil in any way thus causes a quit.

At the level of C code, quitting cannot happen just anywhere; only at the special places
that check quit-flag. The reason for this is that quitting at other places might leave an
inconsistency in XEmacs’s internal state. Because quitting is delayed until a safe place,
quitting cannot make XEmacs crash.

Certain functions such as read-key-sequence or read-quoted-char prevent quitting
entirely even though they wait for input. Instead of quitting, C-g serves as the requested
input. In the case of read-key-sequence, this serves to bring about the special behavior
of C-g in the command loop. In the case of read-quoted-char, this is so that C-q can be
used to quote a C-g.

You can prevent quitting for a portion of a Lisp function by binding the variable
inhibit-quit to a non-nil value. Then, although C-g still sets quit-flag to t as usual,
the usual result of this—a quit—is prevented. Eventually, inhibit-quit will become nil
again, such as when its binding is unwound at the end of a let form. At that time, if
quit-flag is still non-nil, the requested quit happens immediately. This behavior is ideal
when you wish to make sure that quitting does not happen within a “critical section” of
the program.

In some functions (such as read-quoted-char), C-g is handled in a special way that
does not involve quitting. This is done by reading the input with inhibit-quit bound to
t, and setting quit-flag to nil before inhibit-quit becomes nil again. This excerpt
from the definition of read-quoted-char shows how this is done; it also shows that normal
quitting is permitted after the first character of input.

(defun read-quoted-char (&optional prompt)
"...documentation..."
(let ((count 0) (code 0) char)

(while (< count 3)

312 XEmacs Lisp Reference Manual

(let ((inhibit-quit (zerop count))
(help-form nil))

(and prompt (message "%s-" prompt))
(setq char (read-char))
(if inhibit-quit (setq quit-flag nil)))

...)
(logand 255 code)))

Variablequit-flag
If this variable is non-nil, then XEmacs quits immediately, unless inhibit-quit is
non-nil. Typing C-g ordinarily sets quit-flag non-nil, regardless of inhibit-quit.

Variableinhibit-quit
This variable determines whether XEmacs should quit when quit-flag is set to a
value other than nil. If inhibit-quit is non-nil, then quit-flag has no special
effect.

Commandkeyboard-quit
This function signals the quit condition with (signal ’quit nil). This is the same
thing that quitting does. (See signal in Section 9.5.3 [Errors], page 138.)

You can specify a character other than C-g to use for quitting. See the function set-
input-mode in Section 50.8 [Terminal Input], page 716.

19.9 Prefix Command Arguments

Most XEmacs commands can use a prefix argument, a number specified before the
command itself. (Don’t confuse prefix arguments with prefix keys.) The prefix argument is
at all times represented by a value, which may be nil, meaning there is currently no prefix
argument. Each command may use the prefix argument or ignore it.

There are two representations of the prefix argument: raw and numeric. The editor
command loop uses the raw representation internally, and so do the Lisp variables that
store the information, but commands can request either representation.

Here are the possible values of a raw prefix argument:
• nil, meaning there is no prefix argument. Its numeric value is 1, but numerous com-

mands make a distinction between nil and the integer 1.
• An integer, which stands for itself.
• A list of one element, which is an integer. This form of prefix argument results from

one or a succession of C-u’s with no digits. The numeric value is the integer in the list,
but some commands make a distinction between such a list and an integer alone.

• The symbol -. This indicates that M-- or C-u - was typed, without following digits.
The equivalent numeric value is −1, but some commands make a distinction between
the integer −1 and the symbol -.

We illustrate these possibilities by calling the following function with various prefixes:

Chapter 19: Command Loop 313

(defun display-prefix (arg)
"Display the value of the raw prefix arg."
(interactive "P")
(message "%s" arg))

Here are the results of calling display-prefix with various raw prefix arguments:
M-x display-prefix a nil

C-u M-x display-prefix a (4)

C-u C-u M-x display-prefix a (16)

C-u 3 M-x display-prefix a 3

M-3 M-x display-prefix a 3 ; (Same as C-u 3.)

C-3 M-x display-prefix a 3 ; (Same as C-u 3.)

C-u - M-x display-prefix a -

M-- M-x display-prefix a - ; (Same as C-u -.)

C-- M-x display-prefix a - ; (Same as C-u -.)

C-u - 7 M-x display-prefix a -7

M-- 7 M-x display-prefix a -7 ; (Same as C-u -7.)

C-- 7 M-x display-prefix a -7 ; (Same as C-u -7.)
XEmacs uses two variables to store the prefix argument: prefix-arg and current-

prefix-arg. Commands such as universal-argument that set up prefix arguments for
other commands store them in prefix-arg. In contrast, current-prefix-arg conveys the
prefix argument to the current command, so setting it has no effect on the prefix arguments
for future commands.

Normally, commands specify which representation to use for the prefix argument, either
numeric or raw, in the interactive declaration. (See Section 19.2.1 [Using Interactive],
page 286.) Alternatively, functions may look at the value of the prefix argument directly in
the variable current-prefix-arg, but this is less clean.

Functionprefix-numeric-value arg
This function returns the numeric meaning of a valid raw prefix argument value,
arg. The argument may be a symbol, a number, or a list. If it is nil, the value 1 is
returned; if it is -, the value −1 is returned; if it is a number, that number is returned;
if it is a list, the car of that list (which should be a number) is returned.

Variablecurrent-prefix-arg
This variable holds the raw prefix argument for the current command. Commands
may examine it directly, but the usual way to access it is with (interactive "P").

314 XEmacs Lisp Reference Manual

Variableprefix-arg
The value of this variable is the raw prefix argument for the next editing command.
Commands that specify prefix arguments for the following command work by setting
this variable.

Do not call the functions universal-argument, digit-argument, or negative-
argument unless you intend to let the user enter the prefix argument for the next
command.

Commanduniversal-argument
This command reads input and specifies a prefix argument for the following command.
Don’t call this command yourself unless you know what you are doing.

Commanddigit-argument arg
This command adds to the prefix argument for the following command. The argument
arg is the raw prefix argument as it was before this command; it is used to compute
the updated prefix argument. Don’t call this command yourself unless you know what
you are doing.

Commandnegative-argument arg
This command adds to the numeric argument for the next command. The argument
arg is the raw prefix argument as it was before this command; its value is negated
to form the new prefix argument. Don’t call this command yourself unless you know
what you are doing.

19.10 Recursive Editing

The XEmacs command loop is entered automatically when XEmacs starts up. This
top-level invocation of the command loop never exits; it keeps running as long as XEmacs
does. Lisp programs can also invoke the command loop. Since this makes more than one
activation of the command loop, we call it recursive editing. A recursive editing level has the
effect of suspending whatever command invoked it and permitting the user to do arbitrary
editing before resuming that command.

The commands available during recursive editing are the same ones available in the
top-level editing loop and defined in the keymaps. Only a few special commands exit
the recursive editing level; the others return to the recursive editing level when they finish.
(The special commands for exiting are always available, but they do nothing when recursive
editing is not in progress.)

All command loops, including recursive ones, set up all-purpose error handlers so that
an error in a command run from the command loop will not exit the loop.

Minibuffer input is a special kind of recursive editing. It has a few special wrinkles, such
as enabling display of the minibuffer and the minibuffer window, but fewer than you might
suppose. Certain keys behave differently in the minibuffer, but that is only because of the
minibuffer’s local map; if you switch windows, you get the usual XEmacs commands.

Chapter 19: Command Loop 315

To invoke a recursive editing level, call the function recursive-edit. This function
contains the command loop; it also contains a call to catch with tag exit, which makes
it possible to exit the recursive editing level by throwing to exit (see Section 9.5.1 [Catch
and Throw], page 136). If you throw a value other than t, then recursive-edit returns
normally to the function that called it. The command C-M-c (exit-recursive-edit) does
this. Throwing a t value causes recursive-edit to quit, so that control returns to the
command loop one level up. This is called aborting, and is done by C-] (abort-recursive-
edit).

Most applications should not use recursive editing, except as part of using the minibuffer.
Usually it is more convenient for the user if you change the major mode of the current
buffer temporarily to a special major mode, which should have a command to go back to
the previous mode. (The e command in Rmail uses this technique.) Or, if you wish to give
the user different text to edit “recursively”, create and select a new buffer in a special mode.
In this mode, define a command to complete the processing and go back to the previous
buffer. (The m command in Rmail does this.)

Recursive edits are useful in debugging. You can insert a call to debug into a function
definition as a sort of breakpoint, so that you can look around when the function gets there.
debug invokes a recursive edit but also provides the other features of the debugger.

Recursive editing levels are also used when you type C-r in query-replace or use C-x

q (kbd-macro-query).

Functionrecursive-edit
This function invokes the editor command loop. It is called automatically by the
initialization of XEmacs, to let the user begin editing. When called from a Lisp
program, it enters a recursive editing level.
In the following example, the function simple-rec first advances point one word,
then enters a recursive edit, printing out a message in the echo area. The user can
then do any editing desired, and then type C-M-c to exit and continue executing
simple-rec.

(defun simple-rec ()
(forward-word 1)
(message "Recursive edit in progress")
(recursive-edit)
(forward-word 1))
⇒ simple-rec

(simple-rec)
⇒ nil

Commandexit-recursive-edit
This function exits from the innermost recursive edit (including minibuffer input).
Its definition is effectively (throw ’exit nil).

Commandabort-recursive-edit
This function aborts the command that requested the innermost recursive edit (includ-
ing minibuffer input), by signaling quit after exiting the recursive edit. Its definition
is effectively (throw ’exit t). See Section 19.8 [Quitting], page 311.

316 XEmacs Lisp Reference Manual

Commandtop-level
This function exits all recursive editing levels; it does not return a value, as it jumps
completely out of any computation directly back to the main command loop.

Functionrecursion-depth
This function returns the current depth of recursive edits. When no recursive edit is
active, it returns 0.

19.11 Disabling Commands

Disabling a command marks the command as requiring user confirmation before it can
be executed. Disabling is used for commands which might be confusing to beginning users,
to prevent them from using the commands by accident.

The low-level mechanism for disabling a command is to put a non-nil disabled property
on the Lisp symbol for the command. These properties are normally set up by the user’s
‘.emacs’ file with Lisp expressions such as this:

(put ’upcase-region ’disabled t)

For a few commands, these properties are present by default and may be removed by the
‘.emacs’ file.

If the value of the disabled property is a string, the message saying the command is
disabled includes that string. For example:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

See section “Disabling” in The XEmacs User’s Manual, for the details on what happens
when a disabled command is invoked interactively. Disabling a command has no effect on
calling it as a function from Lisp programs.

Commandenable-command command
Allow command to be executed without special confirmation from now on, and (if the
user confirms) alter the user’s ‘.emacs’ file so that this will apply to future sessions.

Commanddisable-command command
Require special confirmation to execute command from now on, and (if the user
confirms) alter the user’s ‘.emacs’ file so that this will apply to future sessions.

Variabledisabled-command-hook
This normal hook is run instead of a disabled command, when the user invokes the
disabled command interactively. The hook functions can use this-command-keys to
determine what the user typed to run the command, and thus find the command
itself. See Section 26.4 [Hooks], page 382.

By default, disabled-command-hook contains a function that asks the user whether
to proceed.

Chapter 19: Command Loop 317

19.12 Command History

The command loop keeps a history of the complex commands that have been executed,
to make it convenient to repeat these commands. A complex command is one for which the
interactive argument reading uses the minibuffer. This includes any M-x command, any M-:

command, and any command whose interactive specification reads an argument from the
minibuffer. Explicit use of the minibuffer during the execution of the command itself does
not cause the command to be considered complex.

Variablecommand-history
This variable’s value is a list of recent complex commands, each represented as a form
to evaluate. It continues to accumulate all complex commands for the duration of the
editing session, but all but the first (most recent) thirty elements are deleted when a
garbage collection takes place (see Section B.3 [Garbage Collection], page 782).

command-history
⇒ ((switch-to-buffer "chistory.texi")

(describe-key "^X^[")
(visit-tags-table "~/emacs/src/")
(find-tag "repeat-complex-command"))

This history list is actually a special case of minibuffer history (see Section 18.4 [Mini-
buffer History], page 269), with one special twist: the elements are expressions rather than
strings.

There are a number of commands devoted to the editing and recall of previous commands.
The commands repeat-complex-command, and list-command-history are described in
the user manual (see section “Repetition” in The XEmacs User’s Manual). Within the
minibuffer, the history commands used are the same ones available in any minibuffer.

19.13 Keyboard Macros

A keyboard macro is a canned sequence of input events that can be considered a com-
mand and made the definition of a key. The Lisp representation of a keyboard macro is a
string or vector containing the events. Don’t confuse keyboard macros with Lisp macros
(see Chapter 12 [Macros], page 181).

Functionexecute-kbd-macro macro &optional count
This function executes macro as a sequence of events. If macro is a string or vector,
then the events in it are executed exactly as if they had been input by the user. The
sequence is not expected to be a single key sequence; normally a keyboard macro
definition consists of several key sequences concatenated.

If macro is a symbol, then its function definition is used in place of macro. If that
is another symbol, this process repeats. Eventually the result should be a string or
vector. If the result is not a symbol, string, or vector, an error is signaled.

318 XEmacs Lisp Reference Manual

The argument count is a repeat count; macro is executed that many times. If count
is omitted or nil, macro is executed once. If it is 0, macro is executed over and over
until it encounters an error or a failing search.

Variableexecuting-macro
This variable contains the string or vector that defines the keyboard macro that is
currently executing. It is nil if no macro is currently executing. A command can
test this variable to behave differently when run from an executing macro. Do not
set this variable yourself.

Variabledefining-kbd-macro
This variable indicates whether a keyboard macro is being defined. A command can
test this variable to behave differently while a macro is being defined. The commands
start-kbd-macro and end-kbd-macro set this variable—do not set it yourself.

Variablelast-kbd-macro
This variable is the definition of the most recently defined keyboard macro. Its value
is a string or vector, or nil.

The commands are described in the user’s manual (see section “Keyboard Macros” in
The XEmacs User’s Manual).

Chapter 20: Keymaps 319

20 Keymaps

The bindings between input events and commands are recorded in data structures called
keymaps. Each binding in a keymap associates (or binds) an individual event type either
with another keymap or with a command. When an event is bound to a keymap, that
keymap is used to look up the next input event; this continues until a command is found.
The whole process is called key lookup.

20.1 Keymap Terminology

A keymap is a table mapping event types to definitions (which can be any Lisp objects,
though only certain types are meaningful for execution by the command loop). Given
an event (or an event type) and a keymap, XEmacs can get the event’s definition. Events
mapped in keymaps include keypresses, button presses, and button releases (see Section 19.5
[Events], page 294).

A sequence of input events that form a unit is called a key sequence, or key for short.
A sequence of one event is always a key sequence, and so are some multi-event sequences.

A keymap determines a binding or definition for any key sequence. If the key sequence
is a single event, its binding is the definition of the event in the keymap. The binding of
a key sequence of more than one event is found by an iterative process: the binding of the
first event is found, and must be a keymap; then the second event’s binding is found in that
keymap, and so on until all the events in the key sequence are used up.

If the binding of a key sequence is a keymap, we call the key sequence a prefix key.
Otherwise, we call it a complete key (because no more events can be added to it). If the
binding is nil, we call the key undefined. Examples of prefix keys are C-c, C-x, and C-x

4. Examples of defined complete keys are X, 〈RET〉, and C-x 4 C-f. Examples of undefined
complete keys are C-x C-g, and C-c 3. See Section 20.6 [Prefix Keys], page 323, for more
details.

The rule for finding the binding of a key sequence assumes that the intermediate bindings
(found for the events before the last) are all keymaps; if this is not so, the sequence of events
does not form a unit—it is not really a key sequence. In other words, removing one or more
events from the end of any valid key must always yield a prefix key. For example, C-f C-n

is not a key; C-f is not a prefix key, so a longer sequence starting with C-f cannot be a key.

Note that the set of possible multi-event key sequences depends on the bindings for prefix
keys; therefore, it can be different for different keymaps, and can change when bindings are
changed. However, a one-event sequence is always a key sequence, because it does not
depend on any prefix keys for its well-formedness.

At any time, several primary keymaps are active—that is, in use for finding key bindings.
These are the global map, which is shared by all buffers; the local keymap, which is usually
associated with a specific major mode; and zero or more minor mode keymaps, which belong
to currently enabled minor modes. (Not all minor modes have keymaps.) The local keymap
bindings shadow (i.e., take precedence over) the corresponding global bindings. The minor

320 XEmacs Lisp Reference Manual

mode keymaps shadow both local and global keymaps. See Section 20.7 [Active Keymaps],
page 324, for details.

20.2 Format of Keymaps

A keymap is a primitive type that associates events with their bindings. Note that this
is different from Emacs 18 and FSF Emacs, where keymaps are lists.

Functionkeymapp object
This function returns t if object is a keymap, nil otherwise.

20.3 Creating Keymaps

Here we describe the functions for creating keymaps.

Functionmake-keymap &optional name
This function constructs and returns a new keymap object. All entries in it are nil,
meaning “command undefined”.
Optional argument name specifies a name to assign to the keymap, as in set-keymap-
name. This name is only a debugging convenience; it is not used except when printing
the keymap.

Functionmake-sparse-keymap &optional name
This function constructs and returns a new keymap object. All entries in it are
nil, meaning “command undefined”. The only difference between this function and
make-keymap is that this function returns a “smaller” keymap (one that is expected
to contain fewer entries). As keymaps dynamically resize, the distinction is not great.
Optional argument name specifies a name to assign to the keymap, as in set-keymap-
name. This name is only a debugging convenience; it is not used except when printing
the keymap.

Functionset-keymap-name keymap new-name
This function assigns a “name” to a keymap. The name is only a debugging conve-
nience; it is not used except when printing the keymap.

Functionkeymap-name keymap
This function returns the “name” of a keymap, as assigned using set-keymap-name.

Functioncopy-keymap keymap
This function returns a copy of keymap. Any keymaps that appear directly as bindings
in keymap are also copied recursively, and so on to any number of levels. However,
recursive copying does not take place when the definition of a character is a symbol
whose function definition is a keymap; the same symbol appears in the new copy.

Chapter 20: Keymaps 321

(setq map (copy-keymap (current-local-map)))
⇒ #<keymap 3 entries 0x21f80>

(eq map (current-local-map))
⇒ nil

20.4 Inheritance and Keymaps

A keymap can inherit the bindings of other keymaps. The other keymaps are called the
keymap’s parents, and are set with set-keymap-parents. When searching for a binding
for a key sequence in a particular keymap, that keymap itself will first be searched; then,
if no binding was found in the map and it has parents, the first parent keymap will be
searched; then that keymap’s parent will be searched, and so on, until either a binding for
the key sequence is found, or a keymap without a parent is encountered. At this point, the
search will continue with the next parent of the most recently encountered keymap that has
another parent, etc. Essentially, a depth-first search of all the ancestors of the keymap is
conducted.

(current-global-map) is the default parent of all keymaps.

Functionset-keymap-parents keymap parents
This function sets the parent keymaps of keymap to the list parents.

If you change the bindings in one of the keymaps in parents using define-key or
other key-binding functions, these changes are visible in keymap unless shadowed by
bindings in that map or in earlier-searched ancestors. The converse is not true: if you
use define-key to change keymap, that affects the bindings in that map, but has no
effect on any of the keymaps in parents.

Functionkeymap-parents keymap
This function returns the list of parent keymaps of keymap, or nil if keymap has no
parents.

As an alternative to specifying a parent, you can also specify a default binding that is
used whenever a key is not otherwise bound in the keymap. This is useful for terminal
emulators, for example, which may want to trap all keystrokes and pass them on in some
modified format. Note that if you specify a default binding for a keymap, neither the
keymap’s parents nor the current global map are searched for key bindings.

Functionset-keymap-default-binding keymap command
This function sets the default binding of keymap to command, or nil if no default is
desired.

Functionkeymap-default-binding keymap
This function returns the default binding of keymap, or nil if it has none.

322 XEmacs Lisp Reference Manual

20.5 Key Sequences

Contrary to popular belief, the world is not ASCII. When running under a window
manager, XEmacs can tell the difference between, for example, the keystrokes control-h,
control-shift-h, and backspace. You can, in fact, bind different commands to each of
these.

A key sequence is a set of keystrokes. A keystroke is a keysym and some set of modifiers
(such as 〈CONTROL〉 and 〈META〉). A keysym is what is printed on the keys on your keyboard.

A keysym may be represented by a symbol, or (if and only if it is equivalent to an ASCII

character in the range 32 - 255) by a character or its equivalent ASCII code. The A key
may be represented by the symbol A, the character ?A, or by the number 65. The break

key may be represented only by the symbol break.

A keystroke may be represented by a list: the last element of the list is the key (a symbol,
character, or number, as above) and the preceding elements are the symbolic names of
modifier keys (〈CONTROL〉, 〈META〉, 〈SUPER〉, 〈HYPER〉, 〈ALT〉, and 〈SHIFT〉). Thus, the sequence
control-b is represented by the forms (control b), (control ?b), and (control 98). A
keystroke may also be represented by an event object, as returned by the next-command-
event and read-key-sequence functions.

Note that in this context, the keystroke control-b is not represented by the number 2
(the ASCII code for ‘^B’) or the character ?\^B. See below.

The 〈SHIFT〉 modifier is somewhat of a special case. You should not (and cannot) use
(meta shift a) to mean (meta A), since for characters that have ASCII equivalents, the
state of the shift key is implicit in the keysym (‘a’ vs. ‘A’). You also cannot say (shift =)
to mean +, as that sort of thing varies from keyboard to keyboard. The 〈SHIFT〉 modifier is
for use only with characters that do not have a second keysym on the same key, such as
backspace and tab.

A key sequence is a vector of keystrokes. As a degenerate case, elements of this vector
may also be keysyms if they have no modifiers. That is, the A keystroke is represented by
all of these forms:

A ?A 65 (A) (?A) (65)
[A] [?A] [65] [(A)] [(?A)] [(65)]

the control-a keystroke is represented by these forms:

(control A) (control ?A) (control 65)
[(control A)] [(control ?A)] [(control 65)]

the key sequence control-c control-a is represented by these forms:

[(control c) (control a)] [(control ?c) (control ?a)]
[(control 99) (control 65)] etc.

Mouse button clicks work just like keypresses: (control button1) means pressing the
left mouse button while holding down the control key. [(control c) (shift button3)]
means control-c, hold 〈SHIFT〉, click right.

Commands may be bound to the mouse-button up-stroke rather than the down-stroke
as well. button1 means the down-stroke, and button1up means the up-stroke. Different

Chapter 20: Keymaps 323

commands may be bound to the up and down strokes, though that is probably not what
you want, so be careful.

For backward compatibility, a key sequence may also be represented by a string. In
this case, it represents the key sequence(s) that would produce that sequence of ASCII

characters in a purely ASCII world. For example, a string containing the ASCII backspace
character, "\^H", would represent two key sequences: (control h) and backspace. Binding
a command to this will actually bind both of those key sequences. Likewise for the following
pairs:

control h backspace
control i tab
control m return
control j linefeed
control [escape
control @ control space

After binding a command to two key sequences with a form like
(define-key global-map "\^X\^I" ’command-1)

it is possible to redefine only one of those sequences like so:
(define-key global-map [(control x) (control i)] ’command-2)
(define-key global-map [(control x) tab] ’command-3)

Of course, all of this applies only when running under a window system. If you’re talking
to XEmacs through a TTY connection, you don’t get any of these features.

Functionevent-matches-key-specifier-p event key-specifier
This function returns non-nil if event matches key-specifier, which can be any valid
form representing a key sequence. This can be useful, e.g., to determine if the user
pressed help-char or quit-char.

20.6 Prefix Keys

A prefix key has an associated keymap that defines what to do with key sequences that
start with the prefix key. For example, C-x is a prefix key, and it uses a keymap that is also
stored in the variable ctl-x-map. Here is a list of the standard prefix keys of XEmacs and
their keymaps:

• help-map is used for events that follow C-h.
• mode-specific-map is for events that follow C-c. This map is not actually mode spe-

cific; its name was chosen to be informative for the user in C-h b (display-bindings),
where it describes the main use of the C-c prefix key.

• ctl-x-map is the map used for events that follow C-x. This map is also the function
definition of Control-X-prefix.

• ctl-x-4-map is used for events that follow C-x 4.
• ctl-x-5-map is used for events that follow C-x 5.
• The prefix keys C-x n, C-x r and C-x a use keymaps that have no special name.

324 XEmacs Lisp Reference Manual

• esc-map is an evil hack that is present for compatibility purposes with Emacs 18.
Defining a key in esc-map is equivalent to defining the same key in global-map but
with the 〈META〉 prefix added. You should not use this in your code. (This map is also
the function definition of ESC-prefix.)

The binding of a prefix key is the keymap to use for looking up the events that follow
the prefix key. (It may instead be a symbol whose function definition is a keymap. The
effect is the same, but the symbol serves as a name for the prefix key.) Thus, the binding
of C-x is the symbol Control-X-prefix, whose function definition is the keymap for C-x

commands. (The same keymap is also the value of ctl-x-map.)
Prefix key definitions can appear in any active keymap. The definitions of C-c, C-x, C-h

and 〈ESC〉 as prefix keys appear in the global map, so these prefix keys are always available.
Major and minor modes can redefine a key as a prefix by putting a prefix key definition for
it in the local map or the minor mode’s map. See Section 20.7 [Active Keymaps], page 324.

If a key is defined as a prefix in more than one active map, then its various definitions
are in effect merged: the commands defined in the minor mode keymaps come first, followed
by those in the local map’s prefix definition, and then by those from the global map.

In the following example, we make C-p a prefix key in the local keymap, in such a way
that C-p is identical to C-x. Then the binding for C-p C-f is the function find-file, just
like C-x C-f. The key sequence C-p 6 is not found in any active keymap.

(use-local-map (make-sparse-keymap))
⇒ nil

(local-set-key "\C-p" ctl-x-map)
⇒ nil

(key-binding "\C-p\C-f")
⇒ find-file

(key-binding "\C-p6")
⇒ nil

Functiondefine-prefix-command symbol &optional mapvar
This function defines symbol as a prefix command: it creates a keymap and stores
it as symbol’s function definition. Storing the symbol as the binding of a key makes
the key a prefix key that has a name. If optional argument mapvar is not specified,
it also sets symbol as a variable, to have the keymap as its value. (If mapvar is given
and is not t, its value is stored as the value of symbol.) The function returns symbol.
In Emacs version 18, only the function definition of symbol was set, not the value as
a variable.

20.7 Active Keymaps

XEmacs normally contains many keymaps; at any given time, just a few of them are
active in that they participate in the interpretation of user input. These are the global
keymap, the current buffer’s local keymap, and the keymaps of any enabled minor modes.

The global keymap holds the bindings of keys that are defined regardless of the current
buffer, such as C-f. The variable global-map holds this keymap, which is always active.

Chapter 20: Keymaps 325

Each buffer may have another keymap, its local keymap, which may contain new or
overriding definitions for keys. The current buffer’s local keymap is always active except
when overriding-local-map or overriding-terminal-local-map overrides it. Extents
and text properties can specify an alternative local map for certain parts of the buffer; see
Section 40.10 [Extents and Events], page 606.

Each minor mode may have a keymap; if it does, the keymap is active when the minor
mode is enabled.

The variable overriding-local-map and overriding-terminal-local-map, if non-
nil, specify other local keymaps that override the buffer’s local map and all the minor
mode keymaps.

All the active keymaps are used together to determine what command to execute when a
key is entered. XEmacs searches these maps one by one, in order of decreasing precedence,
until it finds a binding in one of the maps.

More specifically:
For key-presses, the order of keymaps searched is:
• the keymap property of any extent(s) or text properties at point;
• any applicable minor-mode maps;
• the current local map of the current buffer;
• the current global map.

For mouse-clicks, the order of keymaps searched is:
• the current local map of the mouse-grabbed-buffer if any;
• the keymap property of any extent(s) at the position of the click (this includes modeline

extents);
• the modeline-map of the buffer corresponding to the modeline under the mouse (if the

click happened over a modeline);
• the value of toolbar-map in the current buffer (if the click happened over a toolbar);
• the current local map of the buffer under the mouse (does not apply to toolbar clicks);
• any applicable minor-mode maps;
• the current global map.

Note that if overriding-local-map or overriding-terminal-local-map is non-nil,
only those two maps and the current global map are searched.

The procedure for searching a single keymap is called key lookup; see Section 20.8 [Key
Lookup], page 328.

Since every buffer that uses the same major mode normally uses the same local keymap,
you can think of the keymap as local to the mode. A change to the local keymap of a
buffer (using local-set-key, for example) is seen also in the other buffers that share that
keymap.

The local keymaps that are used for Lisp mode, C mode, and several other major modes
exist even if they have not yet been used. These local maps are the values of the variables
lisp-mode-map, c-mode-map, and so on. For most other modes, which are less frequently
used, the local keymap is constructed only when the mode is used for the first time in a
session.

326 XEmacs Lisp Reference Manual

The minibuffer has local keymaps, too; they contain various completion and exit com-
mands. See Section 18.1 [Intro to Minibuffers], page 265.

See Appendix E [Standard Keymaps], page 795, for a list of standard keymaps.

Functioncurrent-keymaps &optional event-or-keys
This function returns a list of the current keymaps that will be searched for bindings.
This lists keymaps such as the current local map and the minor-mode maps, but does
not list the parents of those keymaps. event-or-keys controls which keymaps will be
listed. If event-or-keys is a mouse event (or a vector whose last element is a mouse
event), the keymaps for that mouse event will be listed. Otherwise, the keymaps for
key presses will be listed.

Variableglobal-map
This variable contains the default global keymap that maps XEmacs keyboard input to
commands. The global keymap is normally this keymap. The default global keymap
is a full keymap that binds self-insert-command to all of the printing characters.
It is normal practice to change the bindings in the global map, but you should not
assign this variable any value other than the keymap it starts out with.

Functioncurrent-global-map
This function returns the current global keymap. This is the same as the value of
global-map unless you change one or the other.

(current-global-map)
⇒ #<keymap global-map 639 entries 0x221>

Functioncurrent-local-map
This function returns the current buffer’s local keymap, or nil if it has none. In
the following example, the keymap for the ‘*scratch*’ buffer (using Lisp Interaction
mode) has a number of entries, including one prefix key, C-x.

(current-local-map)
⇒ #<keymap lisp-interaction-mode-map 5 entries 0x558>
(describe-bindings-internal (current-local-map))
⇒ ; Inserted into the buffer:
backspace backward-delete-char-untabify
linefeed eval-print-last-sexp
delete delete-char
C-j eval-print-last-sexp
C-x << Prefix Command >>
M-tab lisp-complete-symbol
M-; lisp-indent-for-comment
M-C-i lisp-complete-symbol
M-C-q indent-sexp
M-C-x eval-defun
Alt-backspace backward-kill-sexp
Alt-delete kill-sexp

C-x x edebug-defun

Chapter 20: Keymaps 327

Functioncurrent-minor-mode-maps
This function returns a list of the keymaps of currently enabled minor modes.

Functionuse-global-map keymap
This function makes keymap the new current global keymap. It returns nil.
It is very unusual to change the global keymap.

Functionuse-local-map keymap &optional buffer
This function makes keymap the new local keymap of buffer. buffer defaults to the
current buffer. If keymap is nil, then the buffer has no local keymap. use-local-map
returns nil. Most major mode commands use this function.

Variableminor-mode-map-alist
This variable is an alist describing keymaps that may or may not be active according
to the values of certain variables. Its elements look like this:

(variable . keymap)

The keymap keymap is active whenever variable has a non-nil value. Typically
variable is the variable that enables or disables a minor mode. See Section 26.2.2
[Keymaps and Minor Modes], page 376.
Note that elements of minor-mode-map-alist do not have the same structure as
elements of minor-mode-alist. The map must be the cdr of the element; a list with
the map as the second element will not do.
What’s more, the keymap itself must appear in the cdr. It does not work to store a
variable in the cdr and make the map the value of that variable.
When more than one minor mode keymap is active, their order of priority is the order
of minor-mode-map-alist. But you should design minor modes so that they don’t
interfere with each other. If you do this properly, the order will not matter.
See also minor-mode-key-binding, above. See Section 26.2.2 [Keymaps and Minor
Modes], page 376, for more information about minor modes.

Variablemodeline-map
This variable holds the keymap consulted for mouse-clicks on the modeline of a win-
dow. This variable may be buffer-local; its value will be looked up in the buffer of
the window whose modeline was clicked upon.

Variabletoolbar-map
This variable holds the keymap consulted for mouse-clicks over a toolbar.

Variablemouse-grabbed-buffer
If non-nil, a buffer which should be consulted first for all mouse activity. When a
mouse-click is processed, it will first be looked up in the local-map of this buffer, and
then through the normal mechanism if there is no binding for that click. This buffer’s
value of mode-motion-hook will be consulted instead of the mode-motion-hook of
the buffer of the window under the mouse. You should bind this, not set it.

328 XEmacs Lisp Reference Manual

Variableoverriding-local-map
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap
and instead of all the minor mode keymaps. This keymap, if any, overrides all other
maps that would have been active, except for the current global map.

Variableoverriding-terminal-local-map
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap and
instead of all the minor mode keymaps, but for the selected console only. (In other
words, this variable is always console-local; putting a keymap here only applies to
keystrokes coming from the selected console. See Chapter 33 [Consoles and Devices],
page 487.) This keymap, if any, overrides all other maps that would have been active,
except for the current global map.

20.8 Key Lookup

Key lookup is the process of finding the binding of a key sequence from a given keymap.
Actual execution of the binding is not part of key lookup.

Key lookup uses just the event type of each event in the key sequence; the rest of the
event is ignored. In fact, a key sequence used for key lookup may designate mouse events
with just their types (symbols) instead of with entire mouse events (lists). See Section 19.5
[Events], page 294. Such a pseudo-key-sequence is insufficient for command-execute, but it
is sufficient for looking up or rebinding a key.

When the key sequence consists of multiple events, key lookup processes the events
sequentially: the binding of the first event is found, and must be a keymap; then the second
event’s binding is found in that keymap, and so on until all the events in the key sequence
are used up. (The binding thus found for the last event may or may not be a keymap.)
Thus, the process of key lookup is defined in terms of a simpler process for looking up a
single event in a keymap. How that is done depends on the type of object associated with
the event in that keymap.

Let’s use the term keymap entry to describe the value found by looking up an event
type in a keymap. (This doesn’t include the item string and other extra elements in menu
key bindings because lookup-key and other key lookup functions don’t include them in the
returned value.) While any Lisp object may be stored in a keymap as a keymap entry, not
all make sense for key lookup. Here is a list of the meaningful kinds of keymap entries:

nil nil means that the events used so far in the lookup form an undefined key.
When a keymap fails to mention an event type at all, and has no default binding,
that is equivalent to a binding of nil for that event type.

keymap The events used so far in the lookup form a prefix key. The next event of the
key sequence is looked up in keymap.

command The events used so far in the lookup form a complete key, and command is its
binding. See Section 11.1 [What Is a Function], page 165.

array The array (either a string or a vector) is a keyboard macro. The events used
so far in the lookup form a complete key, and the array is its binding. See

Chapter 20: Keymaps 329

Section 19.13 [Keyboard Macros], page 317, for more information. (Note that
you cannot use a shortened form of a key sequence here, such as (control y);
you must use the full form [(control y)]. See Section 20.5 [Key Sequences],
page 322.)

list The meaning of a list depends on the types of the elements of the list.
• If the car of list is lambda, then the list is a lambda expression. This is

presumed to be a command, and is treated as such (see above).
• If the car of list is a keymap and the cdr is an event type, then this is an

indirect entry :
(othermap . othertype)

When key lookup encounters an indirect entry, it looks up instead the
binding of othertype in othermap and uses that.
This feature permits you to define one key as an alias for another key.
For example, an entry whose car is the keymap called esc-map and whose
cdr is 32 (the code for 〈SPC〉) means, “Use the global binding of Meta-〈SPC〉,
whatever that may be.”

symbol The function definition of symbol is used in place of symbol. If that too is a
symbol, then this process is repeated, any number of times. Ultimately this
should lead to an object that is a keymap, a command or a keyboard macro.
A list is allowed if it is a keymap or a command, but indirect entries are not
understood when found via symbols.
Note that keymaps and keyboard macros (strings and vectors) are not valid
functions, so a symbol with a keymap, string, or vector as its function definition
is invalid as a function. It is, however, valid as a key binding. If the definition
is a keyboard macro, then the symbol is also valid as an argument to command-
execute (see Section 19.3 [Interactive Call], page 290).
The symbol undefined is worth special mention: it means to treat the key as
undefined. Strictly speaking, the key is defined, and its binding is the command
undefined; but that command does the same thing that is done automatically
for an undefined key: it rings the bell (by calling ding) but does not signal an
error.
undefined is used in local keymaps to override a global key binding and make
the key “undefined” locally. A local binding of nil would fail to do this because
it would not override the global binding.

anything else
If any other type of object is found, the events used so far in the lookup form
a complete key, and the object is its binding, but the binding is not executable
as a command.

In short, a keymap entry may be a keymap, a command, a keyboard macro, a symbol
that leads to one of them, or an indirection or nil.

20.9 Functions for Key Lookup

330 XEmacs Lisp Reference Manual

Here are the functions and variables pertaining to key lookup.

Functionlookup-key keymap key &optional accept-defaults
This function returns the definition of key in keymap. If the string or vector key
is not a valid key sequence according to the prefix keys specified in keymap (which
means it is “too long” and has extra events at the end), then the value is a number,
the number of events at the front of key that compose a complete key.

If accept-defaults is non-nil, then lookup-key considers default bindings as well as
bindings for the specific events in key. Otherwise, lookup-key reports only bindings
for the specific sequence key, ignoring default bindings except when you explicitly ask
about them.

All the other functions described in this chapter that look up keys use lookup-key.
(lookup-key (current-global-map) "\C-x\C-f")

⇒ find-file
(lookup-key (current-global-map) "\C-x\C-f12345")

⇒ 2

If key begins with the character whose value is contained in meta-prefix-char, that
character is implicitly removed and the 〈META〉 modifier added to the key. Thus, the
first example below is handled by conversion into the second example.

(lookup-key (current-global-map) "\ef")
⇒ forward-word

(lookup-key (current-global-map) "\M-f")
⇒ forward-word

Unlike read-key-sequence, this function does not modify the specified events in
ways that discard information (see Section 19.6.1 [Key Sequence Input], page 306).
In particular, it does not convert letters to lower case.

Commandundefined
Used in keymaps to undefine keys. If a key sequence is defined to this, invoking
this key sequence causes a “key undefined” error, just as if the key sequence had no
binding.

Functionkey-binding key &optional accept-defaults
This function returns the binding for key in the current keymaps, trying all the active
keymaps. The result is nil if key is undefined in the keymaps.

The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

(key-binding "\C-x\C-f")
⇒ find-file

(key-binding ’(control home))
⇒ beginning-of-buffer

(key-binding [escape escape escape])
⇒ keyboard-escape-quit

Chapter 20: Keymaps 331

Functionlocal-key-binding key &optional accept-defaults
This function returns the binding for key in the current local keymap, or nil if it is
undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

Functionglobal-key-binding key &optional accept-defaults
This function returns the binding for command key in the current global keymap, or
nil if it is undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

Functionminor-mode-key-binding key &optional accept-defaults
This function returns a list of all the active minor mode bindings of key. More
precisely, it returns an alist of pairs (modename . binding), where modename is the
variable that enables the minor mode, and binding is key ’s binding in that mode. If
key has no minor-mode bindings, the value is nil.

If the first binding is not a prefix command, all subsequent bindings from other minor
modes are omitted, since they would be completely shadowed. Similarly, the list omits
non-prefix bindings that follow prefix bindings.

The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

Variablemeta-prefix-char
This variable is the meta-prefix character code. It is used when translating a two-
character sequence to a meta character so it can be looked up in a keymap. For useful
results, the value should be a prefix event (see Section 20.6 [Prefix Keys], page 323).
The default value is ?\^[(integer 27), which is the ASCII character usually produced
by the 〈ESC〉 key.

As long as the value of meta-prefix-char remains ?\^[, key lookup translates 〈ESC〉
b into M-b, which is normally defined as the backward-word command. However, if
you set meta-prefix-char to ?\^X (i.e. the keystroke C-x) or its equivalent ASCII

code 24, then XEmacs will translate C-x b (whose standard binding is the switch-
to-buffer command) into M-b.

meta-prefix-char ; The default value.
⇒ ?\^[; Under XEmacs 20.
⇒ 27 ; Under XEmacs 19.

(key-binding "\eb")
⇒ backward-word

?\C-x ; The print representation
; of a character.

⇒ ?\^X ; Under XEmacs 20.
⇒ 24 ; Under XEmacs 19.

(setq meta-prefix-char 24)
⇒ 24

332 XEmacs Lisp Reference Manual

(key-binding "\C-xb")
⇒ backward-word ; Now, typing C-x b is

; like typing M-b.

(setq meta-prefix-char ?\e) ; Avoid confusion!
; Restore the default value!

⇒ ?\^[; Under XEmacs 20.
⇒ 27 ; Under XEmacs 19.

20.10 Changing Key Bindings

The way to rebind a key is to change its entry in a keymap. If you change a binding
in the global keymap, the change is effective in all buffers (though it has no direct effect
in buffers that shadow the global binding with a local one). If you change the current
buffer’s local map, that usually affects all buffers using the same major mode. The global-
set-key and local-set-key functions are convenient interfaces for these operations (see
Section 20.11 [Key Binding Commands], page 335). You can also use define-key, a more
general function; then you must specify explicitly the map to change.

The way to specify the key sequence that you want to rebind is described above (see
Section 20.5 [Key Sequences], page 322).

For the functions below, an error is signaled if keymap is not a keymap or if key is
not a string or vector representing a key sequence. You can use event types (symbols) as
shorthand for events that are lists.

Functiondefine-key keymap key binding
This function sets the binding for key in keymap. (If key is more than one event long,
the change is actually made in another keymap reached from keymap.) The argument
binding can be any Lisp object, but only certain types are meaningful. (For a list of
meaningful types, see Section 20.8 [Key Lookup], page 328.) The value returned by
define-key is binding.
Every prefix of key must be a prefix key (i.e., bound to a keymap) or undefined;
otherwise an error is signaled.
If some prefix of key is undefined, then define-key defines it as a prefix key so that
the rest of key may be defined as specified.

Here is an example that creates a sparse keymap and makes a number of bindings in it:
(setq map (make-sparse-keymap))

⇒ #<keymap 0 entries 0xbee>
(define-key map "\C-f" ’forward-char)

⇒ forward-char
map

⇒ #<keymap 1 entry 0xbee>
(describe-bindings-internal map)
⇒ ; (Inserted in buffer)
C-f forward-char

Chapter 20: Keymaps 333

;; Build sparse submap for C-x and bind f in that.
(define-key map "\C-xf" ’forward-word)

⇒ forward-word
map

⇒ #<keymap 2 entries 0xbee>
(describe-bindings-internal map)
⇒ ; (Inserted in buffer)
C-f forward-char
C-x << Prefix Command >>

C-x f forward-word

;; Bind C-p to the ctl-x-map.
(define-key map "\C-p" ctl-x-map)
;; ctl-x-map
⇒ #<keymap Control-X-prefix 77 entries 0x3bf>

;; Bind C-f to foo in the ctl-x-map.
(define-key map "\C-p\C-f" ’foo)
⇒ foo

334 XEmacs Lisp Reference Manual

map
⇒ #<keymap 3 entries 0xbee>

(describe-bindings-internal map)
⇒ ; (Inserted in buffer)
C-f forward-char
C-p << Prefix command Control-X-prefix >>
C-x << Prefix Command >>

C-p tab indent-rigidly
C-p $ set-selective-display
C-p ’ expand-abbrev
C-p (start-kbd-macro
C-p) end-kbd-macro

...
C-p C-x exchange-point-and-mark
C-p C-z suspend-or-iconify-emacs
C-p M-escape repeat-complex-command
C-p M-C-[repeat-complex-command

C-x f forward-word

C-p 4 . find-tag-other-window
...

C-p 4 C-o display-buffer

C-p 5 0 delete-frame
...

C-p 5 C-f find-file-other-frame

...

C-p a i g inverse-add-global-abbrev
C-p a i l inverse-add-mode-abbrev

Note that storing a new binding for C-p C-f actually works by changing an entry in ctl-
x-map, and this has the effect of changing the bindings of both C-p C-f and C-x C-f in the
default global map.

Functionsubstitute-key-definition olddef newdef keymap &optional oldmap
This function replaces olddef with newdef for any keys in keymap that were bound
to olddef. In other words, olddef is replaced with newdef wherever it appears. The
function returns nil.
For example, this redefines C-x C-f, if you do it in an XEmacs with standard bindings:

(substitute-key-definition
’find-file ’find-file-read-only (current-global-map))

If oldmap is non-nil, then its bindings determine which keys to rebind. The rebind-
ings still happen in newmap, not in oldmap. Thus, you can change one map under
the control of the bindings in another. For example,

(substitute-key-definition

Chapter 20: Keymaps 335

’delete-backward-char ’my-funny-delete
my-map global-map)

puts the special deletion command in my-map for whichever keys are globally bound
to the standard deletion command.

Functionsuppress-keymap keymap &optional nodigits
This function changes the contents of the full keymap keymap by making all the print-
ing characters undefined. More precisely, it binds them to the command undefined.
This makes ordinary insertion of text impossible. suppress-keymap returns nil.

If nodigits is nil, then suppress-keymap defines digits to run digit-argument, and
- to run negative-argument. Otherwise it makes them undefined like the rest of the
printing characters.

The suppress-keymap function does not make it impossible to modify a buffer, as
it does not suppress commands such as yank and quoted-insert. To prevent any
modification of a buffer, make it read-only (see Section 30.7 [Read Only Buffers],
page 442).

Since this function modifies keymap, you would normally use it on a newly created
keymap. Operating on an existing keymap that is used for some other purpose is likely
to cause trouble; for example, suppressing global-map would make it impossible to
use most of XEmacs.

Most often, suppress-keymap is used to initialize local keymaps of modes such as
Rmail and Dired where insertion of text is not desirable and the buffer is read-only.
Here is an example taken from the file ‘emacs/lisp/dired.el’, showing how the local
keymap for Dired mode is set up:

...
(setq dired-mode-map (make-keymap))
(suppress-keymap dired-mode-map)
(define-key dired-mode-map "r" ’dired-rename-file)
(define-key dired-mode-map "\C-d" ’dired-flag-file-deleted)
(define-key dired-mode-map "d" ’dired-flag-file-deleted)
(define-key dired-mode-map "v" ’dired-view-file)
(define-key dired-mode-map "e" ’dired-find-file)
(define-key dired-mode-map "f" ’dired-find-file)
...

20.11 Commands for Binding Keys

This section describes some convenient interactive interfaces for changing key bindings.
They work by calling define-key.

People often use global-set-key in their ‘.emacs’ file for simple customization. For
example,

(global-set-key "\C-x\C-\\" ’next-line)

or

336 XEmacs Lisp Reference Manual

(global-set-key [(control ?x) (control ?\\)] ’next-line)

or

(global-set-key [?\C-x ?\C-\\] ’next-line)

redefines C-x C-\ to move down a line.

(global-set-key [(meta button1)] ’mouse-set-point)

redefines the first (leftmost) mouse button, typed with the Meta key, to set point where
you click.

Commandglobal-set-key key definition
This function sets the binding of key in the current global map to definition.

(global-set-key key definition)
≡
(define-key (current-global-map) key definition)

Commandglobal-unset-key key
This function removes the binding of key from the current global map.

One use of this function is in preparation for defining a longer key that uses key as a
prefix—which would not be allowed if key has a non-prefix binding. For example:

(global-unset-key "\C-l")
⇒ nil

(global-set-key "\C-l\C-l" ’redraw-display)
⇒ nil

This function is implemented simply using define-key:

(global-unset-key key)
≡
(define-key (current-global-map) key nil)

Commandlocal-set-key key definition
This function sets the binding of key in the current local keymap to definition.

(local-set-key key definition)
≡
(define-key (current-local-map) key definition)

Commandlocal-unset-key key
This function removes the binding of key from the current local map.

(local-unset-key key)
≡
(define-key (current-local-map) key nil)

Chapter 20: Keymaps 337

20.12 Scanning Keymaps

This section describes functions used to scan all the current keymaps, or all keys within
a keymap, for the sake of printing help information.

Functionaccessible-keymaps keymap &optional prefix
This function returns a list of all the keymaps that can be accessed (via prefix keys)
from keymap. The value is an association list with elements of the form (key . map),
where key is a prefix key whose definition in keymap is map.

The elements of the alist are ordered so that the key increases in length. The first
element is always ([] . keymap), because the specified keymap is accessible from
itself with a prefix of no events.

If prefix is given, it should be a prefix key sequence; then accessible-keymaps
includes only the submaps whose prefixes start with prefix. These elements look just
as they do in the value of (accessible-keymaps); the only difference is that some
elements are omitted.

In the example below, the returned alist indicates that the key C-x, which is
displayed as ‘[(control x)]’, is a prefix key whose definition is the keymap
#<keymap ((control x) #<keymap emacs-lisp-mode-map 8 entries 0x546>)
1 entry 0x8a2>. (The strange notation for the keymap’s name indicates
that this is an internal submap of emacs-lisp-mode-map. This is because
lisp-interaction-mode-map has set up emacs-lisp-mode-map as its parent, and
lisp-interaction-mode-map defines no key sequences beginning with C-x.)

(current-local-map)
⇒ #<keymap lisp-interaction-mode-map 5 entries 0x558>
(accessible-keymaps (current-local-map))
⇒(([] . #<keymap lisp-interaction-mode-map 5 entries 0x558>)

([(control x)] .
#<keymap ((control x) #<keymap emacs-lisp-mode-map 8 entries 0x546>)

1 entry 0x8a2>))

The following example shows the results of calling accessible-keymaps on a large,
complex keymap. Notice how some keymaps were given explicit names using set-
keymap-name; those submaps without explicit names are given descriptive names
indicating their relationship to their enclosing keymap.

338 XEmacs Lisp Reference Manual

(accessible-keymaps (current-global-map))
⇒ (([] . #<keymap global-map 639 entries 0x221>)

([(control c)] . #<keymap mode-specific-command-prefix 1 entry 0x3cb>)
([(control h)] . #<keymap help-map 33 entries 0x4ec>)
([(control x)] . #<keymap Control-X-prefix 77 entries 0x3bf>)
([(meta escape)] .

#<keymap ((meta escape) #<keymap global-map 639 entries 0x221>)
3 entries 0x3e0>)

([(meta control \[)] .
#<keymap ((meta escape) #<keymap global-map 639 entries 0x221>)

3 entries 0x3e0>)
([f1] . #<keymap help-map 33 entries 0x4ec>)
([(control x) \4] . #<keymap ctl-x-4-prefix 9 entries 0x3c5>)
([(control x) \5] . #<keymap ctl-x-5-prefix 8 entries 0x3c8>)
([(control x) \6] . #<keymap 13 entries 0x4d2>)
([(control x) a] .

#<keymap (a #<keymap Control-X-prefix 77 entries 0x3bf>)
8 entries 0x3ef>)

([(control x) n] . #<keymap narrowing-prefix 3 entries 0x3dd>)
([(control x) r] . #<keymap rectangle-prefix 18 entries 0x3e9>)
([(control x) v] . #<keymap vc-prefix-map 13 entries 0x60e>)
([(control x) a i] .
#<keymap (i #<keymap (a #<keymap Control-X-prefix 77 entries 0x3bf>)

8 entries 0x3ef>)
2 entries 0x3f5>))

Functionmap-keymap function keymap &optional sort-first
This function applies function to each element of KEYMAP. function will be called
with two arguments: a key-description list, and the binding. The order in which
the elements of the keymap are passed to the function is unspecified. If the function
inserts new elements into the keymap, it may or may not be called with them later.
No element of the keymap will ever be passed to the function more than once.

The function will not be called on elements of this keymap’s parents (see Section 20.4
[Inheritance and Keymaps], page 321) or upon keymaps which are contained within
this keymap (multi-character definitions). It will be called on 〈META〉 characters since
they are not really two-character sequences.

If the optional third argument sort-first is non-nil, then the elements of the keymap
will be passed to the mapper function in a canonical order. Otherwise, they will be
passed in hash (that is, random) order, which is faster.

Functionkeymap-fullness keymap
This function returns the number of bindings in the keymap.

Functionwhere-is-internal definition &optional keymaps firstonly noindirect
event-or-keys

This function returns a list of key sequences (of any length) that are bound to defi-
nition in a set of keymaps.

Chapter 20: Keymaps 339

The argument definition can be any object; it is compared with all keymap entries
using eq.
KEYMAPS can be either a keymap (meaning search in that keymap and the current
global keymap) or a list of keymaps (meaning search in exactly those keymaps and
no others). If KEYMAPS is nil, search in the currently applicable maps for EVENT-
OR-KEYS.
If keymap is a keymap, then the maps searched are keymap and the global keymap.
If keymap is a list of keymaps, then the maps searched are exactly those keymaps,
and no others. If keymap is nil, then the maps used are the current active keymaps
for event-or-keys (this is equivalent to specifying (current-keymaps event-or-keys)
as the argument to keymaps).
If firstonly is non-nil, then the value is a single vector representing the first key
sequence found, rather than a list of all possible key sequences.
If noindirect is non-nil, where-is-internal doesn’t follow indirect keymap bindings.
This makes it possible to search for an indirect definition itself.
This function is used by where-is (see section “Help” in The XEmacs Reference
Manual).

(where-is-internal ’describe-function)
⇒ ([(control h) d] [(control h) f] [f1 d] [f1 f])

Functiondescribe-bindings-internal map &optional all shadow prefix
mouse-only-p

This function inserts (into the current buffer) a list of all defined keys and their defi-
nitions in map. Optional second argument all says whether to include even “uninter-
esting” definitions, i.e. symbols with a non-nil suppress-keymap property. Third
argument shadow is a list of keymaps whose bindings shadow those of map; if a bind-
ing is present in any shadowing map, it is not printed. Fourth argument prefix, if
non-nil, should be a key sequence; only bindings which start with that key sequence
will be printed. Fifth argument mouse-only-p says to only print bindings for mouse
clicks.

describe-bindings-internal is used to implement the help command describe-
bindings.

Commanddescribe-bindings prefix mouse-only-p
This function creates a listing of all defined keys and their definitions. It writes the
listing in a buffer named ‘*Help*’ and displays it in a window.
If prefix is non-nil, it should be a prefix key; then the listing includes only keys that
start with prefix.
When several characters with consecutive ASCII codes have the same definition, they
are shown together, as ‘firstchar..lastchar’. In this instance, you need to know the
ASCII codes to understand which characters this means. For example, in the default
global map, the characters ‘〈SPC〉 .. ~’ are described by a single line. 〈SPC〉 is ASCII

32, ~ is ASCII 126, and the characters between them include all the normal printing
characters, (e.g., letters, digits, punctuation, etc.); all these characters are bound to
self-insert-command.

340 XEmacs Lisp Reference Manual

If the second argument (prefix arg, interactively) is non-nil then only the mouse
bindings are displayed.

20.13 Other Keymap Functions

Functionset-keymap-prompt keymap new-prompt
This function sets the “prompt” of keymap to string new-prompt, or nil if no prompt
is desired. The prompt is shown in the echo-area when reading a key-sequence to be
looked-up in this keymap.

Functionkeymap-prompt keymap &optional use-inherited
This function returns the “prompt” of the given keymap. If use-inherited is non-nil,
any parent keymaps will also be searched for a prompt.

Chapter 21: Menus 341

21 Menus

21.1 Format of Menus

A menu is described using a menu description, which is a list of menu items, keyword-
value pairs, strings, and submenus. The menu description specifies which items are present
in the menu, what function each item invokes, and whether the item is selectable or not.
Pop-up menus are directly described with a menu description, while menubars are described
slightly differently (see below).

The first element of a menu must be a string, which is the name of the menu. This
is the string that will be displayed in the parent menu or menubar, if any. This string is
not displayed in the menu itself, except in the case of the top level pop-up menu, where
there is no parent. In this case, the string will be displayed at the top of the menu if
popup-menu-titles is non-nil.

Immediately following the first element there may optionally be up to four keyword-value
pairs, as follows:

:included form
This can be used to control the visibility of a menu. The form is evaluated and
the menu will be omitted if the result is nil.

:config symbol
This is an efficient shorthand for :included (memq symbol menubar-
configuration). See the variable menubar-configuration.

:filter function
A menu filter is used to sensitize or incrementally create a submenu only when
it is selected by the user and not every time the menubar is activated. The filter
function is passed the list of menu items in the submenu and must return a list
of menu items to be used for the menu. It is called only when the menu is about
to be displayed, so other menus may already be displayed. Vile and terrible
things will happen if a menu filter function changes the current buffer, window,
or frame. It also should not raise, lower, or iconify any frames. Basically, the
filter function should have no side-effects.

:accelerator key
A menu accelerator is a keystroke which can be pressed while the menu is visible
which will immediately activate the item. key must be a char or the symbol
name of a key. See Section 21.7 [Menu Accelerators], page 350.

The rest of the menu consists of elements as follows:
• A menu item, which is a vector in the following form:

[name callback :keyword value :keyword value ...]

name is a string, the name of the menu item; it is the string to display on the menu.
It is filtered through the resource database, so it is possible for resources to override
what string is actually displayed.

342 XEmacs Lisp Reference Manual

callback is a form that will be invoked when the menu item is selected. If the callback
of a menu item is a symbol, then it must name a command. It will be invoked with
call-interactively. If it is a list, then it is evaluated with eval.
The valid keywords and their meanings are described below.
Note that for compatibility purposes, the form

[name callback active-p]

is also accepted and is equivalent to
[name callback :active active-p]

and the form
[name callback active-p suffix]

is accepted and is equivalent to
[name callback :active active-p :suffix suffix]

However, these older forms are deprecated and should generally not be used.
• If an element of a menu is a string, then that string will be presented in the menu as

unselectable text.
• If an element of a menu is a string consisting solely of hyphens, then that item will be

presented as a solid horizontal line.
• If an element of a menu is a string beginning with ‘--:’, then a particular sort of

horizontal line will be displayed, as follows:

‘"--:singleLine"’
A solid horizontal line. This is equivalent to a string consisting solely of
hyphens.

‘"--:doubleLine"’
A solid double horizontal line.

‘"--:singleDashedLine"’
A dashed horizontal line.

‘"--:doubleDashedLine"’
A dashed double horizontal line.

‘"--:noLine"’
No line (but a small space is left).

‘"--:shadowEtchedIn"’
A solid horizontal line with a 3-d recessed appearance.

‘"--:shadowEtchedOut"’
A solid horizontal line with a 3-d pushed-out appearance.

‘"--:shadowDoubleEtchedIn"’
A solid double horizontal line with a 3-d recessed appearance.

‘"--:shadowDoubleEtchedOut"’
A solid double horizontal line with a 3-d pushed-out appearance.

‘"--:shadowEtchedInDash"’
A dashed horizontal line with a 3-d recessed appearance.

Chapter 21: Menus 343

‘"--:shadowEtchedOutDash"’
A dashed horizontal line with a 3-d pushed-out appearance.

‘"--:shadowDoubleEtchedInDash"’
A dashed double horizontal line with a 3-d recessed appearance.

‘"--:shadowDoubleEtchedOutDash"’
A dashed double horizontal line with a 3-d pushed-out appearance.

• If an element of a menu is a list, it is treated as a submenu. The name of that submenu
(the first element in the list) will be used as the name of the item representing this
menu on the parent.

The possible keywords are as follows:

:active form
form will be evaluated when the menu that this item is a part of is about to be
displayed, and the item will be selectable only if the result is non-nil. If the
item is unselectable, it will usually be displayed grayed-out to indicate this.

:suffix form
form will be evaluated when the menu that this item is a part of is about to
be displayed, and the resulting string is appended to the displayed name. This
provides a convenient way of adding the name of a command’s “argument” to
the menu, like ‘Kill Buffer NAME’.

:keys string
Normally, the keyboard equivalents of commands in menus are displayed when
the “callback” is a symbol. This can be used to specify keys for more complex
menu items. It is passed through substitute-command-keys first.

:style style
Specifies what kind of object this menu item is. style be one of the symbols

nil A normal menu item.

toggle A toggle button.

radio A radio button.

button A menubar button.

The only difference between toggle and radio buttons is how they are displayed.
But for consistency, a toggle button should be used when there is one option
whose value can be turned on or off, and radio buttons should be used when
there is a set of mutually exclusive options. When using a group of radio
buttons, you should arrange for no more than one to be marked as selected at
a time.

:selected form
Meaningful only when style is toggle, radio or button. This specifies whether
the button will be in the selected or unselected state. form is evaluated, as for
:active.

344 XEmacs Lisp Reference Manual

:included form
This can be used to control the visibility of a menu item. The form is evalu-
ated and the menu item is only displayed if the result is non-nil. Note that
this is different from :active: If :active evaluates to nil, the item will be
displayed grayed out, while if :included evaluates to nil, the item will be
omitted entirely.

:config symbol
This is an efficient shorthand for :included (memq symbol menubar-
configuration). See the variable menubar-configuration.

:accelerator key
A menu accelerator is a keystroke which can be pressed while the menu is visible
which will immediately activate the item. key must be a char or the symbol
name of a key. See Section 21.7 [Menu Accelerators], page 350.

Variablemenubar-configuration
This variable holds a list of symbols, against which the value of the :config tag for
each menubar item will be compared. If a menubar item has a :config tag, then it is
omitted from the menubar if that tag is not a member of the menubar-configuration
list.

For example:

("File"
:filter file-menu-filter ; file-menu-filter is a function that takes

; one argument (a list of menu items) and
; returns a list of menu items

["Save As..." write-file]
["Revert Buffer" revert-buffer :active (buffer-modified-p)]
["Read Only" toggle-read-only :style toggle :selected buffer-read-only]
)

21.2 Format of the Menubar

A menubar is a list of menus, menu items, and strings. The format is similar to that of
a menu, except:

• The first item need not be a string, and is not treated specially.

• A string consisting solely of hyphens is not treated specially.

• If an element of a menubar is nil, then it is used to represent the division between the
set of menubar items which are flush-left and those which are flush-right. (Note: this
isn’t completely implemented yet.)

21.3 Menubar

Chapter 21: Menus 345

Variablecurrent-menubar
This variable holds the description of the current menubar. This may be buffer-local.
When the menubar is changed, the function set-menubar-dirty-flag has to be
called in order for the menubar to be updated on the screen.

Constantdefault-menubar
This variable holds the menubar description of the menubar that is visible at startup.
This is the value that current-menubar has at startup.

Functionset-menubar-dirty-flag
This function tells XEmacs that the menubar widget has to be updated. Changes to
the menubar will generally not be visible until this function is called.

The following convenience functions are provided for setting the menubar. They are
equivalent to doing the appropriate action to change current-menubar, and then calling
set-menubar-dirty-flag. Note that these functions copy their argument using copy-
sequence.

Functionset-menubar menubar
This function sets the default menubar to be menubar (see Section 21.1 [Menu For-
mat], page 341). This is the menubar that will be visible in buffers that have not
defined their own, buffer-local menubar.

Functionset-buffer-menubar menubar
This function sets the buffer-local menubar to be menubar. This does not change the
menubar in any buffers other than the current one.

Miscellaneous:

Variablemenubar-show-keybindings
If true, the menubar will display keyboard equivalents. If false, only the command
names will be displayed.

Variableactivate-menubar-hook
Function or functions called before a menubar menu is pulled down. These func-
tions are called with no arguments, and should interrogate and modify the value of
current-menubar as desired.
The functions on this hook are invoked after the mouse goes down, but before the
menu is mapped, and may be used to activate, deactivate, add, or delete items from
the menus. However, using a filter (with the :filter keyword in a menu description)
is generally a more efficient way of accomplishing the same thing, because the filter
is invoked only when the actual menu goes down. With a complex menu, there can
be a quite noticeable and sometimes aggravating delay if all menu modification is
implemented using the activate-menubar-hook. See above.
These functions may return the symbol t to assert that they have made no changes
to the menubar. If any other value is returned, the menubar is recomputed. If

346 XEmacs Lisp Reference Manual

t is returned but the menubar has been changed, then the changes may not show
up right away. Returning nil when the menubar has not changed is not so bad;
more computation will be done, but redisplay of the menubar will still be performed
optimally.

Variablemenu-no-selection-hook
Function or functions to call when a menu or dialog box is dismissed without a
selection having been made.

21.4 Modifying Menus

The following functions are provided to modify the menubar of one of its submenus.
Note that these functions modify the menu in-place, rather than copying it and making a
new menu.

Some of these functions take a menu path, which is a list of strings identifying the menu
to be modified. For example, ("File") names the top-level “File” menu. ("File" "Foo")
names a hypothetical submenu of “File”.

Others take a menu item path, which is similar to a menu path but also specifies a
particular item to be modified. For example, ("File" "Save") means the menu item called
“Save” under the top-level “File” menu. ("Menu" "Foo" "Item") means the menu item
called “Item” under the “Foo” submenu of “Menu”.

Functionadd-submenu menu-path submenu &optional before
This function adds a menu to the menubar or one of its submenus. If the named
menu exists already, it is changed.
menu-path identifies the menu under which the new menu should be inserted. If
menu-path is nil, then the menu will be added to the menubar itself.
submenu is the new menu to add (see Section 21.1 [Menu Format], page 341).
before, if provided, is the name of a menu before which this menu should be added,
if this menu is not on its parent already. If the menu is already present, it will not be
moved.

Functionadd-menu-button menu-path menu-leaf &optional before
This function adds a menu item to some menu, creating the menu first if necessary.
If the named item exists already, it is changed.
menu-path identifies the menu under which the new menu item should be inserted.
menu-leaf is a menubar leaf node (see Section 21.1 [Menu Format], page 341).
before, if provided, is the name of a menu before which this item should be added,
if this item is not on the menu already. If the item is already present, it will not be
moved.

Functiondelete-menu-item menu-item-path
This function removes the menu item specified by menu-item-path from the menu
hierarchy.

Chapter 21: Menus 347

Functionenable-menu-item menu-item-path
This function makes the menu item specified by menu-item-path be selectable.

Functiondisable-menu-item menu-item-path
This function makes the menu item specified by menu-item-path be unselectable.

Functionrelabel-menu-item menu-item-path new-name
This function changes the string of the menu item specified by menu-item-path. new-
name is the string that the menu item will be printed as from now on.

The following function can be used to search for a particular item in a menubar specifi-
cation, given a path to the item.

Functionfind-menu-item menubar menu-item-path &optional parent
This function searches menubar for the item given by menu-item-path starting from
parent (nil means start at the top of menubar). This function returns (item .
parent), where parent is the immediate parent of the item found (a menu description),
and item is either a vector, list, or string, depending on the nature of the menu item.
This function signals an error if the item is not found.

The following deprecated functions are also documented, so that existing code can be
understood. You should not use these functions in new code.

Functionadd-menu menu-path menu-name menu-items &optional before
This function adds a menu to the menubar or one of its submenus. If the named
menu exists already, it is changed. This is obsolete; use add-submenu instead.
menu-path identifies the menu under which the new menu should be inserted. If
menu-path is nil, then the menu will be added to the menubar itself.
menu-name is the string naming the menu to be added; menu-items is a list of menu
items, strings, and submenus. These two arguments are the same as the first and
following elements of a menu description (see Section 21.1 [Menu Format], page 341).
before, if provided, is the name of a menu before which this menu should be added,
if this menu is not on its parent already. If the menu is already present, it will not be
moved.

Functionadd-menu-item menu-path item-name function enabled-p &optional
before

This function adds a menu item to some menu, creating the menu first if necessary. If
the named item exists already, it is changed. This is obsolete; use add-menu-button
instead.
menu-path identifies the menu under which the new menu item should be inserted.
item-name, function, and enabled-p are the first, second, and third elements of a
menu item vector (see Section 21.1 [Menu Format], page 341).
before, if provided, is the name of a menu item before which this item should be
added, if this item is not on the menu already. If the item is already present, it will
not be moved.

348 XEmacs Lisp Reference Manual

21.5 Menu Filters

The following filter functions are provided for use in default-menubar. You may want
to use them in your own menubar description.

Functionfile-menu-filter menu-items
This function changes the arguments and sensitivity of these File menu items:

‘Delete Buffer’
Has the name of the current buffer appended to it.

‘Print Buffer’
Has the name of the current buffer appended to it.

‘Pretty-Print Buffer’
Has the name of the current buffer appended to it.

‘Save Buffer’
Has the name of the current buffer appended to it, and is sensitive only
when the current buffer is modified.

‘Revert Buffer’
Has the name of the current buffer appended to it, and is sensitive only
when the current buffer has a file.

‘Delete Frame’
Sensitive only when there is more than one visible frame.

Functionedit-menu-filter menu-items
This function changes the arguments and sensitivity of these Edit menu items:

‘Cut’ Sensitive only when XEmacs owns the primary X Selection (if zmacs-
regions is t, this is equivalent to saying that there is a region selected).

‘Copy’ Sensitive only when XEmacs owns the primary X Selection.

‘Clear’ Sensitive only when XEmacs owns the primary X Selection.

‘Paste’ Sensitive only when there is an owner for the X Clipboard Selection.

‘Undo’ Sensitive only when there is undo information. While in the midst of an
undo, this is changed to ‘Undo More’.

Functionbuffers-menu-filter menu-items
This function sets up the Buffers menu. See Section 21.8 [Buffers Menu], page 352,
for more information.

Chapter 21: Menus 349

21.6 Pop-Up Menus

Functionpopup-menu menu-desc
This function pops up a menu specified by menu-desc, which is a menu description
(see Section 21.1 [Menu Format], page 341). The menu is displayed at the current
mouse position.

Functionpopup-menu-up-p
This function returns t if a pop-up menu is up, nil otherwise.

Variablepopup-menu-titles
If true (the default), pop-up menus will have title bars at the top.

Some machinery is provided that attempts to provide a higher-level mechanism onto
pop-up menus. This only works if you do not redefine the binding for button3.

Commandpopup-mode-menu
This function pops up a menu of global and mode-specific commands. The menu
is computed by combining global-popup-menu and mode-popup-menu. This is the
default binding for button3. You should generally not change this binding.

Variableglobal-popup-menu
This holds the global popup menu. This is present in all modes. (This is nil by
default.)

Variablemode-popup-menu
The mode-specific popup menu. Automatically buffer local. This is appended to the
default items in global-popup-menu.

Constantdefault-popup-menu
This holds the default value of mode-popup-menu.

Variableactivate-popup-menu-hook
Function or functions run before a mode-specific popup menu is made visible. These
functions are called with no arguments, and should interrogate and modify the value
of global-popup-menu or mode-popup-menu as desired. Note: this hook is only run
if you use popup-mode-menu for activating the global and mode-specific commands;
if you have your own binding for button3, this hook won’t be run.

The following convenience functions are provided for displaying pop-up menus.

Functionpopup-buffer-menu event
This function pops up a copy of the ‘Buffers’ menu (from the menubar) where the
mouse is clicked.

Functionpopup-menubar-menu event
This function pops up a copy of menu that also appears in the menubar.

350 XEmacs Lisp Reference Manual

21.7 Menu Accelerators

Menu accelerators are keyboard shortcuts for accessing the menubar. Accelerator keys
can be specified for menus as well as for menu items. An accelerator key for a menu is used
to activate that menu when it appears as a submenu of another menu. An accelerator key
for a menu item is used to activate that item.

21.7.1 Creating Menu Accelerators

Menu accelerators are specified as part of the menubar format using the :accelerator tag
to specify a key or by placing "% " in the menu or menu item name prior to the letter
which is to be used as the accelerator key. The advantage of the second method is that the
menu rendering code then knows to draw an underline under that character, which is the
canonical way of indicating an accelerator key to a user.

For example, the command
(add-submenu nil ’("%_Test"

["One" (insert "1") :accelerator ?1 :active t]
["%_Two" (insert "2")]
["%_3" (insert "3")]))

will add a new menu to the top level menubar. The new menu can be reached by
pressing "t" while the top level menubar is active. When the menu is active, pressing "1"
will activate the first item and insert the character "1" into the buffer. Pressing "2" will
activate the second item and insert the character "2" into the buffer. Pressing "3" will
activate the third item and insert the character "3" into the buffer.

It is possible to activate the top level menubar itself using accelerator keys. See Sec-
tion 21.7.3 [Menu Accelerator Functions], page 350.

21.7.2 Keyboard Menu Traversal

In addition to immediately activating a menu or menu item, the keyboard can be used
to traverse the menus without activating items. The keyboard arrow keys, the return key
and the escape key are defined to traverse the menus in a way that should be familiar to
users of any of a certain family of popular PC operating systems.

This behavior can be changed by modifying the bindings in menu-accelerator-map. At
this point, the online help is your best bet for more information about how to modify the
menu traversal keys.

21.7.3 Menu Accelerator Functions

Functionaccelerate-menu
Make the menubar immediately active and place the cursor on the left most entry in
the top level menu. Menu items can be selected as usual.

Chapter 21: Menus 351

Variablemenu-accelerator-enabled
Whether menu accelerator keys can cause the menubar to become active.

If menu-force or menu-fallback, then menu accelerator keys can be used to activate
the top level menu. Once the menubar becomes active, the accelerator keys can be
used regardless of the value of this variable.

menu-force is used to indicate that the menu accelerator key takes precedence over
bindings in the current keymap(s). menu-fallback means that bindings in the current
keymap take precedence over menu accelerator keys. Thus a top level menu with an
accelerator of "T" would be activated on a keypress of Meta-t if menu-accelerator-
enabled is menu-force. However, if menu-accelerator-enabled is menu-fallback,
then Meta-t will not activate the menubar and will instead run the function transpose-
words, to which it is normally bound.

The default value is nil.

See also menu-accelerator-modifiers and menu-accelerator-prefix.

Variablemenu-accelerator-map
Keymap consulted to determine the commands to run in response to keypresses oc-
curring while the menubar is active. See Section 21.7.2 [Keyboard Menu Traversal],
page 350.

Variablemenu-accelerator-modifiers
A list of modifier keys which must be pressed in addition to a valid menu accelerator
in order for the top level menu to be activated in response to a keystroke. The default
value of (meta) mirrors the usage of the alt key as a menu accelerator in popular PC
operating systems.

The modifier keys in menu-accelerator-modifiers must match exactly the modifiers
present in the keypress. The only exception is that the shift modifier is accepted in
conjunction with alphabetic keys even if it is not a menu accelerator modifier.

See also menu-accelerator-enabled and menu-accelerator-prefix.

Variablemenu-accelerator-prefix
Prefix key(s) that must be typed before menu accelerators will be activated. Must be
a valid key descriptor.

The default value is nil.

(setq menu-accelerator-prefix ?\C-x)
(setq menu-accelerator-modifiers ’(meta control))
(setq menu-accelerator-enabled ’menu-force)
(add-submenu nil ’("%_Test"

["One" (insert "1") :accelerator ?1 :active t]
["%_Two" (insert "2")]
["%_3" (insert "3")]))

will add the menu "Test" to the top level menubar. Pressing C-x followed by C-M-T
will activate the menubar and display the "Test" menu. Pressing C-M-T by itself will not
activate the menubar. Neither will pressing C-x followed by anything else.

352 XEmacs Lisp Reference Manual

21.8 Buffers Menu

The following options control how the ‘Buffers’ menu is displayed. This is a list of all
(or a subset of) the buffers currently in existence, and is updated dynamically.

User Optionbuffers-menu-max-size
This user option holds the maximum number of entries which may appear on the
‘Buffers’ menu. If this is 10, then only the ten most-recently-selected buffers will be
shown. If this is nil, then all buffers will be shown. Setting this to a large number
or nil will slow down menu responsiveness.

Functionformat-buffers-menu-line buffer
This function returns a string to represent buffer in the ‘Buffers’ menu. nil means
the buffer shouldn’t be listed. You can redefine this.

User Optioncomplex-buffers-menu-p
If true, the ‘Buffers’ menu will contain several commands, as submenus of each buffer
line. If this is false, then there will be only one command: select that buffer.

User Optionbuffers-menu-switch-to-buffer-function
This user option holds the function to call to select a buffer from the ‘Buffers’ menu.
switch-to-buffer is a good choice, as is pop-to-buffer.

Chapter 22: Dialog Boxes 353

22 Dialog Boxes

22.1 Dialog Box Format

A dialog box description is a list.
• The first element of the list is a string to display in the dialog box.
• The rest of the elements are descriptions of the dialog box’s buttons. Each one is a

vector of three elements:
− The first element is the text of the button.
− The second element is the callback.
− The third element is t or nil, whether this button is selectable.

If the callback of a button is a symbol, then it must name a command. It will be invoked
with call-interactively. If it is a list, then it is evaluated with eval.

One (and only one) of the buttons may be nil. This marker means that all following
buttons should be flushright instead of flushleft.

The syntax, more precisely:
form := <something to pass to ‘eval’>
command := <a symbol or string, to pass to ‘call-interactively’>
callback := command | form
active-p := <t, nil, or a form to evaluate to decide whether this
button should be selectable>
name := <string>
partition := ’nil’
button := ’[’ name callback active-p ’]’
dialog := ’(’ name [button]+ [partition [button]+] ’)’

22.2 Dialog Box Functions

Functionpopup-dialog-box dbox-desc
This function pops up a dialog box. dbox-desc describes how the dialog box will
appear (see Section 22.1 [Dialog Box Format], page 353).

See Section 18.6 [Yes-or-No Queries], page 279, for functions to ask a yes/no question
using a dialog box.

354 XEmacs Lisp Reference Manual

Chapter 23: Toolbar 355

23 Toolbar

23.1 Toolbar Intro

A toolbar is a bar of icons displayed along one edge of a frame. You can view a toolbar
as a series of menu shortcuts – the most common menu options can be accessed with a
single click rather than a series of clicks and/or drags to select the option from a menu.
Consistent with this, a help string (called the help-echo) describing what an icon in the
toolbar (called a toolbar button) does, is displayed in the minibuffer when the mouse is
over the button.

In XEmacs, a toolbar can be displayed along any of the four edges of the frame, and two
or more different edges can be displaying toolbars simultaneously. The contents, thickness,
and visibility of the toolbars can be controlled separately, and the values can be per-buffer,
per-frame, etc., using specifiers (see Chapter 41 [Specifiers], page 609).

Normally, there is one toolbar displayed in a frame. Usually, this is the standard toolbar,
but certain modes will override this and substitute their own toolbar. In some cases (e.g. the
VM package), a package will supply its own toolbar along a different edge from the standard
toolbar, so that both can be visible at once. This standard toolbar is usually positioned
along the top of the frame, but this can be changed using set-default-toolbar-position.

Note that, for each of the toolbar properties (contents, thickness, and visibility), there is
a separate specifier for each of the four toolbar positions (top, bottom, left, and right), and
an additional specifier for the “default” toolbar, i.e. the toolbar whose position is controlled
by set-default-toolbar-position. The way this works is that set-default-toolbar-
position arranges things so that the appropriate position-specific specifiers for the default
position inherit from the corresponding default specifiers. That way, if the position-specific
specifier does not give a value (which it usually doesn’t), then the value from the default
specifier applies. If you want to control the default toolbar, you just change the default
specifiers, and everything works. A package such as VM that wants to put its own toolbar
in a different location from the default just sets the position-specific specifiers, and if the
user sets the default toolbar to the same position, it will just not be visible.

23.2 Toolbar Descriptor Format

The contents of a toolbar are specified using a toolbar descriptor. The format of a
toolbar descriptor is a list of toolbar button descriptors. Each toolbar button descriptor is
a vector in one of the following formats:

• [glyph-list function enabled-p help]

• [:style 2d-or-3d]

• [:style 2d-or-3d :size width-or-height]

• [:size width-or-height :style 2d-or-3d]

356 XEmacs Lisp Reference Manual

Optionally, one of the toolbar button descriptors may be nil instead of a vector; this
signifies the division between the toolbar buttons that are to be displayed flush-left, and
the buttons to be displayed flush-right.

The first vector format above specifies a normal toolbar button; the others specify blank
areas in the toolbar.

For the first vector format:

• glyph-list should be a list of one to six glyphs (as created by make-glyph) or a symbol
whose value is such a list. The first glyph, which must be provided, is the glyph used
to display the toolbar button when it is in the “up” (not pressed) state. The optional
second glyph is for displaying the button when it is in the “down” (pressed) state. The
optional third glyph is for when the button is disabled. The last three glyphs are for
displaying the button in the “up”, “down”, and “disabled” states, respectively, but are
used when the user has called for captioned toolbar buttons (using toolbar-buttons-
captioned-p). The function toolbar-make-button-list is useful in creating these
glyph lists.

• Even if you do not provide separate down-state and disabled-state glyphs, the user
will still get visual feedback to indicate which state the button is in. Buttons in the
up-state are displayed with a shadowed border that gives a raised appearance to the
button. Buttons in the down-state are displayed with shadows that give a recessed
appearance. Buttons in the disabled state are displayed with no shadows, giving a 2-d
effect.

• If some of the toolbar glyphs are not provided, they inherit as follows:
UP: up
DOWN: down -> up
DISABLED: disabled -> up
CAP-UP: cap-up -> up
CAP-DOWN: cap-down -> cap-up -> down -> up
CAP-DISABLED: cap-disabled -> cap-up -> disabled -> up

• The second element function is a function to be called when the toolbar button is
activated (i.e. when the mouse is released over the toolbar button, if the press occurred
in the toolbar). It can be any form accepted by call-interactively, since this is how
it is invoked.

• The third element enabled-p specifies whether the toolbar button is enabled (disabled
buttons do nothing when they are activated, and are displayed differently; see above).
It should be either a boolean or a form that evaluates to a boolean.

• The fourth element help, if non-nil, should be a string. This string is displayed in the
echo area when the mouse passes over the toolbar button.

For the other vector formats (specifying blank areas of the toolbar):

• 2d-or-3d should be one of the symbols 2d or 3d, indicating whether the area is displayed
with shadows (giving it a raised, 3-d appearance) or without shadows (giving it a flat
appearance).

• width-or-height specifies the length, in pixels, of the blank area. If omitted, it defaults
to a device-specific value (8 pixels for X devices).

Chapter 23: Toolbar 357

Functiontoolbar-make-button-list up &optional down disabled cap-up
cap-down cap-disabled

This function calls make-glyph on each arg and returns a list of the results. This
is useful for setting the first argument of a toolbar button descriptor (typically, the
result of this function is assigned to a symbol, which is specified as the first argument
of the toolbar button descriptor).

Functioncheck-toolbar-button-syntax button &optional noerror
Verify the syntax of entry button in a toolbar description list. If you want to verify
the syntax of a toolbar description list as a whole, use check-valid-instantiator
with a specifier type of toolbar.

23.3 Specifying the Toolbar

In order to specify the contents of a toolbar, set one of the specifier variables default-
toolbar, top-toolbar, bottom-toolbar, left-toolbar, or right-toolbar. These are
specifiers, which means you set them with set-specifier and query them with specifier-
specs or specifier-instance. You will get an error if you try to set them using setq.
The valid instantiators for these specifiers are toolbar descriptors, as described above. See
Chapter 41 [Specifiers], page 609, for more information.

Most of the time, you will set default-toolbar, which allows the user to choose where
the toolbar should go.

Specifierdefault-toolbar
The position of this toolbar is specified in the function default-toolbar-position.
If the corresponding position-specific toolbar (e.g. top-toolbar if default-toolbar-
position is top) does not specify a toolbar in a particular domain, then the value of
default-toolbar in that domain, of any, will be used instead.

Note that the toolbar at any particular position will not be displayed unless its thickness
(width or height, depending on orientation) is non-zero and its visibility status is true. The
thickness is controlled by the specifiers top-toolbar-height, bottom-toolbar-height,
left-toolbar-width, and right-toolbar-width, and the visibility status is controlled
by the specifiers top-toolbar-visible-p, bottom-toolbar-visible-p, left-toolbar-
visible-p, and right-toolbar-visible-p (see Section 23.4 [Other Toolbar Variables],
page 358).

Functionset-default-toolbar-position position
This function sets the position that the default-toolbar will be displayed at. Valid
positions are the symbols top, bottom, left and right. What this actually does is set
the fallback specifier for the position-specific specifier corresponding to the given po-
sition to default-toolbar, and set the fallbacks for the other position-specific speci-
fiers to nil. It also does the same thing for the position-specific thickness and visibility
specifiers, which inherit from one of default-toolbar-height or default-toolbar-
width, and from default-toolbar-visible-p, respectively (see Section 23.4 [Other
Toolbar Variables], page 358).

358 XEmacs Lisp Reference Manual

Functiondefault-toolbar-position
This function returns the position that the default-toolbar will be displayed at.

You can also explicitly set a toolbar at a particular position. When redisplay determines
what to display at a particular position in a particular domain (i.e. window), it first consults
the position-specific toolbar. If that does not yield a toolbar descriptor, the default-
toolbar is consulted if default-toolbar-position indicates this position.

Specifiertop-toolbar
Specifier for the toolbar at the top of the frame.

Specifierbottom-toolbar
Specifier for the toolbar at the bottom of the frame.

Specifierleft-toolbar
Specifier for the toolbar at the left edge of the frame.

Specifierright-toolbar
Specifier for the toolbar at the right edge of the frame.

Functiontoolbar-specifier-p object
This function returns non-nil if object is a toolbar specifier. Toolbar specifiers are
the actual objects contained in the toolbar variables described above, and their valid
instantiators are toolbar descriptors (see Section 23.2 [Toolbar Descriptor Format],
page 355).

23.4 Other Toolbar Variables

The variables to control the toolbar thickness, visibility status, and captioned status are
all specifiers. See Chapter 41 [Specifiers], page 609.

Specifierdefault-toolbar-height
This specifies the height of the default toolbar, if it’s oriented horizontally. The
position of the default toolbar is specified by the function set-default-toolbar-
position. If the corresponding position-specific toolbar thickness specifier (e.g. top-
toolbar-height if default-toolbar-position is top) does not specify a thickness
in a particular domain (a window or a frame), then the value of default-toolbar-
height or default-toolbar-width (depending on the toolbar orientation) in that
domain, if any, will be used instead.

Specifierdefault-toolbar-width
This specifies the width of the default toolbar, if it’s oriented vertically. This behaves
like default-toolbar-height.

Note that default-toolbar-height is only used when default-toolbar-position
is top or bottom, and default-toolbar-width is only used when default-toolbar-
position is left or right.

Chapter 23: Toolbar 359

Specifiertop-toolbar-height
This specifies the height of the top toolbar.

Specifierbottom-toolbar-height
This specifies the height of the bottom toolbar.

Specifierleft-toolbar-width
This specifies the width of the left toolbar.

Specifierright-toolbar-width
This specifies the width of the right toolbar.

Note that all of the position-specific toolbar thickness specifiers have a fallback value of
zero when they do not correspond to the default toolbar. Therefore, you will have to set a
non-zero thickness value if you want a position-specific toolbar to be displayed.

Specifierdefault-toolbar-visible-p
This specifies whether the default toolbar is visible. The position of the default toolbar
is specified by the function set-default-toolbar-position. If the corresponding
position-specific toolbar visibility specifier (e.g. top-toolbar-visible-p if default-
toolbar-position is top) does not specify a visible-p value in a particular domain (a
window or a frame), then the value of default-toolbar-visible-p in that domain,
if any, will be used instead.

Specifiertop-toolbar-visible-p
This specifies whether the top toolbar is visible.

Specifierbottom-toolbar-visible-p
This specifies whether the bottom toolbar is visible.

Specifierleft-toolbar-visible-p
This specifies whether the left toolbar is visible.

Specifierright-toolbar-visible-p
This specifies whether the right toolbar is visible.

default-toolbar-visible-p and all of the position-specific toolbar visibility specifiers
have a fallback value of true.

Internally, toolbar thickness and visibility specifiers are instantiated in both window and
frame domains, for different purposes. The value in the domain of a frame’s selected window
specifies the actual toolbar thickness or visibility that you will see in that frame. The value
in the domain of a frame itself specifies the toolbar thickness or visibility that is used in
frame geometry calculations.

Thus, for example, if you set the frame width to 80 characters and the left toolbar width
for that frame to 68 pixels, then the frame will be sized to fit 80 characters plus a 68-pixel
left toolbar. If you then set the left toolbar width to 0 for a particular buffer (or if that buffer

360 XEmacs Lisp Reference Manual

does not specify a left toolbar or has a nil value specified for left-toolbar-visible-p),
you will find that, when that buffer is displayed in the selected window, the window will
have a width of 86 or 87 characters – the frame is sized for a 68-pixel left toolbar but the
selected window specifies that the left toolbar is not visible, so it is expanded to take up
the slack.

Specifiertoolbar-buttons-captioned-p
Whether toolbar buttons are captioned. This affects which glyphs from a toolbar
button descriptor are chosen. See Section 23.2 [Toolbar Descriptor Format], page 355.

You can also reset the toolbar to what it was when XEmacs started up.

Constantinitial-toolbar-spec
The toolbar descriptor used to initialize default-toolbar at startup.

Chapter 24: scrollbars 361

24 scrollbars

Not yet documented.

362 XEmacs Lisp Reference Manual

Chapter 25: Drag and Drop 363

25 Drag and Drop

WARNING : the Drag’n’Drop API is still under development and the interface may
change! The current implementation is considered experimental.

Drag’n’drop is a way to transfer information between multiple applications. To do
this several GUIs define their own protocols. Examples are OffiX, CDE, Motif, KDE,
MSWindows, GNOME, and many more. To catch all these protocols, XEmacs provides a
generic API.

One prime idea behind the API is to use a data interface that is transparent for all
systems. The author thinks that this is best archived by using URL and MIME data, cause
any internet enabled system must support these for email already. XEmacs also already
provides powerful interfaces to support these types of data (tm and w3).

25.1 Supported Protocols

The current release of XEmacs only support a small set of Drag’n’drop protocols. Some
of these only support limited options available in the API.

25.1.1 OffiX DND

WARNING : If you compile in OffiX, you may not be able to use multiple X displays
successfully. If the two servers are from different vendors, the results may be unpredictable.

The OffiX Drag’n’Drop protocol is part of a X API/Widget library created by Cesar
Crusius. It is based on X-Atoms and ClientMessage events, and works with any X platform
supporting them.

OffiX is supported if ’offix is member of the variable dragdrop-protocols, or the feature
’offix is defined.

Unfortunately it uses it’s own data types. Examples are: File, Files, Exe, Link, URL,
MIME. The API tries to choose the right type for the data that is dragged from XEmacs
(well, not yet...).

XEmacs supports both MIME and URL drags and drops using this API. No application
interaction is possible while dragging is in progress.

For information about the OffiX project have a look at http://leb.net/~offix/

25.1.2 CDE dt

CDE stands for Common Desktop Environment. It is based on the Motif widget library.
It’s drag’n’drop protocol is also an abstraction of the Motif protocol (so it might be possible,
that XEmacs will also support the Motif protocol soon).

CDE has three different types: file, buffer, and text. XEmacs only uses file and buffer
drags. The API will disallow full URL drags, only file method URLs are passed through.

Buffer drags are always converted to plain text.

364 XEmacs Lisp Reference Manual

25.1.3 MSWindows OLE

Only allows file drags and drops.

25.1.4 Loose ends

The following protocols will be supported soon: Xdnd, Motif, Xde (if I get some specs),
KDE OffiX (if KDE can find XEmacs windows).

In particular Xdnd will be one of the protocols that can benefit from the XEmacs API,
cause it also uses MIME types to encode dragged data.

25.2 Drop Interface

For each activated low-level protocol, a internal routine will catch incoming drops and
convert them to a dragdrop-drop type misc-user-event.

This misc-user-event has its function argument set to dragdrop-drop-dispatch and the
object contains the data of the drop (converted to URL/MIME specific data). This function
will search the variable experimental-dragdrop-drop-functions for a function that can
handle the dropped data.

To modify the drop behavior, the user can modify the variable experimental-dragdrop-
drop-functions. Each element of this list specifies a possible handler for dropped data.
The first one that can handle the data will return t and exit. Another possibility is to set
a extent-property with the same name. Extents are checked prior to the variable.

The customization group drag-n-drop shows all variables of user interest.

25.3 Drag Interface

This describes the drag API (not implemented yet).

Chapter 26: Major and Minor Modes 365

26 Major and Minor Modes

A mode is a set of definitions that customize XEmacs and can be turned on and off while
you edit. There are two varieties of modes: major modes, which are mutually exclusive and
used for editing particular kinds of text, and minor modes, which provide features that
users can enable individually.

This chapter describes how to write both major and minor modes, how to indicate them
in the modeline, and how they run hooks supplied by the user. For related topics such as
keymaps and syntax tables, see Chapter 20 [Keymaps], page 319, and Chapter 38 [Syntax
Tables], page 575.

26.1 Major Modes

Major modes specialize XEmacs for editing particular kinds of text. Each buffer has
only one major mode at a time.

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific definitions or variable settings, so each XEmacs command behaves in its default
manner, and each option is in its default state. All other major modes redefine various keys
and options. For example, Lisp Interaction mode provides special key bindings for 〈LFD〉
(eval-print-last-sexp), 〈TAB〉 (lisp-indent-line), and other keys.

When you need to write several editing commands to help you perform a specialized
editing task, creating a new major mode is usually a good idea. In practice, writing a
major mode is easy (in contrast to writing a minor mode, which is often difficult).

If the new mode is similar to an old one, it is often unwise to modify the old one to
serve two purposes, since it may become harder to use and maintain. Instead, copy and
rename an existing major mode definition and alter the copy—or define a derived mode
(see Section 26.1.5 [Derived Modes], page 374). For example, Rmail Edit mode, which is
in ‘emacs/lisp/rmailedit.el’, is a major mode that is very similar to Text mode except
that it provides three additional commands. Its definition is distinct from that of Text
mode, but was derived from it.

Rmail Edit mode is an example of a case where one piece of text is put temporarily
into a different major mode so it can be edited in a different way (with ordinary XEmacs
commands rather than Rmail). In such cases, the temporary major mode usually has a
command to switch back to the buffer’s usual mode (Rmail mode, in this case). You might
be tempted to present the temporary redefinitions inside a recursive edit and restore the
usual ones when the user exits; but this is a bad idea because it constrains the user’s options
when it is done in more than one buffer: recursive edits must be exited most-recently-entered
first. Using alternative major modes avoids this limitation. See Section 19.10 [Recursive
Editing], page 314.

The standard XEmacs Lisp library directory contains the code for several major
modes, in files including ‘text-mode.el’, ‘texinfo.el’, ‘lisp-mode.el’, ‘c-mode.el’, and
‘rmail.el’. You can look at these libraries to see how modes are written. Text mode

366 XEmacs Lisp Reference Manual

is perhaps the simplest major mode aside from Fundamental mode. Rmail mode is a
complicated and specialized mode.

26.1.1 Major Mode Conventions

The code for existing major modes follows various coding conventions, including con-
ventions for local keymap and syntax table initialization, global names, and hooks. Please
follow these conventions when you define a new major mode:

• Define a command whose name ends in ‘-mode’, with no arguments, that switches to
the new mode in the current buffer. This command should set up the keymap, syntax
table, and local variables in an existing buffer without changing the buffer’s text.

• Write a documentation string for this command that describes the special commands
available in this mode. C-h m (describe-mode) in your mode will display this string.

The documentation string may include the special documentation substrings, ‘\[com-
mand]’, ‘\{keymap}’, and ‘\<keymap>’, that enable the documentation to adapt au-
tomatically to the user’s own key bindings. See Section 27.3 [Keys in Documentation],
page 388.

• The major mode command should start by calling kill-all-local-variables. This
is what gets rid of the local variables of the major mode previously in effect.

• The major mode command should set the variable major-mode to the major mode
command symbol. This is how describe-mode discovers which documentation to print.

• The major mode command should set the variable mode-name to the “pretty” name of
the mode, as a string. This appears in the mode line.

• Since all global names are in the same name space, all the global variables, constants,
and functions that are part of the mode should have names that start with the major
mode name (or with an abbreviation of it if the name is long). See Section A.1 [Style
Tips], page 769.

• The major mode should usually have its own keymap, which is used as the local keymap
in all buffers in that mode. The major mode function should call use-local-map to
install this local map. See Section 20.7 [Active Keymaps], page 324, for more informa-
tion.

This keymap should be kept in a global variable named modename-mode-map. Nor-
mally the library that defines the mode sets this variable.

• The mode may have its own syntax table or may share one with other related modes. If
it has its own syntax table, it should store this in a variable named modename-mode-
syntax-table. See Chapter 38 [Syntax Tables], page 575.

• The mode may have its own abbrev table or may share one with other related modes.
If it has its own abbrev table, it should store this in a variable named modename-
mode-abbrev-table. See Section 39.2 [Abbrev Tables], page 587.

• Use defvar to set mode-related variables, so that they are not reinitialized if they
already have a value. (Such reinitialization could discard customizations made by the
user.)

Chapter 26: Major and Minor Modes 367

• To make a buffer-local binding for an Emacs customization variable, use make-local-
variable in the major mode command, not make-variable-buffer-local. The latter
function would make the variable local to every buffer in which it is subsequently set,
which would affect buffers that do not use this mode. It is undesirable for a mode to
have such global effects. See Section 10.9 [Buffer-Local Variables], page 159.
It’s ok to use make-variable-buffer-local, if you wish, for a variable used only
within a single Lisp package.

• Each major mode should have a mode hook named modename-mode-hook. The major
mode command should run that hook, with run-hooks, as the very last thing it does.
See Section 26.4 [Hooks], page 382.

• The major mode command may also run the hooks of some more basic modes. For
example, indented-text-mode runs text-mode-hook as well as indented-text-mode-
hook. It may run these other hooks immediately before the mode’s own hook (that is,
after everything else), or it may run them earlier.

• If something special should be done if the user switches a buffer from this mode to any
other major mode, the mode can set a local value for change-major-mode-hook.

• If this mode is appropriate only for specially-prepared text, then the major mode
command symbol should have a property named mode-class with value special, put
on as follows:

(put ’funny-mode ’mode-class ’special)

This tells XEmacs that new buffers created while the current buffer has Funny mode
should not inherit Funny mode. Modes such as Dired, Rmail, and Buffer List use this
feature.

• If you want to make the new mode the default for files with certain recognizable names,
add an element to auto-mode-alist to select the mode for those file names. If you
define the mode command to autoload, you should add this element in the same file
that calls autoload. Otherwise, it is sufficient to add the element in the file that
contains the mode definition. See Section 26.1.3 [Auto Major Mode], page 370.

• In the documentation, you should provide a sample autoload form and an example of
how to add to auto-mode-alist, that users can include in their ‘.emacs’ files.

• The top-level forms in the file defining the mode should be written so that they may
be evaluated more than once without adverse consequences. Even if you never load the
file more than once, someone else will.

Variablechange-major-mode-hook
This normal hook is run by kill-all-local-variables before it does anything else.
This gives major modes a way to arrange for something special to be done if the user
switches to a different major mode. For best results, make this variable buffer-local,
so that it will disappear after doing its job and will not interfere with the subsequent
major mode. See Section 26.4 [Hooks], page 382.

26.1.2 Major Mode Examples

Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts
from ‘text-mode.el’ that illustrate many of the conventions listed above:

368 XEmacs Lisp Reference Manual

;; Create mode-specific tables.
(defvar text-mode-syntax-table nil
"Syntax table used while in text mode.")

(if text-mode-syntax-table
() ; Do not change the table if it is already set up.

(setq text-mode-syntax-table (make-syntax-table))
(modify-syntax-entry ?\" ". " text-mode-syntax-table)
(modify-syntax-entry ?\\ ". " text-mode-syntax-table)
(modify-syntax-entry ?’ "w " text-mode-syntax-table))

(defvar text-mode-abbrev-table nil
"Abbrev table used while in text mode.")

(define-abbrev-table ’text-mode-abbrev-table ())

(defvar text-mode-map nil) ; Create a mode-specific keymap.

(if text-mode-map
() ; Do not change the keymap if it is already set up.

(setq text-mode-map (make-sparse-keymap))
(define-key text-mode-map "\t" ’tab-to-tab-stop)
(define-key text-mode-map "\es" ’center-line)
(define-key text-mode-map "\eS" ’center-paragraph))

Here is the complete major mode function definition for Text mode:

(defun text-mode ()
"Major mode for editing text intended for humans to read.
Special commands: \\{text-mode-map}
Turning on text-mode runs the hook ‘text-mode-hook’."

(interactive)
(kill-all-local-variables)
(use-local-map text-mode-map) ; This provides the local keymap.
(setq mode-name "Text") ; This name goes into the modeline.
(setq major-mode ’text-mode) ; This is how describe-mode

; finds the doc string to print.
(setq local-abbrev-table text-mode-abbrev-table)
(set-syntax-table text-mode-syntax-table)
(run-hooks ’text-mode-hook)) ; Finally, this permits the user to

; customize the mode with a hook.

The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have
more features than Text mode and the code is correspondingly more complicated. Here are
excerpts from ‘lisp-mode.el’ that illustrate how these modes are written.

;; Create mode-specific table variables.
(defvar lisp-mode-syntax-table nil "")
(defvar emacs-lisp-mode-syntax-table nil "")
(defvar lisp-mode-abbrev-table nil "")

(if (not emacs-lisp-mode-syntax-table) ; Do not change the table
; if it is already set.

(let ((i 0))
(setq emacs-lisp-mode-syntax-table (make-syntax-table))

Chapter 26: Major and Minor Modes 369

;; Set syntax of chars up to 0 to class of chars that are
;; part of symbol names but not words.
;; (The number 0 is 48 in the ASCII character set.)
(while (< i ?0)

(modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table)
(setq i (1+ i)))

...
;; Set the syntax for other characters.
(modify-syntax-entry ? " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\t " " emacs-lisp-mode-syntax-table)
...
(modify-syntax-entry ?\("() " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\) ")(" emacs-lisp-mode-syntax-table)
...))

;; Create an abbrev table for lisp-mode.
(define-abbrev-table ’lisp-mode-abbrev-table ())

Much code is shared among the three Lisp modes. The following function sets various
variables; it is called by each of the major Lisp mode functions:

(defun lisp-mode-variables (lisp-syntax)
;; The lisp-syntax argument is nil in Emacs Lisp mode,
;; and t in the other two Lisp modes.
(cond (lisp-syntax

(if (not lisp-mode-syntax-table)
;; The Emacs Lisp mode syntax table always exists, but
;; the Lisp Mode syntax table is created the first time a
;; mode that needs it is called. This is to save space.
(progn (setq lisp-mode-syntax-table

(copy-syntax-table emacs-lisp-mode-syntax-table))
;; Change some entries for Lisp mode.
(modify-syntax-entry ?\| "\" "

lisp-mode-syntax-table)
(modify-syntax-entry ?\["_ "

lisp-mode-syntax-table)
(modify-syntax-entry ?\] "_ "

lisp-mode-syntax-table)))
(set-syntax-table lisp-mode-syntax-table)))

(setq local-abbrev-table lisp-mode-abbrev-table)
...)

Functions such as forward-paragraph use the value of the paragraph-start variable.
Since Lisp code is different from ordinary text, the paragraph-start variable needs to be
set specially to handle Lisp. Also, comments are indented in a special fashion in Lisp and
the Lisp modes need their own mode-specific comment-indent-function. The code to set
these variables is the rest of lisp-mode-variables.

(make-local-variable ’paragraph-start)
;; Having ‘^’ is not clean, but page-delimiter
;; has them too, and removing those is a pain.
(setq paragraph-start (concat "^$\\|" page-delimiter))
...

370 XEmacs Lisp Reference Manual

(make-local-variable ’comment-indent-function)
(setq comment-indent-function ’lisp-comment-indent))

Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode
binds C-c C-l to run-lisp, but the other Lisp modes do not. However, all Lisp modes have
some commands in common. The following function adds these common commands to a
given keymap.

(defun lisp-mode-commands (map)
(define-key map "\e\C-q" ’indent-sexp)
(define-key map "\177" ’backward-delete-char-untabify)
(define-key map "\t" ’lisp-indent-line))

Here is an example of using lisp-mode-commands to initialize a keymap, as part of the
code for Emacs Lisp mode. First we declare a variable with defvar to hold the mode-
specific keymap. When this defvar executes, it sets the variable to nil if it was void. Then
we set up the keymap if the variable is nil.

This code avoids changing the keymap or the variable if it is already set up. This lets
the user customize the keymap.

(defvar emacs-lisp-mode-map () "")
(if emacs-lisp-mode-map

()
(setq emacs-lisp-mode-map (make-sparse-keymap))
(define-key emacs-lisp-mode-map "\e\C-x" ’eval-defun)
(lisp-mode-commands emacs-lisp-mode-map))

Finally, here is the complete major mode function definition for Emacs Lisp mode.

(defun emacs-lisp-mode ()
"Major mode for editing Lisp code to run in XEmacs.

Commands:
Delete converts tabs to spaces as it moves back.
Blank lines separate paragraphs. Semicolons start comments.
\\{emacs-lisp-mode-map}
Entry to this mode runs the hook ‘emacs-lisp-mode-hook’."

(interactive)
(kill-all-local-variables)
(use-local-map emacs-lisp-mode-map) ; This provides the local keymap.
(set-syntax-table emacs-lisp-mode-syntax-table)
(setq major-mode ’emacs-lisp-mode) ; This is how describe-mode

; finds out what to describe.
(setq mode-name "Emacs-Lisp") ; This goes into the modeline.
(lisp-mode-variables nil) ; This defines various variables.
(run-hooks ’emacs-lisp-mode-hook)) ; This permits the user to use a

; hook to customize the mode.

26.1.3 How XEmacs Chooses a Major Mode

Based on information in the file name or in the file itself, XEmacs automatically selects
a major mode for the new buffer when a file is visited.

Chapter 26: Major and Minor Modes 371

Commandfundamental-mode
Fundamental mode is a major mode that is not specialized for anything in particular.
Other major modes are defined in effect by comparison with this one—their defini-
tions say what to change, starting from Fundamental mode. The fundamental-mode
function does not run any hooks; you’re not supposed to customize it. (If you want
Emacs to behave differently in Fundamental mode, change the global state of Emacs.)

Commandnormal-mode &optional find-file
This function establishes the proper major mode and local variable bindings for the
current buffer. First it calls set-auto-mode, then it runs hack-local-variables to
parse, and bind or evaluate as appropriate, any local variables.
If the find-file argument to normal-mode is non-nil, normal-mode assumes that the
find-file function is calling it. In this case, it may process a local variables list
at the end of the file and in the ‘-*-’ line. The variable enable-local-variables
controls whether to do so.
If you run normal-mode interactively, the argument find-file is normally nil. In
this case, normal-mode unconditionally processes any local variables list. See section
“Local Variables in Files” in The XEmacs Reference Manual, for the syntax of the
local variables section of a file.
normal-mode uses condition-case around the call to the major mode function, so
errors are caught and reported as a ‘File mode specification error’, followed by
the original error message.

User Optionenable-local-variables
This variable controls processing of local variables lists in files being visited. A value
of t means process the local variables lists unconditionally; nil means ignore them;
anything else means ask the user what to do for each file. The default value is t.

Variableignored-local-variables
This variable holds a list of variables that should not be set by a local variables list.
Any value specified for one of these variables is ignored.

In addition to this list, any variable whose name has a non-nil risky-local-variable
property is also ignored.

User Optionenable-local-eval
This variable controls processing of ‘Eval:’ in local variables lists in files being visited.
A value of t means process them unconditionally; nil means ignore them; anything
else means ask the user what to do for each file. The default value is maybe.

Functionset-auto-mode
This function selects the major mode that is appropriate for the current buffer. It may
base its decision on the value of the ‘-*-’ line, on the visited file name (using auto-
mode-alist), or on the value of a local variable. However, this function does not
look for the ‘mode:’ local variable near the end of a file; the hack-local-variables
function does that. See section “How Major Modes are Chosen” in The XEmacs
Reference Manual.

372 XEmacs Lisp Reference Manual

User Optiondefault-major-mode
This variable holds the default major mode for new buffers. The standard value is
fundamental-mode.
If the value of default-major-mode is nil, XEmacs uses the (previously) current
buffer’s major mode for the major mode of a new buffer. However, if the major mode
symbol has a mode-class property with value special, then it is not used for new
buffers; Fundamental mode is used instead. The modes that have this property are
those such as Dired and Rmail that are useful only with text that has been specially
prepared.

Functionset-buffer-major-mode buffer
This function sets the major mode of buffer to the value of default-major-mode. If
that variable is nil, it uses the current buffer’s major mode (if that is suitable).
The low-level primitives for creating buffers do not use this function, but medium-
level commands such as switch-to-buffer and find-file-noselect use it whenever
they create buffers.

Variableinitial-major-mode
The value of this variable determines the major mode of the initial ‘*scratch*’ buffer.
The value should be a symbol that is a major mode command name. The default
value is lisp-interaction-mode.

Variableauto-mode-alist
This variable contains an association list of file name patterns (regular expressions;
see Section 37.2 [Regular Expressions], page 556) and corresponding major mode
functions. Usually, the file name patterns test for suffixes, such as ‘.el’ and ‘.c’,
but this need not be the case. An ordinary element of the alist looks like (regexp .
mode-function).
For example,

(("^/tmp/fol/" . text-mode)
("\\.texinfo\\’" . texinfo-mode)
("\\.texi\\’" . texinfo-mode)
("\\.el\\’" . emacs-lisp-mode)
("\\.c\\’" . c-mode)
("\\.h\\’" . c-mode)
...)

When you visit a file whose expanded file name (see Section 28.8.4 [File Name Ex-
pansion], page 413) matches a regexp, set-auto-mode calls the corresponding mode-
function. This feature enables XEmacs to select the proper major mode for most
files.
If an element of auto-mode-alist has the form (regexp function t), then after calling
function, XEmacs searches auto-mode-alist again for a match against the portion
of the file name that did not match before.
This match-again feature is useful for uncompression packages: an entry of the form
("\\.gz\\’" . function) can uncompress the file and then put the uncompressed file
in the proper mode according to the name sans ‘.gz’.

Chapter 26: Major and Minor Modes 373

Here is an example of how to prepend several pattern pairs to auto-mode-alist.
(You might use this sort of expression in your ‘.emacs’ file.)

(setq auto-mode-alist
(append
;; File name starts with a dot.
’(("/\\.[^/]*\\’" . fundamental-mode)

;; File name has no dot.
("[^\\./]*\\’" . fundamental-mode)
;; File name ends in ‘.C’.
("\\.C\\’" . c++-mode))

auto-mode-alist))

Variableinterpreter-mode-alist
This variable specifies major modes to use for scripts that specify a command inter-
preter in an ‘#!’ line. Its value is a list of elements of the form (interpreter . mode);
for example, ("perl" . perl-mode) is one element present by default. The element
says to use mode mode if the file specifies interpreter.

This variable is applicable only when the auto-mode-alist does not indicate which
major mode to use.

Functionhack-local-variables &optional force
This function parses, and binds or evaluates as appropriate, any local variables for
the current buffer.

The handling of enable-local-variables documented for normal-mode actually
takes place here. The argument force usually comes from the argument find-file given
to normal-mode.

26.1.4 Getting Help about a Major Mode

The describe-mode function is used to provide information about major modes. It is
normally called with C-h m. The describe-mode function uses the value of major-mode,
which is why every major mode function needs to set the major-mode variable.

Commanddescribe-mode
This function displays the documentation of the current major mode.

The describe-mode function calls the documentation function using the value of
major-mode as an argument. Thus, it displays the documentation string of the major
mode function. (See Section 27.2 [Accessing Documentation], page 386.)

Variablemajor-mode
This variable holds the symbol for the current buffer’s major mode. This symbol
should have a function definition that is the command to switch to that major mode.
The describe-mode function uses the documentation string of the function as the
documentation of the major mode.

374 XEmacs Lisp Reference Manual

26.1.5 Defining Derived Modes

It’s often useful to define a new major mode in terms of an existing one. An easy way
to do this is to use define-derived-mode.

Macrodefine-derived-mode variant parent name docstring body. . .
This construct defines variant as a major mode command, using name as the string
form of the mode name.

The new command variant is defined to call the function parent, then override certain
aspects of that parent mode:

• The new mode has its own keymap, named variant-map. define-derived-mode
initializes this map to inherit from parent-map, if it is not already set.

• The new mode has its own syntax table, kept in the variable variant-
syntax-table. define-derived-mode initializes this variable by copying
parent-syntax-table, if it is not already set.

• The new mode has its own abbrev table, kept in the variable variant-
abbrev-table. define-derived-mode initializes this variable by copying
parent-abbrev-table, if it is not already set.

• The new mode has its own mode hook, variant-hook, which it runs in standard
fashion as the very last thing that it does. (The new mode also runs the mode
hook of parent as part of calling parent.)

In addition, you can specify how to override other aspects of parent with body. The
command variant evaluates the forms in body after setting up all its usual overrides,
just before running variant-hook.

The argument docstring specifies the documentation string for the new mode. If you
omit docstring, define-derived-mode generates a documentation string.

Here is a hypothetical example:
(define-derived-mode hypertext-mode

text-mode "Hypertext"
"Major mode for hypertext.

\\{hypertext-mode-map}"
(setq case-fold-search nil))

(define-key hypertext-mode-map
[down-mouse-3] ’do-hyper-link)

26.2 Minor Modes

A minor mode provides features that users may enable or disable independently of the
choice of major mode. Minor modes can be enabled individually or in combination. Minor
modes would be better named “Generally available, optional feature modes” except that
such a name is unwieldy.

Chapter 26: Major and Minor Modes 375

A minor mode is not usually a modification of single major mode. For example, Auto
Fill mode may be used in any major mode that permits text insertion. To be general, a
minor mode must be effectively independent of the things major modes do.

A minor mode is often much more difficult to implement than a major mode. One reason
is that you should be able to activate and deactivate minor modes in any order. A minor
mode should be able to have its desired effect regardless of the major mode and regardless
of the other minor modes in effect.

Often the biggest problem in implementing a minor mode is finding a way to insert the
necessary hook into the rest of XEmacs. Minor mode keymaps make this easier than it used
to be.

26.2.1 Conventions for Writing Minor Modes

There are conventions for writing minor modes just as there are for major modes. Several
of the major mode conventions apply to minor modes as well: those regarding the name of
the mode initialization function, the names of global symbols, and the use of keymaps and
other tables.

In addition, there are several conventions that are specific to minor modes.

• Make a variable whose name ends in ‘-mode’ to represent the minor mode. Its value
should enable or disable the mode (nil to disable; anything else to enable.) We call
this the mode variable.

This variable is used in conjunction with the minor-mode-alist to display the minor
mode name in the modeline. It can also enable or disable a minor mode keymap.
Individual commands or hooks can also check the variable’s value.

If you want the minor mode to be enabled separately in each buffer, make the variable
buffer-local.

• Define a command whose name is the same as the mode variable. Its job is to enable
and disable the mode by setting the variable.

The command should accept one optional argument. If the argument is nil, it should
toggle the mode (turn it on if it is off, and off if it is on). Otherwise, it should turn the
mode on if the argument is a positive integer, a symbol other than nil or -, or a list
whose car is such an integer or symbol; it should turn the mode off otherwise.

Here is an example taken from the definition of transient-mark-mode. It shows the
use of transient-mark-mode as a variable that enables or disables the mode’s behavior,
and also shows the proper way to toggle, enable or disable the minor mode based on
the raw prefix argument value.

(setq transient-mark-mode
(if (null arg) (not transient-mark-mode)

(> (prefix-numeric-value arg) 0)))

• Add an element to minor-mode-alist for each minor mode (see Section 26.3.2 [Mod-
eline Variables], page 378). This element should be a list of the following form:

(mode-variable string)

376 XEmacs Lisp Reference Manual

Here mode-variable is the variable that controls enabling of the minor mode, and string
is a short string, starting with a space, to represent the mode in the modeline. These
strings must be short so that there is room for several of them at once.
When you add an element to minor-mode-alist, use assq to check for an existing
element, to avoid duplication. For example:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist)))

26.2.2 Keymaps and Minor Modes

Each minor mode can have its own keymap, which is active when the mode is enabled.
To set up a keymap for a minor mode, add an element to the alist minor-mode-map-alist.
See Section 20.7 [Active Keymaps], page 324.

One use of minor mode keymaps is to modify the behavior of certain self-inserting
characters so that they do something else as well as self-insert. In general, this is the only
way to do that, since the facilities for customizing self-insert-command are limited to
special cases (designed for abbrevs and Auto Fill mode). (Do not try substituting your
own definition of self-insert-command for the standard one. The editor command loop
handles this function specially.)

26.3 Modeline Format

Each Emacs window (aside from minibuffer windows) includes a modeline, which dis-
plays status information about the buffer displayed in the window. The modeline contains
information about the buffer, such as its name, associated file, depth of recursive editing,
and the major and minor modes.

This section describes how the contents of the modeline are controlled. It is in the
chapter on modes because much of the information displayed in the modeline relates to the
enabled major and minor modes.

modeline-format is a buffer-local variable that holds a template used to display the
modeline of the current buffer. All windows for the same buffer use the same modeline-
format and their modelines appear the same (except for scrolling percentages and line
numbers).

The modeline of a window is normally updated whenever a different buffer is shown in
the window, or when the buffer’s modified-status changes from nil to t or vice-versa. If you
modify any of the variables referenced by modeline-format (see Section 26.3.2 [Modeline
Variables], page 378), you may want to force an update of the modeline so as to display the
new information.

Functionredraw-modeline &optional all
Force redisplay of the current buffer’s modeline. If all is non-nil, then force redisplay
of all modelines.

Chapter 26: Major and Minor Modes 377

The modeline is usually displayed in inverse video. This is controlled using the modeline
face. See Section 42.1 [Faces], page 625.

26.3.1 The Data Structure of the Modeline

The modeline contents are controlled by a data structure of lists, strings, symbols, and
numbers kept in the buffer-local variable mode-line-format. The data structure is called
a modeline construct, and it is built in recursive fashion out of simpler modeline constructs.
The same data structure is used for constructing frame titles (see Section 32.3 [Frame
Titles], page 480).

Variablemodeline-format
The value of this variable is a modeline construct with overall responsibility for the
modeline format. The value of this variable controls which other variables are used
to form the modeline text, and where they appear.

A modeline construct may be as simple as a fixed string of text, but it usually specifies
how to use other variables to construct the text. Many of these variables are themselves
defined to have modeline constructs as their values.

The default value of modeline-format incorporates the values of variables such as mode-
name and minor-mode-alist. Because of this, very few modes need to alter modeline-
format. For most purposes, it is sufficient to alter the variables referenced by modeline-
format.

A modeline construct may be a list, a symbol, or a string. If the value is a list, each
element may be a list, a symbol, or a string.

string A string as a modeline construct is displayed verbatim in the mode line ex-
cept for %-constructs. Decimal digits after the ‘%’ specify the field width for
space filling on the right (i.e., the data is left justified). See Section 26.3.3
[%-Constructs], page 380.

symbol A symbol as a modeline construct stands for its value. The value of symbol is
used as a modeline construct, in place of symbol. However, the symbols t and
nil are ignored; so is any symbol whose value is void.
There is one exception: if the value of symbol is a string, it is displayed verba-
tim: the %-constructs are not recognized.

(string rest...) or (list rest...)
A list whose first element is a string or list means to process all the elements
recursively and concatenate the results. This is the most common form of mode
line construct.

(symbol then else)
A list whose first element is a symbol is a conditional. Its meaning depends
on the value of symbol. If the value is non-nil, the second element, then, is
processed recursively as a modeline element. But if the value of symbol is nil,
the third element, else, is processed recursively. You may omit else; then the
mode line element displays nothing if the value of symbol is nil.

378 XEmacs Lisp Reference Manual

(width rest...)
A list whose first element is an integer specifies truncation or padding of the
results of rest. The remaining elements rest are processed recursively as mod-
eline constructs and concatenated together. Then the result is space filled (if
width is positive) or truncated (to −width columns, if width is negative) on the
right.

For example, the usual way to show what percentage of a buffer is above the
top of the window is to use a list like this: (-3 "%p").

If you do alter modeline-format itself, the new value should use the same variables
that appear in the default value (see Section 26.3.2 [Modeline Variables], page 378), rather
than duplicating their contents or displaying the information in another fashion. This way,
customizations made by the user or by Lisp programs (such as display-time and major
modes) via changes to those variables remain effective.

Here is an example of a modeline-format that might be useful for shell-mode, since it
contains the hostname and default directory.

(setq modeline-format
(list ""
’modeline-modified
"%b--"
(getenv "HOST") ; One element is not constant.
":"
’default-directory
" "
’global-mode-string
" %[("
’mode-name
’modeline-process
’minor-mode-alist
"%n"
")%]----"
’(line-number-mode "L%l--")
’(-3 . "%p")
"-%-"))

26.3.2 Variables Used in the Modeline

This section describes variables incorporated by the standard value of modeline-format
into the text of the mode line. There is nothing inherently special about these variables;
any other variables could have the same effects on the modeline if modeline-format were
changed to use them.

Variablemodeline-modified
This variable holds the value of the modeline construct that displays whether the
current buffer is modified.

Chapter 26: Major and Minor Modes 379

The default value of modeline-modified is ("--%1*%1+-"). This means that the
modeline displays ‘--**-’ if the buffer is modified, ‘-----’ if the buffer is not modified,
‘--%%-’ if the buffer is read only, and ‘--%*--’ if the buffer is read only and modified.
Changing this variable does not force an update of the modeline.

Variablemodeline-buffer-identification
This variable identifies the buffer being displayed in the window. Its default value is
("%F: %17b"), which means that it usually displays ‘Emacs:’ followed by seventeen
characters of the buffer name. (In a terminal frame, it displays the frame name
instead of ‘Emacs’; this has the effect of showing the frame number.) You may want
to change this in modes such as Rmail that do not behave like a “normal” XEmacs.

Variableglobal-mode-string
This variable holds a modeline spec that appears in the mode line by default, just
after the buffer name. The command display-time sets global-mode-string to
refer to the variable display-time-string, which holds a string containing the time
and load information.
The ‘%M’ construct substitutes the value of global-mode-string, but this is obsolete,
since the variable is included directly in the modeline.

Variablemode-name
This buffer-local variable holds the “pretty” name of the current buffer’s major mode.
Each major mode should set this variable so that the mode name will appear in the
modeline.

Variableminor-mode-alist
This variable holds an association list whose elements specify how the modeline should
indicate that a minor mode is active. Each element of the minor-mode-alist should
be a two-element list:

(minor-mode-variable modeline-string)

More generally, modeline-string can be any mode line spec. It appears in the mode
line when the value of minor-mode-variable is non-nil, and not otherwise. These
strings should begin with spaces so that they don’t run together. Conventionally, the
minor-mode-variable for a specific mode is set to a non-nil value when that minor
mode is activated.
The default value of minor-mode-alist is:

minor-mode-alist
⇒ ((vc-mode vc-mode)

(abbrev-mode " Abbrev")
(overwrite-mode overwrite-mode)
(auto-fill-function " Fill")
(defining-kbd-macro " Def")
(isearch-mode isearch-mode))

minor-mode-alist is not buffer-local. The variables mentioned in the alist should be
buffer-local if the minor mode can be enabled separately in each buffer.

380 XEmacs Lisp Reference Manual

Variablemodeline-process
This buffer-local variable contains the modeline information on process status in
modes used for communicating with subprocesses. It is displayed immediately fol-
lowing the major mode name, with no intervening space. For example, its value in
the ‘*shell*’ buffer is (": %s"), which allows the shell to display its status along
with the major mode as: ‘(Shell: run)’. Normally this variable is nil.

Variabledefault-modeline-format
This variable holds the default modeline-format for buffers that do not override it.
This is the same as (default-value ’modeline-format).

The default value of default-modeline-format is:
(""
modeline-modified
modeline-buffer-identification
" "
global-mode-string
" %[("
mode-name
modeline-process
minor-mode-alist
"%n"
")%]----"
(line-number-mode "L%l--")
(-3 . "%p")
"-%-")

Variablevc-mode
The variable vc-mode, local in each buffer, records whether the buffer’s visited file is
maintained with version control, and, if so, which kind. Its value is nil for no version
control, or a string that appears in the mode line.

26.3.3 %-Constructs in the ModeLine

The following table lists the recognized %-constructs and what they mean. In any con-
struct except ‘%%’, you can add a decimal integer after the ‘%’ to specify how many characters
to display.

%b The current buffer name, obtained with the buffer-name function. See Sec-
tion 30.3 [Buffer Names], page 437.

%f The visited file name, obtained with the buffer-file-name function. See Sec-
tion 30.4 [Buffer File Name], page 438.

%F The name of the selected frame.

%c The current column number of point.

%l The current line number of point.

Chapter 26: Major and Minor Modes 381

%* ‘%’ if the buffer is read only (see buffer-read-only);
‘*’ if the buffer is modified (see buffer-modified-p);
‘-’ otherwise. See Section 30.5 [Buffer Modification], page 440.

%+ ‘*’ if the buffer is modified (see buffer-modified-p);
‘%’ if the buffer is read only (see buffer-read-only);
‘-’ otherwise. This differs from ‘%*’ only for a modified read-only buffer. See
Section 30.5 [Buffer Modification], page 440.

%& ‘*’ if the buffer is modified, and ‘-’ otherwise.

%s The status of the subprocess belonging to the current buffer, obtained with
process-status. See Section 49.6 [Process Information], page 689.

%l the current line number.

%S the name of the selected frame; this is only meaningful under the X Window
System. See Section 32.2.5 [Frame Name], page 479.

%t Whether the visited file is a text file or a binary file. (This is a meaningful
distinction only on certain operating systems.)

%p The percentage of the buffer text above the top of window, or ‘Top’, ‘Bottom’
or ‘All’.

%P The percentage of the buffer text that is above the bottom of the window (which
includes the text visible in the window, as well as the text above the top), plus
‘Top’ if the top of the buffer is visible on screen; or ‘Bottom’ or ‘All’.

%n ‘Narrow’ when narrowing is in effect; nothing otherwise (see narrow-to-region
in Section 34.4 [Narrowing], page 502).

%[An indication of the depth of recursive editing levels (not counting minibuffer
levels): one ‘[’ for each editing level. See Section 19.10 [Recursive Editing],
page 314.

%] One ‘]’ for each recursive editing level (not counting minibuffer levels).

%% The character ‘%’—this is how to include a literal ‘%’ in a string in which %-
constructs are allowed.

%- Dashes sufficient to fill the remainder of the modeline.

The following two %-constructs are still supported, but they are obsolete, since you can
get the same results with the variables mode-name and global-mode-string.

%m The value of mode-name.

%M The value of global-mode-string. Currently, only display-time modifies the
value of global-mode-string.

382 XEmacs Lisp Reference Manual

26.4 Hooks

A hook is a variable where you can store a function or functions to be called on a particu-
lar occasion by an existing program. XEmacs provides hooks for the sake of customization.
Most often, hooks are set up in the ‘.emacs’ file, but Lisp programs can set them also. See
Appendix F [Standard Hooks], page 799, for a list of standard hook variables.

Most of the hooks in XEmacs are normal hooks. These variables contain lists of functions
to be called with no arguments. The reason most hooks are normal hooks is so that you
can use them in a uniform way. You can usually tell when a hook is a normal hook, because
its name ends in ‘-hook’.

The recommended way to add a hook function to a normal hook is by calling add-hook
(see below). The hook functions may be any of the valid kinds of functions that funcall
accepts (see Section 11.1 [What Is a Function], page 165). Most normal hook variables are
initially void; add-hook knows how to deal with this.

As for abnormal hooks, those whose names end in ‘-function’ have a value that is a
single function. Those whose names end in ‘-hooks’ have a value that is a list of functions.
Any hook that is abnormal is abnormal because a normal hook won’t do the job; either the
functions are called with arguments, or their values are meaningful. The name shows you
that the hook is abnormal and that you should look at its documentation string to see how
to use it properly.

Major mode functions are supposed to run a hook called the mode hook as the last
step of initialization. This makes it easy for a user to customize the behavior of the mode,
by overriding the local variable assignments already made by the mode. But hooks are
used in other contexts too. For example, the hook suspend-hook runs just before XEmacs
suspends itself (see Section 50.2.2 [Suspending XEmacs], page 706).

Here’s an expression that uses a mode hook to turn on Auto Fill mode when in Lisp
Interaction mode:

(add-hook ’lisp-interaction-mode-hook ’turn-on-auto-fill)

The next example shows how to use a hook to customize the way XEmacs formats C
code. (People often have strong personal preferences for one format or another.) Here the
hook function is an anonymous lambda expression.

(add-hook ’c-mode-hook
(function (lambda ()

(setq c-indent-level 4
c-argdecl-indent 0
c-label-offset -4
c-continued-statement-indent 0
c-brace-offset 0
comment-column 40))))

(setq c++-mode-hook c-mode-hook)

The final example shows how the appearance of the modeline can be modified for a
particular class of buffers only.

Chapter 26: Major and Minor Modes 383

(add-hook ’text-mode-hook
(function (lambda ()

(setq modeline-format
’(modeline-modified
"Emacs: %14b"
" "
default-directory
" "
global-mode-string
"%[("
mode-name
minor-mode-alist
"%n"
modeline-process
") %]---"
(-3 . "%p")
"-%-")))))

At the appropriate time, XEmacs uses the run-hooks function to run particular hooks.
This function calls the hook functions you have added with add-hooks.

Functionrun-hooks &rest hookvar
This function takes one or more hook variable names as arguments, and runs each
hook in turn. Each hookvar argument should be a symbol that is a hook variable.
These arguments are processed in the order specified.
If a hook variable has a non-nil value, that value may be a function or a list of
functions. If the value is a function (either a lambda expression or a symbol with a
function definition), it is called. If it is a list, the elements are called, in order. The
hook functions are called with no arguments.
For example, here’s how emacs-lisp-mode runs its mode hook:

(run-hooks ’emacs-lisp-mode-hook)

Functionadd-hook hook function &optional append local
This function is the handy way to add function function to hook variable hook.
The argument function may be any valid Lisp function with the proper number of
arguments. For example,

(add-hook ’text-mode-hook ’my-text-hook-function)

adds my-text-hook-function to the hook called text-mode-hook.
You can use add-hook for abnormal hooks as well as for normal hooks.
It is best to design your hook functions so that the order in which they are executed
does not matter. Any dependence on the order is “asking for trouble.” However, the
order is predictable: normally, function goes at the front of the hook list, so it will be
executed first (barring another add-hook call).
If the optional argument append is non-nil, the new hook function goes at the end
of the hook list and will be executed last.
If local is non-nil, that says to make the new hook function local to the current
buffer. Before you can do this, you must make the hook itself buffer-local by calling

384 XEmacs Lisp Reference Manual

make-local-hook (not make-local-variable). If the hook itself is not buffer-local,
then the value of local makes no difference—the hook function is always global.

Functionremove-hook hook function &optional local
This function removes function from the hook variable hook.
If local is non-nil, that says to remove function from the local hook list instead of
from the global hook list. If the hook itself is not buffer-local, then the value of local
makes no difference.

Functionmake-local-hook hook
This function makes the hook variable hook local to the current buffer. When a hook
variable is local, it can have local and global hook functions, and run-hooks runs all
of them.
This function works by making t an element of the buffer-local value. That serves as
a flag to use the hook functions in the default value of the hook variable as well as
those in the local value. Since run-hooks understands this flag, make-local-hook
works with all normal hooks. It works for only some non-normal hooks—those whose
callers have been updated to understand this meaning of t.
Do not use make-local-variable directly for hook variables; it is not sufficient.

Chapter 27: Documentation 385

27 Documentation

XEmacs Lisp has convenient on-line help facilities, most of which derive their informa-
tion from the documentation strings associated with functions and variables. This chapter
describes how to write good documentation strings for your Lisp programs, as well as how
to write programs to access documentation.

Note that the documentation strings for XEmacs are not the same thing as the XEmacs
manual. Manuals have their own source files, written in the Texinfo language; documenta-
tion strings are specified in the definitions of the functions and variables they apply to. A
collection of documentation strings is not sufficient as a manual because a good manual is
not organized in that fashion; it is organized in terms of topics of discussion.

27.1 Documentation Basics

A documentation string is written using the Lisp syntax for strings, with double-quote
characters surrounding the text of the string. This is because it really is a Lisp string object.
The string serves as documentation when it is written in the proper place in the definition
of a function or variable. In a function definition, the documentation string follows the
argument list. In a variable definition, the documentation string follows the initial value of
the variable.

When you write a documentation string, make the first line a complete sentence (or
two complete sentences) since some commands, such as apropos, show only the first line
of a multi-line documentation string. Also, you should not indent the second line of
a documentation string, if you have one, because that looks odd when you use C-h f

(describe-function) or C-h v (describe-variable). See Section A.3 [Documentation
Tips], page 772.

Documentation strings may contain several special substrings, which stand for key bind-
ings to be looked up in the current keymaps when the documentation is displayed. This
allows documentation strings to refer to the keys for related commands and be accurate
even when a user rearranges the key bindings. (See Section 27.2 [Accessing Documentation],
page 386.)

Within the Lisp world, a documentation string is accessible through the function or
variable that it describes:

• The documentation for a function is stored in the function definition itself (see Sec-
tion 11.2 [Lambda Expressions], page 166). The function documentation knows how
to extract it.

• The documentation for a variable is stored in the variable’s property list under the
property name variable-documentation. The function documentation-property
knows how to extract it.

To save space, the documentation for preloaded functions and variables (including prim-
itive functions and autoloaded functions) is stored in the internal doc file ‘DOC’. The docu-
mentation for functions and variables loaded during the XEmacs session from byte-compiled

386 XEmacs Lisp Reference Manual

files is stored in those very same byte-compiled files (see Section 15.3 [Docs and Compila-
tion], page 212).

XEmacs does not keep documentation strings in memory unless necessary. Instead,
XEmacs maintains, for preloaded symbols, an integer offset into the internal doc file, and
for symbols loaded from byte-compiled files, a list containing the filename of the byte-
compiled file and an integer offset, in place of the documentation string. The functions
documentation and documentation-property use that information to read the documen-
tation from the appropriate file; this is transparent to the user.

For information on the uses of documentation strings, see section “Help” in The XEmacs
Reference Manual.

The ‘emacs/lib-src’ directory contains two utilities that you can use to print nice-
looking hardcopy for the file ‘emacs/etc/DOC-version’. These are ‘sorted-doc.c’ and
‘digest-doc.c’.

27.2 Access to Documentation Strings

Functiondocumentation-property symbol property &optional verbatim
This function returns the documentation string that is recorded in symbol’s property
list under property property. It retrieves the text from a file if necessary, and runs
substitute-command-keys to substitute actual key bindings. (This substitution is
not done if verbatim is non-nil; the verbatim argument exists only as of Emacs 19.)

(documentation-property ’command-line-processed
’variable-documentation)
⇒ "t once command line has been processed"

(symbol-plist ’command-line-processed)
⇒ (variable-documentation 188902)

Functiondocumentation function &optional verbatim
This function returns the documentation string of function. It reads the text from
a file if necessary. Then (unless verbatim is non-nil) it calls substitute-command-
keys, to return a value containing the actual (current) key bindings.
The function documentation signals a void-function error if function has no func-
tion definition. However, it is ok if the function definition has no documentation
string. In that case, documentation returns nil.

Here is an example of using the two functions, documentation and documentation-
property, to display the documentation strings for several symbols in a ‘*Help*’ buffer.

(defun describe-symbols (pattern)
"Describe the XEmacs Lisp symbols matching PATTERN.

All symbols that have PATTERN in their name are described
in the ‘*Help*’ buffer."
(interactive "sDescribe symbols matching: ")
(let ((describe-func

(function
(lambda (s)

Chapter 27: Documentation 387

;; Print description of symbol.
(if (fboundp s) ; It is a function.

(princ
(format "%s\t%s\n%s\n\n" s

(if (commandp s)
(let ((keys (where-is-internal s)))

(if keys
(concat
"Keys: "
(mapconcat ’key-description

keys " "))
"Keys: none"))

"Function")
(or (documentation s)

"not documented"))))

(if (boundp s) ; It is a variable.
(princ
(format "%s\t%s\n%s\n\n" s

(if (user-variable-p s)
"Option " "Variable")

(or (documentation-property
s ’variable-documentation)

"not documented")))))))
sym-list)

;; Build a list of symbols that match pattern.
(mapatoms (function

(lambda (sym)
(if (string-match pattern (symbol-name sym))

(setq sym-list (cons sym sym-list))))))

;; Display the data.
(with-output-to-temp-buffer "*Help*"

(mapcar describe-func (sort sym-list ’string<))
(print-help-return-message))))

The describe-symbols function works like apropos, but provides more information.

(describe-symbols "goal")

---------- Buffer: *Help* ----------
goal-column Option
*Semipermanent goal column for vertical motion, as set by C-x C-n, or nil.

set-goal-column Command: C-x C-n
Set the current horizontal position as a goal for C-n and C-p.
Those commands will move to this position in the line moved to
rather than trying to keep the same horizontal position.
With a non-nil argument, clears out the goal column
so that C-n and C-p resume vertical motion.
The goal column is stored in the variable ‘goal-column’.

388 XEmacs Lisp Reference Manual

temporary-goal-column Variable
Current goal column for vertical motion.
It is the column where point was
at the start of current run of vertical motion commands.
When the ‘track-eol’ feature is doing its job, the value is 9999.
---------- Buffer: *Help* ----------

FunctionSnarf-documentation filename
This function is used only during XEmacs initialization, just before the runnable
XEmacs is dumped. It finds the file offsets of the documentation strings stored in
the file filename, and records them in the in-core function definitions and variable
property lists in place of the actual strings. See Section B.1 [Building XEmacs],
page 779.
XEmacs finds the file filename in the ‘lib-src’ directory. When the dumped
XEmacs is later executed, the same file is found in the directory doc-directory.
The usual value for filename is ‘DOC’, but this can be changed by modifying the
variable internal-doc-file-name.

Variableinternal-doc-file-name
This variable holds the name of the file containing documentation strings of built-
in symbols, usually ‘DOC’. The full pathname of the internal doc file is ‘(concat
doc-directory internal-doc-file-name)’.

Variabledoc-directory
This variable holds the name of the directory which contains the internal doc file that
contains documentation strings for built-in and preloaded functions and variables.
In most cases, this is the same as exec-directory. They may be different when you
run XEmacs from the directory where you built it, without actually installing it. See
exec-directory in Section 27.5 [Help Functions], page 391.
In older Emacs versions, exec-directory was used for this.

Variabledata-directory
This variable holds the name of the directory in which XEmacs finds certain system
independent documentation and text files that come with XEmacs. In older Emacs
versions, exec-directory was used for this.

27.3 Substituting Key Bindings in Documentation

When documentation strings refer to key sequences, they should use the current, actual
key bindings. They can do so using certain special text sequences described below. Access-
ing documentation strings in the usual way substitutes current key binding information for
these special sequences. This works by calling substitute-command-keys. You can also
call that function yourself.

Here is a list of the special sequences and what they mean:

Chapter 27: Documentation 389

\[command]
stands for a key sequence that will invoke command, or ‘M-x command’ if com-
mand has no key bindings.

\{mapvar}
stands for a summary of the value of mapvar, which should be a keymap. The
summary is made by describe-bindings.

\<mapvar>
stands for no text itself. It is used for a side effect: it specifies mapvar as
the keymap for any following ‘\[command]’ sequences in this documentation
string.

\= quotes the following character and is discarded; this ‘\=\=’ puts ‘\=’ into the
output, and ‘\=\[’ puts ‘\[’ into the output.

Please note: Each ‘\’ must be doubled when written in a string in XEmacs Lisp.

Functionsubstitute-command-keys string
This function scans string for the above special sequences and replaces them by what
they stand for, returning the result as a string. This permits display of documentation
that refers accurately to the user’s own customized key bindings.

Here are examples of the special sequences:

(substitute-command-keys
"To abort recursive edit, type: \\[abort-recursive-edit]")

⇒ "To abort recursive edit, type: C-]"

(substitute-command-keys
"The keys that are defined for the minibuffer here are:
\\{minibuffer-local-must-match-map}")

⇒ "The keys that are defined for the minibuffer here are:

? minibuffer-completion-help
SPC minibuffer-complete-word
TAB minibuffer-complete
LFD minibuffer-complete-and-exit
RET minibuffer-complete-and-exit
C-g abort-recursive-edit
"

(substitute-command-keys
"To abort a recursive edit from the minibuffer, type\

\\<minibuffer-local-must-match-map>\\[abort-recursive-edit].")
⇒ "To abort a recursive edit from the minibuffer, type C-g."

390 XEmacs Lisp Reference Manual

(substitute-command-keys
"Substrings of the form \\=\\{MAPVAR} are replaced by summaries

\(made by describe-bindings) of the value of MAPVAR, taken as a keymap.
Substrings of the form \\=\\<MAPVAR> specify to use the value of MAPVAR
as the keymap for future \\=\\[COMMAND] substrings.
\\=\\= quotes the following character and is discarded;
thus, \\=\\=\\=\\= puts \\=\\= into the output,
and \\=\\=\\=\\[puts \\=\\[into the output.")
⇒ "Substrings of the form \{MAPVAR} are replaced by summaries
(made by describe-bindings) of the value of MAPVAR, taken as a keymap.
Substrings of the form \<MAPVAR> specify to use the value of MAPVAR
as the keymap for future \[COMMAND] substrings.
\= quotes the following character and is discarded;
thus, \=\= puts \= into the output,
and \=\[puts \[into the output."

27.4 Describing Characters for Help Messages

These functions convert events, key sequences or characters to textual descriptions.
These descriptions are useful for including arbitrary text characters or key sequences in
messages, because they convert non-printing and whitespace characters to sequences of
printing characters. The description of a non-whitespace printing character is the character
itself.

Functionkey-description sequence
This function returns a string containing the XEmacs standard notation for the input
events in sequence. The argument sequence may be a string, vector or list. See
Section 19.5 [Events], page 294, for more information about valid events. See also the
examples for single-key-description, below.

Functionsingle-key-description key
This function returns a string describing key in the standard XEmacs notation for
keyboard input. A normal printing character appears as itself, but a control character
turns into a string starting with ‘C-’, a meta character turns into a string starting
with ‘M-’, and space, linefeed, etc. appear as ‘SPC’, ‘LFD’, etc. A symbol appears as
the name of the symbol. An event that is a list appears as the name of the symbol
in the car of the list.

(single-key-description ?\C-x)
⇒ "C-x"

(key-description "\C-x \M-y \n \t \r \f123")
⇒ "C-x SPC M-y SPC LFD SPC TAB SPC RET SPC C-l 1 2 3"

(single-key-description ’kp_next)
⇒ "kp_next"

(single-key-description ’(shift button1))
⇒ "Sh-button1"

Chapter 27: Documentation 391

Functiontext-char-description character
This function returns a string describing character in the standard XEmacs notation
for characters that appear in text—like single-key-description, except that con-
trol characters are represented with a leading caret (which is how control characters
in XEmacs buffers are usually displayed).

(text-char-description ?\C-c)
⇒ "^C"

(text-char-description ?\M-m)
⇒ "M-m"

(text-char-description ?\C-\M-m)
⇒ "M-^M"

27.5 Help Functions

XEmacs provides a variety of on-line help functions, all accessible to the user as subcom-
mands of the prefix C-h, or on some keyboards, help. For more information about them,
see section “Help” in The XEmacs Reference Manual. Here we describe some program-level
interfaces to the same information.

Commandapropos regexp &optional do-all predicate
This function finds all symbols whose names contain a match for the regular ex-
pression regexp, and returns a list of them (see Section 37.2 [Regular Expressions],
page 556). It also displays the symbols in a buffer named ‘*Help*’, each with a
one-line description.
If do-all is non-nil, then apropos also shows key bindings for the functions that are
found.
If predicate is non-nil, it should be a function to be called on each symbol that has
matched regexp. Only symbols for which predicate returns a non-nil value are listed
or displayed.
In the first of the following examples, apropos finds all the symbols with names
containing ‘exec’. In the second example, it finds and returns only those symbols
that are also commands. (We don’t show the output that results in the ‘*Help*’
buffer.)

(apropos "exec")
⇒ (Buffer-menu-execute command-execute exec-directory

exec-path execute-extended-command execute-kbd-macro
executing-kbd-macro executing-macro)

(apropos "exec" nil ’commandp)
⇒ (Buffer-menu-execute execute-extended-command)

apropos is used by various user-level commands, such as C-h a (hyper-apropos), a
graphical front-end to apropos; and C-h A (command-apropos), which does an apro-
pos over only those functions which are user commands. command-apropos calls
apropos, specifying a predicate to restrict the output to symbols that are commands.
The call to apropos looks like this:

392 XEmacs Lisp Reference Manual

(apropos string t ’commandp)

Variablehelp-map
The value of this variable is a local keymap for characters following the Help key, C-h.

Prefix Commandhelp-command
This symbol is not a function; its function definition is actually the keymap known
as help-map. It is defined in ‘help.el’ as follows:

(define-key global-map "\C-h" ’help-command)
(fset ’help-command help-map)

Functionprint-help-return-message &optional function
This function builds a string that explains how to restore the previous state of the
windows after a help command. After building the message, it applies function to it
if function is non-nil. Otherwise it calls message to display it in the echo area.

This function expects to be called inside a with-output-to-temp-buffer special
form, and expects standard-output to have the value bound by that special form. For
an example of its use, see the long example in Section 27.2 [Accessing Documentation],
page 386.

Variablehelp-char
The value of this variable is the help character—the character that XEmacs recognizes
as meaning Help. By default, it is the character ‘?\^H’ (ASCII 8), which is C-h. When
XEmacs reads this character, if help-form is non-nil Lisp expression, it evaluates
that expression, and displays the result in a window if it is a string.

help-char can be a character or a key description such as help or (meta h).

Usually the value of help-form’s value is nil. Then the help character has no special
meaning at the level of command input, and it becomes part of a key sequence in
the normal way. The standard key binding of C-h is a prefix key for several general-
purpose help features.

The help character is special after prefix keys, too. If it has no binding as a subcom-
mand of the prefix key, it runs describe-prefix-bindings, which displays a list of
all the subcommands of the prefix key.

Variablehelp-form
If this variable is non-nil, its value is a form to evaluate whenever the character
help-char is read. If evaluating the form produces a string, that string is displayed.

A command that calls next-command-event or next-event probably should bind
help-form to a non-nil expression while it does input. (The exception is when C-h

is meaningful input.) Evaluating this expression should result in a string that explains
what the input is for and how to enter it properly.

Entry to the minibuffer binds this variable to the value of minibuffer-help-form
(see Section 18.8 [Minibuffer Misc], page 282).

Chapter 27: Documentation 393

Variableprefix-help-command
This variable holds a function to print help for a prefix character. The function is
called when the user types a prefix key followed by the help character, and the help
character has no binding after that prefix. The variable’s default value is describe-
prefix-bindings.

Functiondescribe-prefix-bindings
This function calls describe-bindings to display a list of all the subcommands of
the prefix key of the most recent key sequence. The prefix described consists of all
but the last event of that key sequence. (The last event is, presumably, the help
character.)

The following two functions are found in the library ‘helper’. They are for modes that
want to provide help without relinquishing control, such as the “electric” modes. You must
load that library with (require ’helper) in order to use them. Their names begin with
‘Helper’ to distinguish them from the ordinary help functions.

CommandHelper-describe-bindings
This command pops up a window displaying a help buffer containing a listing of all
of the key bindings from both the local and global keymaps. It works by calling
describe-bindings.

CommandHelper-help
This command provides help for the current mode. It prompts the user in the mini-
buffer with the message ‘Help (Type ? for further options)’, and then provides
assistance in finding out what the key bindings are, and what the mode is intended
for. It returns nil.

This can be customized by changing the map Helper-help-map.

27.6 Obsoleteness

As you add functionality to a package, you may at times want to replace an older function
with a new one. To preserve compatibility with existing code, the older function needs to
still exist; but users of that function should be told to use the newer one instead. XEmacs
Lisp lets you mark a function or variable as obsolete, and indicate what should be used
instead.

Functionmake-obsolete function new
This function indicates that function is an obsolete function, and the function new
should be used instead. The byte compiler will issue a warning to this effect when it
encounters a usage of the older function, and the help system will also note this in the
function’s documentation. new can also be a string (if there is not a single function
with the same functionality any more), and should be a descriptive statement, such
as "use foo or bar instead" or "this function is unnecessary".

394 XEmacs Lisp Reference Manual

Functionmake-obsolete-variable variable new
This is like make-obsolete but is for variables instead of functions.

Functiondefine-obsolete-function-alias oldfun newfun
This function combines make-obsolete and define-function, declaring oldfun to
be an obsolete variant of newfun and defining oldfun as an alias for newfun.

Functiondefine-obsolete-variable-alias oldvar newvar
This is like define-obsolete-function-alias but for variables.

Note that you should not normally put obsoleteness information explicitly in a function
or variable’s doc string. The obsoleteness information that you specify using the above
functions will be displayed whenever the doc string is displayed, and by adding it explicitly
the result is redundancy.

Also, if an obsolete function is substantially the same as a newer one but is not actually
an alias, you should consider omitting the doc string entirely (use a null string ‘""’ as the
doc string). That way, the user is told about the obsoleteness and is forced to look at the
documentation of the new function, making it more likely that he will use the new function.

Functionfunction-obsoleteness-doc function
If function is obsolete, this function returns a string describing this. This is the mes-
sage that is printed out during byte compilation or in the function’s documentation.
If function is not obsolete, nil is returned.

Functionvariable-obsoleteness-doc variable
This is like function-obsoleteness-doc but for variables.

The obsoleteness information is stored internally by putting a property byte-obsolete-
info (for functions) or byte-obsolete-variable (for variables) on the symbol that speci-
fies the obsolete function or variable. For more information, see the implementation of make-
obsolete and make-obsolete-variable in ‘lisp/bytecomp/bytecomp-runtime.el’.

Chapter 28: Files 395

28 Files

In XEmacs, you can find, create, view, save, and otherwise work with files and file
directories. This chapter describes most of the file-related functions of XEmacs Lisp, but
a few others are described in Chapter 30 [Buffers], page 435, and those related to backups
and auto-saving are described in Chapter 29 [Backups and Auto-Saving], page 425.

Many of the file functions take one or more arguments that are file names. A file name
is actually a string. Most of these functions expand file name arguments using expand-
file-name, so that ‘~’ is handled correctly, as are relative file names (including ‘../’).
These functions don’t recognize environment variable substitutions such as ‘$HOME’. See
Section 28.8.4 [File Name Expansion], page 413.

28.1 Visiting Files

Visiting a file means reading a file into a buffer. Once this is done, we say that the buffer
is visiting that file, and call the file “the visited file” of the buffer.

A file and a buffer are two different things. A file is information recorded permanently
in the computer (unless you delete it). A buffer, on the other hand, is information inside
of XEmacs that will vanish at the end of the editing session (or when you kill the buffer).
Usually, a buffer contains information that you have copied from a file; then we say the buffer
is visiting that file. The copy in the buffer is what you modify with editing commands. Such
changes to the buffer do not change the file; therefore, to make the changes permanent, you
must save the buffer, which means copying the altered buffer contents back into the file.

In spite of the distinction between files and buffers, people often refer to a file when
they mean a buffer and vice-versa. Indeed, we say, “I am editing a file,” rather than, “I am
editing a buffer that I will soon save as a file of the same name.” Humans do not usually
need to make the distinction explicit. When dealing with a computer program, however, it
is good to keep the distinction in mind.

28.1.1 Functions for Visiting Files

This section describes the functions normally used to visit files. For historical reasons,
these functions have names starting with ‘find-’ rather than ‘visit-’. See Section 30.4
[Buffer File Name], page 438, for functions and variables that access the visited file name
of a buffer or that find an existing buffer by its visited file name.

In a Lisp program, if you want to look at the contents of a file but not alter it, the
fastest way is to use insert-file-contents in a temporary buffer. Visiting the file is not
necessary and takes longer. See Section 28.3 [Reading from Files], page 400.

Commandfind-file filename
This command selects a buffer visiting the file filename, using an existing buffer if
there is one, and otherwise creating a new buffer and reading the file into it. It also
returns that buffer.

396 XEmacs Lisp Reference Manual

The body of the find-file function is very simple and looks like this:
(switch-to-buffer (find-file-noselect filename))

(See switch-to-buffer in Section 31.7 [Displaying Buffers], page 457.)
When find-file is called interactively, it prompts for filename in the minibuffer.

Functionfind-file-noselect filename &optional nowarn
This function is the guts of all the file-visiting functions. It finds or creates a buffer
visiting the file filename, and returns it. It uses an existing buffer if there is one, and
otherwise creates a new buffer and reads the file into it. You may make the buffer
current or display it in a window if you wish, but this function does not do so.
When find-file-noselect uses an existing buffer, it first verifies that the file has
not changed since it was last visited or saved in that buffer. If the file has changed,
then this function asks the user whether to reread the changed file. If the user says
‘yes’, any changes previously made in the buffer are lost.
If find-file-noselect needs to create a buffer, and there is no file named filename,
it displays the message ‘New file’ in the echo area, and leaves the buffer empty.
If no-warn is non-nil, various warnings that XEmacs normally gives (e.g. if another
buffer is already visiting filename but filename has been removed from disk since that
buffer was created) are suppressed.
The find-file-noselect function calls after-find-file after reading the file (see
Section 28.1.2 [Subroutines of Visiting], page 397). That function sets the buffer
major mode, parses local variables, warns the user if there exists an auto-save file
more recent than the file just visited, and finishes by running the functions in find-
file-hooks.
The find-file-noselect function returns the buffer that is visiting the file filename.

(find-file-noselect "/etc/fstab")
⇒ #<buffer fstab>

Commandfind-file-other-window filename
This command selects a buffer visiting the file filename, but does so in a window other
than the selected window. It may use another existing window or split a window; see
Section 31.7 [Displaying Buffers], page 457.
When this command is called interactively, it prompts for filename.

Commandfind-file-read-only filename
This command selects a buffer visiting the file filename, like find-file, but it marks
the buffer as read-only. See Section 30.7 [Read Only Buffers], page 442, for related
functions and variables.
When this command is called interactively, it prompts for filename.

Commandview-file filename
This command visits filename in View mode, and displays it in a recursive edit,
returning to the previous buffer when done. View mode is a mode that allows you
to skim rapidly through the file but does not let you modify it. Entering View mode
runs the normal hook view-mode-hook. See Section 26.4 [Hooks], page 382.
When view-file is called interactively, it prompts for filename.

Chapter 28: Files 397

Variablefind-file-hooks
The value of this variable is a list of functions to be called after a file is visited. The
file’s local-variables specification (if any) will have been processed before the hooks
are run. The buffer visiting the file is current when the hook functions are run.
This variable works just like a normal hook, but we think that renaming it would not
be advisable.

Variablefind-file-not-found-hooks
The value of this variable is a list of functions to be called when find-file or find-
file-noselect is passed a nonexistent file name. find-file-noselect calls these
functions as soon as it detects a nonexistent file. It calls them in the order of the list,
until one of them returns non-nil. buffer-file-name is already set up.
This is not a normal hook because the values of the functions are used and they may
not all be called.

28.1.2 Subroutines of Visiting

The find-file-noselect function uses the create-file-buffer and after-find-
file functions as subroutines. Sometimes it is useful to call them directly.

Functioncreate-file-buffer filename
This function creates a suitably named buffer for visiting filename, and returns it. It
uses filename (sans directory) as the name if that name is free; otherwise, it appends
a string such as ‘<2>’ to get an unused name. See also Section 30.9 [Creating Buffers],
page 444.
Please note: create-file-buffer does not associate the new buffer with a file and
does not select the buffer. It also does not use the default major mode.

(create-file-buffer "foo")
⇒ #<buffer foo>

(create-file-buffer "foo")
⇒ #<buffer foo<2>>

(create-file-buffer "foo")
⇒ #<buffer foo<3>>

This function is used by find-file-noselect. It uses generate-new-buffer (see
Section 30.9 [Creating Buffers], page 444).

Functionafter-find-file &optional error warn noauto
This function sets the buffer major mode, and parses local variables (see Section 26.1.3
[Auto Major Mode], page 370). It is called by find-file-noselect and by the default
revert function (see Section 29.3 [Reverting], page 433).
If reading the file got an error because the file does not exist, but its directory does
exist, the caller should pass a non-nil value for error. In that case, after-find-file
issues a warning: ‘(New File)’. For more serious errors, the caller should usually not
call after-find-file.

398 XEmacs Lisp Reference Manual

If warn is non-nil, then this function issues a warning if an auto-save file exists and
is more recent than the visited file.
If noauto is non-nil, then this function does not turn on auto-save mode; otherwise,
it does.
The last thing after-find-file does is call all the functions in find-file-hooks.

28.2 Saving Buffers

When you edit a file in XEmacs, you are actually working on a buffer that is visiting
that file—that is, the contents of the file are copied into the buffer and the copy is what you
edit. Changes to the buffer do not change the file until you save the buffer, which means
copying the contents of the buffer into the file.

Commandsave-buffer &optional backup-option
This function saves the contents of the current buffer in its visited file if the buffer
has been modified since it was last visited or saved. Otherwise it does nothing.
save-buffer is responsible for making backup files. Normally, backup-option is nil,
and save-buffer makes a backup file only if this is the first save since visiting the
file. Other values for backup-option request the making of backup files in other
circumstances:
• With an argument of 4 or 64, reflecting 1 or 3 C-u’s, the save-buffer function

marks this version of the file to be backed up when the buffer is next saved.
• With an argument of 16 or 64, reflecting 2 or 3 C-u’s, the save-buffer function

unconditionally backs up the previous version of the file before saving it.

Commandsave-some-buffers &optional save-silently-p exiting
This command saves some modified file-visiting buffers. Normally it asks the user
about each buffer. But if save-silently-p is non-nil, it saves all the file-visiting buffers
without querying the user.
The optional exiting argument, if non-nil, requests this function to offer also to save
certain other buffers that are not visiting files. These are buffers that have a non-nil
local value of buffer-offer-save. (A user who says yes to saving one of these is
asked to specify a file name to use.) The save-buffers-kill-emacs function passes
a non-nil value for this argument.

Variablebuffer-offer-save
When this variable is non-nil in a buffer, XEmacs offers to save the buffer on exit
even if the buffer is not visiting a file. The variable is automatically local in all buffers.
Normally, Mail mode (used for editing outgoing mail) sets this to t.

Commandwrite-file filename
This function writes the current buffer into file filename, makes the buffer visit that
file, and marks it not modified. Then it renames the buffer based on filename, ap-
pending a string like ‘<2>’ if necessary to make a unique buffer name. It does most
of this work by calling set-visited-file-name and save-buffer.

Chapter 28: Files 399

Variablewrite-file-hooks
The value of this variable is a list of functions to be called before writing out a buffer
to its visited file. If one of them returns non-nil, the file is considered already written
and the rest of the functions are not called, nor is the usual code for writing the file
executed.
If a function in write-file-hooks returns non-nil, it is responsible for making a
backup file (if that is appropriate). To do so, execute the following code:

(or buffer-backed-up (backup-buffer))

You might wish to save the file modes value returned by backup-buffer and use that
to set the mode bits of the file that you write. This is what save-buffer normally
does.
Even though this is not a normal hook, you can use add-hook and remove-hook to
manipulate the list. See Section 26.4 [Hooks], page 382.

Variablelocal-write-file-hooks
This works just like write-file-hooks, but it is intended to be made local to partic-
ular buffers. It’s not a good idea to make write-file-hooks local to a buffer—use
this variable instead.
The variable is marked as a permanent local, so that changing the major mode does
not alter a buffer-local value. This is convenient for packages that read “file” contents
in special ways, and set up hooks to save the data in a corresponding way.

Variablewrite-contents-hooks
This works just like write-file-hooks, but it is intended for hooks that pertain
to the contents of the file, as opposed to hooks that pertain to where the file came
from. Such hooks are usually set up by major modes, as buffer-local bindings for this
variable. Switching to a new major mode always resets this variable.

Variableafter-save-hook
This normal hook runs after a buffer has been saved in its visited file.

Variablefile-precious-flag
If this variable is non-nil, then save-buffer protects against I/O errors while saving
by writing the new file to a temporary name instead of the name it is supposed to
have, and then renaming it to the intended name after it is clear there are no errors.
This procedure prevents problems such as a lack of disk space from resulting in an
invalid file.
As a side effect, backups are necessarily made by copying. See Section 29.1.2 [Rename
or Copy], page 426. Yet, at the same time, saving a precious file always breaks all
hard links between the file you save and other file names.
Some modes set this variable non-nil locally in particular buffers.

User Optionrequire-final-newline
This variable determines whether files may be written out that do not end with a
newline. If the value of the variable is t, then save-buffer silently adds a newline at

400 XEmacs Lisp Reference Manual

the end of the file whenever the buffer being saved does not already end in one. If the
value of the variable is non-nil, but not t, then save-buffer asks the user whether
to add a newline each time the case arises.

If the value of the variable is nil, then save-buffer doesn’t add newlines at all. nil
is the default value, but a few major modes set it to t in particular buffers.

28.3 Reading from Files

You can copy a file from the disk and insert it into a buffer using the insert-file-
contents function. Don’t use the user-level command insert-file in a Lisp program, as
that sets the mark.

Functioninsert-file-contents filename &optional visit beg end replace
This function inserts the contents of file filename into the current buffer after point.
It returns a list of the absolute file name and the length of the data inserted. An
error is signaled if filename is not the name of a file that can be read.

The function insert-file-contents checks the file contents against the defined file
formats, and converts the file contents if appropriate. See Section 28.13 [Format
Conversion], page 421. It also calls the functions in the list after-insert-file-
functions; see Section 36.18.5 [Saving Properties], page 550.

If visit is non-nil, this function additionally marks the buffer as unmodified and sets
up various fields in the buffer so that it is visiting the file filename: these include
the buffer’s visited file name and its last save file modtime. This feature is used by
find-file-noselect and you probably should not use it yourself.

If beg and end are non-nil, they should be integers specifying the portion of the file
to insert. In this case, visit must be nil. For example,

(insert-file-contents filename nil 0 500)

inserts the first 500 characters of a file.

If the argument replace is non-nil, it means to replace the contents of the buffer
(actually, just the accessible portion) with the contents of the file. This is better
than simply deleting the buffer contents and inserting the whole file, because (1) it
preserves some marker positions and (2) it puts less data in the undo list.

If you want to pass a file name to another process so that another program can read the
file, use the function file-local-copy; see Section 28.11 [Magic File Names], page 418.

28.4 Writing to Files

You can write the contents of a buffer, or part of a buffer, directly to a file on disk using
the append-to-file and write-region functions. Don’t use these functions to write to
files that are being visited; that could cause confusion in the mechanisms for visiting.

Chapter 28: Files 401

Commandappend-to-file start end filename
This function appends the contents of the region delimited by start and end in the
current buffer to the end of file filename. If that file does not exist, it is created. If
that file exists it is overwritten. This function returns nil.
An error is signaled if filename specifies a nonwritable file, or a nonexistent file in a
directory where files cannot be created.

Commandwrite-region start end filename &optional append visit
This function writes the region delimited by start and end in the current buffer into
the file specified by filename.
If start is a string, then write-region writes or appends that string, rather than text
from the buffer.
If append is non-nil, then the specified text is appended to the existing file contents
(if any).
If visit is t, then XEmacs establishes an association between the buffer and the file:
the buffer is then visiting that file. It also sets the last file modification time for the
current buffer to filename’s modtime, and marks the buffer as not modified. This
feature is used by save-buffer, but you probably should not use it yourself.
If visit is a string, it specifies the file name to visit. This way, you can write the data
to one file (filename) while recording the buffer as visiting another file (visit). The
argument visit is used in the echo area message and also for file locking; visit is stored
in buffer-file-name. This feature is used to implement file-precious-flag; don’t
use it yourself unless you really know what you’re doing.
The function write-region converts the data which it writes to the appropriate file
formats specified by buffer-file-format. See Section 28.13 [Format Conversion],
page 421. It also calls the functions in the list write-region-annotate-functions;
see Section 36.18.5 [Saving Properties], page 550.
Normally, write-region displays a message ‘Wrote file filename’ in the echo area.
If visit is neither t nor nil nor a string, then this message is inhibited. This feature
is useful for programs that use files for internal purposes, files that the user does not
need to know about.

28.5 File Locks

When two users edit the same file at the same time, they are likely to interfere with each
other. XEmacs tries to prevent this situation from arising by recording a file lock when a
file is being modified. XEmacs can then detect the first attempt to modify a buffer visiting
a file that is locked by another XEmacs process, and ask the user what to do.

File locks do not work properly when multiple machines can share file systems, such as
with NFS. Perhaps a better file locking system will be implemented in the future. When file
locks do not work, it is possible for two users to make changes simultaneously, but XEmacs
can still warn the user who saves second. Also, the detection of modification of a buffer
visiting a file changed on disk catches some cases of simultaneous editing; see Section 30.6
[Modification Time], page 441.

402 XEmacs Lisp Reference Manual

Functionfile-locked-p &optional filename
This function returns nil if the file filename is not locked by this XEmacs process.
It returns t if it is locked by this XEmacs, and it returns the name of the user who
has locked it if it is locked by someone else.

(file-locked-p "foo")
⇒ nil

Functionlock-buffer &optional filename
This function locks the file filename, if the current buffer is modified. The argument
filename defaults to the current buffer’s visited file. Nothing is done if the current
buffer is not visiting a file, or is not modified.

Functionunlock-buffer
This function unlocks the file being visited in the current buffer, if the buffer is
modified. If the buffer is not modified, then the file should not be locked, so this
function does nothing. It also does nothing if the current buffer is not visiting a file.

Functionask-user-about-lock file other-user
This function is called when the user tries to modify file, but it is locked by another
user named other-user. The value it returns determines what happens next:
• A value of t says to grab the lock on the file. Then this user may edit the file

and other-user loses the lock.
• A value of nil says to ignore the lock and let this user edit the file anyway.
• This function may instead signal a file-locked error, in which case the change

that the user was about to make does not take place.
The error message for this error looks like this:

error File is locked: file other-user

where file is the name of the file and other-user is the name of the user who
has locked the file.

The default definition of this function asks the user to choose what to do. If you
wish, you can replace the ask-user-about-lock function with your own version that
decides in another way. The code for its usual definition is in ‘userlock.el’.

28.6 Information about Files

The functions described in this section all operate on strings that designate file names.
All the functions have names that begin with the word ‘file’. These functions all return
information about actual files or directories, so their arguments must all exist as actual files
or directories unless otherwise noted.

28.6.1 Testing Accessibility

These functions test for permission to access a file in specific ways.

Chapter 28: Files 403

Functionfile-exists-p filename
This function returns t if a file named filename appears to exist. This does not
mean you can necessarily read the file, only that you can find out its attributes. (On
Unix, this is true if the file exists and you have execute permission on the containing
directories, regardless of the protection of the file itself.)
If the file does not exist, or if fascist access control policies prevent you from finding
the attributes of the file, this function returns nil.

Functionfile-readable-p filename
This function returns t if a file named filename exists and you can read it. It returns
nil otherwise.

(file-readable-p "files.texi")
⇒ t

(file-exists-p "/usr/spool/mqueue")
⇒ t

(file-readable-p "/usr/spool/mqueue")
⇒ nil

Functionfile-executable-p filename
This function returns t if a file named filename exists and you can execute it. It
returns nil otherwise. If the file is a directory, execute permission means you can
check the existence and attributes of files inside the directory, and open those files if
their modes permit.

Functionfile-writable-p filename
This function returns t if the file filename can be written or created by you, and nil
otherwise. A file is writable if the file exists and you can write it. It is creatable
if it does not exist, but the specified directory does exist and you can write in that
directory.
In the third example below, ‘foo’ is not writable because the parent directory does
not exist, even though the user could create such a directory.

(file-writable-p "~/foo")
⇒ t

(file-writable-p "/foo")
⇒ nil

(file-writable-p "~/no-such-dir/foo")
⇒ nil

Functionfile-accessible-directory-p dirname
This function returns t if you have permission to open existing files in the directory
whose name as a file is dirname; otherwise (or if there is no such directory), it returns
nil. The value of dirname may be either a directory name or the file name of a
directory.
Example: after the following,

(file-accessible-directory-p "/foo")
⇒ nil

we can deduce that any attempt to read a file in ‘/foo/’ will give an error.

404 XEmacs Lisp Reference Manual

Functionfile-ownership-preserved-p filename
This function returns t if deleting the file filename and then creating it anew would
keep the file’s owner unchanged.

Functionfile-newer-than-file-p filename1 filename2
This function returns t if the file filename1 is newer than file filename2. If filename1
does not exist, it returns nil. If filename2 does not exist, it returns t.

In the following example, assume that the file ‘aug-19’ was written on the 19th,
‘aug-20’ was written on the 20th, and the file ‘no-file’ doesn’t exist at all.

(file-newer-than-file-p "aug-19" "aug-20")
⇒ nil

(file-newer-than-file-p "aug-20" "aug-19")
⇒ t

(file-newer-than-file-p "aug-19" "no-file")
⇒ t

(file-newer-than-file-p "no-file" "aug-19")
⇒ nil

You can use file-attributes to get a file’s last modification time as a list of two
numbers. See Section 28.6.4 [File Attributes], page 405.

28.6.2 Distinguishing Kinds of Files

This section describes how to distinguish various kinds of files, such as directories, sym-
bolic links, and ordinary files.

Functionfile-symlink-p filename
If the file filename is a symbolic link, the file-symlink-p function returns the file
name to which it is linked. This may be the name of a text file, a directory, or even
another symbolic link, or it may be a nonexistent file name.

If the file filename is not a symbolic link (or there is no such file), file-symlink-p
returns nil.

(file-symlink-p "foo")
⇒ nil

(file-symlink-p "sym-link")
⇒ "foo"

(file-symlink-p "sym-link2")
⇒ "sym-link"

(file-symlink-p "/bin")
⇒ "/pub/bin"

Functionfile-directory-p filename
This function returns t if filename is the name of an existing directory, nil otherwise.

(file-directory-p "~rms")
⇒ t

Chapter 28: Files 405

(file-directory-p "~rms/lewis/files.texi")
⇒ nil

(file-directory-p "~rms/lewis/no-such-file")
⇒ nil

(file-directory-p "$HOME")
⇒ nil

(file-directory-p
(substitute-in-file-name "$HOME"))

⇒ t

Functionfile-regular-p filename
This function returns t if the file filename exists and is a regular file (not a directory,
symbolic link, named pipe, terminal, or other I/O device).

28.6.3 Truenames

The truename of a file is the name that you get by following symbolic links until none
remain, then expanding to get rid of ‘.’ and ‘..’ as components. Strictly speaking, a file
need not have a unique truename; the number of distinct truenames a file has is equal to
the number of hard links to the file. However, truenames are useful because they eliminate
symbolic links as a cause of name variation.

Functionfile-truename filename &optional default
The function file-truename returns the true name of the file filename. This is the
name that you get by following symbolic links until none remain.
If the filename is relative, default is the directory to start with. If default is nil or
missing, the current buffer’s value of default-directory is used.

See Section 30.4 [Buffer File Name], page 438, for related information.

28.6.4 Other Information about Files

This section describes the functions for getting detailed information about a file, other
than its contents. This information includes the mode bits that control access permission,
the owner and group numbers, the number of names, the inode number, the size, and the
times of access and modification.

Functionfile-modes filename
This function returns the mode bits of filename, as an integer. The mode bits are also
called the file permissions, and they specify access control in the usual Unix fashion. If
the low-order bit is 1, then the file is executable by all users, if the second-lowest-order
bit is 1, then the file is writable by all users, etc.
The highest value returnable is 4095 (7777 octal), meaning that everyone has read,
write, and execute permission, that the suid bit is set for both others and group, and
that the sticky bit is set.

406 XEmacs Lisp Reference Manual

(file-modes "~/junk/diffs")
⇒ 492 ; Decimal integer.

(format "%o" 492)
⇒ "754" ; Convert to octal.

(set-file-modes "~/junk/diffs" 438)
⇒ nil

(format "%o" 438)
⇒ "666" ; Convert to octal.

% ls -l diffs
-rw-rw-rw- 1 lewis 0 3063 Oct 30 16:00 diffs

Functionfile-nlinks filename
This functions returns the number of names (i.e., hard links) that file filename has. If
the file does not exist, then this function returns nil. Note that symbolic links have
no effect on this function, because they are not considered to be names of the files
they link to.

% ls -l foo*
-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo
-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo1

(file-nlinks "foo")
⇒ 2

(file-nlinks "doesnt-exist")
⇒ nil

Functionfile-attributes filename
This function returns a list of attributes of file filename. If the specified file cannot
be opened, it returns nil.
The elements of the list, in order, are:
0. t for a directory, a string for a symbolic link (the name linked to), or nil for a

text file.
1. The number of names the file has. Alternate names, also known as hard links, can

be created by using the add-name-to-file function (see Section 28.7 [Changing
File Attributes], page 408).

2. The file’s uid.
3. The file’s gid.
4. The time of last access, as a list of two integers. The first integer has the high-

order 16 bits of time, the second has the low 16 bits. (This is similar to the value
of current-time; see Section 50.5 [Time of Day], page 712.)

5. The time of last modification as a list of two integers (as above).
6. The time of last status change as a list of two integers (as above).
7. The size of the file in bytes.
8. The file’s modes, as a string of ten letters or dashes, as in ‘ls -l’.
9. t if the file’s gid would change if file were deleted and recreated; nil otherwise.

Chapter 28: Files 407

10. The file’s inode number.

11. The file system number of the file system that the file is in. This element and the
file’s inode number together give enough information to distinguish any two files
on the system—no two files can have the same values for both of these numbers.

For example, here are the file attributes for ‘files.texi’:

(file-attributes "files.texi")
⇒ (nil

1
2235
75
(8489 20284)
(8489 20284)
(8489 20285)
14906
"-rw-rw-rw-"
nil
129500
-32252)

and here is how the result is interpreted:

nil is neither a directory nor a symbolic link.

1 has only one name (the name ‘files.texi’ in the current default direc-
tory).

2235 is owned by the user with uid 2235.

75 is in the group with gid 75.

(8489 20284)
was last accessed on Aug 19 00:09. Use format-time-string to ! con-
vert this number into a time string. See Section 50.6 [Time Conversion],
page 713.

(8489 20284)
was last modified on Aug 19 00:09.

(8489 20285)
last had its inode changed on Aug 19 00:09.

14906 is 14906 characters long.

"-rw-rw-rw-"
has a mode of read and write access for the owner, group, and world.

nil would retain the same gid if it were recreated.

129500 has an inode number of 129500.

-32252 is on file system number -32252.

408 XEmacs Lisp Reference Manual

28.7 Changing File Names and Attributes

The functions in this section rename, copy, delete, link, and set the modes of files.
In the functions that have an argument newname, if a file by the name of newname

already exists, the actions taken depend on the value of the argument ok-if-already-exists:
• Signal a file-already-exists error if ok-if-already-exists is nil.
• Request confirmation if ok-if-already-exists is a number.
• Replace the old file without confirmation if ok-if-already-exists is any other value.

Commandadd-name-to-file oldname newname &optional ok-if-already-exists
This function gives the file named oldname the additional name newname. This
means that newname becomes a new “hard link” to oldname.
In the first part of the following example, we list two files, ‘foo’ and ‘foo3’.

% ls -l fo*
-rw-rw-rw- 1 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Then we evaluate the form (add-name-to-file "~/lewis/foo" "~/lewis/foo2").
Again we list the files. This shows two names, ‘foo’ and ‘foo2’.

(add-name-to-file "~/lewis/foo1" "~/lewis/foo2")
⇒ nil

% ls -l fo*
-rw-rw-rw- 2 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 2 rms 29 Aug 18 20:32 foo2
-rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Finally, we evaluate the following:
(add-name-to-file "~/lewis/foo" "~/lewis/foo3" t)

and list the files again. Now there are three names for one file: ‘foo’, ‘foo2’, and
‘foo3’. The old contents of ‘foo3’ are lost.

(add-name-to-file "~/lewis/foo1" "~/lewis/foo3")
⇒ nil

% ls -l fo*
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo2
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo3

This function is meaningless on VMS, where multiple names for one file are not
allowed.
See also file-nlinks in Section 28.6.4 [File Attributes], page 405.

Commandrename-file filename newname &optional ok-if-already-exists
This command renames the file filename as newname.
If filename has additional names aside from filename, it continues to have those names.
In fact, adding the name newname with add-name-to-file and then deleting file-
name has the same effect as renaming, aside from momentary intermediate states.

Chapter 28: Files 409

In an interactive call, this function prompts for filename and newname in the mini-
buffer; also, it requests confirmation if newname already exists.

Commandcopy-file oldname newname &optional ok-if-exists time
This command copies the file oldname to newname. An error is signaled if oldname
does not exist.
If time is non-nil, then this functions gives the new file the same last-modified time
that the old one has. (This works on only some operating systems.)
In an interactive call, this function prompts for filename and newname in the mini-
buffer; also, it requests confirmation if newname already exists.

Commanddelete-file filename
This command deletes the file filename, like the shell command ‘rm filename’. If the
file has multiple names, it continues to exist under the other names.
A suitable kind of file-error error is signaled if the file does not exist, or is not
deletable. (On Unix, a file is deletable if its directory is writable.)
See also delete-directory in Section 28.10 [Create/Delete Dirs], page 417.

Commandmake-symbolic-link filename newname &optional ok-if-exists
This command makes a symbolic link to filename, named newname. This is like the
shell command ‘ln -s filename newname’.
In an interactive call, this function prompts for filename and newname in the mini-
buffer; also, it requests confirmation if newname already exists.

Functiondefine-logical-name varname string
This function defines the logical name name to have the value string. It is available
only on VMS.

Functionset-file-modes filename mode
This function sets mode bits of filename to mode (which must be an integer). Only
the low 12 bits of mode are used.

Functionset-default-file-modes mode
This function sets the default file protection for new files created by XEmacs and its
subprocesses. Every file created with XEmacs initially has this protection. On Unix,
the default protection is the bitwise complement of the “umask” value.
The argument mode must be an integer. Only the low 9 bits of mode are used.
Saving a modified version of an existing file does not count as creating the file; it does
not change the file’s mode, and does not use the default file protection.

Functiondefault-file-modes
This function returns the current default protection value.

On MS-DOS, there is no such thing as an “executable” file mode bit. So Emacs considers
a file executable if its name ends in ‘.com’, ‘.bat’ or ‘.exe’. This is reflected in the values
returned by file-modes and file-attributes.

410 XEmacs Lisp Reference Manual

28.8 File Names

Files are generally referred to by their names, in XEmacs as elsewhere. File names in
XEmacs are represented as strings. The functions that operate on a file all expect a file
name argument.

In addition to operating on files themselves, XEmacs Lisp programs often need to operate
on the names; i.e., to take them apart and to use part of a name to construct related file
names. This section describes how to manipulate file names.

The functions in this section do not actually access files, so they can operate on file
names that do not refer to an existing file or directory.

On VMS, all these functions understand both VMS file-name syntax and Unix syntax.
This is so that all the standard Lisp libraries can specify file names in Unix syntax and
work properly on VMS without change. On MS-DOS, these functions understand MS-DOS
file-name syntax as well as Unix syntax.

28.8.1 File Name Components

The operating system groups files into directories. To specify a file, you must specify
the directory and the file’s name within that directory. Therefore, XEmacs considers a file
name as having two main parts: the directory name part, and the nondirectory part (or
file name within the directory). Either part may be empty. Concatenating these two parts
reproduces the original file name.

On Unix, the directory part is everything up to and including the last slash; the nondi-
rectory part is the rest. The rules in VMS syntax are complicated.

For some purposes, the nondirectory part is further subdivided into the name proper
and the version number. On Unix, only backup files have version numbers in their names;
on VMS, every file has a version number, but most of the time the file name actually used
in XEmacs omits the version number. Version numbers are found mostly in directory lists.

Functionfile-name-directory filename
This function returns the directory part of filename (or nil if filename does not
include a directory part). On Unix, the function returns a string ending in a slash.
On VMS, it returns a string ending in one of the three characters ‘:’, ‘]’, or ‘>’.

(file-name-directory "lewis/foo") ; Unix example
⇒ "lewis/"

(file-name-directory "foo") ; Unix example
⇒ nil

(file-name-directory "[X]FOO.TMP") ; VMS example
⇒ "[X]"

Functionfile-name-nondirectory filename
This function returns the nondirectory part of filename.

Chapter 28: Files 411

(file-name-nondirectory "lewis/foo")
⇒ "foo"

(file-name-nondirectory "foo")
⇒ "foo"

;; The following example is accurate only on VMS.
(file-name-nondirectory "[X]FOO.TMP")

⇒ "FOO.TMP"

Functionfile-name-sans-versions filename &optional keep-backup-version
This function returns filename without any file version numbers, backup version num-
bers, or trailing tildes.
If keep-backup-version is non-nil, we do not remove backup version numbers, only
true file version numbers.

(file-name-sans-versions "~rms/foo.~1~")
⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo~")
⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo")
⇒ "~rms/foo"

;; The following example applies to VMS only.
(file-name-sans-versions "foo;23")

⇒ "foo"

Functionfile-name-sans-extension filename
This function returns filename minus its “extension,” if any. The extension, in a
file name, is the part that starts with the last ‘.’ in the last name component. For
example,

(file-name-sans-extension "foo.lose.c")
⇒ "foo.lose"

(file-name-sans-extension "big.hack/foo")
⇒ "big.hack/foo"

28.8.2 Directory Names

A directory name is the name of a directory. A directory is a kind of file, and it has a
file name, which is related to the directory name but not identical to it. (This is not quite
the same as the usual Unix terminology.) These two different names for the same entity are
related by a syntactic transformation. On Unix, this is simple: a directory name ends in a
slash, whereas the directory’s name as a file lacks that slash. On VMS, the relationship is
more complicated.

The difference between a directory name and its name as a file is subtle but crucial.
When an XEmacs variable or function argument is described as being a directory name, a
file name of a directory is not acceptable.

The following two functions convert between directory names and file names. They do
nothing special with environment variable substitutions such as ‘$HOME’, and the constructs
‘~’, and ‘..’.

412 XEmacs Lisp Reference Manual

Functionfile-name-as-directory filename
This function returns a string representing filename in a form that the operating
system will interpret as the name of a directory. In Unix, this means appending a
slash to the string. On VMS, the function converts a string of the form ‘[X]Y.DIR.1’
to the form ‘[X.Y]’.

(file-name-as-directory "~rms/lewis")
⇒ "~rms/lewis/"

Functiondirectory-file-name dirname
This function returns a string representing dirname in a form that the operating
system will interpret as the name of a file. On Unix, this means removing a final
slash from the string. On VMS, the function converts a string of the form ‘[X.Y]’ to
‘[X]Y.DIR.1’.

(directory-file-name "~lewis/")
⇒ "~lewis"

Directory name abbreviations are useful for directories that are normally accessed
through symbolic links. Sometimes the users recognize primarily the link’s name as “the
name” of the directory, and find it annoying to see the directory’s “real” name. If you
define the link name as an abbreviation for the “real” name, XEmacs shows users the
abbreviation instead.

If you wish to convert a directory name to its abbreviation, use this function:

Functionabbreviate-file-name dirname &optional hack-homedir
This function applies abbreviations from directory-abbrev-alist to its argument,
and substitutes ‘~’ for the user’s home directory.

If hack-homedir is non-nil, then this also substitutes ‘~’ for the user’s home directory.

Variabledirectory-abbrev-alist
The variable directory-abbrev-alist contains an alist of abbreviations to use for
file directories. Each element has the form (from . to), and says to replace from
with to when it appears in a directory name. The from string is actually a regular
expression; it should always start with ‘^’. The function abbreviate-file-name
performs these substitutions.

You can set this variable in ‘site-init.el’ to describe the abbreviations appropriate
for your site.

Here’s an example, from a system on which file system ‘/home/fsf’ and so on are
normally accessed through symbolic links named ‘/fsf’ and so on.

(("^/home/fsf" . "/fsf")
("^/home/gp" . "/gp")
("^/home/gd" . "/gd"))

Chapter 28: Files 413

28.8.3 Absolute and Relative File Names

All the directories in the file system form a tree starting at the root directory. A file
name can specify all the directory names starting from the root of the tree; then it is called
an absolute file name. Or it can specify the position of the file in the tree relative to a
default directory; then it is called a relative file name. On Unix, an absolute file name
starts with a slash or a tilde (‘~’), and a relative one does not. The rules on VMS are
complicated.

Functionfile-name-absolute-p filename
This function returns t if file filename is an absolute file name, nil otherwise. On
VMS, this function understands both Unix syntax and VMS syntax.

(file-name-absolute-p "~rms/foo")
⇒ t

(file-name-absolute-p "rms/foo")
⇒ nil

(file-name-absolute-p "/user/rms/foo")
⇒ t

28.8.4 Functions that Expand Filenames

Expansion of a file name means converting a relative file name to an absolute one. Since
this is done relative to a default directory, you must specify the default directory name as
well as the file name to be expanded. Expansion also simplifies file names by eliminating
redundancies such as ‘./’ and ‘name/../’.

Functionexpand-file-name filename &optional directory
This function converts filename to an absolute file name. If directory is supplied, it
is the directory to start with if filename is relative. (The value of directory should
itself be an absolute directory name; it may start with ‘~’.) Otherwise, the current
buffer’s value of default-directory is used. For example:

(expand-file-name "foo")
⇒ "/xcssun/users/rms/lewis/foo"

(expand-file-name "../foo")
⇒ "/xcssun/users/rms/foo"

(expand-file-name "foo" "/usr/spool/")
⇒ "/usr/spool/foo"

(expand-file-name "$HOME/foo")
⇒ "/xcssun/users/rms/lewis/$HOME/foo"

Filenames containing ‘.’ or ‘..’ are simplified to their canonical form:
(expand-file-name "bar/../foo")

⇒ "/xcssun/users/rms/lewis/foo"

‘~/’ at the beginning is expanded into the user’s home directory. A ‘/’ or ‘~’ following
a ‘/’.

414 XEmacs Lisp Reference Manual

Note that expand-file-name does not expand environment variables; only
substitute-in-file-name does that.

Functionfile-relative-name filename &optional directory
This function does the inverse of expansion—it tries to return a relative name that is
equivalent to filename when interpreted relative to directory.

If directory is nil or omitted, the value of default-directory is used.

(file-relative-name "/foo/bar" "/foo/")
⇒ "bar")

(file-relative-name "/foo/bar" "/hack/")
⇒ "../foo/bar")

Variabledefault-directory
The value of this buffer-local variable is the default directory for the current buffer.
It should be an absolute directory name; it may start with ‘~’. This variable is local
in every buffer.

expand-file-name uses the default directory when its second argument is nil.

On Unix systems, the value is always a string ending with a slash.

default-directory
⇒ "/user/lewis/manual/"

Functionsubstitute-in-file-name filename
This function replaces environment variable references in filename with the envi-
ronment variable values. Following standard Unix shell syntax, ‘$’ is the prefix to
substitute an environment variable value.

The environment variable name is the series of alphanumeric characters (including
underscores) that follow the ‘$’. If the character following the ‘$’ is a ‘{’, then the
variable name is everything up to the matching ‘}’.

Here we assume that the environment variable HOME, which holds the user’s home
directory name, has value ‘/xcssun/users/rms’.

(substitute-in-file-name "$HOME/foo")
⇒ "/xcssun/users/rms/foo"

After substitution, a ‘/’ or ‘~’ following a ‘/’ is taken to be the start of an absolute file
name that overrides what precedes it, so everything before that ‘/’ or ‘~’ is deleted.
For example:

(substitute-in-file-name "bar/~/foo")
⇒ "~/foo"

(substitute-in-file-name "/usr/local/$HOME/foo")
⇒ "/xcssun/users/rms/foo"

On VMS, ‘$’ substitution is not done, so this function does nothing on VMS except
discard superfluous initial components as shown above.

Chapter 28: Files 415

28.8.5 Generating Unique File Names

Some programs need to write temporary files. Here is the usual way to construct a name
for such a file:

(make-temp-name (expand-file-name name-of-application (temp-directory)))

Here we use (temp-directory) to specify a directory for temporary files—under Unix, it
will normally evaluate to ‘"/tmp/"’. The job of make-temp-name is to prevent two different
users or two different processes from trying to use the same name.

Functiontemp-directory
This function returns the name of the directory to use for temporary files. Under
Unix, this will be the value of TMPDIR, defaulting to ‘/tmp’. On Windows, this will
be obtained from the TEMP or TMP environment variables, defaulting to ‘/’.

Note that the temp-directory function does not exist under FSF Emacs.

Functionmake-temp-name prefix
This function generates a temporary file name starting with prefix. The Emacs process
number forms part of the result, so there is no danger of generating a name being
used by another process.

(make-temp-name "/tmp/foo")
⇒ "/tmp/fooGaAQjC"

In addition, this function makes an attempt to choose a name that does not specify
an existing file. To make this work, prefix should be an absolute file name.

To avoid confusion, each Lisp application should preferably use a unique prefix to
make-temp-name.

28.8.6 File Name Completion

This section describes low-level subroutines for completing a file name. For other com-
pletion functions, see Section 18.5 [Completion], page 270.

Functionfile-name-all-completions partial-filename directory
This function returns a list of all possible completions for a file whose name starts
with partial-filename in directory directory. The order of the completions is the order
of the files in the directory, which is unpredictable and conveys no useful information.

The argument partial-filename must be a file name containing no directory part and
no slash. The current buffer’s default directory is prepended to directory, if directory
is not absolute.

In the following example, suppose that the current default directory, ‘~rms/lewis’,
has five files whose names begin with ‘f’: ‘foo’, ‘file~’, ‘file.c’, ‘file.c.~1~’, and
‘file.c.~2~’.

416 XEmacs Lisp Reference Manual

(file-name-all-completions "f" "")
⇒ ("foo" "file~" "file.c.~2~"

"file.c.~1~" "file.c")

(file-name-all-completions "fo" "")
⇒ ("foo")

Functionfile-name-completion filename directory
This function completes the file name filename in directory directory. It returns the
longest prefix common to all file names in directory directory that start with filename.
If only one match exists and filename matches it exactly, the function returns t. The
function returns nil if directory directory contains no name starting with filename.
In the following example, suppose that the current default directory has five files whose
names begin with ‘f’: ‘foo’, ‘file~’, ‘file.c’, ‘file.c.~1~’, and ‘file.c.~2~’.

(file-name-completion "fi" "")
⇒ "file"

(file-name-completion "file.c.~1" "")
⇒ "file.c.~1~"

(file-name-completion "file.c.~1~" "")
⇒ t

(file-name-completion "file.c.~3" "")
⇒ nil

User Optioncompletion-ignored-extensions
file-name-completion usually ignores file names that end in any string in this list.
It does not ignore them when all the possible completions end in one of these suffixes
or when a buffer showing all possible completions is displayed.
A typical value might look like this:

completion-ignored-extensions
⇒ (".o" ".elc" "~" ".dvi")

28.9 Contents of Directories

A directory is a kind of file that contains other files entered under various names. Di-
rectories are a feature of the file system.

XEmacs can list the names of the files in a directory as a Lisp list, or display the names in
a buffer using the ls shell command. In the latter case, it can optionally display information
about each file, depending on the value of switches passed to the ls command.

Functiondirectory-files directory &optional full-name match-regexp nosort
files-only

This function returns a list of the names of the files in the directory directory. By
default, the list is in alphabetical order.
If full-name is non-nil, the function returns the files’ absolute file names. Otherwise,
it returns just the names relative to the specified directory.

Chapter 28: Files 417

If match-regexp is non-nil, this function returns only those file names that contain
that regular expression—the other file names are discarded from the list.
If nosort is non-nil, directory-files does not sort the list, so you get the file names
in no particular order. Use this if you want the utmost possible speed and don’t care
what order the files are processed in. If the order of processing is visible to the user,
then the user will probably be happier if you do sort the names.
If files-only is the symbol t, then only the “files” in the directory will be returned;
subdirectories will be excluded. If files-only is not nil and not t, then only the
subdirectories will be returned. Otherwise, if files-only is nil (the default) then both
files and subdirectories will be returned.

(directory-files "~lewis")
⇒ ("#foo#" "#foo.el#" "." ".."

"dired-mods.el" "files.texi"
"files.texi.~1~")

An error is signaled if directory is not the name of a directory that can be read.

Functioninsert-directory file switches &optional wildcard full-directory-p
This function inserts (in the current buffer) a directory listing for directory file, for-
matted with ls according to switches. It leaves point after the inserted text.
The argument file may be either a directory name or a file specification including
wildcard characters. If wildcard is non-nil, that means treat file as a file specification
with wildcards.
If full-directory-p is non-nil, that means file is a directory and switches do not contain
‘-d’, so that the listing should show the full contents of the directory. (The ‘-d’ option
to ls says to describe a directory itself rather than its contents.)
This function works by running a directory listing program whose name is in the
variable insert-directory-program. If wildcard is non-nil, it also runs the shell
specified by shell-file-name, to expand the wildcards.

Variableinsert-directory-program
This variable’s value is the program to run to generate a directory listing for the
function insert-directory.

28.10 Creating and Deleting Directories

Most XEmacs Lisp file-manipulation functions get errors when used on files that are
directories. For example, you cannot delete a directory with delete-file. These special
functions exist to create and delete directories.

Commandmake-directory dirname &optional parents
This function creates a directory named dirname. Interactively, the default choice of
directory to create is the current default directory for file names. That is useful when
you have visited a file in a nonexistent directory.
Non-interactively, optional argument parents says whether to create parent directories
if they don’t exist. (Interactively, this always happens.)

418 XEmacs Lisp Reference Manual

Commanddelete-directory dirname
This function deletes the directory named dirname. The function delete-file does
not work for files that are directories; you must use delete-directory in that case.

28.11 Making Certain File Names “Magic”

You can implement special handling for certain file names. This is called making those
names magic. You must supply a regular expression to define the class of names (all those
that match the regular expression), plus a handler that implements all the primitive XEmacs
file operations for file names that do match.

The variable file-name-handler-alist holds a list of handlers, together with regular
expressions that determine when to apply each handler. Each element has this form:

(regexp . handler)

All the XEmacs primitives for file access and file name transformation check the given file
name against file-name-handler-alist. If the file name matches regexp, the primitives
handle that file by calling handler.

The first argument given to handler is the name of the primitive; the remaining argu-
ments are the arguments that were passed to that operation. (The first of these arguments
is typically the file name itself.) For example, if you do this:

(file-exists-p filename)

and filename has handler handler, then handler is called like this:
(funcall handler ’file-exists-p filename)

Here are the operations that a magic file name handler gets to handle:
add-name-to-file, copy-file, delete-directory, delete-file,
diff-latest-backup-file, directory-file-name, directory-files, dired-compress-
file, dired-uncache, expand-file-name,
file-accessible-directory-p, file-attributes, file-directory-p, file-
executable-p, file-exists-p, file-local-copy, file-modes, file-name-all-
completions, file-name-as-directory, file-name-completion, file-name-
directory, file-name-nondirectory, file-name-sans-versions, file-newer-
than-file-p, file-readable-p, file-regular-p, file-symlink-p, file-truename,
file-writable-p, get-file-buffer, insert-directory, insert-file-contents, load,
make-directory, make-symbolic-link, rename-file, set-file-modes, set-visited-
file-modtime, unhandled-file-name-directory, verify-visited-file-modtime,
write-region.

Handlers for insert-file-contents typically need to clear the buffer’s modified flag,
with (set-buffer-modified-p nil), if the visit argument is non-nil. This also has the
effect of unlocking the buffer if it is locked.

The handler function must handle all of the above operations, and possibly others to be
added in the future. It need not implement all these operations itself—when it has nothing
special to do for a certain operation, it can reinvoke the primitive, to handle the operation
“in the usual way”. It should always reinvoke the primitive for an operation it does not
recognize. Here’s one way to do this:

Chapter 28: Files 419

(defun my-file-handler (operation &rest args)
;; First check for the specific operations
;; that we have special handling for.
(cond ((eq operation ’insert-file-contents) ...)

((eq operation ’write-region) ...)
...
;; Handle any operation we don’t know about.
(t (let ((inhibit-file-name-handlers

(cons ’my-file-handler
(and (eq inhibit-file-name-operation operation)

inhibit-file-name-handlers)))
(inhibit-file-name-operation operation))

(apply operation args)))))

When a handler function decides to call the ordinary Emacs primitive for the operation
at hand, it needs to prevent the primitive from calling the same handler once again, thus
leading to an infinite recursion. The example above shows how to do this, with the vari-
ables inhibit-file-name-handlers and inhibit-file-name-operation. Be careful to
use them exactly as shown above; the details are crucial for proper behavior in the case of
multiple handlers, and for operations that have two file names that may each have handlers.

Variableinhibit-file-name-handlers
This variable holds a list of handlers whose use is presently inhibited for a certain
operation.

Variableinhibit-file-name-operation
The operation for which certain handlers are presently inhibited.

Functionfind-file-name-handler file operation
This function returns the handler function for file name file, or nil if there is none.
The argument operation should be the operation to be performed on the file—the
value you will pass to the handler as its first argument when you call it. The operation
is needed for comparison with inhibit-file-name-operation.

Functionfile-local-copy filename
This function copies file filename to an ordinary non-magic file, if it isn’t one already.
If filename specifies a “magic” file name, which programs outside Emacs cannot di-
rectly read or write, this copies the contents to an ordinary file and returns that file’s
name.
If filename is an ordinary file name, not magic, then this function does nothing and
returns nil.

Functionunhandled-file-name-directory filename
This function returns the name of a directory that is not magic. It uses the directory
part of filename if that is not magic. Otherwise, it asks the handler what to do.
This is useful for running a subprocess; every subprocess must have a non-magic
directory to serve as its current directory, and this function is a good way to come up
with one.

420 XEmacs Lisp Reference Manual

28.12 Partial Files

28.12.1 Intro to Partial Files

A partial file is a section of a buffer (called the master buffer) that is placed in its own
buffer and treated as its own file. Changes made to the partial file are not reflected in
the master buffer until the partial file is “saved” using the standard buffer save commands.
Partial files can be “reverted” (from the master buffer) just like normal files. When a file
part is active on a master buffer, that section of the master buffer is marked as read-only.
Two file parts on the same master buffer are not allowed to overlap. Partial file buffers are
indicated by the words ‘File Part’ in the modeline.

The master buffer knows about all the partial files that are active on it, and thus killing
or reverting the master buffer will be handled properly. When the master buffer is saved, if
there are any unsaved partial files active on it then the user will be given the opportunity
to first save these files.

When a partial file buffer is first modified, the master buffer is automatically marked as
modified so that saving the master buffer will work correctly.

28.12.2 Creating a Partial File

Functionmake-file-part &optional start end name buffer
Make a file part on buffer buffer out of the region. Call it name. This command
creates a new buffer containing the contents of the region and marks the buffer as
referring to the specified buffer, called the master buffer. When the file-part buffer is
saved, its changes are integrated back into the master buffer. When the master buffer
is deleted, all file parts are deleted with it.
When called from a function, expects four arguments, start, end, name, and buffer,
all of which are optional and default to the beginning of buffer, the end of buffer, a
name generated from buffer name, and the current buffer, respectively.

28.12.3 Detached Partial Files

Every partial file has an extent in the master buffer associated with it (called the master
extent), marking where in the master buffer the partial file begins and ends. If the text in
master buffer that is contained by the extent is deleted, then the extent becomes “detached”,
meaning that it no longer refers to a specific region of the master buffer. This can happen
either when the text is deleted directly or when the master buffer is reverted. Neither of
these should happen in normal usage because the master buffer should generally not be
edited directly.

Before doing any operation that references a partial file’s master extent, XEmacs checks
to make sure that the extent is not detached. If this is the case, XEmacs warns the user of

Chapter 28: Files 421

this and the master extent is deleted out of the master buffer, disconnecting the file part.
The file part’s filename is cleared and thus must be explicitly specified if the detached file
part is to be saved.

28.13 File Format Conversion

The variable format-alist defines a list of file formats, which describe textual repre-
sentations used in files for the data (text, text-properties, and possibly other information)
in an Emacs buffer. Emacs performs format conversion if appropriate when reading and
writing files.

Variableformat-alist
This list contains one format definition for each defined file format.

Each format definition is a list of this form:
(name doc-string regexp from-fn to-fn modify mode-fn)

Here is what the elements in a format definition mean:

name The name of this format.

doc-string A documentation string for the format.

regexp A regular expression which is used to recognize files represented in this format.

from-fn A function to call to decode data in this format (to convert file data into the
usual Emacs data representation).
The from-fn is called with two args, begin and end, which specify the part of
the buffer it should convert. It should convert the text by editing it in place.
Since this can change the length of the text, from-fn should return the modified
end position.
One responsibility of from-fn is to make sure that the beginning of the file no
longer matches regexp. Otherwise it is likely to get called again.

to-fn A function to call to encode data in this format (to convert the usual Emacs
data representation into this format).
The to-fn is called with two args, begin and end, which specify the part of the
buffer it should convert. There are two ways it can do the conversion:
• By editing the buffer in place. In this case, to-fn should return the end-

position of the range of text, as modified.
• By returning a list of annotations. This is a list of elements of the form

(position . string), where position is an integer specifying the relative po-
sition in the text to be written, and string is the annotation to add there.
The list must be sorted in order of position when to-fn returns it.
When write-region actually writes the text from the buffer to the file,
it intermixes the specified annotations at the corresponding positions. All
this takes place without modifying the buffer.

422 XEmacs Lisp Reference Manual

modify A flag, t if the encoding function modifies the buffer, and nil if it works by
returning a list of annotations.

mode A mode function to call after visiting a file converted from this format.

The function insert-file-contents automatically recognizes file formats when it reads
the specified file. It checks the text of the beginning of the file against the regular expressions
of the format definitions, and if it finds a match, it calls the decoding function for that
format. Then it checks all the known formats over again. It keeps checking them until none
of them is applicable.

Visiting a file, with find-file-noselect or the commands that use it, performs conver-
sion likewise (because it calls insert-file-contents); it also calls the mode function for
each format that it decodes. It stores a list of the format names in the buffer-local variable
buffer-file-format.

Variablebuffer-file-format
This variable states the format of the visited file. More precisely, this is a list of the
file format names that were decoded in the course of visiting the current buffer’s file.
It is always local in all buffers.

When write-region writes data into a file, it first calls the encoding functions for the
formats listed in buffer-file-format, in the order of appearance in the list.

Functionformat-write-file file format
This command writes the current buffer contents into the file file in format format,
and makes that format the default for future saves of the buffer. The argument format
is a list of format names.

Functionformat-find-file file format
This command finds the file file, converting it according to format format. It also
makes format the default if the buffer is saved later.
The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just 〈RET〉 for format specifies nil.

Functionformat-insert-file file format &optional beg end
This command inserts the contents of file file, converting it according to format format.
If beg and end are non-nil, they specify which part of the file to read, as in insert-
file-contents (see Section 28.3 [Reading from Files], page 400).
The return value is like what insert-file-contents returns: a list of the absolute
file name and the length of the data inserted (after conversion).
The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just 〈RET〉 for format specifies nil.

Functionformat-find-file file format
This command finds the file file, converting it according to format format. It also
makes format the default if the buffer is saved later.
The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just 〈RET〉 for format specifies nil.

Chapter 28: Files 423

Functionformat-insert-file file format &optional beg end
This command inserts the contents of file file, converting it according to format format.
If beg and end are non-nil, they specify which part of the file to read, as in insert-
file-contents (see Section 28.3 [Reading from Files], page 400).

The return value is like what insert-file-contents returns: a list of the absolute
file name and the length of the data inserted (after conversion).

The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just 〈RET〉 for format specifies nil.

Variableauto-save-file-format
This variable specifies the format to use for auto-saving. Its value is a list of format
names, just like the value of buffer-file-format; but it is used instead of buffer-
file-format for writing auto-save files. This variable is always local in all buffers.

28.14 Files and MS-DOS

Emacs on MS-DOS makes a distinction between text files and binary files. This is
necessary because ordinary text files on MS-DOS use a two character sequence between
lines: carriage-return and linefeed (crlf). Emacs expects just a newline character (a
linefeed) between lines. When Emacs reads or writes a text file on MS-DOS, it needs to
convert the line separators. This means it needs to know which files are text files and
which are binary. It makes this decision when visiting a file, and records the decision in the
variable buffer-file-type for use when the file is saved.

See Section 49.3 [MS-DOS Subprocesses], page 687, for a related feature for subprocesses.

Variablebuffer-file-type
This variable, automatically local in each buffer, records the file type of the buffer’s
visited file. The value is nil for text, t for binary.

Functionfind-buffer-file-type filename
This function determines whether file filename is a text file or a binary file. It returns
nil for text, t for binary.

User Optionfile-name-buffer-file-type-alist
This variable holds an alist for distinguishing text files from binary files. Each element
has the form (regexp . type), where regexp is matched against the file name, and
type may be is nil for text, t for binary, or a function to call to compute which. If
it is a function, then it is called with a single argument (the file name) and should
return t or nil.

User Optiondefault-buffer-file-type
This variable specifies the default file type for files whose names don’t indicate any-
thing in particular. Its value should be nil for text, or t for binary.

424 XEmacs Lisp Reference Manual

Commandfind-file-text filename
Like find-file, but treat the file as text regardless of its name.

Commandfind-file-binary filename
Like find-file, but treat the file as binary regardless of its name.

Chapter 29: Backups and Auto-Saving 425

29 Backups and Auto-Saving

Backup files and auto-save files are two methods by which XEmacs tries to protect the
user from the consequences of crashes or of the user’s own errors. Auto-saving preserves
the text from earlier in the current editing session; backup files preserve file contents prior
to the current session.

29.1 Backup Files

A backup file is a copy of the old contents of a file you are editing. XEmacs makes a
backup file the first time you save a buffer into its visited file. Normally, this means that
the backup file contains the contents of the file as it was before the current editing session.
The contents of the backup file normally remain unchanged once it exists.

Backups are usually made by renaming the visited file to a new name. Optionally, you
can specify that backup files should be made by copying the visited file. This choice makes
a difference for files with multiple names; it also can affect whether the edited file remains
owned by the original owner or becomes owned by the user editing it.

By default, XEmacs makes a single backup file for each file edited. You can alternatively
request numbered backups; then each new backup file gets a new name. You can delete
old numbered backups when you don’t want them any more, or XEmacs can delete them
automatically.

29.1.1 Making Backup Files

Functionbackup-buffer
This function makes a backup of the file visited by the current buffer, if appropriate.
It is called by save-buffer before saving the buffer the first time.

Variablebuffer-backed-up
This buffer-local variable indicates whether this buffer’s file has been backed up on
account of this buffer. If it is non-nil, then the backup file has been written. Oth-
erwise, the file should be backed up when it is next saved (if backups are enabled).
This is a permanent local; kill-local-variables does not alter it.

User Optionmake-backup-files
This variable determines whether or not to make backup files. If it is non-nil, then
XEmacs creates a backup of each file when it is saved for the first time—provided
that backup-inhibited is nil (see below).
The following example shows how to change the make-backup-files variable only
in the ‘RMAIL’ buffer and not elsewhere. Setting it nil stops XEmacs from making
backups of the ‘RMAIL’ file, which may save disk space. (You would put this code in
your ‘.emacs’ file.)

426 XEmacs Lisp Reference Manual

(add-hook ’rmail-mode-hook
(function (lambda ()

(make-local-variable
’make-backup-files)
(setq make-backup-files nil))))

Variablebackup-enable-predicate
This variable’s value is a function to be called on certain occasions to decide whether
a file should have backup files. The function receives one argument, a file name to
consider. If the function returns nil, backups are disabled for that file. Otherwise,
the other variables in this section say whether and how to make backups.
The default value is this:

(lambda (name)
(or (< (length name) 5)

(not (string-equal "/tmp/"
(substring name 0 5)))))

Variablebackup-inhibited
If this variable is non-nil, backups are inhibited. It records the result of testing
backup-enable-predicate on the visited file name. It can also coherently be used
by other mechanisms that inhibit backups based on which file is visited. For example,
VC sets this variable non-nil to prevent making backups for files managed with a
version control system.
This is a permanent local, so that changing the major mode does not lose its value.
Major modes should not set this variable—they should set make-backup-files in-
stead.

29.1.2 Backup by Renaming or by Copying?

There are two ways that XEmacs can make a backup file:
• XEmacs can rename the original file so that it becomes a backup file, and then write

the buffer being saved into a new file. After this procedure, any other names (i.e., hard
links) of the original file now refer to the backup file. The new file is owned by the user
doing the editing, and its group is the default for new files written by the user in that
directory.

• XEmacs can copy the original file into a backup file, and then overwrite the original
file with new contents. After this procedure, any other names (i.e., hard links) of the
original file still refer to the current version of the file. The file’s owner and group will
be unchanged.

The first method, renaming, is the default.
The variable backup-by-copying, if non-nil, says to use the second method, which is

to copy the original file and overwrite it with the new buffer contents. The variable file-
precious-flag, if non-nil, also has this effect (as a sideline of its main significance). See
Section 28.2 [Saving Buffers], page 398.

Chapter 29: Backups and Auto-Saving 427

Variablebackup-by-copying
If this variable is non-nil, XEmacs always makes backup files by copying.

The following two variables, when non-nil, cause the second method to be used in
certain special cases. They have no effect on the treatment of files that don’t fall into the
special cases.

Variablebackup-by-copying-when-linked
If this variable is non-nil, XEmacs makes backups by copying for files with multiple
names (hard links).
This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

Variablebackup-by-copying-when-mismatch
If this variable is non-nil, XEmacs makes backups by copying in cases where renaming
would change either the owner or the group of the file.
The value has no effect when renaming would not alter the owner or group of the file;
that is, for files which are owned by the user and whose group matches the default
for a new file created there by the user.
This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

29.1.3 Making and Deleting Numbered Backup Files

If a file’s name is ‘foo’, the names of its numbered backup versions are ‘foo.~v~’, for
various integers v, like this: ‘foo.~1~’, ‘foo.~2~’, ‘foo.~3~’, . . . , ‘foo.~259~’, and so on.

User Optionversion-control
This variable controls whether to make a single non-numbered backup file or multiple
numbered backups.

nil Make numbered backups if the visited file already has numbered backups;
otherwise, do not.

never Do not make numbered backups.

anything else
Make numbered backups.

The use of numbered backups ultimately leads to a large number of backup versions,
which must then be deleted. XEmacs can do this automatically or it can ask the user
whether to delete them.

User Optionkept-new-versions
The value of this variable is the number of newest versions to keep when a new
numbered backup is made. The newly made backup is included in the count. The
default value is 2.

428 XEmacs Lisp Reference Manual

User Optionkept-old-versions
The value of this variable is the number of oldest versions to keep when a new num-
bered backup is made. The default value is 2.

If there are backups numbered 1, 2, 3, 5, and 7, and both of these variables have the
value 2, then the backups numbered 1 and 2 are kept as old versions and those numbered
5 and 7 are kept as new versions; backup version 3 is excess. The function find-backup-
file-name (see Section 29.1.4 [Backup Names], page 428) is responsible for determining
which backup versions to delete, but does not delete them itself.

User Optiontrim-versions-without-asking
If this variable is non-nil, then saving a file deletes excess backup versions silently.
Otherwise, it asks the user whether to delete them.

User Optiondired-kept-versions
This variable specifies how many of the newest backup versions to keep in the Dired
command . (dired-clean-directory). That’s the same thing kept-new-versions
specifies when you make a new backup file. The default value is 2.

29.1.4 Naming Backup Files

The functions in this section are documented mainly because you can customize the
naming conventions for backup files by redefining them. If you change one, you probably
need to change the rest.

Functionbackup-file-name-p filename
This function returns a non-nil value if filename is a possible name for a backup file.
A file with the name filename need not exist; the function just checks the name.

(backup-file-name-p "foo")
⇒ nil

(backup-file-name-p "foo~")
⇒ 3

The standard definition of this function is as follows:
(defun backup-file-name-p (file)
"Return non-nil if FILE is a backup file \

name (numeric or not)..."
(string-match "~$" file))

Thus, the function returns a non-nil value if the file name ends with a ‘~’. (We use a
backslash to split the documentation string’s first line into two lines in the text, but
produce just one line in the string itself.)
This simple expression is placed in a separate function to make it easy to redefine for
customization.

Functionmake-backup-file-name filename
This function returns a string that is the name to use for a non-numbered backup file
for file filename. On Unix, this is just filename with a tilde appended.

Chapter 29: Backups and Auto-Saving 429

The standard definition of this function is as follows:
(defun make-backup-file-name (file)
"Create the non-numeric backup file name for FILE.

..."
(concat file "~"))

You can change the backup-file naming convention by redefining this function. The
following example redefines make-backup-file-name to prepend a ‘.’ in addition to
appending a tilde:

(defun make-backup-file-name (filename)
(concat "." filename "~"))

(make-backup-file-name "backups.texi")
⇒ ".backups.texi~"

Functionfind-backup-file-name filename
This function computes the file name for a new backup file for filename. It may also
propose certain existing backup files for deletion. find-backup-file-name returns a
list whose car is the name for the new backup file and whose cdr is a list of backup
files whose deletion is proposed.
Two variables, kept-old-versions and kept-new-versions, determine which
backup versions should be kept. This function keeps those versions by excluding
them from the cdr of the value. See Section 29.1.3 [Numbered Backups], page 427.
In this example, the value says that ‘~rms/foo.~5~’ is the name to use for the new
backup file, and ‘~rms/foo.~3~’ is an “excess” version that the caller should consider
deleting now.

(find-backup-file-name "~rms/foo")
⇒ ("~rms/foo.~5~" "~rms/foo.~3~")

Functionfile-newest-backup filename
This function returns the name of the most recent backup file for filename, or nil if
that file has no backup files.
Some file comparison commands use this function so that they can automatically
compare a file with its most recent backup.

29.2 Auto-Saving

XEmacs periodically saves all files that you are visiting; this is called auto-saving. Auto-
saving prevents you from losing more than a limited amount of work if the system crashes.
By default, auto-saves happen every 300 keystrokes, or after around 30 seconds of idle time.
See section “Auto-Saving: Protection Against Disasters” in The XEmacs Reference Manual,
for information on auto-save for users. Here we describe the functions used to implement
auto-saving and the variables that control them.

Variablebuffer-auto-save-file-name
This buffer-local variable is the name of the file used for auto-saving the current
buffer. It is nil if the buffer should not be auto-saved.

430 XEmacs Lisp Reference Manual

buffer-auto-save-file-name
=> "/xcssun/users/rms/lewis/#files.texi#"

Commandauto-save-mode arg
When used interactively without an argument, this command is a toggle switch: it
turns on auto-saving of the current buffer if it is off, and vice-versa. With an argument
arg, the command turns auto-saving on if the value of arg is t, a nonempty list, or a
positive integer. Otherwise, it turns auto-saving off.

Functionauto-save-file-name-p filename
This function returns a non-nil value if filename is a string that could be the name of
an auto-save file. It works based on knowledge of the naming convention for auto-save
files: a name that begins and ends with hash marks (‘#’) is a possible auto-save file
name. The argument filename should not contain a directory part.

(make-auto-save-file-name)
⇒ "/xcssun/users/rms/lewis/#files.texi#"

(auto-save-file-name-p "#files.texi#")
⇒ 0

(auto-save-file-name-p "files.texi")
⇒ nil

The standard definition of this function is as follows:

(defun auto-save-file-name-p (filename)
"Return non-nil if FILENAME can be yielded by..."
(string-match "^#.*#$" filename))

This function exists so that you can customize it if you wish to change the naming
convention for auto-save files. If you redefine it, be sure to redefine the function
make-auto-save-file-name correspondingly.

Functionmake-auto-save-file-name
This function returns the file name to use for auto-saving the current buffer. This is
just the file name with hash marks (‘#’) appended and prepended to it. This function
does not look at the variable auto-save-visited-file-name (described below); you
should check that before calling this function.

(make-auto-save-file-name)
⇒ "/xcssun/users/rms/lewis/#backup.texi#"

The standard definition of this function is as follows:

(defun make-auto-save-file-name ()
"Return file name to use for auto-saves \

of current buffer.
..."

(if buffer-file-name

Chapter 29: Backups and Auto-Saving 431

(concat
(file-name-directory buffer-file-name)
"#"
(file-name-nondirectory buffer-file-name)
"#")

(expand-file-name
(concat "#%" (buffer-name) "#"))))

This exists as a separate function so that you can redefine it to customize the nam-
ing convention for auto-save files. Be sure to change auto-save-file-name-p in a
corresponding way.

Variableauto-save-visited-file-name
If this variable is non-nil, XEmacs auto-saves buffers in the files they are visiting.
That is, the auto-save is done in the same file that you are editing. Normally, this
variable is nil, so auto-save files have distinct names that are created by make-auto-
save-file-name.
When you change the value of this variable, the value does not take effect until the next
time auto-save mode is reenabled in any given buffer. If auto-save mode is already
enabled, auto-saves continue to go in the same file name until auto-save-mode is
called again.

Functionrecent-auto-save-p
This function returns t if the current buffer has been auto-saved since the last time
it was read in or saved.

Functionset-buffer-auto-saved
This function marks the current buffer as auto-saved. The buffer will not be auto-
saved again until the buffer text is changed again. The function returns nil.

User Optionauto-save-interval
The value of this variable is the number of characters that XEmacs reads from the
keyboard between auto-saves. Each time this many more characters are read, auto-
saving is done for all buffers in which it is enabled.

User Optionauto-save-timeout
The value of this variable is the number of seconds of idle time that should cause
auto-saving. Each time the user pauses for this long, XEmacs auto-saves any buffers
that need it. (Actually, the specified timeout is multiplied by a factor depending on
the size of the current buffer.)

Variableauto-save-hook
This normal hook is run whenever an auto-save is about to happen.

User Optionauto-save-default
If this variable is non-nil, buffers that are visiting files have auto-saving enabled by
default. Otherwise, they do not.

432 XEmacs Lisp Reference Manual

Commanddo-auto-save &optional no-message current-only
This function auto-saves all buffers that need to be auto-saved. It saves all buffers for
which auto-saving is enabled and that have been changed since the previous auto-save.

Normally, if any buffers are auto-saved, a message that says ‘Auto-saving...’ is
displayed in the echo area while auto-saving is going on. However, if no-message is
non-nil, the message is inhibited.

If current-only is non-nil, only the current buffer is auto-saved.

Functiondelete-auto-save-file-if-necessary
This function deletes the current buffer’s auto-save file if delete-auto-save-files
is non-nil. It is called every time a buffer is saved.

Variabledelete-auto-save-files
This variable is used by the function delete-auto-save-file-if-necessary. If it
is non-nil, Emacs deletes auto-save files when a true save is done (in the visited file).
This saves disk space and unclutters your directory.

Functionrename-auto-save-file
This function adjusts the current buffer’s auto-save file name if the visited file name
has changed. It also renames an existing auto-save file. If the visited file name has
not changed, this function does nothing.

Variablebuffer-saved-size
The value of this buffer-local variable is the length of the current buffer as of the last
time it was read in, saved, or auto-saved. This is used to detect a substantial decrease
in size, and turn off auto-saving in response.

If it is -1, that means auto-saving is temporarily shut off in this buffer due to a
substantial deletion. Explicitly saving the buffer stores a positive value in this vari-
able, thus reenabling auto-saving. Turning auto-save mode off or on also alters this
variable.

Variableauto-save-list-file-name
This variable (if non-nil) specifies a file for recording the names of all the auto-save
files. Each time XEmacs does auto-saving, it writes two lines into this file for each
buffer that has auto-saving enabled. The first line gives the name of the visited file
(it’s empty if the buffer has none), and the second gives the name of the auto-save
file.

If XEmacs exits normally, it deletes this file. If XEmacs crashes, you can look in the
file to find all the auto-save files that might contain work that was otherwise lost.
The recover-session command uses these files.

The default name for this file is in your home directory and starts with ‘.saves-’. It
also contains the XEmacs process id and the host name.

Chapter 29: Backups and Auto-Saving 433

29.3 Reverting

If you have made extensive changes to a file and then change your mind about them, you
can get rid of them by reading in the previous version of the file with the revert-buffer
command. See section “Reverting a Buffer” in The XEmacs Reference Manual.

Commandrevert-buffer &optional check-auto-save noconfirm
This command replaces the buffer text with the text of the visited file on disk. This
action undoes all changes since the file was visited or saved.

If the argument check-auto-save is non-nil, and the latest auto-save file is more
recent than the visited file, revert-buffer asks the user whether to use that instead.
Otherwise, it always uses the text of the visited file itself. Interactively, check-auto-
save is set if there is a numeric prefix argument.

Normally, revert-buffer asks for confirmation before it changes the buffer; but if
the argument noconfirm is non-nil, revert-buffer does not ask for confirmation.

Reverting tries to preserve marker positions in the buffer by using the replacement
feature of insert-file-contents. If the buffer contents and the file contents are
identical before the revert operation, reverting preserves all the markers. If they
are not identical, reverting does change the buffer; then it preserves the markers in
the unchanged text (if any) at the beginning and end of the buffer. Preserving any
additional markers would be problematical.

You can customize how revert-buffer does its work by setting these variables—
typically, as buffer-local variables.

Variablerevert-buffer-function
The value of this variable is the function to use to revert this buffer. If non-nil, it
is called as a function with no arguments to do the work of reverting. If the value is
nil, reverting works the usual way.

Modes such as Dired mode, in which the text being edited does not consist of a file’s
contents but can be regenerated in some other fashion, give this variable a buffer-local
value that is a function to regenerate the contents.

Variablerevert-buffer-insert-file-contents-function
The value of this variable, if non-nil, is the function to use to insert the updated
contents when reverting this buffer. The function receives two arguments: first the
file name to use; second, t if the user has asked to read the auto-save file.

Variablebefore-revert-hook
This normal hook is run by revert-buffer before actually inserting the modified
contents—but only if revert-buffer-function is nil.

Font Lock mode uses this hook to record that the buffer contents are no longer
fontified.

434 XEmacs Lisp Reference Manual

Variableafter-revert-hook
This normal hook is run by revert-buffer after actually inserting the modified
contents—but only if revert-buffer-function is nil.
Font Lock mode uses this hook to recompute the fonts for the updated buffer contents.

Chapter 30: Buffers 435

30 Buffers

A buffer is a Lisp object containing text to be edited. Buffers are used to hold the
contents of files that are being visited; there may also be buffers that are not visiting files.
While several buffers may exist at one time, exactly one buffer is designated the current
buffer at any time. Most editing commands act on the contents of the current buffer. Each
buffer, including the current buffer, may or may not be displayed in any windows.

30.1 Buffer Basics

Buffers in Emacs editing are objects that have distinct names and hold text that can
be edited. Buffers appear to Lisp programs as a special data type. You can think of the
contents of a buffer as an extendable string; insertions and deletions may occur in any part
of the buffer. See Chapter 36 [Text], page 517.

A Lisp buffer object contains numerous pieces of information. Some of this information
is directly accessible to the programmer through variables, while other information is acces-
sible only through special-purpose functions. For example, the visited file name is directly
accessible through a variable, while the value of point is accessible only through a primitive
function.

Buffer-specific information that is directly accessible is stored in buffer-local variable
bindings, which are variable values that are effective only in a particular buffer. This feature
allows each buffer to override the values of certain variables. Most major modes override
variables such as fill-column or comment-column in this way. For more information
about buffer-local variables and functions related to them, see Section 10.9 [Buffer-Local
Variables], page 159.

For functions and variables related to visiting files in buffers, see Section 28.1 [Visiting
Files], page 395 and Section 28.2 [Saving Buffers], page 398. For functions and variables re-
lated to the display of buffers in windows, see Section 31.6 [Buffers and Windows], page 457.

Functionbufferp object
This function returns t if object is a buffer, nil otherwise.

30.2 The Current Buffer

There are, in general, many buffers in an Emacs session. At any time, one of them
is designated as the current buffer. This is the buffer in which most editing takes place,
because most of the primitives for examining or changing text in a buffer operate implicitly
on the current buffer (see Chapter 36 [Text], page 517). Normally the buffer that is displayed
on the screen in the selected window is the current buffer, but this is not always so: a Lisp
program can designate any buffer as current temporarily in order to operate on its contents,
without changing what is displayed on the screen.

The way to designate a current buffer in a Lisp program is by calling set-buffer. The
specified buffer remains current until a new one is designated.

436 XEmacs Lisp Reference Manual

When an editing command returns to the editor command loop, the command loop
designates the buffer displayed in the selected window as current, to prevent confusion: the
buffer that the cursor is in when Emacs reads a command is the buffer that the command
will apply to. (See Chapter 19 [Command Loop], page 285.) Therefore, set-buffer is not
the way to switch visibly to a different buffer so that the user can edit it. For this, you
must use the functions described in Section 31.7 [Displaying Buffers], page 457.

However, Lisp functions that change to a different current buffer should not depend on
the command loop to set it back afterwards. Editing commands written in XEmacs Lisp
can be called from other programs as well as from the command loop. It is convenient for
the caller if the subroutine does not change which buffer is current (unless, of course, that is
the subroutine’s purpose). Therefore, you should normally use set-buffer within a save-
excursion that will restore the current buffer when your function is done (see Section 34.3
[Excursions], page 501). Here is an example, the code for the command append-to-buffer
(with the documentation string abridged):

(defun append-to-buffer (buffer start end)
"Append to specified buffer the text of the region.

..."
(interactive "BAppend to buffer: \nr")
(let ((oldbuf (current-buffer)))

(save-excursion
(set-buffer (get-buffer-create buffer))
(insert-buffer-substring oldbuf start end))))

This function binds a local variable to the current buffer, and then save-excursion records
the values of point, the mark, and the original buffer. Next, set-buffer makes another
buffer current. Finally, insert-buffer-substring copies the string from the original cur-
rent buffer to the new current buffer.

If the buffer appended to happens to be displayed in some window, the next redisplay
will show how its text has changed. Otherwise, you will not see the change immediately on
the screen. The buffer becomes current temporarily during the execution of the command,
but this does not cause it to be displayed.

If you make local bindings (with let or function arguments) for a variable that may
also have buffer-local bindings, make sure that the same buffer is current at the beginning
and at the end of the local binding’s scope. Otherwise you might bind it in one buffer
and unbind it in another! There are two ways to do this. In simple cases, you may see
that nothing ever changes the current buffer within the scope of the binding. Otherwise,
use save-excursion to make sure that the buffer current at the beginning is current again
whenever the variable is unbound.

It is not reliable to change the current buffer back with set-buffer, because that won’t
do the job if a quit happens while the wrong buffer is current. Here is what not to do:

(let (buffer-read-only
(obuf (current-buffer)))

(set-buffer ...)
...
(set-buffer obuf))

Using save-excursion, as shown below, handles quitting, errors, and throw, as well as
ordinary evaluation.

Chapter 30: Buffers 437

(let (buffer-read-only)
(save-excursion

(set-buffer ...)
...))

Functioncurrent-buffer
This function returns the current buffer.

(current-buffer)
⇒ #<buffer buffers.texi>

Functionset-buffer buffer-or-name
This function makes buffer-or-name the current buffer. It does not display the buffer
in the currently selected window or in any other window, so the user cannot necessarily
see the buffer. But Lisp programs can in any case work on it.

This function returns the buffer identified by buffer-or-name. An error is signaled if
buffer-or-name does not identify an existing buffer.

30.3 Buffer Names

Each buffer has a unique name, which is a string. Many of the functions that work
on buffers accept either a buffer or a buffer name as an argument. Any argument called
buffer-or-name is of this sort, and an error is signaled if it is neither a string nor a buffer.
Any argument called buffer must be an actual buffer object, not a name.

Buffers that are ephemeral and generally uninteresting to the user have names start-
ing with a space, so that the list-buffers and buffer-menu commands don’t mention
them. A name starting with space also initially disables recording undo information; see
Section 36.9 [Undo], page 529.

Functionbuffer-name &optional buffer
This function returns the name of buffer as a string. If buffer is not supplied, it
defaults to the current buffer.

If buffer-name returns nil, it means that buffer has been killed. See Section 30.10
[Killing Buffers], page 445.

(buffer-name)
⇒ "buffers.texi"

(setq foo (get-buffer "temp"))
⇒ #<buffer temp>

(kill-buffer foo)
⇒ nil

(buffer-name foo)
⇒ nil

foo
⇒ #<killed buffer>

438 XEmacs Lisp Reference Manual

Commandrename-buffer newname &optional unique
This function renames the current buffer to newname. An error is signaled if newname
is not a string, or if there is already a buffer with that name. The function returns
nil.
Ordinarily, rename-buffer signals an error if newname is already in use. However,
if unique is non-nil, it modifies newname to make a name that is not in use. Inter-
actively, you can make unique non-nil with a numeric prefix argument.
One application of this command is to rename the ‘*shell*’ buffer to some other
name, thus making it possible to create a second shell buffer under the name
‘*shell*’.

Functionget-buffer buffer-or-name
This function returns the buffer specified by buffer-or-name. If buffer-or-name is a
string and there is no buffer with that name, the value is nil. If buffer-or-name is a
buffer, it is returned as given. (That is not very useful, so the argument is usually a
name.) For example:

(setq b (get-buffer "lewis"))
⇒ #<buffer lewis>

(get-buffer b)
⇒ #<buffer lewis>

(get-buffer "Frazzle-nots")
⇒ nil

See also the function get-buffer-create in Section 30.9 [Creating Buffers], page 444.

Functiongenerate-new-buffer-name starting-name &optional ignore
This function returns a name that would be unique for a new buffer—but does not
create the buffer. It starts with starting-name, and produces a name not currently in
use for any buffer by appending a number inside of ‘<...>’.
If ignore is given, it specifies a name that is okay to use (if it is in the sequence to be
tried), even if a buffer with that name exists.
See the related function generate-new-buffer in Section 30.9 [Creating Buffers],
page 444.

30.4 Buffer File Name

The buffer file name is the name of the file that is visited in that buffer. When a buffer
is not visiting a file, its buffer file name is nil. Most of the time, the buffer name is the
same as the nondirectory part of the buffer file name, but the buffer file name and the buffer
name are distinct and can be set independently. See Section 28.1 [Visiting Files], page 395.

Functionbuffer-file-name &optional buffer
This function returns the absolute file name of the file that buffer is visiting. If buffer
is not visiting any file, buffer-file-name returns nil. If buffer is not supplied, it
defaults to the current buffer.

Chapter 30: Buffers 439

(buffer-file-name (other-buffer))
⇒ "/usr/user/lewis/manual/files.texi"

Variablebuffer-file-name
This buffer-local variable contains the name of the file being visited in the current
buffer, or nil if it is not visiting a file. It is a permanent local, unaffected by kill-
local-variables.

buffer-file-name
⇒ "/usr/user/lewis/manual/buffers.texi"

It is risky to change this variable’s value without doing various other things. See the
definition of set-visited-file-name in ‘files.el’; some of the things done there,
such as changing the buffer name, are not strictly necessary, but others are essential
to avoid confusing XEmacs.

Variablebuffer-file-truename
This buffer-local variable holds the truename of the file visited in the current buffer, or
nil if no file is visited. It is a permanent local, unaffected by kill-local-variables.
See Section 28.6.3 [Truenames], page 405.

Variablebuffer-file-number
This buffer-local variable holds the file number and directory device number of the
file visited in the current buffer, or nil if no file or a nonexistent file is visited.
It is a permanent local, unaffected by kill-local-variables. See Section 28.6.3
[Truenames], page 405.
The value is normally a list of the form (filenum devnum). This pair of numbers
uniquely identifies the file among all files accessible on the system. See the function
file-attributes, in Section 28.6.4 [File Attributes], page 405, for more information
about them.

Functionget-file-buffer filename
This function returns the buffer visiting file filename. If there is no such buffer,
it returns nil. The argument filename, which must be a string, is expanded (see
Section 28.8.4 [File Name Expansion], page 413), then compared against the visited
file names of all live buffers.

(get-file-buffer "buffers.texi")
⇒ #<buffer buffers.texi>

In unusual circumstances, there can be more than one buffer visiting the same file
name. In such cases, this function returns the first such buffer in the buffer list.

Commandset-visited-file-name filename
If filename is a non-empty string, this function changes the name of the file visited
in current buffer to filename. (If the buffer had no visited file, this gives it one.) The
next time the buffer is saved it will go in the newly-specified file. This command
marks the buffer as modified, since it does not (as far as XEmacs knows) match the
contents of filename, even if it matched the former visited file.

440 XEmacs Lisp Reference Manual

If filename is nil or the empty string, that stands for “no visited file”. In this case,
set-visited-file-name marks the buffer as having no visited file.
When the function set-visited-file-name is called interactively, it prompts for
filename in the minibuffer.
See also clear-visited-file-modtime and verify-visited-file-modtime in Sec-
tion 30.5 [Buffer Modification], page 440.

Variablelist-buffers-directory
This buffer-local variable records a string to display in a buffer listing in place of the
visited file name, for buffers that don’t have a visited file name. Dired buffers use
this variable.

30.5 Buffer Modification

XEmacs keeps a flag called the modified flag for each buffer, to record whether you have
changed the text of the buffer. This flag is set to t whenever you alter the contents of the
buffer, and cleared to nil when you save it. Thus, the flag shows whether there are unsaved
changes. The flag value is normally shown in the modeline (see Section 26.3.2 [Modeline
Variables], page 378), and controls saving (see Section 28.2 [Saving Buffers], page 398) and
auto-saving (see Section 29.2 [Auto-Saving], page 429).

Some Lisp programs set the flag explicitly. For example, the function set-visited-
file-name sets the flag to t, because the text does not match the newly-visited file, even
if it is unchanged from the file formerly visited.

The functions that modify the contents of buffers are described in Chapter 36 [Text],
page 517.

Functionbuffer-modified-p &optional buffer
This function returns t if the buffer buffer has been modified since it was last read
in from a file or saved, or nil otherwise. If buffer is not supplied, the current buffer
is tested.

Functionset-buffer-modified-p flag
This function marks the current buffer as modified if flag is non-nil, or as unmodified
if the flag is nil.
Another effect of calling this function is to cause unconditional redisplay of the mod-
eline for the current buffer. In fact, the function redraw-modeline works by doing
this:

(set-buffer-modified-p (buffer-modified-p))

Commandnot-modified &optional arg
This command marks the current buffer as unmodified, and not needing to be saved.
(If arg is non-nil, the buffer is instead marked as modified.) Don’t use this function
in programs, since it prints a message in the echo area; use set-buffer-modified-p
(above) instead.

Chapter 30: Buffers 441

Functionbuffer-modified-tick &optional buffer
This function returns buffer‘s modification-count. This is a counter that increments
every time the buffer is modified. If buffer is nil (or omitted), the current buffer is
used.

30.6 Comparison of Modification Time

Suppose that you visit a file and make changes in its buffer, and meanwhile the file itself
is changed on disk. At this point, saving the buffer would overwrite the changes in the file.
Occasionally this may be what you want, but usually it would lose valuable information.
XEmacs therefore checks the file’s modification time using the functions described below
before saving the file.

Functionverify-visited-file-modtime buffer
This function compares what buffer has recorded for the modification time of its
visited file against the actual modification time of the file as recorded by the operating
system. The two should be the same unless some other process has written the file
since XEmacs visited or saved it.
The function returns t if the last actual modification time and XEmacs’s recorded
modification time are the same, nil otherwise.

Functionclear-visited-file-modtime
This function clears out the record of the last modification time of the file being
visited by the current buffer. As a result, the next attempt to save this buffer will
not complain of a discrepancy in file modification times.
This function is called in set-visited-file-name and other exceptional places where
the usual test to avoid overwriting a changed file should not be done.

Functionvisited-file-modtime
This function returns the buffer’s recorded last file modification time, as a list of the
form (high . low). (This is the same format that file-attributes uses to return
time values; see Section 28.6.4 [File Attributes], page 405.)

Functionset-visited-file-modtime &optional time
This function updates the buffer’s record of the last modification time of the visited
file, to the value specified by time if time is not nil, and otherwise to the last
modification time of the visited file.
If time is not nil, it should have the form (high . low) or (high low), in either case
containing two integers, each of which holds 16 bits of the time.
This function is useful if the buffer was not read from the file normally, or if the file
itself has been changed for some known benign reason.

Functionask-user-about-supersession-threat filename
This function is used to ask a user how to proceed after an attempt to modify an
obsolete buffer visiting file filename. An obsolete buffer is an unmodified buffer for

442 XEmacs Lisp Reference Manual

which the associated file on disk is newer than the last save-time of the buffer. This
means some other program has probably altered the file.

Depending on the user’s answer, the function may return normally, in which case the
modification of the buffer proceeds, or it may signal a file-supersession error with
data (filename), in which case the proposed buffer modification is not allowed.

This function is called automatically by XEmacs on the proper occasions. It exists
so you can customize XEmacs by redefining it. See the file ‘userlock.el’ for the
standard definition.

See also the file locking mechanism in Section 28.5 [File Locks], page 401.

30.7 Read-Only Buffers

If a buffer is read-only, then you cannot change its contents, although you may change
your view of the contents by scrolling and narrowing.

Read-only buffers are used in two kinds of situations:

• A buffer visiting a write-protected file is normally read-only.
Here, the purpose is to show the user that editing the buffer with the aim of saving it
in the file may be futile or undesirable. The user who wants to change the buffer text
despite this can do so after clearing the read-only flag with C-x C-q.

• Modes such as Dired and Rmail make buffers read-only when altering the contents with
the usual editing commands is probably a mistake.
The special commands of these modes bind buffer-read-only to nil (with let) or
bind inhibit-read-only to t around the places where they change the text.

Variablebuffer-read-only
This buffer-local variable specifies whether the buffer is read-only. The buffer is read-
only if this variable is non-nil.

Variableinhibit-read-only
If this variable is non-nil, then read-only buffers and read-only characters may be
modified. Read-only characters in a buffer are those that have non-nil read-only
properties (either text properties or extent properties). See Section 40.6 [Extent Prop-
erties], page 599, for more information about text properties and extent properties.

If inhibit-read-only is t, all read-only character properties have no effect. If
inhibit-read-only is a list, then read-only character properties have no effect if
they are members of the list (comparison is done with eq).

Commandtoggle-read-only
This command changes whether the current buffer is read-only. It is intended for
interactive use; don’t use it in programs. At any given point in a program, you
should know whether you want the read-only flag on or off; so you can set buffer-
read-only explicitly to the proper value, t or nil.

Chapter 30: Buffers 443

Functionbarf-if-buffer-read-only
This function signals a buffer-read-only error if the current buffer is read-only.
See Section 19.3 [Interactive Call], page 290, for another way to signal an error if the
current buffer is read-only.

30.8 The Buffer List

The buffer list is a list of all live buffers. Creating a buffer adds it to this list, and killing
a buffer deletes it. The order of the buffers in the list is based primarily on how recently
each buffer has been displayed in the selected window. Buffers move to the front of the list
when they are selected and to the end when they are buried. Several functions, notably
other-buffer, use this ordering. A buffer list displayed for the user also follows this order.

Every frame has its own order for the buffer list. Switching to a new buffer inside of a
particular frame changes the buffer list order for that frame, but does not affect the buffer
list order of any other frames. In addition, there is a global, non-frame buffer list order that
is independent of the buffer list orders for any particular frame.

Note that the different buffer lists all contain the same elements. It is only the order of
those elements that is different.

Functionbuffer-list &optional frame
This function returns a list of all buffers, including those whose names begin with
a space. The elements are actual buffers, not their names. The order of the list
is specific to frame, which defaults to the current frame. If frame is t, the global,
non-frame ordering is returned instead.

(buffer-list)
⇒ (#<buffer buffers.texi>

#<buffer *Minibuf-1*> #<buffer buffer.c>
#<buffer *Help*> #<buffer TAGS>)

;; Note that the name of the minibuffer
;; begins with a space!
(mapcar (function buffer-name) (buffer-list))

⇒ ("buffers.texi" " *Minibuf-1*"
"buffer.c" "*Help*" "TAGS")

Buffers appear earlier in the list if they were current more recently.

This list is a copy of a list used inside XEmacs; modifying it has no effect on the
buffers.

Functionother-buffer &optional buffer-or-name frame visible-ok
This function returns the first buffer in the buffer list other than buffer-or-name, in
frame’s ordering for the buffer list. (frame defaults to the current frame. If frame
is t, then the global, non-frame ordering is used.) Usually this is the buffer most
recently shown in the selected window, aside from buffer-or-name. Buffers are moved
to the front of the list when they are selected and to the end when they are buried.
Buffers whose names start with a space are not considered.

444 XEmacs Lisp Reference Manual

If buffer-or-name is not supplied (or if it is not a buffer), then other-buffer returns
the first buffer on the buffer list that is not visible in any window in a visible frame.
If the selected frame has a non-nil buffer-predicate property, then other-buffer
uses that predicate to decide which buffers to consider. It calls the predicate once
for each buffer, and if the value is nil, that buffer is ignored. See Section 32.2.3 [X
Frame Properties], page 477.
If visible-ok is nil, other-buffer avoids returning a buffer visible in any window on
any visible frame, except as a last resort. If visible-ok is non-nil, then it does not
matter whether a buffer is displayed somewhere or not.
If no suitable buffer exists, the buffer ‘*scratch*’ is returned (and created, if neces-
sary).
Note that in FSF Emacs 19, there is no frame argument, and visible-ok is the second
argument instead of the third. FSF Emacs 19.

Commandlist-buffers &optional files-only
This function displays a listing of the names of existing buffers. It clears the buffer
‘*Buffer List*’, then inserts the listing into that buffer and displays it in a window.
list-buffers is intended for interactive use, and is described fully in The XEmacs
Reference Manual. It returns nil.

Commandbury-buffer &optional buffer-or-name
This function puts buffer-or-name at the end of the buffer list without changing the
order of any of the other buffers on the list. This buffer therefore becomes the least
desirable candidate for other-buffer to return.
If buffer-or-name is nil or omitted, this means to bury the current buffer. In addition,
if the buffer is displayed in the selected window, this switches to some other buffer
(obtained using other-buffer) in the selected window. But if the buffer is displayed
in some other window, it remains displayed there.
If you wish to replace a buffer in all the windows that display it, use replace-buffer-
in-windows. See Section 31.6 [Buffers and Windows], page 457.

30.9 Creating Buffers

This section describes the two primitives for creating buffers. get-buffer-create cre-
ates a buffer if it finds no existing buffer with the specified name; generate-new-buffer
always creates a new buffer and gives it a unique name.

Other functions you can use to create buffers include with-output-to-temp-buffer (see
Section 45.8 [Temporary Displays], page 666) and create-file-buffer (see Section 28.1
[Visiting Files], page 395). Starting a subprocess can also create a buffer (see Chapter 49
[Processes], page 683).

Functionget-buffer-create name
This function returns a buffer named name. It returns an existing buffer with that
name, if one exists; otherwise, it creates a new buffer. The buffer does not become
the current buffer—this function does not change which buffer is current.

Chapter 30: Buffers 445

An error is signaled if name is not a string.

(get-buffer-create "foo")
⇒ #<buffer foo>

The major mode for the new buffer is set to Fundamental mode. The variable
default-major-mode is handled at a higher level. See Section 26.1.3 [Auto Major
Mode], page 370.

Functiongenerate-new-buffer name
This function returns a newly created, empty buffer, but does not make it current. If
there is no buffer named name, then that is the name of the new buffer. If that name
is in use, this function adds suffixes of the form ‘<n>’ to name, where n is an integer.
It tries successive integers starting with 2 until it finds an available name.

An error is signaled if name is not a string.

(generate-new-buffer "bar")
⇒ #<buffer bar>

(generate-new-buffer "bar")
⇒ #<buffer bar<2>>

(generate-new-buffer "bar")
⇒ #<buffer bar<3>>

The major mode for the new buffer is set to Fundamental mode. The variable
default-major-mode is handled at a higher level. See Section 26.1.3 [Auto Major
Mode], page 370.

See the related function generate-new-buffer-name in Section 30.3 [Buffer Names],
page 437.

30.10 Killing Buffers

Killing a buffer makes its name unknown to XEmacs and makes its text space available
for other use.

The buffer object for the buffer that has been killed remains in existence as long as
anything refers to it, but it is specially marked so that you cannot make it current or
display it. Killed buffers retain their identity, however; two distinct buffers, when killed,
remain distinct according to eq.

If you kill a buffer that is current or displayed in a window, XEmacs automatically selects
or displays some other buffer instead. This means that killing a buffer can in general change
the current buffer. Therefore, when you kill a buffer, you should also take the precautions
associated with changing the current buffer (unless you happen to know that the buffer
being killed isn’t current). See Section 30.2 [Current Buffer], page 435.

If you kill a buffer that is the base buffer of one or more indirect buffers, the indirect
buffers are automatically killed as well.

The buffer-name of a killed buffer is nil. To test whether a buffer has been killed, you
can either use this feature or the function buffer-live-p.

446 XEmacs Lisp Reference Manual

Functionbuffer-live-p buffer
This function returns nil if buffer is deleted, and t otherwise.

Commandkill-buffer buffer-or-name
This function kills the buffer buffer-or-name, freeing all its memory for use as space
for other buffers. (Emacs version 18 and older was unable to return the memory to
the operating system.) It returns nil.

Any processes that have this buffer as the process-buffer are sent the SIGHUP signal,
which normally causes them to terminate. (The basic meaning of SIGHUP is that a
dialup line has been disconnected.) See Section 49.5 [Deleting Processes], page 688.

If the buffer is visiting a file and contains unsaved changes, kill-buffer asks the
user to confirm before the buffer is killed. It does this even if not called interactively.
To prevent the request for confirmation, clear the modified flag before calling kill-
buffer. See Section 30.5 [Buffer Modification], page 440.

Killing a buffer that is already dead has no effect.

(kill-buffer "foo.unchanged")
⇒ nil

(kill-buffer "foo.changed")

---------- Buffer: Minibuffer ----------
Buffer foo.changed modified; kill anyway? (yes or no) yes
---------- Buffer: Minibuffer ----------

⇒ nil

Variablekill-buffer-query-functions
After confirming unsaved changes, kill-buffer calls the functions in the list kill-
buffer-query-functions, in order of appearance, with no arguments. The buffer
being killed is the current buffer when they are called. The idea is that these functions
ask for confirmation from the user for various nonstandard reasons. If any of them
returns nil, kill-buffer spares the buffer’s life.

Variablekill-buffer-hook
This is a normal hook run by kill-buffer after asking all the questions it is going
to ask, just before actually killing the buffer. The buffer to be killed is current when
the hook functions run. See Section 26.4 [Hooks], page 382.

Variablebuffer-offer-save
This variable, if non-nil in a particular buffer, tells save-buffers-kill-emacs and
save-some-buffers to offer to save that buffer, just as they offer to save file-visiting
buffers. The variable buffer-offer-save automatically becomes buffer-local when
set for any reason. See Section 10.9 [Buffer-Local Variables], page 159.

Chapter 30: Buffers 447

30.11 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer
of the indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link among
files. The base buffer may not itself be an indirect buffer.

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. This includes the text
properties as well as the characters themselves.

But in all other respects, the indirect buffer and its base buffer are completely separate.
They have different names, different values of point, different narrowing, different markers
and overlays (though inserting or deleting text in either buffer relocates the markers and
overlays for both), different major modes, and different local variables.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the
indirect buffer, that actually works by saving the base buffer.

Killing an indirect buffer has no effect on its base buffer. Killing the base buffer effectively
kills the indirect buffer in that it cannot ever again be the current buffer.

Commandmake-indirect-buffer base-buffer name
This creates an indirect buffer named name whose base buffer is base-buffer. The
argument base-buffer may be a buffer or a string.
If base-buffer is an indirect buffer, its base buffer is used as the base for the new
buffer.

Functionbuffer-base-buffer buffer
This function returns the base buffer of buffer. If buffer is not indirect, the value is
nil. Otherwise, the value is another buffer, which is never an indirect buffer.

448 XEmacs Lisp Reference Manual

Chapter 31: Windows 449

31 Windows

This chapter describes most of the functions and variables related to Emacs windows.
See Chapter 45 [Display], page 657, for information on how text is displayed in windows.

31.1 Basic Concepts of Emacs Windows

A window in XEmacs is the physical area of the screen in which a buffer is displayed.
The term is also used to refer to a Lisp object that represents that screen area in XEmacs
Lisp. It should be clear from the context which is meant.

XEmacs groups windows into frames. A frame represents an area of screen available for
XEmacs to use. Each frame always contains at least one window, but you can subdivide it
vertically or horizontally into multiple nonoverlapping Emacs windows.

In each frame, at any time, one and only one window is designated as selected within the
frame. The frame’s cursor appears in that window. At ant time, one frame is the selected
frame; and the window selected within that frame is the selected window. The selected
window’s buffer is usually the current buffer (except when set-buffer has been used). See
Section 30.2 [Current Buffer], page 435.

For practical purposes, a window exists only while it is displayed in a frame. Once
removed from the frame, the window is effectively deleted and should not be used, even
though there may still be references to it from other Lisp objects. Restoring a saved window
configuration is the only way for a window no longer on the screen to come back to life.
(See Section 31.3 [Deleting Windows], page 453.)

Each window has the following attributes:
• containing frame
• window height
• window width
• window edges with respect to the frame or screen
• the buffer it displays
• position within the buffer at the upper left of the window
• amount of horizontal scrolling, in columns
• point
• the mark
• how recently the window was selected

Users create multiple windows so they can look at several buffers at once. Lisp libraries
use multiple windows for a variety of reasons, but most often to display related information.
In Rmail, for example, you can move through a summary buffer in one window while the
other window shows messages one at a time as they are reached.

The meaning of “window” in XEmacs is similar to what it means in the context of
general-purpose window systems such as X, but not identical. The X Window System places

450 XEmacs Lisp Reference Manual

X windows on the screen; XEmacs uses one or more X windows as frames, and subdivides
them into Emacs windows. When you use XEmacs on a character-only terminal, XEmacs
treats the whole terminal screen as one frame.

Most window systems support arbitrarily located overlapping windows. In contrast,
Emacs windows are tiled; they never overlap, and together they fill the whole screen or
frame. Because of the way in which XEmacs creates new windows and resizes them, you
can’t create every conceivable tiling of windows on an Emacs frame. See Section 31.2
[Splitting Windows], page 450, and Section 31.13 [Size of Window], page 468.

See Chapter 45 [Display], page 657, for information on how the contents of the window’s
buffer are displayed in the window.

Functionwindowp object
This function returns t if object is a window.

31.2 Splitting Windows

The functions described here are the primitives used to split a window into two windows.
Two higher level functions sometimes split a window, but not always: pop-to-buffer and
display-buffer (see Section 31.7 [Displaying Buffers], page 457).

The functions described here do not accept a buffer as an argument. The two “halves”
of the split window initially display the same buffer previously visible in the window that
was split.

Functionone-window-p &optional no-mini all-frames
This function returns non-nil if there is only one window. The argument no-mini, if
non-nil, means don’t count the minibuffer even if it is active; otherwise, the minibuf-
fer window is included, if active, in the total number of windows which is compared
against one.

The argument all-frame controls which set of windows are counted.

• If it is nil or omitted, then count only the selected frame, plus the minibuffer it
uses (which may be on another frame).

• If it is t, then windows on all frames that currently exist (including invisible and
iconified frames) are counted.

• If it is the symbol visible, then windows on all visible frames are counted.
• If it is the number 0, then windows on all visible and iconified frames are counted.
• If it is any other value, then precisely the windows in window ’s frame are counted,

excluding the minibuffer in use if it lies in some other frame.

Commandsplit-window &optional window size horizontal
This function splits window into two windows. The original window window remains
the selected window, but occupies only part of its former screen area. The rest is
occupied by a newly created window which is returned as the value of this function.

Chapter 31: Windows 451

If horizontal is non-nil, then window splits into two side by side windows. The
original window window keeps the leftmost size columns, and gives the rest of the
columns to the new window. Otherwise, it splits into windows one above the other,
and window keeps the upper size lines and gives the rest of the lines to the new
window. The original window is therefore the left-hand or upper of the two, and the
new window is the right-hand or lower.

If window is omitted or nil, then the selected window is split. If size is omitted
or nil, then window is divided evenly into two parts. (If there is an odd line, it
is allocated to the new window.) When split-window is called interactively, all its
arguments are nil.

The following example starts with one window on a frame that is 50 lines high by 80
columns wide; then the window is split.

(setq w (selected-window))
⇒ #<window 8 on windows.texi>

(window-edges) ; Edges in order:
⇒ (0 0 80 50) ; left–top–right–bottom

;; Returns window created
(setq w2 (split-window w 15))

⇒ #<window 28 on windows.texi>
(window-edges w2)

⇒ (0 15 80 50) ; Bottom window;
; top is line 15

(window-edges w)
⇒ (0 0 80 15) ; Top window

The frame looks like this:

| | line 0
| w |
|__________|
| | line 15
| w2 |
|__________|

line 50
column 0 column 80

Next, the top window is split horizontally:

(setq w3 (split-window w 35 t))
⇒ #<window 32 on windows.texi>

(window-edges w3)
⇒ (35 0 80 15) ; Left edge at column 35

(window-edges w)
⇒ (0 0 35 15) ; Right edge at column 35

(window-edges w2)
⇒ (0 15 80 50) ; Bottom window unchanged

452 XEmacs Lisp Reference Manual

Now, the screen looks like this:
column 35

| | | line 0
| w | w3 |
|___|______|
| | line 15
| w2 |
|__________|

line 50
column 0 column 80

Normally, Emacs indicates the border between two side-by-side windows with a scroll
bar (see Section 32.2.3 [X Frame Properties], page 477) or ‘|’ characters. The display
table can specify alternative border characters; see Section 45.11 [Display Tables],
page 669.

Commandsplit-window-vertically &optional size
This function splits the selected window into two windows, one above the other,
leaving the selected window with size lines.
This function is simply an interface to split-windows. Here is the complete function
definition for it:

(defun split-window-vertically (&optional arg)
"Split current window into two windows, one above the other."
(interactive "P")
(split-window nil (and arg (prefix-numeric-value arg))))

Commandsplit-window-horizontally &optional size
This function splits the selected window into two windows side-by-side, leaving the
selected window with size columns.
This function is simply an interface to split-windows. Here is the complete definition
for split-window-horizontally (except for part of the documentation string):

(defun split-window-horizontally (&optional arg)
"Split selected window into two windows, side by side..."
(interactive "P")
(split-window nil (and arg (prefix-numeric-value arg)) t))

Functionone-window-p &optional no-mini all-frames
This function returns non-nil if there is only one window. The argument no-mini, if
non-nil, means don’t count the minibuffer even if it is active; otherwise, the minibuf-
fer window is included, if active, in the total number of windows, which is compared
against one.
The argument all-frames specifies which frames to consider. Here are the possible
values and their meanings:

nil Count the windows in the selected frame, plus the minibuffer used by
that frame even if it lies in some other frame.

Chapter 31: Windows 453

t Count all windows in all existing frames.

visible Count all windows in all visible frames.

0 Count all windows in all visible or iconified frames.

anything else
Count precisely the windows in the selected frame, and no others.

31.3 Deleting Windows

A window remains visible on its frame unless you delete it by calling certain functions
that delete windows. A deleted window cannot appear on the screen, but continues to exist
as a Lisp object until there are no references to it. There is no way to cancel the deletion
of a window aside from restoring a saved window configuration (see Section 31.16 [Window
Configurations], page 473). Restoring a window configuration also deletes any windows that
aren’t part of that configuration.

When you delete a window, the space it took up is given to one adjacent sibling. (In
Emacs version 18, the space was divided evenly among all the siblings.)

Functionwindow-live-p window
This function returns nil if window is deleted, and t otherwise.
Warning: Erroneous information or fatal errors may result from using a deleted win-
dow as if it were live.

Commanddelete-window &optional window
This function removes window from the display. If window is omitted, then the
selected window is deleted. An error is signaled if there is only one window when
delete-window is called.
This function returns nil.
When delete-window is called interactively, window defaults to the selected window.

Commanddelete-other-windows &optional window
This function makes window the only window on its frame, by deleting the other
windows in that frame. If window is omitted or nil, then the selected window is
used by default.
The result is nil.

Commanddelete-windows-on buffer &optional frame
This function deletes all windows showing buffer. If there are no windows showing
buffer, it does nothing.
delete-windows-on operates frame by frame. If a frame has several windows showing
different buffers, then those showing buffer are removed, and the others expand to
fill the space. If all windows in some frame are showing buffer (including the case
where there is only one window), then the frame reverts to having a single window

454 XEmacs Lisp Reference Manual

showing another buffer chosen with other-buffer. See Section 30.8 [The Buffer List],
page 443.

The argument frame controls which frames to operate on:

• If it is nil, operate on the selected frame.
• If it is t, operate on all frames.
• If it is visible, operate on all visible frames.
• 0 If it is 0, operate on all visible or iconified frames.
• If it is a frame, operate on that frame.

This function always returns nil.

31.4 Selecting Windows

When a window is selected, the buffer in the window becomes the current buffer, and
the cursor will appear in it.

Functionselected-window &optional device
This function returns the selected window. This is the window in which the cursor
appears and to which many commands apply. Each separate device can have its
own selected window, which is remembered as focus changes from device to device.
Optional argument device specifies which device to return the selected window for,
and defaults to the selected device.

Functionselect-window window &optional norecord
This function makes window the selected window. The cursor then appears in window
(on redisplay). The buffer being displayed in window is immediately designated the
current buffer.

If optional argument norecord is non-nil then the global and per-frame buffer order-
ings are not modified, as by the function record-buffer.

The return value is window.
(setq w (next-window))
(select-window w)

⇒ #<window 65 on windows.texi>

Macrosave-selected-window forms. . .
This macro records the selected window, executes forms in sequence, then restores
the earlier selected window. It does not save or restore anything about the sizes,
arrangement or contents of windows; therefore, if the forms change them, the changes
are permanent.

The following functions choose one of the windows on the screen, offering various criteria
for the choice.

Chapter 31: Windows 455

Functionget-lru-window &optional frame
This function returns the window least recently “used” (that is, selected). The se-
lected window is always the most recently used window.
The selected window can be the least recently used window if it is the only window.
A newly created window becomes the least recently used window until it is selected.
A minibuffer window is never a candidate.
The argument frame controls which windows are considered.
• If it is nil, consider windows on the selected frame.
• If it is t, consider windows on all frames.
• If it is visible, consider windows on all visible frames.
• If it is 0, consider windows on all visible or iconified frames.
• If it is a frame, consider windows on that frame.

Functionget-largest-window &optional frame
This function returns the window with the largest area (height times width). If there
are no side-by-side windows, then this is the window with the most lines. A minibuffer
window is never a candidate.
If there are two windows of the same size, then the function returns the window that
is first in the cyclic ordering of windows (see following section), starting from the
selected window.
The argument frame controls which set of windows are considered. See get-lru-
window, above.

31.5 Cyclic Ordering of Windows

When you use the command C-x o (other-window) to select the next window, it moves
through all the windows on the screen in a specific cyclic order. For any given configuration
of windows, this order never varies. It is called the cyclic ordering of windows.

This ordering generally goes from top to bottom, and from left to right. But it may go
down first or go right first, depending on the order in which the windows were split.

If the first split was vertical (into windows one above each other), and then the sub-
windows were split horizontally, then the ordering is left to right in the top of the frame,
and then left to right in the next lower part of the frame, and so on. If the first split was
horizontal, the ordering is top to bottom in the left part, and so on. In general, within each
set of siblings at any level in the window tree, the order is left to right, or top to bottom.

Functionnext-window &optional window minibuf all-frames
This function returns the window following window in the cyclic ordering of windows.
This is the window that C-x o would select if typed when window is selected. If
window is the only window visible, then this function returns window. If omitted,
window defaults to the selected window.
The value of the argument minibuf determines whether the minibuffer is included in
the window order. Normally, when minibuf is nil, the minibuffer is included if it is

456 XEmacs Lisp Reference Manual

currently active; this is the behavior of C-x o. (The minibuffer window is active while
the minibuffer is in use. See Chapter 18 [Minibuffers], page 265.)
If minibuf is t, then the cyclic ordering includes the minibuffer window even if it is
not active.
If minibuf is neither t nor nil, then the minibuffer window is not included even if it
is active.
The argument all-frames specifies which frames to consider. Here are the possible
values and their meanings:

nil Consider all the windows in window ’s frame, plus the minibuffer used by
that frame even if it lies in some other frame.

t Consider all windows in all existing frames.

visible Consider all windows in all visible frames. (To get useful results, you
must ensure window is in a visible frame.)

0 Consider all windows in all visible or iconified frames.

anything else
Consider precisely the windows in window ’s frame, and no others.

This example assumes there are two windows, both displaying the buffer
‘windows.texi’:

(selected-window)
⇒ #<window 56 on windows.texi>

(next-window (selected-window))
⇒ #<window 52 on windows.texi>

(next-window (next-window (selected-window)))
⇒ #<window 56 on windows.texi>

Functionprevious-window &optional window minibuf all-frames
This function returns the window preceding window in the cyclic ordering of windows.
The other arguments specify which windows to include in the cycle, as in next-
window.

Commandother-window count &optional frame
This function selects the countth following window in the cyclic order. If count is
negative, then it selects the −countth preceding window. It returns nil.
In an interactive call, count is the numeric prefix argument.
The argument frame controls which set of windows are considered.
• If it is nil or omitted, then windows on the selected frame are considered.
• If it is a frame, then windows on that frame are considered.
• If it is t, then windows on all frames that currently exist (including invisible and

iconified frames) are considered.
• If it is the symbol visible, then windows on all visible frames are considered.
• If it is the number 0, then windows on all visible and iconified frames are con-

sidered.
• If it is any other value, then the behavior is undefined.

Chapter 31: Windows 457

Functionwalk-windows proc &optional minibuf all-frames
This function cycles through all windows, calling proc once for each window with the
window as its sole argument.
The optional arguments minibuf and all-frames specify the set of windows to include
in the scan. See next-window, above, for details.

31.6 Buffers and Windows

This section describes low-level functions to examine windows or to display buffers in
windows in a precisely controlled fashion. See the following section for related functions
that find a window to use and specify a buffer for it. The functions described there are
easier to use than these, but they employ heuristics in choosing or creating a window; use
these functions when you need complete control.

Functionset-window-buffer window buffer-or-name
This function makes window display buffer-or-name as its contents. It returns nil.

(set-window-buffer (selected-window) "foo")
⇒ nil

Functionwindow-buffer &optional window
This function returns the buffer that window is displaying. If window is omitted, this
function returns the buffer for the selected window.

(window-buffer)
⇒ #<buffer windows.texi>

Functionget-buffer-window buffer-or-name &optional frame
This function returns a window currently displaying buffer-or-name, or nil if there
is none. If there are several such windows, then the function returns the first one in
the cyclic ordering of windows, starting from the selected window. See Section 31.5
[Cyclic Window Ordering], page 455.
The argument all-frames controls which windows to consider.
• If it is nil, consider windows on the selected frame.
• If it is t, consider windows on all frames.
• If it is visible, consider windows on all visible frames.
• If it is 0, consider windows on all visible or iconified frames.
• If it is a frame, consider windows on that frame.

31.7 Displaying Buffers in Windows

In this section we describe convenient functions that choose a window automatically and
use it to display a specified buffer. These functions can also split an existing window in
certain circumstances. We also describe variables that parameterize the heuristics used for

458 XEmacs Lisp Reference Manual

choosing a window. See the preceding section for low-level functions that give you more
precise control.

Do not use the functions in this section in order to make a buffer current so that a Lisp
program can access or modify it; they are too drastic for that purpose, since they change
the display of buffers in windows, which is gratuitous and will surprise the user. Instead,
use set-buffer (see Section 30.2 [Current Buffer], page 435) and save-excursion (see
Section 34.3 [Excursions], page 501), which designate buffers as current for programmed
access without affecting the display of buffers in windows.

Commandswitch-to-buffer buffer-or-name &optional norecord
This function makes buffer-or-name the current buffer, and also displays the buffer
in the selected window. This means that a human can see the buffer and subsequent
keyboard commands will apply to it. Contrast this with set-buffer, which makes
buffer-or-name the current buffer but does not display it in the selected window. See
Section 30.2 [Current Buffer], page 435.

If buffer-or-name does not identify an existing buffer, then a new buffer by that
name is created. The major mode for the new buffer is set according to the variable
default-major-mode. See Section 26.1.3 [Auto Major Mode], page 370.

Normally the specified buffer is put at the front of the buffer list. This affects the
operation of other-buffer. However, if norecord is non-nil, this is not done. See
Section 30.8 [The Buffer List], page 443.

The switch-to-buffer function is often used interactively, as the binding of C-x b.
It is also used frequently in programs. It always returns nil.

Commandswitch-to-buffer-other-window buffer-or-name
This function makes buffer-or-name the current buffer and displays it in a window
not currently selected. It then selects that window. The handling of the buffer is the
same as in switch-to-buffer.

The currently selected window is absolutely never used to do the job. If it is the only
window, then it is split to make a distinct window for this purpose. If the selected
window is already displaying the buffer, then it continues to do so, but another window
is nonetheless found to display it in as well.

Functionpop-to-buffer buffer-or-name &optional other-window on-frame
This function makes buffer-or-name the current buffer and switches to it in some
window, preferably not the window previously selected. The “popped-to” window
becomes the selected window within its frame.

If the variable pop-up-frames is non-nil, pop-to-buffer looks for a window in any
visible frame already displaying the buffer; if there is one, it returns that window and
makes it be selected within its frame. If there is none, it creates a new frame and
displays the buffer in it.

If pop-up-frames is nil, then pop-to-buffer operates entirely within the selected
frame. (If the selected frame has just a minibuffer, pop-to-buffer operates within
the most recently selected frame that was not just a minibuffer.)

Chapter 31: Windows 459

If the variable pop-up-windows is non-nil, windows may be split to create a new
window that is different from the original window. For details, see Section 31.8
[Choosing Window], page 459.

If other-window is non-nil, pop-to-buffer finds or creates another window even if
buffer-or-name is already visible in the selected window. Thus buffer-or-name could
end up displayed in two windows. On the other hand, if buffer-or-name is already
displayed in the selected window and other-window is nil, then the selected window
is considered sufficient display for buffer-or-name, so that nothing needs to be done.

All the variables that affect display-buffer affect pop-to-buffer as well. See
Section 31.8 [Choosing Window], page 459.

If buffer-or-name is a string that does not name an existing buffer, a buffer by that
name is created. The major mode for the new buffer is set according to the variable
default-major-mode. See Section 26.1.3 [Auto Major Mode], page 370.

If on-frame is non-nil, it is the frame to pop to this buffer on.

An example use of this function is found at the end of Section 49.9.2 [Filter Functions],
page 694.

Commandreplace-buffer-in-windows buffer
This function replaces buffer with some other buffer in all windows displaying it.
The other buffer used is chosen with other-buffer. In the usual applications of this
function, you don’t care which other buffer is used; you just want to make sure that
buffer is no longer displayed.

This function returns nil.

31.8 Choosing a Window for Display

This section describes the basic facility that chooses a window to display a buffer in—
display-buffer. All the higher-level functions and commands use this subroutine. Here
we describe how to use display-buffer and how to customize it.

Commanddisplay-buffer buffer-or-name &optional not-this-window
This command makes buffer-or-name appear in some window, like pop-to-buffer,
but it does not select that window and does not make the buffer current. The identity
of the selected window is unaltered by this function.

If not-this-window is non-nil, it means to display the specified buffer in a window
other than the selected one, even if it is already on display in the selected window.
This can cause the buffer to appear in two windows at once. Otherwise, if buffer-or-
name is already being displayed in any window, that is good enough, so this function
does nothing.

display-buffer returns the window chosen to display buffer-or-name.

Precisely how display-buffer finds or creates a window depends on the variables
described below.

460 XEmacs Lisp Reference Manual

A window can be marked as “dedicated” to a particular buffer. Then XEmacs will not
automatically change which buffer appears in the window, such as display-buffer might
normally do.

Functionwindow-dedicated-p window
This function returns window ’s dedicated object, usually t or nil.

Functionset-window-buffer-dedicated window buffer
This function makes window display buffer and be dedicated to that buffer. Then
XEmacs will not automatically change which buffer appears in window. If buffer is
nil, this function makes window not be dedicated (but doesn’t change which buffer
appears in it currently).

User Optionpop-up-windows
This variable controls whether display-buffer makes new windows. If it is non-nil
and there is only one window, then that window is split. If it is nil, then display-
buffer does not split the single window, but uses it whole.

User Optionsplit-height-threshold
This variable determines when display-buffer may split a window, if there are
multiple windows. display-buffer always splits the largest window if it has at least
this many lines. If the largest window is not this tall, it is split only if it is the sole
window and pop-up-windows is non-nil.

User Optionpop-up-frames
This variable controls whether display-buffer makes new frames. If it is non-nil,
display-buffer looks for an existing window already displaying the desired buffer,
on any visible frame. If it finds one, it returns that window. Otherwise it makes
a new frame. The variables pop-up-windows and split-height-threshold do not
matter if pop-up-frames is non-nil.

If pop-up-frames is nil, then display-buffer either splits a window or reuses one.

See Chapter 32 [Frames], page 475, for more information.

Variablepop-up-frame-function
This variable specifies how to make a new frame if pop-up-frames is non-nil.

Its value should be a function of no arguments. When display-buffer makes a
new frame, it does so by calling that function, which should return a frame. The
default value of the variable is a function that creates a frame using properties from
pop-up-frame-plist.

Variablepop-up-frame-plist
This variable holds a plist specifying frame properties used when display-buffer
makes a new frame. See Section 32.2 [Frame Properties], page 475, for more informa-
tion about frame properties.

Chapter 31: Windows 461

Variablespecial-display-buffer-names
A list of buffer names for buffers that should be displayed specially. If the buffer’s
name is in this list, display-buffer handles the buffer specially.
By default, special display means to give the buffer a dedicated frame.
If an element is a list, instead of a string, then the car of the list is the buffer name,
and the rest of the list says how to create the frame. There are two possibilities for
the rest of the list. It can be a plist, specifying frame properties, or it can contain
a function and arguments to give to it. (The function’s first argument is always the
buffer to be displayed; the arguments from the list come after that.)

Variablespecial-display-regexps
A list of regular expressions that specify buffers that should be displayed specially. If
the buffer’s name matches any of the regular expressions in this list, display-buffer
handles the buffer specially.
By default, special display means to give the buffer a dedicated frame.
If an element is a list, instead of a string, then the car of the list is the regular
expression, and the rest of the list says how to create the frame. See above, under
special-display-buffer-names.

Variablespecial-display-function
This variable holds the function to call to display a buffer specially. It receives the
buffer as an argument, and should return the window in which it is displayed.
The default value of this variable is special-display-popup-frame.

Functionspecial-display-popup-frame buffer
This function makes buffer visible in a frame of its own. If buffer is already displayed
in a window in some frame, it makes the frame visible and raises it, to use that
window. Otherwise, it creates a frame that will be dedicated to buffer.
This function uses an existing window displaying buffer whether or not it is in a frame
of its own; but if you set up the above variables in your init file, before buffer was
created, then presumably the window was previously made by this function.

User Optionspecial-display-frame-plist
This variable holds frame properties for special-display-popup-frame to use when
it creates a frame.

Variablesame-window-buffer-names
A list of buffer names for buffers that should be displayed in the selected window. If
the buffer’s name is in this list, display-buffer handles the buffer by switching to
it in the selected window.

Variablesame-window-regexps
A list of regular expressions that specify buffers that should be displayed in the
selected window. If the buffer’s name matches any of the regular expressions in this
list, display-buffer handles the buffer by switching to it in the selected window.

462 XEmacs Lisp Reference Manual

Variabledisplay-buffer-function
This variable is the most flexible way to customize the behavior of display-buffer.
If it is non-nil, it should be a function that display-buffer calls to do the work.
The function should accept two arguments, the same two arguments that display-
buffer received. It should choose or create a window, display the specified buffer,
and then return the window.
This hook takes precedence over all the other options and hooks described above.

A window can be marked as “dedicated” to its buffer. Then display-buffer does not
try to use that window.

Functionwindow-dedicated-p window
This function returns t if window is marked as dedicated; otherwise nil.

Functionset-window-dedicated-p window flag
This function marks window as dedicated if flag is non-nil, and nondedicated oth-
erwise.

31.9 Windows and Point

Each window has its own value of point, independent of the value of point in other
windows displaying the same buffer. This makes it useful to have multiple windows showing
one buffer.
• The window point is established when a window is first created; it is initialized from

the buffer’s point, or from the window point of another window opened on the buffer
if such a window exists.

• Selecting a window sets the value of point in its buffer to the window’s value of point.
Conversely, deselecting a window sets the window’s value of point from that of the
buffer. Thus, when you switch between windows that display a given buffer, the point
value for the selected window is in effect in the buffer, while the point values for the
other windows are stored in those windows.

• As long as the selected window displays the current buffer, the window’s point and the
buffer’s point always move together; they remain equal.

• See Chapter 34 [Positions], page 493, for more details on buffer positions.

As far as the user is concerned, point is where the cursor is, and when the user switches
to another buffer, the cursor jumps to the position of point in that buffer.

Functionwindow-point window
This function returns the current position of point in window. For a nonselected
window, this is the value point would have (in that window’s buffer) if that window
were selected.
When window is the selected window and its buffer is also the current buffer, the
value returned is the same as point in that buffer.
Strictly speaking, it would be more correct to return the “top-level” value of point,
outside of any save-excursion forms. But that value is hard to find.

Chapter 31: Windows 463

Functionset-window-point window position
This function positions point in window at position position in window ’s buffer.

31.10 The Window Start Position

Each window contains a marker used to keep track of a buffer position that specifies
where in the buffer display should start. This position is called the display-start position
of the window (or just the start). The character after this position is the one that appears
at the upper left corner of the window. It is usually, but not inevitably, at the beginning of
a text line.

Functionwindow-start &optional window
This function returns the display-start position of window window. If window is nil,
the selected window is used. For example,

(window-start)
⇒ 7058

When you create a window, or display a different buffer in it, the display-start position
is set to a display-start position recently used for the same buffer, or 1 if the buffer
doesn’t have any.

For a realistic example, see the description of count-lines in Section 34.2.4 [Text
Lines], page 496.

Functionwindow-end &optional window
This function returns the position of the end of the display in window window. If
window is nil, the selected window is used.

Simply changing the buffer text or moving point does not update the value that
window-end returns. The value is updated only when Emacs redisplays and redisplay
actually finishes.

If the last redisplay of window was preempted, and did not finish, Emacs does not
know the position of the end of display in that window. In that case, this function
returns a value that is not correct. In a future version, window-end will return nil
in that case.

Functionset-window-start window position &optional noforce
This function sets the display-start position of window to position in window ’s buffer.
It returns position.

The display routines insist that the position of point be visible when a buffer is dis-
played. Normally, they change the display-start position (that is, scroll the window)
whenever necessary to make point visible. However, if you specify the start position
with this function using nil for noforce, it means you want display to start at position
even if that would put the location of point off the screen. If this does place point off
screen, the display routines move point to the left margin on the middle line in the
window.

464 XEmacs Lisp Reference Manual

For example, if point is 1 and you set the start of the window to 2, then point would
be “above” the top of the window. The display routines will automatically move
point if it is still 1 when redisplay occurs. Here is an example:

;; Here is what ‘foo’ looks like before executing
;; the set-window-start expression.

---------- Buffer: foo ----------
?This is the contents of buffer foo.
2
3
4
5
6
---------- Buffer: foo ----------

(set-window-start
(selected-window)
(1+ (window-start)))
⇒ 2

;; Here is what ‘foo’ looks like after executing
;; the set-window-start expression.
---------- Buffer: foo ----------
his is the contents of buffer foo.
2
3
?4
5
6
---------- Buffer: foo ----------

If noforce is non-nil, and position would place point off screen at the next redisplay,
then redisplay computes a new window-start position that works well with point, and
thus position is not used.

Functionpos-visible-in-window-p &optional position window
This function returns t if position is within the range of text currently visible on the
screen in window. It returns nil if position is scrolled vertically out of view. The
argument position defaults to the current position of point; window, to the selected
window. Here is an example:

(or (pos-visible-in-window-p
(point) (selected-window))
(recenter 0))

The pos-visible-in-window-p function considers only vertical scrolling. If position
is out of view only because window has been scrolled horizontally, pos-visible-in-
window-p returns t. See Section 31.12 [Horizontal Scrolling], page 467.

31.11 Vertical Scrolling

Chapter 31: Windows 465

Vertical scrolling means moving the text up or down in a window. It works by changing
the value of the window’s display-start location. It may also change the value of window-
point to keep it on the screen.

In the commands scroll-up and scroll-down, the directions “up” and “down” refer to
the motion of the text in the buffer at which you are looking through the window. Imagine
that the text is written on a long roll of paper and that the scrolling commands move the
paper up and down. Thus, if you are looking at text in the middle of a buffer and repeatedly
call scroll-down, you will eventually see the beginning of the buffer.

Some people have urged that the opposite convention be used: they imagine that the
window moves over text that remains in place. Then “down” commands would take you
to the end of the buffer. This view is more consistent with the actual relationship between
windows and the text in the buffer, but it is less like what the user sees. The position of
a window on the terminal does not move, and short scrolling commands clearly move the
text up or down on the screen. We have chosen names that fit the user’s point of view.

The scrolling functions (aside from scroll-other-window) have unpredictable results if
the current buffer is different from the buffer that is displayed in the selected window. See
Section 30.2 [Current Buffer], page 435.

Commandscroll-up &optional count
This function scrolls the text in the selected window upward count lines. If count is
negative, scrolling is actually downward.
If count is nil (or omitted), then the length of scroll is next-screen-context-lines
lines less than the usable height of the window (not counting its modeline).
scroll-up returns nil.

Commandscroll-down &optional count
This function scrolls the text in the selected window downward count lines. If count
is negative, scrolling is actually upward.
If count is omitted or nil, then the length of the scroll is next-screen-context-
lines lines less than the usable height of the window (not counting its mode line).
scroll-down returns nil.

Commandscroll-other-window &optional count
This function scrolls the text in another window upward count lines. Negative values
of count, or nil, are handled as in scroll-up.
You can specify a buffer to scroll with the variable other-window-scroll-buffer.
When the selected window is the minibuffer, the next window is normally the one
at the top left corner. You can specify a different window to scroll with the variable
minibuffer-scroll-window. This variable has no effect when any other window is
selected. See Section 18.8 [Minibuffer Misc], page 282.
When the minibuffer is active, it is the next window if the selected window is the one
at the bottom right corner. In this case, scroll-other-window attempts to scroll
the minibuffer. If the minibuffer contains just one line, it has nowhere to scroll to, so
the line reappears after the echo area momentarily displays the message “Beginning
of buffer”.

466 XEmacs Lisp Reference Manual

Variableother-window-scroll-buffer
If this variable is non-nil, it tells scroll-other-window which buffer to scroll.

User Optionscroll-step
This variable controls how scrolling is done automatically when point moves off the
screen. If the value is zero, then redisplay scrolls the text to center point vertically in
the window. If the value is a positive integer n, then redisplay brings point back on
screen by scrolling n lines in either direction, if possible; otherwise, it centers point.
The default value is zero.

User Optionscroll-conservatively
This variable controls how many lines Emacs tries to scroll before recentering. If
you set it to a small number, then when you move point a short distance off the
screen, XEmacs will scroll the screen just far enough to bring point back on screen,
provided that does not exceed scroll-conservatively lines. This variable overrides
the redisplay preemption.

User Optionnext-screen-context-lines
The value of this variable is the number of lines of continuity to retain when scrolling
by full screens. For example, scroll-up with an argument of nil scrolls so that this
many lines at the bottom of the window appear instead at the top. The default value
is 2.

Commandrecenter &optional count
This function scrolls the selected window to put the text where point is located at a
specified vertical position within the window.
If count is a nonnegative number, it puts the line containing point count lines down
from the top of the window. If count is a negative number, then it counts upward
from the bottom of the window, so that −1 stands for the last usable line in the
window. If count is a non-nil list, then it stands for the line in the middle of the
window.
If count is nil, recenter puts the line containing point in the middle of the window,
then clears and redisplays the entire selected frame.
When recenter is called interactively, count is the raw prefix argument. Thus, typing
C-u as the prefix sets the count to a non-nil list, while typing C-u 4 sets count to 4,
which positions the current line four lines from the top.
With an argument of zero, recenter positions the current line at the top of the
window. This action is so handy that some people make a separate key binding to do
this. For example,

(defun line-to-top-of-window ()
"Scroll current line to top of window.

Replaces three keystroke sequence C-u 0 C-l."
(interactive)
(recenter 0))

(global-set-key [kp-multiply] ’line-to-top-of-window)

Chapter 31: Windows 467

31.12 Horizontal Scrolling

Because we read English first from top to bottom and second from left to right, horizontal
scrolling is not like vertical scrolling. Vertical scrolling involves selection of a contiguous
portion of text to display. Horizontal scrolling causes part of each line to go off screen. The
amount of horizontal scrolling is therefore specified as a number of columns rather than as
a position in the buffer. It has nothing to do with the display-start position returned by
window-start.

Usually, no horizontal scrolling is in effect; then the leftmost column is at the left edge
of the window. In this state, scrolling to the right is meaningless, since there is no data
to the left of the screen to be revealed by it; so this is not allowed. Scrolling to the left
is allowed; it scrolls the first columns of text off the edge of the window and can reveal
additional columns on the right that were truncated before. Once a window has a nonzero
amount of leftward horizontal scrolling, you can scroll it back to the right, but only so far
as to reduce the net horizontal scroll to zero. There is no limit to how far left you can scroll,
but eventually all the text will disappear off the left edge.

Commandscroll-left count
This function scrolls the selected window count columns to the left (or to the right
if count is negative). The return value is the total amount of leftward horizontal
scrolling in effect after the change—just like the value returned by window-hscroll
(below).

Commandscroll-right count
This function scrolls the selected window count columns to the right (or to the left
if count is negative). The return value is the total amount of leftward horizontal
scrolling in effect after the change—just like the value returned by window-hscroll
(below).

Once you scroll a window as far right as it can go, back to its normal position where
the total leftward scrolling is zero, attempts to scroll any farther right have no effect.

Functionwindow-hscroll &optional window
This function returns the total leftward horizontal scrolling of window—the number
of columns by which the text in window is scrolled left past the left margin.

The value is never negative. It is zero when no horizontal scrolling has been done in
window (which is usually the case).

If window is nil, the selected window is used.

(window-hscroll)
⇒ 0

(scroll-left 5)
⇒ 5

(window-hscroll)
⇒ 5

468 XEmacs Lisp Reference Manual

Functionset-window-hscroll window columns
This function sets the number of columns from the left margin that window is scrolled
to the value of columns. The argument columns should be zero or positive; if not, it
is taken as zero.
The value returned is columns.

(set-window-hscroll (selected-window) 10)
⇒ 10

Here is how you can determine whether a given position position is off the screen due to
horizontal scrolling:

(defun hscroll-on-screen (window position)
(save-excursion

(goto-char position)
(and
(>= (- (current-column) (window-hscroll window)) 0)
(< (- (current-column) (window-hscroll window))

(window-width window)))))

31.13 The Size of a Window

An Emacs window is rectangular, and its size information consists of the height (in lines
or pixels) and the width (in character positions or pixels). The modeline is included in
the height. The pixel width and height values include scrollbars and margins, while the
line/character-position values do not.

Note that the height in lines, and the width in characters, are determined by dividing
the corresponding pixel value by the height or width of the default font in that window (if
this is a variable-width font, the average width is used). The resulting values may or may
not represent the actual number of lines in the window, or the actual number of character
positions in any particular line, esp. if there are pixmaps or various different fonts in the
window.

The following functions return size information about a window:

Functionwindow-height &optional window
This function returns the number of lines in window, including its modeline but
not including the horizontal scrollbar, if any (this is different from window-pixel-
height). If window is nil, the function uses the selected window.

(window-height)
⇒ 40

(split-window-vertically)
⇒ #<window on "windows.texi" 0x679b>

(window-height)
⇒ 20

Functionwindow-width &optional window
This function returns the number of columns in window, not including any left margin,
right margin, or vertical scrollbar (this is different from window-pixel-width). If
window is nil, the function uses the selected window.

Chapter 31: Windows 469

(window-width)
⇒ 80

(window-height)
⇒ 40

(split-window-horizontally)
⇒ #<window on "windows.texi" 0x7538>

(window-width)
⇒ 39

Note that after splitting the window into two side-by-side windows, the width of each
window is less the half the width of the original window because a vertical scrollbar appeared
between the windows, occupying two columns worth of space. Also, the height shrunk by
one because horizontal scrollbars appeared that weren’t there before. (Horizontal scrollbars
appear only when lines are truncated, not when they wrap. This is usually the case for
horizontally split windows but not for full-frame windows. You can change this using the
variables truncate-lines and truncate-partial-width-windows.)

Functionwindow-pixel-height &optional window
This function returns the height of window in pixels, including its modeline and
horizontal scrollbar, if any. If window is nil, the function uses the selected window.

(window-pixel-height)
⇒ 600

(split-window-vertically)
⇒ #<window on "windows.texi" 0x68a6>

(window-pixel-height)
⇒ 300

Functionwindow-pixel-width &optional window
This function returns the width of window in pixels, including any left margin, right
margin, or vertical scrollbar that may be displayed alongside it. If window is nil,
the function uses the selected window.

(window-pixel-width)
⇒ 735

(window-pixel-height)
⇒ 600

(split-window-horizontally)
⇒ #<window on "windows.texi" 0x7538>

(window-pixel-width)
⇒ 367

(window-pixel-height)
⇒ 600

Functionwindow-text-area-pixel-height &optional window
This function returns the height in pixels of the text displaying portion of window,
which defaults to the selected window. Unlike window-pixel-height, the space
occupied by the modeline and horizontal scrollbar, if any, is not counted.

470 XEmacs Lisp Reference Manual

Functionwindow-text-area-pixel-width &optional window
This function returns the width in pixels of the text displaying portion of window,
which defaults to the selected window. Unlike window-pixel-width, the space occu-
pied by the vertical scrollbar and divider, if any, is not counted.

Functionwindow-displayed-text-pixel-height &optional window noclipped
This function returns the height in pixels of the text displayed in window, which
defaults to the selected window. Unlike window-text-area-pixel-height, any blank
space below the end of the buffer is not included. If optional argument noclipped is
non-nil, any space occupied by clipped lines will not be included.

31.14 The Position of a Window

XEmacs provides functions to determine the absolute location of windows within a frame,
and the relative location of a window in comparison to other windows in the same frame.

Functionwindow-pixel-edges &optional window
This function returns a list of the pixel edge coordinates of window. If window is nil,
the selected window is used.
The order of the list is (left top right bottom), all elements relative to 0, 0 at the
top left corner of the frame. The element right of the value is one more than the
rightmost pixel used by window (including any left margin, right margin, or vertical
scrollbar displayed alongside it), and bottom is one more than the bottommost pixel
used by window (including any modeline or horizontal scrollbar displayed above or
below it). The frame area does not include any frame menubars or toolbars that may
be displayed; thus, for example, if there is only one window on the frame, the values
for left and top will always be 0.
If window is at the upper left corner of its frame, right and bottom are the same as
the values returned by (window-pixel-width) and (window-pixel-height) respec-
tively, and top and bottom are zero.

There is no longer a function window-edges because it does not make sense in a world
with variable-width and variable-height lines, as are allowed in XEmacs.

Functionwindow-highest-p window
This function returns non-nil if window is along the top of its frame.

Functionwindow-lowest-p window
This function returns non-nil if window is along the bottom of its frame.

Functionwindow-text-area-pixel-edges &optional window
This function allows one to determine the location of the text-displaying portion of
window, which defaults to the selected window, with respect to the top left corner of
the window. It returns a list of integer pixel positions (left top right bottom), all
relative to (0,0) at the top left corner of the window.

Chapter 31: Windows 471

31.15 Changing the Size of a Window

The window size functions fall into two classes: high-level commands that change the
size of windows and low-level functions that access window size. XEmacs does not per-
mit overlapping windows or gaps between windows, so resizing one window affects other
windows.

Commandenlarge-window size &optional horizontal window
This function makes the selected window size lines taller, stealing lines from neigh-
boring windows. It takes the lines from one window at a time until that window is
used up, then takes from another. If a window from which lines are stolen shrinks
below window-min-height lines, that window disappears.

If horizontal is non-nil, this function makes window wider by size columns, stealing
columns instead of lines. If a window from which columns are stolen shrinks below
window-min-width columns, that window disappears.

If the requested size would exceed that of the window’s frame, then the function
makes the window occupy the entire height (or width) of the frame.

If size is negative, this function shrinks the window by −size lines or columns. If
that makes the window smaller than the minimum size (window-min-height and
window-min-width), enlarge-window deletes the window.

If window is non-nil, it specifies a window to change instead of the selected window.

enlarge-window returns nil.

Commandenlarge-window-horizontally columns
This function makes the selected window columns wider. It could be defined as
follows:

(defun enlarge-window-horizontally (columns)
(enlarge-window columns t))

Commandenlarge-window-pixels count &optional side window
This function makes the selected window count pixels larger. When called from
Lisp, optional second argument side non-nil means to grow sideways count pixels,
and optional third argument window specifies the window to change instead of the
selected window.

Commandshrink-window size &optional horizontal window
This function is like enlarge-window but negates the argument size, making the
selected window smaller by giving lines (or columns) to the other windows. If the
window shrinks below window-min-height or window-min-width, then it disappears.

If size is negative, the window is enlarged by −size lines or columns.

If window is non-nil, it specifies a window to change instead of the selected window.

472 XEmacs Lisp Reference Manual

Commandshrink-window-horizontally columns
This function makes the selected window columns narrower. It could be defined as
follows:

(defun shrink-window-horizontally (columns)
(shrink-window columns t))

Commandshrink-window-pixels count &optional side window
This function makes the selected window count pixels smaller. When called from
Lisp, optional second argument side non-nil means to shrink sideways count pixels,
and optional third argument window specifies the window to change instead of the
selected window.

The following two variables constrain the window-size-changing functions to a minimum
height and width.

User Optionwindow-min-height
The value of this variable determines how short a window may become before it is
automatically deleted. Making a window smaller than window-min-height auto-
matically deletes it, and no window may be created shorter than this. The absolute
minimum height is two (allowing one line for the mode line, and one line for the buffer
display). Actions that change window sizes reset this variable to two if it is less than
two. The default value is 4.

User Optionwindow-min-width
The value of this variable determines how narrow a window may become before it
automatically deleted. Making a window smaller than window-min-width automat-
ically deletes it, and no window may be created narrower than this. The absolute
minimum width is one; any value below that is ignored. The default value is 10.

Variablewindow-size-change-functions
This variable holds a list of functions to be called if the size of any window changes
for any reason. The functions are called just once per redisplay, and just once for
each frame on which size changes have occurred.

Each function receives the frame as its sole argument. There is no direct way to
find out which windows changed size, or precisely how; however, if your size-change
function keeps track, after each change, of the windows that interest you, you can
figure out what has changed by comparing the old size data with the new.

Creating or deleting windows counts as a size change, and therefore causes these
functions to be called. Changing the frame size also counts, because it changes the
sizes of the existing windows.

It is not a good idea to use save-window-excursion in these functions, because that
always counts as a size change, and it would cause these functions to be called over
and over. In most cases, save-selected-window is what you need here.

Chapter 31: Windows 473

31.16 Window Configurations

A window configuration records the entire layout of a frame—all windows, their sizes,
which buffers they contain, what part of each buffer is displayed, and the values of point and
the mark. You can bring back an entire previous layout by restoring a window configuration
previously saved.

If you want to record all frames instead of just one, use a frame configuration instead of
a window configuration. See Section 32.11 [Frame Configurations], page 485.

Functioncurrent-window-configuration
This function returns a new object representing XEmacs’s current window configura-
tion, namely the number of windows, their sizes and current buffers, which window
is the selected window, and for each window the displayed buffer, the display-start
position, and the positions of point and the mark. An exception is made for point in
the current buffer, whose value is not saved.

Functionset-window-configuration configuration
This function restores the configuration of XEmacs’s windows and buffers to the
state specified by configuration. The argument configuration must be a value that
was previously returned by current-window-configuration.

This function always counts as a window size change and triggers execution of the
window-size-change-functions. (It doesn’t know how to tell whether the new
configuration actually differs from the old one.)

Here is a way of using this function to get the same effect as save-window-excursion:
(let ((config (current-window-configuration)))

(unwind-protect
(progn (split-window-vertically nil)

...)
(set-window-configuration config)))

Special Formsave-window-excursion forms. . .
This special form records the window configuration, executes forms in sequence, then
restores the earlier window configuration. The window configuration includes the
value of point and the portion of the buffer that is visible. It also includes the choice
of selected window. However, it does not include the value of point in the current
buffer; use save-excursion if you wish to preserve that.

Don’t use this construct when save-selected-window is all you need.

Exit from save-window-excursion always triggers execution of the window-size-
change-functions. (It doesn’t know how to tell whether the restored configuration
actually differs from the one in effect at the end of the forms.)

The return value is the value of the final form in forms. For example:
(split-window)

⇒ #<window 25 on control.texi>

474 XEmacs Lisp Reference Manual

(setq w (selected-window))
⇒ #<window 19 on control.texi>

(save-window-excursion
(delete-other-windows w)
(switch-to-buffer "foo")
’do-something)
⇒ do-something
;; The frame is now split again.

Functionwindow-configuration-p object
This function returns t if object is a window configuration.

Primitives to look inside of window configurations would make sense, but none are
implemented. It is not clear they are useful enough to be worth implementing.

Chapter 32: Frames 475

32 Frames

A frame is a rectangle on the screen that contains one or more XEmacs windows. A
frame initially contains a single main window (plus perhaps a minibuffer window), which
you can subdivide vertically or horizontally into smaller windows.

When XEmacs runs on a text-only terminal, it starts with one TTY frame. If you create
additional ones, XEmacs displays one and only one at any given time—on the terminal
screen, of course.

When XEmacs communicates directly with an X server, it does not have a TTY frame;
instead, it starts with a single X window frame. It can display multiple X window frames
at the same time, each in its own X window.

Functionframep object
This predicate returns t if object is a frame, and nil otherwise.

See Chapter 45 [Display], page 657, for related information.

32.1 Creating Frames

To create a new frame, call the function make-frame.

Functionmake-frame &optional props device
This function creates a new frame on device, if device permits creation of frames. (An
X server does; an ordinary terminal does not (yet).) device defaults to the selected
device if omitted. See Chapter 33 [Consoles and Devices], page 487.
The argument props is a property list (a list of alternating keyword-value specifi-
cations) of properties for the new frame. (An alist is accepted for backward com-
patibility but should not be passed in.) Any properties not mentioned in props
default according to the value of the variable default-frame-plist. For X devices,
properties not specified in default-frame-plist default in turn from default-x-
frame-plist and, if not specified there, from the X resources. For TTY devices,
default-tty-frame-plist is consulted as well as default-frame-plist.
The set of possible properties depends in principle on what kind of window system
XEmacs uses to display its frames. See Section 32.2.3 [X Frame Properties], page 477,
for documentation of individual properties you can specify when creating an X window
frame.

32.2 Frame Properties

A frame has many properties that control its appearance and behavior. Just what
properties a frame has depends on which display mechanism it uses.

Frame properties exist for the sake of window systems. A terminal frame has few prop-
erties, mostly for compatibility’s sake; only the height, width and buffer-predicate prop-
erties really do something.

476 XEmacs Lisp Reference Manual

32.2.1 Access to Frame Properties

These functions let you read and change the properties of a frame.

Functionframe-properties &optional frame
This function returns a plist listing all the properties of frame and their values.

Functionframe-property frame property &optional default
This function returns frame’s value for the property property.

Functionset-frame-properties frame plist
This function alters the properties of frame frame based on the elements of property
list plist. If you don’t mention a property in plist, its value doesn’t change.

Functionset-frame-property frame prop val
This function sets the property prop of frame frame to the value val.

32.2.2 Initial Frame Properties

You can specify the properties for the initial startup frame by setting initial-frame-
plist in your ‘.emacs’ file.

Variableinitial-frame-plist
This variable’s value is a plist of alternating property-value pairs used when creating
the initial X window frame.
XEmacs creates the initial frame before it reads your ‘~/.emacs’ file. After reading
that file, XEmacs checks initial-frame-plist, and applies the property settings in
the altered value to the already created initial frame.
If these settings affect the frame geometry and appearance, you’ll see the frame appear
with the wrong ones and then change to the specified ones. If that bothers you, you
can specify the same geometry and appearance with X resources; those do take affect
before the frame is created. See section “X Resources” in The XEmacs User’s Manual.
X resource settings typically apply to all frames. If you want to specify some X
resources solely for the sake of the initial frame, and you don’t want them to apply to
subsequent frames, here’s how to achieve this: specify properties in default-frame-
plist to override the X resources for subsequent frames; then, to prevent these from
affecting the initial frame, specify the same properties in initial-frame-plist with
values that match the X resources.

If these properties specify a separate minibuffer-only frame via a minibuffer property
of nil, and you have not yet created one, XEmacs creates one for you.

Variableminibuffer-frame-plist
This variable’s value is a plist of properties used when creating an initial minibuffer-
only frame—if such a frame is needed, according to the properties for the main initial
frame.

Chapter 32: Frames 477

Variabledefault-frame-plist
This is a plist specifying default values of frame properties for subsequent XEmacs
frames (not the initial ones).

See also special-display-frame-plist, in Section 31.8 [Choosing Window], page 459.
If you use options that specify window appearance when you invoke XEmacs, they

take effect by adding elements to default-frame-plist. One exception is ‘-geometry’,
which adds the specified position to initial-frame-plist instead. See section “Command
Arguments” in The XEmacs User’s Manual.

32.2.3 X Window Frame Properties

Just what properties a frame has depends on what display mechanism it uses. Here
is a table of the properties of an X window frame; of these, name, height, width, and
buffer-predicate provide meaningful information in non-X frames.

name The name of the frame. Most window managers display the frame’s name in the
frame’s border, at the top of the frame. If you don’t specify a name, and you
have more than one frame, XEmacs sets the frame name based on the buffer
displayed in the frame’s selected window.
If you specify the frame name explicitly when you create the frame, the name
is also used (instead of the name of the XEmacs executable) when looking up
X resources for the frame.

display The display on which to open this frame. It should be a string of the form
"host:dpy.screen", just like the DISPLAY environment variable.

left The screen position of the left edge, in pixels, with respect to the left edge of
the screen. The value may be a positive number pos, or a list of the form (+
pos) which permits specifying a negative pos value.
A negative number −pos, or a list of the form (- pos), actually specifies the
position of the right edge of the window with respect to the right edge of the
screen. A positive value of pos counts toward the left. If the property is a
negative integer −pos then pos is positive!

top The screen position of the top edge, in pixels, with respect to the top edge of
the screen. The value may be a positive number pos, or a list of the form (+
pos) which permits specifying a negative pos value.
A negative number −pos, or a list of the form (- pos), actually specifies the
position of the bottom edge of the window with respect to the bottom edge of
the screen. A positive value of pos counts toward the top. If the property is a
negative integer −pos then pos is positive!

icon-left
The screen position of the left edge of the frame’s icon, in pixels, counting from
the left edge of the screen. This takes effect if and when the frame is iconified.

icon-top The screen position of the top edge of the frame’s icon, in pixels, counting from
the top edge of the screen. This takes effect if and when the frame is iconified.

478 XEmacs Lisp Reference Manual

user-position
Non-nil if the screen position of the frame was explicitly requested by the user
(for example, with the ‘-geometry’ option). Nothing automatically makes this
property non-nil; it is up to Lisp programs that call make-frame to specify
this property as well as specifying the left and top properties.

height The height of the frame contents, in characters. (To get the height in pixels,
call frame-pixel-height; see Section 32.2.4 [Size and Position], page 479.)

width The width of the frame contents, in characters. (To get the height in pixels,
call frame-pixel-width; see Section 32.2.4 [Size and Position], page 479.)

window-id
The number of the X window for the frame.

minibuffer
Whether this frame has its own minibuffer. The value t means yes, nil means
no, only means this frame is just a minibuffer. If the value is a minibuffer
window (in some other frame), the new frame uses that minibuffer. (Minibuffer-
only and minibuffer-less frames are not yet implemented in XEmacs.)

buffer-predicate
The buffer-predicate function for this frame. The function other-buffer uses
this predicate (from the selected frame) to decide which buffers it should con-
sider, if the predicate is not nil. It calls the predicate with one arg, a buffer,
once for each buffer; if the predicate returns a non-nil value, it considers that
buffer.

scroll-bar-width
The width of the vertical scroll bar, in pixels.

cursor-color
The color for the cursor that shows point.

border-color
The color for the border of the frame.

border-width
The width in pixels of the window border.

internal-border-width
The distance in pixels between text and border.

unsplittable
If non-nil, this frame’s window is never split automatically.

inter-line-space
The space in pixels between adjacent lines of text. (Not currently implemented.)

modeline Whether the frame has a modeline.

32.2.4 Frame Size And Position

Chapter 32: Frames 479

You can read or change the size and position of a frame using the frame properties left,
top, height, and width. Whatever geometry properties you don’t specify are chosen by
the window manager in its usual fashion.

Here are some special features for working with sizes and positions:

Functionset-frame-position frame left top
This function sets the position of the top left corner of frame to left and top. These
arguments are measured in pixels, and count from the top left corner of the screen.
Negative property values count up or rightward from the top left corner of the screen.

Functionframe-height &optional frame
Functionframe-width &optional frame

These functions return the height and width of frame, measured in lines and columns.
If you don’t supply frame, they use the selected frame.

Functionframe-pixel-height &optional frame
Functionframe-pixel-width &optional frame

These functions return the height and width of frame, measured in pixels. If you
don’t supply frame, they use the selected frame.

Functionset-frame-size frame cols rows &optional pretend
This function sets the size of frame, measured in characters; cols and rows specify
the new width and height. (If pretend is non-nil, it means that redisplay should act
as if the frame’s size is cols by rows, but the actual size of the frame should not be
changed. You should not normally use this option.)

You can also use the functions set-frame-height and set-frame-width to set the
height and width individually. The frame is the first argument and the size (in rows or
columns) is the second. (There is an optional third argument, pretend, which has the same
purpose as the corresponding argument in set-frame-size.)

32.2.5 The Name of a Frame (As Opposed to Its Title)

Under X, every frame has a name, which is not the same as the title of the frame. A
frame’s name is used to look up its resources and does not normally change over the lifetime
of a frame. It is perfectly allowable, and quite common, for multiple frames to have the
same name.

Functionframe-name &optional frame
This function returns the name of frame, which defaults to the selected frame if not
specified. The name of a frame can also be obtained from the frame’s properties. See
Section 32.2 [Frame Properties], page 475.

Variabledefault-frame-name
This variable holds the default name to assign to newly-created frames. This can be
overridden by arguments to make-frame. This must be a string.

480 XEmacs Lisp Reference Manual

32.3 Frame Titles

Every frame has a title; most window managers display the frame title at the top of the
frame. You can specify an explicit title with the name frame property. But normally you
don’t specify this explicitly, and XEmacs computes the title automatically.

XEmacs computes the frame title based on a template stored in the variable frame-
title-format.

Variableframe-title-format
This variable specifies how to compute a title for a frame when you have not explicitly
specified one.
The variable’s value is actually a modeline construct, just like modeline-format. See
Section 26.3.1 [Modeline Data], page 377.

Variableframe-icon-title-format
This variable specifies how to compute the title for an iconified frame, when you have
not explicitly specified the frame title. This title appears in the icon itself.

Functionx-set-frame-icon-pixmap frame pixmap &optional mask
This function sets the icon of the given frame to the given image instance, which
should be an image instance object (as returned by make-image-instance), a glyph
object (as returned by make-glyph), or nil. If a glyph object is given, the glyph will
be instantiated on the frame to produce an image instance object.
If the given image instance has a mask, that will be used as the icon mask; however,
not all window managers support this.
The window manager is also not required to support color pixmaps, only bitmaps
(one plane deep).
If the image instance does not have a mask, then the optional third argument may be
the image instance to use as the mask (it must be one plane deep). See Chapter 43
[Glyphs], page 635.

32.4 Deleting Frames

Frames remain potentially visible until you explicitly delete them. A deleted frame
cannot appear on the screen, but continues to exist as a Lisp object until there are no
references to it.

Commanddelete-frame &optional frame
This function deletes the frame frame. By default, frame is the selected frame.

Functionframe-live-p frame
The function frame-live-p returns non-nil if the frame frame has not been deleted.

Chapter 32: Frames 481

32.5 Finding All Frames

Functionframe-list
The function frame-list returns a list of all the frames that have not been deleted.
It is analogous to buffer-list for buffers. The list that you get is newly created, so
modifying the list doesn’t have any effect on the internals of XEmacs.

Functiondevice-frame-list &optional device
This function returns a list of all frames on device. If device is nil, the selected
device will be used.

Functionvisible-frame-list &optional device
This function returns a list of just the currently visible frames. If device is specified
only frames on that device will be returned. See Section 32.9 [Visibility of Frames],
page 484. (TTY frames always count as “visible”, even though only the selected one
is actually displayed.)

Functionnext-frame &optional frame minibuf
The function next-frame lets you cycle conveniently through all the frames from an
arbitrary starting point. It returns the “next” frame after frame in the cycle. If frame
is omitted or nil, it defaults to the selected frame.

The second argument, minibuf, says which frames to consider:

nil Exclude minibuffer-only frames.

visible Consider all visible frames.

0 Consider all visible or iconified frames.

a window Consider only the frames using that particular window as their minibuffer.

the symbol visible
Include all visible frames.

0 Include all visible and iconified frames.

anything else
Consider all frames.

Functionprevious-frame &optional frame minibuf
Like next-frame, but cycles through all frames in the opposite direction.

See also next-window and previous-window, in Section 31.5 [Cyclic Window Ordering],
page 455.

482 XEmacs Lisp Reference Manual

32.6 Frames and Windows

Each window is part of one and only one frame; you can get the frame with window-
frame.

Functionframe-root-window &optional frame
This returns the root window of frame frame. frame defaults to the selected frame if
not specified.

Functionwindow-frame &optional window
This function returns the frame that window is on. window defaults to the selected
window if omitted.

All the non-minibuffer windows in a frame are arranged in a cyclic order. The order
runs from the frame’s top window, which is at the upper left corner, down and to the right,
until it reaches the window at the lower right corner (always the minibuffer window, if the
frame has one), and then it moves back to the top.

Functionframe-top-window frame
This returns the topmost, leftmost window of frame frame.

At any time, exactly one window on any frame is selected within the frame. The signif-
icance of this designation is that selecting the frame also selects this window. You can get
the frame’s current selected window with frame-selected-window.

Functionframe-selected-window &optional frame
This function returns the window on frame that is selected within frame. frame
defaults to the selected frame if not specified.

Conversely, selecting a window for XEmacs with select-window also makes that window
selected within its frame. See Section 31.4 [Selecting Windows], page 454.

Another function that (usually) returns one of the windows in a frame is minibuffer-
window. See Section 18.8 [Minibuffer Misc], page 282.

32.7 Minibuffers and Frames

Normally, each frame has its own minibuffer window at the bottom, which is used when-
ever that frame is selected. If the frame has a minibuffer, you can get it with minibuffer-
window (see Section 18.8 [Minibuffer Misc], page 282).

However, you can also create a frame with no minibuffer. Such a frame must use the
minibuffer window of some other frame. When you create the frame, you can specify
explicitly the minibuffer window to use (in some other frame). If you don’t, then the
minibuffer is found in the frame which is the value of the variable default-minibuffer-
frame. Its value should be a frame which does have a minibuffer.

Variabledefault-minibuffer-frame
This variable specifies the frame to use for the minibuffer window, by default.

Chapter 32: Frames 483

32.8 Input Focus

At any time, one frame in XEmacs is the selected frame. The selected window always
resides on the selected frame. As the focus moves from device to device, the selected frame
on each device is remembered and restored when the focus moves back to that device.

Functionselected-frame &optional device
This function returns the selected frame on device. If device is not specified, the
selected device will be used. If no frames exist on the device, nil is returned.

The X server normally directs keyboard input to the X window that the mouse is in.
Some window managers use mouse clicks or keyboard events to shift the focus to various X
windows, overriding the normal behavior of the server.

Lisp programs can switch frames “temporarily” by calling the function select-frame.
This does not override the window manager; rather, it escapes from the window manager’s
control until that control is somehow reasserted.

When using a text-only terminal, there is no window manager; therefore, select-frame
is the only way to switch frames, and the effect lasts until overridden by a subsequent call to
select-frame. Only the selected terminal frame is actually displayed on the terminal. Each
terminal screen except for the initial one has a number, and the number of the selected frame
appears in the mode line after the word ‘XEmacs’ (see Section 26.3.2 [Modeline Variables],
page 378).

Functionselect-frame frame
This function selects frame frame, temporarily disregarding the focus of the X server
if any. The selection of frame lasts until the next time the user does something to
select a different frame, or until the next time this function is called.
Note that select-frame does not actually cause the window-system focus to be set
to this frame, or the select-frame-hook or deselect-frame-hook to be run, until
the next time that XEmacs is waiting for an event.
Also note that when the variable focus-follows-mouse is non-nil, the frame selec-
tion is temporary and is reverted when the current command terminates, much like
the buffer selected by set-buffer. In order to effect a permanent focus change use
focus-frame.

Functionfocus-frame frame
This function selects frame and gives it the window system focus. The operation of
focus-frame is not affected by the value of focus-follows-mouse.

Macrosave-selected-frame forms. . .
This macro records the selected frame, executes forms in sequence, then restores the
earlier selected frame. The value returned is the value of the last form.

Macrowith-selected-frame frame forms. . .
This macro records the selected frame, then selects frame and executes forms in
sequence. After the last form is finished, the earlier selected frame is restored. The
value returned is the value of the last form.

484 XEmacs Lisp Reference Manual

32.9 Visibility of Frames

An X window frame may be visible, invisible, or iconified. If it is visible, you can see its
contents. If it is iconified, the frame’s contents do not appear on the screen, but an icon
does. If the frame is invisible, it doesn’t show on the screen, not even as an icon.

Visibility is meaningless for TTY frames, since only the selected one is actually displayed
in any case.

Commandmake-frame-visible &optional frame
This function makes frame frame visible. If you omit frame, it makes the selected
frame visible.

Commandmake-frame-invisible &optional frame
This function makes frame frame invisible.

Commandiconify-frame &optional frame
This function iconifies frame frame.

Commanddeiconify-frame &optional frame
This function de-iconifies frame frame. Under X, this is equivalent to make-frame-
visible.

Functionframe-visible-p frame
This returns whether frame is currently “visible” (actually in use for display). A
frame that is not visible is not updated, and, if it works through a window system,
may not show at all.

Functionframe-iconified-p frame
This returns whether frame is iconified. Not all window managers use icons; some
merely unmap the window, so this function is not the inverse of frame-visible-p.
It is possible for a frame to not be visible and not be iconified either. However, if the
frame is iconified, it will not be visible. (Under FSF Emacs, the functionality of this
function is obtained through frame-visible-p.)

Functionframe-totally-visible-p frame
This returns whether frame is not obscured by any other X windows. On TTY frames,
this is the same as frame-visible-p.

32.10 Raising and Lowering Frames

The X Window System uses a desktop metaphor. Part of this metaphor is the idea that
windows are stacked in a notional third dimension perpendicular to the screen surface, and
thus ordered from “highest” to “lowest”. Where two windows overlap, the one higher up

Chapter 32: Frames 485

covers the one underneath. Even a window at the bottom of the stack can be seen if no
other window overlaps it.

A window’s place in this ordering is not fixed; in fact, users tend to change the order
frequently. Raising a window means moving it “up”, to the top of the stack. Lowering a
window means moving it to the bottom of the stack. This motion is in the notional third
dimension only, and does not change the position of the window on the screen.

You can raise and lower XEmacs’s X windows with these functions:

Commandraise-frame &optional frame
This function raises frame frame.

Commandlower-frame &optional frame
This function lowers frame frame.

You can also specify auto-raise (raising automatically when a frame is selected) or auto-
lower (lowering automatically when it is deselected). Under X, most ICCCM-compliant
window managers will have an option to do this for you, but the following variables are
provided in case you’re using a broken WM. (Under FSF Emacs, the same functionality is
provided through the auto-raise and auto-lower frame properties.)

Variableauto-raise-frame
This variable’s value is t if frames will be raised to the top when selected.

Variableauto-lower-frame
This variable’s value is t if frames will be lowered to the bottom when no longer
selected.

Auto-raising and auto-lowering is implemented through functions attached to select-
frame-hook and deselect-frame-hook (see Section 32.12 [Frame Hooks], page 486). Under
normal circumstances, you should not call these functions directly.

Functiondefault-select-frame-hook
This hook function implements the auto-raise-frame variable; it is for use as the
value of select-frame-hook.

Functiondefault-deselect-frame-hook
This hook function implements the auto-lower-frame variable; it is for use as the
value of deselect-frame-hook.

32.11 Frame Configurations

A frame configuration records the current arrangement of frames, all their properties,
and the window configuration of each one.

486 XEmacs Lisp Reference Manual

Functioncurrent-frame-configuration
This function returns a frame configuration list that describes the current arrangement
of frames and their contents.

Functionset-frame-configuration configuration
This function restores the state of frames described in configuration.

32.12 Hooks for Customizing Frame Behavior

XEmacs provides many hooks that are called at various times during a frame’s lifetime.
See Section 26.4 [Hooks], page 382.

Variablecreate-frame-hook
This hook is called each time a frame is created. The functions are called with one
argument, the newly-created frame.

Variabledelete-frame-hook
This hook is called each time a frame is deleted. The functions are called with one
argument, the about-to-be-deleted frame.

Variableselect-frame-hook
This is a normal hook that is run just after a frame is selected. The function default-
select-frame-hook, which implements auto-raising (see Section 32.10 [Raising and
Lowering], page 484), is normally attached to this hook.
Note that calling select-frame does not necessarily set the focus: The actual
window-system focus will not be changed until the next time that XEmacs is waiting
for an event, and even then, the window manager may refuse the focus-change
request.

Variabledeselect-frame-hook
This is a normal hook that is run just before a frame is deselected (and another frame
is selected). The function default-deselect-frame-hook, which implements auto-
lowering (see Section 32.10 [Raising and Lowering], page 484), is normally attached
to this hook.

Variablemap-frame-hook
This hook is called each time a frame is mapped (i.e. made visible). The functions
are called with one argument, the newly mapped frame.

Variableunmap-frame-hook
This hook is called each time a frame is unmapped (i.e. made invisible or iconified).
The functions are called with one argument, the newly unmapped frame.

Chapter 33: Consoles and Devices 487

33 Consoles and Devices

A console is an object representing a single input connection to XEmacs, such as an X
display or a TTY connection. It is possible for XEmacs to have frames on multiple consoles
at once (even on heterogeneous types – you can simultaneously have a frame on an X display
and a TTY connection). Normally, there is only one console in existence.

A device is an object representing a single output device, such as a particular screen
on an X display. (Usually there is exactly one device per X console connection, but there
may be more than one if you have a multi-headed X display. For TTY connections, there
is always exactly one device per console.)

Each device has one or more frames in which text can be displayed. For X displays and
the like, a frame corresponds to the normal window-system concept of a window. Frames
can overlap, be displayed at various locations within the display, be resized, etc. For TTY,
only one frame can be displayed at a time, and it occupies the entire TTY display area.

However, you can still define multiple frames and switch between them. Their contents
are entirely separate from each other. These sorts of frames resemble the “virtual con-
sole” capability provided under Linux or the multiple screens provided by the multiplexing
program ‘screen’ under Unix.

When you start up XEmacs, an initial console and device are created to receive input
and display frames on. This will either be an X display or a TTY connection, depending
on what mode you started XEmacs in (this is determined by the ‘DISPLAY’ environment
variable, the ‘-nw’, ‘-t’ and ‘-display’ command-line options, etc.).

You can connect to other X displays and TTY connections by creating new console
objects, and to other X screens on an existing display by creating new device objects,
as described below. Many functions (for example the frame-creation functions) take an
optional device argument specifying which device the function pertains to. If the argument
is omitted, it defaults to the selected device (see below).

Functionconsolep object
This returns non-nil if object is a console.

Functiondevicep object
This returns non-nil if object is a device.

33.1 Basic Console Functions

Functionconsole-list
This function returns a list of all existing consoles.

Functionconsole-device-list &optional console
This function returns a list of all devices on console. If console is nil, the selected
console will be used.

488 XEmacs Lisp Reference Manual

33.2 Basic Device Functions

Functiondevice-list
This function returns a list of all existing devices.

Functiondevice-or-frame-p object
This function returns non-nil if object is a device or frame. This function is useful
because devices and frames are similar in many respects and many functions can
operate on either one.

Functiondevice-frame-list device
This function returns a list of all frames on device.

Functionframe-device frame
This function returns the device that frame is on.

33.3 Console Types and Device Classes

Every device is of a particular type, which describes how the connection to that de-
vice is made and how the device operates, and a particular class, which describes other
characteristics of the device (currently, the color capabilities of the device).

The currently-defined device types are

x A connection to an X display (such as ‘willow:0’).

tty A connection to a tty (such as ‘/dev/ttyp3’).

stream A stdio connection. This describes a device for which input and output is only
possible in a stream-like fashion, such as when XEmacs in running in batch
mode. The very first device created by XEmacs is a terminal device and is used
to print out messages of various sorts (for example, the help message when you
use the ‘-help’ command-line option).

The currently-defined device classes are

color A color device.

grayscale
A grayscale device (a device that can display multiple shades of gray, but no
color).

mono A device that can only display two colors (e.g. black and white).

Functiondevice-type device
This function returns the type of device. This is a symbol whose name is one of the
device types mentioned above.

Chapter 33: Consoles and Devices 489

Functiondevice-or-frame-type device-or-frame
This function returns the type of device-or-frame.

Functiondevice-class device
This function returns the class (color behavior) of device. This is a symbol whose
name is one of the device classes mentioned above.

Functionvalid-device-type-p device-type
This function returns whether device-type (which should be a symbol) species a valid
device type.

Functionvalid-device-class-p device-class
This function returns whether device-class (which should be a symbol) species a valid
device class.

Variableterminal-device
This variable holds the initial terminal device object, which represents XEmacs’s
stdout.

33.4 Connecting to a Console or Device

Functionmake-device &optional type device-data
This function creates a new device.

The following two functions create devices of specific types and are written in terms of
make-device.

Functionmake-tty-device &optional tty terminal-type
This function creates a new tty device on tty. This also creates the tty’s first frame.
tty should be a string giving the name of a tty device file (e.g. ‘/dev/ttyp3’ under
SunOS et al.), as returned by the ‘tty’ command issued from the Unix shell. A
value of nil means use the stdin and stdout as passed to XEmacs from the shell. If
terminal-type is non-nil, it should be a string specifying the type of the terminal
attached to the specified tty. If it is nil, the terminal type will be inferred from the
‘TERM’ environment variable.

Functionmake-x-device &optional display argv-list
This function creates a new device connected to display. Optional argument argv-list
is a list of strings describing command line options.

Functiondelete-device device
This function deletes device, permanently eliminating it from use. This disconnects
XEmacs’s connection to the device.

490 XEmacs Lisp Reference Manual

Variablecreate-device-hook
This variable, if non-nil, should contain a list of functions, which are called when a
device is created.

Variabledelete-device-hook
This variable, if non-nil, should contain a list of functions, which are called when a
device is deleted.

Functionconsole-live-p object
This function returns non-nil if object is a console that has not been deleted.

Functiondevice-live-p object
This function returns non-nil if object is a device that has not been deleted.

Functiondevice-x-display device
This function returns the X display which device is connected to, if device is an X
device.

33.5 The Selected Console and Device

Functionselect-console console
This function selects the console console. Subsequent editing commands apply to its
selected device, selected frame, and selected window. The selection of console lasts
until the next time the user does something to select a different console, or until the
next time this function is called.

Functionselected-console
This function returns the console which is currently active.

Functionselect-device device
This function selects the device device.

Functionselected-device &optional console
This function returns the device which is currently active. If optional console is non-
nil, this function returns the device that would be currently active if console were
the selected console.

Chapter 33: Consoles and Devices 491

33.6 Console and Device I/O

Functionconsole-disable-input console
This function disables input on console console.

Functionconsole-enable-input console
This function enables input on console console.

Each device has a baud rate value associated with it. On most systems, changing this
value will affect the amount of padding and other strategic decisions made during redisplay.

Functiondevice-baud-rate &optional device
This function returns the output baud rate of device.

Functionset-device-baud-rate device rate
This function sets the output baud rate of device to rate.

492 XEmacs Lisp Reference Manual

Chapter 34: Positions 493

34 Positions

A position is the index of a character in the text of a buffer. More precisely, a position
identifies the place between two characters (or before the first character, or after the last
character), so we can speak of the character before or after a given position. However, we
often speak of the character “at” a position, meaning the character after that position.

Positions are usually represented as integers starting from 1, but can also be represented
as markers—special objects that relocate automatically when text is inserted or deleted so
they stay with the surrounding characters. See Chapter 35 [Markers], page 505.

34.1 Point

Point is a special buffer position used by many editing commands, including the self-
inserting typed characters and text insertion functions. Other commands move point
through the text to allow editing and insertion at different places.

Like other positions, point designates a place between two characters (or before the first
character, or after the last character), rather than a particular character. Usually terminals
display the cursor over the character that immediately follows point; point is actually before
the character on which the cursor sits.

The value of point is a number between 1 and the buffer size plus 1. If narrowing is in
effect (see Section 34.4 [Narrowing], page 502), then point is constrained to fall within the
accessible portion of the buffer (possibly at one end of it).

Each buffer has its own value of point, which is independent of the value of point in
other buffers. Each window also has a value of point, which is independent of the value of
point in other windows on the same buffer. This is why point can have different values in
various windows that display the same buffer. When a buffer appears in only one window,
the buffer’s point and the window’s point normally have the same value, so the distinction
is rarely important. See Section 31.9 [Window Point], page 462, for more details.

Functionpoint &optional buffer
This function returns the value of point in buffer, as an integer. buffer defaults to
the current buffer if omitted.

(point)
⇒ 175

Functionpoint-min &optional buffer
This function returns the minimum accessible value of point in buffer. This is normally
1, but if narrowing is in effect, it is the position of the start of the region that you
narrowed to. (See Section 34.4 [Narrowing], page 502.) buffer defaults to the current
buffer if omitted.

Functionpoint-max &optional buffer
This function returns the maximum accessible value of point in buffer. This is (1+
(buffer-size buffer)), unless narrowing is in effect, in which case it is the position

494 XEmacs Lisp Reference Manual

of the end of the region that you narrowed to. (see Section 34.4 [Narrowing], page 502).
buffer defaults to the current buffer if omitted.

Functionbuffer-end flag &optional buffer
This function returns (point-min buffer) if flag is less than 1, (point-max buffer)
otherwise. The argument flag must be a number. buffer defaults to the current buffer
if omitted.

Functionbuffer-size &optional buffer
This function returns the total number of characters in buffer. In the absence of any
narrowing (see Section 34.4 [Narrowing], page 502), point-max returns a value one
larger than this. buffer defaults to the current buffer if omitted.

(buffer-size)
⇒ 35

(point-max)
⇒ 36

Variablebuffer-saved-size
The value of this buffer-local variable is the former length of the current buffer, as of
the last time it was read in, saved or auto-saved.

34.2 Motion

Motion functions change the value of point, either relative to the current value of point,
relative to the beginning or end of the buffer, or relative to the edges of the selected window.
See Section 34.1 [Point], page 493.

34.2.1 Motion by Characters

These functions move point based on a count of characters. goto-char is the fundamen-
tal primitive; the other functions use that.

Commandgoto-char position &optional buffer
This function sets point in buffer to the value position. If position is less than 1, it
moves point to the beginning of the buffer. If position is greater than the length of
the buffer, it moves point to the end. buffer defaults to the current buffer if omitted.

If narrowing is in effect, position still counts from the beginning of the buffer, but
point cannot go outside the accessible portion. If position is out of range, goto-char
moves point to the beginning or the end of the accessible portion.

When this function is called interactively, position is the numeric prefix argument, if
provided; otherwise it is read from the minibuffer.

goto-char returns position.

Chapter 34: Positions 495

Commandforward-char &optional count buffer
This function moves point count characters forward, towards the end of the buffer (or
backward, towards the beginning of the buffer, if count is negative). If the function
attempts to move point past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), an error is signaled with error code
beginning-of-buffer or end-of-buffer. buffer defaults to the current buffer if
omitted.

In an interactive call, count is the numeric prefix argument.

Commandbackward-char &optional count buffer
This function moves point count characters backward, towards the beginning of the
buffer (or forward, towards the end of the buffer, if count is negative). If the function
attempts to move point past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), an error is signaled with error code
beginning-of-buffer or end-of-buffer. buffer defaults to the current buffer if
omitted.

In an interactive call, count is the numeric prefix argument.

34.2.2 Motion by Words

These functions for parsing words use the syntax table to decide whether a given char-
acter is part of a word. See Chapter 38 [Syntax Tables], page 575.

Commandforward-word count &optional buffer
This function moves point forward count words (or backward if count is negative).
Normally it returns t. If this motion encounters the beginning or end of the buffer,
or the limits of the accessible portion when narrowing is in effect, point stops there
and the value is nil. buffer defaults to the current buffer if omitted.

In an interactive call, count is set to the numeric prefix argument.

Commandbackward-word count &optional buffer
This function is just like forward-word, except that it moves backward until encoun-
tering the front of a word, rather than forward. buffer defaults to the current buffer
if omitted.

In an interactive call, count is set to the numeric prefix argument.

This function is rarely used in programs, as it is more efficient to call forward-word
with a negative argument.

Variablewords-include-escapes
This variable affects the behavior of forward-word and everything that uses it. If
it is non-nil, then characters in the “escape” and “character quote” syntax classes
count as part of words. Otherwise, they do not.

496 XEmacs Lisp Reference Manual

34.2.3 Motion to an End of the Buffer

To move point to the beginning of the buffer, write:
(goto-char (point-min))

Likewise, to move to the end of the buffer, use:
(goto-char (point-max))

Here are two commands that users use to do these things. They are documented here to
warn you not to use them in Lisp programs, because they set the mark and display messages
in the echo area.

Commandbeginning-of-buffer &optional n
This function moves point to the beginning of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position. If n
is non-nil, then it puts point n tenths of the way from the beginning of the buffer.

In an interactive call, n is the numeric prefix argument, if provided; otherwise n
defaults to nil.

Don’t use this function in Lisp programs!

Commandend-of-buffer &optional n
This function moves point to the end of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position. If n
is non-nil, then it puts point n tenths of the way from the end of the buffer.

In an interactive call, n is the numeric prefix argument, if provided; otherwise n
defaults to nil.

Don’t use this function in Lisp programs!

34.2.4 Motion by Text Lines

Text lines are portions of the buffer delimited by newline characters, which are regarded
as part of the previous line. The first text line begins at the beginning of the buffer, and
the last text line ends at the end of the buffer whether or not the last character is a newline.
The division of the buffer into text lines is not affected by the width of the window, by line
continuation in display, or by how tabs and control characters are displayed.

Commandgoto-line line
This function moves point to the front of the lineth line, counting from line 1 at
beginning of the buffer. If line is less than 1, it moves point to the beginning of the
buffer. If line is greater than the number of lines in the buffer, it moves point to the
end of the buffer—that is, the end of the last line of the buffer. This is the only case
in which goto-line does not necessarily move to the beginning of a line.

If narrowing is in effect, then line still counts from the beginning of the buffer, but
point cannot go outside the accessible portion. So goto-line moves point to the

Chapter 34: Positions 497

beginning or end of the accessible portion, if the line number specifies an inaccessible
position.

The return value of goto-line is the difference between line and the line number of
the line to which point actually was able to move (in the full buffer, before taking
account of narrowing). Thus, the value is positive if the scan encounters the real end
of the buffer. The value is zero if scan encounters the end of the accessible portion
but not the real end of the buffer.

In an interactive call, line is the numeric prefix argument if one has been provided.
Otherwise line is read in the minibuffer.

Commandbeginning-of-line &optional count buffer
This function moves point to the beginning of the current line. With an argument
count not nil or 1, it moves forward count−1 lines and then to the beginning of the
line. buffer defaults to the current buffer if omitted.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

Commandend-of-line &optional count buffer
This function moves point to the end of the current line. With an argument count
not nil or 1, it moves forward count−1 lines and then to the end of the line. buffer
defaults to the current buffer if omitted.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

Commandforward-line &optional count buffer
This function moves point forward count lines, to the beginning of the line. If count
is negative, it moves point −count lines backward, to the beginning of a line. If count
is zero, it moves point to the beginning of the current line. buffer defaults to the
current buffer if omitted.

If forward-line encounters the beginning or end of the buffer (or of the accessible
portion) before finding that many lines, it sets point there. No error is signaled.

forward-line returns the difference between count and the number of lines actually
moved. If you attempt to move down five lines from the beginning of a buffer that
has only three lines, point stops at the end of the last line, and the value will be 2.

In an interactive call, count is the numeric prefix argument.

Functioncount-lines start end
This function returns the number of lines between the positions start and end in the
current buffer. If start and end are equal, then it returns 0. Otherwise it returns at
least 1, even if start and end are on the same line. This is because the text between
them, considered in isolation, must contain at least one line unless it is empty.

Here is an example of using count-lines:

498 XEmacs Lisp Reference Manual

(defun current-line ()
"Return the vertical position of point..."
(+ (count-lines (window-start) (point))

(if (= (current-column) 0) 1 0)
-1))

Also see the functions bolp and eolp in Section 36.1 [Near Point], page 517. These
functions do not move point, but test whether it is already at the beginning or end of a
line.

34.2.5 Motion by Screen Lines

The line functions in the previous section count text lines, delimited only by newline
characters. By contrast, these functions count screen lines, which are defined by the way
the text appears on the screen. A text line is a single screen line if it is short enough to fit
the width of the selected window, but otherwise it may occupy several screen lines.

In some cases, text lines are truncated on the screen rather than continued onto addi-
tional screen lines. In these cases, vertical-motion moves point much like forward-line.
See Section 45.2 [Truncation], page 658.

Because the width of a given string depends on the flags that control the appearance of
certain characters, vertical-motion behaves differently, for a given piece of text, depending
on the buffer it is in, and even on the selected window (because the width, the truncation
flag, and display table may vary between windows). See Section 45.10 [Usual Display],
page 668.

These functions scan text to determine where screen lines break, and thus take time
proportional to the distance scanned. If you intend to use them heavily, Emacs provides
caches which may improve the performance of your code. See Section 34.2.4 [Text Lines],
page 496.

Functionvertical-motion count &optional window pixels
This function moves point to the start of the frame line count frame lines down from
the frame line containing point. If count is negative, it moves up instead. The optional
second argument window may be used to specify a window other than the selected
window in which to perform the motion.
Normally, vertical-motion returns the number of lines moved. The value may be
less in absolute value than count if the beginning or end of the buffer was reached. If
the optional third argument, pixels is non-nil, the vertical pixel height of the motion
which took place is returned instead of the actual number of lines moved. A motion
of zero lines returns the height of the current line.
Note that vertical-motion sets window ’s buffer’s point, not window ’s point. (This
differs from FSF Emacs, which buggily always sets current buffer’s point, regardless
of window.)

Functionvertical-motion-pixels count &optional window how
This function moves point to the start of the frame line pixels vertical pixels down
from the frame line containing point, or up if pixels is negative. The optional second

Chapter 34: Positions 499

argument window is the window to move in, and defaults to the selected window.
The optional third argument how specifies the stopping condition. A negative integer
indicates that the motion should be no more than pixels. A positive value indicates
that the motion should be at least pixels. Any other value indicates that the motion
should be as close as possible to pixels.

Commandmove-to-window-line count &optional window
This function moves point with respect to the text currently displayed in window,
which defaults to the selected window. It moves point to the beginning of the screen
line count screen lines from the top of the window. If count is negative, that specifies
a position −count lines from the bottom (or the last line of the buffer, if the buffer
ends above the specified screen position).

If count is nil, then point moves to the beginning of the line in the middle of the
window. If the absolute value of count is greater than the size of the window, then
point moves to the place that would appear on that screen line if the window were tall
enough. This will probably cause the next redisplay to scroll to bring that location
onto the screen.

In an interactive call, count is the numeric prefix argument.

The value returned is the window line number point has moved to, with the top line
in the window numbered 0.

34.2.6 Moving over Balanced Expressions

Here are several functions concerned with balanced-parenthesis expressions (also called
sexps in connection with moving across them in XEmacs). The syntax table controls how
these functions interpret various characters; see Chapter 38 [Syntax Tables], page 575. See
Section 38.5 [Parsing Expressions], page 582, for lower-level primitives for scanning sexps or
parts of sexps. For user-level commands, see section “Lists and Sexps” in XEmacs Reference
Manual.

Commandforward-list &optional arg
This function moves forward across arg balanced groups of parentheses. (Other syn-
tactic entities such as words or paired string quotes are ignored.) arg defaults to 1 if
omitted. If arg is negative, move backward across that many groups of parentheses.

Commandbackward-list &optional arg
This function moves backward across arg balanced groups of parentheses. (Other
syntactic entities such as words or paired string quotes are ignored.) arg defaults to 1
if omitted. If arg is negative, move forward across that many groups of parentheses.

Commandup-list arg
This function moves forward out of arg levels of parentheses. A negative argument
means move backward but still to a less deep spot.

500 XEmacs Lisp Reference Manual

Commanddown-list arg
This function moves forward into arg levels of parentheses. A negative argument
means move backward but still go deeper in parentheses (−arg levels).

Commandforward-sexp &optional arg
This function moves forward across arg balanced expressions. Balanced expressions
include both those delimited by parentheses and other kinds, such as words and string
constants. arg defaults to 1 if omitted. If arg is negative, move backward across that
many balanced expressions. For example,

---------- Buffer: foo ----------
(concat? "foo " (car x) y z)
---------- Buffer: foo ----------

(forward-sexp 3)
⇒ nil

---------- Buffer: foo ----------
(concat "foo " (car x) y? z)
---------- Buffer: foo ----------

Commandbackward-sexp &optional arg
This function moves backward across arg balanced expressions. arg defaults to 1 if
omitted. If arg is negative, move forward across that many balanced expressions.

Commandbeginning-of-defun &optional arg
This function moves back to the argth beginning of a defun. If arg is negative, this
actually moves forward, but it still moves to the beginning of a defun, not to the end
of one. arg defaults to 1 if omitted.

Commandend-of-defun &optional arg
This function moves forward to the argth end of a defun. If arg is negative, this
actually moves backward, but it still moves to the end of a defun, not to the beginning
of one. arg defaults to 1 if omitted.

User Optiondefun-prompt-regexp
If non-nil, this variable holds a regular expression that specifies what text can appear
before the open-parenthesis that starts a defun. That is to say, a defun begins on a
line that starts with a match for this regular expression, followed by a character with
open-parenthesis syntax.

34.2.7 Skipping Characters

The following two functions move point over a specified set of characters. For example,
they are often used to skip whitespace. For related functions, see Section 38.4 [Motion and
Syntax], page 581.

Chapter 34: Positions 501

Functionskip-chars-forward character-set &optional limit buffer
This function moves point in buffer forward, skipping over a given set of characters. It
examines the character following point, then advances point if the character matches
character-set. This continues until it reaches a character that does not match. The
function returns nil. buffer defaults to the current buffer if omitted.
The argument character-set is like the inside of a ‘[...]’ in a regular expression
except that ‘]’ is never special and ‘\’ quotes ‘^’, ‘-’ or ‘\’. Thus, "a-zA-Z" skips
over all letters, stopping before the first non-letter, and "^a-zA-Z" skips non-letters
stopping before the first letter. See Section 37.2 [Regular Expressions], page 556.
If limit is supplied (it must be a number or a marker), it specifies the maximum
position in the buffer that point can be skipped to. Point will stop at or before limit.
In the following example, point is initially located directly before the ‘T’. After the
form is evaluated, point is located at the end of that line (between the ‘t’ of ‘hat’
and the newline). The function skips all letters and spaces, but not newlines.

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(skip-chars-forward "a-zA-Z ")
⇒ nil

---------- Buffer: foo ----------
I read "The cat in the hat?
comes back" twice.
---------- Buffer: foo ----------

Functionskip-chars-backward character-set &optional limit buffer
This function moves point backward, skipping characters that match character-set,
until limit. It just like skip-chars-forward except for the direction of motion.

34.3 Excursions

It is often useful to move point “temporarily” within a localized portion of the program,
or to switch buffers temporarily. This is called an excursion, and it is done with the save-
excursion special form. This construct saves the current buffer and its values of point and
the mark so they can be restored after the completion of the excursion.

The forms for saving and restoring the configuration of windows are described elsewhere
(see Section 31.16 [Window Configurations], page 473 and see Section 32.11 [Frame Config-
urations], page 485).

Special Formsave-excursion forms. . .
The save-excursion special form saves the identity of the current buffer and the
values of point and the mark in it, evaluates forms, and finally restores the buffer and
its saved values of point and the mark. All three saved values are restored even in case
of an abnormal exit via throw or error (see Section 9.5 [Nonlocal Exits], page 136).

502 XEmacs Lisp Reference Manual

The save-excursion special form is the standard way to switch buffers or move point
within one part of a program and avoid affecting the rest of the program. It is used
more than 500 times in the Lisp sources of XEmacs.

save-excursion does not save the values of point and the mark for other buffers, so
changes in other buffers remain in effect after save-excursion exits.

Likewise, save-excursion does not restore window-buffer correspondences altered
by functions such as switch-to-buffer. One way to restore these correspondences,
and the selected window, is to use save-window-excursion inside save-excursion
(see Section 31.16 [Window Configurations], page 473).

The value returned by save-excursion is the result of the last of forms, or nil if no
forms are given.

(save-excursion
forms)
≡
(let ((old-buf (current-buffer))

(old-pnt (point-marker))
(old-mark (copy-marker (mark-marker))))

(unwind-protect
(progn forms)

(set-buffer old-buf)
(goto-char old-pnt)
(set-marker (mark-marker) old-mark)))

Special Formsave-current-buffer forms. . .
This special form is similar to save-excursion but it only saves and restores the
current buffer. Beginning with XEmacs 20.3, save-current-buffer is a primitive.

Special Formwith-current-buffer buffer forms. . .
This special form evaluates forms with buffer as the current buffer. It returns the
value of the last form.

Special Formwith-temp-file file forms. . .
This special form creates a new buffer, evaluates forms there, and writes the buffer
to file. It returns the value of the last form evaluated.

Special Formsave-selected-window forms. . .
This special form is similar to save-excursion but it saves and restores the selected
window and nothing else.

34.4 Narrowing

Narrowing means limiting the text addressable by XEmacs editing commands to a lim-
ited range of characters in a buffer. The text that remains addressable is called the accessible
portion of the buffer.

Chapter 34: Positions 503

Narrowing is specified with two buffer positions which become the beginning and end
of the accessible portion. For most editing commands and most Emacs primitives, these
positions replace the values of the beginning and end of the buffer. While narrowing is in
effect, no text outside the accessible portion is displayed, and point cannot move outside
the accessible portion.

Values such as positions or line numbers, which usually count from the beginning of the
buffer, do so despite narrowing, but the functions which use them refuse to operate on text
that is inaccessible.

The commands for saving buffers are unaffected by narrowing; they save the entire buffer
regardless of any narrowing.

Commandnarrow-to-region start end &optional buffer
This function sets the accessible portion of buffer to start at start and end at end.
Both arguments should be character positions. buffer defaults to the current buffer
if omitted.
In an interactive call, start and end are set to the bounds of the current region (point
and the mark, with the smallest first).

Commandnarrow-to-page &optional move-count
This function sets the accessible portion of the current buffer to include just the
current page. An optional first argument move-count non-nil means to move forward
or backward by move-count pages and then narrow. The variable page-delimiter
specifies where pages start and end (see Section 37.8 [Standard Regexps], page 572).
In an interactive call, move-count is set to the numeric prefix argument.

Commandwiden &optional buffer
This function cancels any narrowing in buffer, so that the entire contents are acces-
sible. This is called widening. It is equivalent to the following expression:

(narrow-to-region 1 (1+ (buffer-size)))

buffer defaults to the current buffer if omitted.

Special Formsave-restriction body. . .
This special form saves the current bounds of the accessible portion, evaluates the
body forms, and finally restores the saved bounds, thus restoring the same state of
narrowing (or absence thereof) formerly in effect. The state of narrowing is restored
even in the event of an abnormal exit via throw or error (see Section 9.5 [Nonlo-
cal Exits], page 136). Therefore, this construct is a clean way to narrow a buffer
temporarily.
The value returned by save-restriction is that returned by the last form in body,
or nil if no body forms were given.
Caution: it is easy to make a mistake when using the save-restriction construct.
Read the entire description here before you try it.
If body changes the current buffer, save-restriction still restores the restrictions
on the original buffer (the buffer whose restrictions it saved from), but it does not
restore the identity of the current buffer.

504 XEmacs Lisp Reference Manual

save-restriction does not restore point and the mark; use save-excursion for
that. If you use both save-restriction and save-excursion together, save-
excursion should come first (on the outside). Otherwise, the old point value would
be restored with temporary narrowing still in effect. If the old point value were outside
the limits of the temporary narrowing, this would fail to restore it accurately.
The save-restriction special form records the values of the beginning and end
of the accessible portion as distances from the beginning and end of the buffer. In
other words, it records the amount of inaccessible text before and after the accessible
portion.
This method yields correct results if body does further narrowing. However, save-
restriction can become confused if the body widens and then make changes out-
side the range of the saved narrowing. When this is what you want to do, save-
restriction is not the right tool for the job. Here is what you must use instead:

(let ((beg (point-min-marker))
(end (point-max-marker)))

(unwind-protect
(progn body)

(save-excursion
(set-buffer (marker-buffer beg))
(narrow-to-region beg end))))

Here is a simple example of correct use of save-restriction:
---------- Buffer: foo ----------
This is the contents of foo
This is the contents of foo
This is the contents of foo?
---------- Buffer: foo ----------

(save-excursion
(save-restriction
(goto-char 1)
(forward-line 2)
(narrow-to-region 1 (point))
(goto-char (point-min))
(replace-string "foo" "bar")))

---------- Buffer: foo ----------
This is the contents of bar
This is the contents of bar
This is the contents of foo?
---------- Buffer: foo ----------

Chapter 35: Markers 505

35 Markers

A marker is a Lisp object used to specify a position in a buffer relative to the surrounding
text. A marker changes its offset from the beginning of the buffer automatically whenever
text is inserted or deleted, so that it stays with the two characters on either side of it.

35.1 Overview of Markers

A marker specifies a buffer and a position in that buffer. The marker can be used to
represent a position in the functions that require one, just as an integer could be used. See
Chapter 34 [Positions], page 493, for a complete description of positions.

A marker has two attributes: the marker position, and the marker buffer. The marker
position is an integer that is equivalent (at a given time) to the marker as a position in
that buffer. But the marker’s position value can change often during the life of the marker.
Insertion and deletion of text in the buffer relocate the marker. The idea is that a marker
positioned between two characters remains between those two characters despite insertion
and deletion elsewhere in the buffer. Relocation changes the integer equivalent of the
marker.

Deleting text around a marker’s position leaves the marker between the characters im-
mediately before and after the deleted text. Inserting text at the position of a marker
normally leaves the marker in front of the new text—unless it is inserted with insert-
before-markers (see Section 36.4 [Insertion], page 520).

Insertion and deletion in a buffer must check all the markers and relocate them if neces-
sary. This slows processing in a buffer with a large number of markers. For this reason, it
is a good idea to make a marker point nowhere if you are sure you don’t need it any more.
Unreferenced markers are garbage collected eventually, but until then will continue to use
time if they do point somewhere.

Because it is common to perform arithmetic operations on a marker position, most of
the arithmetic operations (including + and -) accept markers as arguments. In such cases,
the marker stands for its current position.

Note that you can use extents to achieve the same functionality, and more, as markers.
(Markers were defined before extents, which is why they both continue to exist.) A zero-
length extent with the detachable property removed is almost identical to a marker. (See
Section 40.3 [Extent Endpoints], page 595, for more information on zero-length extents.)

In particular:

• In order to get marker-like behavior in a zero-length extent, the detachable property
must be removed (otherwise, the extent will disappear when text near it is deleted)
and exactly one endpoint must be closed (if both endpoints are closed, the extent will
expand to contain text inserted where it is located).

• If a zero-length extent has the end-open property but not the start-open property
(this is the default), text inserted at the extent’s location causes the extent to move
forward, just like a marker.

506 XEmacs Lisp Reference Manual

• If a zero-length extent has the start-open property but not the end-open property,
text inserted at the extent’s location causes the extent to remain before the text, like
what happens to markers when insert-before-markers is used.

• Markers end up after or before inserted text depending on whether insert or insert-
before-markers was called. These functions do not affect zero-length extents dif-
ferently; instead, the presence or absence of the start-open and end-open extent
properties determines this, as just described.

• Markers are automatically removed from a buffer when they are no longer in use.
Extents remain around until explicitly removed from a buffer.

• Many functions are provided for listing the extents in a buffer or in a region of a buffer.
No such functions exist for markers.

Here are examples of creating markers, setting markers, and moving point to markers:

;; Make a new marker that initially does not point anywhere:
(setq m1 (make-marker))

⇒ #<marker in no buffer>

;; Set m1 to point between the 99th and 100th characters
;; in the current buffer:
(set-marker m1 100)

⇒ #<marker at 100 in markers.texi>

;; Now insert one character at the beginning of the buffer:
(goto-char (point-min))

⇒ 1
(insert "Q")

⇒ nil

;; m1 is updated appropriately.
m1

⇒ #<marker at 101 in markers.texi>

;; Two markers that point to the same position
;; are not eq, but they are equal.
(setq m2 (copy-marker m1))

⇒ #<marker at 101 in markers.texi>
(eq m1 m2)

⇒ nil
(equal m1 m2)

⇒ t

;; When you are finished using a marker, make it point nowhere.
(set-marker m1 nil)

⇒ #<marker in no buffer>

35.2 Predicates on Markers

You can test an object to see whether it is a marker, or whether it is either an integer
or a marker or either an integer, a character, or a marker. The latter tests are useful

Chapter 35: Markers 507

in connection with the arithmetic functions that work with any of markers, integers, or
characters.

Functionmarkerp object
This function returns t if object is a marker, nil otherwise. Note that integers are
not markers, even though many functions will accept either a marker or an integer.

Functioninteger-or-marker-p object
This function returns t if object is an integer or a marker, nil otherwise.

Functioninteger-char-or-marker-p object
This function returns t if object is an integer, a character, or a marker, nil otherwise.

Functionnumber-or-marker-p object
This function returns t if object is a number (either kind) or a marker, nil otherwise.

Functionnumber-char-or-marker-p object
This function returns t if object is a number (either kind), a character, or a marker,
nil otherwise.

35.3 Functions That Create Markers

When you create a new marker, you can make it point nowhere, or point to the present
position of point, or to the beginning or end of the accessible portion of the buffer, or to
the same place as another given marker.

Functionmake-marker
This functions returns a newly created marker that does not point anywhere.

(make-marker)
⇒ #<marker in no buffer>

Functionpoint-marker &optional dont-copy-p buffer
This function returns a marker that points to the present position of point in buffer,
which defaults to the current buffer. See Section 34.1 [Point], page 493. For an
example, see copy-marker, below.
Internally, a marker corresponding to point is always maintained. Normally the
marker returned by point-marker is a copy; you may modify it with reckless abandon.
However, if optional argument dont-copy-p is non-nil, then the real point-marker is
returned; modifying the position of this marker will move point. It is illegal to change
the buffer of it, or make it point nowhere.

Functionpoint-min-marker &optional buffer
This function returns a new marker that points to the beginning of the accessible
portion of buffer, which defaults to the current buffer. This will be the beginning of
the buffer unless narrowing is in effect. See Section 34.4 [Narrowing], page 502.

508 XEmacs Lisp Reference Manual

Functionpoint-max-marker &optional buffer
This function returns a new marker that points to the end of the accessible portion of
buffer, which defaults to the current buffer. This will be the end of the buffer unless
narrowing is in effect. See Section 34.4 [Narrowing], page 502.

Here are examples of this function and point-min-marker, shown in a buffer con-
taining a version of the source file for the text of this chapter.

(point-min-marker)
⇒ #<marker at 1 in markers.texi>

(point-max-marker)
⇒ #<marker at 15573 in markers.texi>

(narrow-to-region 100 200)
⇒ nil

(point-min-marker)
⇒ #<marker at 100 in markers.texi>

(point-max-marker)
⇒ #<marker at 200 in markers.texi>

Functioncopy-marker marker-or-integer
If passed a marker as its argument, copy-marker returns a new marker that points
to the same place and the same buffer as does marker-or-integer. If passed an integer
as its argument, copy-marker returns a new marker that points to position marker-
or-integer in the current buffer.

If passed an integer argument less than 1, copy-marker returns a new marker that
points to the beginning of the current buffer. If passed an integer argument greater
than the length of the buffer, copy-marker returns a new marker that points to the
end of the buffer.

An error is signaled if marker is neither a marker nor an integer.

(setq p (point-marker))
⇒ #<marker at 2139 in markers.texi>

(setq q (copy-marker p))
⇒ #<marker at 2139 in markers.texi>

(eq p q)
⇒ nil

(equal p q)
⇒ t

(point)
⇒ 2139

(set-marker p 3000)
⇒ #<marker at 3000 in markers.texi>

(point)
⇒ 2139

(setq p (point-marker t))
⇒ #<marker at 2139 in markers.texi>

Chapter 35: Markers 509

(set-marker p 3000)
⇒ #<marker at 3000 in markers.texi>

(point)
⇒ 3000

(copy-marker 0)
⇒ #<marker at 1 in markers.texi>

(copy-marker 20000)
⇒ #<marker at 7572 in markers.texi>

35.4 Information from Markers

This section describes the functions for accessing the components of a marker object.

Functionmarker-position marker
This function returns the position that marker points to, or nil if it points nowhere.

Functionmarker-buffer marker
This function returns the buffer that marker points into, or nil if it points nowhere.

(setq m (make-marker))
⇒ #<marker in no buffer>

(marker-position m)
⇒ nil

(marker-buffer m)
⇒ nil

(set-marker m 3770 (current-buffer))
⇒ #<marker at 3770 in markers.texi>

(marker-buffer m)
⇒ #<buffer markers.texi>

(marker-position m)
⇒ 3770

Two distinct markers are considered equal (even though not eq) to each other if they
have the same position and buffer, or if they both point nowhere.

35.5 Changing Marker Positions

This section describes how to change the position of an existing marker. When you do
this, be sure you know whether the marker is used outside of your program, and, if so, what
effects will result from moving it—otherwise, confusing things may happen in other parts
of Emacs.

Functionset-marker marker position &optional buffer
This function moves marker to position in buffer. If buffer is not provided, it defaults
to the current buffer.

510 XEmacs Lisp Reference Manual

If position is less than 1, set-marker moves marker to the beginning of the buffer. If
position is greater than the size of the buffer, set-marker moves marker to the end
of the buffer. If position is nil or a marker that points nowhere, then marker is set
to point nowhere.
The value returned is marker.

(setq m (point-marker))
⇒ #<marker at 4714 in markers.texi>

(set-marker m 55)
⇒ #<marker at 55 in markers.texi>

(setq b (get-buffer "foo"))
⇒ #<buffer foo>

(set-marker m 0 b)
⇒ #<marker at 1 in foo>

Functionmove-marker marker position &optional buffer
This is another name for set-marker.

35.6 The Mark

One special marker in each buffer is designated the mark. It records a position for
the user for the sake of commands such as C-w and C-x 〈TAB〉. Lisp programs should set
the mark only to values that have a potential use to the user, and never for their own
internal purposes. For example, the replace-regexp command sets the mark to the value
of point before doing any replacements, because this enables the user to move back there
conveniently after the replace is finished.

Once the mark “exists” in a buffer, it normally never ceases to exist. However, it
may become inactive, and usually does so after each command (other than simple motion
commands and some commands that explicitly activate the mark). When the mark is
active, the region between point and the mark is called the active region and is highlighted
specially.

Many commands are designed so that when called interactively they operate on the text
between point and the mark. Such commands work only when an active region exists, i.e.
when the mark is active. (The reason for this is to prevent you from accidentally deleting
or changing large chunks of your text.) If you are writing such a command, don’t examine
the mark directly; instead, use interactive with the ‘r’ specification. This provides the
values of point and the mark as arguments to the command in an interactive call, but
permits other Lisp programs to specify arguments explicitly, and automatically signals an
error if the command is called interactively when no active region exists. See Section 19.2.2
[Interactive Codes], page 288.

Each buffer has its own value of the mark that is independent of the value of the mark
in other buffers. (When a buffer is created, the mark exists but does not point anywhere.
We consider this state as “the absence of a mark in that buffer.”) However, only one active
region can exist at a time. Activating the mark in one buffer automatically deactivates
an active mark in any other buffer. Note that the user can explicitly activate a mark at
any time by using the command activate-region (normally bound to M-C-z) or by using

Chapter 35: Markers 511

the command exchange-point-and-mark (normally bound to C-x C-x), which has the side
effect of activating the mark.

Some people do not like active regions, so they disable this behavior by setting the
variable zmacs-regions to nil. This makes the mark always active (except when a buffer
is just created and the mark points nowhere), and turns off the highlighting of the region
between point and the mark. Commands that explicitly retrieve the value of the mark
should make sure that they behave correctly and consistently irrespective of the setting of
zmacs-regions; some primitives are provided to ensure this behavior.

In addition to the mark, each buffer has a mark ring which is a list of markers contain-
ing previous values of the mark. When editing commands change the mark, they should
normally save the old value of the mark on the mark ring. The variable mark-ring-max
specifies the maximum number of entries in the mark ring; once the list becomes this long,
adding a new element deletes the last element.

Functionmark &optional force buffer
This function returns buffer’s mark position as an integer. buffer defaults to the
current buffer if omitted.
If the mark is inactive, mark normally returns nil. However, if force is non-nil, then
mark returns the mark position anyway—or nil, if the mark is not yet set for the
buffer.
(Remember that if zmacs-regions is nil, the mark is always active as long as it exists,
and the force argument will have no effect.)
If you are using this in an editing command, you are most likely making a mistake;
see the documentation of set-mark below.

Functionmark-marker inactive-p buffer
This function returns buffer’s mark. buffer defaults to the current buffer if omitted.
This is the very marker that records the mark location inside XEmacs, not a copy.
Therefore, changing this marker’s position will directly affect the position of the mark.
Don’t do it unless that is the effect you want.
If the mark is inactive, mark-marker normally returns nil. However, if force is
non-nil, then mark-marker returns the mark anyway.

(setq m (mark-marker))
⇒ #<marker at 3420 in markers.texi>

(set-marker m 100)
⇒ #<marker at 100 in markers.texi>

(mark-marker)
⇒ #<marker at 100 in markers.texi>

Like any marker, this marker can be set to point at any buffer you like. We don’t
recommend that you make it point at any buffer other than the one of which it is the
mark. If you do, it will yield perfectly consistent, but rather odd, results.

Functionset-mark position &optional buffer
This function sets buffer’s mark to position, and activates the mark. buffer defaults
to the current buffer if omitted. The old value of the mark is not pushed onto the
mark ring.

512 XEmacs Lisp Reference Manual

Please note: Use this function only if you want the user to see that the mark has
moved, and you want the previous mark position to be lost. Normally, when a new
mark is set, the old one should go on the mark-ring. For this reason, most applica-
tions should use push-mark and pop-mark, not set-mark.
Novice XEmacs Lisp programmers often try to use the mark for the wrong purposes.
The mark saves a location for the user’s convenience. An editing command should
not alter the mark unless altering the mark is part of the user-level functionality of
the command. (And, in that case, this effect should be documented.) To remember a
location for internal use in the Lisp program, store it in a Lisp variable. For example:

(let ((beg (point)))
(forward-line 1)
(delete-region beg (point))).

Commandexchange-point-and-mark &optional dont-activate-region
This function exchanges the positions of point and the mark. It is intended for
interactive use. The mark is also activated unless dont-activate-region is non-nil.

Functionpush-mark &optional position nomsg activate buffer
This function sets buffer’s mark to position, and pushes a copy of the previous mark
onto mark-ring. buffer defaults to the current buffer if omitted. If position is nil,
then the value of point is used. push-mark returns nil.
If the last global mark pushed was not in buffer, also push position on the global
mark ring (see below).
The function push-mark normally does not activate the mark. To do that, specify t
for the argument activate.
A ‘Mark set’ message is displayed unless nomsg is non-nil.

Functionpop-mark
This function pops off the top element of mark-ring and makes that mark become
the buffer’s actual mark. This does not move point in the buffer, and it does nothing
if mark-ring is empty. It deactivates the mark.
The return value is not meaningful.

Variablemark-ring
The value of this buffer-local variable is the list of saved former marks of the current
buffer, most recent first.

mark-ring
⇒ (#<marker at 11050 in markers.texi>

#<marker at 10832 in markers.texi>
...)

User Optionmark-ring-max
The value of this variable is the maximum size of mark-ring. If more marks than
this are pushed onto the mark-ring, push-mark discards an old mark when it adds a
new one.

Chapter 35: Markers 513

In additional to a per-buffer mark ring, there is a global mark ring. Marks are pushed
onto the global mark ring the first time you set a mark after switching buffers.

Variableglobal-mark-ring
The value of this variable is the list of saved former global marks, most recent first.

User Optionmark-ring-max
The value of this variable is the maximum size of global-mark-ring. If more marks
than this are pushed onto the global-mark-ring, push-mark discards an old mark
when it adds a new one.

Commandpop-global-mark
This function pops a mark off the global mark ring and jumps to that location.

35.7 The Region

The text between point and the mark is known as the region. Various functions operate
on text delimited by point and the mark, but only those functions specifically related to
the region itself are described here.

When zmacs-regions is non-nil (this is the default), the concept of an active region
exists. The region is active when the corresponding mark is active. Note that only one
active region at a time can exist – i.e. only one buffer’s region is active at a time. See
Section 35.6 [The Mark], page 510, for more information about active regions.

User Optionzmacs-regions
If non-nil (the default), active regions are used. See Section 35.6 [The Mark],
page 510, for a detailed explanation of what this means.

A number of functions are provided for explicitly determining the bounds of the region
and whether it is active. Few programs need to use these functions, however. A command
designed to operate on a region should normally use interactive with the ‘r’ specification
to find the beginning and end of the region. This lets other Lisp programs specify the bounds
explicitly as arguments and automatically respects the user’s setting for zmacs-regions. (See
Section 19.2.2 [Interactive Codes], page 288.)

Functionregion-beginning &optional buffer
This function returns the position of the beginning of buffer’s region (as an integer).
This is the position of either point or the mark, whichever is smaller. buffer defaults
to the current buffer if omitted.
If the mark does not point anywhere, an error is signaled. Note that this function
ignores whether the region is active.

Functionregion-end &optional buffer
This function returns the position of the end of buffer’s region (as an integer). This
is the position of either point or the mark, whichever is larger. buffer defaults to the
current buffer if omitted.

514 XEmacs Lisp Reference Manual

If the mark does not point anywhere, an error is signaled. Note that this function
ignores whether the region is active.

Functionregion-exists-p
This function is non-nil if the region exists. If active regions are in use (i.e. zmacs-
regions is true), this means that the region is active. Otherwise, this means that
the user has pushed a mark in this buffer at some point in the past. If this function
returns nil, a function that uses the ‘r’ interactive specification will cause an error
when called interactively.

Functionregion-active-p
If zmacs-regions is true, this is equivalent to region-exists-p. Otherwise, this
function always returns false. This function is used by commands such as fill-
paragraph-or-region and capitalize-region-or-word, which operate either on
the active region or on something else (e.g. the word or paragraph at point).

Variablezmacs-region-stays
If a command sets this variable to true, the currently active region will remain ac-
tivated when the command finishes. (Normally the region is deactivated when each
command terminates.) If zmacs-regions is false, however, this has no effect. Under
normal circumstances, you do not need to set this; use the interactive specification
‘_’ instead, if you want the region to remain active.

Functionzmacs-activate-region
This function activates the region in the current buffer (this is equivalent to acti-
vating the current buffer’s mark). This will normally also highlight the text in the
active region and set zmacs-region-stays to t. (If zmacs-regions is false, however, this
function has no effect.)

Functionzmacs-deactivate-region
This function deactivates the region in the current buffer (this is equivalent to deacti-
vating the current buffer’s mark). This will normally also unhighlight the text in the
active region and set zmacs-region-stays to nil. (If zmacs-regions is false, however,
this function has no effect.)

Functionzmacs-update-region
This function updates the active region, if it’s currently active. (If there is no active
region, this function does nothing.) This has the effect of updating the highlighting
on the text in the region; but you should never need to call this except under rather
strange circumstances. The command loop automatically calls it when appropriate.
Calling this function will call the hook zmacs-update-region-hook, if the region is
active.

Variablezmacs-activate-region-hook
This normal hook is called when a region becomes active. (Usually this happens as a
result of a command that activates the region, such as set-mark-command, activate-
region, or exchange-point-and-mark.) Note that calling ‘zmacs-activate-region’

Chapter 35: Markers 515

will call this hook, even if the region is already active. If zmacs-regions is false,
however, this hook will never get called under any circumstances.

Variablezmacs-deactivate-region-hook
This normal hook is called when an active region becomes inactive. (Calling
‘zmacs-deactivate-region’ when the region is inactive will not cause this hook to
be called.) If zmacs-regions is false, this hook will never get called.

Variablezmacs-update-region-hook
This normal hook is called when an active region is "updated" by zmacs-update-
region. This normally gets called at the end of each command that sets zmacs-
region-stays to t, indicating that the region should remain activated. The motion
commands do this.

516 XEmacs Lisp Reference Manual

Chapter 36: Text 517

36 Text

This chapter describes the functions that deal with the text in a buffer. Most examine,
insert, or delete text in the current buffer, often in the vicinity of point. Many are interactive.
All the functions that change the text provide for undoing the changes (see Section 36.9
[Undo], page 529).

Many text-related functions operate on a region of text defined by two buffer positions
passed in arguments named start and end. These arguments should be either markers (see
Chapter 35 [Markers], page 505) or numeric character positions (see Chapter 34 [Positions],
page 493). The order of these arguments does not matter; it is all right for start to be
the end of the region and end the beginning. For example, (delete-region 1 10) and
(delete-region 10 1) are equivalent. An args-out-of-range error is signaled if either
start or end is outside the accessible portion of the buffer. In an interactive call, point and
the mark are used for these arguments.

Throughout this chapter, “text” refers to the characters in the buffer, together with their
properties (when relevant).

36.1 Examining Text Near Point

Many functions are provided to look at the characters around point. Several simple
functions are described here. See also looking-at in Section 37.3 [Regexp Search], page 563.

Many of these functions take an optional buffer argument. In all such cases, the current
buffer will be used if this argument is omitted. (In FSF Emacs, and earlier versions of
XEmacs, these functions usually did not have these optional buffer arguments and always
operated on the current buffer.)

Functionchar-after position &optional buffer
This function returns the character in the buffer at (i.e., immediately after) position
position. If position is out of range for this purpose, either before the beginning of
the buffer, or at or beyond the end, then the value is nil. If optional argument buffer
is nil, the current buffer is assumed.
In the following example, assume that the first character in the buffer is ‘@’:

(char-to-string (char-after 1))
⇒ "@"

Functionfollowing-char &optional buffer
This function returns the character following point in the buffer. This is similar to
(char-after (point)). However, if point is at the end of the buffer, then the result
of following-char is 0. If optional argument buffer is nil, the current buffer is
assumed.
Remember that point is always between characters, and the terminal cursor normally
appears over the character following point. Therefore, the character returned by
following-char is the character the cursor is over.
In this example, point is between the ‘a’ and the ‘c’.

518 XEmacs Lisp Reference Manual

---------- Buffer: foo ----------
Gentlemen may cry ‘‘Pea?ce! Peace!,’’
but there is no peace.
---------- Buffer: foo ----------

(char-to-string (preceding-char))
⇒ "a"

(char-to-string (following-char))
⇒ "c"

Functionpreceding-char &optional buffer
This function returns the character preceding point in the buffer. See above, un-
der following-char, for an example. If point is at the beginning of the buffer,
preceding-char returns 0. If optional argument buffer is nil, the current buffer is
assumed.

Functionbobp &optional buffer
This function returns t if point is at the beginning of the buffer. If narrowing is in
effect, this means the beginning of the accessible portion of the text. If optional argu-
ment buffer is nil, the current buffer is assumed. See also point-min in Section 34.1
[Point], page 493.

Functioneobp &optional buffer
This function returns t if point is at the end of the buffer. If narrowing is in effect,
this means the end of accessible portion of the text. If optional argument buffer is
nil, the current buffer is assumed. See also point-max in See Section 34.1 [Point],
page 493.

Functionbolp &optional buffer
This function returns t if point is at the beginning of a line. If optional argument
buffer is nil, the current buffer is assumed. See Section 34.2.4 [Text Lines], page 496.
The beginning of the buffer (or its accessible portion) always counts as the beginning
of a line.

Functioneolp &optional buffer
This function returns t if point is at the end of a line. The end of the buffer is always
considered the end of a line. If optional argument buffer is nil, the current buffer is
assumed. The end of the buffer (or of its accessible portion) is always considered the
end of a line.

36.2 Examining Buffer Contents

This section describes two functions that allow a Lisp program to convert any portion
of the text in the buffer into a string.

Chapter 36: Text 519

Functionbuffer-substring start end &optional buffer
Functionbuffer-string start end &optional buffer

These functions are equivalent and return a string containing a copy of the text of
the region defined by positions start and end in the buffer. If the arguments are
not positions in the accessible portion of the buffer, buffer-substring signals an
args-out-of-range error. If optional argument buffer is nil, the current buffer is
assumed.

If the region delineated by start and end contains duplicable extents, they will be
remembered in the string. See Section 40.9 [Duplicable Extents], page 605.

It is not necessary for start to be less than end; the arguments can be given in either
order. But most often the smaller argument is written first.

---------- Buffer: foo ----------
This is the contents of buffer foo

---------- Buffer: foo ----------

(buffer-substring 1 10)
⇒ "This is t"
(buffer-substring (point-max) 10)
⇒ "he contents of buffer foo
"

36.3 Comparing Text

This function lets you compare portions of the text in a buffer, without copying them
into strings first.

Functioncompare-buffer-substrings buffer1 start1 end1 buffer2 start2 end2
This function lets you compare two substrings of the same buffer or two different
buffers. The first three arguments specify one substring, giving a buffer and two
positions within the buffer. The last three arguments specify the other substring in
the same way. You can use nil for buffer1, buffer2, or both to stand for the current
buffer.

The value is negative if the first substring is less, positive if the first is greater, and
zero if they are equal. The absolute value of the result is one plus the index of the
first differing characters within the substrings.

This function ignores case when comparing characters if case-fold-search is non-
nil. It always ignores text properties.

Suppose the current buffer contains the text ‘foobarbar haha!rara!’; then in this
example the two substrings are ‘rbar ’ and ‘rara!’. The value is 2 because the first
substring is greater at the second character.

(compare-buffer-substring nil 6 11 nil 16 21)
⇒ 2

520 XEmacs Lisp Reference Manual

36.4 Inserting Text

Insertion means adding new text to a buffer. The inserted text goes at point—between
the character before point and the character after point.

Insertion relocates markers that point at positions after the insertion point, so that
they stay with the surrounding text (see Chapter 35 [Markers], page 505). When a marker
points at the place of insertion, insertion normally doesn’t relocate the marker, so that
it points to the beginning of the inserted text; however, certain special functions such as
insert-before-markers relocate such markers to point after the inserted text.

Some insertion functions leave point before the inserted text, while other functions leave
it after. We call the former insertion after point and the latter insertion before point.

If a string with non-nil extent data is inserted, the remembered extents will also be
inserted. See Section 40.9 [Duplicable Extents], page 605.

Insertion functions signal an error if the current buffer is read-only.
These functions copy text characters from strings and buffers along with their properties.

The inserted characters have exactly the same properties as the characters they were copied
from. By contrast, characters specified as separate arguments, not part of a string or buffer,
inherit their text properties from the neighboring text.

Functioninsert &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. In other words, it inserts the text before point. An
error is signaled unless all args are either strings or characters. The value is nil.

Functioninsert-before-markers &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. An error is signaled unless all args are either strings or
characters. The value is nil.
This function is unlike the other insertion functions in that it relocates markers ini-
tially pointing at the insertion point, to point after the inserted text.

Functioninsert-string string &optional buffer
This function inserts string into buffer before point. buffer defaults to the current
buffer if omitted. This function is chiefly useful if you want to insert a string in a
buffer other than the current one (otherwise you could just use insert).

Functioninsert-char character count &optional buffer
This function inserts count instances of character into buffer before point. count
must be a number, and character must be a character. The value is nil. If optional
argument buffer is nil, the current buffer is assumed. (In FSF Emacs, the third
argument is called inherit and refers to text properties.)

Functioninsert-buffer-substring from-buffer-or-name &optional start end
This function inserts a portion of buffer from-buffer-or-name (which must already
exist) into the current buffer before point. The text inserted is the region from start

Chapter 36: Text 521

and end. (These arguments default to the beginning and end of the accessible portion
of that buffer.) This function returns nil.
In this example, the form is executed with buffer ‘bar’ as the current buffer. We
assume that buffer ‘bar’ is initially empty.

---------- Buffer: foo ----------
We hold these truths to be self-evident, that all
---------- Buffer: foo ----------

(insert-buffer-substring "foo" 1 20)
⇒ nil

---------- Buffer: bar ----------
We hold these truth?
---------- Buffer: bar ----------

36.5 User-Level Insertion Commands

This section describes higher-level commands for inserting text, commands intended
primarily for the user but useful also in Lisp programs.

Commandinsert-buffer from-buffer-or-name
This command inserts the entire contents of from-buffer-or-name (which must exist)
into the current buffer after point. It leaves the mark after the inserted text. The
value is nil.

Commandself-insert-command count
This command inserts the last character typed; it does so count times, before point,
and returns nil. Most printing characters are bound to this command. In routine
use, self-insert-command is the most frequently called function in XEmacs, but
programs rarely use it except to install it on a keymap.
In an interactive call, count is the numeric prefix argument.
This command calls auto-fill-function whenever that is non-nil and the character
inserted is a space or a newline (see Section 36.13 [Auto Filling], page 535).
This command performs abbrev expansion if Abbrev mode is enabled and the in-
serted character does not have word-constituent syntax. (See Chapter 39 [Abbrevs],
page 587, and Section 38.2.1 [Syntax Class Table], page 576.)
This is also responsible for calling blink-paren-function when the inserted charac-
ter has close parenthesis syntax (see Section 45.9 [Blinking], page 667).

Commandnewline &optional number-of-newlines
This command inserts newlines into the current buffer before point. If number-of-
newlines is supplied, that many newline characters are inserted.
This function calls auto-fill-function if the current column number is greater than
the value of fill-column and number-of-newlines is nil. Typically what auto-fill-
function does is insert a newline; thus, the overall result in this case is to insert two

522 XEmacs Lisp Reference Manual

newlines at different places: one at point, and another earlier in the line. newline
does not auto-fill if number-of-newlines is non-nil.
This command indents to the left margin if that is not zero. See Section 36.12
[Margins], page 534.
The value returned is nil. In an interactive call, count is the numeric prefix argument.

Commandsplit-line
This command splits the current line, moving the portion of the line after point down
vertically so that it is on the next line directly below where it was before. Whitespace
is inserted as needed at the beginning of the lower line, using the indent-to function.
split-line returns the position of point.
Programs hardly ever use this function.

Variableoverwrite-mode
This variable controls whether overwrite mode is in effect: a non-nil value enables
the mode. It is automatically made buffer-local when set in any fashion.

36.6 Deleting Text

Deletion means removing part of the text in a buffer, without saving it in the kill ring
(see Section 36.8 [The Kill Ring], page 525). Deleted text can’t be yanked, but can be
reinserted using the undo mechanism (see Section 36.9 [Undo], page 529). Some deletion
functions do save text in the kill ring in some special cases.

All of the deletion functions operate on the current buffer, and all return a value of nil.

Functionerase-buffer &optional buffer
This function deletes the entire text of buffer, leaving it empty. If the buffer is read-
only, it signals a buffer-read-only error. Otherwise, it deletes the text without
asking for any confirmation. It returns nil. buffer defaults to the current buffer if
omitted.
Normally, deleting a large amount of text from a buffer inhibits further auto-saving
of that buffer “because it has shrunk”. However, erase-buffer does not do this, the
idea being that the future text is not really related to the former text, and its size
should not be compared with that of the former text.

Commanddelete-region start end &optional buffer
This command deletes the text in buffer in the region defined by start and end. The
value is nil. If optional argument buffer is nil, the current buffer is assumed.

Commanddelete-char count &optional killp
This command deletes count characters directly after point, or before point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.
In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved

Chapter 36: Text 523

in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

Commanddelete-backward-char count &optional killp
This command deletes count characters directly before point, or after point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

Commandbackward-delete-char-untabify count &optional killp
This command deletes count characters backward, changing tabs into spaces. When
the next character to be deleted is a tab, it is first replaced with the proper number
of spaces to preserve alignment and then one of those spaces is deleted instead of the
tab. If killp is non-nil, then the command saves the deleted characters in the kill
ring.

Conversion of tabs to spaces happens only if count is positive. If it is negative, exactly
−count characters after point are deleted.

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

36.7 User-Level Deletion Commands

This section describes higher-level commands for deleting text, commands intended pri-
marily for the user but useful also in Lisp programs.

Commanddelete-horizontal-space
This function deletes all spaces and tabs around point. It returns nil.

In the following examples, we call delete-horizontal-space four times, once on
each line, with point between the second and third characters on the line each time.

---------- Buffer: foo ----------
I ?thought
I ? thought
We? thought
Yo?u thought
---------- Buffer: foo ----------

524 XEmacs Lisp Reference Manual

(delete-horizontal-space) ; Four times.
⇒ nil

---------- Buffer: foo ----------
Ithought
Ithought
Wethought
You thought
---------- Buffer: foo ----------

Commanddelete-indentation &optional join-following-p
This function joins the line point is on to the previous line, deleting any whitespace at
the join and in some cases replacing it with one space. If join-following-p is non-nil,
delete-indentation joins this line to the following line instead. The value is nil.
If there is a fill prefix, and the second of the lines being joined starts with the pre-
fix, then delete-indentation deletes the fill prefix before joining the lines. See
Section 36.12 [Margins], page 534.
In the example below, point is located on the line starting ‘events’, and it makes no
difference if there are trailing spaces in the preceding line.

---------- Buffer: foo ----------
When in the course of human
? events, it becomes necessary
---------- Buffer: foo ----------

(delete-indentation)
⇒ nil

---------- Buffer: foo ----------
When in the course of human? events, it becomes necessary
---------- Buffer: foo ----------

After the lines are joined, the function fixup-whitespace is responsible for deciding
whether to leave a space at the junction.

Functionfixup-whitespace
This function replaces all the white space surrounding point with either one space or
no space, according to the context. It returns nil.
At the beginning or end of a line, the appropriate amount of space is none. Before
a character with close parenthesis syntax, or after a character with open parenthesis
or expression-prefix syntax, no space is also appropriate. Otherwise, one space is
appropriate. See Section 38.2.1 [Syntax Class Table], page 576.
In the example below, fixup-whitespace is called the first time with point before
the word ‘spaces’ in the first line. For the second invocation, point is directly after
the ‘(’.

---------- Buffer: foo ----------
This has too many ?spaces
This has too many spaces at the start of (? this list)
---------- Buffer: foo ----------

Chapter 36: Text 525

(fixup-whitespace)
⇒ nil

(fixup-whitespace)
⇒ nil

---------- Buffer: foo ----------
This has too many spaces
This has too many spaces at the start of (this list)
---------- Buffer: foo ----------

Commandjust-one-space
This command replaces any spaces and tabs around point with a single space. It
returns nil.

Commanddelete-blank-lines
This function deletes blank lines surrounding point. If point is on a blank line with
one or more blank lines before or after it, then all but one of them are deleted. If
point is on an isolated blank line, then it is deleted. If point is on a nonblank line,
the command deletes all blank lines following it.
A blank line is defined as a line containing only tabs and spaces.
delete-blank-lines returns nil.

36.8 The Kill Ring

Kill functions delete text like the deletion functions, but save it so that the user can
reinsert it by yanking. Most of these functions have ‘kill-’ in their name. By contrast, the
functions whose names start with ‘delete-’ normally do not save text for yanking (though
they can still be undone); these are “deletion” functions.

Most of the kill commands are primarily for interactive use, and are not described here.
What we do describe are the functions provided for use in writing such commands. You
can use these functions to write commands for killing text. When you need to delete text
for internal purposes within a Lisp function, you should normally use deletion functions, so
as not to disturb the kill ring contents. See Section 36.6 [Deletion], page 522.

Killed text is saved for later yanking in the kill ring. This is a list that holds a number
of recent kills, not just the last text kill. We call this a “ring” because yanking treats it as
having elements in a cyclic order. The list is kept in the variable kill-ring, and can be
operated on with the usual functions for lists; there are also specialized functions, described
in this section, that treat it as a ring.

Some people think this use of the word “kill” is unfortunate, since it refers to operations
that specifically do not destroy the entities “killed”. This is in sharp contrast to ordinary life,
in which death is permanent and “killed” entities do not come back to life. Therefore, other
metaphors have been proposed. For example, the term “cut ring” makes sense to people
who, in pre-computer days, used scissors and paste to cut up and rearrange manuscripts.
However, it would be difficult to change the terminology now.

526 XEmacs Lisp Reference Manual

36.8.1 Kill Ring Concepts

The kill ring records killed text as strings in a list, most recent first. A short kill ring,
for example, might look like this:

("some text" "a different piece of text" "even older text")

When the list reaches kill-ring-max entries in length, adding a new entry automatically
deletes the last entry.

When kill commands are interwoven with other commands, each kill command makes a
new entry in the kill ring. Multiple kill commands in succession build up a single entry in
the kill ring, which would be yanked as a unit; the second and subsequent consecutive kill
commands add text to the entry made by the first one.

For yanking, one entry in the kill ring is designated the “front” of the ring. Some yank
commands “rotate” the ring by designating a different element as the “front.” But this
virtual rotation doesn’t change the list itself—the most recent entry always comes first in
the list.

36.8.2 Functions for Killing

kill-region is the usual subroutine for killing text. Any command that calls this
function is a “kill command” (and should probably have ‘kill’ in its name). kill-region
puts the newly killed text in a new element at the beginning of the kill ring or adds it to the
most recent element. It uses the last-command variable to determine whether the previous
command was a kill command, and if so appends the killed text to the most recent entry.

Commandkill-region start end
This function kills the text in the region defined by start and end. The text is deleted
but saved in the kill ring, along with its text properties. The value is always nil.
In an interactive call, start and end are point and the mark.
If the buffer is read-only, kill-region modifies the kill ring just the same, then
signals an error without modifying the buffer. This is convenient because it lets the
user use all the kill commands to copy text into the kill ring from a read-only buffer.

Commandcopy-region-as-kill start end
This command saves the region defined by start and end on the kill ring (including
text properties), but does not delete the text from the buffer. It returns nil. It
also indicates the extent of the text copied by moving the cursor momentarily, or by
displaying a message in the echo area.
The command does not set this-command to kill-region, so a subsequent kill com-
mand does not append to the same kill ring entry.
Don’t call copy-region-as-kill in Lisp programs unless you aim to support Emacs
18. For Emacs 19, it is better to use kill-new or kill-append instead. See Sec-
tion 36.8.4 [Low-Level Kill Ring], page 527.

Chapter 36: Text 527

36.8.3 Functions for Yanking

Yanking means reinserting an entry of previously killed text from the kill ring. The text
properties are copied too.

Commandyank &optional arg
This command inserts before point the text in the first entry in the kill ring. It
positions the mark at the beginning of that text, and point at the end.
If arg is a list (which occurs interactively when the user types C-u with no digits),
then yank inserts the text as described above, but puts point before the yanked text
and puts the mark after it.
If arg is a number, then yank inserts the argth most recently killed text—the argth
element of the kill ring list.
yank does not alter the contents of the kill ring or rotate it. It returns nil.

Commandyank-pop arg
This command replaces the just-yanked entry from the kill ring with a different entry
from the kill ring.
This is allowed only immediately after a yank or another yank-pop. At such a time,
the region contains text that was just inserted by yanking. yank-pop deletes that
text and inserts in its place a different piece of killed text. It does not add the deleted
text to the kill ring, since it is already in the kill ring somewhere.
If arg is nil, then the replacement text is the previous element of the kill ring. If
arg is numeric, the replacement is the argth previous kill. If arg is negative, a more
recent kill is the replacement.
The sequence of kills in the kill ring wraps around, so that after the oldest one comes
the newest one, and before the newest one goes the oldest.
The value is always nil.

36.8.4 Low-Level Kill Ring

These functions and variables provide access to the kill ring at a lower level, but still con-
venient for use in Lisp programs. They take care of interaction with X Window selections.
They do not exist in Emacs version 18.

Functioncurrent-kill n &optional do-not-move
The function current-kill rotates the yanking pointer which designates the “front”
of the kill ring by n places (from newer kills to older ones), and returns the text at
that place in the ring.
If the optional second argument do-not-move is non-nil, then current-kill doesn’t
alter the yanking pointer; it just returns the nth kill, counting from the current
yanking pointer.
If n is zero, indicating a request for the latest kill, current-kill calls the value of
interprogram-paste-function (documented below) before consulting the kill ring.

528 XEmacs Lisp Reference Manual

Functionkill-new string
This function puts the text string into the kill ring as a new entry at the front of
the ring. It discards the oldest entry if appropriate. It also invokes the value of
interprogram-cut-function (see below).

Functionkill-append string before-p
This function appends the text string to the first entry in the kill ring. Normally string
goes at the end of the entry, but if before-p is non-nil, it goes at the beginning. This
function also invokes the value of interprogram-cut-function (see below).

Variableinterprogram-paste-function
This variable provides a way of transferring killed text from other programs, when
you are using a window system. Its value should be nil or a function of no arguments.
If the value is a function, current-kill calls it to get the “most recent kill”. If the
function returns a non-nil value, then that value is used as the “most recent kill”. If
it returns nil, then the first element of kill-ring is used.
The normal use of this hook is to get the X server’s primary selection as the most
recent kill, even if the selection belongs to another X client. See Section 51.1 [X
Selections], page 723.

Variableinterprogram-cut-function
This variable provides a way of communicating killed text to other programs, when
you are using a window system. Its value should be nil or a function of one argument.
If the value is a function, kill-new and kill-append call it with the new first element
of the kill ring as an argument.
The normal use of this hook is to set the X server’s primary selection to the newly
killed text.

36.8.5 Internals of the Kill Ring

The variable kill-ring holds the kill ring contents, in the form of a list of strings. The
most recent kill is always at the front of the list.

The kill-ring-yank-pointer variable points to a link in the kill ring list, whose car

is the text to yank next. We say it identifies the “front” of the ring. Moving kill-ring-
yank-pointer to a different link is called rotating the kill ring. We call the kill ring a
“ring” because the functions that move the yank pointer wrap around from the end of the
list to the beginning, or vice-versa. Rotation of the kill ring is virtual; it does not change
the value of kill-ring.

Both kill-ring and kill-ring-yank-pointer are Lisp variables whose values are nor-
mally lists. The word “pointer” in the name of the kill-ring-yank-pointer indicates
that the variable’s purpose is to identify one element of the list for use by the next yank
command.

The value of kill-ring-yank-pointer is always eq to one of the links in the kill ring
list. The element it identifies is the car of that link. Kill commands, which change the kill

Chapter 36: Text 529

ring, also set this variable to the value of kill-ring. The effect is to rotate the ring so
that the newly killed text is at the front.

Here is a diagram that shows the variable kill-ring-yank-pointer pointing to the sec-
ond entry in the kill ring ("some text" "a different piece of text" "yet older text").

kill-ring kill-ring-yank-pointer
| |
| ___ ___ ---> ___ ___ ___ ___
--> |___|___|------> |___|___|--> |___|___|--> nil

| | |
| | |
| | -->"yet older text"
| |
| --> "a different piece of text"
|
--> "some text"

This state of affairs might occur after C-y (yank) immediately followed by M-y (yank-pop).

Variablekill-ring
This variable holds the list of killed text sequences, most recently killed first.

Variablekill-ring-yank-pointer
This variable’s value indicates which element of the kill ring is at the “front” of the
ring for yanking. More precisely, the value is a tail of the value of kill-ring, and its
car is the kill string that C-y should yank.

User Optionkill-ring-max
The value of this variable is the maximum length to which the kill ring can grow,
before elements are thrown away at the end. The default value for kill-ring-max is
30.

36.9 Undo

Most buffers have an undo list, which records all changes made to the buffer’s text so that
they can be undone. (The buffers that don’t have one are usually special-purpose buffers
for which XEmacs assumes that undoing is not useful.) All the primitives that modify the
text in the buffer automatically add elements to the front of the undo list, which is in the
variable buffer-undo-list.

Variablebuffer-undo-list
This variable’s value is the undo list of the current buffer. A value of t disables the
recording of undo information.

Here are the kinds of elements an undo list can have:

integer This kind of element records a previous value of point. Ordinary cursor motion
does not get any sort of undo record, but deletion commands use these entries
to record where point was before the command.

530 XEmacs Lisp Reference Manual

(beg . end)
This kind of element indicates how to delete text that was inserted. Upon
insertion, the text occupied the range beg–end in the buffer.

(text . position)
This kind of element indicates how to reinsert text that was deleted. The
deleted text itself is the string text. The place to reinsert it is (abs position).

(t high . low)
This kind of element indicates that an unmodified buffer became modified. The
elements high and low are two integers, each recording 16 bits of the visited file’s
modification time as of when it was previously visited or saved. primitive-
undo uses those values to determine whether to mark the buffer as unmodified
once again; it does so only if the file’s modification time matches those numbers.

(nil property value beg . end)
This kind of element records a change in a text property. Here’s how you might
undo the change:

(put-text-property beg end property value)

position This element indicates where point was at an earlier time. Undoing this element
sets point to position. Deletion normally creates an element of this kind as well
as a reinsertion element.

nil This element is a boundary. The elements between two boundaries are called
a change group; normally, each change group corresponds to one keyboard
command, and undo commands normally undo an entire group as a unit.

Functionundo-boundary
This function places a boundary element in the undo list. The undo command stops
at such a boundary, and successive undo commands undo to earlier and earlier bound-
aries. This function returns nil.
The editor command loop automatically creates an undo boundary before each key
sequence is executed. Thus, each undo normally undoes the effects of one command.
Self-inserting input characters are an exception. The command loop makes a bound-
ary for the first such character; the next 19 consecutive self-inserting input characters
do not make boundaries, and then the 20th does, and so on as long as self-inserting
characters continue.
All buffer modifications add a boundary whenever the previous undoable change was
made in some other buffer. This way, a command that modifies several buffers makes
a boundary in each buffer it changes.
Calling this function explicitly is useful for splitting the effects of a command into
more than one unit. For example, query-replace calls undo-boundary after each
replacement, so that the user can undo individual replacements one by one.

Functionprimitive-undo count list
This is the basic function for undoing elements of an undo list. It undoes the first
count elements of list, returning the rest of list. You could write this function in Lisp,
but it is convenient to have it in C.

Chapter 36: Text 531

primitive-undo adds elements to the buffer’s undo list when it changes the buffer.
Undo commands avoid confusion by saving the undo list value at the beginning of a
sequence of undo operations. Then the undo operations use and update the saved
value. The new elements added by undoing are not part of this saved value, so they
don’t interfere with continuing to undo.

36.10 Maintaining Undo Lists

This section describes how to enable and disable undo information for a given buffer. It
also explains how the undo list is truncated automatically so it doesn’t get too big.

Recording of undo information in a newly created buffer is normally enabled to start
with; but if the buffer name starts with a space, the undo recording is initially disabled.
You can explicitly enable or disable undo recording with the following two functions, or by
setting buffer-undo-list yourself.

Commandbuffer-enable-undo &optional buffer-or-name
This command enables recording undo information for buffer buffer-or-name, so that
subsequent changes can be undone. If no argument is supplied, then the current
buffer is used. This function does nothing if undo recording is already enabled in the
buffer. It returns nil.

In an interactive call, buffer-or-name is the current buffer. You cannot specify any
other buffer.

Functionbuffer-disable-undo &optional buffer
Functionbuffer-flush-undo &optional buffer

This function discards the undo list of buffer, and disables further recording of undo
information. As a result, it is no longer possible to undo either previous changes or
any subsequent changes. If the undo list of buffer is already disabled, this function
has no effect.

This function returns nil. It cannot be called interactively.

The name buffer-flush-undo is not considered obsolete, but the preferred name
buffer-disable-undo is new as of Emacs versions 19.

As editing continues, undo lists get longer and longer. To prevent them from using
up all available memory space, garbage collection trims them back to size limits you can
set. (For this purpose, the “size” of an undo list measures the cons cells that make up the
list, plus the strings of deleted text.) Two variables control the range of acceptable sizes:
undo-limit and undo-strong-limit.

Variableundo-limit
This is the soft limit for the acceptable size of an undo list. The change group at
which this size is exceeded is the last one kept.

532 XEmacs Lisp Reference Manual

Variableundo-strong-limit
This is the upper limit for the acceptable size of an undo list. The change group at
which this size is exceeded is discarded itself (along with all older change groups).
There is one exception: the very latest change group is never discarded no matter
how big it is.

36.11 Filling

Filling means adjusting the lengths of lines (by moving the line breaks) so that they are
nearly (but no greater than) a specified maximum width. Additionally, lines can be justified,
which means inserting spaces to make the left and/or right margins line up precisely. The
width is controlled by the variable fill-column. For ease of reading, lines should be no
longer than 70 or so columns.

You can use Auto Fill mode (see Section 36.13 [Auto Filling], page 535) to fill text
automatically as you insert it, but changes to existing text may leave it improperly filled.
Then you must fill the text explicitly.

Most of the commands in this section return values that are not meaningful. All the
functions that do filling take note of the current left margin, current right margin, and
current justification style (see Section 36.12 [Margins], page 534). If the current justification
style is none, the filling functions don’t actually do anything.

Several of the filling functions have an argument justify. If it is non-nil, that requests
some kind of justification. It can be left, right, full, or center, to request a specific
style of justification. If it is t, that means to use the current justification style for this part
of the text (see current-justification, below).

When you call the filling functions interactively, using a prefix argument implies the
value full for justify.

Commandfill-paragraph justify
This command fills the paragraph at or after point. If justify is non-nil, each line is
justified as well. It uses the ordinary paragraph motion commands to find paragraph
boundaries. See section “Paragraphs” in The XEmacs User’s Manual.

Commandfill-region start end &optional justify
This command fills each of the paragraphs in the region from start to end. It justifies
as well if justify is non-nil.
The variable paragraph-separate controls how to distinguish paragraphs. See Sec-
tion 37.8 [Standard Regexps], page 572.

Commandfill-individual-paragraphs start end &optional justify mail-flag
This command fills each paragraph in the region according to its individual fill prefix.
Thus, if the lines of a paragraph were indented with spaces, the filled paragraph will
remain indented in the same fashion.
The first two arguments, start and end, are the beginning and end of the region to be
filled. The third and fourth arguments, justify and mail-flag, are optional. If justify

Chapter 36: Text 533

is non-nil, the paragraphs are justified as well as filled. If mail-flag is non-nil, it
means the function is operating on a mail message and therefore should not fill the
header lines.
Ordinarily, fill-individual-paragraphs regards each change in indentation as
starting a new paragraph. If fill-individual-varying-indent is non-nil, then
only separator lines separate paragraphs. That mode can handle indented paragraphs
with additional indentation on the first line.

User Optionfill-individual-varying-indent
This variable alters the action of fill-individual-paragraphs as described above.

Commandfill-region-as-paragraph start end &optional justify
This command considers a region of text as a paragraph and fills it. If the region was
made up of many paragraphs, the blank lines between paragraphs are removed. This
function justifies as well as filling when justify is non-nil.
In an interactive call, any prefix argument requests justification.
In Adaptive Fill mode, which is enabled by default, fill-region-as-paragraph on
an indented paragraph when there is no fill prefix uses the indentation of the second
line of the paragraph as the fill prefix.

Commandjustify-current-line how eop nosqueeze
This command inserts spaces between the words of the current line so that the line
ends exactly at fill-column. It returns nil.
The argument how, if non-nil specifies explicitly the style of justification. It can
be left, right, full, center, or none. If it is t, that means to do follow speci-
fied justification style (see current-justification, below). nil means to do full
justification.
If eop is non-nil, that means do left-justification when current-justification
specifies full justification. This is used for the last line of a paragraph; even if the
paragraph as a whole is fully justified, the last line should not be.
If nosqueeze is non-nil, that means do not change interior whitespace.

User Optiondefault-justification
This variable’s value specifies the style of justification to use for text that doesn’t
specify a style with a text property. The possible values are left, right, full,
center, or none. The default value is left.

Functioncurrent-justification
This function returns the proper justification style to use for filling the text around
point.

Variablefill-paragraph-function
This variable provides a way for major modes to override the filling of paragraphs.
If the value is non-nil, fill-paragraph calls this function to do the work. If the

534 XEmacs Lisp Reference Manual

function returns a non-nil value, fill-paragraph assumes the job is done, and
immediately returns that value.
The usual use of this feature is to fill comments in programming language modes. If
the function needs to fill a paragraph in the usual way, it can do so as follows:

(let ((fill-paragraph-function nil))
(fill-paragraph arg))

Variableuse-hard-newlines
If this variable is non-nil, the filling functions do not delete newlines that have the
hard text property. These “hard newlines” act as paragraph separators.

36.12 Margins for Filling

User Optionfill-prefix
This variable specifies a string of text that appears at the beginning of normal text
lines and should be disregarded when filling them. Any line that fails to start with
the fill prefix is considered the start of a paragraph; so is any line that starts with
the fill prefix followed by additional whitespace. Lines that start with the fill prefix
but no additional whitespace are ordinary text lines that can be filled together. The
resulting filled lines also start with the fill prefix.
The fill prefix follows the left margin whitespace, if any.

User Optionfill-column
This buffer-local variable specifies the maximum width of filled lines. Its value should
be an integer, which is a number of columns. All the filling, justification and centering
commands are affected by this variable, including Auto Fill mode (see Section 36.13
[Auto Filling], page 535).
As a practical matter, if you are writing text for other people to read, you should set
fill-column to no more than 70. Otherwise the line will be too long for people to
read comfortably, and this can make the text seem clumsy.

Variabledefault-fill-column
The value of this variable is the default value for fill-column in buffers that do not
override it. This is the same as (default-value ’fill-column).
The default value for default-fill-column is 70.

Commandset-left-margin from to margin
This sets the left-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new
margin.

Commandset-right-margin from to margin
This sets the right-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new margin.

Chapter 36: Text 535

Functioncurrent-left-margin
This function returns the proper left margin value to use for filling the text around
point. The value is the sum of the left-margin property of the character at the start
of the current line (or zero if none), and the value of the variable left-margin.

Functioncurrent-fill-column
This function returns the proper fill column value to use for filling the text around
point. The value is the value of the fill-column variable, minus the value of the
right-margin property of the character after point.

Commandmove-to-left-margin &optional n force
This function moves point to the left margin of the current line. The column moved
to is determined by calling the function current-left-margin. If the argument n is
non-nil, move-to-left-margin moves forward n−1 lines first.
If force is non-nil, that says to fix the line’s indentation if that doesn’t match the
left margin value.

Functiondelete-to-left-margin from to
This function removes left margin indentation from the text between from and to.
The amount of indentation to delete is determined by calling current-left-margin.
In no case does this function delete non-whitespace.

Functionindent-to-left-margin
This is the default indent-line-function, used in Fundamental mode, Text mode,
etc. Its effect is to adjust the indentation at the beginning of the current line to the
value specified by the variable left-margin. This may involve either inserting or
deleting whitespace.

Variableleft-margin
This variable specifies the base left margin column. In Fundamental mode, 〈LFD〉
indents to this column. This variable automatically becomes buffer-local when set in
any fashion.

36.13 Auto Filling

Auto Fill mode is a minor mode that fills lines automatically as text is inserted. This
section describes the hook used by Auto Fill mode. For a description of functions that you
can call explicitly to fill and justify existing text, see Section 36.11 [Filling], page 532.

Auto Fill mode also enables the functions that change the margins and justification style
to refill portions of the text. See Section 36.12 [Margins], page 534.

Variableauto-fill-function
The value of this variable should be a function (of no arguments) to be called after
self-inserting a space or a newline. It may be nil, in which case nothing special is
done in that case.

536 XEmacs Lisp Reference Manual

The value of auto-fill-function is do-auto-fill when Auto-Fill mode is enabled.
That is a function whose sole purpose is to implement the usual strategy for breaking
a line.

In older Emacs versions, this variable was named auto-fill-hook, but
since it is not called with the standard convention for hooks, it was re-
named to auto-fill-function in version 19.

36.14 Sorting Text

The sorting functions described in this section all rearrange text in a buffer. This is
in contrast to the function sort, which rearranges the order of the elements of a list (see
Section 5.6.3 [Rearrangement], page 90). The values returned by these functions are not
meaningful.

Functionsort-subr reverse nextrecfun endrecfun &optional startkeyfun endkeyfun
This function is the general text-sorting routine that divides a buffer into records and
sorts them. Most of the commands in this section use this function.
To understand how sort-subr works, consider the whole accessible portion of the
buffer as being divided into disjoint pieces called sort records. The records may or
may not be contiguous; they may not overlap. A portion of each sort record (perhaps
all of it) is designated as the sort key. Sorting rearranges the records in order by their
sort keys.
Usually, the records are rearranged in order of ascending sort key. If the first argument
to the sort-subr function, reverse, is non-nil, the sort records are rearranged in order
of descending sort key.
The next four arguments to sort-subr are functions that are called to move point
across a sort record. They are called many times from within sort-subr.
1. nextrecfun is called with point at the end of a record. This function moves point

to the start of the next record. The first record is assumed to start at the position
of point when sort-subr is called. Therefore, you should usually move point to
the beginning of the buffer before calling sort-subr.
This function can indicate there are no more sort records by leaving point at the
end of the buffer.

2. endrecfun is called with point within a record. It moves point to the end of the
record.

3. startkeyfun is called to move point from the start of a record to the start of the
sort key. This argument is optional; if it is omitted, the whole record is the sort
key. If supplied, the function should either return a non-nil value to be used as
the sort key, or return nil to indicate that the sort key is in the buffer starting
at point. In the latter case, endkeyfun is called to find the end of the sort key.

4. endkeyfun is called to move point from the start of the sort key to the end of
the sort key. This argument is optional. If startkeyfun returns nil and this
argument is omitted (or nil), then the sort key extends to the end of the record.
There is no need for endkeyfun if startkeyfun returns a non-nil value.

Chapter 36: Text 537

As an example of sort-subr, here is the complete function definition for sort-lines:
;; Note that the first two lines of doc string
;; are effectively one line when viewed by a user.
(defun sort-lines (reverse beg end)

"Sort lines in region alphabetically.
Called from a program, there are three arguments:
REVERSE (non-nil means reverse order),
and BEG and END (the region to sort)."

(interactive "P\nr")
(save-restriction
(narrow-to-region beg end)
(goto-char (point-min))
(sort-subr reverse

’forward-line
’end-of-line)))

Here forward-line moves point to the start of the next record, and end-of-line
moves point to the end of record. We do not pass the arguments startkeyfun and
endkeyfun, because the entire record is used as the sort key.
The sort-paragraphs function is very much the same, except that its sort-subr
call looks like this:

(sort-subr reverse
(function
(lambda ()
(skip-chars-forward "\n \t\f")))

’forward-paragraph)

Commandsort-regexp-fields reverse record-regexp key-regexp start end
This command sorts the region between start and end alphabetically as specified
by record-regexp and key-regexp. If reverse is a negative integer, then sorting is in
reverse order.
Alphabetical sorting means that two sort keys are compared by comparing the first
characters of each, the second characters of each, and so on. If a mismatch is found,
it means that the sort keys are unequal; the sort key whose character is less at the
point of first mismatch is the lesser sort key. The individual characters are compared
according to their numerical values. Since Emacs uses the ASCII character set, the
ordering in that set determines alphabetical order.
The value of the record-regexp argument specifies how to divide the buffer into sort
records. At the end of each record, a search is done for this regular expression, and the
text that matches it is the next record. For example, the regular expression ‘^.+$’,
which matches lines with at least one character besides a newline, would make each
such line into a sort record. See Section 37.2 [Regular Expressions], page 556, for a
description of the syntax and meaning of regular expressions.
The value of the key-regexp argument specifies what part of each record is the sort
key. The key-regexp could match the whole record, or only a part. In the latter case,
the rest of the record has no effect on the sorted order of records, but it is carried
along when the record moves to its new position.

538 XEmacs Lisp Reference Manual

The key-regexp argument can refer to the text matched by a subexpression of record-
regexp, or it can be a regular expression on its own.
If key-regexp is:

‘\digit’ then the text matched by the digitth ‘\(...\)’ parenthesis grouping in
record-regexp is the sort key.

‘\&’ then the whole record is the sort key.

a regular expression
then sort-regexp-fields searches for a match for the regular expression
within the record. If such a match is found, it is the sort key. If there
is no match for key-regexp within a record then that record is ignored,
which means its position in the buffer is not changed. (The other records
may move around it.)

For example, if you plan to sort all the lines in the region by the first word on each line
starting with the letter ‘f’, you should set record-regexp to ‘^.*$’ and set key-regexp
to ‘\<f\w*\>’. The resulting expression looks like this:

(sort-regexp-fields nil "^.*$" "\\<f\\w*\\>"
(region-beginning)
(region-end))

If you call sort-regexp-fields interactively, it prompts for record-regexp and key-
regexp in the minibuffer.

Commandsort-lines reverse start end
This command alphabetically sorts lines in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

Commandsort-paragraphs reverse start end
This command alphabetically sorts paragraphs in the region between start and end.
If reverse is non-nil, the sort is in reverse order.

Commandsort-pages reverse start end
This command alphabetically sorts pages in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

Commandsort-fields field start end
This command sorts lines in the region between start and end, comparing them
alphabetically by the fieldth field of each line. Fields are separated by whitespace
and numbered starting from 1. If field is negative, sorting is by the −fieldth field
from the end of the line. This command is useful for sorting tables.

Commandsort-numeric-fields field start end
This command sorts lines in the region between start and end, comparing them
numerically by the fieldth field of each line. The specified field must contain a number
in each line of the region. Fields are separated by whitespace and numbered starting
from 1. If field is negative, sorting is by the −fieldth field from the end of the line.
This command is useful for sorting tables.

Chapter 36: Text 539

Commandsort-columns reverse &optional beg end
This command sorts the lines in the region between beg and end, comparing them
alphabetically by a certain range of columns. The column positions of beg and end
bound the range of columns to sort on.

If reverse is non-nil, the sort is in reverse order.

One unusual thing about this command is that the entire line containing position beg,
and the entire line containing position end, are included in the region sorted.

Note that sort-columns uses the sort utility program, and so cannot work properly
on text containing tab characters. Use M-x untabify to convert tabs to spaces before
sorting.

36.15 Counting Columns

The column functions convert between a character position (counting characters from
the beginning of the buffer) and a column position (counting screen characters from the
beginning of a line).

A character counts according to the number of columns it occupies on the screen. This
means control characters count as occupying 2 or 4 columns, depending upon the value of
ctl-arrow, and tabs count as occupying a number of columns that depends on the value
of tab-width and on the column where the tab begins. See Section 45.10 [Usual Display],
page 668.

Column number computations ignore the width of the window and the amount of hor-
izontal scrolling. Consequently, a column value can be arbitrarily high. The first (or
leftmost) column is numbered 0.

Functioncurrent-column
This function returns the horizontal position of point, measured in columns, counting
from 0 at the left margin. The column position is the sum of the widths of all the
displayed representations of the characters between the start of the current line and
point.

For an example of using current-column, see the description of count-lines in
Section 34.2.4 [Text Lines], page 496.

Functionmove-to-column column &optional force
This function moves point to column in the current line. The calculation of col-
umn takes into account the widths of the displayed representations of the characters
between the start of the line and point.

If column column is beyond the end of the line, point moves to the end of the line. If
column is negative, point moves to the beginning of the line.

If it is impossible to move to column column because that is in the middle of a multi-
column character such as a tab, point moves to the end of that character. However, if
force is non-nil, and column is in the middle of a tab, then move-to-column converts

540 XEmacs Lisp Reference Manual

the tab into spaces so that it can move precisely to column column. Other multi-
column characters can cause anomalies despite force, since there is no way to split
them.

The argument force also has an effect if the line isn’t long enough to reach column
column; in that case, it says to add whitespace at the end of the line to reach that
column.

If column is not an integer, an error is signaled.

The return value is the column number actually moved to.

36.16 Indentation

The indentation functions are used to examine, move to, and change whitespace that is
at the beginning of a line. Some of the functions can also change whitespace elsewhere on
a line. Columns and indentation count from zero at the left margin.

36.16.1 Indentation Primitives

This section describes the primitive functions used to count and insert indentation. The
functions in the following sections use these primitives.

Functioncurrent-indentation
This function returns the indentation of the current line, which is the horizontal
position of the first nonblank character. If the contents are entirely blank, then this
is the horizontal position of the end of the line.

Commandindent-to column &optional minimum
This function indents from point with tabs and spaces until column is reached. If
minimum is specified and non-nil, then at least that many spaces are inserted even
if this requires going beyond column. Otherwise the function does nothing if point is
already beyond column. The value is the column at which the inserted indentation
ends.

User Optionindent-tabs-mode
If this variable is non-nil, indentation functions can insert tabs as well as spaces.
Otherwise, they insert only spaces. Setting this variable automatically makes it local
to the current buffer.

36.16.2 Indentation Controlled by Major Mode

An important function of each major mode is to customize the 〈TAB〉 key to indent
properly for the language being edited. This section describes the mechanism of the 〈TAB〉
key and how to control it. The functions in this section return unpredictable values.

Chapter 36: Text 541

Variableindent-line-function
This variable’s value is the function to be used by 〈TAB〉 (and various commands) to
indent the current line. The command indent-according-to-mode does no more
than call this function.

In Lisp mode, the value is the symbol lisp-indent-line; in C mode, c-indent-
line; in Fortran mode, fortran-indent-line. In Fundamental mode, Text mode,
and many other modes with no standard for indentation, the value is indent-to-
left-margin (which is the default value).

Commandindent-according-to-mode
This command calls the function in indent-line-function to indent the current
line in a way appropriate for the current major mode.

Commandindent-for-tab-command
This command calls the function in indent-line-function to indent the current
line; except that if that function is indent-to-left-margin, it calls insert-tab
instead. (That is a trivial command that inserts a tab character.)

Commandnewline-and-indent
This function inserts a newline, then indents the new line (the one following the
newline just inserted) according to the major mode.

It does indentation by calling the current indent-line-function. In programming
language modes, this is the same thing 〈TAB〉 does, but in some text modes, where 〈TAB〉
inserts a tab, newline-and-indent indents to the column specified by left-margin.

Commandreindent-then-newline-and-indent
This command reindents the current line, inserts a newline at point, and then rein-
dents the new line (the one following the newline just inserted).

This command does indentation on both lines according to the current major mode,
by calling the current value of indent-line-function. In programming language
modes, this is the same thing 〈TAB〉 does, but in some text modes, where 〈TAB〉 inserts a
tab, reindent-then-newline-and-indent indents to the column specified by left-
margin.

36.16.3 Indenting an Entire Region

This section describes commands that indent all the lines in the region. They return
unpredictable values.

Commandindent-region start end to-column
This command indents each nonblank line starting between start (inclusive) and end
(exclusive). If to-column is nil, indent-region indents each nonblank line by calling
the current mode’s indentation function, the value of indent-line-function.

542 XEmacs Lisp Reference Manual

If to-column is non-nil, it should be an integer specifying the number of columns
of indentation; then this function gives each line exactly that much indentation, by
either adding or deleting whitespace.
If there is a fill prefix, indent-region indents each line by making it start with the
fill prefix.

Variableindent-region-function
The value of this variable is a function that can be used by indent-region as a
short cut. You should design the function so that it will produce the same results as
indenting the lines of the region one by one, but presumably faster.
If the value is nil, there is no short cut, and indent-region actually works line by
line.
A short-cut function is useful in modes such as C mode and Lisp mode, where the
indent-line-function must scan from the beginning of the function definition: ap-
plying it to each line would be quadratic in time. The short cut can update the scan
information as it moves through the lines indenting them; this takes linear time. In
a mode where indenting a line individually is fast, there is no need for a short cut.
indent-region with a non-nil argument to-column has a different meaning and does
not use this variable.

Commandindent-rigidly start end count
This command indents all lines starting between start (inclusive) and end (exclusive)
sideways by count columns. This “preserves the shape” of the affected region, moving
it as a rigid unit. Consequently, this command is useful not only for indenting regions
of unindented text, but also for indenting regions of formatted code.
For example, if count is 3, this command adds 3 columns of indentation to each of
the lines beginning in the region specified.
In Mail mode, C-c C-y (mail-yank-original) uses indent-rigidly to indent the
text copied from the message being replied to.

Functionindent-code-rigidly start end columns &optional nochange-regexp
This is like indent-rigidly, except that it doesn’t alter lines that start within strings
or comments.
In addition, it doesn’t alter a line if nochange-regexp matches at the beginning of the
line (if nochange-regexp is non-nil).

36.16.4 Indentation Relative to Previous Lines

This section describes two commands that indent the current line based on the contents
of previous lines.

Commandindent-relative &optional unindented-ok
This command inserts whitespace at point, extending to the same column as the
next indent point of the previous nonblank line. An indent point is a non-whitespace

Chapter 36: Text 543

character following whitespace. The next indent point is the first one at a column
greater than the current column of point. For example, if point is underneath and to
the left of the first non-blank character of a line of text, it moves to that column by
inserting whitespace.
If the previous nonblank line has no next indent point (i.e., none at a great enough
column position), indent-relative either does nothing (if unindented-ok is non-nil)
or calls tab-to-tab-stop. Thus, if point is underneath and to the right of the last
column of a short line of text, this command ordinarily moves point to the next tab
stop by inserting whitespace.
The return value of indent-relative is unpredictable.
In the following example, point is at the beginning of the second line:

This line is indented twelve spaces.
?The quick brown fox jumped.

Evaluation of the expression (indent-relative nil) produces the following:
This line is indented twelve spaces.
?The quick brown fox jumped.

In this example, point is between the ‘m’ and ‘p’ of ‘jumped’:
This line is indented twelve spaces.

The quick brown fox jum?ped.

Evaluation of the expression (indent-relative nil) produces the following:
This line is indented twelve spaces.

The quick brown fox jum ?ped.

Commandindent-relative-maybe
This command indents the current line like the previous nonblank line. It calls
indent-relative with t as the unindented-ok argument. The return value is unpre-
dictable.
If the previous nonblank line has no indent points beyond the current column, this
command does nothing.

36.16.5 Adjustable “Tab Stops”

This section explains the mechanism for user-specified “tab stops” and the mechanisms
that use and set them. The name “tab stops” is used because the feature is similar to that
of the tab stops on a typewriter. The feature works by inserting an appropriate number of
spaces and tab characters to reach the next tab stop column; it does not affect the display
of tab characters in the buffer (see Section 45.10 [Usual Display], page 668). Note that the
〈TAB〉 character as input uses this tab stop feature only in a few major modes, such as Text
mode.

Commandtab-to-tab-stop
This command inserts spaces or tabs up to the next tab stop column defined by
tab-stop-list. It searches the list for an element greater than the current column
number, and uses that element as the column to indent to. It does nothing if no such
element is found.

544 XEmacs Lisp Reference Manual

User Optiontab-stop-list
This variable is the list of tab stop columns used by tab-to-tab-stops. The elements
should be integers in increasing order. The tab stop columns need not be evenly
spaced.

Use M-x edit-tab-stops to edit the location of tab stops interactively.

36.16.6 Indentation-Based Motion Commands

These commands, primarily for interactive use, act based on the indentation in the text.

Commandback-to-indentation
This command moves point to the first non-whitespace character in the current line
(which is the line in which point is located). It returns nil.

Commandbackward-to-indentation arg
This command moves point backward arg lines and then to the first nonblank char-
acter on that line. It returns nil.

Commandforward-to-indentation arg
This command moves point forward arg lines and then to the first nonblank character
on that line. It returns nil.

36.17 Case Changes

The case change commands described here work on text in the current buffer. See Sec-
tion 4.11 [Character Case], page 72, for case conversion commands that work on strings and
characters. See Section 4.12 [Case Tables], page 74, for how to customize which characters
are upper or lower case and how to convert them.

Commandcapitalize-region start end
This function capitalizes all words in the region defined by start and end. To capitalize
means to convert each word’s first character to upper case and convert the rest of
each word to lower case. The function returns nil.

If one end of the region is in the middle of a word, the part of the word within the
region is treated as an entire word.

When capitalize-region is called interactively, start and end are point and the
mark, with the smallest first.

---------- Buffer: foo ----------
This is the contents of the 5th foo.
---------- Buffer: foo ----------

Chapter 36: Text 545

(capitalize-region 1 44)
⇒ nil

---------- Buffer: foo ----------
This Is The Contents Of The 5th Foo.
---------- Buffer: foo ----------

Commanddowncase-region start end
This function converts all of the letters in the region defined by start and end to lower
case. The function returns nil.

When downcase-region is called interactively, start and end are point and the mark,
with the smallest first.

Commandupcase-region start end
This function converts all of the letters in the region defined by start and end to
upper case. The function returns nil.

When upcase-region is called interactively, start and end are point and the mark,
with the smallest first.

Commandcapitalize-word count
This function capitalizes count words after point, moving point over as it does. To
capitalize means to convert each word’s first character to upper case and convert the
rest of each word to lower case. If count is negative, the function capitalizes the
−count previous words but does not move point. The value is nil.

If point is in the middle of a word, the part of the word before point is ignored when
moving forward. The rest is treated as an entire word.

When capitalize-word is called interactively, count is set to the numeric prefix
argument.

Commanddowncase-word count
This function converts the count words after point to all lower case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.

When downcase-word is called interactively, count is set to the numeric prefix argu-
ment.

Commandupcase-word count
This function converts the count words after point to all upper case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.

When upcase-word is called interactively, count is set to the numeric prefix argument.

546 XEmacs Lisp Reference Manual

36.18 Text Properties

Text properties are an alternative interface to extents (see Chapter 40 [Extents],
page 593), and are built on top of them. They are useful when you want to view textual
properties as being attached to the characters themselves rather than to intervals of
characters. The text property interface is compatible with FSF Emacs.

Each character position in a buffer or a string can have a text property list, much like
the property list of a symbol (see Section 5.9 [Property Lists], page 98). The properties
belong to a particular character at a particular place, such as, the letter ‘T’ at the beginning
of this sentence or the first ‘o’ in ‘foo’—if the same character occurs in two different places,
the two occurrences generally have different properties.

Each property has a name and a value. Both of these can be any Lisp object, but the
name is normally a symbol. The usual way to access the property list is to specify a name
and ask what value corresponds to it.

Note that FSF Emacs also looks at the category property to find defaults for text
properties. We consider this too bogus to implement.

Copying text between strings and buffers preserves the properties along with the char-
acters; this includes such diverse functions as substring, insert, and buffer-substring.

36.18.1 Examining Text Properties

The simplest way to examine text properties is to ask for the value of a particular prop-
erty of a particular character. For that, use get-text-property. Use text-properties-at
to get the entire property list of a character. See Section 36.18.3 [Property Search], page 548,
for functions to examine the properties of a number of characters at once.

These functions handle both strings and buffers. (Keep in mind that positions in a string
start from 0, whereas positions in a buffer start from 1.)

Functionget-text-property pos prop &optional object
This function returns the value of the prop property of the character after position
pos in object (a buffer or string). The argument object is optional and defaults to
the current buffer.

Functionget-char-property pos prop &optional object
This function is like get-text-property, except that it checks all extents, not just
text-property extents.

Functiontext-properties-at position &optional object
This function returns the entire property list of the character at position in the string
or buffer object. If object is nil, it defaults to the current buffer.

Variabledefault-text-properties
This variable holds a property list giving default values for text properties. Whenever
a character does not specify a value for a property, the value stored in this list is used
instead. Here is an example:

Chapter 36: Text 547

(setq default-text-properties ’(foo 69))
;; Make sure character 1 has no properties of its own.
(set-text-properties 1 2 nil)
;; What we get, when we ask, is the default value.
(get-text-property 1 ’foo)

⇒ 69

36.18.2 Changing Text Properties

The primitives for changing properties apply to a specified range of text. The function
set-text-properties (see end of section) sets the entire property list of the text in that
range; more often, it is useful to add, change, or delete just certain properties specified by
name.

Since text properties are considered part of the buffer’s contents, and can affect how
the buffer looks on the screen, any change in the text properties is considered a buffer
modification. Buffer text property changes are undoable (see Section 36.9 [Undo], page 529).

Functionput-text-property start end prop value &optional object
This function sets the prop property to value for the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

Functionadd-text-properties start end props &optional object
This function modifies the text properties for the text between start and end in the
string or buffer object. If object is nil, it defaults to the current buffer.
The argument props specifies which properties to change. It should have the form
of a property list (see Section 5.9 [Property Lists], page 98): a list whose elements
include the property names followed alternately by the corresponding values.
The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or its values agree with those in the text).
For example, here is how to set the comment and face properties of a range of text:

(add-text-properties start end
’(comment t face highlight))

Functionremove-text-properties start end props &optional object
This function deletes specified text properties from the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.
The argument props specifies which properties to delete. It should have the form of
a property list (see Section 5.9 [Property Lists], page 98): a list whose elements are
property names alternating with corresponding values. But only the names matter—
the values that accompany them are ignored. For example, here’s how to remove the
face property.

(remove-text-properties start end ’(face nil))

The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or if no character in the specified text had any of those
properties).

548 XEmacs Lisp Reference Manual

Functionset-text-properties start end props &optional object
This function completely replaces the text property list for the text between start and
end in the string or buffer object. If object is nil, it defaults to the current buffer.
The argument props is the new property list. It should be a list whose elements are
property names alternating with corresponding values.
After set-text-properties returns, all the characters in the specified range have
identical properties.
If props is nil, the effect is to get rid of all properties from the specified range of
text. Here’s an example:

(set-text-properties start end nil)

See also the function buffer-substring-without-properties (see Section 36.2 [Buffer
Contents], page 518) which copies text from the buffer but does not copy its properties.

36.18.3 Property Search Functions

In typical use of text properties, most of the time several or many consecutive characters
have the same value for a property. Rather than writing your programs to examine char-
acters one by one, it is much faster to process chunks of text that have the same property
value.

Here are functions you can use to do this. They use eq for comparing property values.
In all cases, object defaults to the current buffer.

For high performance, it’s very important to use the limit argument to these functions,
especially the ones that search for a single property—otherwise, they may spend a long time
scanning to the end of the buffer, if the property you are interested in does not change.

Remember that a position is always between two characters; the position returned by
these functions is between two characters with different properties.

Functionnext-property-change pos &optional object limit
The function scans the text forward from position pos in the string or buffer object
till it finds a change in some text property, then returns the position of the change. In
other words, it returns the position of the first character beyond pos whose properties
are not identical to those of the character just after pos.
If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-property-change returns limit.
The value is nil if the properties remain unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos.
The value equals pos only when limit equals pos.
Here is an example of how to scan the buffer by chunks of text within which all
properties are constant:

(while (not (eobp))
(let ((plist (text-properties-at (point)))

(next-change
(or (next-property-change (point) (current-buffer))

Chapter 36: Text 549

(point-max))))
Process text from point to next-change . . .
(goto-char next-change)))

Functionnext-single-property-change pos prop &optional object limit
The function scans the text forward from position pos in the string or buffer object
till it finds a change in the prop property, then returns the position of the change.
In other words, it returns the position of the first character beyond pos whose prop
property differs from that of the character just after pos.

If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-single-property-change returns limit.

The value is nil if the property remains unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos;
it equals pos only if limit equals pos.

Functionprevious-property-change pos &optional object limit
This is like next-property-change, but scans back from pos instead of forward. If
the value is non-nil, it is a position less than or equal to pos; it equals pos only if
limit equals pos.

Functionprevious-single-property-change pos prop &optional object limit
This is like next-single-property-change, but scans back from pos instead of for-
ward. If the value is non-nil, it is a position less than or equal to pos; it equals pos
only if limit equals pos.

Functiontext-property-any start end prop value &optional object
This function returns non-nil if at least one character between start and end has a
property prop whose value is value. More precisely, it returns the position of the first
such character. Otherwise, it returns nil.

The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

Functiontext-property-not-all start end prop value &optional object
This function returns non-nil if at least one character between start and end has a
property prop whose value differs from value. More precisely, it returns the position
of the first such character. Otherwise, it returns nil.

The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

36.18.4 Properties with Special Meanings

The predefined properties are the same as those for extents. See Section 40.6 [Extent
Properties], page 599.

550 XEmacs Lisp Reference Manual

36.18.5 Saving Text Properties in Files

You can save text properties in files, and restore text properties when inserting the files,
using these two hooks:

Variablewrite-region-annotate-functions
This variable’s value is a list of functions for write-region to run to encode text
properties in some fashion as annotations to the text being written in the file. See
Section 28.4 [Writing to Files], page 400.

Each function in the list is called with two arguments: the start and end of the region
to be written. These functions should not alter the contents of the buffer. Instead,
they should return lists indicating annotations to write in the file in addition to the
text in the buffer.

Each function should return a list of elements of the form (position . string), where
position is an integer specifying the relative position in the text to be written, and
string is the annotation to add there.

Each list returned by one of these functions must be already sorted in increasing
order by position. If there is more than one function, write-region merges the lists
destructively into one sorted list.

When write-region actually writes the text from the buffer to the file, it intermixes
the specified annotations at the corresponding positions. All this takes place without
modifying the buffer.

Variableafter-insert-file-functions
This variable holds a list of functions for insert-file-contents to call after inserting
a file’s contents. These functions should scan the inserted text for annotations, and
convert them to the text properties they stand for.

Each function receives one argument, the length of the inserted text; point indicates
the start of that text. The function should scan that text for annotations, delete
them, and create the text properties that the annotations specify. The function should
return the updated length of the inserted text, as it stands after those changes. The
value returned by one function becomes the argument to the next function.

These functions should always return with point at the beginning of the inserted text.

The intended use of after-insert-file-functions is for converting some sort of
textual annotations into actual text properties. But other uses may be possible.

We invite users to write Lisp programs to store and retrieve text properties in files,
using these hooks, and thus to experiment with various data formats and find good ones.
Eventually we hope users will produce good, general extensions we can install in Emacs.

We suggest not trying to handle arbitrary Lisp objects as property names or property
values—because a program that general is probably difficult to write, and slow. Instead,
choose a set of possible data types that are reasonably flexible, and not too hard to encode.

See Section 28.13 [Format Conversion], page 421, for a related feature.

Chapter 36: Text 551

36.19 Substituting for a Character Code

The following functions replace characters within a specified region based on their char-
acter codes.

Functionsubst-char-in-region start end old-char new-char &optional noundo
This function replaces all occurrences of the character old-char with the character
new-char in the region of the current buffer defined by start and end.

If noundo is non-nil, then subst-char-in-region does not record the change for
undo and does not mark the buffer as modified. This feature is used for controlling
selective display (see Section 45.6 [Selective Display], page 664).

subst-char-in-region does not move point and returns nil.

---------- Buffer: foo ----------
This is the contents of the buffer before.
---------- Buffer: foo ----------

(subst-char-in-region 1 20 ?i ?X)
⇒ nil

---------- Buffer: foo ----------
ThXs Xs the contents of the buffer before.
---------- Buffer: foo ----------

Functiontranslate-region start end table
This function applies a translation table to the characters in the buffer between po-
sitions start and end.

The translation table table is a string; (aref table ochar) gives the translated char-
acter corresponding to ochar. If the length of table is less than 256, any characters
with codes larger than the length of table are not altered by the translation.

The return value of translate-region is the number of characters that were actually
changed by the translation. This does not count characters that were mapped into
themselves in the translation table.

36.20 Registers

A register is a sort of variable used in XEmacs editing that can hold a marker, a string,
a rectangle, a window configuration (of one frame), or a frame configuration (of all frames).
Each register is named by a single character. All characters, including control and meta
characters (but with the exception of C-g), can be used to name registers. Thus, there are
255 possible registers. A register is designated in Emacs Lisp by a character that is its
name.

The functions in this section return unpredictable values unless otherwise stated.

552 XEmacs Lisp Reference Manual

Variableregister-alist
This variable is an alist of elements of the form (name . contents). Normally, there
is one element for each XEmacs register that has been used.
The object name is a character (an integer) identifying the register. The object
contents is a string, marker, or list representing the register contents. A string repre-
sents text stored in the register. A marker represents a position. A list represents a
rectangle; its elements are strings, one per line of the rectangle.

Functionget-register reg
This function returns the contents of the register reg, or nil if it has no contents.

Functionset-register reg value
This function sets the contents of register reg to value. A register can be set to any
value, but the other register functions expect only certain data types. The return
value is value.

Commandview-register reg
This command displays what is contained in register reg.

Commandinsert-register reg &optional beforep
This command inserts contents of register reg into the current buffer.
Normally, this command puts point before the inserted text, and the mark after it.
However, if the optional second argument beforep is non-nil, it puts the mark before
and point after. You can pass a non-nil second argument beforep to this function
interactively by supplying any prefix argument.
If the register contains a rectangle, then the rectangle is inserted with its upper left
corner at point. This means that text is inserted in the current line and underneath
it on successive lines.
If the register contains something other than saved text (a string) or a rectangle (a
list), currently useless things happen. This may be changed in the future.

36.21 Transposition of Text

This subroutine is used by the transposition commands.

Functiontranspose-regions start1 end1 start2 end2 &optional leave-markers
This function exchanges two nonoverlapping portions of the buffer. Arguments start1
and end1 specify the bounds of one portion and arguments start2 and end2 specify
the bounds of the other portion.
Normally, transpose-regions relocates markers with the transposed text; a marker
previously positioned within one of the two transposed portions moves along with
that portion, thus remaining between the same two characters in their new position.
However, if leave-markers is non-nil, transpose-regions does not do this—it leaves
all markers unrelocated.

Chapter 36: Text 553

36.22 Change Hooks

These hook variables let you arrange to take notice of all changes in all buffers (or in a
particular buffer, if you make them buffer-local).

The functions you use in these hooks should save and restore the match data if they do
anything that uses regular expressions; otherwise, they will interfere in bizarre ways with
the editing operations that call them.

Buffer changes made while executing the following hooks don’t themselves cause any
change hooks to be invoked.

Variablebefore-change-functions
This variable holds a list of a functions to call before any buffer modification. Each
function gets two arguments, the beginning and end of the region that is about to
change, represented as integers. The buffer that is about to change is always the
current buffer.

Variableafter-change-functions
This variable holds a list of a functions to call after any buffer modification. Each
function receives three arguments: the beginning and end of the region just changed,
and the length of the text that existed before the change. (To get the current length,
subtract the region beginning from the region end.) All three arguments are integers.
The buffer that’s about to change is always the current buffer.

Variablebefore-change-function
This obsolete variable holds one function to call before any buffer modification (or
nil for no function). It is called just like the functions in before-change-functions.

Variableafter-change-function
This obsolete variable holds one function to call after any buffer modification (or nil
for no function). It is called just like the functions in after-change-functions.

Variablefirst-change-hook
This variable is a normal hook that is run whenever a buffer is changed that was
previously in the unmodified state.

554 XEmacs Lisp Reference Manual

Chapter 37: Searching and Matching 555

37 Searching and Matching

XEmacs provides two ways to search through a buffer for specified text: exact string
searches and regular expression searches. After a regular expression search, you can examine
the match data to determine which text matched the whole regular expression or various
portions of it.

The ‘skip-chars...’ functions also perform a kind of searching. See Section 34.2.7
[Skipping Characters], page 500.

37.1 Searching for Strings

These are the primitive functions for searching through the text in a buffer. They are
meant for use in programs, but you may call them interactively. If you do so, they prompt
for the search string; limit and noerror are set to nil, and repeat is set to 1.

Commandsearch-forward string &optional limit noerror repeat
This function searches forward from point for an exact match for string. If successful,
it sets point to the end of the occurrence found, and returns the new value of point.
If no match is found, the value and side effects depend on noerror (see below).

In the following example, point is initially at the beginning of the line. Then (search-
forward "fox") moves point after the last letter of ‘fox’:

---------- Buffer: foo ----------
?The quick brown fox jumped over the lazy dog.
---------- Buffer: foo ----------

(search-forward "fox")
⇒ 20

---------- Buffer: foo ----------
The quick brown fox? jumped over the lazy dog.
---------- Buffer: foo ----------

The argument limit specifies the upper bound to the search. (It must be a position
in the current buffer.) No match extending after that position is accepted. If limit is
omitted or nil, it defaults to the end of the accessible portion of the buffer.

What happens when the search fails depends on the value of noerror. If noerror is
nil, a search-failed error is signaled. If noerror is t, search-forward returns nil
and does nothing. If noerror is neither nil nor t, then search-forward moves point
to the upper bound and returns nil. (It would be more consistent now to return the
new position of point in that case, but some programs may depend on a value of nil.)

If repeat is supplied (it must be a positive number), then the search is repeated that
many times (each time starting at the end of the previous time’s match). If these
successive searches succeed, the function succeeds, moving point and returning its
new value. Otherwise the search fails.

556 XEmacs Lisp Reference Manual

Commandsearch-backward string &optional limit noerror repeat
This function searches backward from point for string. It is just like search-forward
except that it searches backwards and leaves point at the beginning of the match.

Commandword-search-forward string &optional limit noerror repeat
This function searches forward from point for a “word” match for string. If it finds
a match, it sets point to the end of the match found, and returns the new value of
point.
Word matching regards string as a sequence of words, disregarding punctuation that
separates them. It searches the buffer for the same sequence of words. Each word
must be distinct in the buffer (searching for the word ‘ball’ does not match the word
‘balls’), but the details of punctuation and spacing are ignored (searching for ‘ball
boy’ does match ‘ball. Boy!’).
In this example, point is initially at the beginning of the buffer; the search leaves it
between the ‘y’ and the ‘!’.

---------- Buffer: foo ----------
?He said "Please! Find
the ball boy!"
---------- Buffer: foo ----------

(word-search-forward "Please find the ball, boy.")
⇒ 35

---------- Buffer: foo ----------
He said "Please! Find
the ball boy?!"
---------- Buffer: foo ----------

If limit is non-nil (it must be a position in the current buffer), then it is the upper
bound to the search. The match found must not extend after that position.
If noerror is nil, then word-search-forward signals an error if the search fails. If
noerror is t, then it returns nil instead of signaling an error. If noerror is neither
nil nor t, it moves point to limit (or the end of the buffer) and returns nil.
If repeat is non-nil, then the search is repeated that many times. Point is positioned
at the end of the last match.

Commandword-search-backward string &optional limit noerror repeat
This function searches backward from point for a word match to string. This function
is just like word-search-forward except that it searches backward and normally
leaves point at the beginning of the match.

37.2 Regular Expressions

A regular expression (regexp, for short) is a pattern that denotes a (possibly infinite)
set of strings. Searching for matches for a regexp is a very powerful operation. This section
explains how to write regexps; the following section says how to search using them.

Chapter 37: Searching and Matching 557

To gain a thorough understanding of regular expressions and how to use them to best
advantage, we recommend that you study Mastering Regular Expressions, by Jeffrey E.F.
Friedl, O’Reilly and Associates, 1997. (It’s known as the "Hip Owls" book, because of
the picture on its cover.) You might also read the manuals to 〈undefined〉 [(gawk)Top],
page 〈undefined〉, 〈undefined〉 [(ed)Top], page 〈undefined〉, sed, grep, 〈undefined〉
[(perl)Top], page 〈undefined〉, 〈undefined〉 [(regex)Top], page 〈undefined〉, 〈undefined〉
[(rx)Top], page 〈undefined〉, pcre, and 〈undefined〉 [(flex)Top], page 〈undefined〉. All of
these programs and libraries make effective use of regular expressions.

The XEmacs regular expression syntax most closely resembles that of ed, or grep, the
GNU versions of which all utilize the GNU regex library. XEmacs’ version of regex has
recently been extended with some Perl–like capabilities, which are described in the next
section.

37.2.1 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and
the rest are ordinary. An ordinary character is a simple regular expression that matches
that character and nothing else. The special characters are ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’, ‘^’,
‘$’, and ‘\’; no new special characters will be defined in the future. Any other character
appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘o’ is a regular expression that matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular
expression that matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something
more powerful, you need to use one of the special characters. Here is a list of them:

. (Period) is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any
three-character string that begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a quantifying suffix operator that means to
repeat the preceding regular expression as many times as possible. In ‘fo*’, the
‘*’ applies to the ‘o’, so ‘fo*’ matches one ‘f’ followed by any number of ‘o’s.
The case of zero ‘o’s is allowed: ‘fo*’ does match ‘f’.
‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’.
The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found; it is "greedy". Then it continues with the rest of the
pattern. If that fails, backtracking occurs, discarding some of the matches of
the ‘*’-modified construct in case that makes it possible to match the rest of the
pattern. For example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’
first tries to match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is

558 XEmacs Lisp Reference Manual

only ‘r’ left to match, so this try fails. The next alternative is for ‘a*’ to match
only two ‘a’s. With this choice, the rest of the regexp matches successfully.
Nested repetition operators can be extremely slow if they specify backtracking
loops. For example, it could take hours for the regular expression ‘\(x+y*\)*a’
to match the sequence ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz’. The slow-
ness is because Emacs must try each imaginable way of grouping the 35 ‘x’’s
before concluding that none of them can work. To make sure your regular
expressions run fast, check nested repetitions carefully.

+ is a quantifying suffix operator similar to ‘*’ except that the preceding expres-
sion must match at least once. It is also "greedy". So, for example, ‘ca+r’
matches the strings ‘car’ and ‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’
matches all three strings.

? is a quantifying suffix operator similar to ‘*’, except that the preceding expres-
sion can match either once or not at all. For example, ‘ca?r’ matches ‘car’ or
‘cr’, but does not match anything else.

? works just like ‘’, except that rather than matching the longest match, it
matches the shortest match. ‘*?’ is known as a non-greedy quantifier, a regexp
construct borrowed from Perl.
This construct is very useful for when you want to match the text inside a pair of
delimiters. For instance, ‘/*.*?*/’ will match C comments in a string. This
could not be so elegantly achieved without the use of a non-greedy quantifier.
This construct has not been available prior to XEmacs 20.4. It is not available
in FSF Emacs.

+? is the ‘+’ analog to ‘*?’.

\{n,m\} serves as an interval quantifier, analogous to ‘*’ or ‘+’, but specifies that the
expression must match at least n times, but no more than m times. This syntax
is supported by most Unix regexp utilities, and has been introduced to XEmacs
for the version 20.3.

[...] ‘[’ begins a character set, which is terminated by a ‘]’. In the simplest case, the
characters between the two brackets form the set. Thus, ‘[ad]’ matches either
one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string composed of just ‘a’s and
‘d’s (including the empty string), from which it follows that ‘c[ad]*r’ matches
‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.
The usual regular expression special characters are not special inside a character
set. A completely different set of special characters exists inside character sets:
‘]’, ‘-’ and ‘^’.
‘-’ is used for ranges of characters. To write a range, write two characters with a
‘-’ between them. Thus, ‘[a-z]’ matches any lower case letter. Ranges may be
intermixed freely with individual characters, as in ‘[a-z$%.]’, which matches
any lower case letter or ‘$’, ‘%’, or a period.
To include a ‘]’ in a character set, make it the first character. For example,
‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the first character in
the set, or put it immediately after a range. (You can replace one individual

Chapter 37: Searching and Matching 559

character c with the range ‘c-c’ to make a place to put the ‘-’.) There is no
way to write a set containing just ‘-’ and ‘]’.
To include ‘^’ in a set, put it anywhere but at the beginning of the set.

[^ ...] ‘[^’ begins a complement character set, which matches any character except
the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except letters
and digits.
‘^’ is not special in a character set unless it is the first character. The character
following the ‘^’ is treated as if it were first (thus, ‘-’ and ‘]’ are not special
there).
Note that a complement character set can match a newline, unless newline is
mentioned as one of the characters not to match.

^ is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘^foo’ matches a ‘foo’ that occurs at the beginning of a line.
When matching a string instead of a buffer, ‘^’ matches at the beginning of the
string or after a newline character ‘\n’.

$ is similar to ‘^’ but matches only at the end of a line. Thus, ‘x+$’ matches a
string of one ‘x’ or more at the end of a line.
When matching a string instead of a buffer, ‘$’ matches at the end of the string
or before a newline character ‘\n’.

\ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.
Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.
Note that ‘\’ also has special meaning in the read syntax of Lisp strings (see
Section 2.4.8 [String Type], page 28), and must be quoted with ‘\’. For exam-
ple, the regular expression that matches the ‘\’ character is ‘\\’. To write a
Lisp string that contains the characters ‘\\’, Lisp syntax requires you to quote
each ‘\’ with another ‘\’. Therefore, the read syntax for a regular expression
matching ‘\’ is "\\\\".

Please note: For historical compatibility, special characters are treated as ordinary ones
if they are in contexts where their special meanings make no sense. For example, ‘*foo’
treats ‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is
poor practice to depend on this behavior; quote the special character anyway, regardless of
where it appears.

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: characters that, when preceded by ‘\’, are special constructs.
Such characters are always ordinary when encountered on their own. Here is a table of ‘\’
constructs:

\| specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches anything that either a or b matches.
Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

560 XEmacs Lisp Reference Manual

‘\|’ applies to the largest possible surrounding expressions. Only a surrounding
‘\(... \)’ grouping can limit the grouping power of ‘\|’.
Full backtracking capability exists to handle multiple uses of ‘\|’.

\(... \) is a grouping construct that serves three purposes:
1. To enclose a set of ‘\|’ alternatives for other operations. Thus,

‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.
2. To enclose an expression for a suffix operator such as ‘*’ to act on. Thus,

‘ba\(na\)*’ matches ‘bananana’, etc., with any (zero or more) number of
‘na’ strings.

3. To record a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that happens to be assigned as a second meaning to the
same ‘\(... \)’ construct because there is no conflict in practice between the
two meanings. Here is an explanation of this feature:

\digit matches the same text that matched the digitth occurrence of a ‘\(... \)’
construct.
In other words, after the end of a ‘\(... \)’ construct. the matcher remembers
the beginning and end of the text matched by that construct. Then, later on
in the regular expression, you can use ‘\’ followed by digit to match that same
text, whatever it may have been.
The strings matching the first nine ‘\(... \)’ constructs appearing in a reg-
ular expression are assigned numbers 1 through 9 in the order that the open
parentheses appear in the regular expression. So you can use ‘\1’ through ‘\9’
to refer to the text matched by the corresponding ‘\(... \)’ constructs.
For example, ‘\(.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.

\(?: ... \)

is called a shy grouping operator, and it is used just like ‘\(... \)’, except
that it does not cause the match substring to be recorded for future reference.
This is useful when you need to use a lot of nested grouping ‘\(... \)’ con-
structs to express complex alternation, but only want to memoize, or capture,
one or two of the subexpression matches. Since ‘\(?: ... \)’ doesn’t cap-
ture a sub-match, it also doesn’t need to be counted when you count ‘\(...
\)’ groups to figure the ‘match-string’ index. That turns out to be a very
convenient characteristic.
This situation occurs where parts of a regular expression have been automaticly
generated by a program that builds them from lists of strings, and the static
code following the matching operation must access a specific match number.
Here’s an example that shows this.
We will assume that (require ’regexp-opt) has been executed already, to
ensure that ‘regexp-opt.el’, which is part of the xemacs-devel package, is
loaded. In a real program, lets pretend that varnames would be a list of strings

Chapter 37: Searching and Matching 561

holding the names of some variables extracted somehow from the text of a
program source you are editing and running this function on. For the purposes
of this illustration, we can just bind it in the let* expression.

(let* ((varnames ’("k" "n" "i" "j" "varname"))
(keys-regexp (regexp-opt

(mapcar #’symbol-name
’(if then else elif
case in of do while
with for next unless
cond begin end))))

(varname-regexp (regexp-opt varnames))
(contrived-regexp (concat "\\(" keys-regexp "\\)"

"\\s-(\\s-\\("
varname-regexp
"\\)\\s-)"))

(keyname "")
(varname ""))

;; In the body of this particular defun, we:
(re-search-forward contrived-regexp nil t)
;; . . . and it finds a match. Now we want to extract the
;; text that it matched on, and save it into keyname
;; and varname.
(setq keyname (match-string 1)

varname (match-string 2))
;; . . . and then do something with those values.
(list keyname varname))

;; Here’s something for it to match, so you can try it with
;; C-x C-e
;; while (j) do ...

Here you should see that if the regular expression returned by regexp-opt did
not use ‘\(?: ... \)’ for grouping, and instead used ‘\(... \)’, it would be
necessary to count the number of opening parentheses in the keys-regexp and
to use that figure to calculate which match number is matched by the varname-
regexp. It is much more convenient to be able to just ask for the second match
string.
The shy grouping operator has been borrowed from Perl, and has not been
available prior to XEmacs 20.3, nor is it available in FSF Emacs.

\w matches any word-constituent character. The editor syntax table determines
which characters these are. See Chapter 38 [Syntax Tables], page 575.

\W matches any character that is not a word constituent.

\scode matches any character whose syntax is code. Here code is a character that
represents a syntax code: thus, ‘w’ for word constituent, ‘-’ for whitespace, ‘(’
for open parenthesis, etc. See Chapter 38 [Syntax Tables], page 575, for a list
of syntax codes and the characters that stand for them.

\Scode matches any character whose syntax is not code.

562 XEmacs Lisp Reference Manual

The following regular expression constructs match the empty string—that is, they don’t
use up any characters—but whether they match depends on the context.

\‘ matches the empty string, but only at the beginning of the buffer or string
being matched against.

\’ matches the empty string, but only at the end of the buffer or string being
matched against.

\= matches the empty string, but only at point. (This construct is not defined
when matching against a string.)

\b matches the empty string, but only at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

\B matches the empty string, but not at the beginning or end of a word.

\< matches the empty string, but only at the beginning of a word.

\> matches the empty string, but only at the end of a word.

Not every string is a valid regular expression. For example, a string with unbalanced
square brackets is invalid (with a few exceptions, such as ‘[]]’), and so is a string that ends
with a single ‘\’. If an invalid regular expression is passed to any of the search functions,
an invalid-regexp error is signaled.

Functionregexp-quote string
This function returns a regular expression string that matches exactly string and
nothing else. This allows you to request an exact string match when calling a function
that wants a regular expression.

(regexp-quote "^The cat$")
⇒ "\\^The cat\\$"

One use of regexp-quote is to combine an exact string match with context described
as a regular expression. For example, this searches for the string that is the value of
string, surrounded by whitespace:

(re-search-forward
(concat "\\s-" (regexp-quote string) "\\s-"))

37.2.2 Complex Regexp Example

Here is a complicated regexp, used by XEmacs to recognize the end of a sentence together
with any whitespace that follows. It is the value of the variable sentence-end.

First, we show the regexp as a string in Lisp syntax to distinguish spaces from tab
characters. The string constant begins and ends with a double-quote. ‘\"’ stands for a
double-quote as part of the string, ‘\\’ for a backslash as part of the string, ‘\t’ for a tab
and ‘\n’ for a newline.

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

In contrast, if you evaluate the variable sentence-end, you will see the following:

Chapter 37: Searching and Matching 563

sentence-end
⇒
"[.?!][]\"’)}]*\\($\\| $\\| \\| \\)[
]*"

In this output, tab and newline appear as themselves.

This regular expression contains four parts in succession and can be deciphered as follows:

[.?!] The first part of the pattern is a character set that matches any one of three
characters: period, question mark, and exclamation mark. The match must
begin with one of these three characters.

[]\"’)}]*
The second part of the pattern matches any closing braces and quotation marks,
zero or more of them, that may follow the period, question mark or exclamation
mark. The \" is Lisp syntax for a double-quote in a string. The ‘*’ at the end
indicates that the immediately preceding regular expression (a character set, in
this case) may be repeated zero or more times.

\\($\\| $\\|\t\\| \\)
The third part of the pattern matches the whitespace that follows the end of a
sentence: the end of a line, or a tab, or two spaces. The double backslashes mark
the parentheses and vertical bars as regular expression syntax; the parentheses
delimit a group and the vertical bars separate alternatives. The dollar sign is
used to match the end of a line.

[\t\n]* Finally, the last part of the pattern matches any additional whitespace beyond
the minimum needed to end a sentence.

37.3 Regular Expression Searching

In XEmacs, you can search for the next match for a regexp either incrementally or not.
Incremental search commands are described in the The XEmacs Reference Manual. See
section “Regular Expression Search” in The XEmacs Reference Manual. Here we describe
only the search functions useful in programs. The principal one is re-search-forward.

Commandre-search-forward regexp &optional limit noerror repeat
This function searches forward in the current buffer for a string of text that is matched
by the regular expression regexp. The function skips over any amount of text that
is not matched by regexp, and leaves point at the end of the first match found. It
returns the new value of point.

If limit is non-nil (it must be a position in the current buffer), then it is the upper
bound to the search. No match extending after that position is accepted.

What happens when the search fails depends on the value of noerror. If noerror is
nil, a search-failed error is signaled. If noerror is t, re-search-forward does
nothing and returns nil. If noerror is neither nil nor t, then re-search-forward
moves point to limit (or the end of the buffer) and returns nil.

564 XEmacs Lisp Reference Manual

If repeat is supplied (it must be a positive number), then the search is repeated that
many times (each time starting at the end of the previous time’s match). If these
successive searches succeed, the function succeeds, moving point and returning its
new value. Otherwise the search fails.

In the following example, point is initially before the ‘T’. Evaluating the search call
moves point to the end of that line (between the ‘t’ of ‘hat’ and the newline).

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(re-search-forward "[a-z]+" nil t 5)
⇒ 27

---------- Buffer: foo ----------
I read "The cat in the hat?
comes back" twice.
---------- Buffer: foo ----------

Commandre-search-backward regexp &optional limit noerror repeat
This function searches backward in the current buffer for a string of text that is
matched by the regular expression regexp, leaving point at the beginning of the first
text found.

This function is analogous to re-search-forward, but they are not simple mirror
images. re-search-forward finds the match whose beginning is as close as possible to
the starting point. If re-search-backward were a perfect mirror image, it would find
the match whose end is as close as possible. However, in fact it finds the match whose
beginning is as close as possible. The reason is that matching a regular expression at
a given spot always works from beginning to end, and starts at a specified beginning
position.

A true mirror-image of re-search-forward would require a special feature for match-
ing regexps from end to beginning. It’s not worth the trouble of implementing that.

Functionstring-match regexp string &optional start
This function returns the index of the start of the first match for the regular expression
regexp in string, or nil if there is no match. If start is non-nil, the search starts at
that index in string.

For example,
(string-match
"quick" "The quick brown fox jumped quickly.")

⇒ 4
(string-match
"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

The index of the first character of the string is 0, the index of the second character is
1, and so on.

Chapter 37: Searching and Matching 565

After this function returns, the index of the first character beyond the match is
available as (match-end 0). See Section 37.6 [Match Data], page 568.

(string-match
"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

(match-end 0)
⇒ 32

Functionsplit-string string &optional pattern
This function splits string to substrings delimited by pattern, and returns a list of
substrings. If pattern is omitted, it defaults to ‘[\f\t\n\r\v]+’, which means that
it splits string by white–space.

(split-string "foo bar")
⇒ ("foo" "bar")

(split-string "something")
⇒ ("something")

(split-string "a:b:c" ":")
⇒ ("a" "b" "c")

(split-string ":a::b:c" ":")
⇒ ("" "a" "" "b" "c")

Functionsplit-path path
This function splits a search path into a list of strings. The path components are
separated with the characters specified with path-separator. Under Unix, path-
separator will normally be ‘:’, while under Windows, it will be ‘;’.

Functionlooking-at regexp
This function determines whether the text in the current buffer directly following point
matches the regular expression regexp. “Directly following” means precisely that: the
search is “anchored” and it can succeed only starting with the first character following
point. The result is t if so, nil otherwise.

This function does not move point, but it updates the match data, which you can
access using match-beginning and match-end. See Section 37.6 [Match Data],
page 568.

In this example, point is located directly before the ‘T’. If it were anywhere else, the
result would be nil.

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(looking-at "The cat in the hat$")
⇒ t

566 XEmacs Lisp Reference Manual

37.4 POSIX Regular Expression Searching

The usual regular expression functions do backtracking when necessary to handle the
‘\|’ and repetition constructs, but they continue this only until they find some match. Then
they succeed and report the first match found.

This section describes alternative search functions which perform the full backtracking
specified by the POSIX standard for regular expression matching. They continue back-
tracking until they have tried all possibilities and found all matches, so they can report
the longest match, as required by POSIX. This is much slower, so use these functions only
when you really need the longest match.

In Emacs versions prior to 19.29, these functions did not exist, and the functions de-
scribed above implemented full POSIX backtracking.

Functionposix-search-forward regexp &optional limit noerror repeat
This is like re-search-forward except that it performs the full backtracking specified
by the POSIX standard for regular expression matching.

Functionposix-search-backward regexp &optional limit noerror repeat
This is like re-search-backward except that it performs the full backtracking spec-
ified by the POSIX standard for regular expression matching.

Functionposix-looking-at regexp
This is like looking-at except that it performs the full backtracking specified by the
POSIX standard for regular expression matching.

Functionposix-string-match regexp string &optional start
This is like string-match except that it performs the full backtracking specified by
the POSIX standard for regular expression matching.

37.5 Search and Replace

Functionperform-replace from-string replacements query-flag regexp-flag
delimited-flag &optional repeat-count map

This function is the guts of query-replace and related commands. It searches for
occurrences of from-string and replaces some or all of them. If query-flag is nil, it
replaces all occurrences; otherwise, it asks the user what to do about each one.

If regexp-flag is non-nil, then from-string is considered a regular expression; oth-
erwise, it must match literally. If delimited-flag is non-nil, then only replacements
surrounded by word boundaries are considered.

The argument replacements specifies what to replace occurrences with. If it is a
string, that string is used. It can also be a list of strings, to be used in cyclic order.

Chapter 37: Searching and Matching 567

If repeat-count is non-nil, it should be an integer. Then it specifies how many times
to use each of the strings in the replacements list before advancing cyclicly to the
next one.

Normally, the keymap query-replace-map defines the possible user responses for
queries. The argument map, if non-nil, is a keymap to use instead of query-replace-
map.

Variablequery-replace-map
This variable holds a special keymap that defines the valid user responses for query-
replace and related functions, as well as y-or-n-p and map-y-or-n-p. It is unusual
in two ways:

• The “key bindings” are not commands, just symbols that are meaningful to the
functions that use this map.

• Prefix keys are not supported; each key binding must be for a single event key
sequence. This is because the functions don’t use read key sequence to get the
input; instead, they read a single event and look it up “by hand.”

Here are the meaningful “bindings” for query-replace-map. Several of them are mean-
ingful only for query-replace and friends.

act Do take the action being considered—in other words, “yes.”

skip Do not take action for this question—in other words, “no.”

exit Answer this question “no,” and give up on the entire series of questions, assum-
ing that the answers will be “no.”

act-and-exit
Answer this question “yes,” and give up on the entire series of questions, as-
suming that subsequent answers will be “no.”

act-and-show
Answer this question “yes,” but show the results—don’t advance yet to the
next question.

automatic
Answer this question and all subsequent questions in the series with “yes,”
without further user interaction.

backup Move back to the previous place that a question was asked about.

edit Enter a recursive edit to deal with this question—instead of any other action
that would normally be taken.

delete-and-edit
Delete the text being considered, then enter a recursive edit to replace it.

recenter Redisplay and center the window, then ask the same question again.

quit Perform a quit right away. Only y-or-n-p and related functions use this answer.

help Display some help, then ask again.

568 XEmacs Lisp Reference Manual

37.6 The Match Data

XEmacs keeps track of the positions of the start and end of segments of text found
during a regular expression search. This means, for example, that you can search for a
complex pattern, such as a date in an Rmail message, and then extract parts of the match
under control of the pattern.

Because the match data normally describe the most recent search only, you must be
careful not to do another search inadvertently between the search you wish to refer back
to and the use of the match data. If you can’t avoid another intervening search, you must
save and restore the match data around it, to prevent it from being overwritten.

37.6.1 Simple Match Data Access

This section explains how to use the match data to find out what was matched by the
last search or match operation.

You can ask about the entire matching text, or about a particular parenthetical subex-
pression of a regular expression. The count argument in the functions below specifies which.
If count is zero, you are asking about the entire match. If count is positive, it specifies which
subexpression you want.

Recall that the subexpressions of a regular expression are those expressions grouped
with escaped parentheses, ‘\(...\)’. The countth subexpression is found by counting oc-
currences of ‘\(’ from the beginning of the whole regular expression. The first subexpression
is numbered 1, the second 2, and so on. Only regular expressions can have subexpressions—
after a simple string search, the only information available is about the entire match.

Functionmatch-string count &optional in-string
This function returns, as a string, the text matched in the last search or match
operation. It returns the entire text if count is zero, or just the portion corresponding
to the countth parenthetical subexpression, if count is positive. If count is out of
range, or if that subexpression didn’t match anything, the value is nil.
If the last such operation was done against a string with string-match, then you
should pass the same string as the argument in-string. Otherwise, after a buffer
search or match, you should omit in-string or pass nil for it; but you should make
sure that the current buffer when you call match-string is the one in which you did
the searching or matching.

Functionmatch-beginning count
This function returns the position of the start of text matched by the last regular
expression searched for, or a subexpression of it.
If count is zero, then the value is the position of the start of the entire match. Oth-
erwise, count specifies a subexpression in the regular expression, and the value of the
function is the starting position of the match for that subexpression.
The value is nil for a subexpression inside a ‘\|’ alternative that wasn’t used in the
match.

Chapter 37: Searching and Matching 569

Functionmatch-end count
This function is like match-beginning except that it returns the position of the end
of the match, rather than the position of the beginning.

Here is an example of using the match data, with a comment showing the positions
within the text:

(string-match "\\(qu\\)\\(ick\\)"
"The quick fox jumped quickly.")
;0123456789

⇒ 4

(match-string 0 "The quick fox jumped quickly.")
⇒ "quick"

(match-string 1 "The quick fox jumped quickly.")
⇒ "qu"

(match-string 2 "The quick fox jumped quickly.")
⇒ "ick"

(match-beginning 1) ; The beginning of the match
⇒ 4 ; with ‘qu’ is at index 4.

(match-beginning 2) ; The beginning of the match
⇒ 6 ; with ‘ick’ is at index 6.

(match-end 1) ; The end of the match
⇒ 6 ; with ‘qu’ is at index 6.

(match-end 2) ; The end of the match
⇒ 9 ; with ‘ick’ is at index 9.

Here is another example. Point is initially located at the beginning of the line. Searching
moves point to between the space and the word ‘in’. The beginning of the entire match
is at the 9th character of the buffer (‘T’), and the beginning of the match for the first
subexpression is at the 13th character (‘c’).

(list
(re-search-forward "The \\(cat \\)")
(match-beginning 0)
(match-beginning 1))
⇒ (9 9 13)

---------- Buffer: foo ----------
I read "The cat ?in the hat comes back" twice.

^ ^
9 13

---------- Buffer: foo ----------

(In this case, the index returned is a buffer position; the first character of the buffer counts
as 1.)

37.6.2 Replacing the Text That Matched

This function replaces the text matched by the last search with replacement.

570 XEmacs Lisp Reference Manual

Functionreplace-match replacement &optional fixedcase literal string
This function replaces the text in the buffer (or in string) that was matched by the
last search. It replaces that text with replacement.

If you did the last search in a buffer, you should specify nil for string. Then replace-
match does the replacement by editing the buffer; it leaves point at the end of the
replacement text, and returns t.

If you did the search in a string, pass the same string as string. Then replace-match
does the replacement by constructing and returning a new string.

If fixedcase is non-nil, then the case of the replacement text is not changed; otherwise,
the replacement text is converted to a different case depending upon the capitalization
of the text to be replaced. If the original text is all upper case, the replacement text
is converted to upper case. If the first word of the original text is capitalized, then the
first word of the replacement text is capitalized. If the original text contains just one
word, and that word is a capital letter, replace-match considers this a capitalized
first word rather than all upper case.

If case-replace is nil, then case conversion is not done, regardless of the value of
fixed-case. See Section 37.7 [Searching and Case], page 572.

If literal is non-nil, then replacement is inserted exactly as it is, the only alterations
being case changes as needed. If it is nil (the default), then the character ‘\’ is
treated specially. If a ‘\’ appears in replacement, then it must be part of one of the
following sequences:

‘\&’ ‘\&’ stands for the entire text being replaced.

‘\n’ ‘\n’, where n is a digit, stands for the text that matched the nth subex-
pression in the original regexp. Subexpressions are those expressions
grouped inside ‘\(...\)’.

‘\\’ ‘\\’ stands for a single ‘\’ in the replacement text.

37.6.3 Accessing the Entire Match Data

The functions match-data and set-match-data read or write the entire match data, all
at once.

Functionmatch-data
This function returns a newly constructed list containing all the information on what
text the last search matched. Element zero is the position of the beginning of the
match for the whole expression; element one is the position of the end of the match
for the expression. The next two elements are the positions of the beginning and end
of the match for the first subexpression, and so on. In general, element number 2n
corresponds to (match-beginning n); and element number 2n + 1 corresponds to
(match-end n).

All the elements are markers or nil if matching was done on a buffer, and all are
integers or nil if matching was done on a string with string-match. (In Emacs 18

Chapter 37: Searching and Matching 571

and earlier versions, markers were used even for matching on a string, except in the
case of the integer 0.)
As always, there must be no possibility of intervening searches between the call to a
search function and the call to match-data that is intended to access the match data
for that search.

(match-data)
⇒ (#<marker at 9 in foo>

#<marker at 17 in foo>
#<marker at 13 in foo>
#<marker at 17 in foo>)

Functionset-match-data match-list
This function sets the match data from the elements of match-list, which should be
a list that was the value of a previous call to match-data.
If match-list refers to a buffer that doesn’t exist, you don’t get an error; that sets the
match data in a meaningless but harmless way.
store-match-data is an alias for set-match-data.

37.6.4 Saving and Restoring the Match Data

When you call a function that may do a search, you may need to save and restore the
match data around that call, if you want to preserve the match data from an earlier search
for later use. Here is an example that shows the problem that arises if you fail to save the
match data:

(re-search-forward "The \\(cat \\)")
⇒ 48

(foo) ; Perhaps foo does
; more searching.

(match-end 0)
⇒ 61 ; Unexpected result—not 48!

You can save and restore the match data with save-match-data:

Macrosave-match-data body. . .
This special form executes body, saving and restoring the match data around it.

You can use set-match-data together with match-data to imitate the effect of the
special form save-match-data. This is useful for writing code that can run in Emacs 18.
Here is how:

(let ((data (match-data)))
(unwind-protect

... ; May change the original match data.
(set-match-data data)))

Emacs automatically saves and restores the match data when it runs process filter func-
tions (see Section 49.9.2 [Filter Functions], page 694) and process sentinels (see Section 49.10
[Sentinels], page 697).

572 XEmacs Lisp Reference Manual

37.7 Searching and Case

By default, searches in Emacs ignore the case of the text they are searching through; if
you specify searching for ‘FOO’, then ‘Foo’ or ‘foo’ is also considered a match. Regexps, and
in particular character sets, are included: thus, ‘[aB]’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

If you do not want this feature, set the variable case-fold-search to nil. Then all let-
ters must match exactly, including case. This is a buffer-local variable; altering the variable
affects only the current buffer. (See Section 10.9.1 [Intro to Buffer-Local], page 159.) Al-
ternatively, you may change the value of default-case-fold-search, which is the default
value of case-fold-search for buffers that do not override it.

Note that the user-level incremental search feature handles case distinctions differently.
When given a lower case letter, it looks for a match of either case, but when given an upper
case letter, it looks for an upper case letter only. But this has nothing to do with the
searching functions Lisp functions use.

User Optioncase-replace
This variable determines whether the replacement functions should preserve case. If
the variable is nil, that means to use the replacement text verbatim. A non-nil
value means to convert the case of the replacement text according to the text being
replaced.
The function replace-match is where this variable actually has its effect. See Sec-
tion 37.6.2 [Replacing Match], page 569.

User Optioncase-fold-search
This buffer-local variable determines whether searches should ignore case. If the
variable is nil they do not ignore case; otherwise they do ignore case.

Variabledefault-case-fold-search
The value of this variable is the default value for case-fold-search in buffers that
do not override it. This is the same as (default-value ’case-fold-search).

37.8 Standard Regular Expressions Used in Editing

This section describes some variables that hold regular expressions used for certain pur-
poses in editing:

Variablepage-delimiter
This is the regexp describing line-beginnings that separate pages. The default value
is "^\014" (i.e., "^^L" or "^\C-l"); this matches a line that starts with a formfeed
character.

The following two regular expressions should not assume the match always starts at the
beginning of a line; they should not use ‘^’ to anchor the match. Most often, the paragraph
commands do check for a match only at the beginning of a line, which means that ‘^’ would

Chapter 37: Searching and Matching 573

be superfluous. When there is a nonzero left margin, they accept matches that start after
the left margin. In that case, a ‘^’ would be incorrect. However, a ‘^’ is harmless in modes
where a left margin is never used.

Variableparagraph-separate
This is the regular expression for recognizing the beginning of a line that separates
paragraphs. (If you change this, you may have to change paragraph-start also.) The
default value is "[\t\f]*$", which matches a line that consists entirely of spaces,
tabs, and form feeds (after its left margin).

Variableparagraph-start
This is the regular expression for recognizing the beginning of a line that starts or sep-
arates paragraphs. The default value is "[\t\n\f]", which matches a line starting
with a space, tab, newline, or form feed (after its left margin).

Variablesentence-end
This is the regular expression describing the end of a sentence. (All paragraph bound-
aries also end sentences, regardless.) The default value is:

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

This means a period, question mark or exclamation mark, followed optionally by a
closing parenthetical character, followed by tabs, spaces or new lines.
For a detailed explanation of this regular expression, see Section 37.2.2 [Regexp Ex-
ample], page 562.

574 XEmacs Lisp Reference Manual

Chapter 38: Syntax Tables 575

38 Syntax Tables

A syntax table specifies the syntactic textual function of each character. This infor-
mation is used by the parsing commands, the complex movement commands, and others
to determine where words, symbols, and other syntactic constructs begin and end. The
current syntax table controls the meaning of the word motion functions (see Section 34.2.2
[Word Motion], page 495) and the list motion functions (see Section 34.2.6 [List Motion],
page 499) as well as the functions in this chapter.

38.1 Syntax Table Concepts

Under XEmacs 20, a syntax table is a particular subtype of the primitive char table type
(see Section 4.13 [Char Tables], page 75), and each element of the char table is an integer
that encodes the syntax of the character in question, or a cons of such an integer and a
matching character (for characters with parenthesis syntax).

Under XEmacs 19, a syntax table is a vector of 256 elements; it contains one entry for
each of the 256 possible characters in an 8-bit byte. Each element is an integer that encodes
the syntax of the character in question. (The matching character, if any, is embedded in
the bits of this integer.)

Syntax tables are used only for moving across text, not for the Emacs Lisp reader.
XEmacs Lisp uses built-in syntactic rules when reading Lisp expressions, and these rules
cannot be changed.

Each buffer has its own major mode, and each major mode has its own idea of the
syntactic class of various characters. For example, in Lisp mode, the character ‘;’ begins a
comment, but in C mode, it terminates a statement. To support these variations, XEmacs
makes the choice of syntax table local to each buffer. Typically, each major mode has its
own syntax table and installs that table in each buffer that uses that mode. Changing this
table alters the syntax in all those buffers as well as in any buffers subsequently put in
that mode. Occasionally several similar modes share one syntax table. See Section 26.1.2
[Example Major Modes], page 367, for an example of how to set up a syntax table.

A syntax table can inherit the data for some characters from the standard syntax table,
while specifying other characters itself. The “inherit” syntax class means “inherit this
character’s syntax from the standard syntax table.” Most major modes’ syntax tables
inherit the syntax of character codes 0 through 31 and 128 through 255. This is useful with
character sets such as ISO Latin-1 that have additional alphabetic characters in the range
128 to 255. Just changing the standard syntax for these characters affects all major modes.

Functionsyntax-table-p object
This function returns t if object is a vector of length 256 elements. This means that
the vector may be a syntax table. However, according to this test, any vector of
length 256 is considered to be a syntax table, no matter what its contents.

576 XEmacs Lisp Reference Manual

38.2 Syntax Descriptors

This section describes the syntax classes and flags that denote the syntax of a character,
and how they are represented as a syntax descriptor, which is a Lisp string that you pass
to modify-syntax-entry to specify the desired syntax.

XEmacs defines a number of syntax classes. Each syntax table puts each character into
one class. There is no necessary relationship between the class of a character in one syntax
table and its class in any other table.

Each class is designated by a mnemonic character, which serves as the name of the class
when you need to specify a class. Usually the designator character is one that is frequently
in that class; however, its meaning as a designator is unvarying and independent of what
syntax that character currently has.

A syntax descriptor is a Lisp string that specifies a syntax class, a matching character
(used only for the parenthesis classes) and flags. The first character is the designator for a
syntax class. The second character is the character to match; if it is unused, put a space
there. Then come the characters for any desired flags. If no matching character or flags are
needed, one character is sufficient.

For example, the descriptor for the character ‘*’ in C mode is ‘. 23’ (i.e., punctuation,
matching character slot unused, second character of a comment-starter, first character of
an comment-ender), and the entry for ‘/’ is ‘. 14’ (i.e., punctuation, matching character
slot unused, first character of a comment-starter, second character of a comment-ender).

38.2.1 Table of Syntax Classes

Here is a table of syntax classes, the characters that stand for them, their meanings, and
examples of their use.

Syntax classwhitespace character
Whitespace characters (designated with ‘ ’ or ‘-’) separate symbols and words from
each other. Typically, whitespace characters have no other syntactic significance, and
multiple whitespace characters are syntactically equivalent to a single one. Space,
tab, newline and formfeed are almost always classified as whitespace.

Syntax classword constituent
Word constituents (designated with ‘w’) are parts of normal English words and are
typically used in variable and command names in programs. All upper- and lower-case
letters, and the digits, are typically word constituents.

Syntax classsymbol constituent
Symbol constituents (designated with ‘_’) are the extra characters that are used in
variable and command names along with word constituents. For example, the symbol
constituents class is used in Lisp mode to indicate that certain characters may be part
of symbol names even though they are not part of English words. These characters
are ‘$&*+-_<>’. In standard C, the only non-word-constituent character that is valid
in symbols is underscore (‘_’).

Chapter 38: Syntax Tables 577

Syntax classpunctuation character
Punctuation characters (‘.’) are those characters that are used as punctuation in
English, or are used in some way in a programming language to separate symbols
from one another. Most programming language modes, including Emacs Lisp mode,
have no characters in this class since the few characters that are not symbol or word
constituents all have other uses.

Syntax classopen parenthesis character
Syntax classclose parenthesis character

Open and close parenthesis characters are characters used in dissimilar pairs to sur-
round sentences or expressions. Such a grouping is begun with an open parenthesis
character and terminated with a close. Each open parenthesis character matches a
particular close parenthesis character, and vice versa. Normally, XEmacs indicates
momentarily the matching open parenthesis when you insert a close parenthesis. See
Section 45.9 [Blinking], page 667.

The class of open parentheses is designated with ‘(’, and that of close parentheses
with ‘)’.

In English text, and in C code, the parenthesis pairs are ‘()’, ‘[]’, and ‘{}’. In
XEmacs Lisp, the delimiters for lists and vectors (‘()’ and ‘[]’) are classified as
parenthesis characters.

Syntax classstring quote
String quote characters (designated with ‘"’) are used in many languages, including
Lisp and C, to delimit string constants. The same string quote character appears at
the beginning and the end of a string. Such quoted strings do not nest.

The parsing facilities of XEmacs consider a string as a single token. The usual syn-
tactic meanings of the characters in the string are suppressed.

The Lisp modes have two string quote characters: double-quote (‘"’) and vertical bar
(‘|’). ‘|’ is not used in XEmacs Lisp, but it is used in Common Lisp. C also has two
string quote characters: double-quote for strings, and single-quote (‘’’) for character
constants.

English text has no string quote characters because English is not a programming
language. Although quotation marks are used in English, we do not want them to
turn off the usual syntactic properties of other characters in the quotation.

Syntax classescape
An escape character (designated with ‘\’) starts an escape sequence such as is used
in C string and character constants. The character ‘\’ belongs to this class in both
C and Lisp. (In C, it is used thus only inside strings, but it turns out to cause no
trouble to treat it this way throughout C code.)

Characters in this class count as part of words if words-include-escapes is non-nil.
See Section 34.2.2 [Word Motion], page 495.

578 XEmacs Lisp Reference Manual

Syntax classcharacter quote
A character quote character (designated with ‘/’) quotes the following character so
that it loses its normal syntactic meaning. This differs from an escape character in
that only the character immediately following is ever affected.
Characters in this class count as part of words if words-include-escapes is non-nil.
See Section 34.2.2 [Word Motion], page 495.
This class is used for backslash in TEX mode.

Syntax classpaired delimiter
Paired delimiter characters (designated with ‘$’) are like string quote characters ex-
cept that the syntactic properties of the characters between the delimiters are not
suppressed. Only TEX mode uses a paired delimiter presently—the ‘$’ that both
enters and leaves math mode.

Syntax classexpression prefix
An expression prefix operator (designated with ‘’’) is used for syntactic operators
that are part of an expression if they appear next to one. These characters in Lisp
include the apostrophe, ‘’’ (used for quoting), the comma, ‘,’ (used in macros), and
‘#’ (used in the read syntax for certain data types).

Syntax classcomment starter
Syntax classcomment ender

The comment starter and comment ender characters are used in various languages to
delimit comments. These classes are designated with ‘<’ and ‘>’, respectively.
English text has no comment characters. In Lisp, the semicolon (‘;’) starts a comment
and a newline or formfeed ends one.

Syntax classinherit
This syntax class does not specify a syntax. It says to look in the standard syntax
table to find the syntax of this character. The designator for this syntax code is ‘@’.

38.2.2 Syntax Flags

In addition to the classes, entries for characters in a syntax table can include flags. There
are six possible flags, represented by the characters ‘1’, ‘2’, ‘3’, ‘4’, ‘b’ and ‘p’.

All the flags except ‘p’ are used to describe multi-character comment delimiters. The
digit flags indicate that a character can also be part of a comment sequence, in addition
to the syntactic properties associated with its character class. The flags are independent
of the class and each other for the sake of characters such as ‘*’ in C mode, which is a
punctuation character, and the second character of a start-of-comment sequence (‘/*’), and
the first character of an end-of-comment sequence (‘*/’).

The flags for a character c are:
• ‘1’ means c is the start of a two-character comment-start sequence.
• ‘2’ means c is the second character of such a sequence.

Chapter 38: Syntax Tables 579

• ‘3’ means c is the start of a two-character comment-end sequence.
• ‘4’ means c is the second character of such a sequence.
• ‘b’ means that c as a comment delimiter belongs to the alternative “b” comment style.

Emacs supports two comment styles simultaneously in any one syntax table. This is
for the sake of C++. Each style of comment syntax has its own comment-start sequence
and its own comment-end sequence. Each comment must stick to one style or the other;
thus, if it starts with the comment-start sequence of style “b”, it must also end with
the comment-end sequence of style “b”.
The two comment-start sequences must begin with the same character; only the sec-
ond character may differ. Mark the second character of the “b”-style comment-start
sequence with the ‘b’ flag.
A comment-end sequence (one or two characters) applies to the “b” style if its first
character has the ‘b’ flag set; otherwise, it applies to the “a” style.
The appropriate comment syntax settings for C++ are as follows:

‘/’ ‘124b’

‘*’ ‘23’

newline ‘>b’

This defines four comment-delimiting sequences:

‘/*’ This is a comment-start sequence for “a” style because the second charac-
ter, ‘*’, does not have the ‘b’ flag.

‘//’ This is a comment-start sequence for “b” style because the second charac-
ter, ‘/’, does have the ‘b’ flag.

‘*/’ This is a comment-end sequence for “a” style because the first character,
‘*’, does not have the ‘b’ flag

newline This is a comment-end sequence for “b” style, because the newline charac-
ter has the ‘b’ flag.

• ‘p’ identifies an additional “prefix character” for Lisp syntax. These characters are
treated as whitespace when they appear between expressions. When they appear within
an expression, they are handled according to their usual syntax codes.
The function backward-prefix-chars moves back over these characters, as well as
over characters whose primary syntax class is prefix (‘’’). See Section 38.4 [Motion
and Syntax], page 581.

38.3 Syntax Table Functions

In this section we describe functions for creating, accessing and altering syntax tables.

Functionmake-syntax-table &optional table
This function creates a new syntax table. Character codes 0 through 31 and 128
through 255 are set up to inherit from the standard syntax table. The other character
codes are set up by copying what the standard syntax table says about them.
Most major mode syntax tables are created in this way.

580 XEmacs Lisp Reference Manual

Functioncopy-syntax-table &optional table
This function constructs a copy of table and returns it. If table is not supplied (or is
nil), it returns a copy of the current syntax table. Otherwise, an error is signaled if
table is not a syntax table.

Commandmodify-syntax-entry char syntax-descriptor &optional table
This function sets the syntax entry for char according to syntax-descriptor. The syn-
tax is changed only for table, which defaults to the current buffer’s syntax table, and
not in any other syntax table. The argument syntax-descriptor specifies the desired
syntax; this is a string beginning with a class designator character, and optionally con-
taining a matching character and flags as well. See Section 38.2 [Syntax Descriptors],
page 576.
This function always returns nil. The old syntax information in the table for this
character is discarded.
An error is signaled if the first character of the syntax descriptor is not one of the
twelve syntax class designator characters. An error is also signaled if char is not a
character.
Examples:

;; Put the space character in class whitespace.
(modify-syntax-entry ?\ " ")

⇒ nil

;; Make ‘$’ an open parenthesis character,
;; with ‘^’ as its matching close.
(modify-syntax-entry ?$ "(^")

⇒ nil

;; Make ‘^’ a close parenthesis character,
;; with ‘$’ as its matching open.
(modify-syntax-entry ?^ ")$")

⇒ nil

;; Make ‘/’ a punctuation character,
;; the first character of a start-comment sequence,
;; and the second character of an end-comment sequence.
;; This is used in C mode.
(modify-syntax-entry ?/ ". 14")

⇒ nil

Functionchar-syntax character
This function returns the syntax class of character, represented by its mnemonic
designator character. This only returns the class, not any matching parenthesis or
flags.
An error is signaled if char is not a character.
The following examples apply to C mode. The first example shows that the syntax
class of space is whitespace (represented by a space). The second example shows that
the syntax of ‘/’ is punctuation. This does not show the fact that it is also part of
comment-start and -end sequences. The third example shows that open parenthesis

Chapter 38: Syntax Tables 581

is in the class of open parentheses. This does not show the fact that it has a matching
character, ‘)’.

(char-to-string (char-syntax ?\))
⇒ " "

(char-to-string (char-syntax ?/))
⇒ "."

(char-to-string (char-syntax ?\())
⇒ "("

Functionset-syntax-table table &optional buffer
This function makes table the syntax table for buffer, which defaults to the current
buffer if omitted. It returns table.

Functionsyntax-table &optional buffer
This function returns the syntax table for buffer, which defaults to the current buffer
if omitted.

38.4 Motion and Syntax

This section describes functions for moving across characters in certain syntax classes.
None of these functions exists in Emacs version 18 or earlier.

Functionskip-syntax-forward syntaxes &optional limit buffer
This function moves point forward across characters having syntax classes mentioned
in syntaxes. It stops when it encounters the end of the buffer, or position limit (if
specified), or a character it is not supposed to skip. Optional argument buffer defaults
to the current buffer if omitted.

Functionskip-syntax-backward syntaxes &optional limit buffer
This function moves point backward across characters whose syntax classes are men-
tioned in syntaxes. It stops when it encounters the beginning of the buffer, or position
limit (if specified), or a character it is not supposed to skip. Optional argument buffer
defaults to the current buffer if omitted.

Functionbackward-prefix-chars &optional buffer
This function moves point backward over any number of characters with expression
prefix syntax. This includes both characters in the expression prefix syntax class, and
characters with the ‘p’ flag. Optional argument buffer defaults to the current buffer
if omitted.

582 XEmacs Lisp Reference Manual

38.5 Parsing Balanced Expressions

Here are several functions for parsing and scanning balanced expressions, also known as
sexps, in which parentheses match in pairs. The syntax table controls the interpretation of
characters, so these functions can be used for Lisp expressions when in Lisp mode and for
C expressions when in C mode. See Section 34.2.6 [List Motion], page 499, for convenient
higher-level functions for moving over balanced expressions.

Functionparse-partial-sexp start limit &optional target-depth stop-before state
stop-comment buffer

This function parses a sexp in the current buffer starting at start, not scanning past
limit. It stops at position limit or when certain criteria described below are met, and
sets point to the location where parsing stops. It returns a value describing the status
of the parse at the point where it stops.

If state is nil, start is assumed to be at the top level of parenthesis structure, such
as the beginning of a function definition. Alternatively, you might wish to resume
parsing in the middle of the structure. To do this, you must provide a state argument
that describes the initial status of parsing.

If the third argument target-depth is non-nil, parsing stops if the depth in parentheses
becomes equal to target-depth. The depth starts at 0, or at whatever is given in state.

If the fourth argument stop-before is non-nil, parsing stops when it comes to any
character that starts a sexp. If stop-comment is non-nil, parsing stops when it comes
to the start of a comment.

The fifth argument state is an eight-element list of the same form as the value of this
function, described below. The return value of one call may be used to initialize the
state of the parse on another call to parse-partial-sexp.

The result is a list of eight elements describing the final state of the parse:

0. The depth in parentheses, counting from 0.
1. The character position of the start of the innermost parenthetical grouping con-

taining the stopping point; nil if none.
2. The character position of the start of the last complete subexpression terminated;

nil if none.
3. Non-nil if inside a string. More precisely, this is the character that will terminate

the string.
4. t if inside a comment (of either style).
5. t if point is just after a quote character.
6. The minimum parenthesis depth encountered during this scan.
7. t if inside a comment of style “b”.

Elements 0, 3, 4, 5 and 7 are significant in the argument state.

This function is most often used to compute indentation for languages that have
nested parentheses.

Chapter 38: Syntax Tables 583

Functionscan-lists from count depth &optional buffer noerror
This function scans forward count balanced parenthetical groupings from character
number from. It returns the character position where the scan stops.
If depth is nonzero, parenthesis depth counting begins from that value. The only
candidates for stopping are places where the depth in parentheses becomes zero;
scan-lists counts count such places and then stops. Thus, a positive value for
depth means go out depth levels of parenthesis.
Scanning ignores comments if parse-sexp-ignore-comments is non-nil.
If the scan reaches the beginning or end of the buffer (or its accessible portion), and
the depth is not zero, an error is signaled. If the depth is zero but the count is not
used up, nil is returned.
If optional arg buffer is non-nil, scanning occurs in that buffer instead of in the
current buffer.
If optional arg noerror is non-nil, scan-lists will return nil instead of signalling
an error.

Functionscan-sexps from count &optional buffer noerror
This function scans forward count sexps from character position from. It returns the
character position where the scan stops.
Scanning ignores comments if parse-sexp-ignore-comments is non-nil.
If the scan reaches the beginning or end of (the accessible part of) the buffer in the
middle of a parenthetical grouping, an error is signaled. If it reaches the beginning
or end between groupings but before count is used up, nil is returned.
If optional arg buffer is non-nil, scanning occurs in that buffer instead of in the
current buffer.
If optional arg noerror is non-nil, scan-sexps will return nil instead of signalling an
error.

Variableparse-sexp-ignore-comments
If the value is non-nil, then comments are treated as whitespace by the functions in
this section and by forward-sexp.
In older Emacs versions, this feature worked only when the comment terminator is
something like ‘*/’, and appears only to end a comment. In languages where newlines
terminate comments, it was necessary make this variable nil, since not every newline
is the end of a comment. This limitation no longer exists.

You can use forward-comment to move forward or backward over one comment or several
comments.

Functionforward-comment count &optional buffer
This function moves point forward across count comments (backward, if count is
negative). If it finds anything other than a comment or whitespace, it stops, leaving
point at the place where it stopped. It also stops after satisfying count.
Optional argument buffer defaults to the current buffer.

584 XEmacs Lisp Reference Manual

To move forward over all comments and whitespace following point, use (forward-
comment (buffer-size)). (buffer-size) is a good argument to use, because the number
of comments in the buffer cannot exceed that many.

38.6 Some Standard Syntax Tables

Most of the major modes in XEmacs have their own syntax tables. Here are several of
them:

Functionstandard-syntax-table
This function returns the standard syntax table, which is the syntax table used in
Fundamental mode.

Variabletext-mode-syntax-table
The value of this variable is the syntax table used in Text mode.

Variablec-mode-syntax-table
The value of this variable is the syntax table for C-mode buffers.

Variableemacs-lisp-mode-syntax-table
The value of this variable is the syntax table used in Emacs Lisp mode by editing
commands. (It has no effect on the Lisp read function.)

38.7 Syntax Table Internals

Each element of a syntax table is an integer that encodes the syntax of one character:
the syntax class, possible matching character, and flags. Lisp programs don’t usually work
with the elements directly; the Lisp-level syntax table functions usually work with syntax
descriptors (see Section 38.2 [Syntax Descriptors], page 576).

The low 8 bits of each element of a syntax table indicate the syntax class.

Integer Class

0 whitespace

1 punctuation

2 word

3 symbol

4 open parenthesis

5 close parenthesis

6 expression prefix

7 string quote

Chapter 38: Syntax Tables 585

8 paired delimiter

9 escape

10 character quote

11 comment-start

12 comment-end

13 inherit

The next 8 bits are the matching opposite parenthesis (if the character has parenthesis
syntax); otherwise, they are not meaningful. The next 6 bits are the flags.

586 XEmacs Lisp Reference Manual

Chapter 39: Abbrevs And Abbrev Expansion 587

39 Abbrevs And Abbrev Expansion

An abbreviation or abbrev is a string of characters that may be expanded to a longer
string. The user can insert the abbrev string and find it replaced automatically with the
expansion of the abbrev. This saves typing.

The set of abbrevs currently in effect is recorded in an abbrev table. Each buffer has a
local abbrev table, but normally all buffers in the same major mode share one abbrev table.
There is also a global abbrev table. Normally both are used.

An abbrev table is represented as an obarray containing a symbol for each abbreviation.
The symbol’s name is the abbreviation; its value is the expansion; its function definition
is the hook function to do the expansion (see Section 39.3 [Defining Abbrevs], page 588);
its property list cell contains the use count, the number of times the abbreviation has been
expanded. Because these symbols are not interned in the usual obarray, they will never
appear as the result of reading a Lisp expression; in fact, normally they are never used
except by the code that handles abbrevs. Therefore, it is safe to use them in an extremely
nonstandard way. See Section 7.3 [Creating Symbols], page 115.

For the user-level commands for abbrevs, see section “Abbrev Mode” in The XEmacs
Reference Manual.

39.1 Setting Up Abbrev Mode

Abbrev mode is a minor mode controlled by the value of the variable abbrev-mode.

Variableabbrev-mode
A non-nil value of this variable turns on the automatic expansion of abbrevs when
their abbreviations are inserted into a buffer. If the value is nil, abbrevs may be
defined, but they are not expanded automatically.

This variable automatically becomes local when set in any fashion.

Variabledefault-abbrev-mode
This is the value of abbrev-mode for buffers that do not override it. This is the same
as (default-value ’abbrev-mode).

39.2 Abbrev Tables

This section describes how to create and manipulate abbrev tables.

Functionmake-abbrev-table
This function creates and returns a new, empty abbrev table—an obarray containing
no symbols. It is a vector filled with zeros.

588 XEmacs Lisp Reference Manual

Functionclear-abbrev-table table
This function undefines all the abbrevs in abbrev table table, leaving it empty. The
function returns nil.

Functiondefine-abbrev-table tabname definitions
This function defines tabname (a symbol) as an abbrev table name, i.e., as a variable
whose value is an abbrev table. It defines abbrevs in the table according to definitions,
a list of elements of the form (abbrevname expansion hook usecount). The value is
always nil.

Variableabbrev-table-name-list
This is a list of symbols whose values are abbrev tables. define-abbrev-table adds
the new abbrev table name to this list.

Functioninsert-abbrev-table-description name &optional human
This function inserts before point a description of the abbrev table named name. The
argument name is a symbol whose value is an abbrev table. The value is always nil.
If human is non-nil, the description is human-oriented. Otherwise the description is
a Lisp expression—a call to define-abbrev-table that would define name exactly
as it is currently defined.

39.3 Defining Abbrevs

These functions define an abbrev in a specified abbrev table. define-abbrev is the
low-level basic function, while add-abbrev is used by commands that ask for information
from the user.

Functionadd-abbrev table type arg
This function adds an abbreviation to abbrev table table based on information from
the user. The argument type is a string describing in English the kind of abbrev this
will be (typically, "global" or "mode-specific"); this is used in prompting the user.
The argument arg is the number of words in the expansion.
The return value is the symbol that internally represents the new abbrev, or nil if
the user declines to confirm redefining an existing abbrev.

Functiondefine-abbrev table name expansion hook
This function defines an abbrev in table named name, to expand to expansion, and
call hook. The return value is an uninterned symbol that represents the abbrev inside
XEmacs; its name is name.
The argument name should be a string. The argument expansion should be a string,
or nil to undefine the abbrev.
The argument hook is a function or nil. If hook is non-nil, then it is called with no
arguments after the abbrev is replaced with expansion; point is located at the end of
expansion when hook is called.
The use count of the abbrev is initialized to zero.

Chapter 39: Abbrevs And Abbrev Expansion 589

User Optiononly-global-abbrevs
If this variable is non-nil, it means that the user plans to use global abbrevs only. This
tells the commands that define mode-specific abbrevs to define global ones instead.
This variable does not alter the behavior of the functions in this section; it is examined
by their callers.

39.4 Saving Abbrevs in Files

A file of saved abbrev definitions is actually a file of Lisp code. The abbrevs are saved
in the form of a Lisp program to define the same abbrev tables with the same contents.
Therefore, you can load the file with load (see Section 14.1 [How Programs Do Loading],
page 199). However, the function quietly-read-abbrev-file is provided as a more con-
venient interface.

User-level facilities such as save-some-buffers can save abbrevs in a file automatically,
under the control of variables described here.

User Optionabbrev-file-name
This is the default file name for reading and saving abbrevs.

Functionquietly-read-abbrev-file filename
This function reads abbrev definitions from a file named filename, previously written
with write-abbrev-file. If filename is nil, the file specified in abbrev-file-name
is used. save-abbrevs is set to t so that changes will be saved.
This function does not display any messages. It returns nil.

User Optionsave-abbrevs
A non-nil value for save-abbrev means that XEmacs should save abbrevs when files
are saved. abbrev-file-name specifies the file to save the abbrevs in.

Variableabbrevs-changed
This variable is set non-nil by defining or altering any abbrevs. This serves as a flag
for various XEmacs commands to offer to save your abbrevs.

Commandwrite-abbrev-file filename
Save all abbrev definitions, in all abbrev tables, in the file filename, in the form of a
Lisp program that when loaded will define the same abbrevs. This function returns
nil.

39.5 Looking Up and Expanding Abbreviations

Abbrevs are usually expanded by commands for interactive use, including self-insert-
command. This section describes the subroutines used in writing such functions, as well as
the variables they use for communication.

590 XEmacs Lisp Reference Manual

Functionabbrev-symbol abbrev &optional table
This function returns the symbol representing the abbrev named abbrev. The value
returned is nil if that abbrev is not defined. The optional second argument table is
the abbrev table to look it up in. If table is nil, this function tries first the current
buffer’s local abbrev table, and second the global abbrev table.

Functionabbrev-expansion abbrev &optional table
This function returns the string that abbrev would expand into (as defined by the
abbrev tables used for the current buffer). The optional argument table specifies the
abbrev table to use, as in abbrev-symbol.

Commandexpand-abbrev
This command expands the abbrev before point, if any. If point does not follow an
abbrev, this command does nothing. The command returns t if it did expansion, nil
otherwise.

Commandabbrev-prefix-mark &optional arg
Mark current point as the beginning of an abbrev. The next call to expand-abbrev
will use the text from here to point (where it is then) as the abbrev to expand, rather
than using the previous word as usual.

User Optionabbrev-all-caps
When this is set non-nil, an abbrev entered entirely in upper case is expanded using
all upper case. Otherwise, an abbrev entered entirely in upper case is expanded by
capitalizing each word of the expansion.

Variableabbrev-start-location
This is the buffer position for expand-abbrev to use as the start of the next abbrev
to be expanded. (nil means use the word before point instead.) abbrev-start-
location is set to nil each time expand-abbrev is called. This variable is also set
by abbrev-prefix-mark.

Variableabbrev-start-location-buffer
The value of this variable is the buffer for which abbrev-start-location has been
set. Trying to expand an abbrev in any other buffer clears abbrev-start-location.
This variable is set by abbrev-prefix-mark.

Variablelast-abbrev
This is the abbrev-symbol of the last abbrev expanded. This information is left by
expand-abbrev for the sake of the unexpand-abbrev command.

Variablelast-abbrev-location
This is the location of the last abbrev expanded. This contains information left by
expand-abbrev for the sake of the unexpand-abbrev command.

Chapter 39: Abbrevs And Abbrev Expansion 591

Variablelast-abbrev-text
This is the exact expansion text of the last abbrev expanded, after case conversion
(if any). Its value is nil if the abbrev has already been unexpanded. This contains
information left by expand-abbrev for the sake of the unexpand-abbrev command.

Variablepre-abbrev-expand-hook
This is a normal hook whose functions are executed, in sequence, just before any
expansion of an abbrev. See Section 26.4 [Hooks], page 382. Since it is a normal
hook, the hook functions receive no arguments. However, they can find the abbrev
to be expanded by looking in the buffer before point.

The following sample code shows a simple use of pre-abbrev-expand-hook. If the user
terminates an abbrev with a punctuation character, the hook function asks for confirma-
tion. Thus, this hook allows the user to decide whether to expand the abbrev, and aborts
expansion if it is not confirmed.

(add-hook ’pre-abbrev-expand-hook ’query-if-not-space)

;; This is the function invoked by pre-abbrev-expand-hook.

;; If the user terminated the abbrev with a space, the function does
;; nothing (that is, it returns so that the abbrev can expand). If the
;; user entered some other character, this function asks whether
;; expansion should continue.

;; If the user answers the prompt with y, the function returns
;; nil (because of the not function), but that is
;; acceptable; the return value has no effect on expansion.

(defun query-if-not-space ()
(if (/= ?\ (preceding-char))

(if (not (y-or-n-p "Do you want to expand this abbrev? "))
(error "Not expanding this abbrev"))))

39.6 Standard Abbrev Tables

Here we list the variables that hold the abbrev tables for the preloaded major modes of
XEmacs.

Variableglobal-abbrev-table
This is the abbrev table for mode-independent abbrevs. The abbrevs defined in it
apply to all buffers. Each buffer may also have a local abbrev table, whose abbrev
definitions take precedence over those in the global table.

Variablelocal-abbrev-table
The value of this buffer-local variable is the (mode-specific) abbreviation table of the
current buffer.

592 XEmacs Lisp Reference Manual

Variablefundamental-mode-abbrev-table
This is the local abbrev table used in Fundamental mode; in other words, it is the
local abbrev table in all buffers in Fundamental mode.

Variabletext-mode-abbrev-table
This is the local abbrev table used in Text mode.

Variablec-mode-abbrev-table
This is the local abbrev table used in C mode.

Variablelisp-mode-abbrev-table
This is the local abbrev table used in Lisp mode and Emacs Lisp mode.

Chapter 40: Extents 593

40 Extents

An extent is a region of text (a start position and an end position) that is displayed in
a particular face and can have certain other properties such as being read-only. Extents
can overlap each other. XEmacs efficiently handles buffers with large numbers of extents
in them.

Functionextentp object
This returns t if object is an extent.

40.1 Introduction to Extents

An extent is a region of text within a buffer or string that has certain properties associ-
ated with it. The properties of an extent primarily affect the way the text contained in the
extent is displayed. Extents can freely overlap each other in a buffer or string. Extents are
invisible to functions that merely examine the text of a buffer or string.

Please note: An alternative way to add properties to a buffer or string is to use text
properties. See Section 36.18 [Text Properties], page 546.

An extent is logically a Lisp object consisting of a start position, an end position, a
buffer or string to which these positions refer, and a property list. As text is inserted into a
buffer, the start and end positions of the extent are automatically adjusted as necessary to
keep the extent referring to the same text in the buffer. If text is inserted at the boundary
of an extent, the extent’s start-open and end-open properties control whether the text
is included as part of the extent. If the text bounded by an extent is deleted, the extent
becomes detached; its start and end positions are no longer meaningful, but it maintains all
its other properties and can later be reinserted into a buffer. (None of these considerations
apply to strings, because text cannot be inserted into or deleted from a string.)

Each extent has a face or list of faces associated with it, which controls the way in which
the text bounded by the extent is displayed. If an extent’s face is nil or its properties
are partially undefined, the corresponding properties from the default face for the frame
is used. If two or more extents overlap, or if a list of more than one face is specified for
a particular extent, the corresponding faces are merged to determine the text’s displayed
properties. Every extent has a priority that determines which face takes precedence if the
faces conflict. (If two extents have the same priority, the one that comes later in the display
order takes precedence. See Section 40.3 [Extent Endpoints], page 595.) Higher-numbered
priority values correspond to a higher priority, and priority values can be negative. Every
extent is created with a priority of 0, but this can be changed with set-extent-priority.
Within a single extent with a list of faces, faces earlier in the list have a higher priority
than faces later in the list.

Extents can be set to respond specially to key and mouse events within the extent. An
extent’s keymap property controls the effect of key and mouse strokes within the extent’s
text, and the mouse-face property controls whether the extent is highlighted when the
mouse moves over it. See Section 40.10 [Extents and Events], page 606.

594 XEmacs Lisp Reference Manual

An extent can optionally have a begin-glyph or end-glyph associated with it. A begin-
glyph or end-glyph is a pixmap or string that will be displayed either at the start or end of
an extent or in the margin of the line that the start or end of the extent lies in, depending on
the extent’s layout policy. Begin-glyphs and end-glyphs are used to implement annotations,
and you should use the annotation API functions in preference to the lower-level extent
functions. For more information, See Chapter 44 [Annotations], page 651.

If an extent has its detachable property set, it will become detached (i.e. no longer
in the buffer) when all its text its deleted. Otherwise, it will simply shrink down to zero-
length and sit it the same place in the buffer. By default, the detachable property is set
on newly-created extents. See Section 40.7 [Detached Extents], page 604.

If an extent has its duplicable property set, it will be remembered when a string is
created from text bounded by the extent. When the string is re-inserted into a buffer,
the extent will also be re-inserted. This mechanism is used in the kill, yank, and undo
commands. See Section 40.9 [Duplicable Extents], page 605.

40.2 Creating and Modifying Extents

Functionmake-extent from to &optional object
This function makes an extent for the range [from, to) in object (a buffer or string).
object defaults to the current buffer. Insertions at point to will be outside of the
extent; insertions at from will be inside the extent, causing the extent to grow (see
Section 40.3 [Extent Endpoints], page 595). This is the same way that markers
behave. The extent is initially detached if both from and to are nil, and in this case
object defaults to nil, meaning the extent is in no buffer or string (see Section 40.7
[Detached Extents], page 604).

Functiondelete-extent extent
This function removes extent from its buffer and destroys it. This does not modify
the buffer’s text, only its display properties. The extent cannot be used thereafter. To
remove an extent in such a way that it can be re-inserted later, use detach-extent.
See Section 40.7 [Detached Extents], page 604.

Functionextent-object extent
This function returns the buffer or string that extent is in. If the return value is nil,
this means that the extent is detached; however, a detached extent will not necessarily
return a value of nil.

Functionextent-live-p extent
This function returns nil if extent is deleted, and t otherwise.

Chapter 40: Extents 595

40.3 Extent Endpoints

Every extent has a start position and an end position, and logically affects the characters
between those positions. Normally the start and end positions must both be valid positions
in the extent’s buffer or string. However, both endpoints can be nil, meaning the extent
is detached. See Section 40.7 [Detached Extents], page 604.

Whether the extent overlaps its endpoints is governed by its start-open and end-open
properties. Insertion of a character at a closed endpoint will expand the extent to include
that character; insertion at an open endpoint will not. Similarly, functions such as extent-
at that scan over all extents overlapping a particular position will include extents with a
closed endpoint at that position, but not extents with an open endpoint.

Note that the start-closed and end-closed properties are equivalent to start-open
and end-open with the opposite sense.

Both endpoints can be equal, in which case the extent includes no characters but still
exists in the buffer or string. Zero-length extents are used to represent annotations (see
Chapter 44 [Annotations], page 651) and can be used as a more powerful form of a marker.
Deletion of all the characters in an extent may or may not result in a zero-length extent;
this depends on the detachable property (see Section 40.7 [Detached Extents], page 604).
Insertion at the position of a zero-length extent expands the extent if both endpoints are
closed; goes before the extent if it has the start-open property; and goes after the extent if
it has the end-open property. Zero-length extents with both the start-open and end-open
properties are treated as if their starting point were closed. Deletion of a character on a
side of a zero-length extent whose corresponding endpoint is closed causes the extent to be
detached if its detachable property is set; if the corresponding endpoint is open, the extent
remains in the buffer, moving as necessary.

Extents are ordered within a buffer or string by increasing start position, and then by
decreasing end position (this is called the display order).

Functionextent-start-position extent
This function returns the start position of extent.

Functionextent-end-position extent
This function returns the end position of extent.

Functionextent-length extent
This function returns the length of extent in characters. If the extent is detached,
this returns 0. If the extent is not detached, this is equivalent to

(- (extent-end-position extent) (extent-start-position extent))

Functionset-extent-endpoints extent start end &optional buffer-or-string
This function sets the start and end position of extent to start and end. If both are
nil, this is equivalent to detach-extent.
buffer-or-string specifies the new buffer or string that the extent should be in, and
defaults to extent’s buffer or string. (If nil, and extent is in no buffer and no string,
it defaults to the current buffer.)

596 XEmacs Lisp Reference Manual

See documentation on detach-extent for a discussion of undo recording.

40.4 Finding Extents

The following functions provide a simple way of determining the extents in a buffer or
string. A number of more sophisticated primitives for mapping over the extents in a range
of a buffer or string are also provided (see Section 40.5 [Mapping Over Extents], page 597).
When reading through this section, keep in mind the way that extents are ordered (see
Section 40.3 [Extent Endpoints], page 595).

Functionextent-list &optional buffer-or-string from to flags
This function returns a list of the extents in buffer-or-string. buffer-or-string defaults
to the current buffer if omitted. from and to can be used to limit the range over
which extents are returned; if omitted, all extents in the buffer or string are returned.
More specifically, if a range is specified using from and to, only extents that overlap
the range (i.e. begin or end inside of the range) are included in the list. from and to
default to the beginning and end of buffer-or-string, respectively.
flags controls how end cases are treated. For a discussion of this, and exactly what
“overlap” means, see map-extents.

Functions that create extents must be prepared for the possibility that there are other
extents in the same area, created by other functions. To deal with this, functions typically
mark their own extents by setting a particular property on them. The following function
makes it easier to locate those extents.

Functionextent-at pos &optional object property before at-flag
This function finds the “smallest” extent (i.e., the last one in the display order) at (i.e.,
overlapping) pos in object (a buffer or string) having property set. object defaults
to the current buffer. property defaults to nil, meaning that any extent will do.
Returns nil if there is no matching extent at pos. If the fourth argument before is
not nil, it must be an extent; any returned extent will precede that extent. This
feature allows extent-at to be used by a loop over extents.
at-flag controls how end cases are handled (i.e. what “at” really means), and should
be one of:

nil

after An extent is at pos if it covers the character after pos. This is consistent
with the way that text properties work.

before An extent is at pos if it covers the character before pos.

at An extent is at pos if it overlaps or abuts pos. This includes all zero-
length extents at pos.

Note that in all cases, the start-openness and end-openness of the extents considered
is ignored. If you want to pay attention to those properties, you should use map-
extents, which gives you more control.

Chapter 40: Extents 597

The following low-level functions are provided for explicitly traversing the extents in a
buffer according to the display order. These functions are mostly intended for debugging
– in normal operation, you should probably use mapcar-extents or map-extents, or loop
using the before argument to extent-at, rather than creating a loop using next-extent.

Functionnext-extent extent
Given an extent extent, this function returns the next extent in the buffer or string’s
display order. If extent is a buffer or string, this returns the first extent in the buffer
or string.

Functionprevious-extent extent
Given an extent extent, this function returns the previous extent in the buffer or
string’s display order. If extent is a buffer or string, this returns the last extent in
the buffer or string.

40.5 Mapping Over Extents

The most basic and general function for mapping over extents is called map-extents.
You should read through the definition of this function to familiarize yourself with the
concepts and optional arguments involved. However, in practice you may find it more con-
venient to use the function mapcar-extents or to create a loop using the before argument
to extent-at (see Section 40.4 [Finding Extents], page 596).

Functionmap-extents function &optional object from to maparg flags property
value

This function maps function over the extents which overlap a region in object. object
is normally a buffer or string but could be an extent (see below). The region is
normally bounded by [from, to) (i.e. the beginning of the region is closed and the end
of the region is open), but this can be changed with the flags argument (see below
for a complete discussion).
function is called with the arguments (extent, maparg). The arguments object, from,
to, maparg, and flags are all optional and default to the current buffer, the beginning
of object, the end of object, nil, and nil, respectively. map-extents returns the first
non-nil result produced by function, and no more calls to function are made after it
returns non-nil.
If object is an extent, from and to default to the extent’s endpoints, and the mapping
omits that extent and its predecessors. This feature supports restarting a loop based
on map-extents. Note: object must be attached to a buffer or string, and the
mapping is done over that buffer or string.
An extent overlaps the region if there is any point in the extent that is also in the
region. (For the purpose of overlap, zero-length extents and regions are treated as
closed on both ends regardless of their endpoints’ specified open/closedness.) Note
that the endpoints of an extent or region are considered to be in that extent or region
if and only if the corresponding end is closed. For example, the extent [5,7] overlaps

598 XEmacs Lisp Reference Manual

the region [2,5] because 5 is in both the extent and the region. However, (5,7] does
not overlap [2,5] because 5 is not in the extent, and neither [5,7] nor (5,7] overlaps
the region [2,5) because 5 is not in the region.
The optional flags can be a symbol or a list of one or more symbols, modifying the
behavior of map-extents. Allowed symbols are:

end-closed
The region’s end is closed.

start-open
The region’s start is open.

all-extents-closed
Treat all extents as closed on both ends for the purpose of determining
whether they overlap the region, irrespective of their actual open- or
closedness.

all-extents-open
Treat all extents as open on both ends.

all-extents-closed-open
Treat all extents as start-closed, end-open.

all-extents-open-closed
Treat all extents as start-open, end-closed.

start-in-region
In addition to the above conditions for extent overlap, the extent’s start
position must lie within the specified region. Note that, for this condition,
open start positions are treated as if 0.5 was added to the endpoint’s
value, and open end positions are treated as if 0.5 was subtracted from
the endpoint’s value.

end-in-region
The extent’s end position must lie within the region.

start-and-end-in-region
Both the extent’s start and end positions must lie within the region.

start-or-end-in-region
Either the extent’s start or end position must lie within the region.

negate-in-region
The condition specified by a *-in-region flag must not hold for the
extent to be considered.

At most one of all-extents-closed, all-extents-open, all-extents-closed-
open, and all-extents-open-closed may be specified.
At most one of start-in-region, end-in-region, start-and-end-in-region, and
start-or-end-in-region may be specified.
If optional arg property is non-nil, only extents with that property set on them will
be visited. If optional arg value is non-nil, only extents whose value for that property
is eq to value will be visited.

Chapter 40: Extents 599

If you want to map over extents and accumulate a list of results, the following function
may be more convenient than map-extents.

Functionmapcar-extents function &optional predicate buffer-or-string from to
flags property value

This function applies function to all extents which overlap a region in buffer-or-string.
The region is delimited by from and to. function is called with one argument, the
extent. A list of the values returned by function is returned. An optional predicate
may be used to further limit the extents over which function is mapped. The optional
arguments flags, property, and value may also be used to control the extents passed
to predicate or function, and have the same meaning as in map-extents.

Functionmap-extent-children function &optional object from to maparg flags
property value

This function is similar to map-extents, but differs in that:
• It only visits extents which start in the given region.
• After visiting an extent e, it skips all other extents which start inside e but end

before e’s end.

Thus, this function may be used to walk a tree of extents in a buffer:
(defun walk-extents (buffer &optional ignore)

(map-extent-children ’walk-extents buffer))

Functionextent-in-region-p extent &optional from to flags
This function returns t if map-extents would visit extent if called with the given
arguments.

40.6 Properties of Extents

Each extent has a property list associating property names with values. Some property
names have predefined meanings, and can usually only assume particular values. Assigning
other values to such a property either cause the value to be converted into a legal value (e.g.,
assigning anything but nil to a Boolean property will cause the value of t to be assigned
to the property) or will cause an error. Property names without predefined meanings can
be assigned any value. An undefined property is equivalent to a property with a value of
nil, or with a particular default value in the case of properties with predefined meanings.
Note that, when an extent is created, the end-open and detachable properties are set on
it.

If an extent has a parent, all of its properties actually derive from that parent (or from
the root ancestor if the parent in turn has a parent), and setting a property of the extent
actually sets that property on the parent. See Section 40.8 [Extent Parents], page 604.

Functionextent-property extent property
This function returns the value of property in extent. If property is undefined, nil
is returned.

600 XEmacs Lisp Reference Manual

Functionextent-properties extent
This function returns a list of all of extent’s properties that do not have the value of
nil (or the default value, for properties with predefined meanings).

Functionset-extent-property extent property value
This function sets property to value in extent. (If property has a predefined meaning,
only certain values are allowed, and some values may be converted to others before
being stored.)

Functionset-extent-properties extent plist
Change some properties of extent. plist is a property list. This is useful to change
many extent properties at once.

The following table lists the properties with predefined meanings, along with their al-
lowable values.

detached (Boolean) Whether the extent is detached. Setting this is the same as calling
detach-extent. See Section 40.7 [Detached Extents], page 604.

destroyed
(Boolean) Whether the extent has been deleted. Setting this is the same as
calling delete-extent.

priority (integer) The extent’s redisplay priority. Defaults to 0. See Section 40.1 [Intro
to Extents], page 593. This property can also be set with set-extent-priority
and accessed with extent-priority.

start-open
(Boolean) Whether the start position of the extent is open, meaning that char-
acters inserted at that position go outside of the extent. See Section 40.3 [Extent
Endpoints], page 595.

start-closed
(Boolean) Same as start-open but with the opposite sense. Setting this prop-
erty clears start-open and vice-versa.

end-open (Boolean) Whether the end position of the extent is open, meaning that char-
acters inserted at that position go outside of the extent. This is t by default.
See Section 40.3 [Extent Endpoints], page 595.

end-closed
(Boolean) Same as end-open but with the opposite sense. Setting this property
clears end-open and vice-versa.

read-only
(Boolean) Whether text within this extent will be unmodifiable.

face (face, face name, list of faces or face names, or nil) The face in which to
display the extent’s text. This property can also be set with set-extent-face
and accessed with extent-face. Note that if a list of faces is specified, the faces
are merged together, with faces earlier in the list having priority over faces later
in the list.

Chapter 40: Extents 601

mouse-face
(face, face name, list of faces or face names, or nil) The face used to display
the extent when the mouse moves over it. This property can also be set with
set-extent-mouse-face and accessed with extent-mouse-face. Note that if
a list of faces is specified, the faces are merged together, with faces earlier in
the list having priority over faces later in the list. See Section 40.10 [Extents
and Events], page 606.

pointer (pointer glyph) The glyph used as the pointer when the mouse moves over the
extent. This takes precedence over the text-pointer-glyph and nontext-
pointer-glyph variables. If for any reason this glyph is an invalid pointer, the
standard glyphs will be used as fallbacks. See Section 43.4 [Mouse Pointer],
page 649.

detachable
(Boolean) Whether this extent becomes detached when all of the text it covers
is deleted. This is t by default. See Section 40.7 [Detached Extents], page 604.

duplicable
(Boolean) Whether this extent should be copied into strings, so that kill, yank,
and undo commands will restore or copy it. See Section 40.9 [Duplicable Ex-
tents], page 605.

unique (Boolean) Meaningful only in conjunction with duplicable. When this is set,
there may be only one instance of this extent attached at a time. See Sec-
tion 40.9 [Duplicable Extents], page 605.

invisible
(Boolean) If t, text under this extent will not be displayed – it will look as if
the text is not there at all.

keymap (keymap or nil) This keymap is consulted for mouse clicks on this extent or
keypresses made while point is within the extent. See Section 40.10 [Extents
and Events], page 606.

copy-function
This is a hook that is run when a duplicable extent is about to be copied from
a buffer to a string (or the kill ring). See Section 40.9 [Duplicable Extents],
page 605.

paste-function
This is a hook that is run when a duplicable extent is about to be copied from
a string (or the kill ring) into a buffer. See Section 40.9 [Duplicable Extents],
page 605.

begin-glyph
(glyph or nil) This extent’s begin glyph. See Chapter 44 [Annotations],
page 651.

end-glyph
(glyph or nil) This extent’s end glyph. See Chapter 44 [Annotations], page 651.

602 XEmacs Lisp Reference Manual

begin-glyph-layout
(text, whitespace, inside-margin, or outside-margin) The layout policy
for this extent’s begin glyph. Defaults to text. See Chapter 44 [Annotations],
page 651.

end-glyph-layout
(text, whitespace, inside-margin, or outside-margin) The layout policy
for this extent’s end glyph. Defaults to text. See Chapter 44 [Annotations],
page 651.

initial-redisplay-function
(any funcallable object) The function to be called the first time (a part of) the
extent is redisplayed. It will be called with the extent as its argument.
This is used by lazy-shot to implement lazy font-locking. The functionality is
still experimental, and may change without further notice.

The following convenience functions are provided for accessing particular properties of
an extent.

Functionextent-face extent
This function returns the face property of extent. This might also return a list of
face names. Do not modify this list directly! Instead, use set-extent-face.
Note that you can use eq to compare lists of faces as returned by extent-face. In
other words, if you set the face of two different extents to two lists that are equal
but not eq, then the return value of extent-face on the two extents will return the
identical list.

Functionextent-mouse-face extent
This function returns the mouse-face property of extent. This might also return a
list of face names. Do not modify this list directly! Instead, use set-extent-mouse-
face.
Note that you can use eq to compare lists of faces as returned by extent-mouse-face,
just like for extent-face.

Functionextent-priority extent
This function returns the priority property of extent.

Functionextent-keymap extent
This function returns the keymap property of extent.

Functionextent-begin-glyph-layout extent
This function returns the begin-glyph-layout property of extent, i.e. the layout
policy associated with the extent’s begin glyph.

Functionextent-end-glyph-layout extent
This function returns the end-glyph-layout property of extent, i.e. the layout policy
associated with the extent’s end glyph.

Chapter 40: Extents 603

Functionextent-begin-glyph extent
This function returns the begin-glyph property of extent, i.e. the glyph object
displayed at the beginning of extent. If there is none, nil is returned.

Functionextent-end-glyph extent
This function returns the end-glyph property of extent, i.e. the glyph object dis-
played at the end of extent. If there is none, nil is returned.

The following convenience functions are provided for setting particular properties of an
extent.

Functionset-extent-priority extent pri
This function sets the priority property of extent to pri.

Functionset-extent-face extent face
This function sets the face property of extent to face.

Functionset-extent-mouse-face extent face
This function sets the mouse-face property of extent to face.

Functionset-extent-keymap extent keymap
This function sets the keymap property of extent to keymap. keymap must be either
a keymap object, or nil.

Functionset-extent-begin-glyph-layout extent layout
This function sets the begin-glyph-layout property of extent to layout.

Functionset-extent-end-glyph-layout extent layout
This function sets the end-glyph-layout property of extent to layout.

Functionset-extent-begin-glyph extent begin-glyph &optional layout
This function sets the begin-glyph and glyph-layout properties of extent to begin-
glyph and layout, respectively. (layout defaults to text if not specified.)

Functionset-extent-end-glyph extent end-glyph &optional layout
This function sets the end-glyph and glyph-layout properties of extent to end-glyph
and layout, respectively. (layout defaults to text if not specified.)

Functionset-extent-initial-redisplay-function extent function
This function sets the initial-redisplay-function property of the extent to func-
tion.

604 XEmacs Lisp Reference Manual

40.7 Detached Extents

A detached extent is an extent that is not attached to a buffer or string but can be
re-inserted. Detached extents have a start position and end position of nil. Extents can
be explicitly detached using detach-extent. An extent is also detached when all of its
characters are all killed by a deletion, if its detachable property is set; if this property is
not set, the extent becomes a zero-length extent. (Zero-length extents with the detachable
property set behave specially. See Section 40.3 [Extent Endpoints], page 595.)

Functiondetach-extent extent
This function detaches extent from its buffer or string. If extent has the duplicable
property, its detachment is tracked by the undo mechanism. See Section 40.9 [Dupli-
cable Extents], page 605.

Functionextent-detached-p extent
This function returns nil if extent is detached, and t otherwise.

Functioncopy-extent extent &optional object
This function makes a copy of extent. It is initially detached. Optional argument
object defaults to extent’s object (normally a buffer or string, but could be nil).

Functioninsert-extent extent &optional start end no-hooks object
This function inserts extent from start to end in object (a buffer or string). If extent
is detached from a different buffer or string, or in most cases when extent is already
attached, the extent will first be copied as if with copy-extent. This function oper-
ates the same as if insert were called on a string whose extent data calls for extent
to be inserted, except that if no-hooks is non-nil, extent’s paste-function will not
be invoked. See Section 40.9 [Duplicable Extents], page 605.

40.8 Extent Parents

An extent can have a parent extent set for it. If this is the case, the extent derives all its
properties from that extent and has no properties of its own. The only “properties” that
the extent keeps are the buffer or string it refers to and the start and end points. (More
correctly, the extent’s own properties are shadowed. If you later change the extent to have
no parent, its own properties will become visible again.)

It is possible for an extent’s parent to itself have a parent, and so on. Through this,
a whole tree of extents can be created, all deriving their properties from one root extent.
Note, however, that you cannot create an inheritance loop – this is explicitly disallowed.

Parent extents are used to implement the extents over the modeline.

Functionset-extent-parent extent parent
This function sets the parent of extent to parent. If parent is nil, the extent is set
to have no parent.

Chapter 40: Extents 605

Functionextent-parent extent
This function return the parents (if any) of extent, or nil.

Functionextent-children extent
This function returns a list of the children (if any) of extent. The children of an extent
are all those extents whose parent is that extent. This function does not recursively
trace children of children.

Functionextent-descendants extent
This function returns a list of all descendants of extent, including extent. This recur-
sively applies extent-children to any children of extent, until no more children can
be found.

40.9 Duplicable Extents

If an extent has the duplicable property, it will be copied into strings, so that kill,
yank, and undo commands will restore or copy it.

Specifically:
• When a string is created using buffer-substring or buffer-string, any duplicable

extents in the region corresponding to the string will be copied into the string (see
Section 36.2 [Buffer Contents], page 518). When the string in inserted into a buffer using
insert, insert-before-markers, insert-buffer or insert-buffer-substring, the
extents in the string will be copied back into the buffer (see Section 36.4 [Insertion],
page 520). The extents in a string can, of course, be retrieved explicitly using the
standard extent primitives over the string.

• Similarly, when text is copied or cut into the kill ring, any duplicable extents will be
remembered and reinserted later when the text is pasted back into a buffer.

• When concat is called on strings, the extents in the strings are copied into the resulting
string.

• When substring is called on a string, the relevant extents are copied into the resulting
string.

• When a duplicable extent is detached by detach-extent or string deletion, or inserted
by insert-extent or string insertion, the action is recorded by the undo mechanism
so that it can be undone later. Note that if an extent gets detached and then a later
undo causes the extent to get reinserted, the new extent will not be ‘eq’ to the original
extent.

• Extent motion, face changes, and attachment via make-extent are not recorded by the
undo mechanism. This means that extent changes which are to be undo-able must be
performed by character editing, or by insertion and detachment of duplicable extents.

• A duplicable extent’s copy-function property, if non-nil, should be a function, and
will be run when a duplicable extent is about to be copied from a buffer to a string
(or the kill ring). It is called with three arguments: the extent and the buffer positions
within it which are being copied. If this function returns nil, then the extent will not
be copied; otherwise it will.

606 XEmacs Lisp Reference Manual

• A duplicable extent’s paste-function property, if non-nil, should be a function, and
will be run when a duplicable extent is about to be copied from a string (or the kill
ring) into a buffer. It is called with three arguments: the original extent and the buffer
positions which the copied extent will occupy. (This hook is run after the corresponding
text has already been inserted into the buffer.) Note that the extent argument may
be detached when this function is run. If this function returns nil, no extent will be
inserted. Otherwise, there will be an extent covering the range in question.
Note: if the extent to be copied is already attached to the buffer and overlaps the new
range, the extent will simply be extended and the paste-function will not be called.

40.10 Interaction of Extents with Keyboard and Mouse
Events

If an extent has the mouse-face property set, it will be highlighted when the mouse
passes over it. Highlighting is accomplished by merging the extent’s face with the face or
faces specified by the mouse-face property. The effect is as if a pseudo-extent with the
mouse-face face were inserted after the extent in the display order (see Section 40.3 [Extent
Endpoints], page 595, display order).

Variablemouse-highlight-priority
This variable holds the priority to use when merging in the highlighting pseudo-extent.
The default is 1000. This is purposely set very high so that the highlighting pseudo-
extent shows up even if there are other extents with various priorities at the same
location.

You can also explicitly cause an extent to be highlighted. Only one extent at a time can
be highlighted in this fashion, and any other highlighted extent will be de-highlighted.

Functionhighlight-extent extent &optional highlight-p
This function highlights (if highlight-p is non-nil) or de-highlights (if highlight-p is
nil) extent, if extent has the mouse-face property. (Nothing happens if extent does
not have the mouse-face property.)

Functionforce-highlight-extent extent &optional highlight-p
This function is similar to highlight-extent but highlights or de-highlights the
extent regardless of whether it has the mouse-face property.

If an extent has a keymap property, this keymap will be consulted for mouse clicks on
the extent and keypresses made while point is within the extent. The behavior of mouse
clicks and keystrokes not defined in the keymap is as normal for the buffer.

40.11 Atomic Extents

If the Lisp file ‘atomic-extents’ is loaded, then the atomic extent facility is available.
An atomic extent is an extent for which point cannot be positioned anywhere within it.
This ensures that when selecting text, either all or none of the extent is selected.

Chapter 40: Extents 607

To make an extent atomic, set its atomic property.

608 XEmacs Lisp Reference Manual

Chapter 41: Specifiers 609

41 Specifiers

A specifier is an object used to keep track of a property whose value may vary depending
on the particular situation (e.g. particular buffer displayed in a particular window) that it
is used in. The value of many built-in properties, such as the font, foreground, background,
and such properties of a face and variables such as modeline-shadow-thickness and top-
toolbar-height, is actually a specifier object. The specifier object, in turn, is “instanced”
in a particular situation to yield the real value of the property in that situation.

Functionspecifierp object
This function returns non-nil if object is a specifier.

41.1 Introduction to Specifiers

Sometimes you may want the value of a property to vary depending on the context the
property is used in. A simple example of this in XEmacs is buffer-local variables. For
example, the variable modeline-format, which controls the format of the modeline, can
have different values depending on the particular buffer being edited. The variable has a
default value which most modes will use, but a specialized package such as Calendar might
change the variable so as to tailor the modeline to its own purposes.

Other properties (such as those that can be changed by the modify-frame-parameters
function, for example the color of the text cursor) can have frame-local values, although it
might also make sense for them to have buffer-local values. In other cases, you might want
the property to vary depending on the particular window within the frame that applies
(e.g. the top or bottom window in a split frame), the device type that that frame appears
on (X or tty), etc. Perhaps you can envision some more complicated scenario where you
want a particular value in a specified buffer, another value in all other buffers displayed
on a particular frame, another value in all other buffers displayed in all other frames on
any mono (two-color, e.g. black and white only) displays, and a default value in all other
circumstances.

A specifier is a generalization of this, allowing a great deal of flexibility in controlling
exactly what value a property has in which circumstances. It is most commonly used for
display properties, such as an image or the foreground color of a face. As a simple example,
you can specify that the foreground of the default face be
• blue for a particular buffer
• green for all other buffers

As a more complicated example, you could specify that the foreground of the default
face be
• forest green for all buffers displayed in a particular Emacs window, or green if the X

server doesn’t recognize the color ‘forest green’
• blue for all buffers displayed in a particular frame
• red for all other buffers displayed on a color device
• white for all other buffers

610 XEmacs Lisp Reference Manual

41.2 In-Depth Overview of a Specifier

A specifier object encapsulates a set of specifications, each of which says what its value
should be if a particular condition applies. For example, one specification might be “The
value should be darkseagreen2 on X devices” another might be “The value should be blue
in the *Help* buffer”. In specifier terminology, these conditions are called locales and the
values are called instantiators. Given a specifier, a logical question is “What is its value
in a particular situation?” This involves looking through the specifications to see which
ones apply to this particular situation, and perhaps preferring one over another if more
than one applies. In specifier terminology, a “particular situation” is called a domain, and
determining its value in a particular domain is called instancing. Most of the time, a domain
is identified by a particular window. For example, if the redisplay engine is drawing text
in the default face in a particular window, it retrieves the specifier for the foreground color
of the default face and instances it in the domain given by that window; in other words, it
asks the specifier, “What is your value in this window?”.

More specifically, a specifier contains a set of specifications, each of which associates a
locale (a window object, a buffer object, a frame object, a device object, or the symbol
global) with an inst-list, which is a list of one or more inst-pairs. (For each possible locale,
there can be at most one specification containing that locale.) Each inst-pair is a cons of a
tag set (an unordered list of zero or more symbols, or tags) and an instantiator (the allowed
form of this varies depending on the type of specifier). In a given specification, there may
be more than one inst-pair with the same tag set; this is unlike for locales.

The tag set is used to restrict the sorts of devices over which the instantiator is valid
and to uniquely identify instantiators added by a particular application, so that different
applications can work on the same specifier and not interfere with each other. Each tag
can have a predicate associated with it, which is a function of one argument (a device) that
specifies whether the tag matches that particular device. (If a tag does not have a predicate,
it matches all devices.) All tags in a tag set must match a device for the associated inst-pair
to be instantiable over that device. (A null tag set is perfectly valid.)

The valid device types (normally x, tty, and stream) and device classes (normally color,
grayscale, and mono) can always be used as tags, and match devices of the associated
type or class (see Chapter 33 [Consoles and Devices], page 487). User-defined tags may
be defined, with an optional predicate specified. An application can create its own tag,
use it to mark all its instantiators, and be fairly confident that it will not interfere with
other applications that modify the same specifier – Functions that add a specification to a
specifier usually only overwrite existing inst-pairs with the same tag set as was given, and
a particular tag or tag set can be specified when removing instantiators.

When a specifier is instanced in a domain, both the locale and the tag set can be viewed
as specifying necessary conditions that must apply in that domain for an instantiator to be
considered as a possible result of the instancing. More specific locales always override more
general locales (thus, there is no particular ordering of the specifications in a specifier);
however, the tag sets are simply considered in the order that the inst-pairs occur in the
specification’s inst-list.

Note also that the actual object that results from the instancing (called an instance
object) may not be the same as the instantiator from which it was derived. For some

Chapter 41: Specifiers 611

specifier types (such as integer specifiers and boolean specifiers), the instantiator will be
returned directly as the instance object. For other types, however, this is not the case. For
example, for font specifiers, the instantiator is a font-description string and the instance
object is a font-instance object, which describes how the font is displayed on a particular
device. A font-instance object encapsulates such things as the actual font name used to
display the font on that device (a font-description string under X is usually a wildcard
specification that may resolve to different font names, with possibly different foundries,
widths, etc., on different devices), the extra properties of that font on that device, etc.
Furthermore, this conversion (called instantiation) might fail – a font or color might not
exist on a particular device, for example.

41.3 How a Specifier Is Instanced

Instancing of a specifier in a particular window domain proceeds as follows:
• First, XEmacs searches for a specification whose locale is the same as the window. If

that fails, the search is repeated, looking for a locale that is the same as the window’s
buffer. If that fails, the search is repeated using the window’s frame, then using the
device that frame is on. Finally, the specification whose locale is the symbol global
(if there is such a specification) is considered.

• The inst-pairs contained in the specification that was found are considered in their
order in the inst-list, looking for one whose tag set matches the device that is derived
from the window domain. (The tag set is an unordered list of zero or more tag symbols.
For all tags that have predicates associated with them, the predicate must match the
device.)

• If a matching tag set is found, the corresponding instantiator is passed to the specifier’s
instantiation method, which is specific to the type of the specifier. If it succeeds, the
resulting instance object is returned as the result of the instancing and the instancing
is done. Otherwise, the operation continues, looking for another matching inst-pair in
the current specification.

• When there are no more inst-pairs to be considered in the current specification, the
search starts over, looking for another specification as in the first step above.

• If all specifications are exhausted and no instance object can be derived, the instancing
fails. (Actually, this is not completely true. Some specifier objects for built-in proper-
ties have a fallback value, which is either an inst-list or another specifier object, that
is consulted if the instancing is about to fail. If it is an inst-list, the searching proceeds
using the inst-pairs in that list. If it is a specifier, the entire instancing starts over
using that specifier instead of the given one. Fallback values are set by the C code and
cannot be modified, except perhaps indirectly, using any Lisp functions. The purpose
of them is to supply some values to make sure that instancing of built-in properties
can’t fail and to implement some basic specifier inheritance, such as the fact that faces
inherit their properties from the default face.)

It is also possible to instance a specifier over a frame domain or device domain instead
of over a window domain. The C code, for example, instances the top-toolbar-height
variable over a frame domain in order to determine the height of a frame’s top toolbar.

612 XEmacs Lisp Reference Manual

Instancing over a frame or device is similar to instancing over a window except that spec-
ifications for locales that cannot be derived from the domain are ignored. Specifically,
instancing over a frame looks first for frame locales, then device locales, then the global
locale. Instancing over a device domain looks only for device locales and the global locale.

41.4 Specifier Types

There are various different types of specifiers. The type of a specifier controls what sorts
of instantiators are valid, how an instantiator is instantiated, etc. Here is a list of built-in
specifier types:

boolean The valid instantiators are the symbols t and nil. Instance objects are the
same as instantiators so no special instantiation function is needed.

integer The valid instantiators are integers. Instance objects are the same as in-
stantiators so no special instantiation function is needed. modeline-shadow-
thickness is an example of an integer specifier (negative thicknesses indicate
that the shadow is drawn recessed instead of raised).

natnum The valid instantiators are natnums (non-negative integers). Instance objects
are the same as instantiators so no special instantiation function is needed. Nat-
num specifiers are used for dimension variables such as top-toolbar-height.

generic All Lisp objects are valid instantiators. Instance objects are the same as in-
stantiators so no special instantiation function is needed.

font The valid instantiators are strings describing fonts or vectors indicating inher-
itance from the font of some face. Instance objects are font-instance objects,
which are specific to a particular device. The instantiation method for font
specifiers can fail, unlike for integer, natnum, boolean, and generic specifiers.

color The valid instantiators are strings describing colors or vectors indicating inher-
itance from the foreground or background of some face. Instance objects are
color-instance objects, which are specific to a particular device. The instantia-
tion method for color specifiers can fail, as for font specifiers.

image Images are perhaps the most complicated type of built-in specifier. The valid
instantiators are strings (a filename, inline data for a pixmap, or text to be
displayed in a text glyph) or vectors describing inline data of various sorts or
indicating inheritance from the background-pixmap property of some face. In-
stance objects are either strings (for text images), image-instance objects (for
pixmap images), or subwindow objects (for subwindow images). The instanti-
ation method for image specifiers can fail, as for font and color specifiers.

face-boolean
The valid instantiators are the symbols t and nil and vectors indicating inher-
itance from a boolean property of some face. Specifiers of this sort are used for
all of the built-in boolean properties of faces. Instance objects are either the
symbol t or the symbol nil.

Chapter 41: Specifiers 613

toolbar The valid instantiators are toolbar descriptors, which are lists of toolbar-button
descriptors (each of which is a vector of two or four elements). See Chapter 23
[Toolbar], page 355, for more information.

Color and font instance objects can also be used in turn as instantiators for a new color
or font instance object. Since these instance objects are device-specific, the instantiator can
be used directly as the new instance object, but only if they are of the same device. If the
devices differ, the base color or font of the instantiating object is effectively used instead as
the instantiator.

See Chapter 42 [Faces and Window-System Objects], page 625, for more information on
fonts, colors, and face-boolean specifiers. See Chapter 43 [Glyphs], page 635, for more in-
formation about image specifiers. See Chapter 23 [Toolbar], page 355, for more information
on toolbar specifiers.

Functionspecifier-type specifier
This function returns the type of specifier. The returned value will be a symbol: one
of integer, boolean, etc., as listed in the above table.

Functions are also provided to query whether an object is a particular kind of specifier:

Functionboolean-specifier-p object
This function returns non-nil if object is a boolean specifier.

Functioninteger-specifier-p object
This function returns non-nil if object is an integer specifier.

Functionnatnum-specifier-p object
This function returns non-nil if object is a natnum specifier.

Functiongeneric-specifier-p object
This function returns non-nil if object is a generic specifier.

Functionface-boolean-specifier-p object
This function returns non-nil if object is a face-boolean specifier.

Functiontoolbar-specifier-p object
This function returns non-nil if object is a toolbar specifier.

Functionfont-specifier-p object
This function returns non-nil if object is a font specifier.

Functioncolor-specifier-p object
This function returns non-nil if object is a color specifier.

Functionimage-specifier-p object
This function returns non-nil if object is an image specifier.

614 XEmacs Lisp Reference Manual

41.5 Adding specifications to a Specifier

Functionadd-spec-to-specifier specifier instantiator &optional locale tag-set
how-to-add

This function adds a specification to specifier. The specification maps from locale
(which should be a window, buffer, frame, device, or the symbol global, and defaults
to global) to instantiator, whose allowed values depend on the type of the specifier.
Optional argument tag-set limits the instantiator to apply only to the specified tag set,
which should be a list of tags all of which must match the device being instantiated
over (tags are a device type, a device class, or tags defined with define-specifier-
tag). Specifying a single symbol for tag-set is equivalent to specifying a one-element
list containing that symbol. Optional argument how-to-add specifies what to do if
there are already specifications in the specifier. It should be one of

prepend Put at the beginning of the current list of instantiators for locale.

append Add to the end of the current list of instantiators for locale.

remove-tag-set-prepend
This is the default. Remove any existing instantiators whose tag set is
the same as tag-set; then put the new instantiator at the beginning of
the current list.

remove-tag-set-append
Remove any existing instantiators whose tag set is the same as tag-set;
then put the new instantiator at the end of the current list.

remove-locale
Remove all previous instantiators for this locale before adding the new
spec.

remove-locale-type
Remove all specifications for all locales of the same type as locale (this
includes locale itself) before adding the new spec.

remove-all
Remove all specifications from the specifier before adding the new spec.

remove-tag-set-prepend is the default.
You can retrieve the specifications for a particular locale or locale type with the
function specifier-spec-list or specifier-specs.

Functionadd-spec-list-to-specifier specifier spec-list &optional how-to-add
This function adds a spec-list (a list of specifications) to specifier. The format of a
spec-list is

((locale (tag-set . instantiator) ...) ...)

where
• locale := a window, a buffer, a frame, a device, or global

Chapter 41: Specifiers 615

• tag-set := an unordered list of zero or more tags, each of which is a symbol
• tag := a device class (see Chapter 33 [Consoles and Devices], page 487), a device

type, or a tag defined with define-specifier-tag

• instantiator := format determined by the type of specifier

The pair (tag-set . instantiator) is called an inst-pair. A list of inst-pairs is called
an inst-list. The pair (locale . inst-list) is called a specification. A spec-list, then,
can be viewed as a list of specifications.
how-to-add specifies how to combine the new specifications with the existing ones,
and has the same semantics as for add-spec-to-specifier.
In many circumstances, the higher-level function set-specifier is more convenient
and should be used instead.

Macrolet-specifier specifier-list &rest body
This special form temporarily adds specifications to specifiers, evaluates forms in body
and restores the specifiers to their previous states. The specifiers and their temporary
specifications are listed in specifier-list.
The format of specifier-list is

((specifier value &optional locale tag-set how-to-add) ...)

specifier is the specifier to be temporarily modified. value is the instantiator to be
temporarily added to specifier in locale. locale, tag-set and how-to-add have the same
meaning as in add-spec-to-specifier.
This special form is implemented as a macro; the code resulting from macro expansion
will add specifications to specifiers using add-spec-to-specifier. After forms in
body are evaluated, the temporary specifications are removed and old specifier spec-
lists are restored.
locale, tag-set and how-to-add may be omitted, and default to nil. The value of the
last form in body is returned.
NOTE: If you want the specifier’s instance to change in all circumstances, use
(selected-window) as the locale. If locale is nil or omitted, it defaults to global.
The following example removes the 3D modeline effect in the currently selected win-
dow for the duration of a second:

(let-specifier ((modeline-shadow-thickness 0 (selected-window)))
(sit-for 1))

Functionset-specifier specifier value &optional how-to-add
This function adds some specifications to specifier. value can be a single instantiator
or tagged instantiator (added as a global specification), a list of tagged and/or un-
tagged instantiators (added as a global specification), a cons of a locale and instantia-
tor or locale and instantiator list, a list of such conses, or nearly any other reasonable
form. More specifically, value can be anything accepted by canonicalize-spec-
list.
how-to-add is the same as in add-spec-to-specifier.
Note that set-specifier is exactly complementary to specifier-specs except in
the case where specifier has no specs at all in it but nil is a valid instantiator (in

616 XEmacs Lisp Reference Manual

that case, specifier-specs will return nil (meaning no specs) and set-specifier
will interpret the nil as meaning “I’m adding a global instantiator and its value is
nil”), or in strange cases where there is an ambiguity between a spec-list and an
inst-list, etc. (The built-in specifier types are designed in such a way as to avoid any
such ambiguities.)
If you want to work with spec-lists, you should probably not use these functions, but
should use the lower-level functions specifier-spec-list and add-spec-list-to-
specifier. These functions always work with fully-qualified spec-lists; thus, there is
no ambiguity.

Functioncanonicalize-inst-pair inst-pair specifier-type &optional noerror
This function canonicalizes the given inst-pair.
specifier-type specifies the type of specifier that this spec-list will be used for.
Canonicalizing means converting to the full form for an inst-pair, i.e. (tag-set .
instantiator). A single, untagged instantiator is given a tag set of nil (the empty
set), and a single tag is converted into a tag set consisting only of that tag.
If noerror is non-nil, signal an error if the inst-pair is invalid; otherwise return t.

Functioncanonicalize-inst-list inst-list specifier-type &optional noerror
This function canonicalizes the given inst-list (a list of inst-pairs).
specifier-type specifies the type of specifier that this inst-list will be used for.
Canonicalizing means converting to the full form for an inst-list, i.e. ((tag-set . in-
stantiator) ...). This function accepts a single inst-pair or any abbreviation thereof
or a list of (possibly abbreviated) inst-pairs. (See canonicalize-inst-pair.)
If noerror is non-nil, signal an error if the inst-list is invalid; otherwise return t.

Functioncanonicalize-spec spec specifier-type &optional noerror
This function canonicalizes the given spec (a specification).
specifier-type specifies the type of specifier that this spec-list will be used for.
Canonicalizing means converting to the full form for a spec, i.e. (locale (tag-set .
instantiator) ...). This function accepts a possibly abbreviated inst-list or a cons
of a locale and a possibly abbreviated inst-list. (See canonicalize-inst-list.)
If noerror is nil, signal an error if the specification is invalid; otherwise return t.

Functioncanonicalize-spec-list spec-list specifier-type &optional noerror
This function canonicalizes the given spec-list (a list of specifications).
specifier-type specifies the type of specifier that this spec-list will be used for.
Canonicalizing means converting to the full form for a spec-list, i.e. ((locale (tag-set
. instantiator) ...) ...). This function accepts a possibly abbreviated specification
or a list of such things. (See canonicalize-spec.) This is the function used to convert
spec-lists accepted by set-specifier and such into a form suitable for add-spec-
list-to-specifier.
This function tries extremely hard to resolve any ambiguities, and the built-in specifier
types (font, image, toolbar, etc.) are designed so that there won’t be any ambiguities.
If noerror is nil, signal an error if the spec-list is invalid; otherwise return t.

Chapter 41: Specifiers 617

41.6 Retrieving the Specifications from a Specifier

Functionspecifier-spec-list specifier &optional locale tag-set exact-p
This function returns the spec-list of specifications for specifier in locale.
If locale is a particular locale (a window, buffer, frame, device, or the symbol global),
a spec-list consisting of the specification for that locale will be returned.
If locale is a locale type (i.e. a symbol window, buffer, frame, or device), a spec-list
of the specifications for all locales of that type will be returned.
If locale is nil or the symbol all, a spec-list of all specifications in specifier will be
returned.
locale can also be a list of locales, locale types, and/or all; the result is as if
specifier-spec-list were called on each element of the list and the results con-
catenated together.
Only instantiators where tag-set (a list of zero or more tags) is a subset of (or possibly
equal to) the instantiator’s tag set are returned. (The default value of nil is a subset
of all tag sets, so in this case no instantiators will be screened out.) If exact-p is non-
nil, however, tag-set must be equal to an instantiator’s tag set for the instantiator
to be returned.

Functionspecifier-specs specifier &optional locale tag-set exact-p
This function returns the specification(s) for specifier in locale.
If locale is a single locale or is a list of one element containing a single locale, then
a “short form” of the instantiators for that locale will be returned. Otherwise, this
function is identical to specifier-spec-list.
The “short form” is designed for readability and not for ease of use in Lisp programs,
and is as follows:
1. If there is only one instantiator, then an inst-pair (i.e. cons of tag and instantia-

tor) will be returned; otherwise a list of inst-pairs will be returned.
2. For each inst-pair returned, if the instantiator’s tag is any, the tag will be removed

and the instantiator itself will be returned instead of the inst-pair.
3. If there is only one instantiator, its value is nil, and its tag is any, a one-element

list containing nil will be returned rather than just nil, to distinguish this case
from there being no instantiators at all.

Functionspecifier-fallback specifier
This function returns the fallback value for specifier. Fallback values are provided
by the C code for certain built-in specifiers to make sure that instancing won’t fail
even if all specs are removed from the specifier, or to implement simple inheritance
behavior (e.g. this method is used to ensure that faces other than default inherit
their attributes from default). By design, you cannot change the fallback value, and
specifiers created with make-specifier will never have a fallback (although a similar,
Lisp-accessible capability may be provided in the future to allow for inheritance).

618 XEmacs Lisp Reference Manual

The fallback value will be an inst-list that is instanced like any other inst-list, a
specifier of the same type as specifier (results in inheritance), or nil for no fallback.
When you instance a specifier, you can explicitly request that the fallback not be
consulted. (The C code does this, for example, when merging faces.) See specifier-
instance.

41.7 Working With Specifier Tags

A specifier tag set is an entity that is attached to an instantiator and can be used to
restrict the scope of that instantiator to a particular device class or device type and/or to
mark instantiators added by a particular package so that they can be later removed.

A specifier tag set consists of a list of zero of more specifier tags, each of which is a
symbol that is recognized by XEmacs as a tag. (The valid device types and device classes
are always tags, as are any tags defined by define-specifier-tag.) It is called a “tag set”
(as opposed to a list) because the order of the tags or the number of times a particular tag
occurs does not matter.

Each tag has a predicate associated with it, which specifies whether that tag applies to a
particular device. The tags which are device types and classes match devices of that type or
class. User-defined tags can have any predicate, or none (meaning that all devices match).
When attempting to instance a specifier, a particular instantiator is only considered if the
device of the domain being instanced over matches all tags in the tag set attached to that
instantiator.

Most of the time, a tag set is not specified, and the instantiator gets a null tag set, which
matches all devices.

Functionvalid-specifier-tag-p tag
This function returns non-nil if tag is a valid specifier tag.

Functionvalid-specifier-tag-set-p tag-set
This function returns non-nil if tag-set is a valid specifier tag set.

Functioncanonicalize-tag-set tag-set
This function canonicalizes the given tag set. Two canonicalized tag sets can be com-
pared with equal to see if they represent the same tag set. (Specifically, canonicalizing
involves sorting by symbol name and removing duplicates.)

Functiondevice-matches-specifier-tag-set-p device tag-set
This function returns non-nil if device matches specifier tag set tag-set. This means
that device matches each tag in the tag set.

Functiondefine-specifier-tag tag &optional predicate
This function defines a new specifier tag. If predicate is specified, it should be a
function of one argument (a device) that specifies whether the tag matches that
particular device. If predicate is omitted, the tag matches all devices.

Chapter 41: Specifiers 619

You can redefine an existing user-defined specifier tag. However, you cannot redefine
the built-in specifier tags (the device types and classes) or the symbols nil, t, all,
or global.

Functiondevice-matching-specifier-tag-list &optional device
This function returns a list of all specifier tags matching device. device defaults to
the selected device if omitted.

Functionspecifier-tag-list
This function returns a list of all currently-defined specifier tags. This includes the
built-in ones (the device types and classes).

Functionspecifier-tag-predicate tag
This function returns the predicate for the given specifier tag.

41.8 Functions for Instancing a Specifier

Functionspecifier-instance specifier &optional domain default no-fallback
This function instantiates specifier (return its value) in domain. If no instance can
be generated for this domain, return default.
domain should be a window, frame, or device. Other values that are legal as a
locale (e.g. a buffer) are not valid as a domain because they do not provide enough
information to identify a particular device (see valid-specifier-domain-p). domain
defaults to the selected window if omitted.
Instantiating a specifier in a particular domain means determining the specifier’s
“value” in that domain. This is accomplished by searching through the specifications
in the specifier that correspond to all locales that can be derived from the given
domain, from specific to general. In most cases, the domain is an Emacs window. In
that case specifications are searched for as follows:
1. A specification whose locale is the window itself;
2. A specification whose locale is the window’s buffer;
3. A specification whose locale is the window’s frame;
4. A specification whose locale is the window’s frame’s device;
5. A specification whose locale is the symbol global.

If all of those fail, then the C-code-provided fallback value for this specifier is con-
sulted (see specifier-fallback). If it is an inst-list, then this function attempts
to instantiate that list just as when a specification is located in the first five steps
above. If the fallback is a specifier, specifier-instance is called recursively on this
specifier and the return value used. Note, however, that if the optional argument
no-fallback is non-nil, the fallback value will not be consulted.
Note that there may be more than one specification matching a particular locale;
all such specifications are considered before looking for any specifications for more

620 XEmacs Lisp Reference Manual

general locales. Any particular specification that is found may be rejected because it
is tagged to a particular device class (e.g. color) or device type (e.g. x) or both and
the device for the given domain does not match this, or because the specification is
not valid for the device of the given domain (e.g. the font or color name does not
exist for this particular X server).
The returned value is dependent on the type of specifier. For example, for a font speci-
fier (as returned by the face-font function), the returned value will be a font-instance
object. For images, the returned value will be a string, pixmap, or subwindow.

Functionspecifier-instance-from-inst-list specifier domain inst-list &optional
default

This function attempts to convert a particular inst-list into an instance. This attempts
to instantiate inst-list in the given domain, as if inst-list existed in a specification in
specifier. If the instantiation fails, default is returned. In most circumstances, you
should not use this function; use specifier-instance instead.

41.9 Example of Specifier Usage

Now let us present an example to clarify the theoretical discussions we have been through.
In this example, we will use the general specifier functions for clarity. Keep in mind that
many types of specifiers, and some other types of objects that are associated with specifiers
(e.g. faces), provide convenience functions making it easier to work with objects of that
type.

Let us consider the background color of the default face. A specifier is used to specify
how that color will appear in different domains. First, let’s retrieve the specifier:

(setq sp (face-property ’default ’background))
⇒ #<color-specifier 0x3da>

(specifier-specs sp)
⇒ ((#<buffer "device.c"> (nil . "forest green"))

(#<window on "Makefile" 0x8a2b> (nil . "hot pink"))
(#<x-frame "emacs" 0x4ac> (nil . "puke orange")

(nil . "moccasin"))
(#<x-frame "VM" 0x4ac> (nil . "magenta"))

(global ((tty) . "cyan") (nil . "white"))
)

Then, say we want to determine what the background color of the default face is for the
window currently displaying the buffer ‘*scratch*’. We call

(get-buffer-window "*scratch*")
⇒ #<window on "*scratch*" 0x4ad>

(window-frame (get-buffer-window "*scratch*"))
⇒ #<x-frame "emacs" 0x4ac>

(specifier-instance sp (get-buffer-window "*scratch*"))
⇒ #<color-instance moccasin 47=(FFFF,E4E4,B5B5) 0x6309>

Note that we passed a window to specifier-instance, not a buffer. We cannot pass a
buffer because a buffer by itself does not provide enough information. The buffer might not

Chapter 41: Specifiers 621

be displayed anywhere at all, or could be displayed in many different frames on different
devices.

The result is arrived at like this:
1. First, we look for a specification matching the buffer displayed in the window, i.e.

‘*scratch’. There are none, so we proceed.
2. Then, we look for a specification matching the window itself. Again, there are none.
3. Then, we look for a specification matching the window’s frame. The specification (#<x-

frame "emacs" 0x4ac> . "puke orange") is found. We call the instantiation method
for colors, passing it the locale we were searching over (i.e. the window, in this case) and
the instantiator (‘"puke orange"’). However, the particular device which this window
is on (let’s say it’s an X connection) doesn’t recognize the color ‘"puke orange"’, so
the specification is rejected.

4. So we continue looking for a specification matching the window’s frame. We find
‘(#<x-frame "emacs" 0x4ac> . "moccasin")’. Again, we call the instantiation
method for colors. This time, the X server our window is on recognizes the color
‘moccasin’, and so the instantiation method succeeds and returns a color instance.

41.10 Creating New Specifier Objects

Functionmake-specifier type
This function creates a new specifier.
A specifier is an object that can be used to keep track of a property whose value can
be per-buffer, per-window, per-frame, or per-device, and can further be restricted to a
particular device-type or device-class. Specifiers are used, for example, for the various
built-in properties of a face; this allows a face to have different values in different
frames, buffers, etc. For more information, see ‘specifier-instance’, ‘specifier-specs’,
and ‘add-spec-to-specifier’; or, for a detailed description of specifiers, including how
they are instantiated over a particular domain (i.e. how their value in that domain is
determined), see the chapter on specifiers in the XEmacs Lisp Reference Manual.
type specifies the particular type of specifier, and should be one of the symbols
generic, integer, natnum, boolean, color, font, image, face-boolean, or
toolbar.
For more information on particular types of specifiers, see the functions generic-
specifier-p, integer-specifier-p, natnum-specifier-p, boolean-specifier-
p, color-specifier-p, font-specifier-p, image-specifier-p, face-boolean-
specifier-p, and toolbar-specifier-p.

Functionmake-specifier-and-init type spec-list &optional dont-canonicalize
This function creates and initialize a new specifier.
This is a front-end onto make-specifier that allows you to create a specifier and
add specs to it at the same time. type specifies the specifier type. spec-list supplies
the specification(s) to be added to the specifier. Normally, almost any reasonable

622 XEmacs Lisp Reference Manual

abbreviation of the full spec-list form is accepted, and is converted to the full form;
however, if optional argument dont-canonicalize is non-nil, this conversion is not
performed, and the spec-list must already be in full form. See canonicalize-spec-
list.

41.11 Functions for Checking the Validity of Specifier
Components

Functionvalid-specifier-domain-p domain
This function returns non-nil if domain is a valid specifier domain. A domain is used
to instance a specifier (i.e. determine the specifier’s value in that domain). Valid
domains are a window, frame, or device. (nil is not valid.)

Functionvalid-specifier-locale-p locale
This function returns non-nil if locale is a valid specifier locale. Valid locales are a
device, a frame, a window, a buffer, and global. (nil is not valid.)

Functionvalid-specifier-locale-type-p locale-type
Given a specifier locale-type, this function returns non-nil if it is valid. Valid locale
types are the symbols global, device, frame, window, and buffer. (Note, however,
that in functions that accept either a locale or a locale type, global is considered an
individual locale.)

Functionvalid-specifier-type-p specifier-type
Given a specifier-type, this function returns non-nil if it is valid. Valid types are
generic, integer, boolean, color, font, image, face-boolean, and toolbar.

Functionvalid-specifier-tag-p tag
This function returns non-nil if tag is a valid specifier tag.

Functionvalid-instantiator-p instantiator specifier-type
This function returns non-nil if instantiator is valid for specifier-type.

Functionvalid-inst-list-p inst-list type
This function returns non-nil if inst-list is valid for specifier type type.

Functionvalid-spec-list-p spec-list type
This function returns non-nil if spec-list is valid for specifier type type.

Functioncheck-valid-instantiator instantiator specifier-type
This function signals an error if instantiator is invalid for specifier-type.

Functioncheck-valid-inst-list inst-list type
This function signals an error if inst-list is invalid for specifier type type.

Functioncheck-valid-spec-list spec-list type
This function signals an error if spec-list is invalid for specifier type type.

Chapter 41: Specifiers 623

41.12 Other Functions for Working with Specifications in a
Specifier

Functioncopy-specifier specifier &optional dest locale tag-set exact-p how-to-add
This function copies specifier to dest, or creates a new one if dest is nil.
If dest is nil or omitted, a new specifier will be created and the specifications copied
into it. Otherwise, the specifications will be copied into the existing specifier in dest.
If locale is nil or the symbol all, all specifications will be copied. If locale is a
particular locale, the specification for that particular locale will be copied. If locale
is a locale type, the specifications for all locales of that type will be copied. locale
can also be a list of locales, locale types, and/or all; this is equivalent to calling
copy-specifier for each of the elements of the list. See specifier-spec-list for
more information about locale.
Only instantiators where tag-set (a list of zero or more tags) is a subset of (or possibly
equal to) the instantiator’s tag set are copied. (The default value of nil is a subset of
all tag sets, so in this case no instantiators will be screened out.) If exact-p is non-nil,
however, tag-set must be equal to an instantiator’s tag set for the instantiator to be
copied.
Optional argument how-to-add specifies what to do with existing specifications in
dest. If nil, then whichever locales or locale types are copied will first be completely
erased in dest. Otherwise, it is the same as in add-spec-to-specifier.

Functionremove-specifier specifier &optional locale tag-set exact-p
This function removes specification(s) for specifier.
If locale is a particular locale (a buffer, window, frame, device, or the symbol global),
the specification for that locale will be removed.
If instead, locale is a locale type (i.e. a symbol buffer, window, frame, or device),
the specifications for all locales of that type will be removed.
If locale is nil or the symbol all, all specifications will be removed.
locale can also be a list of locales, locale types, and/or all; this is equivalent to calling
remove-specifier for each of the elements in the list.
Only instantiators where tag-set (a list of zero or more tags) is a subset of (or possibly
equal to) the instantiator’s tag set are removed. (The default value of nil is a subset
of all tag sets, so in this case no instantiators will be screened out.) If exact-p is non-
nil, however, tag-set must be equal to an instantiator’s tag set for the instantiator
to be removed.

Functionmap-specifier specifier func &optional locale maparg
This function applies func to the specification(s) for locale in specifier.
If locale is a locale, func will be called for that locale. If locale is a locale type, func
will be mapped over all locales of that type. If locale is nil or the symbol all, func
will be mapped over all locales in specifier.
func is called with four arguments: the specifier, the locale being mapped over, the
inst-list for that locale, and the optional maparg. If any invocation of func returns

624 XEmacs Lisp Reference Manual

non-nil, the mapping will stop and the returned value becomes the value returned
from map-specifier. Otherwise, map-specifier returns nil.

Functionspecifier-locale-type-from-locale locale
Given a specifier locale, this function returns its type.

Chapter 42: Faces and Window-System Objects 625

42 Faces and Window-System Objects

42.1 Faces

A face is a named collection of graphical properties: font, foreground color, background
color, background pixmap, optional underlining, and (on TTY devices) whether the text
is to be highlighted, dimmed, blinking, or displayed in reverse video. Faces control the
display of text on the screen. Every face has a name, which is a symbol such as default
or modeline.

Each built-in property of a face is controlled using a specifier, which allows it to have
separate values in particular buffers, frames, windows, and devices and to further vary
according to device type (X or TTY) and device class (color, mono, or grayscale). See
Chapter 41 [Specifiers], page 609, for more information.

The face named default is used for ordinary text. The face named modeline is used
for displaying the modeline. The face named highlight is used for highlighted extents
(see Chapter 40 [Extents], page 593). The faces named left-margin and right-margin
are used for the left and right margin areas, respectively (see Chapter 44 [Annotations],
page 651). The face named zmacs-region is used for the highlighted region between point
and mark.

42.1.1 Merging Faces for Display

Here are all the ways to specify which face to use for display of text:

• With defaults. Each frame has a default face, which is used for all text that doesn’t
somehow specify another face. The face named default applies to the text area, while
the faces left-margin and right-margin apply to the left and right margin areas.

• With text properties. A character may have a face property; if so, it’s displayed
with that face. (Text properties are actually implemented in terms of extents.) See
Section 36.18 [Text Properties], page 546.

• With extents. An extent may have a face property, which applies to all the text
covered by the extent; in addition, if the highlight property is set, the highlight
property applies when the mouse moves over the extent or if the extent is explicitly
highlighted. See Chapter 40 [Extents], page 593.

• With annotations. Annotations that are inserted into a buffer can specify their own
face. (Annotations are actually implemented in terms of extents.) See Chapter 44
[Annotations], page 651.

If these various sources together specify more than one face for a particular character,
XEmacs merges the properties of the various faces specified. Extents, text properties, and
annotations all use the same underlying representation (as extents). When multiple extents
cover one character, an extent with higher priority overrides those with lower priority. See

626 XEmacs Lisp Reference Manual

Chapter 40 [Extents], page 593. If no extent covers a particular character, the default face
is used.

If a background pixmap is specified, it determines what will be displayed in the back-
ground of text characters. If the background pixmap is actually a pixmap, with its colors
specified, those colors are used; if it is a bitmap, the face’s foreground and background
colors are used to color it.

42.1.2 Basic Functions for Working with Faces

The properties a face can specify include the font, the foreground color, the background
color, the background pixmap, the underlining, the display table, and (for TTY devices)
whether the text is to be highlighted, dimmed, blinking, or displayed in reverse video. The
face can also leave these unspecified, causing them to assume the value of the corresponding
property of the default face.

Here are the basic primitives for working with faces.

Functionmake-face name &optional doc-string temporary
This function defines and returns a new face named name, initially with all properties
unspecified. It does nothing if there is already a face named name. Optional argument
doc-string specifies an explanatory string used for descriptive purposes. If optional
argument temporary is non-nil, the face will automatically disappear when there
are no more references to it anywhere in text or Lisp code (otherwise, the face will
continue to exist indefinitely even if it is not used).

Functionface-list &optional temporary
This function returns a list of the names of all defined faces. If temporary is nil, only
the permanent faces are included. If it is t, only the temporary faces are included. If
it is any other non-nil value both permanent and temporary are included.

Functionfacep object
This function returns whether the given object is a face.

Functioncopy-face old-face new-name &optional locale how-to-add
This function defines a new face named new-name which is a copy of the existing
face named old-face. If there is already a face named new-name, then it alters the
face to have the same properties as old-face. locale and how-to-add let you copy just
parts of the old face rather than the whole face, and are as in copy-specifier (see
Chapter 41 [Specifiers], page 609).

42.1.3 Face Properties

You can examine and modify the properties of an existing face with the following func-
tions.

The following symbols have predefined meanings:

Chapter 42: Faces and Window-System Objects 627

foreground
The foreground color of the face.

background
The background color of the face.

font The font used to display text covered by this face.

display-table
The display table of the face.

background-pixmap
The pixmap displayed in the background of the face. Only used by faces on X
devices.

underline
Underline all text covered by this face.

highlight
Highlight all text covered by this face. Only used by faces on TTY devices.

dim Dim all text covered by this face. Only used by faces on TTY devices.

blinking Blink all text covered by this face. Only used by faces on TTY devices.

reverse Reverse the foreground and background colors. Only used by faces on TTY
devices.

doc-string
Description of what the face’s normal use is. NOTE: This is not a specifier,
unlike all the other built-in properties, and cannot contain locale-specific values.

Functionset-face-property face property value &optional locale tag how-to-add
This function changes a property of a face.
For built-in properties, the actual value of the property is a specifier and you cannot
change this; but you can change the specifications within the specifier, and that is
what this function will do. For user-defined properties, you can use this function to
either change the actual value of the property or, if this value is a specifier, change
the specifications within it.
If property is a built-in property, the specifications to be added to this property can
be supplied in many different ways:

If value is a simple instantiator (e.g. a string naming a font or color) or a list
of instantiators, then the instantiator(s) will be added as a specification of the
property for the given locale (which defaults to global if omitted).
If value is a list of specifications (each of which is a cons of a locale and a list
of instantiators), then locale must be nil (it does not make sense to explicitly
specify a locale in this case), and specifications will be added as given.
If value is a specifier (as would be returned by face-property if no locale argu-
ment is given), then some or all of the specifications in the specifier will be added
to the property. In this case, the function is really equivalent to copy-specifier
and locale has the same semantics (if it is a particular locale, the specification

628 XEmacs Lisp Reference Manual

for the locale will be copied; if a locale type, specifications for all locales of that
type will be copied; if nil or all, then all specifications will be copied).

how-to-add should be either nil or one of the symbols prepend, append, remove-tag-
set-prepend, remove-tag-set-append, remove-locale, remove-locale-type, or
remove-all. See copy-specifier and add-spec-to-specifier for a description of
what each of these means. Most of the time, you do not need to worry about this
argument; the default behavior usually is fine.
In general, it is OK to pass an instance object (e.g. as returned by face-property-
instance) as an instantiator in place of an actual instantiator. In such a case, the
instantiator used to create that instance object will be used (for example, if you set
a font-instance object as the value of the font property, then the font name used to
create that object will be used instead). If some cases, however, doing this conversion
does not make sense, and this will be noted in the documentation for particular types
of instance objects.
If property is not a built-in property, then this function will simply set its value if
locale is nil. However, if locale is given, then this function will attempt to add value
as the instantiator for the given locale, using add-spec-to-specifier. If the value
of the property is not a specifier, it will automatically be converted into a generic
specifier.

Functionface-property face property &optional locale
This function returns face’s value of the given property.
If locale is omitted, the face’s actual value for property will be returned. For built-in
properties, this will be a specifier object of a type appropriate to the property (e.g.
a font or color specifier). For other properties, this could be anything.
If locale is supplied, then instead of returning the actual value, the specification(s)
for the given locale or locale type will be returned. This will only work if the actual
value of property is a specifier (this will always be the case for built-in properties,
but not or not may apply to user-defined properties). If the actual value of property
is not a specifier, this value will simply be returned regardless of locale.
The return value will be a list of instantiators (e.g. strings specifying a font or color
name), or a list of specifications, each of which is a cons of a locale and a list of
instantiators. Specifically, if locale is a particular locale (a buffer, window, frame,
device, or global), a list of instantiators for that locale will be returned. Otherwise,
if locale is a locale type (one of the symbols buffer, window, frame, or device), the
specifications for all locales of that type will be returned. Finally, if locale is all, the
specifications for all locales of all types will be returned.
The specifications in a specifier determine what the value of property will be in
a particular domain or set of circumstances, which is typically a particular Emacs
window along with the buffer it contains and the frame and device it lies within.
The value is derived from the instantiator associated with the most specific locale
(in the order buffer, window, frame, device, and global) that matches the domain
in question. In other words, given a domain (i.e. an Emacs window, usually), the
specifier for property will first be searched for a specification whose locale is the
buffer contained within that window; then for a specification whose locale is the

Chapter 42: Faces and Window-System Objects 629

window itself; then for a specification whose locale is the frame that the window is
contained within; etc. The first instantiator that is valid for the domain (usually
this means that the instantiator is recognized by the device [i.e. the X server or TTY
device] that the domain is on). The function face-property-instance actually does
all this, and is used to determine how to display the face.

Functionface-property-instance face property &optional domain default
no-fallback

This function returns the instance of face’s property in the specified domain.

Under most circumstances, domain will be a particular window, and the returned
instance describes how the specified property actually is displayed for that window
and the particular buffer in it. Note that this may not be the same as how the
property appears when the buffer is displayed in a different window or frame, or how
the property appears in the same window if you switch to another buffer in that
window; and in those cases, the returned instance would be different.

The returned instance will typically be a color-instance, font-instance, or pixmap-
instance object, and you can query it using the appropriate object-specific functions.
For example, you could use color-instance-rgb-components to find out the RGB
(red, green, and blue) components of how the background property of the highlight
face is displayed in a particular window. The results might be different from the
results you would get for another window (perhaps the user specified a different color
for the frame that window is on; or perhaps the same color was specified but the
window is on a different X server, and that X server has different RGB values for the
color from this one).

domain defaults to the selected window if omitted.

domain can be a frame or device, instead of a window. The value returned for a
such a domain is used in special circumstances when a more specific domain does
not apply; for example, a frame value might be used for coloring a toolbar, which is
conceptually attached to a frame rather than a particular window. The value is also
useful in determining what the value would be for a particular window within the
frame or device, if it is not overridden by a more specific specification.

If property does not name a built-in property, its value will simply be returned unless
it is a specifier object, in which case it will be instanced using specifier-instance.

Optional arguments default and no-fallback are the same as in specifier-instance.
See Chapter 41 [Specifiers], page 609.

42.1.4 Face Convenience Functions

Functionset-face-foreground face color &optional locale tag how-to-add
Functionset-face-background face color &optional locale tag how-to-add

These functions set the foreground (respectively, background) color of face face to
color. The argument color should be a string (the name of a color) or a color object
as returned by make-color (see Section 42.3 [Colors], page 633).

630 XEmacs Lisp Reference Manual

Functionset-face-background-pixmap face pixmap &optional locale tag
how-to-add

This function sets the background pixmap of face face to pixmap. The argument
pixmap should be a string (the name of a bitmap or pixmap file; the directories listed
in the variable x-bitmap-file-path will be searched) or a glyph object as returned
by make-glyph (see Chapter 43 [Glyphs], page 635). The argument may also be a list
of the form (width height data) where width and height are the size in pixels, and
data is a string, containing the raw bits of the bitmap.

Functionset-face-font face font &optional locale tag how-to-add
This function sets the font of face face. The argument font should be a string or a
font object as returned by make-font (see Section 42.2 [Fonts], page 631).

Functionset-face-underline-p face underline-p &optional locale tag how-to-add
This function sets the underline property of face face.

Functionface-foreground face &optional locale
Functionface-background face &optional locale

These functions return the foreground (respectively, background) color specifier of
face face. See Section 42.3 [Colors], page 633.

Functionface-background-pixmap face &optional locale
This function return the background-pixmap glyph object of face face.

Functionface-font face &optional locale
This function returns the font specifier of face face. (Note: This is not the same as
the function face-font in FSF Emacs.) See Section 42.2 [Fonts], page 631.

Functionface-font-name face &optional domain
This function returns the name of the font of face face, or nil if it is unspecified.
This is basically equivalent to (font-name (face-font face) domain) except that it
does not cause an error if face’s font is nil. (This function is named face-font in
FSF Emacs.)

Functionface-underline-p face &optional locale
This function returns the underline property of face face.

Functionface-foreground-instance face &optional domain
Functionface-background-instance face &optional domain

These functions return the foreground (respectively, background) color specifier of
face face. See Section 42.3 [Colors], page 633.

Functionface-background-pixmap-instance face &optional domain
This function return the background-pixmap glyph object of face face.

Functionface-font-instance face &optional domain
This function returns the font specifier of face face. See Section 42.2 [Fonts], page 631.

Chapter 42: Faces and Window-System Objects 631

42.1.5 Other Face Display Functions

Functioninvert-face face &optional locale
Swap the foreground and background colors of face face. If the face doesn’t specify
both foreground and background, then its foreground and background are set to the
default background and foreground.

Functionface-equal face1 face2 &optional domain
This returns t if the faces face1 and face2 will display in the same way. domain is as
in face-property-instance.

Functionface-differs-from-default-p face &optional domain
This returns t if the face face displays differently from the default face. domain is as
in face-property-instance.

42.2 Fonts

This section describes how to work with font specifier and font instance objects, which
encapsulate fonts in the window system.

42.2.1 Font Specifiers

Functionfont-specifier-p object
This predicate returns t if object is a font specifier, and nil otherwise.

42.2.2 Font Instances

Functionfont-instance-p object
This predicate returns t if object is a font instance, and nil otherwise.

Functionmake-font-instance name &optional device noerror
This function creates a new font-instance object of the specified name. device specifies
the device this object applies to and defaults to the selected device. An error is
signalled if the font is unknown or cannot be allocated; however, if noerror is non-
nil, nil is simply returned in this case.
The returned object is a normal, first-class lisp object. The way you “deallocate”
the font is the way you deallocate any other lisp object: you drop all pointers to it
and allow it to be garbage collected. When these objects are GCed, the underlying
X data is deallocated as well.

632 XEmacs Lisp Reference Manual

42.2.3 Font Instance Names

Functionlist-fonts pattern &optional device
This function returns a list of font names matching the given pattern. device specifies
which device to search for names, and defaults to the currently selected device.

Functionfont-instance-name font-instance
This function returns the name used to allocate font-instance.

Functionfont-instance-truename font-instance
This function returns the canonical name of the given font instance. Font names are
patterns which may match any number of fonts, of which the first found is used. This
returns an unambiguous name for that font (but not necessarily its only unambiguous
name).

42.2.4 Font Instance Size

Functionx-font-size font
This function returns the nominal size of the given font. This is done by parsing its
name, so it’s likely to lose. X fonts can be specified (by the user) in either pixels or
10ths of points, and this returns the first one it finds, so you have to decide which
units the returned value is measured in yourself ...

Functionx-find-larger-font font &optional device
This function loads a new, slightly larger version of the given font (or font name).
Returns the font if it succeeds, nil otherwise. If scalable fonts are available, this
returns a font which is 1 point larger. Otherwise, it returns the next larger version of
this font that is defined.

Functionx-find-smaller-font font &optional device
This function loads a new, slightly smaller version of the given font (or font name).
Returns the font if it succeeds, nil otherwise. If scalable fonts are available, this
returns a font which is 1 point smaller. Otherwise, it returns the next smaller version
of this font that is defined.

42.2.5 Font Instance Characteristics

Functionfont-instance-properties font
This function returns the properties (an alist or nil) of font-instance.

Functionx-make-font-bold font &optional device
Given an X font specification, this attempts to make a “bold” font. If it fails, it
returns nil.

Chapter 42: Faces and Window-System Objects 633

Functionx-make-font-unbold font &optional device
Given an X font specification, this attempts to make a non-bold font. If it fails, it
returns nil.

Functionx-make-font-italic font &optional device
Given an X font specification, this attempts to make an “italic” font. If it fails, it
returns nil.

Functionx-make-font-unitalic font &optional device
Given an X font specification, this attempts to make a non-italic font. If it fails, it
returns nil.

Functionx-make-font-bold-italic font &optional device
Given an X font specification, this attempts to make a “bold-italic” font. If it fails,
it returns nil.

42.2.6 Font Convenience Functions

Functionfont-name font &optional domain
This function returns the name of the font in the specified domain, if any. font should
be a font specifier object and domain is normally a window and defaults to the selected
window if omitted. This is equivalent to using specifier-instance and applying
font-instance-name to the result.

Functionfont-truename font &optional domain
This function returns the truename of the font in the specified domain, if any. font
should be a font specifier object and domain is normally a window and defaults to
the selected window if omitted. This is equivalent to using specifier-instance and
applying font-instance-truename to the result.

Functionfont-properties font &optional domain
This function returns the properties of the font in the specified domain, if any. font
should be a font specifier object and domain is normally a window and defaults to
the selected window if omitted. This is equivalent to using specifier-instance and
applying font-instance-properties to the result.

42.3 Colors

42.3.1 Color Specifiers

Functioncolor-specifier-p object
This function returns non-nil if object is a color specifier.

634 XEmacs Lisp Reference Manual

42.3.2 Color Instances

A color-instance object is an object describing the way a color specifier is instanced in a
particular domain. Functions such as face-background-instance return a color-instance
object. For example,

(face-background-instance ’default (next-window))
⇒ #<color-instance moccasin 47=(FFFF,E4E4,B5B5) 0x678d>

The color-instance object returned describes the way the background color of the
default face is displayed in the next window after the selected one.

Functioncolor-instance-p object
This function returns non-nil if object is a color-instance.

42.3.3 Color Instance Properties

Functioncolor-instance-name color-instance
This function returns the name used to allocate color-instance.

Functioncolor-instance-rgb-components color-instance
This function returns a three element list containing the red, green, and blue color
components of color-instance.

(color-instance-rgb-components
(face-background-instance ’default (next-window)))
⇒ (65535 58596 46517)

42.3.4 Color Convenience Functions

Functioncolor-name color &optional domain
This function returns the name of the color in the specified domain, if any. color
should be a color specifier object and domain is normally a window and defaults to
the selected window if omitted. This is equivalent to using specifier-instance and
applying color-instance-name to the result.

Functioncolor-rgb-components color &optional domain
This function returns the RGB components of the color in the specified domain, if
any. color should be a color specifier object and domain is normally a window and
defaults to the selected window if omitted. This is equivalent to using specifier-
instance and applying color-instance-rgb-components to the result.

(color-rgb-components (face-background ’default (next-window)))
⇒ (65535 58596 46517)

Chapter 43: Glyphs 635

43 Glyphs

A glyph is an object that is used for pixmaps and images of all sorts, as well as for things
that “act” like pixmaps, such as non-textual strings (annotations) displayed in a buffer or
in the margins. It is used in begin-glyphs and end-glyphs attached to extents, marginal and
textual annotations, overlay arrows (overlay-arrow-* variables), toolbar buttons, mouse
pointers, frame icons, truncation and continuation markers, and the like. (Basically, any
place there is an image or something that acts like an image, there will be a glyph object
representing it.)

The actual image that is displayed (as opposed to its position or clipping) is defined by
an image specifier object contained within the glyph. The separation between an image
specifier object and a glyph object is made because the glyph includes other properties than
just the actual image: e.g. the face it is displayed in (for text images), the alignment of the
image (when it is in a buffer), etc.

Functionglyphp object
This function returns t if object is a glyph.

43.1 Glyph Functions

43.1.1 Creating Glyphs

Functionmake-glyph &optional spec-list type
This function creates a new glyph object of type type.

spec-list is used to initialize the glyph’s image. It is typically an image instantiator (a
string or a vector; Section 43.2.1 [Image Specifiers], page 640), but can also be a list of
such instantiators (each one in turn is tried until an image is successfully produced),
a cons of a locale (frame, buffer, etc.) and an instantiator, a list of such conses, or
any other form accepted by canonicalize-spec-list. See Chapter 41 [Specifiers],
page 609, for more information about specifiers.

type specifies the type of the glyph, which specifies in which contexts the glyph can
be used, and controls the allowable image types into which the glyph’s image can be
instantiated. type should be one of buffer (used for glyphs in an extent, the modeline,
the toolbar, or elsewhere in a buffer), pointer (used for the mouse-pointer), or icon
(used for a frame’s icon), and defaults to buffer. See Section 43.3 [Glyph Types],
page 648.

Functionmake-glyph-internal &optional type
This function creates a new, uninitialized glyph of type type.

636 XEmacs Lisp Reference Manual

Functionmake-pointer-glyph &optional spec-list
This function is equivalent to calling make-glyph with a type of pointer.

Functionmake-icon-glyph &optional spec-list
This function is equivalent to calling make-glyph with a type of icon.

43.1.2 Glyph Properties

Each glyph has a list of properties, which control all of the aspects of the glyph’s ap-
pearance. The following symbols have predefined meanings:

image The image used to display the glyph.

baseline Percent above baseline that glyph is to be displayed. Only for glyphs displayed
inside of a buffer.

contrib-p
Whether the glyph contributes to the height of the line it’s on. Only for glyphs
displayed inside of a buffer.

face Face of this glyph (not a specifier).

Functionset-glyph-property glyph property value &optional locale tag-set
how-to-add

This function changes a property of a glyph.

For built-in properties, the actual value of the property is a specifier and you cannot
change this; but you can change the specifications within the specifier, and that is
what this function will do. For user-defined properties, you can use this function to
either change the actual value of the property or, if this value is a specifier, change
the specifications within it.

If property is a built-in property, the specifications to be added to this property can
be supplied in many different ways:

• If value is a simple instantiator (e.g. a string naming a pixmap filename) or a
list of instantiators, then the instantiator(s) will be added as a specification of
the property for the given locale (which defaults to global if omitted).

• If value is a list of specifications (each of which is a cons of a locale and a list
of instantiators), then locale must be nil (it does not make sense to explicitly
specify a locale in this case), and specifications will be added as given.

• If value is a specifier (as would be returned by glyph-property if no locale
argument is given), then some or all of the specifications in the specifier will be
added to the property. In this case, the function is really equivalent to copy-
specifier and locale has the same semantics (if it is a particular locale, the
specification for the locale will be copied; if a locale type, specifications for all
locales of that type will be copied; if nil or all, then all specifications will be
copied).

Chapter 43: Glyphs 637

how-to-add should be either nil or one of the symbols prepend, append, remove-tag-
set-prepend, remove-tag-set-append, remove-locale, remove-locale-type, or
remove-all. See copy-specifier and add-spec-to-specifier for a description of
what each of these means. Most of the time, you do not need to worry about this
argument; the default behavior usually is fine.

In general, it is OK to pass an instance object (e.g. as returned by glyph-property-
instance) as an instantiator in place of an actual instantiator. In such a case, the
instantiator used to create that instance object will be used (for example, if you set
a font-instance object as the value of the font property, then the font name used to
create that object will be used instead). If some cases, however, doing this conversion
does not make sense, and this will be noted in the documentation for particular types
of instance objects.

If property is not a built-in property, then this function will simply set its value if
locale is nil. However, if locale is given, then this function will attempt to add value
as the instantiator for the given locale, using add-spec-to-specifier. If the value
of the property is not a specifier, it will automatically be converted into a generic
specifier.

Functionglyph-property glyph property &optional locale
This function returns glyph’s value of the given property.

If locale is omitted, the glyph’s actual value for property will be returned. For built-in
properties, this will be a specifier object of a type appropriate to the property (e.g.
a font or color specifier). For other properties, this could be anything.

If locale is supplied, then instead of returning the actual value, the specification(s)
for the given locale or locale type will be returned. This will only work if the actual
value of property is a specifier (this will always be the case for built-in properties,
but may or may not apply to user-defined properties). If the actual value of property
is not a specifier, this value will simply be returned regardless of locale.

The return value will be a list of instantiators (e.g. vectors specifying pixmap data),
or a list of specifications, each of which is a cons of a locale and a list of instantiators.
Specifically, if locale is a particular locale (a buffer, window, frame, device, or global),
a list of instantiators for that locale will be returned. Otherwise, if locale is a locale
type (one of the symbols buffer, window, frame, or device), the specifications for
all locales of that type will be returned. Finally, if locale is all, the specifications for
all locales of all types will be returned.

The specifications in a specifier determine what the value of property will be in
a particular domain or set of circumstances, which is typically a particular Emacs
window along with the buffer it contains and the frame and device it lies within.
The value is derived from the instantiator associated with the most specific locale
(in the order buffer, window, frame, device, and global) that matches the domain
in question. In other words, given a domain (i.e. an Emacs window, usually), the
specifier for property will first be searched for a specification whose locale is the buffer
contained within that window; then for a specification whose locale is the window
itself; then for a specification whose locale is the frame that the window is contained
within; etc. The first instantiator that is valid for the domain (usually this means

638 XEmacs Lisp Reference Manual

that the instantiator is recognized by the device [i.e. the X server or TTY device]
that the domain is on). The function glyph-property-instance actually does all
this, and is used to determine how to display the glyph.

Functionglyph-property-instance glyph property &optional domain default
no-fallback

This function returns the instance of glyph’s property in the specified domain.

Under most circumstances, domain will be a particular window, and the returned
instance describes how the specified property actually is displayed for that window
and the particular buffer in it. Note that this may not be the same as how the
property appears when the buffer is displayed in a different window or frame, or how
the property appears in the same window if you switch to another buffer in that
window; and in those cases, the returned instance would be different.

The returned instance is an image-instance object, and you can query it using the
appropriate image instance functions. For example, you could use image-instance-
depth to find out the depth (number of color planes) of a pixmap displayed in a
particular window. The results might be different from the results you would get
for another window (perhaps the user specified a different image for the frame that
window is on; or perhaps the same image was specified but the window is on a different
X server, and that X server has different color capabilities from this one).

domain defaults to the selected window if omitted.

domain can be a frame or device, instead of a window. The value returned for such a
domain is used in special circumstances when a more specific domain does not apply;
for example, a frame value might be used for coloring a toolbar, which is conceptually
attached to a frame rather than a particular window. The value is also useful in
determining what the value would be for a particular window within the frame or
device, if it is not overridden by a more specific specification.

If property does not name a built-in property, its value will simply be returned unless
it is a specifier object, in which case it will be instanced using specifier-instance.

Optional arguments default and no-fallback are the same as in specifier-instance.
See Chapter 41 [Specifiers], page 609.

Functionremove-glyph-property glyph property &optional locale tag-set
exact-p

This function removes a property from a glyph. For built-in properties, this is anal-
ogous to remove-specifier. See Chapter 41 [Specifiers], page 609, for the meaning
of the locale, tag-set, and exact-p arguments.

43.1.3 Glyph Convenience Functions

The following functions are provided for working with specific properties of a glyph.
Note that these are exactly like calling the general functions described above and passing
in the appropriate value for property.

Chapter 43: Glyphs 639

Remember that if you want to determine the “value” of a specific glyph property, you
probably want to use the *-instance functions. For example, to determine whether a
glyph contributes to its line height, use glyph-contrib-p-instance, not glyph-contrib-
p. (The latter will return a boolean specifier or a list of specifications, and you probably
aren’t concerned with these.)

Functionglyph-image glyph &optional locale
This function is equivalent to calling glyph-property with a property of image. The
return value will be an image specifier if locale is nil or omitted; otherwise, it will
be a specification or list of specifications.

Functionset-glyph-image glyph spec &optional locale tag-set how-to-add
This function is equivalent to calling set-glyph-property with a property of image.

Functionglyph-image-instance glyph &optional domain default no-fallback
This function returns the instance of glyph’s image in the given domain, and is equiv-
alent to calling glyph-property-instance with a property of image. The return
value will be an image instance.
Normally domain will be a window or nil (meaning the selected window), and an
instance object describing how the image appears in that particular window and buffer
will be returned.

Functionglyph-contrib-p glyph &optional locale
This function is equivalent to calling glyph-property with a property of contrib-p.
The return value will be a boolean specifier if locale is nil or omitted; otherwise, it
will be a specification or list of specifications.

Functionset-glyph-contrib-p glyph spec &optional locale tag-set how-to-add
This function is equivalent to calling set-glyph-property with a property of
contrib-p.

Functionglyph-contrib-p-instance glyph &optional domain default no-fallback
This function returns whether the glyph contributes to its line height in the given
domain, and is equivalent to calling glyph-property-instance with a property of
contrib-p. The return value will be either nil or t. (Normally domain will be a
window or nil, meaning the selected window.)

Functionglyph-baseline glyph &optional locale
This function is equivalent to calling glyph-property with a property of baseline.
The return value will be a specifier if locale is nil or omitted; otherwise, it will be a
specification or list of specifications.

Functionset-glyph-baseline glyph spec &optional locale tag-set how-to-add
This function is equivalent to calling set-glyph-property with a property of
baseline.

640 XEmacs Lisp Reference Manual

Functionglyph-baseline-instance glyph &optional domain default no-fallback
This function returns the instance of glyph’s baseline value in the given domain, and
is equivalent to calling glyph-property-instance with a property of baseline. The
return value will be an integer or nil.
Normally domain will be a window or nil (meaning the selected window), and an
instance object describing the baseline value appears in that particular window and
buffer will be returned.

Functionglyph-face glyph
This function returns the face of glyph. (Remember, this is not a specifier, but a
simple property.)

Functionset-glyph-face glyph face
This function changes the face of glyph to face.

43.1.4 Glyph Dimensions

Functionglyph-width glyph &optional window
This function returns the width of glyph on window. This may not be exact as it
does not take into account all of the context that redisplay will.

Functionglyph-ascent glyph &optional window
This function returns the ascent value of glyph on window. This may not be exact as
it does not take into account all of the context that redisplay will.

Functionglyph-descent glyph &optional window
This function returns the descent value of glyph on window. This may not be exact
as it does not take into account all of the context that redisplay will.

Functionglyph-height glyph &optional window
This function returns the height of glyph on window. (This is equivalent to the sum
of the ascent and descent values.) This may not be exact as it does not take into
account all of the context that redisplay will.

43.2 Images

43.2.1 Image Specifiers

An image specifier is used to describe the actual image of a glyph. It works like other
specifiers (see Chapter 41 [Specifiers], page 609), in that it contains a number of spec-
ifications describing how the image should appear in a variety of circumstances. These

Chapter 43: Glyphs 641

specifications are called image instantiators. When XEmacs wants to display the image, it
instantiates the image into an image instance. Image instances are their own primitive ob-
ject type (similar to font instances and color instances), describing how the image appears
in a particular domain. (On the other hand, image instantiators, which are just descriptions
of how the image should appear, are represented using strings or vectors.)

Functionimage-specifier-p object
This function returns non-nil if object is an image specifier. Usually, an image
specifier results from calling glyph-image on a glyph.

Functionmake-image-specifier spec-list
This function creates a new image specifier object and initializes it according to spec-
list. It is unlikely that you will ever want to do this, but this function is provided for
completeness and for experimentation purposes. See Chapter 41 [Specifiers], page 609.

Image instantiators come in many formats: xbm, xpm, gif, jpeg, etc. This describes
the format of the data describing the image. The resulting image instances also come
in many types – mono-pixmap, color-pixmap, text, pointer, etc. This refers to the
behavior of the image and the sorts of places it can appear. (For example, a color-pixmap
image has fixed colors specified for it, while a mono-pixmap image comes in two unspecified
shades “foreground” and “background” that are determined from the face of the glyph or
surrounding text; a text image appears as a string of text and has an unspecified foreground,
background, and font; a pointer image behaves like a mono-pixmap image but can only be
used as a mouse pointer [mono-pixmap images cannot be used as mouse pointers]; etc.) It
is important to keep the distinction between image instantiator format and image instance
type in mind. Typically, a given image instantiator format can result in many different
image instance types (for example, xpm can be instanced as color-pixmap, mono-pixmap,
or pointer; whereas cursor-font can be instanced only as pointer), and a particular
image instance type can be generated by many different image instantiator formats (e.g.
color-pixmap can be generated by xpm, gif, jpeg, etc.).

See Section 43.2.3 [Image Instances], page 645, for a more detailed discussion of image
instance types.

An image instantiator should be a string or a vector of the form
[format :keyword value ...]

i.e. a format symbol followed by zero or more alternating keyword-value pairs. The
format field should be a symbol, one of

nothing (Don’t display anything; no keywords are valid for this. Can only be instanced
as nothing.)

string (Display this image as a text string. Can only be instanced as text, although
support for instancing as mono-pixmap should be added.)

formatted-string
(Display this image as a text string with replaceable fields, similar to a modeline
format string; not currently implemented.)

xbm (An X bitmap; only if X support was compiled into this XEmacs. Can be
instanced as mono-pixmap, color-pixmap, or pointer.)

642 XEmacs Lisp Reference Manual

xpm (An XPM pixmap; only if XPM support was compiled into this XEmacs. Can
be instanced as color-pixmap, mono-pixmap, or pointer. XPM is an add-on
library for X that was designed to rectify the shortcomings of the XBM format.
Most implementations of X include the XPM library as a standard part. If your
vendor does not, it is highly recommended that you download it and install it.
You can get it from the standard XEmacs FTP site, among other places.)

xface (An X-Face bitmap, used to encode people’s faces in e-mail messages; only if
X-Face support was compiled into this XEmacs. Can be instanced as mono-
pixmap, color-pixmap, or pointer.)

gif (A GIF87 or GIF89 image; only if GIF support was compiled into this XEmacs.
Can be instanced as color-pixmap. Note that XEmacs includes GIF decoding
functions as a standard part of it, so if you have X support, you will normally
have GIF support, unless you explicitly disable it at configure time.)

jpeg (A JPEG-format image; only if JPEG support was compiled into this XEmacs.
Can be instanced as color-pixmap. If you have the JPEG libraries present on
your system when XEmacs is built, XEmacs will automatically detect this and
use them, unless you explicitly disable it at configure time.)

png (A PNG/GIF24 image; only if PNG support was compiled into this XEmacs.
Can be instanced as color-pixmap.)

tiff (A TIFF-format image; only if TIFF support was compiled into this XEmacs.
Not currently implemented.)

cursor-font
(One of the standard cursor-font names, such as ‘watch’ or ‘right_ptr’ under
X. Under X, this is, more specifically, any of the standard cursor names from
appendix B of the Xlib manual [also known as the file ‘<X11/cursorfont.h>’]
minus the ‘XC_’ prefix. On other window systems, the valid names will be
specific to the type of window system. Can only be instanced as pointer.)

font (A glyph from a font; i.e. the name of a font, and glyph index into it of the
form ‘font fontname index [[mask-font] mask-index]’. Only if X support
was compiled into this XEmacs. Currently can only be instanced as pointer,
although this should probably be fixed.)

subwindow
(An embedded X window; not currently implemented.)

autodetect
(XEmacs tries to guess what format the data is in. If X support exists, the
data string will be checked to see if it names a filename. If so, and this filename
contains XBM or XPM data, the appropriate sort of pixmap or pointer will
be created. [This includes picking up any specified hotspot or associated mask
file.] Otherwise, if pointer is one of the allowable image-instance types and the
string names a valid cursor-font name, the image will be created as a pointer.
Otherwise, the image will be displayed as text. If no X support exists, the
image will always be displayed as text.)

The valid keywords are:

Chapter 43: Glyphs 643

:data (Inline data. For most formats above, this should be a string. For XBM images,
this should be a list of three elements: width, height, and a string of bit data.
This keyword is not valid for instantiator format nothing.)

:file (Data is contained in a file. The value is the name of this file. If both :data
and :file are specified, the image is created from what is specified in :data
and the string in :file becomes the value of the image-instance-file-name
function when applied to the resulting image-instance. This keyword is not
valid for instantiator formats nothing, string, formatted-string, cursor-
font, font, and autodetect.)

:foreground
:background

(For xbm, xface, cursor-font, and font. These keywords allow you to ex-
plicitly specify foreground and background colors. The argument should be
anything acceptable to make-color-instance. This will cause what would be
a mono-pixmap to instead be colorized as a two-color color-pixmap, and speci-
fies the foreground and/or background colors for a pointer instead of black and
white.)

:mask-data
(For xbm and xface. This specifies a mask to be used with the bitmap. The
format is a list of width, height, and bits, like for :data.)

:mask-file
(For xbm and xface. This specifies a file containing the mask data. If neither
a mask file nor inline mask data is given for an XBM image, and the XBM
image comes from a file, XEmacs will look for a mask file with the same name
as the image file but with ‘Mask’ or ‘msk’ appended. For example, if you specify
the XBM file ‘left_ptr’ [usually located in ‘/usr/include/X11/bitmaps’], the
associated mask file ‘left_ptrmsk’ will automatically be picked up.)

:hotspot-x
:hotspot-y

(For xbm and xface. These keywords specify a hotspot if the image is instanti-
ated as a pointer. Note that if the XBM image file specifies a hotspot, it will
automatically be picked up if no explicit hotspot is given.)

:color-symbols
(Only for xpm. This specifies an alist that maps strings that specify symbolic
color names to the actual color to be used for that symbolic color (in the form
of a string or a color-specifier object). If this is not specified, the contents of
xpm-color-symbols are used to generate the alist.)

If instead of a vector, the instantiator is a string, it will be converted into a vector by
looking it up according to the specs in the console-type-image-conversion-list for the
console type of the domain (usually a window; sometimes a frame or device) over which the
image is being instantiated.

If the instantiator specifies data from a file, the data will be read in at the time that the
instantiator is added to the image specifier (which may be well before the image is actually
displayed), and the instantiator will be converted into one of the inline-data forms, with

644 XEmacs Lisp Reference Manual

the filename retained using a :file keyword. This implies that the file must exist when
the instantiator is added to the image, but does not need to exist at any other time (e.g. it
may safely be a temporary file).

Functionvalid-image-instantiator-format-p format
This function returns non-nil if format is a valid image instantiator format. Note
that the return value for many formats listed above depends on whether XEmacs was
compiled with support for that format.

Functionimage-instantiator-format-list
This function return a list of valid image-instantiator formats.

Variablexpm-color-symbols
This variable holds definitions of logical color-names used when reading XPM files.
Elements of this list should be of the form (color-name form-to-evaluate). The color-
name should be a string, which is the name of the color to define; the form-to-evaluate
should evaluate to a color specifier object, or a string to be passed to make-color-
instance (see Section 42.3 [Colors], page 633). If a loaded XPM file references a
symbolic color called color-name, it will display as the computed color instead.
The default value of this variable defines the logical color names ‘"foreground"’ and
‘"background"’ to be the colors of the default face.

Variablex-bitmap-file-path
A list of the directories in which X bitmap files may be found. If nil, this is initialized
from the ‘"*bitmapFilePath"’ resource. This is used by the make-image-instance
function (however, note that if the environment variable ‘XBMLANGPATH’ is set, it is
consulted first).

43.2.2 Image Instantiator Conversion

Functionset-console-type-image-conversion-list console-type list
This function sets the image-conversion-list for consoles of the given console-type.
The image-conversion-list specifies how image instantiators that are strings should
be interpreted. Each element of the list should be a list of two elements (a regular
expression string and a vector) or a list of three elements (the preceding two plus an
integer index into the vector). The string is converted to the vector associated with
the first matching regular expression. If a vector index is specified, the string itself is
substituted into that position in the vector.
Note: The conversion above is applied when the image instantiator is added to an im-
age specifier, not when the specifier is actually instantiated. Therefore, changing the
image-conversion-list only affects newly-added instantiators. Existing instantiators in
glyphs and image specifiers will not be affected.

Functionconsole-type-image-conversion-list console-type
This function returns the image-conversion-list for consoles of the given console-type.

Chapter 43: Glyphs 645

43.2.3 Image Instances

Image-instance objects encapsulate the way a particular image (pixmap, etc.) is dis-
played on a particular device.

In most circumstances, you do not need to directly create image instances; use a glyph
instead. However, it may occasionally be useful to explicitly create image instances, if you
want more control over the instantiation process.

Functionimage-instance-p object
This function returns non-nil if object is an image instance.

43.2.3.1 Image Instance Types

Image instances come in a number of different types. The type of an image instance
specifies the nature of the image: Whether it is a text string, a mono pixmap, a color
pixmap, etc.

The valid image instance types are

nothing Nothing is displayed.

text Displayed as text. The foreground and background colors and the font of the
text are specified independent of the pixmap. Typically these attributes will
come from the face of the surrounding text, unless a face is specified for the
glyph in which the image appears.

mono-pixmap
Displayed as a mono pixmap (a pixmap with only two colors where the fore-
ground and background can be specified independent of the pixmap; typically
the pixmap assumes the foreground and background colors of the text around
it, unless a face is specified for the glyph in which the image appears).

color-pixmap
Displayed as a color pixmap.

pointer Used as the mouse pointer for a window.

subwindow
A child window that is treated as an image. This allows (e.g.) another program
to be responsible for drawing into the window. Not currently implemented.

Functionvalid-image-instance-type-p type
This function returns non-nil if type is a valid image instance type.

Functionimage-instance-type-list
This function returns a list of the valid image instance types.

Functionimage-instance-type image-instance
This function returns the type of the given image instance. The return value will be
one of nothing, text, mono-pixmap, color-pixmap, pointer, or subwindow.

646 XEmacs Lisp Reference Manual

Functiontext-image-instance-p object
This function returns non-nil if object is an image instance of type text.

Functionmono-pixmap-image-instance-p object
This function returns non-nil if object is an image instance of type mono-pixmap.

Functioncolor-pixmap-image-instance-p object
This function returns non-nil if object is an image instance of type color-pixmap.

Functionpointer-image-instance-p object
This function returns non-nil if object is an image instance of type pointer.

Functionsubwindow-image-instance-p object
This function returns non-nil if object is an image instance of type subwindow.

Functionnothing-image-instance-p object
This function returns non-nil if object is an image instance of type nothing.

43.2.3.2 Image Instance Functions

Functionmake-image-instance data &optional device dest-types no-error
This function creates a new image-instance object.

data is an image instantiator, which describes the image (see Section 43.2.1 [Image
Specifiers], page 640).

dest-types should be a list of allowed image instance types that can be generated.
The dest-types list is unordered. If multiple destination types are possible for a
given instantiator, the “most natural” type for the instantiator’s format is chosen.
(For XBM, the most natural types are mono-pixmap, followed by color-pixmap,
followed by pointer. For the other normal image formats, the most natural types
are color-pixmap, followed by mono-pixmap, followed by pointer. For the string and
formatted-string formats, the most natural types are text, followed by mono-pixmap
(not currently implemented), followed by color-pixmap (not currently implemented).
The other formats can only be instantiated as one type. (If you want to control
more specifically the order of the types into which an image is instantiated, just call
make-image-instance repeatedly until it succeeds, passing less and less preferred
destination types each time.

If dest-types is omitted, all possible types are allowed.

no-error controls what happens when the image cannot be generated. If nil, an error
message is generated. If t, no messages are generated and this function returns nil.
If anything else, a warning message is generated and this function returns nil.

Chapter 43: Glyphs 647

Functioncolorize-image-instance image-instance foreground background
This function makes the image instance be displayed in the given colors. Image
instances come in two varieties: bitmaps, which are 1 bit deep which are rendered in
the prevailing foreground and background colors; and pixmaps, which are of arbitrary
depth (including 1) and which have the colors explicitly specified. This function
converts a bitmap to a pixmap. If the image instance was a pixmap already, nothing
is done (and nil is returned). Otherwise t is returned.

Functionimage-instance-name image-instance
This function returns the name of the given image instance.

Functionimage-instance-string image-instance
This function returns the string of the given image instance. This will only be non-nil
for text image instances.

Functionimage-instance-file-name image-instance
This function returns the file name from which image-instance was read, if known.

Functionimage-instance-mask-file-name image-instance
This function returns the file name from which image-instance’s mask was read, if
known.

Functionimage-instance-depth image-instance
This function returns the depth of the image instance. This is 0 for a mono pixmap,
or a positive integer for a color pixmap.

Functionimage-instance-height image-instance
This function returns the height of the image instance, in pixels.

Functionimage-instance-width image-instance
This function returns the width of the image instance, in pixels.

Functionimage-instance-hotspot-x image-instance
This function returns the X coordinate of the image instance’s hotspot, if known.
This is a point relative to the origin of the pixmap. When an image is used as a
mouse pointer, the hotspot is the point on the image that sits over the location that
the pointer points to. This is, for example, the tip of the arrow or the center of the
crosshairs.
This will always be nil for a non-pointer image instance.

Functionimage-instance-hotspot-y image-instance
This function returns the Y coordinate of the image instance’s hotspot, if known.

Functionimage-instance-foreground image-instance
This function returns the foreground color of image-instance, if applicable. This will
be a color instance or nil. (It will only be non-nil for colorized mono pixmaps and
for pointers.)

648 XEmacs Lisp Reference Manual

Functionimage-instance-background image-instance
This function returns the background color of image-instance, if applicable. This will
be a color instance or nil. (It will only be non-nil for colorized mono pixmaps and
for pointers.)

43.3 Glyph Types

Each glyph has a particular type, which controls how the glyph’s image is generated.
Each glyph type has a corresponding list of allowable image instance types that can be
generated. When you call glyph-image-instance to retrieve the image instance of a glyph,
XEmacs does the equivalent of calling make-image-instance and passing in dest-types the
list of allowable image instance types for the glyph’s type.

• buffer glyphs can be used as the begin-glyph or end-glyph of an extent, in the mod-
eline, and in the toolbar. Their image can be instantiated as nothing, mono-pixmap,
color-pixmap, text, and subwindow.

• pointer glyphs can be used to specify the mouse pointer. Their image can be instan-
tiated as pointer.

• icon glyphs can be used to specify the icon used when a frame is iconified. Their image
can be instantiated as mono-pixmap and color-pixmap.

Functionglyph-type glyph
This function returns the type of the given glyph. The return value will be a symbol,
one of buffer, pointer, or icon.

Functionvalid-glyph-type-p glyph-type
Given a glyph-type, this function returns non-nil if it is valid.

Functionglyph-type-list
This function returns a list of valid glyph types.

Functionbuffer-glyph-p object
This function returns non-nil if object is a glyph of type buffer.

Functionicon-glyph-p object
This function returns non-nil if object is a glyph of type icon.

Functionpointer-glyph-p object
This function returns non-nil if object is a glyph of type pointer.

Chapter 43: Glyphs 649

43.4 Mouse Pointer

The shape of the mouse pointer when over a particular section of a frame is controlled
using various glyph variables. Since the image of a glyph is a specifier, it can be controlled
on a per-buffer, per-frame, per-window, or per-device basis.

You should use set-glyph-image to set the following variables, not setq.

Glyphtext-pointer-glyph
This variable specifies the shape of the mouse pointer when over text.

Glyphnontext-pointer-glyph
This variable specifies the shape of the mouse pointer when over a buffer, but not
over text. If unspecified in a particular domain, text-pointer-glyph is used.

Glyphmodeline-pointer-glyph
This variable specifies the shape of the mouse pointer when over the modeline. If
unspecified in a particular domain, nontext-pointer-glyph is used.

Glyphselection-pointer-glyph
This variable specifies the shape of the mouse pointer when over a selectable text
region. If unspecified in a particular domain, text-pointer-glyph is used.

Glyphgc-pointer-glyph
This variable specifies the shape of the mouse pointer when a garbage collection is
in progress. If the selected window is on a window system and this glyph specifies
a value (i.e. a pointer image instance) in the domain of the selected window, the
pointer will be changed as specified during garbage collection. Otherwise, a message
will be printed in the echo area, as controlled by gc-message.

Glyphbusy-pointer-glyph
This variable specifies the shape of the mouse pointer when XEmacs is busy. If
unspecified in a particular domain, the pointer is not changed when XEmacs is busy.

Glyphmenubar-pointer-glyph
This variable specifies the shape of the mouse pointer when over the menubar. If
unspecified in a particular domain, the window-system-provided default pointer is
used.

Glyphscrollbar-pointer-glyph
This variable specifies the shape of the mouse pointer when over a scrollbar. If
unspecified in a particular domain, the window-system-provided default pointer is
used.

Glyphtoolbar-pointer-glyph
This variable specifies the shape of the mouse pointer when over a toolbar. If unspec-
ified in a particular domain, nontext-pointer-glyph is used.

650 XEmacs Lisp Reference Manual

Internally, these variables are implemented in default-mouse-motion-handler, and
thus only take effect when the mouse moves. That function calls set-frame-pointer,
which sets the current mouse pointer for a frame.

Functionset-frame-pointer frame image-instance
This function sets the mouse pointer of frame to the given pointer image instance.
You should not call this function directly. (If you do, the pointer will change again
the next time the mouse moves.)

43.5 Redisplay Glyphs

Glyphtruncation-glyph
This variable specifies what is displayed at the end of truncated lines.

Glyphcontinuation-glyph
This variable specifies what is displayed at the end of wrapped lines.

Glyphoctal-escape-glyph
This variable specifies what to prefix character codes displayed in octal with.

Glyphhscroll-glyph
This variable specifies what to display at the beginning of horizontally scrolled lines.

Glyphinvisible-text-glyph
This variable specifies what to use to indicate the presence of invisible text. This is
the glyph that is displayed when an ellipsis is called for, according to selective-
display-ellipses or buffer-invisibility-spec). Normally this is three dots
(“...”).

Glyphcontrol-arrow-glyph
This variable specifies what to use as an arrow for control characters.

43.6 Subwindows

Subwindows are not currently implemented.

Functionsubwindowp object
This function returns non-nil if object is a subwindow.

Chapter 44: Annotations 651

44 Annotations

An annotation is a pixmap or string that is not part of a buffer’s text but is displayed
next to a particular location in a buffer. Annotations can be displayed intermixed with text,
in any whitespace at the beginning or end of a line, or in a special area at the left or right
side of the frame called a margin, whose size is controllable. Annotations are implemented
using extents (see Chapter 40 [Extents], page 593); but you can work with annotations
without knowing how extents work.

44.1 Annotation Basics

Marginal annotations are notes associated with a particular location in a buffer. They
may be displayed in a margin created on the left-hand or right-hand side of the frame, in any
whitespace at the beginning or end of a line, or inside of the text itself. Every annotation
may have an associated action to be performed when the annotation is selected. The term
annotation is used to refer to an individual note. The term margin is generically used to
refer to the whitespace before the first character on a line or after the last character on a
line.

Each annotation has the following characteristics:

glyph This is a glyph object and is used as the displayed representation of the anno-
tation.

down-glyph
If given, this glyph is used as the displayed representation of the annotation
when the mouse is pressed down over the annotation.

face The face with which to display the glyph.

side Which side of the text (left or right) the annotation is displayed at.

action If non-nil, this field must contain a function capable of being the first argu-
ment to funcall. This function is normally evaluated with a single argument,
the value of the data field, each time the annotation is selected. However,
if the with-event parameter to make-annotation is non-nil, the function is
called with two arguments. The first argument is the same as before, and the
second argument is the event (a button-up event, usually) that activated the
annotation.

data Not used internally. This field can contain any E-Lisp object. It is passed as
the first argument to action described above.

menu A menu displayed when the right mouse button is pressed over the annotation.

The margin is divided into outside and inside. The outside margin is space on the left
or right side of the frame which normal text cannot be displayed in. The inside margin
is that space between the leftmost or rightmost point at which text can be displayed and
where the first or last character actually is.

There are four different layout types which affect the exact location an annotation ap-
pears.

652 XEmacs Lisp Reference Manual

outside-margin
The annotation is placed in the outside margin area. as close as possible to the
edge of the frame. If the outside margin is not wide enough for an annotation
to fit, it is not displayed.

inside-margin
The annotation is placed in the inside margin area, as close as possible to the
edge of the frame. If the inside margin is not wide enough for the annotation to
fit, it will be displayed using any available outside margin space if and only if
the specifier use-left-overflow or use-right-overflow (depending on which
side the annotation appears in) is non-nil.

whitespace
The annotation is placed in the inside margin area, as close as possible to
the first or last non-whitespace character on a line. If the inside margin is
not wide enough for the annotation to fit, it will be displayed if and only if
the specifier use-left-overflow or use-right-overflow (depending on which
side the annotation appears in) is non-nil.

text The annotation is placed at the position it is inserted. It will create enough
space for itself inside of the text area. It does not take up a place in the logical
buffer, only in the display of the buffer.

The current layout policy is that all whitespace annotations are displayed first. Next,
all inside-margin annotations are displayed using any remaining space. Finally as many
outside-margin annotations are displayed as possible. The text annotations will always
display as they create their own space to display in.

44.2 Annotation Primitives

Functionmake-annotation glyph &optional position layout buffer with-event
d-glyph rightp

This function creates a marginal annotation at position pos in buffer. The annotation
is displayed using glyph, which should be a glyph object or a string, and is positioned
using layout policy layout. If pos is nil, point is used. If layout is nil, whitespace
is used. If buffer is nil, the current buffer is used.
If with-event is non-nil, then when an annotation is activated, the triggering event is
passed as the second arg to the annotation function. If d-glyph is non-nil then it is
used as the glyph that will be displayed when button1 is down. If rightp is non-nil
then the glyph will be displayed on the right side of the buffer instead of the left.
The newly created annotation is returned.

Functiondelete-annotation annotation
This function removes annotation from its buffer. This does not modify the buffer
text.

Functionannotationp annotation
This function returns t if annotation is an annotation, nil otherwise.

Chapter 44: Annotations 653

44.3 Annotation Properties

Functionannotation-glyph annotation
This function returns the glyph object used to display annotation.

Functionset-annotation-glyph annotation glyph &optional layout side
This function sets the glyph of annotation to glyph, which should be a glyph object.
If layout is non-nil, set the layout policy of annotation to layout. If side is left or
right, change the side of the buffer at which the annotation is displayed to the given
side. The new value of annotation-glyph is returned.

Functionannotation-down-glyph annotation
This function returns the glyph used to display annotation when the left mouse button
is depressed on the annotation.

Functionset-annotation-down-glyph annotation glyph
This function returns the glyph used to display annotation when the left mouse button
is depressed on the annotation to glyph, which should be a glyph object.

Functionannotation-face annotation
This function returns the face associated with annotation.

Functionset-annotation-face annotation face
This function sets the face associated with annotation to face.

Functionannotation-layout annotation
This function returns the layout policy of annotation.

Functionset-annotation-layout annotation layout
This function sets the layout policy of annotation to layout.

Functionannotation-side annotation
This function returns the side of the buffer that annotation is displayed on. Return
value is a symbol, either left or right.

Functionannotation-data annotation
This function returns the data associated with annotation.

Functionset-annotation-data annotation data
This function sets the data field of annotation to data. data is returned.

Functionannotation-action annotation
This function returns the action associated with annotation.

654 XEmacs Lisp Reference Manual

Functionset-annotation-action annotation action
This function sets the action field of annotation to action. action is returned..

Functionannotation-menu annotation
This function returns the menu associated with annotation.

Functionset-annotation-menu annotation menu
This function sets the menu associated with annotation to menu. This menu will be
displayed when the right mouse button is pressed over the annotation.

Functionannotation-visible annotation
This function returns t if there is enough available space to display annotation, nil
otherwise.

Functionannotation-width annotation
This function returns the width of annotation in pixels.

Functionhide-annotation annotation
This function removes annotation’s glyph, making it invisible.

Functionreveal-annotation annotation
This function restores annotation’s glyph, making it visible.

44.4 Locating Annotations

Functionannotations-in-region start end buffer
This function returns a list of all annotations in buffer which are between start and
end inclusively.

Functionannotations-at &optional position buffer
This function returns a list of all annotations at position in buffer. If position is nil
point is used. If buffer is nil the current buffer is used.

Functionannotation-list &optional buffer
This function returns a list of all annotations in buffer. If buffer is nil, the current
buffer is used.

Functionall-annotations
This function returns a list of all annotations in all buffers in existence.

Chapter 44: Annotations 655

44.5 Margin Primitives

The margin widths are controllable on a buffer-local, window-local, frame-local, device-
local, or device-type-local basis through the use of specifiers. See Chapter 41 [Specifiers],
page 609.

Specifierleft-margin-width
This is a specifier variable controlling the width of the left outside margin, in charac-
ters. Use set-specifier to change its value.

Specifierright-margin-width
This is a specifier variable controlling the width of the right outside margin, in char-
acters. Use set-specifier to change its value.

Specifieruse-left-overflow
If non-nil, use the left outside margin as extra whitespace when displaying
whitespace and inside-margin annotations. Defaults to nil. This is a specifier
variable; use set-specifier to change its value.

Specifieruse-right-overflow
If non-nil, use the right outside margin as extra whitespace when displaying
whitespace and inside-margin annotations. Defaults to nil. This is a specifier
variable; use set-specifier to change its value.

Functionwindow-left-margin-pixel-width &optional window
This function returns the width in pixels of the left outside margin of window. If
window is nil, the selected window is assumed.

Functionwindow-right-margin-pixel-width &optional window
This function returns the width in pixels of the right outside margin of window. If
window is nil, the selected window is assumed.

The margin colors are controlled by the faces left-margin and right-margin.
These can be set using the X resources Emacs.left-margin.background and
Emacs.left-margin.foreground; likewise for the right margin.

44.6 Annotation Hooks

The following three hooks are provided for use with the marginal annotations:

before-delete-annotation-hook
This hook is called immediately before an annotation is destroyed. It is passed
a single argument, the annotation being destroyed.

after-delete-annotation-hook
This normal hook is called immediately after an annotation is destroyed.

656 XEmacs Lisp Reference Manual

make-annotation-hook
This hook is called immediately after an annotation is created. It is passed a
single argument, the newly created annotation.

Chapter 45: Emacs Display 657

45 Emacs Display

This chapter describes a number of other features related to the display that XEmacs
presents to the user.

45.1 Refreshing the Screen

The function redraw-frame redisplays the entire contents of a given frame. See Chap-
ter 32 [Frames], page 475.

Functionredraw-frame frame
This function clears and redisplays frame frame.

Even more powerful is redraw-display:

Commandredraw-display &optional device
This function redraws all frames on device marked as having their image garbled.
device defaults to the selected device. If device is t, all devices will have their frames
checked.

Processing user input takes absolute priority over redisplay. If you call these functions
when input is available, they do nothing immediately, but a full redisplay does happen
eventually—after all the input has been processed.

Normally, suspending and resuming XEmacs also refreshes the screen. Some terminal
emulators record separate contents for display-oriented programs such as XEmacs and for
ordinary sequential display. If you are using such a terminal, you might want to inhibit the
redisplay on resumption. See Section 50.2.2 [Suspending XEmacs], page 706.

Variableno-redraw-on-reenter
This variable controls whether XEmacs redraws the entire screen after it has been
suspended and resumed. Non-nil means yes, nil means no.

The above functions do not actually cause the display to be updated; rather, they clear
out the internal display records that XEmacs maintains, so that the next time the display
is updated it will be redrawn from scratch. Normally this occurs the next time that next-
event or sit-for is called; however, a display update will not occur if there is input
pending. See Chapter 19 [Command Loop], page 285.

Functionforce-cursor-redisplay
This function causes an immediate update of the cursor on the selected frame. (This
function does not exist in FSF Emacs.)

658 XEmacs Lisp Reference Manual

45.2 Truncation

When a line of text extends beyond the right edge of a window, the line can either be
truncated or continued on the next line. When a line is truncated, this is normally shown
with a ‘\’ in the rightmost column of the window on X displays, and with a ‘$’ on TTY
devices. When a line is continued or “wrapped” onto the next line, this is shown with a
curved arrow in the rightmost column of the window (or with a ‘\’ on TTY devices). The
additional screen lines used to display a long text line are called continuation lines.

Normally, whenever line truncation is in effect for a particular window, a horizontal
scrollbar is displayed in that window if the device supports scrollbars. See Chapter 24
[Scrollbars], page 361.

Note that continuation is different from filling; continuation happens on the screen only,
not in the buffer contents, and it breaks a line precisely at the right margin, not at a word
boundary. See Section 36.11 [Filling], page 532.

User Optiontruncate-lines
This buffer-local variable controls how XEmacs displays lines that extend beyond the
right edge of the window. If it is non-nil, then XEmacs does not display continuation
lines; rather each line of text occupies exactly one screen line, and a backslash appears
at the edge of any line that extends to or beyond the edge of the window. The default
is nil.
If the variable truncate-partial-width-windows is non-nil, then truncation is al-
ways used for side-by-side windows (within one frame) regardless of the value of
truncate-lines.

User Optiondefault-truncate-lines
This variable is the default value for truncate-lines, for buffers that do not have
local values for it.

User Optiontruncate-partial-width-windows
This variable controls display of lines that extend beyond the right edge of the window,
in side-by-side windows (see Section 31.2 [Splitting Windows], page 450). If it is non-
nil, these lines are truncated; otherwise, truncate-lines says what to do with
them.

The backslash and curved arrow used to indicate truncated or continued lines are only
defaults, and can be changed. These images are actually glyphs (see Chapter 43 [Glyphs],
page 635). XEmacs provides a great deal of flexibility in how glyphs can be controlled.
(This differs from FSF Emacs, which uses display tables to control these images.)

For details, Section 43.5 [Redisplay Glyphs], page 650.

45.3 The Echo Area

The echo area is used for displaying messages made with the message primitive, and
for echoing keystrokes. It is not the same as the minibuffer, despite the fact that the

Chapter 45: Emacs Display 659

minibuffer appears (when active) in the same place on the screen as the echo area. The
XEmacs Reference Manual specifies the rules for resolving conflicts between the echo area
and the minibuffer for use of that screen space (see section “The Minibuffer” in The XEmacs
Reference Manual). Error messages appear in the echo area; see Section 9.5.3 [Errors],
page 138.

You can write output in the echo area by using the Lisp printing functions with t as the
stream (see Section 17.5 [Output Functions], page 260), or as follows:

Functionmessage string &rest arguments
This function displays a one-line message in the echo area. The argument string
is similar to a C language printf control string. See format in Section 4.7 [String
Conversion], page 67, for the details on the conversion specifications. message returns
the constructed string.

In batch mode, message prints the message text on the standard error stream, followed
by a newline.

If string is nil, message clears the echo area. If the minibuffer is active, this brings
the minibuffer contents back onto the screen immediately.

(message "Minibuffer depth is %d."
(minibuffer-depth))

a Minibuffer depth is 0.
⇒ "Minibuffer depth is 0."

---------- Echo Area ----------
Minibuffer depth is 0.
---------- Echo Area ----------

In addition to only displaying a message, XEmacs allows you to label your messages,
giving you fine-grained control of their display. Message label is a symbol denoting the
message type. Some standard labels are:

• message—default label used by the message function;

• error—default label used for reporting errors;

• progress—progress indicators like ‘Converting... 45%’ (not logged by default);

• prompt—prompt-like messages like ‘Isearch: foo’ (not logged by default);

• command—helper command messages like ‘Mark set’ (not logged by default);

• no-log—messages that should never be logged

Several messages may be stacked in the echo area at once. Lisp programs may access
these messages, or remove them as appropriate, via the message stack.

Functiondisplay-message label message &optional frame stdout-p
This function displays message (a string) labeled as label, as described above.

The frame argument specifies the frame to whose minibuffer the message should be
printed. This is currently unimplemented. The stdout-p argument is used internally.

(display-message ’command "Mark set")

660 XEmacs Lisp Reference Manual

Functionlmessage label string &rest arguments
This function displays a message string with label label. It is similar to message in
that it accepts a printf-like strings and any number of arguments.

;; Display a command message.
(lmessage ’command "Comment column set to %d" comment-column)

;; Display a progress message.
(lmessage ’progress "Fontifying %s... (%d)" buffer percentage)

;; Display a message that should not be logged.
(lmessage ’no-log "Done")

Functionclear-message &optional label frame stdout-p no-restore
This function remove any message with the given label from the message-stack, erasing
it from the echo area if it’s currently displayed there.

If a message remains at the head of the message-stack and no-restore is nil, it will
be displayed. The string which remains in the echo area will be returned, or nil if
the message-stack is now empty. If label is nil, the entire message-stack is cleared.

;; Show a message, wait for 2 seconds, and restore old minibuffer
;; contents.
(message "A message")
a A message
⇒ "A Message"
(lmessage ’my-label "Newsflash! Newsflash!")
a Newsflash! Newsflash!
⇒ "Newsflash! Newsflash!"
(sit-for 2)
(clear-message ’my-label)
a A message
⇒ "A message"

Unless you need the return value or you need to specify a label, you should just use
(message nil).

Functioncurrent-message &optional frame
This function returns the current message in the echo area, or nil. The frame argu-
ment is currently unused.

Some of the messages displayed in the echo area are also recorded in the ‘ *Message-Log*’
buffer. Exactly which messages will be recorded can be tuned using the following variables.

User Optionlog-message-max-size
This variable specifies the maximum size of the ‘ *Message-log*’ buffer.

Variablelog-message-ignore-labels
This variable specifies the labels whose messages will not be logged. It should be a
list of symbols.

Chapter 45: Emacs Display 661

Variablelog-message-ignore-regexps
This variable specifies the regular expressions matching messages that will not be
logged. It should be a list of regular expressions.

Normally, packages that generate messages that might need to be ignored should label
them with progress, prompt, or no-log, so they can be filtered by log-message-
ignore-labels.

Variableecho-keystrokes
This variable determines how much time should elapse before command characters
echo. Its value must be a number, which specifies the number of seconds to wait
before echoing. If the user types a prefix key (such as C-x) and then delays this many
seconds before continuing, the prefix key is echoed in the echo area. Any subsequent
characters in the same command will be echoed as well.

If the value is zero, then command input is not echoed.

Variablecursor-in-echo-area
This variable controls where the cursor appears when a message is displayed in the
echo area. If it is non-nil, then the cursor appears at the end of the message.
Otherwise, the cursor appears at point—not in the echo area at all.

The value is normally nil; Lisp programs bind it to t for brief periods of time.

45.4 Warnings

XEmacs contains a facility for unified display of various warnings. Unlike errors, warn-
ings are displayed in the situations when XEmacs encounters a problem that is recoverable,
but which should be fixed for safe future operation.

For example, warnings are printed by the startup code when it encounters problems with
X keysyms, when there is an error in ‘.emacs’, and in other problematic situations. Unlike
messages, warnings are displayed in a separate buffer, and include an explanatory message
that may span across several lines. Here is an example of how a warning is displayed:

(1) (initialization/error) An error has occurred while loading ~/.emacs:

Symbol’s value as variable is void: bogus-variable

To ensure normal operation, you should investigate the cause of the error
in your initialization file and remove it. Use the ‘-debug-init’ option
to XEmacs to view a complete error backtrace.

Each warning has a class and a priority level. The class is a symbol describing what sort
of warning this is, such as initialization, resource or key-mapping.

The warning priority level specifies how important the warning is. The recognized
warning levels, in increased order of priority, are: debug, info, notice, warning, error,
critical, alert and emergency.

662 XEmacs Lisp Reference Manual

Functiondisplay-warning class message &optional level
This function displays a warning message message (a string). class should be a
warning class symbol, as described above, or a list of such symbols. level describes
the warning priority level. If unspecified, it default to warning.

(display-warning ’resource
"Bad resource specification encountered:

something like

Emacs*foo: bar

You should replace the * with a . in order to get proper behavior when
you use the specifier and/or ‘set-face-*’ functions.")

---------- Warning buffer ----------
(1) (resource/warning) Bad resource specification encountered:
something like

Emacs*foo: bar

You should replace the * with a . in order to get proper behavior when
you use the specifier and/or ‘set-face-*’ functions.
---------- Warning buffer ----------

Functionlwarn class level message &rest args
This function displays a formatted labeled warning message. As above, class should
be the warning class symbol, or a list of such symbols, and level should specify the
warning priority level (warning by default).
Unlike in display-warning, message may be a formatted message, which will be,
together with the rest of the arguments, passed to format.

(lwarn ’message-log ’warning
"Error caught in ‘remove-message-hook’: %s"
(error-message-string e))

Variablelog-warning-minimum-level
This variable specifies the minimum level of warnings that should be generated. Warn-
ings with level lower than defined by this variable are completely ignored, as if they
never happened.

Variabledisplay-warning-minimum-level
This variable specifies the minimum level of warnings that should be displayed. Un-
like log-warning-minimum-level, setting this function does not suppress warnings
entirely—they are still generated in the ‘*Warnings*’ buffer, only they are not dis-
played by default.

Variablelog-warning-suppressed-classes
This variable specifies a list of classes that should not be logged or displayed. If any of
the class symbols associated with a warning is the same as any of the symbols listed
here, the warning will be completely ignored, as it they never happened.

Chapter 45: Emacs Display 663

Variabledisplay-warning-suppressed-classes
This variable specifies a list of classes that should not be logged or displayed. If any
of the class symbols associated with a warning is the same as any of the symbols
listed here, the warning will not be displayed. The warning will still logged in the
Warnings buffer (unless also contained in ‘log-warning-suppressed-classes’), but the
buffer will not be automatically popped up.

45.5 Invisible Text

You can make characters invisible, so that they do not appear on the screen, with the
invisible property. This can be either a text property or a property of an overlay.

In the simplest case, any non-nil invisible property makes a character invisible. This
is the default case—if you don’t alter the default value of buffer-invisibility-spec, this
is how the invisibility property works. This feature is much like selective display (see
Section 45.6 [Selective Display], page 664), but more general and cleaner.

More generally, you can use the variable buffer-invisibility-spec to control which
values of the invisible property make text invisible. This permits you to classify the
text into different subsets in advance, by giving them different invisible values, and
subsequently make various subsets visible or invisible by changing the value of buffer-
invisibility-spec.

Controlling visibility with buffer-invisibility-spec is especially useful in a program
to display the list of entries in a data base. It permits the implementation of convenient
filtering commands to view just a part of the entries in the data base. Setting this variable
is very fast, much faster than scanning all the text in the buffer looking for properties to
change.

Variablebuffer-invisibility-spec
This variable specifies which kinds of invisible properties actually make a character
invisible.

t A character is invisible if its invisible property is non-nil. This is the
default.

a list Each element of the list makes certain characters invisible. Ultimately, a
character is invisible if any of the elements of this list applies to it. The
list can have two kinds of elements:

atom A character is invisible if its invisible property value is
atom or if it is a list with atom as a member.

(atom . t)
A character is invisible if its invisible property value is
atom or if it is a list with atom as a member. Moreover,
if this character is at the end of a line and is followed by a
visible newline, it displays an ellipsis.

Ordinarily, commands that operate on text or move point do not care whether the text is
invisible. However, the user-level line motion commands explicitly ignore invisible newlines.

664 XEmacs Lisp Reference Manual

45.6 Selective Display

Selective display is a pair of features that hide certain lines on the screen.

The first variant, explicit selective display, is designed for use in a Lisp program. The
program controls which lines are hidden by altering the text. Outline mode has traditionally
used this variant. It has been partially replaced by the invisible text feature (see Section 45.5
[Invisible Text], page 663); there is a new version of Outline mode which uses that instead.

In the second variant, the choice of lines to hide is made automatically based on inden-
tation. This variant is designed to be a user-level feature.

The way you control explicit selective display is by replacing a newline (control-j) with
a carriage return (control-m). The text that was formerly a line following that newline is
now invisible. Strictly speaking, it is temporarily no longer a line at all, since only newlines
can separate lines; it is now part of the previous line.

Selective display does not directly affect editing commands. For example, C-f (forward-
char) moves point unhesitatingly into invisible text. However, the replacement of newline
characters with carriage return characters affects some editing commands. For example,
next-line skips invisible lines, since it searches only for newlines. Modes that use selective
display can also define commands that take account of the newlines, or that make parts of
the text visible or invisible.

When you write a selectively displayed buffer into a file, all the control-m’s are output
as newlines. This means that when you next read in the file, it looks OK, with nothing
invisible. The selective display effect is seen only within XEmacs.

Variableselective-display
This buffer-local variable enables selective display. This means that lines, or portions
of lines, may be made invisible.

• If the value of selective-display is t, then any portion of a line that follows a
control-m is not displayed.

• If the value of selective-display is a positive integer, then lines that start with
more than that many columns of indentation are not displayed.

When some portion of a buffer is invisible, the vertical movement commands operate
as if that portion did not exist, allowing a single next-line command to skip any
number of invisible lines. However, character movement commands (such as forward-
char) do not skip the invisible portion, and it is possible (if tricky) to insert or delete
text in an invisible portion.

In the examples below, we show the display appearance of the buffer foo, which
changes with the value of selective-display. The contents of the buffer do not
change.

Chapter 45: Emacs Display 665

(setq selective-display nil)
⇒ nil

---------- Buffer: foo ----------
1 on this column
2on this column
3n this column
3n this column
2on this column
1 on this column
---------- Buffer: foo ----------

(setq selective-display 2)
⇒ 2

---------- Buffer: foo ----------
1 on this column
2on this column
2on this column
1 on this column
---------- Buffer: foo ----------

Variableselective-display-ellipses
If this buffer-local variable is non-nil, then XEmacs displays ‘...’ at the end of a
line that is followed by invisible text. This example is a continuation of the previous
one.

(setq selective-display-ellipses t)
⇒ t

---------- Buffer: foo ----------
1 on this column
2on this column ...
2on this column
1 on this column
---------- Buffer: foo ----------

You can use a display table to substitute other text for the ellipsis (‘...’). See
Section 45.11 [Display Tables], page 669.

45.7 The Overlay Arrow

The overlay arrow is useful for directing the user’s attention to a particular line in
a buffer. For example, in the modes used for interface to debuggers, the overlay arrow
indicates the line of code about to be executed.

Variableoverlay-arrow-string
This variable holds the string to display to call attention to a particular line, or nil
if the arrow feature is not in use. Despite its name, the value of this variable can be
either a string or a glyph (see Chapter 43 [Glyphs], page 635).

666 XEmacs Lisp Reference Manual

Variableoverlay-arrow-position
This variable holds a marker that indicates where to display the overlay arrow. It
should point at the beginning of a line. The arrow text appears at the beginning of
that line, overlaying any text that would otherwise appear. Since the arrow is usually
short, and the line usually begins with indentation, normally nothing significant is
overwritten.
The overlay string is displayed only in the buffer that this marker points into. Thus,
only one buffer can have an overlay arrow at any given time.

You can do the same job by creating an extent with a begin-glyph property. See
Section 40.6 [Extent Properties], page 599.

45.8 Temporary Displays

Temporary displays are used by commands to put output into a buffer and then present
it to the user for perusal rather than for editing. Many of the help commands use this
feature.

Special Formwith-output-to-temp-buffer buffer-name forms. . .
This function executes forms while arranging to insert any output they print into the
buffer named buffer-name. The buffer is then shown in some window for viewing,
displayed but not selected.
The string buffer-name specifies the temporary buffer, which need not already exist.
The argument must be a string, not a buffer. The buffer is erased initially (with no
questions asked), and it is marked as unmodified after with-output-to-temp-buffer
exits.
with-output-to-temp-buffer binds standard-output to the temporary buffer,
then it evaluates the forms in forms. Output using the Lisp output functions within
forms goes by default to that buffer (but screen display and messages in the echo
area, although they are “output” in the general sense of the word, are not affected).
See Section 17.5 [Output Functions], page 260.
The value of the last form in forms is returned.

---------- Buffer: foo ----------
This is the contents of foo.
---------- Buffer: foo ----------

(with-output-to-temp-buffer "foo"
(print 20)
(print standard-output))

⇒ #<buffer foo>

---------- Buffer: foo ----------
20

#<buffer foo>

---------- Buffer: foo ----------

Chapter 45: Emacs Display 667

Variabletemp-buffer-show-function
If this variable is non-nil, with-output-to-temp-buffer calls it as a function to
do the job of displaying a help buffer. The function gets one argument, which is the
buffer it should display.
In Emacs versions 18 and earlier, this variable was called temp-buffer-show-hook.

Functionmomentary-string-display string position &optional char message
This function momentarily displays string in the current buffer at position. It has no
effect on the undo list or on the buffer’s modification status.
The momentary display remains until the next input event. If the next input event
is char, momentary-string-display ignores it and returns. Otherwise, that event
remains buffered for subsequent use as input. Thus, typing char will simply remove
the string from the display, while typing (say) C-f will remove the string from the
display and later (presumably) move point forward. The argument char is a space by
default.
The return value of momentary-string-display is not meaningful.
You can do the same job in a more general way by creating an extent with a begin-
glyph property. See Section 40.6 [Extent Properties], page 599.
If message is non-nil, it is displayed in the echo area while string is displayed in the
buffer. If it is nil, a default message says to type char to continue.
In this example, point is initially located at the beginning of the second line:

---------- Buffer: foo ----------
This is the contents of foo.
?Second line.
---------- Buffer: foo ----------

(momentary-string-display
"**** Important Message! ****"
(point) ?\r
"Type RET when done reading")

⇒ t

---------- Buffer: foo ----------
This is the contents of foo.
**** Important Message! ****Second line.
---------- Buffer: foo ----------

---------- Echo Area ----------
Type RET when done reading
---------- Echo Area ----------

This function works by actually changing the text in the buffer. As a result, if you
later undo in this buffer, you will see the message come and go.

45.9 Blinking Parentheses

This section describes the mechanism by which XEmacs shows a matching open paren-
thesis when the user inserts a close parenthesis.

668 XEmacs Lisp Reference Manual

Variableblink-paren-function
The value of this variable should be a function (of no arguments) to be called whenever
a character with close parenthesis syntax is inserted. The value of blink-paren-
function may be nil, in which case nothing is done.

Please note: This variable was named blink-paren-hook in older Emacs
versions, but since it is not called with the standard convention for hooks,
it was renamed to blink-paren-function in version 19.

Variableblink-matching-paren
If this variable is nil, then blink-matching-open does nothing.

Variableblink-matching-paren-distance
This variable specifies the maximum distance to scan for a matching parenthesis
before giving up.

Variableblink-matching-paren-delay
This variable specifies the number of seconds for the cursor to remain at the matching
parenthesis. A fraction of a second often gives good results, but the default is 1, which
works on all systems.

Functionblink-matching-open
This function is the default value of blink-paren-function. It assumes that point
follows a character with close parenthesis syntax and moves the cursor momentarily
to the matching opening character. If that character is not already on the screen, it
displays the character’s context in the echo area. To avoid long delays, this function
does not search farther than blink-matching-paren-distance characters.
Here is an example of calling this function explicitly.

(defun interactive-blink-matching-open ()
"Indicate momentarily the start of sexp before point."
(interactive)
(let ((blink-matching-paren-distance

(buffer-size))
(blink-matching-paren t))

(blink-matching-open)))

45.10 Usual Display Conventions

The usual display conventions define how to display each character code. You can
override these conventions by setting up a display table (see Section 45.11 [Display Tables],
page 669). Here are the usual display conventions:
• Character codes 32 through 126 map to glyph codes 32 through 126. Normally this

means they display as themselves.
• Character code 9 is a horizontal tab. It displays as whitespace up to a position deter-

mined by tab-width.

Chapter 45: Emacs Display 669

• Character code 10 is a newline.
• All other codes in the range 0 through 31, and code 127, display in one of two ways

according to the value of ctl-arrow. If it is non-nil, these codes map to sequences
of two glyphs, where the first glyph is the ASCII code for ‘^’. (A display table can
specify a glyph to use instead of ‘^’.) Otherwise, these codes map just like the codes
in the range 128 to 255.

• Character codes 128 through 255 map to sequences of four glyphs, where the first glyph
is the ASCII code for ‘\’, and the others are digit characters representing the code in
octal. (A display table can specify a glyph to use instead of ‘\’.)

The usual display conventions apply even when there is a display table, for any character
whose entry in the active display table is nil. Thus, when you set up a display table, you
need only specify the characters for which you want unusual behavior.

These variables affect the way certain characters are displayed on the screen. Since
they change the number of columns the characters occupy, they also affect the indentation
functions.

User Optionctl-arrow
This buffer-local variable controls how control characters are displayed. If it is non-
nil, they are displayed as a caret followed by the character: ‘^A’. If it is nil, they
are displayed as a backslash followed by three octal digits: ‘\001’.

Variabledefault-ctl-arrow
The value of this variable is the default value for ctl-arrow in buffers that do not
override it. See Section 10.9.3 [Default Value], page 161.

User Optiontab-width
The value of this variable is the spacing between tab stops used for displaying tab
characters in Emacs buffers. The default is 8. Note that this feature is completely
independent from the user-settable tab stops used by the command tab-to-tab-stop.
See Section 36.16.5 [Indent Tabs], page 543.

45.11 Display Tables

You can use the display table feature to control how all 256 possible character codes
display on the screen. This is useful for displaying European languages that have letters
not in the ASCII character set.

The display table maps each character code into a sequence of runes, each rune being
an image that takes up one character position on the screen. You can also define how to
display each rune on your terminal, using the rune table.

45.11.1 Display Table Format

A display table is an array of 256 elements. (In FSF Emacs, a display table is 262
elements. The six extra elements specify the truncation and continuation glyphs, etc. This

670 XEmacs Lisp Reference Manual

method is very kludgey, and in XEmacs the variables truncation-glyph, continuation-
glyph, etc. are used. See Section 45.2 [Truncation], page 658.)

Functionmake-display-table
This creates and returns a display table. The table initially has nil in all elements.

The 256 elements correspond to character codes; the nth element says how to display
the character code n. The value should be nil, a string, a glyph, or a vector of strings
and glyphs (see Section 45.11.3 [Character Descriptors], page 670). If an element is nil, it
says to display that character according to the usual display conventions (see Section 45.10
[Usual Display], page 668).

If you use the display table to change the display of newline characters, the whole buffer
will be displayed as one long “line.”

For example, here is how to construct a display table that mimics the effect of setting
ctl-arrow to a non-nil value:

(setq disptab (make-display-table))
(let ((i 0))

(while (< i 32)
(or (= i ?\t) (= i ?\n)

(aset disptab i (concat "^" (char-to-string (+ i 64)))))
(setq i (1+ i)))

(aset disptab 127 "^?"))

45.11.2 Active Display Table

The active display table is controlled by the variable current-display-table. This is
a specifier, which means that you can specify separate values for it in individual buffers,
windows, frames, and devices, as well as a global value. It also means that you cannot set
this variable using setq; use set-specifier instead. See Chapter 41 [Specifiers], page 609.
(FSF Emacs uses window-display-table, buffer-display-table, standard-display-
table, etc. to control the display table. However, specifiers are a cleaner and more powerful
way of doing the same thing. FSF Emacs also uses a different format for the contents of a
display table, using additional indirection to a “glyph table” and such. Note that “glyph”
has a different meaning in XEmacs.)

Individual faces can also specify an overriding display table; this is set using set-face-
display-table. See Section 42.1 [Faces], page 625.

If no display table can be determined for a particular window, then XEmacs uses the
usual display conventions. See Section 45.10 [Usual Display], page 668.

45.11.3 Character Descriptors

Each element of the display-table vector describes how to display a particular character
and is called a character descriptor. A character descriptor can be:

a string Display this particular string wherever the character is to be displayed.

Chapter 45: Emacs Display 671

a glyph Display this particular glyph wherever the character is to be displayed.

a vector The vector may contain strings and/or glyphs. Display the elements of the
vector one after another wherever the character is to be displayed.

nil Display according to the standard interpretation (see Section 45.10 [Usual Dis-
play], page 668).

45.12 Beeping

You can make XEmacs ring a bell, play a sound, or blink the screen to attract the
user’s attention. Be conservative about how often you do this; frequent bells can become
irritating. Also be careful not to use beeping alone when signaling an error is appropriate.
(See Section 9.5.3 [Errors], page 138.)

Functionding &optional dont-terminate sound device
This function beeps, or flashes the screen (see visible-bell below). It also termi-
nates any keyboard macro currently executing unless dont-terminate is non-nil. If
sound is specified, it should be a symbol specifying which sound to make. This sound
will be played if visible-bell is nil. (This only works if sound support was com-
piled into the executable and you are running on the console of a Sun SparcStation,
SGI, HP9000s700, or Linux PC. Otherwise you just get a beep.) The optional third
argument specifies what device to make the sound on, and defaults to the selected
device.

Functionbeep &optional dont-terminate sound device
This is a synonym for ding.

User Optionvisible-bell
This variable determines whether XEmacs should flash the screen to represent a bell.
Non-nil means yes, nil means no. On TTY devices, this is effective only if the
Termcap entry for the terminal type has the visible bell flag (‘vb’) set.

Variablesound-alist
This variable holds an alist associating names with sounds. When beep or ding is
called with one of the name symbols, the associated sound will be generated instead
of the standard beep.
Each element of sound-alist is a list describing a sound. The first element of the list
is the name of the sound being defined. Subsequent elements of the list are alternating
keyword/value pairs:

sound A string of raw sound data, or the name of another sound to play. The
symbol t here means use the default X beep.

volume An integer from 0-100, defaulting to bell-volume.

pitch If using the default X beep, the pitch (Hz) to generate.

672 XEmacs Lisp Reference Manual

duration If using the default X beep, the duration (milliseconds).

For compatibility, elements of ‘sound-alist’ may also be:
• (sound-name . <sound>)

• (sound-name <volume> <sound>)

You should probably add things to this list by calling the function load-sound-file.
Caveats:
− You can only play audio data if running on the console screen of a Sun Sparc-

Station, SGI, or HP9000s700.
− The pitch, duration, and volume options are available everywhere, but many X

servers ignore the ‘pitch’ option.

The following beep-types are used by XEmacs itself:

auto-save-error
when an auto-save does not succeed

command-error
when the XEmacs command loop catches an error

undefined-key
when you type a key that is undefined

undefined-click
when you use an undefined mouse-click combination

no-completion
during completing-read

y-or-n-p when you type something other than ’y’ or ’n’

yes-or-no-p
when you type something other than ’yes’ or ’no’

default used when nothing else is appropriate.

Other lisp packages may use other beep types, but these are the ones that the C
kernel of XEmacs uses.

User Optionbell-volume
This variable specifies the default volume for sounds, from 0 to 100.

Commandload-default-sounds
This function loads and installs some sound files as beep-types.

Commandload-sound-file filename sound-name &optional volume
This function reads in an audio file and adds it to sound-alist. The sound file must
be in the Sun/NeXT U-LAW format. sound-name should be a symbol, specifying the
name of the sound. If volume is specified, the sound will be played at that volume;
otherwise, the value of bell-volume will be used.

Chapter 45: Emacs Display 673

Functionplay-sound sound &optional volume device
This function plays sound sound, which should be a symbol mentioned in sound-
alist. If volume is specified, it overrides the value (if any) specified in sound-alist.
device specifies the device to play the sound on, and defaults to the selected device.

Commandplay-sound-file file &optional volume device
This function plays the named sound file at volume volume, which defaults to bell-
volume. device specifies the device to play the sound on, and defaults to the selected
device.

674 XEmacs Lisp Reference Manual

Chapter 46: Hash Tables 675

46 Hash Tables

Functionhashtablep object
This function returns non-nil if object is a hash table.

46.1 Introduction to Hash Tables

A hash table is a data structure that provides mappings from arbitrary Lisp objects
(called keys) to other arbitrary Lisp objects (called values). There are many ways other
than hash tables of implementing the same sort of mapping, e.g. association lists (see
Section 5.8 [Association Lists], page 94) and property lists (see Section 5.9 [Property Lists],
page 98), but hash tables provide much faster lookup.

When you create a hash table, you specify a size, which indicates the expected number
of elements that the table will hold. You are not bound by this size, however; hash tables
automatically resize themselves if the number of elements becomes too large.

(Internally, hash tables are hashed using a modification of the linear probing hash table
method. This method hashes each key to a particular spot in the hash table, and then scans
forward sequentially until a blank entry is found. To look up a key, hash to the appropriate
spot, then search forward for the key until either a key is found or a blank entry stops
the search. The modification actually used is called double hashing and involves moving
forward by a fixed increment, whose value is computed from the original hash value, rather
than always moving forward by one. This eliminates problems with clustering that can
arise from the simple linear probing method. For more information, see Algorithms (second
edition) by Robert Sedgewick, pp. 236-241.)

Functionmake-hashtable size &optional test-fun
This function makes a hash table of initial size size. Comparison between keys is
normally done with eql; i.e. two keys must be the same object to be considered
equivalent. However, you can explicitly specify the comparison function using test-
fun, which must be one of eq, eql, or equal.

Note that currently, eq and eql are the same. This will change when bignums are
implemented.

Functioncopy-hashtable old-table
This function makes a new hash table which contains the same keys and values as the
given table. The keys and values will not themselves be copied.

Functionhashtable-fullness table
This function returns number of entries in table.

676 XEmacs Lisp Reference Manual

46.2 Working With Hash Tables

Functionputhash key val table
This function hashes key to val in table.

Functiongethash key table &optional default
This function finds the hash value for key in table. If there is no corresponding value,
default is returned (defaults to nil).

Functionremhash key table
This function removes the hash value for key in table.

Functionclrhash table
This function flushes table. Afterwards, the hash table will contain no entries.

Functionmaphash function table
This function maps function over entries in table, calling it with two args, each key
and value in the table.

46.3 Weak Hash Tables

A weak hash table is a special variety of hash table whose elements do not count as GC
referents. For any key-value pair in such a hash table, if either the key or value (or in some
cases, if one particular one of the two) has no references to it outside of weak hash tables
(and similar structures such as weak lists), the pair will be removed from the table, and the
key and value collected. A non-weak hash table (or any other pointer) would prevent the
objects from being collected.

Weak hash tables are useful for keeping track of information in a non-obtrusive way,
for example to implement caching. If the cache contains objects such as buffers, markers,
image instances, etc. that will eventually disappear and get garbage-collected, using a weak
hash table ensures that these objects are collected normally rather than remaining around
forever, long past their actual period of use. (Otherwise, you’d have to explicitly map over
the hash table every so often and remove unnecessary elements.)

There are three types of weak hash tables:

fully weak hash tables
In these hash tables, a pair disappears if either the key or the value is unrefer-
enced outside of the table.

key-weak hash tables
In these hash tables, a pair disappears if the key is unreferenced outside of the
table, regardless of how the value is referenced.

value-weak hash tables
In these hash tables, a pair disappears if the value is unreferenced outside of
the table, regardless of how the key is referenced.

Chapter 46: Hash Tables 677

Also see Section 5.10 [Weak Lists], page 101.

Functionmake-weak-hashtable size &optional test-fun
This function makes a fully weak hash table of initial size size. test-fun is as in
make-hashtable.

Functionmake-key-weak-hashtable size &optional test-fun
This function makes a key-weak hash table of initial size size. test-fun is as in make-
hashtable.

Functionmake-value-weak-hashtable size &optional test-fun
This function makes a value-weak hash table of initial size size. test-fun is as in
make-hashtable.

678 XEmacs Lisp Reference Manual

Chapter 47: Range Tables 679

47 Range Tables

A range table is a table that efficiently associated values with ranges of integers.
Note that range tables have a read syntax, like this:

#s(range-table data ((-3 2) foo (5 20) bar))

This maps integers in the range (-3, 2) to foo and integers in the range (5, 20) to bar.

Functionrange-table-p object
Return non-nil if object is a range table.

47.1 Introduction to Range Tables

Functionmake-range-table
Make a new, empty range table.

Functioncopy-range-table old-table
Make a new range table which contains the same values for the same ranges as the
given table. The values will not themselves be copied.

47.2 Working With Range Tables

Functionget-range-table pos table &optional default
This function finds value for position pos in table. If there is no corresponding value,
return default (defaults to nil).

Functionput-range-table start end val table
This function sets the value for range (start, end) to be val in table.

Functionremove-range-table start end table
This function removes the value for range (start, end) in table.

Functionclear-range-table table
This function flushes table.

Functionmap-range-table function table
This function maps function over entries in table, calling it with three args, the
beginning and end of the range and the corresponding value.

680 XEmacs Lisp Reference Manual

Chapter 48: Databases 681

48 Databases

Functiondatabasep object
This function returns non-nil if object is a database.

48.1 Connecting to a Database

Functionopen-database file &optional type subtype access mode
This function opens database file, using database method type and subtype, with
access rights access and permissions mode. access can be any combination of r w and
+, for read, write, and creation flags.
type can have the value ’dbm or ’berkeley_db to select the type of database file to
use. (Note: XEmacs may not support both of these types.)
For a type of ’dbm, there are no subtypes, so subtype should by nil.
For a type of ’berkeley_db, the following subtypes are available: ’hash, ’btree,
and ’recno. See the manpages for the Berkeley DB functions to more information
about these types.

Functionclose-database obj
This function closes database obj.

Functiondatabase-live-p obj
This function returns t iff obj is an active database, else nil.

48.2 Working With a Database

Functionget-database key dbase &optional default
This function finds the value for key in database. If there is no corresponding value,
default is returned (nil if default is omitted).

Functionmap-database function dbase
This function maps function over entries in database, calling it with two args, each
key and value in the database.

Functionput-database key val dbase &optional replace
This function stores key and val in database. If optional fourth arg replace is non-nil,
replace any existing entry in the database.

Functionremove-database key dbase
This function removes key from database.

682 XEmacs Lisp Reference Manual

48.3 Other Database Functions

Functiondatabase-file-name obj
This function returns the filename associated with the database obj.

Functiondatabase-last-error &optional obj
This function returns the last error associated with database obj.

Functiondatabase-subtype obj
This function returns the subtype of database obj, if any.

Functiondatabase-type obj
This function returns the type of database obj.

Chapter 49: Processes 683

49 Processes

In the terminology of operating systems, a process is a space in which a program can
execute. XEmacs runs in a process. XEmacs Lisp programs can invoke other programs
in processes of their own. These are called subprocesses or child processes of the XEmacs
process, which is their parent process.

A subprocess of XEmacs may be synchronous or asynchronous, depending on how it
is created. When you create a synchronous subprocess, the Lisp program waits for the
subprocess to terminate before continuing execution. When you create an asynchronous
subprocess, it can run in parallel with the Lisp program. This kind of subprocess is repre-
sented within XEmacs by a Lisp object which is also called a “process”. Lisp programs can
use this object to communicate with the subprocess or to control it. For example, you can
send signals, obtain status information, receive output from the process, or send input to
it.

Functionprocessp object
This function returns t if object is a process, nil otherwise.

49.1 Functions that Create Subprocesses

There are three functions that create a new subprocess in which to run a program. One
of them, start-process, creates an asynchronous process and returns a process object
(see Section 49.4 [Asynchronous Processes], page 687). The other two, call-process and
call-process-region, create a synchronous process and do not return a process object
(see Section 49.2 [Synchronous Processes], page 684).

Synchronous and asynchronous processes are explained in following sections. Since the
three functions are all called in a similar fashion, their common arguments are described
here.

In all cases, the function’s program argument specifies the program to be run. An error
is signaled if the file is not found or cannot be executed. If the file name is relative, the
variable exec-path contains a list of directories to search. Emacs initializes exec-path
when it starts up, based on the value of the environment variable PATH. The standard file
name constructs, ‘~’, ‘.’, and ‘..’, are interpreted as usual in exec-path, but environment
variable substitutions (‘$HOME’, etc.) are not recognized; use substitute-in-file-name to
perform them (see Section 28.8.4 [File Name Expansion], page 413).

Each of the subprocess-creating functions has a buffer-or-name argument which specifies
where the standard output from the program will go. If buffer-or-name is nil, that says to
discard the output unless a filter function handles it. (See Section 49.9.2 [Filter Functions],
page 694, and Chapter 17 [Read and Print], page 255.) Normally, you should avoid having
multiple processes send output to the same buffer because their output would be intermixed
randomly.

All three of the subprocess-creating functions have a &rest argument, args. The args
must all be strings, and they are supplied to program as separate command line arguments.

684 XEmacs Lisp Reference Manual

Wildcard characters and other shell constructs are not allowed in these strings, since they
are passed directly to the specified program.

Please note: The argument program contains only the name of the program; it may not
contain any command-line arguments. You must use args to provide those.

The subprocess gets its current directory from the value of default-directory (see
Section 28.8.4 [File Name Expansion], page 413).

The subprocess inherits its environment from XEmacs; but you can specify overrides for
it with process-environment. See Section 50.3 [System Environment], page 708.

Variableexec-directory
The value of this variable is the name of a directory (a string) that contains programs
that come with XEmacs, that are intended for XEmacs to invoke. The program
wakeup is an example of such a program; the display-time command uses it to get
a reminder once per minute.

User Optionexec-path
The value of this variable is a list of directories to search for programs to run in
subprocesses. Each element is either the name of a directory (i.e., a string), or nil,
which stands for the default directory (which is the value of default-directory).
The value of exec-path is used by call-process and start-process when the
program argument is not an absolute file name.

49.2 Creating a Synchronous Process

After a synchronous process is created, XEmacs waits for the process to terminate before
continuing. Starting Dired is an example of this: it runs ls in a synchronous process, then
modifies the output slightly. Because the process is synchronous, the entire directory listing
arrives in the buffer before XEmacs tries to do anything with it.

While Emacs waits for the synchronous subprocess to terminate, the user can quit by
typing C-g. The first C-g tries to kill the subprocess with a SIGINT signal; but it waits
until the subprocess actually terminates before quitting. If during that time the user types
another C-g, that kills the subprocess instantly with SIGKILL and quits immediately. See
Section 19.8 [Quitting], page 311.

The synchronous subprocess functions returned nil in version 18. In version 19, they
return an indication of how the process terminated.

Functioncall-process program &optional infile destination display &rest args
This function calls program in a separate process and waits for it to finish.
The standard input for the process comes from file infile if infile is not nil and
from ‘/dev/null’ otherwise. The argument destination says where to put the process
output. Here are the possibilities:

a buffer Insert the output in that buffer, before point. This includes both the
standard output stream and the standard error stream of the process.

Chapter 49: Processes 685

a string Find or create a buffer with that name, then insert the output in that
buffer, before point.

t Insert the output in the current buffer, before point.

nil Discard the output.

0 Discard the output, and return immediately without waiting for the sub-
process to finish.

In this case, the process is not truly synchronous, since it can run in
parallel with Emacs; but you can think of it as synchronous in that Emacs
is essentially finished with the subprocess as soon as this function returns.

(real-destination error-destination)
Keep the standard output stream separate from the standard error
stream; deal with the ordinary output as specified by real-destination,
and dispose of the error output according to error-destination. The
value nil means discard it, t means mix it with the ordinary output,
and a string specifies a file name to redirect error output into.

You can’t directly specify a buffer to put the error output in; that is too
difficult to implement. But you can achieve this result by sending the
error output to a temporary file and then inserting the file into a buffer.

If display is non-nil, then call-process redisplays the buffer as output is inserted.
Otherwise the function does no redisplay, and the results become visible on the screen
only when XEmacs redisplays that buffer in the normal course of events.

The remaining arguments, args, are strings that specify command line arguments for
the program.

The value returned by call-process (unless you told it not to wait) indicates the
reason for process termination. A number gives the exit status of the subprocess; 0
means success, and any other value means failure. If the process terminated with a
signal, call-process returns a string describing the signal.

In the examples below, the buffer ‘foo’ is current.

(call-process "pwd" nil t)
⇒ nil

---------- Buffer: foo ----------
/usr/user/lewis/manual
---------- Buffer: foo ----------

(call-process "grep" nil "bar" nil "lewis" "/etc/passwd")
⇒ nil

---------- Buffer: bar ----------
lewis:5LTsHm66CSWKg:398:21:Bil Lewis:/user/lewis:/bin/csh

---------- Buffer: bar ----------

The insert-directory function contains a good example of the use of call-process:

686 XEmacs Lisp Reference Manual

(call-process insert-directory-program nil t nil switches
(if full-directory-p

(concat (file-name-as-directory file) ".")
file))

Functioncall-process-region start end program &optional delete destination
display &rest args

This function sends the text between start to end as standard input to a process
running program. It deletes the text sent if delete is non-nil; this is useful when
buffer is t, to insert the output in the current buffer.

The arguments destination and display control what to do with the output from the
subprocess, and whether to update the display as it comes in. For details, see the
description of call-process, above. If destination is the integer 0, call-process-
region discards the output and returns nil immediately, without waiting for the
subprocess to finish.

The remaining arguments, args, are strings that specify command line arguments for
the program.

The return value of call-process-region is just like that of call-process: nil if
you told it to return without waiting; otherwise, a number or string which indicates
how the subprocess terminated.

In the following example, we use call-process-region to run the cat utility, with
standard input being the first five characters in buffer ‘foo’ (the word ‘input’). cat
copies its standard input into its standard output. Since the argument destination is
t, this output is inserted in the current buffer.

---------- Buffer: foo ----------
input?
---------- Buffer: foo ----------

(call-process-region 1 6 "cat" nil t)
⇒ nil

---------- Buffer: foo ----------
inputinput?
---------- Buffer: foo ----------

The shell-command-on-region command uses call-process-region like this:

(call-process-region
start end
shell-file-name ; Name of program.
nil ; Do not delete region.
buffer ; Send output to buffer.
nil ; No redisplay during output.
"-c" command) ; Arguments for the shell.

49.3 MS-DOS Subprocesses

Chapter 49: Processes 687

On MS-DOS, you must indicate whether the data going to and from a synchronous sub-
process are text or binary. Text data requires translation between the end-of-line convention
used within Emacs (a single newline character) and the convention used outside Emacs (the
two-character sequence, crlf).

The variable binary-process-input applies to input sent to the subprocess, and
binary-process-output applies to output received from it. A non-nil value means the
data is non-text; nil means the data is text, and calls for conversion.

Variablebinary-process-input
If this variable is nil, convert newlines to crlf sequences in the input to a syn-
chronous subprocess.

Variablebinary-process-output
If this variable is nil, convert crlf sequences to newlines in the output from a
synchronous subprocess.

See Section 28.14 [Files and MS-DOS], page 423, for related information.

49.4 Creating an Asynchronous Process

After an asynchronous process is created, Emacs and the Lisp program both continue
running immediately. The process may thereafter run in parallel with Emacs, and the two
may communicate with each other using the functions described in following sections. Here
we describe how to create an asynchronous process with start-process.

Functionstart-process name buffer-or-name program &rest args
This function creates a new asynchronous subprocess and starts the program program
running in it. It returns a process object that stands for the new subprocess in Lisp.
The argument name specifies the name for the process object; if a process with this
name already exists, then name is modified (by adding ‘<1>’, etc.) to be unique. The
buffer buffer-or-name is the buffer to associate with the process.

The remaining arguments, args, are strings that specify command line arguments for
the program.

In the example below, the first process is started and runs (rather, sleeps) for 100 sec-
onds. Meanwhile, the second process is started, and given the name ‘my-process<1>’
for the sake of uniqueness. It inserts the directory listing at the end of the buffer
‘foo’, before the first process finishes. Then it finishes, and a message to that effect
is inserted in the buffer. Much later, the first process finishes, and another message
is inserted in the buffer for it.

(start-process "my-process" "foo" "sleep" "100")
⇒ #<process my-process>

688 XEmacs Lisp Reference Manual

(start-process "my-process" "foo" "ls" "-l" "/user/lewis/bin")
⇒ #<process my-process<1>>

---------- Buffer: foo ----------
total 2
lrwxrwxrwx 1 lewis 14 Jul 22 10:12 gnuemacs --> /emacs
-rwxrwxrwx 1 lewis 19 Jul 30 21:02 lemon

Process my-process<1> finished

Process my-process finished
---------- Buffer: foo ----------

Functionstart-process-shell-command name buffer-or-name command &rest
command-args

This function is like start-process except that it uses a shell to execute the specified
command. The argument command is a shell command name, and command-args
are the arguments for the shell command.

Variableprocess-connection-type
This variable controls the type of device used to communicate with asynchronous
subprocesses. If it is non-nil, then ptys are used, when available. Otherwise, pipes
are used.
ptys are usually preferable for processes visible to the user, as in Shell mode, because
they allow job control (C-c, C-z, etc.) to work between the process and its children
whereas pipes do not. For subprocesses used for internal purposes by programs, it
is often better to use a pipe, because they are more efficient. In addition, the total
number of ptys is limited on many systems and it is good not to waste them.
The value process-connection-type is used when start-process is called. So you
can specify how to communicate with one subprocess by binding the variable around
the call to start-process.

(let ((process-connection-type nil)) ; Use a pipe.
(start-process ...))

To determine whether a given subprocess actually got a pipe or a pty, use the function
process-tty-name (see Section 49.6 [Process Information], page 689).

49.5 Deleting Processes

Deleting a process disconnects XEmacs immediately from the subprocess, and removes it
from the list of active processes. It sends a signal to the subprocess to make the subprocess
terminate, but this is not guaranteed to happen immediately. The process object itself
continues to exist as long as other Lisp objects point to it.

You can delete a process explicitly at any time. Processes are deleted automatically after
they terminate, but not necessarily right away. If you delete a terminated process explicitly
before it is deleted automatically, no harm results.

Chapter 49: Processes 689

Variabledelete-exited-processes
This variable controls automatic deletion of processes that have terminated (due to
calling exit or to a signal). If it is nil, then they continue to exist until the user
runs list-processes. Otherwise, they are deleted immediately after they exit.

Functiondelete-process name
This function deletes the process associated with name, killing it with a SIGHUP signal.
The argument name may be a process, the name of a process, a buffer, or the name
of a buffer.

(delete-process "*shell*")
⇒ nil

Functionprocess-kill-without-query process &optional require-query-p
This function declares that XEmacs need not query the user if process is still running
when XEmacs is exited. The process will be deleted silently. If require-query-p is
non-nil, then XEmacs will query the user (this is the default). The return value is
t if a query was formerly required, and nil otherwise.

(process-kill-without-query (get-process "shell"))
⇒ t

49.6 Process Information

Several functions return information about processes. list-processes is provided for
interactive use.

Commandlist-processes
This command displays a listing of all living processes. In addition, it finally deletes
any process whose status was ‘Exited’ or ‘Signaled’. It returns nil.

Functionprocess-list
This function returns a list of all processes that have not been deleted.

(process-list)
⇒ (#<process display-time> #<process shell>)

Functionget-process name
This function returns the process named name, or nil if there is none. An error is
signaled if name is not a string.

(get-process "shell")
⇒ #<process shell>

Functionprocess-command process
This function returns the command that was executed to start process. This is a list
of strings, the first string being the program executed and the rest of the strings being
the arguments that were given to the program.

(process-command (get-process "shell"))
⇒ ("/bin/csh" "-i")

690 XEmacs Lisp Reference Manual

Functionprocess-id process
This function returns the pid of process. This is an integer that distinguishes the
process process from all other processes running on the same computer at the current
time. The pid of a process is chosen by the operating system kernel when the process
is started and remains constant as long as the process exists.

Functionprocess-name process
This function returns the name of process.

Functionprocess-status process-name
This function returns the status of process-name as a symbol. The argument process-
name must be a process, a buffer, a process name (string) or a buffer name (string).
The possible values for an actual subprocess are:

run for a process that is running.

stop for a process that is stopped but continuable.

exit for a process that has exited.

signal for a process that has received a fatal signal.

open for a network connection that is open.

closed for a network connection that is closed. Once a connection is closed, you
cannot reopen it, though you might be able to open a new connection to
the same place.

nil if process-name is not the name of an existing process.
(process-status "shell")

⇒ run
(process-status (get-buffer "*shell*"))

⇒ run
x

⇒ #<process xx<1>>
(process-status x)

⇒ exit

For a network connection, process-status returns one of the symbols open or
closed. The latter means that the other side closed the connection, or XEmacs
did delete-process.
In earlier Emacs versions (prior to version 19), the status of a network connection
was run if open, and exit if closed.

Functionprocess-kill-without-query-p process
This function returns whether process will be killed without querying the user, if it
is running when XEmacs is exited. The default value is nil.

Functionprocess-exit-status process
This function returns the exit status of process or the signal number that killed it.
(Use the result of process-status to determine which of those it is.) If process has
not yet terminated, the value is 0.

Chapter 49: Processes 691

Functionprocess-tty-name process
This function returns the terminal name that process is using for its communica-
tion with Emacs—or nil if it is using pipes instead of a terminal (see process-
connection-type in Section 49.4 [Asynchronous Processes], page 687).

49.7 Sending Input to Processes

Asynchronous subprocesses receive input when it is sent to them by XEmacs, which is
done with the functions in this section. You must specify the process to send input to, and
the input data to send. The data appears on the “standard input” of the subprocess.

Some operating systems have limited space for buffered input in a pty. On these systems,
Emacs sends an eof periodically amidst the other characters, to force them through. For
most programs, these eofs do no harm.

Functionprocess-send-string process-name string
This function sends process-name the contents of string as standard input. The
argument process-name must be a process or the name of a process. If it is nil, the
current buffer’s process is used.
The function returns nil.

(process-send-string "shell<1>" "ls\n")
⇒ nil

---------- Buffer: *shell* ----------
...
introduction.texi syntax-tables.texi~
introduction.texi~ text.texi
introduction.txt text.texi~
...
---------- Buffer: *shell* ----------

Commandprocess-send-region process-name start end
This function sends the text in the region defined by start and end as standard input
to process-name, which is a process or a process name. (If it is nil, the current
buffer’s process is used.)
An error is signaled unless both start and end are integers or markers that indicate
positions in the current buffer. (It is unimportant which number is larger.)

Functionprocess-send-eof &optional process-name
This function makes process-name see an end-of-file in its input. The eof comes after
any text already sent to it.
If process-name is not supplied, or if it is nil, then this function sends the eof to
the current buffer’s process. An error is signaled if the current buffer has no process.
The function returns process-name.

(process-send-eof "shell")
⇒ "shell"

692 XEmacs Lisp Reference Manual

49.8 Sending Signals to Processes

Sending a signal to a subprocess is a way of interrupting its activities. There are several
different signals, each with its own meaning. The set of signals and their names is defined
by the operating system. For example, the signal SIGINT means that the user has typed
C-c, or that some analogous thing has happened.

Each signal has a standard effect on the subprocess. Most signals kill the subprocess,
but some stop or resume execution instead. Most signals can optionally be handled by
programs; if the program handles the signal, then we can say nothing in general about its
effects.

The set of signals and their names is defined by the operating system; XEmacs has
facilities for sending only a few of the signals that are defined. XEmacs can send signals
only to its own subprocesses.

You can send signals explicitly by calling the functions in this section. XEmacs also
sends signals automatically at certain times: killing a buffer sends a SIGHUP signal to all
its associated processes; killing XEmacs sends a SIGHUP signal to all remaining processes.
(SIGHUP is a signal that usually indicates that the user hung up the phone.)

Each of the signal-sending functions takes two optional arguments: process-name and
current-group.

The argument process-name must be either a process, the name of one, or nil. If it
is nil, the process defaults to the process associated with the current buffer. An error is
signaled if process-name does not identify a process.

The argument current-group is a flag that makes a difference when you are running a job-
control shell as an XEmacs subprocess. If it is non-nil, then the signal is sent to the current
process-group of the terminal that XEmacs uses to communicate with the subprocess. If the
process is a job-control shell, this means the shell’s current subjob. If it is nil, the signal
is sent to the process group of the immediate subprocess of XEmacs. If the subprocess is a
job-control shell, this is the shell itself.

The flag current-group has no effect when a pipe is used to communicate with the
subprocess, because the operating system does not support the distinction in the case of
pipes. For the same reason, job-control shells won’t work when a pipe is used. See process-
connection-type in Section 49.4 [Asynchronous Processes], page 687.

Functioninterrupt-process &optional process-name current-group
This function interrupts the process process-name by sending the signal SIGINT. Out-
side of XEmacs, typing the “interrupt character” (normally C-c on some systems, and
DEL on others) sends this signal. When the argument current-group is non-nil, you
can think of this function as “typing C-c” on the terminal by which XEmacs talks to
the subprocess.

Functionkill-process &optional process-name current-group
This function kills the process process-name by sending the signal SIGKILL. This
signal kills the subprocess immediately, and cannot be handled by the subprocess.

Chapter 49: Processes 693

Functionquit-process &optional process-name current-group
This function sends the signal SIGQUIT to the process process-name. This signal is
the one sent by the “quit character” (usually C-b or C-\) when you are not inside
XEmacs.

Functionstop-process &optional process-name current-group
This function stops the process process-name by sending the signal SIGTSTP. Use
continue-process to resume its execution.
On systems with job control, the “stop character” (usually C-z) sends this signal
(outside of XEmacs). When current-group is non-nil, you can think of this function
as “typing C-z” on the terminal XEmacs uses to communicate with the subprocess.

Functioncontinue-process &optional process-name current-group
This function resumes execution of the process process by sending it the signal
SIGCONT. This presumes that process-name was stopped previously.

Functionsignal-process pid signal
This function sends a signal to process pid, which need not be a child of XEmacs.
The argument signal specifies which signal to send; it should be an integer.

49.9 Receiving Output from Processes

There are two ways to receive the output that a subprocess writes to its standard output
stream. The output can be inserted in a buffer, which is called the associated buffer of the
process, or a function called the filter function can be called to act on the output. If the
process has no buffer and no filter function, its output is discarded.

49.9.1 Process Buffers

A process can (and usually does) have an associated buffer, which is an ordinary Emacs
buffer that is used for two purposes: storing the output from the process, and deciding when
to kill the process. You can also use the buffer to identify a process to operate on, since in
normal practice only one process is associated with any given buffer. Many applications of
processes also use the buffer for editing input to be sent to the process, but this is not built
into XEmacs Lisp.

Unless the process has a filter function (see Section 49.9.2 [Filter Functions], page 694),
its output is inserted in the associated buffer. The position to insert the output is determined
by the process-mark, which is then updated to point to the end of the text just inserted.
Usually, but not always, the process-mark is at the end of the buffer.

Functionprocess-buffer process
This function returns the associated buffer of the process process.

(process-buffer (get-process "shell"))
⇒ #<buffer *shell*>

694 XEmacs Lisp Reference Manual

Functionprocess-mark process
This function returns the process marker for process, which is the marker that says
where to insert output from the process.

If process does not have a buffer, process-mark returns a marker that points nowhere.

Insertion of process output in a buffer uses this marker to decide where to insert, and
updates it to point after the inserted text. That is why successive batches of output
are inserted consecutively.

Filter functions normally should use this marker in the same fashion as is done by
direct insertion of output in the buffer. A good example of a filter function that uses
process-mark is found at the end of the following section.

When the user is expected to enter input in the process buffer for transmission to the
process, the process marker is useful for distinguishing the new input from previous
output.

Functionset-process-buffer process buffer
This function sets the buffer associated with process to buffer. If buffer is nil, the
process becomes associated with no buffer.

Functionget-buffer-process buffer-or-name
This function returns the process associated with buffer-or-name. If there are several
processes associated with it, then one is chosen. (Presently, the one chosen is the
one most recently created.) It is usually a bad idea to have more than one process
associated with the same buffer.

(get-buffer-process "*shell*")
⇒ #<process shell>

Killing the process’s buffer deletes the process, which kills the subprocess with a
SIGHUP signal (see Section 49.8 [Signals to Processes], page 692).

49.9.2 Process Filter Functions

A process filter function is a function that receives the standard output from the asso-
ciated process. If a process has a filter, then all output from that process is passed to the
filter. The process buffer is used directly for output from the process only when there is no
filter.

A filter function must accept two arguments: the associated process and a string, which
is the output. The function is then free to do whatever it chooses with the output.

A filter function runs only while XEmacs is waiting (e.g., for terminal input, or for
time to elapse, or for process output). This avoids the timing errors that could result
from running filters at random places in the middle of other Lisp programs. You may
explicitly cause Emacs to wait, so that filter functions will run, by calling sit-for or sleep-
for (see Section 19.7 [Waiting], page 310), or accept-process-output (see Section 49.9.3
[Accepting Output], page 696). Emacs is also waiting when the command loop is reading
input.

Chapter 49: Processes 695

Quitting is normally inhibited within a filter function—otherwise, the effect of typing
C-g at command level or to quit a user command would be unpredictable. If you want
to permit quitting inside a filter function, bind inhibit-quit to nil. See Section 19.8
[Quitting], page 311.

If an error happens during execution of a filter function, it is caught automatically, so
that it doesn’t stop the execution of whatever program was running when the filter function
was started. However, if debug-on-error is non-nil, the error-catching is turned off. This
makes it possible to use the Lisp debugger to debug the filter function. See Section 16.1
[Debugger], page 221.

Many filter functions sometimes or always insert the text in the process’s buffer, mim-
icking the actions of XEmacs when there is no filter. Such filter functions need to use
set-buffer in order to be sure to insert in that buffer. To avoid setting the current buffer
semipermanently, these filter functions must use unwind-protect to make sure to restore
the previous current buffer. They should also update the process marker, and in some cases
update the value of point. Here is how to do these things:

(defun ordinary-insertion-filter (proc string)
(let ((old-buffer (current-buffer)))
(unwind-protect

(let (moving)
(set-buffer (process-buffer proc))
(setq moving (= (point) (process-mark proc)))
(save-excursion

;; Insert the text, moving the process-marker.
(goto-char (process-mark proc))
(insert string)
(set-marker (process-mark proc) (point)))

(if moving (goto-char (process-mark proc))))
(set-buffer old-buffer))))

The reason to use an explicit unwind-protect rather than letting save-excursion restore
the current buffer is so as to preserve the change in point made by goto-char.

To make the filter force the process buffer to be visible whenever new text arrives, insert
the following line just before the unwind-protect:

(display-buffer (process-buffer proc))

To force point to move to the end of the new output no matter where it was previously,
eliminate the variable moving and call goto-char unconditionally.

In earlier Emacs versions, every filter function that did regexp searching or matching
had to explicitly save and restore the match data. Now Emacs does this automatically;
filter functions never need to do it explicitly. See Section 37.6 [Match Data], page 568.

A filter function that writes the output into the buffer of the process should check
whether the buffer is still alive. If it tries to insert into a dead buffer, it will get an error.
If the buffer is dead, (buffer-name (process-buffer process)) returns nil.

The output to the function may come in chunks of any size. A program that produces
the same output twice in a row may send it as one batch of 200 characters one time, and
five batches of 40 characters the next.

696 XEmacs Lisp Reference Manual

Functionset-process-filter process filter
This function gives process the filter function filter. If filter is nil, then the process
will have no filter. If filter is t, then no output from the process will be accepted
until the filter is changed. (Output received during this time is not discarded, but is
queued, and will be processed as soon as the filter is changed.)

Functionprocess-filter process
This function returns the filter function of process, or nil if it has none. t means
that output processing has been stopped.

Here is an example of use of a filter function:
(defun keep-output (process output)

(setq kept (cons output kept)))
⇒ keep-output

(setq kept nil)
⇒ nil

(set-process-filter (get-process "shell") ’keep-output)
⇒ keep-output

(process-send-string "shell" "ls ~/other\n")
⇒ nil

kept
⇒ ("lewis@slug[8] % "

"FINAL-W87-SHORT.MSS backup.otl kolstad.mss~
address.txt backup.psf kolstad.psf
backup.bib~ david.mss resume-Dec-86.mss~
backup.err david.psf resume-Dec.psf
backup.mss dland syllabus.mss
"
"#backups.mss# backup.mss~ kolstad.mss
")

49.9.3 Accepting Output from Processes

Output from asynchronous subprocesses normally arrives only while XEmacs is waiting
for some sort of external event, such as elapsed time or terminal input. Occasionally it is
useful in a Lisp program to explicitly permit output to arrive at a specific point, or even to
wait until output arrives from a process.

Functionaccept-process-output &optional process seconds millisec
This function allows XEmacs to read pending output from processes. The output
is inserted in the associated buffers or given to their filter functions. If process is
non-nil then this function does not return until some output has been received from
process.
The arguments seconds and millisec let you specify timeout periods. The former speci-
fies a period measured in seconds and the latter specifies one measured in milliseconds.
The two time periods thus specified are added together, and accept-process-output

Chapter 49: Processes 697

returns after that much time whether or not there has been any subprocess output.
Note that seconds is allowed to be a floating-point number; thus, there is no need to
ever use millisec. (It is retained for compatibility purposes.)
The function accept-process-output returns non-nil if it did get some output, or
nil if the timeout expired before output arrived.

49.10 Sentinels: Detecting Process Status Changes

A process sentinel is a function that is called whenever the associated process changes
status for any reason, including signals (whether sent by XEmacs or caused by the process’s
own actions) that terminate, stop, or continue the process. The process sentinel is also
called if the process exits. The sentinel receives two arguments: the process for which the
event occurred, and a string describing the type of event.

The string describing the event looks like one of the following:
• "finished\n".
• "exited abnormally with code exitcode\n".
• "name-of-signal\n".
• "name-of-signal (core dumped)\n".

A sentinel runs only while XEmacs is waiting (e.g., for terminal input, or for time to
elapse, or for process output). This avoids the timing errors that could result from running
them at random places in the middle of other Lisp programs. A program can wait, so that
sentinels will run, by calling sit-for or sleep-for (see Section 19.7 [Waiting], page 310),
or accept-process-output (see Section 49.9.3 [Accepting Output], page 696). Emacs is
also waiting when the command loop is reading input.

Quitting is normally inhibited within a sentinel—otherwise, the effect of typing C-g at
command level or to quit a user command would be unpredictable. If you want to permit
quitting inside a sentinel, bind inhibit-quit to nil. See Section 19.8 [Quitting], page 311.

A sentinel that writes the output into the buffer of the process should check whether the
buffer is still alive. If it tries to insert into a dead buffer, it will get an error. If the buffer
is dead, (buffer-name (process-buffer process)) returns nil.

If an error happens during execution of a sentinel, it is caught automatically, so that it
doesn’t stop the execution of whatever programs was running when the sentinel was started.
However, if debug-on-error is non-nil, the error-catching is turned off. This makes it
possible to use the Lisp debugger to debug the sentinel. See Section 16.1 [Debugger],
page 221.

In earlier Emacs versions, every sentinel that did regexp searching or matching had to
explicitly save and restore the match data. Now Emacs does this automatically; sentinels
never need to do it explicitly. See Section 37.6 [Match Data], page 568.

Functionset-process-sentinel process sentinel
This function associates sentinel with process. If sentinel is nil, then the process will
have no sentinel. The default behavior when there is no sentinel is to insert a message
in the process’s buffer when the process status changes.

698 XEmacs Lisp Reference Manual

(defun msg-me (process event)
(princ
(format "Process: %s had the event ‘%s’" process event)))

(set-process-sentinel (get-process "shell") ’msg-me)
⇒ msg-me

(kill-process (get-process "shell"))
a Process: #<process shell> had the event ‘killed’
⇒ #<process shell>

Functionprocess-sentinel process
This function returns the sentinel of process, or nil if it has none.

Functionwaiting-for-user-input-p
While a sentinel or filter function is running, this function returns non-nil if XEmacs
was waiting for keyboard input from the user at the time the sentinel or filter function
was called, nil if it was not.

49.11 Process Window Size

Functionset-process-window-size process height width
This function tells process that its logical window size is height by width characters.
This is principally useful with pty’s.

49.12 Transaction Queues

You can use a transaction queue for more convenient communication with subprocesses
using transactions. First use tq-create to create a transaction queue communicating with
a specified process. Then you can call tq-enqueue to send a transaction.

Functiontq-create process
This function creates and returns a transaction queue communicating with process.
The argument process should be a subprocess capable of sending and receiving streams
of bytes. It may be a child process, or it may be a TCP connection to a server, possibly
on another machine.

Functiontq-enqueue queue question regexp closure fn
This function sends a transaction to queue queue. Specifying the queue has the effect
of specifying the subprocess to talk to.
The argument question is the outgoing message that starts the transaction. The
argument fn is the function to call when the corresponding answer comes back; it is
called with two arguments: closure, and the answer received.
The argument regexp is a regular expression that should match the entire answer,
but nothing less; that’s how tq-enqueue determines where the answer ends.
The return value of tq-enqueue itself is not meaningful.

Chapter 49: Processes 699

Functiontq-close queue
Shut down transaction queue queue, waiting for all pending transactions to complete,
and then terminate the connection or child process.

Transaction queues are implemented by means of a filter function. See Section 49.9.2
[Filter Functions], page 694.

49.13 Network Connections

XEmacs Lisp programs can open TCP network connections to other processes on the
same machine or other machines. A network connection is handled by Lisp much like a
subprocess, and is represented by a process object. However, the process you are commu-
nicating with is not a child of the XEmacs process, so you can’t kill it or send it signals.
All you can do is send and receive data. delete-process closes the connection, but does
not kill the process at the other end; that process must decide what to do about closure of
the connection.

You can distinguish process objects representing network connections from those rep-
resenting subprocesses with the process-status function. It always returns either open
or closed for a network connection, and it never returns either of those values for a real
subprocess. See Section 49.6 [Process Information], page 689.

Functionopen-network-stream name buffer-or-name host service
This function opens a TCP connection for a service to a host. It returns a process
object to represent the connection.
The name argument specifies the name for the process object. It is modified as
necessary to make it unique.
The buffer-or-name argument is the buffer to associate with the connection. Output
from the connection is inserted in the buffer, unless you specify a filter function to
handle the output. If buffer-or-name is nil, it means that the connection is not
associated with any buffer.
The arguments host and service specify where to connect to; host is the host name or
IP address (a string), and service is the name of a defined network service (a string)
or a port number (an integer).

700 XEmacs Lisp Reference Manual

Chapter 50: Operating System Interface 701

50 Operating System Interface

This chapter is about starting and getting out of Emacs, access to values in the operating
system environment, and terminal input, output, and flow control.

See Section B.1 [Building XEmacs], page 779, for related information. See also Chap-
ter 45 [Display], page 657, for additional operating system status information pertaining to
the terminal and the screen.

50.1 Starting Up XEmacs

This section describes what XEmacs does when it is started, and how you can customize
these actions.

50.1.1 Summary: Sequence of Actions at Start Up

The order of operations performed (in ‘startup.el’) by XEmacs when it is started up
is as follows:

1. It loads the initialization library for the window system, if you are using a window
system. This library’s name is ‘term/windowsystem-win.el’.

2. It processes the initial options. (Some of them are handled even earlier than this.)
3. It initializes the X window frame and faces, if appropriate.
4. It runs the normal hook before-init-hook.
5. It loads the library ‘site-start’, unless the option ‘-no-site-file’ was specified.

The library’s file name is usually ‘site-start.el’.
6. It loads the file ‘~/.emacs’ unless ‘-q’ was specified on the command line. (This is

not done in ‘-batch’ mode.) The ‘-u’ option can specify the user name whose home
directory should be used instead of ‘~’.

7. It loads the library ‘default’ unless inhibit-default-init is non-nil. (This is not
done in ‘-batch’ mode or if ‘-q’ was specified on the command line.) The library’s file
name is usually ‘default.el’.

8. It runs the normal hook after-init-hook.
9. It sets the major mode according to initial-major-mode, provided the buffer

‘*scratch*’ is still current and still in Fundamental mode.
10. It loads the terminal-specific Lisp file, if any, except when in batch mode or using a

window system.
11. It displays the initial echo area message, unless you have suppressed that with inhibit-

startup-echo-area-message.
12. It processes the action arguments from the command line.
13. It runs term-setup-hook.

702 XEmacs Lisp Reference Manual

14. It calls frame-notice-user-settings, which modifies the parameters of the selected
frame according to whatever the init files specify.

15. It runs window-setup-hook. See Section 50.1.3 [Terminal-Specific], page 703.

16. It displays copyleft, nonwarranty, and basic use information, provided there were no
remaining command line arguments (a few steps above) and the value of inhibit-
startup-message is nil.

User Optioninhibit-startup-message
This variable inhibits the initial startup messages (the nonwarranty, etc.). If it is
non-nil, then the messages are not printed.

This variable exists so you can set it in your personal init file, once you are familiar
with the contents of the startup message. Do not set this variable in the init file of
a new user, or in a way that affects more than one user, because that would prevent
new users from receiving the information they are supposed to see.

User Optioninhibit-startup-echo-area-message
This variable controls the display of the startup echo area message. You can suppress
the startup echo area message by adding text with this form to your ‘.emacs’ file:

(setq inhibit-startup-echo-area-message
"your-login-name")

Simply setting inhibit-startup-echo-area-message to your login name is not suf-
ficient to inhibit the message; Emacs explicitly checks whether ‘.emacs’ contains an
expression as shown above. Your login name must appear in the expression as a Lisp
string constant.

This way, you can easily inhibit the message for yourself if you wish, but thoughtless
copying of your ‘.emacs’ file will not inhibit the message for someone else.

50.1.2 The Init File: ‘.emacs’

When you start XEmacs, it normally attempts to load the file ‘.emacs’ from your home
directory. This file, if it exists, must contain Lisp code. It is called your init file. The
command line switches ‘-q’ and ‘-u’ affect the use of the init file; ‘-q’ says not to load
an init file, and ‘-u’ says to load a specified user’s init file instead of yours. See section
“Entering XEmacs” in The XEmacs User’s Manual.

A site may have a default init file, which is the library named ‘default.el’. XEmacs
finds the ‘default.el’ file through the standard search path for libraries (see Section 14.1
[How Programs Do Loading], page 199). The XEmacs distribution does not come with
this file; sites may provide one for local customizations. If the default init file exists, it is
loaded whenever you start Emacs, except in batch mode or if ‘-q’ is specified. But your
own personal init file, if any, is loaded first; if it sets inhibit-default-init to a non-nil
value, then XEmacs does not subsequently load the ‘default.el’ file.

Another file for site-customization is ‘site-start.el’. Emacs loads this before the user’s
init file. You can inhibit the loading of this file with the option ‘-no-site-file’.

Chapter 50: Operating System Interface 703

Variablesite-run-file
This variable specifies the site-customization file to load before the user’s init file. Its
normal value is "site-start".

If there is a great deal of code in your ‘.emacs’ file, you should move it into another file
named ‘something.el’, byte-compile it (see Chapter 15 [Byte Compilation], page 209), and
make your ‘.emacs’ file load the other file using load (see Chapter 14 [Loading], page 199).

See section “Init File Examples” in The XEmacs User’s Manual, for examples of how to
make various commonly desired customizations in your ‘.emacs’ file.

User Optioninhibit-default-init
This variable prevents XEmacs from loading the default initialization library file for
your session of XEmacs. If its value is non-nil, then the default library is not loaded.
The default value is nil.

Variablebefore-init-hook
Variableafter-init-hook

These two normal hooks are run just before, and just after, loading of the user’s init
file, ‘default.el’, and/or ‘site-start.el’.

50.1.3 Terminal-Specific Initialization

Each terminal type can have its own Lisp library that XEmacs loads when run on that
type of terminal. For a terminal type named termtype, the library is called ‘term/termtype’.
XEmacs finds the file by searching the load-path directories as it does for other files, and
trying the ‘.elc’ and ‘.el’ suffixes. Normally, terminal-specific Lisp library is located in
‘emacs/lisp/term’, a subdirectory of the ‘emacs/lisp’ directory in which most XEmacs
Lisp libraries are kept.

The library’s name is constructed by concatenating the value of the variable term-
file-prefix and the terminal type. Normally, term-file-prefix has the value "term/";
changing this is not recommended.

The usual function of a terminal-specific library is to enable special keys to send se-
quences that XEmacs can recognize. It may also need to set or add to function-key-map
if the Termcap entry does not specify all the terminal’s function keys. See Section 50.8
[Terminal Input], page 716.

When the name of the terminal type contains a hyphen, only the part of the name before
the first hyphen is significant in choosing the library name. Thus, terminal types ‘aaa-48’
and ‘aaa-30-rv’ both use the ‘term/aaa’ library. If necessary, the library can evaluate
(getenv "TERM") to find the full name of the terminal type.

Your ‘.emacs’ file can prevent the loading of the terminal-specific library by setting the
variable term-file-prefix to nil. This feature is useful when experimenting with your
own peculiar customizations.

You can also arrange to override some of the actions of the terminal-specific library by
setting the variable term-setup-hook. This is a normal hook which XEmacs runs using
run-hooks at the end of XEmacs initialization, after loading both your ‘.emacs’ file and any

704 XEmacs Lisp Reference Manual

terminal-specific libraries. You can use this variable to define initializations for terminals
that do not have their own libraries. See Section 26.4 [Hooks], page 382.

Variableterm-file-prefix
If the term-file-prefix variable is non-nil, XEmacs loads a terminal-specific ini-
tialization file as follows:

(load (concat term-file-prefix (getenv "TERM")))

You may set the term-file-prefix variable to nil in your ‘.emacs’ file if you do
not wish to load the terminal-initialization file. To do this, put the following in your
‘.emacs’ file: (setq term-file-prefix nil).

Variableterm-setup-hook
This variable is a normal hook that XEmacs runs after loading your ‘.emacs’ file, the
default initialization file (if any) and the terminal-specific Lisp file.

You can use term-setup-hook to override the definitions made by a terminal-specific
file.

Variablewindow-setup-hook
This variable is a normal hook which XEmacs runs after loading your ‘.emacs’ file
and the default initialization file (if any), after loading terminal-specific Lisp code,
and after running the hook term-setup-hook.

50.1.4 Command Line Arguments

You can use command line arguments to request various actions when you start XEmacs.
Since you do not need to start XEmacs more than once per day, and will often leave your
XEmacs session running longer than that, command line arguments are hardly ever used.
As a practical matter, it is best to avoid making the habit of using them, since this habit
would encourage you to kill and restart XEmacs unnecessarily often. These options exist
for two reasons: to be compatible with other editors (for invocation by other programs) and
to enable shell scripts to run specific Lisp programs.

This section describes how Emacs processes command line arguments, and how you can
customize them.

Functioncommand-line
This function parses the command line that XEmacs was called with, processes it,
loads the user’s ‘.emacs’ file and displays the startup messages.

Variablecommand-line-processed
The value of this variable is t once the command line has been processed.

If you redump XEmacs by calling dump-emacs, you may wish to set this variable to
nil first in order to cause the new dumped XEmacs to process its new command line
arguments.

Chapter 50: Operating System Interface 705

Variablecommand-switch-alist
The value of this variable is an alist of user-defined command-line options and asso-
ciated handler functions. This variable exists so you can add elements to it.

A command line option is an argument on the command line of the form:

-option

The elements of the command-switch-alist look like this:

(option . handler-function)

The handler-function is called to handle option and receives the option name as its
sole argument.

In some cases, the option is followed in the command line by an argument. In these
cases, the handler-function can find all the remaining command-line arguments in the
variable command-line-args-left. (The entire list of command-line arguments is in
command-line-args.)

The command line arguments are parsed by the command-line-1 function in the
‘startup.el’ file. See also section “Command Line Switches and Arguments” in The
XEmacs User’s Manual.

Variablecommand-line-args
The value of this variable is the list of command line arguments passed to XEmacs.

Variablecommand-line-functions
This variable’s value is a list of functions for handling an unrecognized command-line
argument. Each time the next argument to be processed has no special meaning, the
functions in this list are called, in order of appearance, until one of them returns a
non-nil value.

These functions are called with no arguments. They can access the command-line
argument under consideration through the variable argi. The remaining arguments
(not including the current one) are in the variable command-line-args-left.

When a function recognizes and processes the argument in argi, it should return a
non-nil value to say it has dealt with that argument. If it has also dealt with some of
the following arguments, it can indicate that by deleting them from command-line-
args-left.

If all of these functions return nil, then the argument is used as a file name to visit.

50.2 Getting out of XEmacs

There are two ways to get out of XEmacs: you can kill the XEmacs job, which exits
permanently, or you can suspend it, which permits you to reenter the XEmacs process
later. As a practical matter, you seldom kill XEmacs—only when you are about to log out.
Suspending is much more common.

706 XEmacs Lisp Reference Manual

50.2.1 Killing XEmacs

Killing XEmacs means ending the execution of the XEmacs process. The parent process
normally resumes control. The low-level primitive for killing XEmacs is kill-emacs.

Functionkill-emacs &optional exit-data
This function exits the XEmacs process and kills it.

If exit-data is an integer, then it is used as the exit status of the XEmacs process. (This
is useful primarily in batch operation; see Section 50.11 [Batch Mode], page 722.)

If exit-data is a string, its contents are stuffed into the terminal input buffer so that
the shell (or whatever program next reads input) can read them.

All the information in the XEmacs process, aside from files that have been saved, is lost
when the XEmacs is killed. Because killing XEmacs inadvertently can lose a lot of work,
XEmacs queries for confirmation before actually terminating if you have buffers that need
saving or subprocesses that are running. This is done in the function save-buffers-kill-
emacs.

Variablekill-emacs-query-functions
After asking the standard questions, save-buffers-kill-emacs calls the functions in
the list kill-buffer-query-functions, in order of appearance, with no arguments.
These functions can ask for additional confirmation from the user. If any of them
returns non-nil, XEmacs is not killed.

Variablekill-emacs-hook
This variable is a normal hook; once save-buffers-kill-emacs is finished with all
file saving and confirmation, it runs the functions in this hook.

50.2.2 Suspending XEmacs

Suspending XEmacs means stopping XEmacs temporarily and returning control to its
superior process, which is usually the shell. This allows you to resume editing later in the
same XEmacs process, with the same buffers, the same kill ring, the same undo history, and
so on. To resume XEmacs, use the appropriate command in the parent shell—most likely
fg.

Some operating systems do not support suspension of jobs; on these systems, “suspen-
sion” actually creates a new shell temporarily as a subprocess of XEmacs. Then you would
exit the shell to return to XEmacs.

Suspension is not useful with window systems such as X, because the XEmacs job may
not have a parent that can resume it again, and in any case you can give input to some
other job such as a shell merely by moving to a different window. Therefore, suspending is
not allowed when XEmacs is an X client.

Chapter 50: Operating System Interface 707

Functionsuspend-emacs string
This function stops XEmacs and returns control to the superior process. If and when
the superior process resumes XEmacs, suspend-emacs returns nil to its caller in
Lisp.
If string is non-nil, its characters are sent to be read as terminal input by XEmacs’s
superior shell. The characters in string are not echoed by the superior shell; only the
results appear.
Before suspending, suspend-emacs runs the normal hook suspend-hook. In Emacs
version 18, suspend-hook was not a normal hook; its value was a single function, and
if its value was non-nil, then suspend-emacs returned immediately without actually
suspending anything.
After the user resumes XEmacs, suspend-emacs runs the normal hook suspend-
resume-hook. See Section 26.4 [Hooks], page 382.
The next redisplay after resumption will redraw the entire screen, unless the variable
no-redraw-on-reenter is non-nil (see Section 45.1 [Refresh Screen], page 657).
In the following example, note that ‘pwd’ is not echoed after XEmacs is suspended.
But it is read and executed by the shell.

(suspend-emacs)
⇒ nil

(add-hook ’suspend-hook
(function (lambda ()

(or (y-or-n-p
"Really suspend? ")

(error "Suspend cancelled")))))
⇒ (lambda nil

(or (y-or-n-p "Really suspend? ")
(error "Suspend cancelled")))

(add-hook ’suspend-resume-hook
(function (lambda () (message "Resumed!"))))

⇒ (lambda nil (message "Resumed!"))
(suspend-emacs "pwd")

⇒ nil
---------- Buffer: Minibuffer ----------
Really suspend? y
---------- Buffer: Minibuffer ----------

---------- Parent Shell ----------
lewis@slug[23] % /user/lewis/manual
lewis@slug[24] % fg

---------- Echo Area ----------
Resumed!

Variablesuspend-hook
This variable is a normal hook run before suspending.

Variablesuspend-resume-hook
This variable is a normal hook run after suspending.

708 XEmacs Lisp Reference Manual

50.3 Operating System Environment

XEmacs provides access to variables in the operating system environment through var-
ious functions. These variables include the name of the system, the user’s uid, and so
on.

Variablesystem-type
The value of this variable is a symbol indicating the type of operating system XEmacs
is operating on. Here is a table of the possible values:

aix-v3 AIX.

berkeley-unix
Berkeley BSD.

dgux Data General DGUX operating system.

gnu A GNU system using the GNU HURD and Mach.

hpux Hewlett-Packard HPUX operating system.

irix Silicon Graphics Irix system.

linux A GNU system using the Linux kernel.

ms-dos Microsoft MS-DOS “operating system.”

next-mach
NeXT Mach-based system.

rtu Masscomp RTU, UCB universe.

unisoft-unix
UniSoft UniPlus.

usg-unix-v
AT&T System V.

vax-vms VAX VMS.

windows-nt
Microsoft windows NT.

xenix SCO Xenix 386.

We do not wish to add new symbols to make finer distinctions unless it is absolutely
necessary! In fact, we hope to eliminate some of these alternatives in the future. We
recommend using system-configuration to distinguish between different operating
systems.

Variablesystem-configuration
This variable holds the three-part configuration name for the hardware/software con-
figuration of your system, as a string. The convenient way to test parts of this string
is with string-match.

Chapter 50: Operating System Interface 709

Functionsystem-name
This function returns the name of the machine you are running on.

(system-name)
⇒ "prep.ai.mit.edu"

The symbol system-name is a variable as well as a function. In fact, the function returns
whatever value the variable system-name currently holds. Thus, you can set the variable
system-name in case Emacs is confused about the name of your system. The variable is
also useful for constructing frame titles (see Section 32.3 [Frame Titles], page 480).

Variablemail-host-address
If this variable is non-nil, it is used instead of system-name for purposes of generating
email addresses. For example, it is used when constructing the default value of user-
mail-address. See Section 50.4 [User Identification], page 711. (Since this is done
when XEmacs starts up, the value actually used is the one saved when XEmacs was
dumped. See Section B.1 [Building XEmacs], page 779.)

Functiongetenv var
This function returns the value of the environment variable var, as a string. Within
XEmacs, the environment variable values are kept in the Lisp variable process-
environment.

(getenv "USER")
⇒ "lewis"

lewis@slug[10] % printenv
PATH=.:/user/lewis/bin:/usr/bin:/usr/local/bin
USER=lewis
TERM=ibmapa16
SHELL=/bin/csh
HOME=/user/lewis

Commandsetenv variable value
This command sets the value of the environment variable named variable to value.
Both arguments should be strings. This function works by modifying process-
environment; binding that variable with let is also reasonable practice.

Variableprocess-environment
This variable is a list of strings, each describing one environment variable. The
functions getenv and setenv work by means of this variable.

process-environment
⇒ ("l=/usr/stanford/lib/gnuemacs/lisp"

"PATH=.:/user/lewis/bin:/usr/class:/nfsusr/local/bin"
"USER=lewis"
"TERM=ibmapa16"
"SHELL=/bin/csh"
"HOME=/user/lewis")

710 XEmacs Lisp Reference Manual

Variablepath-separator
This variable holds a string which says which character separates directories in a
search path (as found in an environment variable). Its value is ":" for Unix and
GNU systems, and ";" for MS-DOS and Windows NT.

Variableinvocation-name
This variable holds the program name under which Emacs was invoked. The value is
a string, and does not include a directory name.

Variableinvocation-directory
This variable holds the directory from which the Emacs executable was invoked, or
perhaps nil if that directory cannot be determined.

Variableinstallation-directory
If non-nil, this is a directory within which to look for the ‘lib-src’ and ‘etc’ subdi-
rectories. This is non-nil when Emacs can’t find those directories in their standard
installed locations, but can find them in a directory related somehow to the one
containing the Emacs executable.

Functionload-average &optional use-floats
This function returns a list of the current 1-minute, 5-minute and 15-minute load
averages. The values are integers that are 100 times the system load averages. (The
load averages indicate the number of processes trying to run.)
When use-floats is non-nil, floats will be returned instead of integers. These floats
are not multiplied by 100.

(load-average)
⇒ (169 158 164)

(load-average t)
⇒ (1.69921875 1.58984375 1.640625)

lewis@rocky[5] % uptime
8:06pm up 16 day(s), 21:57, 40 users,
load average: 1.68, 1.59, 1.64

If the 5-minute or 15-minute load averages are not available, return a shortened list,
containing only those averages which are available.
On some systems, this function may require special privileges to run, or it may be
unimplemented for the particular system type. In that case, the function will signal
an error.

Functionemacs-pid
This function returns the process id of the Emacs process.

Functionsetprv privilege-name &optional setp getprv
This function sets or resets a VMS privilege. (It does not exist on Unix.) The first arg
is the privilege name, as a string. The second argument, setp, is t or nil, indicating
whether the privilege is to be turned on or off. Its default is nil. The function returns
t if successful, nil otherwise.

Chapter 50: Operating System Interface 711

If the third argument, getprv, is non-nil, setprv does not change the privilege, but
returns t or nil indicating whether the privilege is currently enabled.

50.4 User Identification

Variableuser-mail-address
This holds the nominal email address of the user who is using Emacs. When Emacs
starts up, it computes a default value that is usually right, but users often set this
themselves when the default value is not right.

Functionuser-login-name &optional uid
If you don’t specify uid, this function returns the name under which the user is logged
in. If the environment variable LOGNAME is set, that value is used. Otherwise, if the
environment variable USER is set, that value is used. Otherwise, the value is based on
the effective uid, not the real uid.

If you specify uid, the value is the user name that corresponds to uid (which should
be an integer).

(user-login-name)
⇒ "lewis"

Functionuser-real-login-name
This function returns the user name corresponding to Emacs’s real uid. This ignores
the effective uid and ignores the environment variables LOGNAME and USER.

Variableuser-full-name
This variable holds the name of the user running this Emacs. It is initialized at
startup time from the value of NAME environment variable. You can change the value
of this variable to alter the result of the user-full-name function.

Functionuser-full-name &optional user
This function returns the full name of user. If user is nil, it defaults to the user
running this Emacs. In that case, the value of user-full-name variable, if non-nil,
will be used.

If user is specified explicitly, user-full-name variable is ignored.

(user-full-name)
⇒ "Hrvoje Niksic"

(setq user-full-name "Hrvoje \"Niksa\" Niksic")
(user-full-name)

⇒ "Hrvoje \"Niksa\" Niksic"
(user-full-name "hniksic")

⇒ "Hrvoje Niksic"

712 XEmacs Lisp Reference Manual

The symbols user-login-name, user-real-login-name and user-full-name are vari-
ables as well as functions. The functions return the same values that the variables hold.
These variables allow you to “fake out” Emacs by telling the functions what to return.
The variables are also useful for constructing frame titles (see Section 32.3 [Frame Titles],
page 480).

Functionuser-real-uid
This function returns the real uid of the user.

(user-real-uid)
⇒ 19

Functionuser-uid
This function returns the effective uid of the user.

Functionuser-home-directory
This function returns the “HOME” directory of the user, and is intended to replace
occurrences of “(getenv "HOME")”. Under Unix systems, the following is done:
1. Return the value of “(getenv "HOME")”, if set.
2. Return “/”, as a fallback, but issue a warning. (Future versions of XEmacs will

also attempt to lookup the HOME directory via getpwent(), but this has not yet
been implemented.)

Under MS Windows, this is done:
1. Return the value of “(getenv "HOME")”, if set.
2. If the environment variables HOMEDRIVE and HOMEDIR are both set, return the

concatenation (the following description uses MS Windows environment variable
substitution syntax): %HOMEDRIVE%%HOMEDIR%.

3. Return “C:\”, as a fallback, but issue a warning.

50.5 Time of Day

This section explains how to determine the current time and the time zone.

Functioncurrent-time-string &optional time-value
This function returns the current time and date as a humanly-readable string. The
format of the string is unvarying; the number of characters used for each part is
always the same, so you can reliably use substring to extract pieces of it. It is wise
to count the characters from the beginning of the string rather than from the end, as
additional information may be added at the end.
The argument time-value, if given, specifies a time to format instead of the current
time. The argument should be a list whose first two elements are integers. Thus, you
can use times obtained from current-time (see below) and from file-attributes
(see Section 28.6.4 [File Attributes], page 405).

(current-time-string)
⇒ "Wed Oct 14 22:21:05 1987"

Chapter 50: Operating System Interface 713

Functioncurrent-time
This function returns the system’s time value as a list of three integers: (high low
microsec). The integers high and low combine to give the number of seconds since
0:00 January 1, 1970, which is high ∗ 216 + low.

The third element, microsec, gives the microseconds since the start of the current
second (or 0 for systems that return time only on the resolution of a second).

The first two elements can be compared with file time values such as you get with
the function file-attributes. See Section 28.6.4 [File Attributes], page 405.

Functioncurrent-time-zone &optional time-value
This function returns a list describing the time zone that the user is in.

The value has the form (offset name). Here offset is an integer giving the number of
seconds ahead of UTC (east of Greenwich). A negative value means west of Green-
wich. The second element, name is a string giving the name of the time zone. Both
elements change when daylight savings time begins or ends; if the user has specified
a time zone that does not use a seasonal time adjustment, then the value is constant
through time.

If the operating system doesn’t supply all the information necessary to compute the
value, both elements of the list are nil.

The argument time-value, if given, specifies a time to analyze instead of the current
time. The argument should be a cons cell containing two integers, or a list whose first
two elements are integers. Thus, you can use times obtained from current-time (see
above) and from file-attributes (see Section 28.6.4 [File Attributes], page 405).

50.6 Time Conversion

These functions convert time values (lists of two or three integers) to strings or to
calendrical information. There is also a function to convert calendrical information to a time
value. You can get time values from the functions current-time (see Section 50.5 [Time
of Day], page 712) and file-attributes (see Section 28.6.4 [File Attributes], page 405).

Functionformat-time-string format-string &optional time
This function converts time to a string according to format-string. If time is omitted,
it defaults to the current time. The argument format-string may contain ‘%’-sequences
which say to substitute parts of the time. Here is a table of what the ‘%’-sequences
mean:

‘%a’ This stands for the abbreviated name of the day of week.

‘%A’ This stands for the full name of the day of week.

‘%b’ This stands for the abbreviated name of the month.

‘%B’ This stands for the full name of the month.

‘%c’ This is a synonym for ‘%x %X’.

714 XEmacs Lisp Reference Manual

‘%C’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%A, %B %e, %Y’.

‘%d’ This stands for the day of month, zero-padded.

‘%D’ This is a synonym for ‘%m/%d/%y’.

‘%e’ This stands for the day of month, blank-padded.

‘%h’ This is a synonym for ‘%b’.

‘%H’ This stands for the hour (00-23).

‘%I’ This stands for the hour (00-12).

‘%j’ This stands for the day of the year (001-366).

‘%k’ This stands for the hour (0-23), blank padded.

‘%l’ This stands for the hour (1-12), blank padded.

‘%m’ This stands for the month (01-12).

‘%M’ This stands for the minute (00-59).

‘%n’ This stands for a newline.

‘%p’ This stands for ‘AM’ or ‘PM’, as appropriate.

‘%r’ This is a synonym for ‘%I:%M:%S %p’.

‘%R’ This is a synonym for ‘%H:%M’.

‘%S’ This stands for the seconds (00-60).

‘%t’ This stands for a tab character.

‘%T’ This is a synonym for ‘%H:%M:%S’.

‘%U’ This stands for the week of the year (01-52), assuming that weeks start
on Sunday.

‘%w’ This stands for the numeric day of week (0-6). Sunday is day 0.

‘%W’ This stands for the week of the year (01-52), assuming that weeks start
on Monday.

‘%x’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%D’.

‘%X’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%T’.

‘%y’ This stands for the year without century (00-99).

‘%Y’ This stands for the year with century.

‘%Z’ This stands for the time zone abbreviation.

Chapter 50: Operating System Interface 715

Functiondecode-time time
This function converts a time value into calendrical information. The return value is
a list of nine elements, as follows:

(seconds minutes hour day month year dow dst zone)

Here is what the elements mean:

sec The number of seconds past the minute, as an integer between 0 and 59.

minute The number of minutes past the hour, as an integer between 0 and 59.

hour The hour of the day, as an integer between 0 and 23.

day The day of the month, as an integer between 1 and 31.

month The month of the year, as an integer between 1 and 12.

year The year, an integer typically greater than 1900.

dow The day of week, as an integer between 0 and 6, where 0 stands for
Sunday.

dst t if daylight savings time is effect, otherwise nil.

zone An integer indicating the time zone, as the number of seconds east of
Greenwich.

Note that Common Lisp has different meanings for dow and zone.

Functionencode-time seconds minutes hour day month year &optional zone
This function is the inverse of decode-time. It converts seven items of calendrical
data into a time value. For the meanings of the arguments, see the table above under
decode-time.
Year numbers less than 100 are treated just like other year numbers. If you want
them to stand for years above 1900, you must alter them yourself before you call
encode-time.
The optional argument zone defaults to the current time zone and its daylight savings
time rules. If specified, it can be either a list (as you would get from current-time-
zone) or an integer (as you would get from decode-time). The specified zone is used
without any further alteration for daylight savings time.

50.7 Timers for Delayed Execution

You can set up a timer to call a function at a specified future time.

Functionadd-timeout secs function object &optional resignal
This function adds a timeout, to be signaled after the timeout period has elapsed.
secs is a number of seconds, expressed as an integer or a float. function will be called
after that many seconds have elapsed, with one argument, the given object. If the
optional resignal argument is provided, then after this timeout expires, ‘add-timeout’
will automatically be called again with resignal as the first argument.

716 XEmacs Lisp Reference Manual

This function returns an object which is the id of this particular timeout. You can pass
that object to disable-timeout to turn off the timeout before it has been signalled.

The number of seconds may be expressed as a floating-point number, in which case
some fractional part of a second will be used. Caveat: the usable timeout granularity
will vary from system to system.

Adding a timeout causes a timeout event to be returned by next-event, and the
function will be invoked by dispatch-event, so if XEmacs is in a tight loop, the
function will not be invoked until the next call to sit-for or until the return to top-
level (the same is true of process filters).

WARNING: if you are thinking of calling add-timeout from inside of a callback func-
tion as a way of resignalling a timeout, think again. There is a race condition. That’s
why the resignal argument exists.

(NOTE: In FSF Emacs, this function is called run-at-time and has different seman-
tics.)

Functiondisable-timeout id
Cancel the requested action for id, which should be a value previously returned by
add-timeout. This cancels the effect of that call to add-timeout; the arrival of the
specified time will not cause anything special to happen. (NOTE: In FSF Emacs, this
function is called cancel-timer.)

50.8 Terminal Input

This section describes functions and variables for recording or manipulating terminal
input. See Chapter 45 [Display], page 657, for related functions.

50.8.1 Input Modes

Functionset-input-mode interrupt flow meta quit-char
This function sets the mode for reading keyboard input. If interrupt is non-null, then
XEmacs uses input interrupts. If it is nil, then it uses cbreak mode. When XEmacs
communicates directly with X, it ignores this argument and uses interrupts if that is
the way it knows how to communicate.

If flow is non-nil, then XEmacs uses xon/xoff (C-q, C-s) flow control for output
to the terminal. This has no effect except in cbreak mode. See Section 50.10 [Flow
Control], page 721.

The default setting is system dependent. Some systems always use cbreak mode
regardless of what is specified.

The argument meta controls support for input character codes above 127. If meta is
t, XEmacs converts characters with the 8th bit set into Meta characters. If meta is
nil, XEmacs disregards the 8th bit; this is necessary when the terminal uses it as a

Chapter 50: Operating System Interface 717

parity bit. If meta is neither t nor nil, XEmacs uses all 8 bits of input unchanged.
This is good for terminals using European 8-bit character sets.
If quit-char is non-nil, it specifies the character to use for quitting. Normally this
character is C-g. See Section 19.8 [Quitting], page 311.

The current-input-mode function returns the input mode settings XEmacs is currently
using.

Functioncurrent-input-mode
This function returns current mode for reading keyboard input. It returns a list,
corresponding to the arguments of set-input-mode, of the form (interrupt flow meta
quit) in which:

interrupt is non-nil when XEmacs is using interrupt-driven input. If nil, Emacs
is using cbreak mode.

flow is non-nil if XEmacs uses xon/xoff (C-q, C-s) flow control for output
to the terminal. This value has no effect unless interrupt is non-nil.

meta is t if XEmacs treats the eighth bit of input characters as the meta bit;
nil means XEmacs clears the eighth bit of every input character; any
other value means XEmacs uses all eight bits as the basic character code.

quit is the character XEmacs currently uses for quitting, usually C-g.

50.8.2 Translating Input Events

This section describes features for translating input events into other input events before
they become part of key sequences.

Variablefunction-key-map
This variable holds a keymap that describes the character sequences sent by function
keys on an ordinary character terminal. This keymap uses the same data structure as
other keymaps, but is used differently: it specifies translations to make while reading
events.
If function-key-map “binds” a key sequence k to a vector v, then when k appears
as a subsequence anywhere in a key sequence, it is replaced with the events in v.
For example, VT100 terminals send 〈ESC〉 O P when the keypad PF1 key is pressed.
Therefore, we want XEmacs to translate that sequence of events into the single event
pf1. We accomplish this by “binding” 〈ESC〉 O P to [pf1] in function-key-map, when
using a VT100.
Thus, typing C-c 〈PF1〉 sends the character sequence C-c 〈ESC〉 O P; later the function
read-key-sequence translates this back into C-c 〈PF1〉, which it returns as the vector
[?\C-c pf1].
Entries in function-key-map are ignored if they conflict with bindings made in the
minor mode, local, or global keymaps. The intent is that the character sequences that
function keys send should not have command bindings in their own right.

718 XEmacs Lisp Reference Manual

The value of function-key-map is usually set up automatically according to the
terminal’s Terminfo or Termcap entry, but sometimes those need help from terminal-
specific Lisp files. XEmacs comes with terminal-specific files for many common termi-
nals; their main purpose is to make entries in function-key-map beyond those that
can be deduced from Termcap and Terminfo. See Section 50.1.3 [Terminal-Specific],
page 703.
Emacs versions 18 and earlier used totally different means of detecting the character
sequences that represent function keys.

Variablekey-translation-map
This variable is another keymap used just like function-key-map to translate input
events into other events. It differs from function-key-map in two ways:
• key-translation-map goes to work after function-key-map is finished; it re-

ceives the results of translation by function-key-map.
• key-translation-map overrides actual key bindings.

The intent of key-translation-map is for users to map one character set to another,
including ordinary characters normally bound to self-insert-command.

You can use function-key-map or key-translation-map for more than simple aliases,
by using a function, instead of a key sequence, as the “translation” of a key. Then this
function is called to compute the translation of that key.

The key translation function receives one argument, which is the prompt that was speci-
fied in read-key-sequence—or nil if the key sequence is being read by the editor command
loop. In most cases you can ignore the prompt value.

If the function reads input itself, it can have the effect of altering the event that follows.
For example, here’s how to define C-c h to turn the character that follows into a Hyper
character:

(defun hyperify (prompt)
(let ((e (read-event)))

(vector (if (numberp e)
(logior (lsh 1 20) e)

(if (memq ’hyper (event-modifiers e))
e

(add-event-modifier "H-" e))))))

(defun add-event-modifier (string e)
(let ((symbol (if (symbolp e) e (car e))))

(setq symbol (intern (concat string
(symbol-name symbol))))

(if (symbolp e)
symbol

(cons symbol (cdr e)))))

(define-key function-key-map "\C-ch" ’hyperify)

The ‘iso-transl’ library uses this feature to provide a way of inputting non-ASCII
Latin-1 characters.

Chapter 50: Operating System Interface 719

50.8.3 Recording Input

Functionrecent-keys &optional number
This function returns a vector containing recent input events from the keyboard or
mouse. By default, 100 events are recorded, which is how many recent-keys returns.

All input events are included, whether or not they were used as parts of key sequences.
Thus, you always get the last 100 inputs, not counting keyboard macros. (Events
from keyboard macros are excluded because they are less interesting for debugging;
it should be enough to see the events that invoked the macros.)

If number is specified, not more than number events will be returned. You may
change the number of stored events using set-recent-keys-ring-size.

Functionrecent-keys-ring-size
This function returns the number of recent events stored internally. This is also the
maximum number of events recent-keys can return. By default, 100 events are
stored.

Functionset-recent-keys-ring-size size
This function changes the number of events stored by XEmacs and returned by
recent-keys.

For example, (set-recent-keys-ring-size 250) will make XEmacs remember last
250 events and will make recent-keys return last 250 events by default.

Commandopen-dribble-file filename
This function opens a dribble file named filename. When a dribble file is open, each
input event from the keyboard or mouse (but not those from keyboard macros) is
written in that file. A non-character event is expressed using its printed representation
surrounded by ‘<...>’.

You close the dribble file by calling this function with an argument of nil.

This function is normally used to record the input necessary to trigger an XEmacs
bug, for the sake of a bug report.

(open-dribble-file "~/dribble")
⇒ nil

See also the open-termscript function (see Section 50.9 [Terminal Output], page 719).

50.9 Terminal Output

The terminal output functions send output to the terminal or keep track of output sent
to the terminal. The function device-baud-rate tells you what XEmacs thinks is the
output speed of the terminal.

720 XEmacs Lisp Reference Manual

Functiondevice-baud-rate &optional device
This function’s value is the output speed of the terminal associated with device, as far
as XEmacs knows. device defaults to the selected device (usually the only device) if
omitted. Changing this value does not change the speed of actual data transmission,
but the value is used for calculations such as padding. This value has no effect for
window-system devices. (This is different in FSF Emacs, where the baud rate also
affects decisions about whether to scroll part of the screen or repaint, even when using
a window system.)
The value is measured in bits per second.

XEmacs attempts to automatically initialize the baud rate by querying the terminal. If
you are running across a network, however, and different parts of the network work are at
different baud rates, the value returned by XEmacs may be different from the value used by
your local terminal. Some network protocols communicate the local terminal speed to the
remote machine, so that XEmacs and other programs can get the proper value, but others
do not. If XEmacs has the wrong value, it makes decisions that are less than optimal. To
fix the problem, use set-device-baud-rate.

Functionset-device-baud-rate &optional device
This function sets the output speed of device. See device-baud-rate. device defaults
to the selected device (usually the only device) if omitted.

Functionsend-string-to-terminal char-or-string &optional stdout-p device
This function sends char-or-string to the terminal without alteration. Control char-
acters in char-or-string have terminal-dependent effects.
If device is nil, this function writes to XEmacs’s stderr, or to stdout if stdout-p is
non-nil. Otherwise, device should be a tty or stream device, and the function writes
to the device’s normal or error output, according to stdout-p.
One use of this function is to define function keys on terminals that have downloadable
function key definitions. For example, this is how on certain terminals to define
function key 4 to move forward four characters (by transmitting the characters C-u

C-f to the computer):
(send-string-to-terminal "\eF4\^U\^F")

⇒ nil

Commandopen-termscript filename
This function is used to open a termscript file that will record all the characters sent
by XEmacs to the terminal. (If there are multiple tty or stream devices, all characters
sent to all such devices are recorded.) The function returns nil. Termscript files are
useful for investigating problems where XEmacs garbles the screen, problems that
are due to incorrect Termcap entries or to undesirable settings of terminal options
more often than to actual XEmacs bugs. Once you are certain which characters were
actually output, you can determine reliably whether they correspond to the Termcap
specifications in use.
A nil value for filename stops recording terminal output.
See also open-dribble-file in Section 50.8 [Terminal Input], page 716.

Chapter 50: Operating System Interface 721

(open-termscript "../junk/termscript")
⇒ nil

50.10 Flow Control

This section attempts to answer the question “Why does XEmacs choose to use flow-
control characters in its command character set?” For a second view on this issue, read the
comments on flow control in the ‘emacs/INSTALL’ file from the distribution; for help with
Termcap entries and DEC terminal concentrators, see ‘emacs/etc/TERMS’.

At one time, most terminals did not need flow control, and none used C-s and C-q for flow
control. Therefore, the choice of C-s and C-q as command characters was uncontroversial.
XEmacs, for economy of keystrokes and portability, used nearly all the ASCII control
characters, with mnemonic meanings when possible; thus, C-s for search and C-q for quote.

Later, some terminals were introduced which required these characters for flow control.
They were not very good terminals for full-screen editing, so XEmacs maintainers did not
pay attention. In later years, flow control with C-s and C-q became widespread among
terminals, but by this time it was usually an option. And the majority of users, who can
turn flow control off, were unwilling to switch to less mnemonic key bindings for the sake
of flow control.

So which usage is “right”, XEmacs’s or that of some terminal and concentrator manu-
facturers? This question has no simple answer.

One reason why we are reluctant to cater to the problems caused by C-s and C-q is
that they are gratuitous. There are other techniques (albeit less common in practice) for
flow control that preserve transparency of the character stream. Note also that their use
for flow control is not an official standard. Interestingly, on the model 33 teletype with a
paper tape punch (which is very old), C-s and C-q were sent by the computer to turn the
punch on and off!

As X servers and other window systems replace character-only terminals, this problem is
gradually being cured. For the mean time, XEmacs provides a convenient way of enabling
flow control if you want it: call the function enable-flow-control.

Functionenable-flow-control
This function enables use of C-s and C-q for output flow control, and provides the
characters C-\ and C-^ as aliases for them using keyboard-translate-table (see
Section 50.8.2 [Translating Input], page 717).

You can use the function enable-flow-control-on in your ‘.emacs’ file to enable flow
control automatically on certain terminal types.

Functionenable-flow-control-on &rest termtypes
This function enables flow control, and the aliases C-\ and C-^, if the terminal type
is one of termtypes. For example:

(enable-flow-control-on "vt200" "vt300" "vt101" "vt131")

722 XEmacs Lisp Reference Manual

Here is how enable-flow-control does its job:
1. It sets cbreak mode for terminal input, and tells the operating system to handle flow

control, with (set-input-mode nil t).
2. It sets up keyboard-translate-table to translate C-\ and C-^ into C-s and C-q.

Except at its very lowest level, XEmacs never knows that the characters typed were
anything but C-s and C-q, so you can in effect type them as C-\ and C-^ even when
they are input for other commands. See Section 50.8.2 [Translating Input], page 717.

If the terminal is the source of the flow control characters, then once you enable kernel
flow control handling, you probably can make do with less padding than normal for that
terminal. You can reduce the amount of padding by customizing the Termcap entry. You
can also reduce it by setting baud-rate to a smaller value so that XEmacs uses a smaller
speed when calculating the padding needed. See Section 50.9 [Terminal Output], page 719.

50.11 Batch Mode

The command line option ‘-batch’ causes XEmacs to run noninteractively. In this mode,
XEmacs does not read commands from the terminal, it does not alter the terminal modes,
and it does not expect to be outputting to an erasable screen. The idea is that you specify
Lisp programs to run; when they are finished, XEmacs should exit. The way to specify
the programs to run is with ‘-l file’, which loads the library named file, and ‘-f function’,
which calls function with no arguments.

Any Lisp program output that would normally go to the echo area, either using message
or using prin1, etc., with t as the stream, goes instead to XEmacs’s standard error descrip-
tor when in batch mode. Thus, XEmacs behaves much like a noninteractive application
program. (The echo area output that XEmacs itself normally generates, such as command
echoing, is suppressed entirely.)

Functionnoninteractive
This function returns non-nil when XEmacs is running in batch mode.

Variablenoninteractive
This variable is non-nil when XEmacs is running in batch mode. Setting this variable
to nil, however, will not change whether XEmacs is running in batch mode, and will
not change the return value of the noninteractive function.

Chapter 51: Functions Specific to the X Window System 723

51 Functions Specific to the X Window System

XEmacs provides the concept of devices, which generalizes connections to an X server,
a TTY device, etc. Most information about an X server that XEmacs is connected to can
be determined through general console and device functions. See Chapter 33 [Consoles and
Devices], page 487. However, there are some features of the X Window System that do not
generalize well, and they are covered specially here.

51.1 X Selections

The X server records a set of selections which permit transfer of data between applica-
tion programs. The various selections are distinguished by selection types, represented in
XEmacs by symbols. X clients including XEmacs can read or set the selection for any given
type.

Functionx-own-selection data &optional type
This function sets a “selection” in the X server. It takes two arguments: a value,
data, and the selection type type to assign it to. data may be a string, a cons of two
markers, or an extent. In the latter cases, the selection is considered to be the text
between the markers, or between the extent’s endpoints.
Each possible type has its own selection value, which changes independently. The
usual values of type are PRIMARY and SECONDARY; these are symbols with upper-case
names, in accord with X Windows conventions. The default is PRIMARY.
(In FSF Emacs, this function is called x-set-selection and takes different argu-
ments.)

Functionx-get-selection
This function accesses selections set up by XEmacs or by other X clients. It returns
the value of the current primary selection.

Functionx-disown-selection &optional secondary-p
Assuming we own the selection, this function disowns it. If secondary-p is non-nil,
the secondary selection instead of the primary selection is discarded.

The X server also has a set of numbered cut buffers which can store text or other
data being moved between applications. Cut buffers are considered obsolete, but XEmacs
supports them for the sake of X clients that still use them.

Functionx-get-cutbuffer &optional n
This function returns the contents of cut buffer number n. (This function is called
x-get-cut-buffer in FSF Emacs.)

Functionx-store-cutbuffer string
This function stores string into the first cut buffer (cut buffer 0), moving the other
values down through the series of cut buffers, kill-ring-style. (This function is called
x-set-cut-buffer in FSF Emacs.)

724 XEmacs Lisp Reference Manual

51.2 X Server

This section describes how to access and change the overall status of the X server XEmacs
is using.

51.2.1 Resources

Functiondefault-x-device
This function return the default X device for resourcing. This is the first-created X
device that still exists.

Functionx-get-resource name class type &optional locale device noerror
This function retrieves a resource value from the X resource manager.
• The first arg is the name of the resource to retrieve, such as ‘"font"’.
• The second arg is the class of the resource to retrieve, like ‘"Font"’.
• The third arg should be one of the symbols string, integer, natnum, or boolean,

specifying the type of object that the database is searched for.
• The fourth arg is the locale to search for the resources on, and can currently be

a a buffer, a frame, a device, or the symbol global. If omitted, it defaults to
global.

• The fifth arg is the device to search for the resources on. (The resource database
for a particular device is constructed by combining non-device- specific resources
such any command-line resources specified and any app-defaults files found [or
the fallback resources supplied by XEmacs, if no app-defaults file is found] with
device-specific resources such as those supplied using ‘xrdb’.) If omitted, it de-
faults to the device of locale, if a device can be derived (i.e. if locale is a frame
or device), and otherwise defaults to the value of default-x-device.

• The sixth arg noerror, if non-nil, means do not signal an error if a bogus resource
specification was retrieved (e.g. if a non-integer was given when an integer was
requested). In this case, a warning is issued instead.

The resource names passed to this function are looked up relative to the locale.
If you want to search for a subresource, you just need to specify the resource levels
in name and class. For example, name could be ‘"modeline.attributeFont"’, and
class ‘"Face.AttributeFont"’.
Specifically,
1. If locale is a buffer, a call

(x-get-resource "foreground" "Foreground" ’string some-buffer)

is an interface to a C call something like
XrmGetResource (db, "xemacs.buffer.buffer-name.foreground",

"Emacs.EmacsLocaleType.EmacsBuffer.Foreground",
"String");

Chapter 51: Functions Specific to the X Window System 725

2. If locale is a frame, a call

(x-get-resource "foreground" "Foreground" ’string some-frame)

is an interface to a C call something like

XrmGetResource (db, "xemacs.frame.frame-name.foreground",
"Emacs.EmacsLocaleType.EmacsFrame.Foreground",
"String");

3. If locale is a device, a call

(x-get-resource "foreground" "Foreground" ’string some-device)

is an interface to a C call something like

XrmGetResource (db, "xemacs.device.device-name.foreground",
"Emacs.EmacsLocaleType.EmacsDevice.Foreground",
"String");

4. If locale is the symbol global, a call

(x-get-resource "foreground" "Foreground" ’string ’global)

is an interface to a C call something like

XrmGetResource (db, "xemacs.foreground",
"Emacs.Foreground",
"String");

Note that for global, no prefix is added other than that of the application itself;
thus, you can use this locale to retrieve arbitrary application resources, if you really
want to.

The returned value of this function is nil if the queried resource is not found. If type
is string, a string is returned, and if it is integer, an integer is returned. If type is
boolean, then the returned value is the list (t) for true, (nil) for false, and is nil
to mean “unspecified”.

Functionx-put-resource resource-line &optional device
This function adds a resource to the resource database for device. resource-line spec-
ifies the resource to add and should be a standard resource specification.

Variablex-emacs-application-class
This variable holds The X application class of the XEmacs process. This controls,
among other things, the name of the “app-defaults” file that XEmacs will use. For
changes to this variable to take effect, they must be made before the connection to
the X server is initialized, that is, this variable may only be changed before XEmacs
is dumped, or by setting it in the file ‘lisp/term/x-win.el’.

By default, this variable is nil at startup. When the connection to the X server is
first initialized, the X resource database will be consulted and the value will be set
according to whether any resources are found for the application class “XEmacs”.

726 XEmacs Lisp Reference Manual

51.2.2 Data about the X Server

This section describes functions and a variable that you can use to get information about
the capabilities and origin of the X server corresponding to a particular device. The device
argument is generally optional and defaults to the selected device.

Functionx-server-version &optional device
This function returns the list of version numbers of the X server device is on. The
returned value is a list of three integers: the major and minor version numbers of the
X protocol in use, and the vendor-specific release number.

Functionx-server-vendor &optional device
This function returns the vendor supporting the X server device is on.

Functionx-display-visual-class &optional device
This function returns the visual class of the display device is on. The value is one of
the symbols static-gray, gray-scale, static-color, pseudo-color, true-color,
and direct-color. (Note that this is different from previous versions of XEmacs,
which returned StaticGray, GrayScale, etc.)

51.2.3 Restricting Access to the Server by Other Apps

Functionx-grab-keyboard &optional device
This function grabs the keyboard on the given device (defaulting to the selected one).
So long as the keyboard is grabbed, all keyboard events will be delivered to XEmacs –
it is not possible for other X clients to eavesdrop on them. Ungrab the keyboard with
x-ungrab-keyboard (use an unwind-protect). Returns t if the grab was successful;
nil otherwise.

Functionx-ungrab-keyboard &optional device
This function releases a keyboard grab made with x-grab-keyboard.

Functionx-grab-pointer &optional device cursor ignore-keyboard
This function grabs the pointer and restricts it to its current window. If optional
device argument is nil, the selected device will be used. If optional cursor argument
is non-nil, change the pointer shape to that until x-ungrab-pointer is called (it
should be an object returned by the make-cursor function). If the second optional
argument ignore-keyboard is non-nil, ignore all keyboard events during the grab.
Returns t if the grab is successful, nil otherwise.

Functionx-ungrab-pointer &optional device
This function releases a pointer grab made with x-grab-pointer. If optional first
arg device is nil the selected device is used. If it is t the pointer will be released on
all X devices.

Chapter 51: Functions Specific to the X Window System 727

51.3 Miscellaneous X Functions and Variables

Variablex-bitmap-file-path
This variable holds a list of the directories in which X bitmap files may be found.
If nil, this is initialized from the ‘"*bitmapFilePath"’ resource. This is used by
the make-image-instance function (however, note that if the environment variable
‘XBMLANGPATH’ is set, it is consulted first).

Variablex-library-search-path
This variable holds the search path used by read-color to find ‘rgb.txt’.

Functionx-valid-keysym-name-p keysym
This function returns true if keysym names a keysym that the X library knows
about. Valid keysyms are listed in the files ‘/usr/include/X11/keysymdef.h’ and
in ‘/usr/lib/X11/XKeysymDB’, or whatever the equivalents are on your system.

Functionx-window-id &optional frame
This function returns the ID of the X11 window. This gives us a chance to manipulate
the Emacs window from within a different program. Since the ID is an unsigned long,
we return it as a string.

Variablex-allow-sendevents
If non-nil, synthetic events are allowed. nil means they are ignored. Beware: al-
lowing XEmacs to process SendEvents opens a big security hole.

Functionx-debug-mode arg &optional device
With a true arg, make the connection to the X server synchronous. With false,
make it asynchronous. Synchronous connections are much slower, but are useful
for debugging. (If you get X errors, make the connection synchronous, and use a
debugger to set a breakpoint on x_error_handler. Your backtrace of the C stack
will now be useful. In asynchronous mode, the stack above x_error_handler isn’t
helpful because of buffering.) If device is not specified, the selected device is assumed.
Calling this function is the same as calling the C function XSynchronize, or starting
the program with the ‘-sync’ command line argument.

Variablex-debug-events
If non-zero, debug information about events that XEmacs sees is displayed. Informa-
tion is displayed on stderr. Currently defined values are:
• 1 == non-verbose output
• 2 == verbose output

728 XEmacs Lisp Reference Manual

Chapter 52: ToolTalk Support 729

52 ToolTalk Support

52.1 XEmacs ToolTalk API Summary

The XEmacs Lisp interface to ToolTalk is similar, at least in spirit, to the standard C
ToolTalk API. Only the message and pattern parts of the API are supported at present;
more of the API could be added if needed. The Lisp interface departs from the C API in a
few ways:
• ToolTalk is initialized automatically at XEmacs startup-time. Messages can only be

sent other ToolTalk applications connected to the same X11 server that XEmacs is
running on.

• There are fewer entry points; polymorphic functions with keyword arguments are used
instead.

• The callback interface is simpler and marginally less functional. A single callback may
be associated with a message or a pattern; the callback is specified with a Lisp symbol
(the symbol should have a function binding).

• The session attribute for messages and patterns is always initialized to the default
session.

• Anywhere a ToolTalk enum constant, e.g. ‘TT_SESSION’, is valid, one can substitute the
corresponding symbol, e.g. ’TT_SESSION. This simplifies building lists that represent
messages and patterns.

52.2 Sending Messages

52.2.1 Example of Sending Messages

Here’s a simple example that sends a query to another application and then displays its
reply. Both the query and the reply are stored in the first argument of the message.

(defun tooltalk-random-query-handler (msg)
(let ((state (get-tooltalk-message-attribute msg ’state)))
(cond
((eq state ’TT_HANDLED)
(message (get-tooltalk-message-attribute msg arg_val 0)))

((memq state ’(TT_FAILED TT_REJECTED))
(message "Random query turns up nothing")))))

(defvar random-query-message
’(class TT_REQUEST

scope TT_SESSION

730 XEmacs Lisp Reference Manual

address TT_PROCEDURE
op "random-query"

args ’((TT_INOUT "?" "string"))
callback tooltalk-random-query-handler))

(let ((m (make-tooltalk-message random-query-message)))
(send-tooltalk-message m))

52.2.2 Elisp Interface for Sending Messages

Functionmake-tooltalk-message attributes
Create a ToolTalk message and initialize its attributes. The value of attributes must
be a list of alternating keyword/values, where keywords are symbols that name valid
message attributes. For example:

(make-tooltalk-message
’(class TT_NOTICE

scope TT_SESSION
address TT_PROCEDURE
op "do-something"
args ("arg1" 12345 (TT_INOUT "arg3" "string"))))

Values must always be strings, integers, or symbols that represent ToolTalk con-
stants. Attribute names are the same as those supported by set-tooltalk-message-
attribute, plus args.

The value of args should be a list of message arguments where each message argument
has the following form:

‘(mode [value [type]])’ or just ‘value’

Where mode is one of TT_IN, TT_OUT, or TT_INOUT and type is a string. If type isn’t
specified then int is used if value is a number; otherwise string is used. If type is
string then value is converted to a string (if it isn’t a string already) with prin1-
to-string. If only a value is specified then mode defaults to TT_IN. If mode is
TT_OUT then value and type don’t need to be specified. You can find out more about
the semantics and uses of ToolTalk message arguments in chapter 4 of the ToolTalk
Programmer’s Guide.

Functionsend-tooltalk-message msg
Send the message on its way. Once the message has been sent it’s almost always a
good idea to get rid of it with destroy-tooltalk-message.

Functionreturn-tooltalk-message msg &optional mode
Send a reply to this message. The second argument can be reply, reject or fail;
the default is reply. Before sending a reply, all message arguments whose mode is TT_
INOUT or TT_OUT should have been filled in – see set-tooltalk-message-attribute.

Chapter 52: ToolTalk Support 731

Functionget-tooltalk-message-attribute msg attribute &optional argn
Returns the indicated ToolTalk message attribute. Attributes are identified by
symbols with the same name (underscores and all) as the suffix of the ToolTalk
‘tt_message_<attribute>’ function that extracts the value. String attribute values
are copied and enumerated type values (except disposition) are converted to symbols;
e.g. ‘TT_HANDLER’ is ’TT_HANDLER, ‘uid’ and ‘gid’ are represented by fixnums (small
integers), ‘opnum’ is converted to a string, and ‘disposition’ is converted to a
fixnum. We convert ‘opnum’ (a C int) to a string (e.g. 123 ⇒ "123") because there’s
no guarantee that opnums will fit within the range of XEmacs Lisp integers.
[TBD] Use the plist attribute instead of C API user attribute for user-defined
message data. To retrieve the value of a message property, specify the indicator for
argn. For example, to get the value of a property called rflag, use

(get-tooltalk-message-attribute msg ’plist ’rflag)

To get the value of a message argument use one of the arg_val (strings), arg_ival
(integers), or arg_bval (strings with embedded nulls), attributes. For example, to
get the integer value of the third argument:

(get-tooltalk-message-attribute msg ’arg_ival 2)

As you can see, argument numbers are zero-based. The type of each arguments can be
retrieved with the arg_type attribute; however ToolTalk doesn’t define any semantics
for the string value of arg_type. Conventionally string is used for strings and int
for 32 bit integers. Note that XEmacs Lisp stores the lengths of strings explicitly
(unlike C) so treating the value returned by arg_bval like a string is fine.

Functionset-tooltalk-message-attribute value msg attribute &optional argn
Initialize one ToolTalk message attribute.
Attribute names and values are the same as for get-tooltalk-message-attribute.
A property list is provided for user data (instead of the user message attribute); see
get-tooltalk-message-attribute.
Callbacks are handled slightly differently than in the C ToolTalk API. The value of
callback should be the name of a function of one argument. It will be called each time
the state of the message changes. This is usually used to notice when the message’s
state has changed to TT_HANDLED (or TT_FAILED), so that reply argument values can
be used.
If one of the argument attributes is specified as arg_val, arg_ival, or arg_bval,
then argn must be the number of an already created argument. Arguments can be
added to a message with add-tooltalk-message-arg.

Functionadd-tooltalk-message-arg msg mode type &optional value
Append one new argument to the message. mode must be one of TT_IN, TT_INOUT,
or TT_OUT, type must be a string, and value can be a string or an integer. ToolTalk
doesn’t define any semantics for type, so only the participants in the protocol you’re
using need to agree what types mean (if anything). Conventionally string is used
for strings and int for 32 bit integers. Arguments can initialized by providing a
value or with set-tooltalk-message-attribute; the latter is necessary if you want
to initialize the argument with a string that can contain embedded nulls (use arg_
bval).

732 XEmacs Lisp Reference Manual

Functioncreate-tooltalk-message
Create a new ToolTalk message. The message’s session attribute is initialized to the
default session. Other attributes can be initialized with set-tooltalk-message-
attribute. make-tooltalk-message is the preferred way to create and initialize a
message.

Functiondestroy-tooltalk-message msg
Apply ‘tt_message_destroy’ to the message. It’s not necessary to destroy messages
after they’ve been processed by a message or pattern callback, the Lisp/ToolTalk
callback machinery does this for you.

52.3 Receiving Messages

52.3.1 Example of Receiving Messages

Here’s a simple example of a handler for a message that tells XEmacs to display a string
in the mini-buffer area. The message operation is called ‘emacs-display-string’. Its first
(0th) argument is the string to display.

(defun tooltalk-display-string-handler (msg)
(message (get-tooltalk-message-attribute msg ’arg_val 0)))

(defvar display-string-pattern
’(category TT_HANDLE

scope TT_SESSION
op "emacs-display-string"

callback tooltalk-display-string-handler))

(let ((p (make-tooltalk-pattern display-string-pattern)))
(register-tooltalk-pattern p))

52.3.2 Elisp Interface for Receiving Messages

Functionmake-tooltalk-pattern attributes
Create a ToolTalk pattern and initialize its attributes. The value of attributes must
be a list of alternating keyword/values, where keywords are symbols that name valid
pattern attributes or lists of valid attributes. For example:

(make-tooltalk-pattern
’(category TT_OBSERVE

scope TT_SESSION
op ("operation1" "operation2")

args ("arg1" 12345 (TT_INOUT "arg3" "string"))))

Chapter 52: ToolTalk Support 733

Attribute names are the same as those supported by add-tooltalk-pattern-
attribute, plus ’args.

Values must always be strings, integers, or symbols that represent ToolTalk constants
or lists of same. When a list of values is provided all of the list elements are added to
the attribute. In the example above, messages whose ‘op’ attribute is ‘"operation1"’
or ‘"operation2"’ would match the pattern.

The value of args should be a list of pattern arguments where each pattern argument
has the following form:

‘(mode [value [type]])’ or just ‘value’

Where mode is one of TT_IN, TT_OUT, or TT_INOUT and type is a string. If type isn’t
specified then int is used if value is a number; otherwise string is used. If type is
string then value is converted to a string (if it isn’t a string already) with prin1-
to-string. If only a value is specified then mode defaults to TT_IN. If mode is
TT_OUT then value and type don’t need to be specified. You can find out more about
the semantics and uses of ToolTalk pattern arguments in chapter 3 of the ToolTalk
Programmer’s Guide.

Functionregister-tooltalk-pattern pat
XEmacs will begin receiving messages that match this pattern.

Functionunregister-tooltalk-pattern pat
XEmacs will stop receiving messages that match this pattern.

Functionadd-tooltalk-pattern-attribute value pat indicator
Add one value to the indicated pattern attribute. The names of attributes are the
same as the ToolTalk accessors used to set them less the ‘tooltalk_pattern_’
prefix and the ‘_add’ suffix. For example, the name of the attribute for the
‘tt_pattern_disposition_add’ attribute is disposition. The category attribute
is handled specially, since a pattern can only be a member of one category
(TT_OBSERVE or TT_HANDLE).

Callbacks are handled slightly differently than in the C ToolTalk API. The value of
callback should be the name of a function of one argument. It will be called each
time the pattern matches an incoming message.

Functionadd-tooltalk-pattern-arg pat mode type value
Add one fully-specified argument to a ToolTalk pattern. mode must be one of TT_IN,
TT_INOUT, or TT_OUT. type must be a string. value can be an integer, string or nil.
If value is an integer then an integer argument (‘tt_pattern_iarg_add’) is added;
otherwise a string argument is added. At present there’s no way to add a binary data
argument.

Functioncreate-tooltalk-pattern
Create a new ToolTalk pattern and initialize its session attribute to be the default
session.

734 XEmacs Lisp Reference Manual

Functiondestroy-tooltalk-pattern pat
Apply ‘tt_pattern_destroy’ to the pattern. This effectively unregisters the pattern.

Functiondescribe-tooltalk-message msg &optional stream
Print the message’s attributes and arguments to stream. This is often useful for
debugging.

Chapter 53: LDAP Support 735

53 LDAP Support

XEmacs can be linked with a LDAP client library to provide Elisp primitives to access
directory servers using the Lightweight Directory Access Protocol.

53.1 Building XEmacs with LDAP support

LDAP support must be added to XEmacs at build time since it requires linking to an
external LDAP client library. As of 21.0, XEmacs has been successfully built and tested
with

• University of Michigan’s LDAP 3.3 (http://www.umich.edu/~dirsvcs/ldap/)
• LDAP SDK 1.0 from Netscape Corp. (http://developer.netscape.com/)

Other libraries conforming to RFC 1823 will probably work also but may require some
minor tweaking at C level.

The standard XEmacs configure script autodetects an installed LDAP library provided
the library itself and the corresponding header files can be found in the library and include
paths. A successful detection will be signalled in the final output of the configure script.

53.2 XEmacs LDAP API

XEmacs LDAP API consists of two layers: a low-level layer which tries to stay as close
as possible to the C API (where practical) and a higher-level layer which provides more
convenient primitives to effectively use LDAP.

As of XEmacs 21.0, only interfaces to basic LDAP search functions are provided, broader
support is planned in future versions.

53.2.1 LDAP Variables

Variableldap-default-host
The default LDAP server

Variableldap-default-port
Default TCP port for LDAP connections. Initialized from the LDAP library. Default
value is 389.

Variableldap-default-base
Default base for LDAP searches. This is a string using the syntax of RFC 1779. For
instance, "oME, c" limits the search to the Acme organization in the United States.

http://www.umich.edu/~dirsvcs/ldap/
http://developer.netscape.com/

736 XEmacs Lisp Reference Manual

Variableldap-host-parameters-alist
An alist of per host options for LDAP transactions. The list elements look like (HOST
PROP1 VAL1 PROP2 VAL2 ...) host is the name of an LDAP server. propn and valn
are property/value pairs describing parameters for the server. Valid properties:

binddn The distinguished name of the user to bind as. This may look like ‘c,
ome, cnnny Bugs’, see RFC 1779 for details.

passwd The password to use for authentication.

auth The authentication method to use, possible values depend on the LDAP
library XEmacs was compiled with, they may include simple, krbv41
and krbv42.

base The base for the search. This may look like ‘c, ome’, see RFC 1779 for
syntax details.

scope One of the symbols base, onelevel or subtree indicating the scope of
the search limited to a base object, to a single level or to the whole
subtree.

deref The dereference policy is one of the symbols never, always, search or
find and defines how aliases are dereferenced.

never Aliases are never dereferenced

always Aliases are always dereferenced

search Aliases are dereferenced when searching

find Aliases are dereferenced when locating the base object for the
search

timelimit
The timeout limit for the connection in seconds.

sizelimit
The maximum number of matches to return for searches performed on
this connection.

53.2.2 The High-Level LDAP API

As of this writing the high-level Lisp LDAP API only provides for LDAP searches.
Further support is planned in the future.

The ldap-search function provides the most convenient interface to perform LDAP
searches. It opens a connection to a host, performs the query and cleanly closes the con-
nection thus insulating the user from all the details of the low-level interface such as LDAP
Lisp objects see Section 53.2.3 [The Low-Level LDAP API], page 737

Functionldap-search filter &optional host attributes attrsonly
Perform an LDAP search. filter is the search filter see Section 53.3 [Syntax of Search
Filters], page 738 host is the LDAP host on which to perform the search attributes is

Chapter 53: LDAP Support 737

the specific attributes to retrieve, nil means retrieve all attrsonly if non-nil retrieves
the attributes only without their associated values. Additional search parameters can
be specified through ldap-host-parameters-alist.

53.2.3 The Low-Level LDAP API

53.2.3.1 The LDAP Lisp Object

An internal built-in ldap lisp object represents a LDAP connection.

Functionldapp object
This function returns non-nil if object is a ldap object.

Functionldap-host ldap
Return the server host of the connection represented by ldap

Functionldap-live-p ldap
Return non-nil if ldap is an active LDAP connection

53.2.3.2 Opening and Closing a LDAP Connection

Functionldap-open host &optional plist
Open a LDAP connection to host. plist is a property list containing additional pa-
rameters for the connection. Valid keys in that list are:

port The TCP port to use for the connection if different from ldap-default-
port or the library builtin value

auth The authentication method to use, possible values depend on the LDAP
library XEmacs was compiled with, they may include simple, krbv41
and krbv42.

binddn The distinguished name of the user to bind as. This may look like ‘c,
ome, cnnny Bugs’, see RFC 1779 for details.

passwd The password to use for authentication.

deref The dereference policy is one of the symbols never, always, search or
find and defines how aliases are dereferenced.

never Aliases are never dereferenced

always Aliases are always dereferenced

search Aliases are dereferenced when searching

find Aliases are dereferenced when locating the base object for the
search

738 XEmacs Lisp Reference Manual

The default is never.

timelimit
The timeout limit for the connection in seconds.

sizelimit
The maximum number of matches to return for searches performed on
this connection.

Functionldap-close ldap
Close the connection represented by ldap

53.2.3.3 Searching on a LDAP Server (Low-level)

ldap-search-internal is the low-level primitive to perform a search on a LDAP server.
It works directly on an open LDAP connection thus requiring a preliminary call to ldap-
open. Multiple searches can be made on the same connection, then the session must be
closed with ldap-close.

Functionldap-search-internal ldap filter base scope attrs attrsonly
Perform a search on an open connection ldap created with ldap-open. filter is a filter
string for the search see Section 53.3 [Syntax of Search Filters], page 738 base is the
distinguished name at which to start the search. scope is one of the symbols base,
onelevel or subtree indicating the scope of the search limited to a base object,
to a single level or to the whole subtree. The default is subtree. attrs is a list
of strings indicating which attributes to retrieve for each matching entry. If nil all
available attributes are returned. If attrsonly is non-nil then only the attributes are
retrieved, not their associated values The function returns a list of matching entries.
Each entry being itself an alist of attribute/values.

53.3 Syntax of Search Filters

LDAP search functions use RFC1558 syntax to describe the search filter. In that syntax
simple filters have the form:

(<attr> <filtertype> <value>)

<attr> is an attribute name such as cn for Common Name, o for Organization, etc...
<value> is the corresponding value. This is generally an exact string but may also

contain * characters as wildcards
filtertype is one = ~=, <=, >= which respectively describe equality, approximate equal-

ity, inferiority and superiority.
Thus (cn=John Smith) matches all records having a canonical name equal to John

Smith.
A special case is the presence filter (<attr>=* which matches records containing a par-

ticular attribute. For instance (mail=*) matches all records containing a mail attribute.

Chapter 53: LDAP Support 739

Simple filters can be connected together with the logical operators &, | and ! which
stand for the usual and, or and not operators.

(&(objectClass=Person)(mail=*)(|(sn=Smith)(givenname=John))) matches
records of class Person containing a mail attribute and corresponding to people whose
last name is Smith or whose first name is John.

740 XEmacs Lisp Reference Manual

Chapter 54: Internationalization 741

54 Internationalization

54.1 I18N Levels 1 and 2

XEmacs is now compliant with I18N levels 1 and 2. Specifically, this means that it is
8-bit clean and correctly handles time and date functions. XEmacs will correctly display
the entire ISO-Latin 1 character set.

The compose key may now be used to create any character in the ISO-Latin 1 character
set not directly available via the keyboard.. In order for the compose key to work it is
necessary to load the file ‘x-compose.el’. At any time while composing a character, C-h
will display all valid completions and the character which would be produced.

54.2 I18N Level 3

54.2.1 Level 3 Basics

XEmacs now provides alpha-level functionality for I18N Level 3. This means that ev-
erything necessary for full messaging is available, but not every file has been converted.

The two message files which have been created are ‘src/emacs.po’ and
‘lisp/packages/mh-e.po’. Both files need to be converted using msgfmt, and the resulting
‘.mo’ files placed in some locale’s LC_MESSAGES directory. The test “translations” in these
files are the original messages prefixed by TRNSLT_.

The domain for a variable is stored on the variable’s property list under the property
name variable-domain. The function documentation-property uses this information when
translating a variable’s documentation.

54.2.2 Level 3 Primitives

Functiongettext string
This function looks up string in the default message domain and returns its transla-
tion. If I18N3 was not enabled when XEmacs was compiled, it just returns string.

Functiondgettext domain string
This function looks up string in the specified message domain and returns its trans-
lation. If I18N3 was not enabled when XEmacs was compiled, it just returns string.

Functionbind-text-domain domain pathname
This function associates a pathname with a message domain. Here’s how the path to
message file is constructed under SunOS 5.x:

742 XEmacs Lisp Reference Manual

{pathname}/{LANG}/LC_MESSAGES/{domain}.mo

If I18N3 was not enabled when XEmacs was compiled, this function does nothing.

Special Formdomain string
This function specifies the text domain used for translating documentation strings
and interactive prompts of a function. For example, write:

(defun foo (arg) "Doc string" (domain "emacs-foo") ...)

to specify emacs-foo as the text domain of the function foo. The “call” to domain
is actually a declaration rather than a function; when actually called, domain just
returns nil.

Functiondomain-of function
This function returns the text domain of function; it returns nil if it is the default
domain. If I18N3 was not enabled when XEmacs was compiled, it always returns nil.

54.2.3 Dynamic Messaging

The format function has been extended to permit you to change the order of parameter
insertion. For example, the conversion format %1$s inserts parameter one as a string, while
%2$s inserts parameter two. This is useful when creating translations which require you to
change the word order.

54.2.4 Domain Specification

The default message domain of XEmacs is ‘emacs’. For add-on packages, it is best to
use a different domain. For example, let us say we want to convert the “gorilla” package to
use the domain ‘emacs-gorilla’. To translate the message “What gorilla?”, use dgettext as
follows:

(dgettext "emacs-gorilla" "What gorilla?")

A function (or macro) which has a documentation string or an interactive prompt needs
to be associated with the domain in order for the documentation or prompt to be translated.
This is done with the domain special form as follows:

Chapter 54: Internationalization 743

(defun scratch (location)
"Scratch the specified location."
(domain "emacs-gorilla")
(interactive "sScratch: ")
...)

It is most efficient to specify the domain in the first line of the function body, before the
interactive form.

For variables and constants which have documentation strings, specify the domain after
the documentation.

Special Formdefvar symbol [value [doc-string [domain]]]
Example:

(defvar weight 250 "Weight of gorilla, in pounds." "emacs-gorilla")

Special Formdefconst symbol [value [doc-string [domain]]]
Example:

(defconst limbs 4 "Number of limbs" "emacs-gorilla")

Autoloaded functions which are specified in ‘loaddefs.el’ do not need to have a domain
specification, because their documentation strings are extracted into the main message base.
However, for autoloaded functions which are specified in a separate package, use following
syntax:

Functionautoload symbol filename &optional docstring interactive macro domain
Example:

(autoload ’explore "jungle" "Explore the jungle." nil nil "emacs-gorilla")

54.2.5 Documentation String Extraction

The utility ‘etc/make-po’ scans the file DOC to extract documentation strings and creates
a message file doc.po. This file may then be inserted within emacs.po.

Currently, make-po is hard-coded to read from DOC and write to doc.po. In order to
extract documentation strings from an add-on package, first run make-docfile on the
package to produce the DOC file. Then run make-po -p with the -p argument to indicate
that we are extracting documentation for an add-on package.

(The -p argument is a kludge to make up for a subtle difference between pre-loaded
documentation and add-on documentation: For add-on packages, the final carriage returns
in the strings produced by make-docfile must be ignored.)

54.3 I18N Level 4

The Asian-language support in XEmacs is called “MULE”. See Chapter 55 [MULE],
page 745.

744 XEmacs Lisp Reference Manual

Chapter 55: MULE 745

55 MULE

MULE is the name originally given to the version of GNU Emacs extended for multi-
lingual (and in particular Asian-language) support. “MULE” is short for “MUlti-Lingual
Emacs”. It was originally called Nemacs (“Nihon Emacs” where “Nihon” is the Japanese
word for “Japan”), when it only provided support for Japanese. XEmacs refers to its
multi-lingual support as MULE support since it is based on MULE.

55.1 Internationalization Terminology

In internationalization terminology, a string of text is divided up into characters, which
are the printable units that make up the text. A single character is (for example) a capital
‘A’, the number ‘2’, a Katakana character, a Kanji ideograph (an ideograph is a “picture”
character, such as is used in Japanese Kanji, Chinese Hanzi, and Korean Hangul; typically
there are thousands of such ideographs in each language), etc. The basic property of a
character is its shape. Note that the same character may be drawn by two different people
(or in two different fonts) in slightly different ways, although the basic shape will be the
same.

In some cases, the differences will be significant enough that it is actually possible to
identify two or more distinct shapes that both represent the same character. For example,
the lowercase letters ‘a’ and ‘g’ each have two distinct possible shapes – the ‘a’ can optionally
have a curved tail projecting off the top, and the ‘g’ can be formed either of two loops, or of
one loop and a tail hanging off the bottom. Such distinct possible shapes of a character are
called glyphs. The important characteristic of two glyphs making up the same character is
that the choice between one or the other is purely stylistic and has no linguistic effect on a
word (this is the reason why a capital ‘A’ and lowercase ‘a’ are different characters rather
than different glyphs – e.g. ‘Aspen’ is a city while ‘aspen’ is a kind of tree).

Note that character and glyph are used differently here than elsewhere in XEmacs.
A character set is simply a set of related characters. ASCII, for example, is a set of 94

characters (or 128, if you count non-printing characters). Other character sets are ISO8859-
1 (ASCII plus various accented characters and other international symbols), JISX0201
(ASCII, more or less, plus half-width Katakana), JISX0208 (Japanese Kanji), JISX0212
(a second set of less-used Japanese Kanji), GB2312 (Mainland Chinese Hanzi), etc.

Every character set has one or more orderings, which can be viewed as a way of assigning
a number (or set of numbers) to each character in the set. For most character sets, there is
a standard ordering, and in fact all of the character sets mentioned above define a particular
ordering. ASCII, for example, places letters in their “natural” order, puts uppercase letters
before lowercase letters, numbers before letters, etc. Note that for many of the Asian
character sets, there is no natural ordering of the characters. The actual orderings are
based on one or more salient characteristic, of which there are many to choose from – e.g.
number of strokes, common radicals, phonetic ordering, etc.

The set of numbers assigned to any particular character are called the character’s position
codes. The number of position codes required to index a particular character in a character

746 XEmacs Lisp Reference Manual

set is called the dimension of the character set. ASCII, being a relatively small character set,
is of dimension one, and each character in the set is indexed using a single position code, in
the range 0 through 127 (if non-printing characters are included) or 33 through 126 (if only
the printing characters are considered). JISX0208, i.e. Japanese Kanji, has thousands of
characters, and is of dimension two – every character is indexed by two position codes, each
in the range 33 through 126. (Note that the choice of the range here is somewhat arbitrary.
Although a character set such as JISX0208 defines an ordering of all its characters, it does
not define the actual mapping between numbers and characters. You could just as easily
index the characters in JISX0208 using numbers in the range 0 through 93, 1 through 94, 2
through 95, etc. The reason for the actual range chosen is so that the position codes match
up with the actual values used in the common encodings.)

An encoding is a way of numerically representing characters from one or more character
sets into a stream of like-sized numerical values called words; typically these are 8-bit, 16-bit,
or 32-bit quantities. If an encoding encompasses only one character set, then the position
codes for the characters in that character set could be used directly. (This is the case with
ASCII, and as a result, most people do not understand the difference between a character
set and an encoding.) This is not possible, however, if more than one character set is to be
used in the encoding. For example, printed Japanese text typically requires characters from
multiple character sets – ASCII, JISX0208, and JISX0212, to be specific. Each of these is
indexed using one or more position codes in the range 33 through 126, so the position codes
could not be used directly or there would be no way to tell which character was meant.
Different Japanese encodings handle this differently – JIS uses special escape characters to
denote different character sets; EUC sets the high bit of the position codes for JISX0208 and
JISX0212, and puts a special extra byte before each JISX0212 character; etc. (JIS, EUC,
and most of the other encodings you will encounter are 7-bit or 8-bit encodings. There
is one common 16-bit encoding, which is Unicode; this strives to represent all the world’s
characters in a single large character set. 32-bit encodings are generally used internally in
programs to simplify the code that manipulates them; however, they are not much used
externally because they are not very space-efficient.)

Encodings are classified as either modal or non-modal. In a modal encoding, there are
multiple states that the encoding can be in, and the interpretation of the values in the
stream depends on the current global state of the encoding. Special values in the encoding,
called escape sequences, are used to change the global state. JIS, for example, is a modal
encoding. The bytes ‘ESC $ B’ indicate that, from then on, bytes are to be interpreted as
position codes for JISX0208, rather than as ASCII. This effect is cancelled using the bytes
‘ESC (B’, which mean “switch from whatever the current state is to ASCII”. To switch
to JISX0212, the escape sequence ‘ESC $ (D’. (Note that here, as is common, the escape
sequences do in fact begin with ‘ESC’. This is not necessarily the case, however.)

A non-modal encoding has no global state that extends past the character currently
being interpreted. EUC, for example, is a non-modal encoding. Characters in JISX0208
are encoded by setting the high bit of the position codes, and characters in JISX0212 are
encoded by doing the same but also prefixing the character with the byte 0x8F.

The advantage of a modal encoding is that it is generally more space-efficient, and is
easily extendable because there are essentially an arbitrary number of escape sequences
that can be created. The disadvantage, however, is that it is much more difficult to work
with if it is not being processed in a sequential manner. In the non-modal EUC encoding,

Chapter 55: MULE 747

for example, the byte 0x41 always refers to the letter ‘A’; whereas in JIS, it could either
be the letter ‘A’, or one of the two position codes in a JISX0208 character, or one of the
two position codes in a JISX0212 character. Determining exactly which one is meant could
be difficult and time-consuming if the previous bytes in the string have not already been
processed.

Non-modal encodings are further divided into fixed-width and variable-width formats.
A fixed-width encoding always uses the same number of words per character, whereas a
variable-width encoding does not. EUC is a good example of a variable-width encoding:
one to three bytes are used per character, depending on the character set. 16-bit and 32-bit
encodings are nearly always fixed-width, and this is in fact one of the main reasons for
using an encoding with a larger word size. The advantages of fixed-width encodings should
be obvious. The advantages of variable-width encodings are that they are generally more
space-efficient and allow for compatibility with existing 8-bit encodings such as ASCII.

Note that the bytes in an 8-bit encoding are often referred to as octets rather than
simply as bytes. This terminology dates back to the days before 8-bit bytes were universal,
when some computers had 9-bit bytes, others had 10-bit bytes, etc.

55.2 Charsets

A charset in MULE is an object that encapsulates a particular character set as well
as an ordering of those characters. Charsets are permanent objects and are named using
symbols, like faces.

Functioncharsetp object
This function returns non-nil if object is a charset.

55.2.1 Charset Properties

Charsets have the following properties:

name A symbol naming the charset. Every charset must have a different name; this
allows a charset to be referred to using its name rather than the actual charset
object.

doc-string
A documentation string describing the charset.

registry A regular expression matching the font registry field for this character set.
For example, both the ascii and latin-iso8859-1 charsets use the registry
"ISO8859-1". This field is used to choose an appropriate font when the user
gives a general font specification such as ‘-*-courier-medium-r-*-140-*’, i.e.
a 14-point upright medium-weight Courier font.

dimension
Number of position codes used to index a character in the character set.
XEmacs/MULE can only handle character sets of dimension 1 or 2. This
property defaults to 1.

748 XEmacs Lisp Reference Manual

chars Number of characters in each dimension. In XEmacs/MULE, the only allowed
values are 94 or 96. (There are a couple of pre-defined character sets, such
as ASCII, that do not follow this, but you cannot define new ones like this.)
Defaults to 94. Note that if the dimension is 2, the character set thus described
is 94x94 or 96x96.

columns Number of columns used to display a character in this charset. Only used in
TTY mode. (Under X, the actual width of a character can be derived from the
font used to display the characters.) If unspecified, defaults to the dimension.
(This is almost always the correct value, because character sets with dimension
2 are usually ideograph character sets, which need two columns to display the
intricate ideographs.)

direction
A symbol, either l2r (left-to-right) or r2l (right-to-left). Defaults to l2r. This
specifies the direction that the text should be displayed in, and will be left-to-
right for most charsets but right-to-left for Hebrew and Arabic. (Right-to-left
display is not currently implemented.)

final Final byte of the standard ISO 2022 escape sequence designating this charset.
Must be supplied. Each combination of (dimension, chars) defines a separate
namespace for final bytes, and each charset within a particular namespace must
have a different final byte. Note that ISO 2022 restricts the final byte to the
range 0x30 - 0x7E if dimension == 1, and 0x30 - 0x5F if dimension == 2. Note
also that final bytes in the range 0x30 - 0x3F are reserved for user-defined (not
official) character sets. For more information on ISO 2022, see Section 55.6
[Coding Systems], page 755.

graphic 0 (use left half of font on output) or 1 (use right half of font on output). Defaults
to 0. This specifies how to convert the position codes that index a character
in a character set into an index into the font used to display the character set.
With graphic set to 0, position codes 33 through 126 map to font indices 33
through 126; with it set to 1, position codes 33 through 126 map to font indices
161 through 254 (i.e. the same number but with the high bit set). For example,
for a font whose registry is ISO8859-1, the left half of the font (octets 0x20 -
0x7F) is the ascii charset, while the right half (octets 0xA0 - 0xFF) is the
latin-iso8859-1 charset.

ccl-program
A compiled CCL program used to convert a character in this charset into an
index into the font. This is in addition to the graphic property. If a CCL
program is defined, the position codes of a character will first be processed
according to graphic and then passed through the CCL program, with the
resulting values used to index the font.
This is used, for example, in the Big5 character set (used in Taiwan). This
character set is not ISO-2022-compliant, and its size (94x157) does not fit
within the maximum 96x96 size of ISO-2022-compliant character sets. As a
result, XEmacs/MULE splits it (in a rather complex fashion, so as to group the
most commonly used characters together) into two charset objects (big5-1 and
big5-2), each of size 94x94, and each charset object uses a CCL program to

Chapter 55: MULE 749

convert the modified position codes back into standard Big5 indices to retrieve
a character from a Big5 font.

Most of the above properties can only be changed when the charset is created. See
Section 55.2.3 [Charset Property Functions], page 750.

55.2.2 Basic Charset Functions

Functionfind-charset charset-or-name
This function retrieves the charset of the given name. If charset-or-name is a charset
object, it is simply returned. Otherwise, charset-or-name should be a symbol. If
there is no such charset, nil is returned. Otherwise the associated charset object is
returned.

Functionget-charset name
This function retrieves the charset of the given name. Same as find-charset except
an error is signalled if there is no such charset instead of returning nil.

Functioncharset-list
This function returns a list of the names of all defined charsets.

Functionmake-charset name doc-string props
This function defines a new character set. This function is for use with Mule sup-
port. name is a symbol, the name by which the character set is normally referred.
doc-string is a string describing the character set. props is a property list, describing
the specific nature of the character set. The recognized properties are registry,
dimension, columns, chars, final, graphic, direction, and ccl-program, as pre-
viously described.

Functionmake-reverse-direction-charset charset new-name
This function makes a charset equivalent to charset but which goes in the opposite
direction. new-name is the name of the new charset. The new charset is returned.

Functioncharset-from-attributes dimension chars final &optional direction
This function returns a charset with the given dimension, chars, final, and direction.
If direction is omitted, both directions will be checked (left-to-right will be returned
if character sets exist for both directions).

Functioncharset-reverse-direction-charset charset
This function returns the charset (if any) with the same dimension, number of char-
acters, and final byte as charset, but which is displayed in the opposite direction.

750 XEmacs Lisp Reference Manual

55.2.3 Charset Property Functions

All of these functions accept either a charset name or charset object.

Functioncharset-property charset prop
This function returns property prop of charset. See Section 55.2.1 [Charset Proper-
ties], page 747.

Convenience functions are also provided for retrieving individual properties of a charset.

Functioncharset-name charset
This function returns the name of charset. This will be a symbol.

Functioncharset-doc-string charset
This function returns the doc string of charset.

Functioncharset-registry charset
This function returns the registry of charset.

Functioncharset-dimension charset
This function returns the dimension of charset.

Functioncharset-chars charset
This function returns the number of characters per dimension of charset.

Functioncharset-columns charset
This function returns the number of display columns per character (in TTY mode)
of charset.

Functioncharset-direction charset
This function returns the display direction of charset – either l2r or r2l.

Functioncharset-final charset
This function returns the final byte of the ISO 2022 escape sequence designating
charset.

Functioncharset-graphic charset
This function returns either 0 or 1, depending on whether the position codes of char-
acters in charset map to the left or right half of their font, respectively.

Functioncharset-ccl-program charset
This function returns the CCL program, if any, for converting position codes of char-
acters in charset into font indices.

The only property of a charset that can currently be set after the charset has been
created is the CCL program.

Functionset-charset-ccl-program charset ccl-program
This function sets the ccl-program property of charset to ccl-program.

Chapter 55: MULE 751

55.2.4 Predefined Charsets

The following charsets are predefined in the C code.

Name Type Fi Gr Dir Registry
--
ascii 94 B 0 l2r ISO8859-1
control-1 94 0 l2r ---
latin-iso8859-1 94 A 1 l2r ISO8859-1
latin-iso8859-2 96 B 1 l2r ISO8859-2
latin-iso8859-3 96 C 1 l2r ISO8859-3
latin-iso8859-4 96 D 1 l2r ISO8859-4
cyrillic-iso8859-5 96 L 1 l2r ISO8859-5
arabic-iso8859-6 96 G 1 r2l ISO8859-6
greek-iso8859-7 96 F 1 l2r ISO8859-7
hebrew-iso8859-8 96 H 1 r2l ISO8859-8
latin-iso8859-9 96 M 1 l2r ISO8859-9
thai-tis620 96 T 1 l2r TIS620
katakana-jisx0201 94 I 1 l2r JISX0201.1976
latin-jisx0201 94 J 0 l2r JISX0201.1976
japanese-jisx0208-1978 94x94 @ 0 l2r JISX0208.1978
japanese-jisx0208 94x94 B 0 l2r JISX0208.19(83|90)
japanese-jisx0212 94x94 D 0 l2r JISX0212
chinese-gb2312 94x94 A 0 l2r GB2312
chinese-cns11643-1 94x94 G 0 l2r CNS11643.1
chinese-cns11643-2 94x94 H 0 l2r CNS11643.2
chinese-big5-1 94x94 0 0 l2r Big5
chinese-big5-2 94x94 1 0 l2r Big5
korean-ksc5601 94x94 C 0 l2r KSC5601
composite 96x96 0 l2r ---

The following charsets are predefined in the Lisp code.

Name Type Fi Gr Dir Registry
--
arabic-digit 94 2 0 l2r MuleArabic-0
arabic-1-column 94 3 0 r2l MuleArabic-1
arabic-2-column 94 4 0 r2l MuleArabic-2
sisheng 94 0 0 l2r sisheng_cwnn\|OMRON_UDC_ZH
chinese-cns11643-3 94x94 I 0 l2r CNS11643.1
chinese-cns11643-4 94x94 J 0 l2r CNS11643.1
chinese-cns11643-5 94x94 K 0 l2r CNS11643.1
chinese-cns11643-6 94x94 L 0 l2r CNS11643.1
chinese-cns11643-7 94x94 M 0 l2r CNS11643.1
ethiopic 94x94 2 0 l2r Ethio
ascii-r2l 94 B 0 r2l ISO8859-1
ipa 96 0 1 l2r MuleIPA
vietnamese-lower 96 1 1 l2r VISCII1.1
vietnamese-upper 96 2 1 l2r VISCII1.1

For all of the above charsets, the dimension and number of columns are the same.

752 XEmacs Lisp Reference Manual

Note that ASCII, Control-1, and Composite are handled specially. This is why some of
the fields are blank; and some of the filled-in fields (e.g. the type) are not really accurate.

55.3 MULE Characters

Functionmake-char charset arg1 &optional arg2
This function makes a multi-byte character from charset and octets arg1 and arg2.

Functionchar-charset ch
This function returns the character set of char ch.

Functionchar-octet ch &optional n
This function returns the octet (i.e. position code) numbered n (should be 0 or 1) of
char ch. n defaults to 0 if omitted.

Functionfind-charset-region start end &optional buffer
This function returns a list of the charsets in the region between start and end. buffer
defaults to the current buffer if omitted.

Functionfind-charset-string string
This function returns a list of the charsets in string.

55.4 Composite Characters

Composite characters are not yet completely implemented.

Functionmake-composite-char string
This function converts a string into a single composite character. The character is
the result of overstriking all the characters in the string.

Functioncomposite-char-string ch
This function returns a string of the characters comprising a composite character.

Functioncompose-region start end &optional buffer
This function composes the characters in the region from start to end in buffer into
one composite character. The composite character replaces the composed characters.
buffer defaults to the current buffer if omitted.

Functiondecompose-region start end &optional buffer
This function decomposes any composite characters in the region from start to end in
buffer. This converts each composite character into one or more characters, the indi-
vidual characters out of which the composite character was formed. Non-composite
characters are left as-is. buffer defaults to the current buffer if omitted.

Chapter 55: MULE 753

55.5 ISO 2022

This section briefly describes the ISO 2022 encoding standard. For more thorough
understanding, please refer to the original document of ISO 2022.

Character sets (charsets) are classified into the following four categories, according to the
number of characters of charset: 94-charset, 96-charset, 94x94-charset, and 96x96-charset.

94-charset ASCII(B), left(J) and right(I) half of JISX0201, ...

96-charset Latin-1(A), Latin-2(B), Latin-3(C), ...

94x94-charset
GB2312(A), JISX0208(B), KSC5601(C), ...

96x96-charset
none for the moment

The character in parentheses after the name of each charset is the final character F,
which can be regarded as the identifier of the charset. ECMA allocates F to each charset.
F is in the range of 0x30..0x7F, but 0x30..0x3F are only for private use.

Note: ECMA = European Computer Manufacturers Association

There are four registers of charsets, called G0 thru G3. You can designate (or assign)
any charset to one of these registers.

The code space contained within one octet (of size 256) is divided into 4 areas: C0, GL,
C1, and GR. GL and GR are the areas into which a register of charset can be invoked into.

C0: 0x00 - 0x1F
GL: 0x20 - 0x7F
C1: 0x80 - 0x9F
GR: 0xA0 - 0xFF

Usually, in the initial state, G0 is invoked into GL, and G1 is invoked into GR.

ISO 2022 distinguishes 7-bit environments and 8-bit environments. In 7-bit environ-
ments, only C0 and GL are used.

Charset designation is done by escape sequences of the form:
ESC [I] I F

where I is an intermediate character in the range 0x20 - 0x2F, and F is the final character
identifying this charset.

The meaning of intermediate characters are:
$ [0x24]: indicate charset of dimension 2 (94x94 or 96x96).
([0x28]: designate to G0 a 94-charset whose final byte is F.
) [0x29]: designate to G1 a 94-charset whose final byte is F.
* [0x2A]: designate to G2 a 94-charset whose final byte is F.
+ [0x2B]: designate to G3 a 94-charset whose final byte is F.
- [0x2D]: designate to G1 a 96-charset whose final byte is F.
. [0x2E]: designate to G2 a 96-charset whose final byte is F.
/ [0x2F]: designate to G3 a 96-charset whose final byte is F.

The following rule is not allowed in ISO 2022 but can be used in Mule.

754 XEmacs Lisp Reference Manual

, [0x2C]: designate to G0 a 96-charset whose final byte is F.

Here are examples of designations:

ESC (B : designate to G0 ASCII
ESC - A : designate to G1 Latin-1
ESC $ (A or ESC $ A : designate to G0 GB2312
ESC $ (B or ESC $ B : designate to G0 JISX0208
ESC $) C : designate to G1 KSC5601

To use a charset designated to G2 or G3, and to use a charset designated to G1 in a
7-bit environment, you must explicitly invoke G1, G2, or G3 into GL. There are two types
of invocation, Locking Shift (forever) and Single Shift (one character only).

Locking Shift is done as follows:

LS0 or SI (0x0F): invoke G0 into GL
LS1 or SO (0x0E): invoke G1 into GL
LS2: invoke G2 into GL
LS3: invoke G3 into GL
LS1R: invoke G1 into GR
LS2R: invoke G2 into GR
LS3R: invoke G3 into GR

Single Shift is done as follows:

SS2 or ESC N: invoke G2 into GL
SS3 or ESC O: invoke G3 into GL

(#### Ben says: I think the above is slightly incorrect. It appears that SS2 invokes
G2 into GR and SS3 invokes G3 into GR, whereas ESC N and ESC O behave as indicated.
The above definitions will not parse EUC-encoded text correctly, and it looks like the code
in mule-coding.c has similar problems.)

You may realize that there are a lot of ISO-2022-compliant ways of encoding multilingual
text. Now, in the world, there exist many coding systems such as X11’s Compound Text,
Japanese JUNET code, and so-called EUC (Extended UNIX Code); all of these are variants
of ISO 2022.

In Mule, we characterize ISO 2022 by the following attributes:

1. Initial designation to G0 thru G3.

2. Allow designation of short form for Japanese and Chinese.

3. Should we designate ASCII to G0 before control characters?

4. Should we designate ASCII to G0 at the end of line?

5. 7-bit environment or 8-bit environment.

6. Use Locking Shift or not.

7. Use ASCII or JIS0201-1976-Roman.

8. Use JISX0208-1983 or JISX0208-1976.

(The last two are only for Japanese.)

By specifying these attributes, you can create any variant of ISO 2022.

Here are several examples:

Chapter 55: MULE 755

junet -- Coding system used in JUNET.
1. G0 <- ASCII, G1..3 <- never used
2. Yes.
3. Yes.
4. Yes.
5. 7-bit environment
6. No.
7. Use ASCII
8. Use JISX0208-1983

ctext -- Compound Text
1. G0 <- ASCII, G1 <- Latin-1, G2,3 <- never used
2. No.
3. No.
4. Yes.
5. 8-bit environment
6. No.
7. Use ASCII
8. Use JISX0208-1983

euc-china -- Chinese EUC. Although many people call this
as "GB encoding", the name may cause misunderstanding.
1. G0 <- ASCII, G1 <- GB2312, G2,3 <- never used
2. No.
3. Yes.
4. Yes.
5. 8-bit environment
6. No.
7. Use ASCII
8. Use JISX0208-1983

korean-mail -- Coding system used in Korean network.
1. G0 <- ASCII, G1 <- KSC5601, G2,3 <- never used
2. No.
3. Yes.
4. Yes.
5. 7-bit environment
6. Yes.
7. No.
8. No.

Mule creates all these coding systems by default.

55.6 Coding Systems

A coding system is an object that defines how text containing multiple character sets is
encoded into a stream of (typically 8-bit) bytes. The coding system is used to decode the
stream into a series of characters (which may be from multiple charsets) when the text is
read from a file or process, and is used to encode the text back into the same format when
it is written out to a file or process.

756 XEmacs Lisp Reference Manual

For example, many ISO-2022-compliant coding systems (such as Compound Text, which
is used for inter-client data under the X Window System) use escape sequences to switch
between different charsets – Japanese Kanji, for example, is invoked with ‘ESC $ (B’; ASCII
is invoked with ‘ESC (B’; and Cyrillic is invoked with ‘ESC - L’. See make-coding-system
for more information.

Coding systems are normally identified using a symbol, and the symbol is accepted in
place of the actual coding system object whenever a coding system is called for. (This is
similar to how faces and charsets work.)

Functioncoding-system-p object
This function returns non-nil if object is a coding system.

55.6.1 Coding System Types

nil
autodetect

Automatic conversion. XEmacs attempts to detect the coding system used in
the file.

no-conversion
No conversion. Use this for binary files and such. On output, graphic characters
that are not in ASCII or Latin-1 will be replaced by a ‘?’. (For a no-conversion-
encoded buffer, these characters will only be present if you explicitly insert
them.)

shift-jis
Shift-JIS (a Japanese encoding commonly used in PC operating systems).

iso2022 Any ISO-2022-compliant encoding. Among other things, this includes JIS (the
Japanese encoding commonly used for e-mail), national variants of EUC (the
standard Unix encoding for Japanese and other languages), and Compound
Text (an encoding used in X11). You can specify more specific information
about the conversion with the flags argument.

big5 Big5 (the encoding commonly used for Taiwanese).

ccl The conversion is performed using a user-written pseudo-code program. CCL
(Code Conversion Language) is the name of this pseudo-code.

internal Write out or read in the raw contents of the memory representing the buffer’s
text. This is primarily useful for debugging purposes, and is only enabled when
XEmacs has been compiled with DEBUG_XEMACS set (the ‘--debug’ configure
option). Warning: Reading in a file using internal conversion can result in
an internal inconsistency in the memory representing a buffer’s text, which will
produce unpredictable results and may cause XEmacs to crash. Under normal
circumstances you should never use internal conversion.

Chapter 55: MULE 757

55.6.2 EOL Conversion

nil Automatically detect the end-of-line type (LF, CRLF, or CR). Also generate
subsidiary coding systems named name-unix, name-dos, and name-mac, that
are identical to this coding system but have an EOL-TYPE value of lf, crlf,
and cr, respectively.

lf The end of a line is marked externally using ASCII LF. Since this is also the
way that XEmacs represents an end-of-line internally, specifying this option
results in no end-of-line conversion. This is the standard format for Unix text
files.

crlf The end of a line is marked externally using ASCII CRLF. This is the standard
format for MS-DOS text files.

cr The end of a line is marked externally using ASCII CR. This is the standard
format for Macintosh text files.

t Automatically detect the end-of-line type but do not generate subsidiary coding
systems. (This value is converted to nil when stored internally, and coding-
system-property will return nil.)

55.6.3 Coding System Properties

mnemonic String to be displayed in the modeline when this coding system is active.

eol-type End-of-line conversion to be used. It should be one of the types listed in Sec-
tion 55.6.2 [EOL Conversion], page 757.

post-read-conversion
Function called after a file has been read in, to perform the decoding. Called
with two arguments, beg and end, denoting a region of the current buffer to be
decoded.

pre-write-conversion
Function called before a file is written out, to perform the encoding. Called
with two arguments, beg and end, denoting a region of the current buffer to be
encoded.

The following additional properties are recognized if type is iso2022:

charset-g0
charset-g1
charset-g2
charset-g3

The character set initially designated to the G0 - G3 registers. The value should
be one of
• A charset object (designate that character set)
• nil (do not ever use this register)

758 XEmacs Lisp Reference Manual

• t (no character set is initially designated to the register, but may be later
on; this automatically sets the corresponding force-g*-on-output prop-
erty)

force-g0-on-output
force-g1-on-output
force-g2-on-output
force-g3-on-output

If non-nil, send an explicit designation sequence on output before using the
specified register.

short If non-nil, use the short forms ‘ESC $ @’, ‘ESC $ A’, and ‘ESC $ B’ on output in
place of the full designation sequences ‘ESC $ (@’, ‘ESC $ (A’, and ‘ESC $ (B’.

no-ascii-eol
If non-nil, don’t designate ASCII to G0 at each end of line on output. Setting
this to non-nil also suppresses other state-resetting that normally happens at
the end of a line.

no-ascii-cntl
If non-nil, don’t designate ASCII to G0 before control chars on output.

seven If non-nil, use 7-bit environment on output. Otherwise, use 8-bit environment.

lock-shift
If non-nil, use locking-shift (SO/SI) instead of single-shift or designation by
escape sequence.

no-iso6429
If non-nil, don’t use ISO6429’s direction specification.

escape-quoted
If non-nil, literal control characters that are the same as the beginning of a
recognized ISO 2022 or ISO 6429 escape sequence (in particular, ESC (0x1B),
SO (0x0E), SI (0x0F), SS2 (0x8E), SS3 (0x8F), and CSI (0x9B)) are “quoted”
with an escape character so that they can be properly distinguished from an
escape sequence. (Note that doing this results in a non-portable encoding.)
This encoding flag is used for byte-compiled files. Note that ESC is a good
choice for a quoting character because there are no escape sequences whose
second byte is a character from the Control-0 or Control-1 character sets; this
is explicitly disallowed by the ISO 2022 standard.

input-charset-conversion
A list of conversion specifications, specifying conversion of characters in one
charset to another when decoding is performed. Each specification is a list of
two elements: the source charset, and the destination charset.

output-charset-conversion
A list of conversion specifications, specifying conversion of characters in one
charset to another when encoding is performed. The form of each specification
is the same as for input-charset-conversion.

The following additional properties are recognized (and required) if type is ccl:

Chapter 55: MULE 759

decode CCL program used for decoding (converting to internal format).

encode CCL program used for encoding (converting to external format).

55.6.4 Basic Coding System Functions

Functionfind-coding-system coding-system-or-name
This function retrieves the coding system of the given name.

If coding-system-or-name is a coding-system object, it is simply returned. Otherwise,
coding-system-or-name should be a symbol. If there is no such coding system, nil is
returned. Otherwise the associated coding system object is returned.

Functionget-coding-system name
This function retrieves the coding system of the given name. Same as find-coding-
system except an error is signalled if there is no such coding system instead of re-
turning nil.

Functioncoding-system-list
This function returns a list of the names of all defined coding systems.

Functioncoding-system-name coding-system
This function returns the name of the given coding system.

Functionmake-coding-system name type &optional doc-string props
This function registers symbol name as a coding system.

type describes the conversion method used and should be one of the types listed in
Section 55.6.1 [Coding System Types], page 756.

doc-string is a string describing the coding system.

props is a property list, describing the specific nature of the character set. Recognized
properties are as in Section 55.6.3 [Coding System Properties], page 757.

Functioncopy-coding-system old-coding-system new-name
This function copies old-coding-system to new-name. If new-name does not name an
existing coding system, a new one will be created.

Functionsubsidiary-coding-system coding-system eol-type
This function returns the subsidiary coding system of coding-system with eol type
eol-type.

760 XEmacs Lisp Reference Manual

55.6.5 Coding System Property Functions

Functioncoding-system-doc-string coding-system
This function returns the doc string for coding-system.

Functioncoding-system-type coding-system
This function returns the type of coding-system.

Functioncoding-system-property coding-system prop
This function returns the prop property of coding-system.

55.6.6 Encoding and Decoding Text

Functiondecode-coding-region start end coding-system &optional buffer
This function decodes the text between start and end which is encoded in coding-
system. This is useful if you’ve read in encoded text from a file without decoding it
(e.g. you read in a JIS-formatted file but used the binary or no-conversion coding
system, so that it shows up as ‘^[$B!<!+^[(B’). The length of the encoded text is
returned. buffer defaults to the current buffer if unspecified.

Functionencode-coding-region start end coding-system &optional buffer
This function encodes the text between start and end using coding-system. This will,
for example, convert Japanese characters into stuff such as ‘^[$B!<!+^[(B’ if you use
the JIS encoding. The length of the encoded text is returned. buffer defaults to the
current buffer if unspecified.

55.6.7 Detection of Textual Encoding

Functioncoding-category-list
This function returns a list of all recognized coding categories.

Functionset-coding-priority-list list
This function changes the priority order of the coding categories. list should be a list
of coding categories, in descending order of priority. Unspecified coding categories
will be lower in priority than all specified ones, in the same relative order they were
in previously.

Functioncoding-priority-list
This function returns a list of coding categories in descending order of priority.

Chapter 55: MULE 761

Functionset-coding-category-system coding-category coding-system
This function changes the coding system associated with a coding category.

Functioncoding-category-system coding-category
This function returns the coding system associated with a coding category.

Functiondetect-coding-region start end &optional buffer
This function detects coding system of the text in the region between start and end.
Returned value is a list of possible coding systems ordered by priority. If only ASCII
characters are found, it returns autodetect or one of its subsidiary coding systems
according to a detected end-of-line type. Optional arg buffer defaults to the current
buffer.

55.6.8 Big5 and Shift-JIS Functions

These are special functions for working with the non-standard Shift-JIS and Big5 en-
codings.

Functiondecode-shift-jis-char code
This function decodes a JISX0208 character of Shift-JIS coding-system. code is the
character code in Shift-JIS as a cons of type bytes. The corresponding character is
returned.

Functionencode-shift-jis-char ch
This function encodes a JISX0208 character ch to SHIFT-JIS coding-system. The
corresponding character code in SHIFT-JIS is returned as a cons of two bytes.

Functiondecode-big5-char code
This function decodes a Big5 character code of BIG5 coding-system. code is the
character code in BIG5. The corresponding character is returned.

Functionencode-big5-char ch
This function encodes the Big5 character char to BIG5 coding-system. The corre-
sponding character code in Big5 is returned.

55.7 CCL

CCL (Code Conversion Language) is a simple structured programming language designed
for character coding conversions. A CCL program is compiled to CCL code (represented
by a vector of integers) and executed by the CCL interpreter embedded in Emacs. The
CCL interpreter implements a virtual machine with 8 registers called r0, ..., r7, a number
of control structures, and some I/O operators. Take care when using registers r0 (used
in implicit set statements) and especially r7 (used internally by several statements and
operations, especially for multiple return values and I/O operations).

762 XEmacs Lisp Reference Manual

CCL is used for code conversion during process I/O and file I/O for non-ISO2022 coding
systems. (It is the only way for a user to specify a code conversion function.) It is also used
for calculating the code point of an X11 font from a character code. However, since CCL is
designed as a powerful programming language, it can be used for more generic calculation
where efficiency is demanded. A combination of three or more arithmetic operations can
be calculated faster by CCL than by Emacs Lisp.

Warning: The code in ‘src/mule-ccl.c’ and ‘$packages/lisp/mule-base/mule-ccl.el’
is the definitive description of CCL’s semantics. The previous version of this section
contained several typos and obsolete names left from earlier versions of MULE, and many
may remain. (I am not an experienced CCL programmer; the few who know CCL well find
writing English painful.)

A CCL program transforms an input data stream into an output data stream. The
input stream, held in a buffer of constant bytes, is left unchanged. The buffer may be filled
by an external input operation, taken from an Emacs buffer, or taken from a Lisp string.
The output buffer is a dynamic array of bytes, which can be written by an external output
operation, inserted into an Emacs buffer, or returned as a Lisp string.

A CCL program is a (Lisp) list containing two or three members. The first member is
the buffer magnification, which indicates the required minimum size of the output buffer
as a multiple of the input buffer. It is followed by the main block which executes while
there is input remaining, and an optional EOF block which is executed when the input is
exhausted. Both the main block and the EOF block are CCL blocks.

A CCL block is either a CCL statement or list of CCL statements. A CCL statement
is either a set statement (either an integer or an assignment, which is a list of a register to
receive the assignment, an assignment operator, and an expression) or a control statement
(a list starting with a keyword, whose allowable syntax depends on the keyword).

55.7.1 CCL Syntax

The full syntax of a CCL program in BNF notation:
CCL PROGRAM :=

(BUFFER MAGNIFICATION
CCL MAIN BLOCK
[CCL EOF BLOCK])

BUFFER MAGNIFICATION := integer
CCL MAIN BLOCK := CCL BLOCK
CCL EOF BLOCK := CCL BLOCK

CCL BLOCK :=
STATEMENT | (STATEMENT [STATEMENT ...])

STATEMENT :=
SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE
| CALL | END

SET :=
(REG = EXPRESSION)

Chapter 55: MULE 763

| (REG ASSIGNMENT OPERATOR EXPRESSION)
| integer

EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)

IF := (if EXPRESSION CCL BLOCK [CCL BLOCK])
BRANCH := (branch EXPRESSION CCL BLOCK [CCL BLOCK ...])
LOOP := (loop STATEMENT [STATEMENT ...])
BREAK := (break)
REPEAT :=

(repeat)
| (write-repeat [REG | integer | string])
| (write-read-repeat REG [integer | ARRAY])

READ :=
(read REG ...)
| (read-if (REG OPERATOR ARG) CCL BLOCK CCL BLOCK)
| (read-branch REG CCL BLOCK [CCL BLOCK ...])

WRITE :=
(write REG ...)
| (write EXPRESSION)
| (write integer) | (write string) | (write REG ARRAY)
| string

CALL := (call ccl-program-name)
END := (end)

REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
ARG := REG | integer
OPERATOR :=

+ | - | * | / | % | & | ’|’ | ^ | << | >> | <8 | >8 | //
| < | > | == | <= | >= | != | de-sjis | en-sjis

ASSIGNMENT OPERATOR :=
+= | -= | *= | /= | %= | &= | ’|=’ | ^= | <<= | >>=

ARRAY := ’[’ integer ... ’]’

55.7.2 CCL Statements

The Emacs Code Conversion Language provides the following statement types: set, if,
branch, loop, repeat, break, read, write, call, and end.

Set statement:

The set statement has three variants with the syntaxes ‘(reg = expression)’, ‘(reg as-
signment operator expression)’, and ‘integer’. The assignment operator variation of the
set statement works the same way as the corresponding C expression statement does. The
assignment operators are +=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>=, and they have the
same meanings as in C. A "naked integer" integer is equivalent to a set statement of the
form (r0 = integer).

764 XEmacs Lisp Reference Manual

I/O statements:

The read statement takes one or more registers as arguments. It reads one byte (a C
char) from the input into each register in turn.

The write takes several forms. In the form ‘(write reg ...)’ it takes one or more
registers as arguments and writes each in turn to the output. The integer in a register
(interpreted as an Emchar) is encoded to multibyte form (ie, Bufbytes) and written to
the current output buffer. If it is less than 256, it is written as is. The forms ‘(write
expression)’ and ‘(write integer)’ are treated analogously. The form ‘(write string)’
writes the constant string to the output. A "naked string" ‘string ’ is equivalent to the
statement ‘(write string)’. The form ‘(write reg array)’ writes the regth element of the
array to the output.

Conditional statements:

The if statement takes an expression, a CCL block, and an optional second CCL block
as arguments. If the expression evaluates to non-zero, the first CCL block is executed.
Otherwise, if there is a second CCL block, it is executed.

The read-if variant of the if statement takes an expression, a CCL block, and an op-
tional second CCL block as arguments. The expression must have the form (reg operator
operand) (where operand is a register or an integer). The read-if statement first reads
from the input into the first register operand in the expression, then conditionally executes
a CCL block just as the if statement does.

The branch statement takes an expression and one or more CCL blocks as arguments.
The CCL blocks are treated as a zero-indexed array, and the branch statement uses the
expression as the index of the CCL block to execute. Null CCL blocks may be used as no-ops,
continuing execution with the statement following the branch statement in the containing
CCL block. Out-of-range values for the EXPRESSION are also treated as no-ops.

The read-branch variant of the branch statement takes an register, a CCL block, and
an optional second CCL block as arguments. The read-branch statement first reads from
the input into the register, then conditionally executes a CCL block just as the branch
statement does.

Loop control statements:

The loop statement creates a block with an implied jump from the end of the block back
to its head. The loop is exited on a break statement, and continued without executing the
tail by a repeat statement.

The break statement, written ‘(break)’, terminates the current loop and continues with
the next statement in the current block.

The repeat statement has three variants, repeat, write-repeat, and write-read-
repeat. Each continues the current loop from its head, possibly after performing I/O.
repeat takes no arguments and does no I/O before jumping. write-repeat takes a single
argument (a register, an integer, or a string), writes it to the output, then jumps. write-
read-repeat takes one or two arguments. The first must be a register. The second may
be an integer or an array; if absent, it is implicitly set to the first (register) argument.

Chapter 55: MULE 765

write-read-repeat writes its second argument to the output, then reads from the input
into the register, and finally jumps. See the write and read statements for the semantics
of the I/O operations for each type of argument.

Other control statements:

The call statement, written ‘(call ccl-program-name)’, executes a CCL program as a
subroutine. It does not return a value to the caller, but can modify the register status.

The end statement, written ‘(end)’, terminates the CCL program successfully, and
returns to caller (which may be a CCL program). It does not alter the status of the
registers.

55.7.3 CCL Expressions

CCL, unlike Lisp, uses infix expressions. The simplest CCL expressions consist of a single
operand, either a register (one of r0, ..., r0) or an integer. Complex expressions are lists of
the form (expression operator operand). Unlike C, assignments are not expressions.

In the following table, X is the target resister for a set. In subexpressions, this is
implicitly r7. This means that >8, //, de-sjis, and en-sjis cannot be used freely in
subexpressions, since they return parts of their values in r7. Y may be an expression,
register, or integer, while Z must be a register or an integer.
Name Operator Code C-like Description
CCL PLUS + 0x00 X = Y + Z
CCL MINUS - 0x01 X = Y - Z
CCL MUL * 0x02 X = Y * Z
CCL DIV / 0x03 X = Y / Z
CCL MOD % 0x04 X = Y % Z
CCL AND & 0x05 X = Y & Z
CCL OR | 0x06 X = Y | Z
CCL XOR ^ 0x07 X = Y ^ Z
CCL LSH << 0x08 X = Y << Z
CCL RSH >> 0x09 X = Y >> Z
CCL LSH8 <8 0x0A X = (Y << 8) | Z
CCL RSH8 >8 0x0B X = Y >> 8, r[7] = Y & 0xFF
CCL DIVMOD // 0x0C X = Y / Z, r[7] = Y % Z
CCL LS < 0x10 X = (X < Y)
CCL GT > 0x11 X = (X > Y)
CCL EQ == 0x12 X = (X == Y)
CCL LE <= 0x13 X = (X <= Y)
CCL GE >= 0x14 X = (X >= Y)
CCL NE != 0x15 X = (X != Y)
CCL ENCODE SJIS en-sjis 0x16 X = HIGHER BYTE (SJIS (Y, Z))

r[7] = LOWER BYTE (SJIS (Y, Z)
CCL DECODE SJIS de-sjis 0x17 X = HIGHER BYTE (DE-SJIS (Y, Z))

r[7] = LOWER BYTE (DE-SJIS (Y, Z))

766 XEmacs Lisp Reference Manual

The CCL operators are as in C, with the addition of CCL LSH8, CCL RSH8,
CCL DIVMOD, CCL ENCODE SJIS, and CCL DECODE SJIS. The CCL ENCODE SJIS
and CCL DECODE SJIS treat their first and second bytes as the high and low bytes of a
two-byte character code. (SJIS stands for Shift JIS, an encoding of Japanese characters
used by Microsoft. CCL ENCODE SJIS is a complicated transformation of the Japanese
standard JIS encoding to Shift JIS. CCL DECODE SJIS is its inverse.) It is somewhat
odd to represent the SJIS operations in infix form.

55.7.4 Calling CCL

CCL programs are called automatically during Emacs buffer I/O when the external
representation has a coding system type of shift-jis, big5, or ccl. The program is
specified by the coding system (see Section 55.6 [Coding Systems], page 755). You can also
call CCL programs from other CCL programs, and from Lisp using these functions:

Functionccl-execute ccl-program status
Execute ccl-program with registers initialized by status. ccl-program is a vector of
compiled CCL code created by ccl-compile. It is an error for the program to try to
execute a CCL I/O command. status must be a vector of nine values, specifying the
initial value for the R0, R1 .. R7 registers and for the instruction counter IC. A nil
value for a register initializer causes the register to be set to 0. A nil value for the
IC initializer causes execution to start at the beginning of the program. When the
program is done, status is modified (by side-effect) to contain the ending values for
the corresponding registers and IC.

Functionccl-execute-on-string ccl-program status str &optional continue
Execute ccl-program with initial status on string. ccl-program is a vector of compiled
CCL code created by ccl-compile. status must be a vector of nine values, specifying
the initial value for the R0, R1 .. R7 registers and for the instruction counter IC. A
nil value for a register initializer causes the register to be set to 0. A nil value for the
IC initializer causes execution to start at the beginning of the program. An optional
fourth argument continue, if non-nil, causes the IC to remain on the unsatisfied read
operation if the program terminates due to exhaustion of the input buffer. Otherwise
the IC is set to the end of the program. When the program is done, status is modified
(by side-effect) to contain the ending values for the corresponding registers and IC.
Returns the resulting string.

To call a CCL program from another CCL program, it must first be registered:

Functionregister-ccl-program name ccl-program
Register name for CCL program program in ccl-program-table. program should be
the compiled form of a CCL program, or nil. Return index number of the registered
CCL program.

Information about the processor time used by the CCL interpreter can be obtained using
these functions:

Chapter 55: MULE 767

Functionccl-elapsed-time
Returns the elapsed processor time of the CCL interpreter as cons of user and system
time, as floating point numbers measured in seconds. If only one overall value can be
determined, the return value will be a cons of that value and 0.

Functionccl-reset-elapsed-time
Resets the CCL interpreter’s internal elapsed time registers.

55.7.5 CCL Examples

This section is not yet written.

55.8 Category Tables

A category table is a type of char table used for keeping track of categories. Categories
are used for classifying characters for use in regexps – you can refer to a category rather than
having to use a complicated [] expression (and category lookups are significantly faster).

There are 95 different categories available, one for each printable character (including
space) in the ASCII charset. Each category is designated by one such character, called a
category designator. They are specified in a regexp using the syntax ‘\cX’, where X is a
category designator. (This is not yet implemented.)

A category table specifies, for each character, the categories that the character is in.
Note that a character can be in more than one category. More specifically, a category table
maps from a character to either the value nil (meaning the character is in no categories)
or a 95-element bit vector, specifying for each of the 95 categories whether the character is
in that category.

Special Lisp functions are provided that abstract this, so you do not have to directly
manipulate bit vectors.

Functioncategory-table-p obj
This function returns t if arg is a category table.

Functioncategory-table &optional buffer
This function returns the current category table. This is the one specified by the
current buffer, or by buffer if it is non-nil.

Functionstandard-category-table
This function returns the standard category table. This is the one used for new
buffers.

Functioncopy-category-table &optional table
This function constructs a new category table and return it. It is a copy of the table,
which defaults to the standard category table.

768 XEmacs Lisp Reference Manual

Functionset-category-table table &optional buffer
This function selects a new category table for buffer. One argument, a category table.
buffer defaults to the current buffer if omitted.

Functioncategory-designator-p obj
This function returns t if arg is a category designator (a char in the range ‘’ ’’ to
‘’~’’).

Functioncategory-table-value-p obj
This function returns t if arg is a category table value. Valid values are nil or a bit
vector of size 95.

Appendix A: Tips and Standards 769

Appendix A Tips and Standards

This chapter describes no additional features of XEmacs Lisp. Instead it gives advice
on making effective use of the features described in the previous chapters.

A.1 Writing Clean Lisp Programs

Here are some tips for avoiding common errors in writing Lisp code intended for
widespread use:
• Since all global variables share the same name space, and all functions share another

name space, you should choose a short word to distinguish your program from other
Lisp programs. Then take care to begin the names of all global variables, constants,
and functions with the chosen prefix. This helps avoid name conflicts.
This recommendation applies even to names for traditional Lisp primitives that are
not primitives in XEmacs Lisp—even to cadr. Believe it or not, there is more than
one plausible way to define cadr. Play it safe; append your name prefix to produce a
name like foo-cadr or mylib-cadr instead.
If you write a function that you think ought to be added to Emacs under a certain name,
such as twiddle-files, don’t call it by that name in your program. Call it mylib-
twiddle-files in your program, and send mail to ‘bug-gnu-emacs@prep.ai.mit.edu’
suggesting we add it to Emacs. If and when we do, we can change the name easily
enough.
If one prefix is insufficient, your package may use two or three alternative common
prefixes, so long as they make sense.
Separate the prefix from the rest of the symbol name with a hyphen, ‘-’. This will be
consistent with XEmacs itself and with most Emacs Lisp programs.

• It is often useful to put a call to provide in each separate library program, at least if
there is more than one entry point to the program.

• If a file requires certain other library programs to be loaded beforehand, then the
comments at the beginning of the file should say so. Also, use require to make sure
they are loaded.

• If one file foo uses a macro defined in another file bar, foo should contain this expression
before the first use of the macro:

(eval-when-compile (require ’bar))

(And bar should contain (provide ’bar), to make the require work.) This will cause
bar to be loaded when you byte-compile foo. Otherwise, you risk compiling foo without
the necessary macro loaded, and that would produce compiled code that won’t work
right. See Section 12.3 [Compiling Macros], page 182.
Using eval-when-compile avoids loading bar when the compiled version of foo is used.

• If you define a major mode, make sure to run a hook variable using run-hooks, just
as the existing major modes do. See Section 26.4 [Hooks], page 382.

770 XEmacs Lisp Reference Manual

• If the purpose of a function is to tell you whether a certain condition is true or false,
give the function a name that ends in ‘p’. If the name is one word, add just ‘p’; if the
name is multiple words, add ‘-p’. Examples are framep and frame-live-p.

• If a user option variable records a true-or-false condition, give it a name that ends in
‘-flag’.

• Please do not define C-c letter as a key in your major modes. These sequences are
reserved for users; they are the only sequences reserved for users, so we cannot do
without them.

Instead, define sequences consisting of C-c followed by a non-letter. These sequences
are reserved for major modes.

Changing all the major modes in Emacs 18 so they would follow this convention was
a lot of work. Abandoning this convention would make that work go to waste, and
inconvenience users.

• Sequences consisting of C-c followed by {, }, <, >, : or ; are also reserved for major
modes.

• Sequences consisting of C-c followed by any other punctuation character are allocated
for minor modes. Using them in a major mode is not absolutely prohibited, but if you
do that, the major mode binding may be shadowed from time to time by minor modes.

• You should not bind C-h following any prefix character (including C-c). If you don’t
bind C-h, it is automatically available as a help character for listing the subcommands
of the prefix character.

• You should not bind a key sequence ending in 〈ESC〉 except following another 〈ESC〉.
(That is, it is ok to bind a sequence ending in 〈ESC〉 〈ESC〉.)

The reason for this rule is that a non-prefix binding for 〈ESC〉 in any context prevents
recognition of escape sequences as function keys in that context.

• Applications should not bind mouse events based on button 1 with the shift key held
down. These events include S-mouse-1, M-S-mouse-1, C-S-mouse-1, and so on. They
are reserved for users.

• Modes should redefine mouse-2 as a command to follow some sort of reference in the
text of a buffer, if users usually would not want to alter the text in that buffer by hand.
Modes such as Dired, Info, Compilation, and Occur redefine it in this way.

• When a package provides a modification of ordinary Emacs behavior, it is good to
include a command to enable and disable the feature, Provide a command named
whatever-mode which turns the feature on or off, and make it autoload (see Section 14.2
[Autoload], page 202). Design the package so that simply loading it has no visible
effect—that should not enable the feature. Users will request the feature by invoking
the command.

• It is a bad idea to define aliases for the Emacs primitives. Use the standard names
instead.

• Redefining an Emacs primitive is an even worse idea. It may do the right thing for
a particular program, but there is no telling what other programs might break as a
result.

Appendix A: Tips and Standards 771

• If a file does replace any of the functions or library programs of standard XEmacs,
prominent comments at the beginning of the file should say which functions are re-
placed, and how the behavior of the replacements differs from that of the originals.

• Please keep the names of your XEmacs Lisp source files to 13 characters or less. This
way, if the files are compiled, the compiled files’ names will be 14 characters or less,
which is short enough to fit on all kinds of Unix systems.

• Don’t use next-line or previous-line in programs; nearly always, forward-line
is more convenient as well as more predictable and robust. See Section 34.2.4 [Text
Lines], page 496.

• Don’t call functions that set the mark, unless setting the mark is one of the intended
features of your program. The mark is a user-level feature, so it is incorrect to change
the mark except to supply a value for the user’s benefit. See Section 35.6 [The Mark],
page 510.
In particular, don’t use these functions:
• beginning-of-buffer, end-of-buffer
• replace-string, replace-regexp

If you just want to move point, or replace a certain string, without any of the other
features intended for interactive users, you can replace these functions with one or two
lines of simple Lisp code.

• Use lists rather than vectors, except when there is a particular reason to use a vector.
Lisp has more facilities for manipulating lists than for vectors, and working with lists
is usually more convenient.
Vectors are advantageous for tables that are substantial in size and are accessed in
random order (not searched front to back), provided there is no need to insert or delete
elements (only lists allow that).

• The recommended way to print a message in the echo area is with the message function,
not princ. See Section 45.3 [The Echo Area], page 658.

• When you encounter an error condition, call the function error (or signal). The
function error does not return. See Section 9.5.3.1 [Signaling Errors], page 139.
Do not use message, throw, sleep-for, or beep to report errors.

• An error message should start with a capital letter but should not end with a period.
• Try to avoid using recursive edits. Instead, do what the Rmail e command does: use a

new local keymap that contains one command defined to switch back to the old local
keymap. Or do what the edit-options command does: switch to another buffer and
let the user switch back at will. See Section 19.10 [Recursive Editing], page 314.

• In some other systems there is a convention of choosing variable names that begin and
end with ‘*’. We don’t use that convention in Emacs Lisp, so please don’t use it in
your programs. (Emacs uses such names only for program-generated buffers.) The
users will find Emacs more coherent if all libraries use the same conventions.

• Indent each function with C-M-q (indent-sexp) using the default indentation param-
eters.

• Don’t make a habit of putting close-parentheses on lines by themselves; Lisp pro-
grammers find this disconcerting. Once in a while, when there is a sequence of many

772 XEmacs Lisp Reference Manual

consecutive close-parentheses, it may make sense to split them in one or two significant
places.

• Please put a copyright notice on the file if you give copies to anyone. Use the same lines
that appear at the top of the Lisp files in XEmacs itself. If you have not signed papers
to assign the copyright to the Foundation, then place your name in the copyright notice
in place of the Foundation’s name.

A.2 Tips for Making Compiled Code Fast

Here are ways of improving the execution speed of byte-compiled Lisp programs.
• Use the ‘profile’ library to profile your program. See the file ‘profile.el’ for in-

structions.
• Use iteration rather than recursion whenever possible. Function calls are slow in

XEmacs Lisp even when a compiled function is calling another compiled function.
• Using the primitive list-searching functions memq, member, assq, or assoc is even faster

than explicit iteration. It may be worth rearranging a data structure so that one of
these primitive search functions can be used.

• Certain built-in functions are handled specially in byte-compiled code, avoiding the
need for an ordinary function call. It is a good idea to use these functions rather than
alternatives. To see whether a function is handled specially by the compiler, examine
its byte-compile property. If the property is non-nil, then the function is handled
specially.
For example, the following input will show you that aref is compiled specially (see
Section 6.3 [Array Functions], page 106) while elt is not (see Section 6.1 [Sequence
Functions], page 103):

(get ’aref ’byte-compile)
⇒ byte-compile-two-args

(get ’elt ’byte-compile)
⇒ nil

• If calling a small function accounts for a substantial part of your program’s running
time, make the function inline. This eliminates the function call overhead. Since
making a function inline reduces the flexibility of changing the program, don’t do it
unless it gives a noticeable speedup in something slow enough that users care about
the speed. See Section 11.9 [Inline Functions], page 178.

A.3 Tips for Documentation Strings

Here are some tips for the writing of documentation strings.
• Every command, function, or variable intended for users to know about should have a

documentation string.
• An internal variable or subroutine of a Lisp program might as well have a documenta-

tion string. In earlier Emacs versions, you could save space by using a comment instead
of a documentation string, but that is no longer the case.

Appendix A: Tips and Standards 773

• The first line of the documentation string should consist of one or two complete sen-
tences that stand on their own as a summary. M-x apropos displays just the first line,
and if it doesn’t stand on its own, the result looks bad. In particular, start the first
line with a capital letter and end with a period.
The documentation string can have additional lines that expand on the details of how
to use the function or variable. The additional lines should be made up of complete
sentences also, but they may be filled if that looks good.

• For consistency, phrase the verb in the first sentence of a documentation string as
an infinitive with “to” omitted. For instance, use “Return the cons of A and B.” in
preference to “Returns the cons of A and B.” Usually it looks good to do likewise for
the rest of the first paragraph. Subsequent paragraphs usually look better if they have
proper subjects.

• Write documentation strings in the active voice, not the passive, and in the present
tense, not the future. For instance, use “Return a list containing A and B.” instead of
“A list containing A and B will be returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. Instead of, “Cause
Emacs to display text in boldface,” write just “Display text in boldface.”

• Do not start or end a documentation string with whitespace.
• Format the documentation string so that it fits in an Emacs window on an 80-column

screen. It is a good idea for most lines to be no wider than 60 characters. The first
line can be wider if necessary to fit the information that ought to be there.
However, rather than simply filling the entire documentation string, you can make it
much more readable by choosing line breaks with care. Use blank lines between topics
if the documentation string is long.

• Do not indent subsequent lines of a documentation string so that the text is lined up
in the source code with the text of the first line. This looks nice in the source code,
but looks bizarre when users view the documentation. Remember that the indentation
before the starting double-quote is not part of the string!

• A variable’s documentation string should start with ‘*’ if the variable is one that users
would often want to set interactively. If the value is a long list, or a function, or if the
variable would be set only in init files, then don’t start the documentation string with
‘*’. See Section 10.5 [Defining Variables], page 151.

• The documentation string for a variable that is a yes-or-no flag should start with words
such as “Non-nil means. . . ”, to make it clear that all non-nil values are equivalent
and indicate explicitly what nil and non-nil mean.

• When a function’s documentation string mentions the value of an argument of the
function, use the argument name in capital letters as if it were a name for that value.
Thus, the documentation string of the function / refers to its second argument as
‘DIVISOR’, because the actual argument name is divisor.
Also use all caps for meta-syntactic variables, such as when you show the decomposition
of a list or vector into subunits, some of which may vary.

• When a documentation string refers to a Lisp symbol, write it as it would be printed
(which usually means in lower case), with single-quotes around it. For example:
‘‘lambda’’. There are two exceptions: write t and nil without single-quotes.

774 XEmacs Lisp Reference Manual

• Don’t write key sequences directly in documentation strings. Instead, use the
‘\\[...]’ construct to stand for them. For example, instead of writing ‘C-f’, write
‘\\[forward-char]’. When Emacs displays the documentation string, it substitutes
whatever key is currently bound to forward-char. (This is normally ‘C-f’, but it
may be some other character if the user has moved key bindings.) See Section 27.3
[Keys in Documentation], page 388.

• In documentation strings for a major mode, you will want to refer to the key bindings of
that mode’s local map, rather than global ones. Therefore, use the construct ‘\\<...>’
once in the documentation string to specify which key map to use. Do this before the
first use of ‘\\[...]’. The text inside the ‘\\<...>’ should be the name of the variable
containing the local keymap for the major mode.
It is not practical to use ‘\\[...]’ very many times, because display of the documen-
tation string will become slow. So use this to describe the most important commands
in your major mode, and then use ‘\\{...}’ to display the rest of the mode’s keymap.

A.4 Tips on Writing Comments

We recommend these conventions for where to put comments and how to indent them:

‘;’ Comments that start with a single semicolon, ‘;’, should all be aligned to the
same column on the right of the source code. Such comments usually explain
how the code on the same line does its job. In Lisp mode and related modes,
the M-; (indent-for-comment) command automatically inserts such a ‘;’ in
the right place, or aligns such a comment if it is already present.
This and following examples are taken from the Emacs sources.

(setq base-version-list ; there was a base
(assoc (substring fn 0 start-vn) ; version to which

file-version-assoc-list)) ; this looks like
; a subversion

‘;;’ Comments that start with two semicolons, ‘;;’, should be aligned to the same
level of indentation as the code. Such comments usually describe the purpose
of the following lines or the state of the program at that point. For example:

(prog1 (setq auto-fill-function
...
...

;; update modeline
(redraw-modeline)))

Every function that has no documentation string (because it is use only inter-
nally within the package it belongs to), should have instead a two-semicolon
comment right before the function, explaining what the function does and how
to call it properly. Explain precisely what each argument means and how the
function interprets its possible values.

‘;;;’ Comments that start with three semicolons, ‘;;;’, should start at the left mar-
gin. Such comments are used outside function definitions to make general state-
ments explaining the design principles of the program. For example:

Appendix A: Tips and Standards 775

;;; This Lisp code is run in XEmacs
;;; when it is to operate as a server
;;; for other processes.

Another use for triple-semicolon comments is for commenting out lines within
a function. We use triple-semicolons for this precisely so that they remain at
the left margin.

(defun foo (a)
;;; This is no longer necessary.
;;; (force-mode-line-update)
(message "Finished with %s" a))

‘;;;;’ Comments that start with four semicolons, ‘;;;;’, should be aligned to the left
margin and are used for headings of major sections of a program. For example:

;;;; The kill ring

The indentation commands of the Lisp modes in XEmacs, such as M-; (indent-for-
comment) and 〈TAB〉 (lisp-indent-line) automatically indent comments according to these
conventions, depending on the number of semicolons. See section “Manipulating Com-
ments” in The XEmacs Reference Manual.

A.5 Conventional Headers for XEmacs Libraries

XEmacs has conventions for using special comments in Lisp libraries to divide them
into sections and give information such as who wrote them. This section explains these
conventions. First, an example:

;;; lisp-mnt.el --- minor mode for Emacs Lisp maintainers

;; Copyright (C) 1992 Free Software Foundation, Inc.

;; Author: Eric S. Raymond <esr@snark.thyrsus.com>
;; Maintainer: Eric S. Raymond <esr@snark.thyrsus.com>
;; Created: 14 Jul 1992
;; Version: 1.2
;; Keywords: docs

;; This file is part of XEmacs.
copying permissions...

The very first line should have this format:
;;; filename --- description

The description should be complete in one line.
After the copyright notice come several header comment lines, each beginning with ‘;;

header-name:’. Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and net address of at least the principal author of the
library.
If there are multiple authors, you can list them on continuation lines led by ;;
and a tab character, like this:

776 XEmacs Lisp Reference Manual

;; Author: Ashwin Ram <Ram-Ashwin@cs.yale.edu>
;; Dave Sill <de5@ornl.gov>
;; Dave Brennan <brennan@hal.com>
;; Eric Raymond <esr@snark.thyrsus.com>

‘Maintainer’
This line should contain a single name/address as in the Author line, or an
address only, or the string ‘FSF’. If there is no maintainer line, the person(s)
in the Author field are presumed to be the maintainers. The example above is
mildly bogus because the maintainer line is redundant.

The idea behind the ‘Author’ and ‘Maintainer’ lines is to make possible a Lisp
function to “send mail to the maintainer” without having to mine the name out
by hand.

Be sure to surround the network address with ‘<...>’ if you include the person’s
full name as well as the network address.

‘Created’ This optional line gives the original creation date of the file. For historical
interest only.

‘Version’ If you wish to record version numbers for the individual Lisp program, put them
in this line.

‘Adapted-By’
In this header line, place the name of the person who adapted the library for
installation (to make it fit the style conventions, for example).

‘Keywords’
This line lists keywords for the finder-by-keyword help command. This field
is important; it’s how people will find your package when they’re looking for
things by topic area. To separate the keywords, you can use spaces, commas,
or both.

Just about every Lisp library ought to have the ‘Author’ and ‘Keywords’ header comment
lines. Use the others if they are appropriate. You can also put in header lines with other
header names—they have no standard meanings, so they can’t do any harm.

We use additional stylized comments to subdivide the contents of the library file. Here
is a table of them:

‘;;; Commentary:’
This begins introductory comments that explain how the library works. It
should come right after the copying permissions.

‘;;; Change log:’
This begins change log information stored in the library file (if you store the
change history there). For most of the Lisp files distributed with XEmacs, the
change history is kept in the file ‘ChangeLog’ and not in the source file at all;
these files do not have a ‘;;; Change log:’ line.

‘;;; Code:’
This begins the actual code of the program.

Appendix A: Tips and Standards 777

‘;;; filename ends here’
This is the footer line; it appears at the very end of the file. Its purpose is to
enable people to detect truncated versions of the file from the lack of a footer
line.

778 XEmacs Lisp Reference Manual

Appendix B: Building XEmacs; Allocation of Objects 779

Appendix B Building XEmacs; Allocation of
Objects

This chapter describes how the runnable XEmacs executable is dumped with the
preloaded Lisp libraries in it and how storage is allocated.

There is an entire separate document, the XEmacs Internals Manual, devoted to the
internals of XEmacs from the perspective of the C programmer. It contains much more
detailed information about the build process, the allocation and garbage-collection process,
and other aspects related to the internals of XEmacs.

B.1 Building XEmacs

This section explains the steps involved in building the XEmacs executable. You don’t
have to know this material to build and install XEmacs, since the makefiles do all these
things automatically. This information is pertinent to XEmacs maintenance.

The XEmacs Internals Manual contains more information about this.
Compilation of the C source files in the ‘src’ directory produces an executable file called

‘temacs’, also called a bare impure XEmacs. It contains the XEmacs Lisp interpreter and
I/O routines, but not the editing commands.

Before XEmacs is actually usable, a number of Lisp files need to be loaded. These
define all the editing commands, plus most of the startup code and many very basic Lisp
primitives. This is accomplished by loading the file ‘loadup.el’, which in turn loads all of
the other standardly-loaded Lisp files.

It takes a substantial time to load the standard Lisp files. Luckily, you don’t have to
do this each time you run XEmacs; ‘temacs’ can dump out an executable program called
‘xemacs’ that has these files preloaded. ‘xemacs’ starts more quickly because it does not
need to load the files. This is the XEmacs executable that is normally installed.

To create ‘xemacs’, use the command ‘temacs -batch -l loadup dump’. The purpose of
‘-batch’ here is to tell ‘temacs’ to run in non-interactive, command-line mode. (‘temacs’
can only run in this fashion. Part of the code required to initialize frames and faces is
in Lisp, and must be loaded before XEmacs is able to create any frames.) The argument
‘dump’ tells ‘loadup.el’ to dump a new executable named ‘xemacs’.

The dumping process is highly system-specific, and some operating systems don’t sup-
port dumping. On those systems, you must start XEmacs with the ‘temacs -batch -l
loadup run-temacs’ command each time you use it. This takes a substantial time, but
since you need to start Emacs once a day at most—or once a week if you never log out—the
extra time is not too severe a problem. (In older versions of Emacs, you started Emacs
from ‘temacs’ using ‘temacs -l loadup’.)

You are free to start XEmacs directly from ‘temacs’ if you want, even if there is already
a dumped ‘xemacs’. Normally you wouldn’t want to do that; but the Makefiles do this
when you rebuild XEmacs using ‘make all-elc’, which builds XEmacs and simultaneously
compiles any out-of-date Lisp files. (You need ‘xemacs’ in order to compile Lisp files.
However, you also need the compiled Lisp files in order to dump out ‘xemacs’. If both

780 XEmacs Lisp Reference Manual

of these are missing or corrupted, you are out of luck unless you’re able to bootstrap
‘xemacs’ from ‘temacs’. Note that ‘make all-elc’ actually loads the alternative loadup file
‘loadup-el.el’, which works like ‘loadup.el’ but disables the pure-copying process and
forces XEmacs to ignore any compiled Lisp files even if they exist.)

You can specify additional files to preload by writing a library named ‘site-load.el’
that loads them. You may need to increase the value of PURESIZE, in ‘src/puresize.h’,
to make room for the additional files. You should not modify this file directly, however;
instead, use the ‘--puresize’ configuration option. (If you run out of pure space while
dumping ‘xemacs’, you will be told how much pure space you actually will need.) However,
the advantage of preloading additional files decreases as machines get faster. On modern
machines, it is often not advisable, especially if the Lisp code is on a file system local to
the machine running XEmacs.

You can specify other Lisp expressions to execute just before dumping by putting them
in a library named ‘site-init.el’. However, if they might alter the behavior that users
expect from an ordinary unmodified XEmacs, it is better to put them in ‘default.el’, so
that users can override them if they wish. See Section 50.1.1 [Start-up Summary], page 701.

Before ‘loadup.el’ dumps the new executable, it finds the documentation strings for
primitive and preloaded functions (and variables) in the file where they are stored, by call-
ing Snarf-documentation (see Section 27.2 [Accessing Documentation], page 386). These
strings were moved out of the ‘xemacs’ executable to make it smaller. See Section 27.1
[Documentation Basics], page 385.

Functiondump-emacs to-file from-file
This function dumps the current state of XEmacs into an executable file to-file. It
takes symbols from from-file (this is normally the executable file ‘temacs’).
If you use this function in an XEmacs that was already dumped, you must set
command-line-processed to nil first for good results. See Section 50.1.4 [Com-
mand Line Arguments], page 704.

Functionrun-emacs-from-temacs &rest args
This is the function that implements the ‘run-temacs’ command-line argument. It is
called from ‘loadup.el’ as appropriate. You should most emphatically not call this
yourself; it will reinitialize your XEmacs process and you’ll be sorry.

Commandemacs-version
This function returns a string describing the version of XEmacs that is running. It is
useful to include this string in bug reports.

(emacs-version)
⇒ "XEmacs 20.1 [Lucid] (i586-unknown-linux2.0.29)

of Mon Apr 7 1997 on altair.xemacs.org"

Called interactively, the function prints the same information in the echo area.

Variableemacs-build-time
The value of this variable is the time at which XEmacs was built at the local site.

emacs-build-time "Mon Apr 7 20:28:52 1997"
⇒

Appendix B: Building XEmacs; Allocation of Objects 781

Variableemacs-version
The value of this variable is the version of Emacs being run. It is a string, e.g. "20.1
XEmacs Lucid".

The following two variables did not exist before FSF GNU Emacs version 19.23 and
XEmacs version 19.10, which reduces their usefulness at present, but we hope they will be
convenient in the future.

Variableemacs-major-version
The major version number of Emacs, as an integer. For XEmacs version 20.1, the
value is 20.

Variableemacs-minor-version
The minor version number of Emacs, as an integer. For XEmacs version 20.1, the
value is 1.

B.2 Pure Storage

XEmacs Lisp uses two kinds of storage for user-created Lisp objects: normal storage and
pure storage. Normal storage is where all the new data created during an XEmacs session
is kept; see the following section for information on normal storage. Pure storage is used
for certain data in the preloaded standard Lisp files—data that should never change during
actual use of XEmacs.

Pure storage is allocated only while ‘temacs’ is loading the standard preloaded Lisp
libraries. In the file ‘xemacs’, it is marked as read-only (on operating systems that permit
this), so that the memory space can be shared by all the XEmacs jobs running on the
machine at once. Pure storage is not expandable; a fixed amount is allocated when XEmacs
is compiled, and if that is not sufficient for the preloaded libraries, ‘temacs’ aborts with
an error message. If that happens, you must increase the compilation parameter PURESIZE
using the ‘--puresize’ option to ‘configure’. This normally won’t happen unless you try
to preload additional libraries or add features to the standard ones.

Functionpurecopy object
This function makes a copy of object in pure storage and returns it. It copies strings
by simply making a new string with the same characters in pure storage. It recursively
copies the contents of vectors and cons cells. It does not make copies of other objects
such as symbols, but just returns them unchanged. It signals an error if asked to copy
markers.
This function is a no-op except while XEmacs is being built and dumped; it is usually
called only in the file ‘xemacs/lisp/prim/loaddefs.el’, but a few packages call it
just in case you decide to preload them.

Variablepure-bytes-used
The value of this variable is the number of bytes of pure storage allocated so far.
Typically, in a dumped XEmacs, this number is very close to the total amount of
pure storage available—if it were not, we would preallocate less.

782 XEmacs Lisp Reference Manual

Variablepurify-flag
This variable determines whether defun should make a copy of the function definition
in pure storage. If it is non-nil, then the function definition is copied into pure
storage.
This flag is t while loading all of the basic functions for building XEmacs initially
(allowing those functions to be sharable and non-collectible). Dumping XEmacs as
an executable always writes nil in this variable, regardless of the value it actually
has before and after dumping.
You should not change this flag in a running XEmacs.

B.3 Garbage Collection

When a program creates a list or the user defines a new function (such as by loading a
library), that data is placed in normal storage. If normal storage runs low, then XEmacs
asks the operating system to allocate more memory in blocks of 2k bytes. Each block is
used for one type of Lisp object, so symbols, cons cells, markers, etc., are segregated in
distinct blocks in memory. (Vectors, long strings, buffers and certain other editing types,
which are fairly large, are allocated in individual blocks, one per object, while small strings
are packed into blocks of 8k bytes. [More correctly, a string is allocated in two sections:
a fixed size chunk containing the length, list of extents, etc.; and a chunk containing the
actual characters in the string. It is this latter chunk that is either allocated individually or
packed into 8k blocks. The fixed size chunk is packed into 2k blocks, as for conses, markers,
etc.])

It is quite common to use some storage for a while, then release it by (for example) killing
a buffer or deleting the last pointer to an object. XEmacs provides a garbage collector to
reclaim this abandoned storage. (This name is traditional, but “garbage recycler” might be
a more intuitive metaphor for this facility.)

The garbage collector operates by finding and marking all Lisp objects that are still
accessible to Lisp programs. To begin with, it assumes all the symbols, their values and
associated function definitions, and any data presently on the stack, are accessible. Any
objects that can be reached indirectly through other accessible objects are also accessible.

When marking is finished, all objects still unmarked are garbage. No matter what the
Lisp program or the user does, it is impossible to refer to them, since there is no longer a
way to reach them. Their space might as well be reused, since no one will miss them. The
second (“sweep”) phase of the garbage collector arranges to reuse them.

The sweep phase puts unused cons cells onto a free list for future allocation; likewise
for symbols, markers, extents, events, floats, compiled-function objects, and the fixed-size
portion of strings. It compacts the accessible small string-chars chunks so they occupy
fewer 8k blocks; then it frees the other 8k blocks. Vectors, buffers, windows, and other
large objects are individually allocated and freed using malloc and free.

Common Lisp note: unlike other Lisps, XEmacs Lisp does not call the garbage
collector when the free list is empty. Instead, it simply requests the operat-
ing system to allocate more storage, and processing continues until gc-cons-
threshold bytes have been used.

Appendix B: Building XEmacs; Allocation of Objects 783

This means that you can make sure that the garbage collector will not run
during a certain portion of a Lisp program by calling the garbage collector
explicitly just before it (provided that portion of the program does not use so
much space as to force a second garbage collection).

Commandgarbage-collect
This command runs a garbage collection, and returns information on the amount of
space in use. (Garbage collection can also occur spontaneously if you use more than
gc-cons-threshold bytes of Lisp data since the previous garbage collection.)

garbage-collect returns a list containing the following information:

((used-conses . free-conses)
(used-syms . free-syms)
(used-markers . free-markers)
used-string-chars
used-vector-slots
(plist))

784 XEmacs Lisp Reference Manual

⇒ ((73362 . 8325) (13718 . 164)
(5089 . 5098) 949121 118677
(conses-used 73362 conses-free 8329 cons-storage 658168
symbols-used 13718 symbols-free 164 symbol-storage 335216
bit-vectors-used 0 bit-vectors-total-length 0
bit-vector-storage 0 vectors-used 7882
vectors-total-length 118677 vector-storage 537764
compiled-functions-used 1336 compiled-functions-free 37
compiled-function-storage 44440 short-strings-used 28829
long-strings-used 2 strings-free 7722
short-strings-total-length 916657 short-string-storage 1179648
long-strings-total-length 32464 string-header-storage 441504
floats-used 3 floats-free 43 float-storage 2044 markers-used 5089
markers-free 5098 marker-storage 245280 events-used 103
events-free 835 event-storage 110656 extents-used 10519
extents-free 2718 extent-storage 372736
extent-auxiliarys-used 111 extent-auxiliarys-freed 3
extent-auxiliary-storage 4440 window-configurations-used 39
window-configurations-on-free-list 5
window-configurations-freed 10 window-configuration-storage 9492
popup-datas-used 3 popup-data-storage 72 toolbar-buttons-used 62
toolbar-button-storage 4960 toolbar-datas-used 12
toolbar-data-storage 240 symbol-value-buffer-locals-used 182
symbol-value-buffer-local-storage 5824
symbol-value-lisp-magics-used 22
symbol-value-lisp-magic-storage 1496
symbol-value-varaliases-used 43
symbol-value-varalias-storage 1032 opaque-lists-used 2
opaque-list-storage 48 color-instances-used 12
color-instance-storage 288 font-instances-used 5
font-instance-storage 180 opaques-used 11 opaque-storage 312
range-tables-used 1 range-table-storage 16 faces-used 34
face-storage 2584 glyphs-used 124 glyph-storage 4464
specifiers-used 775 specifier-storage 43869 weak-lists-used 786
weak-list-storage 18864 char-tables-used 40
char-table-storage 41920 buffers-used 25 buffer-storage 7000
extent-infos-used 457 extent-infos-freed 73
extent-info-storage 9140 keymaps-used 275 keymap-storage 12100
consoles-used 4 console-storage 384 command-builders-used 2
command-builder-storage 120 devices-used 2 device-storage 344
frames-used 3 frame-storage 624 image-instances-used 47
image-instance-storage 3008 windows-used 27 windows-freed 2
window-storage 9180 lcrecord-lists-used 15
lcrecord-list-storage 360 hashtables-used 631
hashtable-storage 25240 streams-used 1 streams-on-free-list 3
streams-freed 12 stream-storage 91))

Here is a table explaining each element:

Appendix B: Building XEmacs; Allocation of Objects 785

used-conses
The number of cons cells in use.

free-conses
The number of cons cells for which space has been obtained from the
operating system, but that are not currently being used.

used-syms The number of symbols in use.

free-syms The number of symbols for which space has been obtained from the op-
erating system, but that are not currently being used.

used-markers
The number of markers in use.

free-markers
The number of markers for which space has been obtained from the op-
erating system, but that are not currently being used.

used-string-chars
The total size of all strings, in characters.

used-vector-slots
The total number of elements of existing vectors.

plist A list of alternating keyword/value pairs providing more detailed infor-
mation. (As you can see above, quite a lot of information is provided.)

User Optiongc-cons-threshold
The value of this variable is the number of bytes of storage that must be allocated for
Lisp objects after one garbage collection in order to trigger another garbage collection.
A cons cell counts as eight bytes, a string as one byte per character plus a few bytes
of overhead, and so on; space allocated to the contents of buffers does not count.
Note that the subsequent garbage collection does not happen immediately when the
threshold is exhausted, but only the next time the Lisp evaluator is called.

The initial threshold value is 500,000. If you specify a larger value, garbage collection
will happen less often. This reduces the amount of time spent garbage collecting, but
increases total memory use. You may want to do this when running a program that
creates lots of Lisp data.

You can make collections more frequent by specifying a smaller value, down to 10,000.
A value less than 10,000 will remain in effect only until the subsequent garbage col-
lection, at which time garbage-collect will set the threshold back to 10,000. (This
does not apply if XEmacs was configured with ‘--debug’. Therefore, be careful when
setting gc-cons-threshold in that case!)

Functionmemory-limit
This function returns the address of the last byte XEmacs has allocated, divided by
1024. We divide the value by 1024 to make sure it fits in a Lisp integer.

You can use this to get a general idea of how your actions affect the memory usage.

786 XEmacs Lisp Reference Manual

Variablepre-gc-hook
This is a normal hook to be run just before each garbage collection. Interrupts,
garbage collection, and errors are inhibited while this hook runs, so be extremely
careful in what you add here. In particular, avoid consing, and do not interact with
the user.

Variablepost-gc-hook
This is a normal hook to be run just after each garbage collection. Interrupts, garbage
collection, and errors are inhibited while this hook runs, so be extremely careful in
what you add here. In particular, avoid consing, and do not interact with the user.

Variablegc-message
This is a string to print to indicate that a garbage collection is in progress. This
is printed in the echo area. If the selected frame is on a window system and gc-
pointer-glyph specifies a value (i.e. a pointer image instance) in the domain of the
selected frame, the mouse cursor will change instead of this message being printed.

Glyphgc-pointer-glyph
This holds the pointer glyph used to indicate that a garbage collection is in progress.
If the selected window is on a window system and this glyph specifies a value (i.e.
a pointer image instance) in the domain of the selected window, the cursor will be
changed as specified during garbage collection. Otherwise, a message will be printed
in the echo area, as controlled by gc-message. See Chapter 43 [Glyphs], page 635.

If XEmacs was configured with ‘--debug’, you can set the following two variables to get
direct information about all the allocation that is happening in a segment of Lisp code.

Variabledebug-allocation
If non-zero, print out information to stderr about all objects allocated.

Variabledebug-allocation-backtrace
Length (in stack frames) of short backtrace printed out by debug-allocation.

Appendix C: Standard Errors 787

Appendix C Standard Errors

Here is the complete list of the error symbols in standard Emacs, grouped by concept.
The list includes each symbol’s message (on the error-message property of the symbol)
and a cross reference to a description of how the error can occur.

Each error symbol has an error-conditions property that is a list of symbols. Normally
this list includes the error symbol itself and the symbol error. Occasionally it includes
additional symbols, which are intermediate classifications, narrower than error but broader
than a single error symbol. For example, all the errors in accessing files have the condition
file-error.

As a special exception, the error symbol quit does not have the condition error, because
quitting is not considered an error.

See Section 9.5.3 [Errors], page 138, for an explanation of how errors are generated and
handled.

symbol string ; reference.

error "error"
See Section 9.5.3 [Errors], page 138.

quit "Quit"
See Section 19.8 [Quitting], page 311.

args-out-of-range
"Args out of range"
See Chapter 6 [Sequences Arrays Vectors], page 103.

arith-error
"Arithmetic error"
See / and % in Chapter 3 [Numbers], page 47.

beginning-of-buffer
"Beginning of buffer"
See Section 34.2 [Motion], page 494.

buffer-read-only
"Buffer is read-only"
See Section 30.7 [Read Only Buffers], page 442.

cyclic-function-indirection
"Symbol’s chain of function indirections contains a loop"
See Section 8.2.4 [Function Indirection], page 125.

domain-error
"Arithmetic domain error"

end-of-buffer
"End of buffer"
See Section 34.2 [Motion], page 494.

788 XEmacs Lisp Reference Manual

end-of-file
"End of file during parsing"
This is not a file-error.
See Section 17.3 [Input Functions], page 258.

file-error
This error and its subcategories do not have error-strings, because the error
message is constructed from the data items alone when the error condition
file-error is present.
See Chapter 28 [Files], page 395.

file-locked
This is a file-error.
See Section 28.5 [File Locks], page 401.

file-already-exists
This is a file-error.
See Section 28.4 [Writing to Files], page 400.

file-supersession
This is a file-error.
See Section 30.6 [Modification Time], page 441.

invalid-function
"Invalid function"
See Section 8.2.3 [Classifying Lists], page 125.

invalid-read-syntax
"Invalid read syntax"
See Section 17.3 [Input Functions], page 258.

invalid-regexp
"Invalid regexp"
See Section 37.2 [Regular Expressions], page 556.

mark-inactive
"The mark is not active now"

no-catch "No catch for tag"
See Section 9.5.1 [Catch and Throw], page 136.

overflow-error
"Arithmetic overflow error"

protected-field
"Attempt to modify a protected field"

range-error
"Arithmetic range error"

Appendix C: Standard Errors 789

search-failed
"Search failed"
See Chapter 37 [Searching and Matching], page 555.

setting-constant
"Attempt to set a constant symbol"
See Section 10.2 [Variables that Never Change], page 147.

singularity-error
"Arithmetic singularity error"

tooltalk-error
"ToolTalk error"
See Chapter 52 [ToolTalk Support], page 729.

undefined-keystroke-sequence
"Undefined keystroke sequence"

void-function
"Symbol’s function definition is void"
See Section 11.8 [Function Cells], page 176.

void-variable
"Symbol’s value as variable is void"
See Section 10.6 [Accessing Variables], page 153.

wrong-number-of-arguments
"Wrong number of arguments"
See Section 8.2.3 [Classifying Lists], page 125.

wrong-type-argument
"Wrong type argument"
See Section 2.7 [Type Predicates], page 38.

These error types, which are all classified as special cases of arith-error, can occur on
certain systems for invalid use of mathematical functions.

domain-error
"Arithmetic domain error"
See Section 3.9 [Math Functions], page 59.

overflow-error
"Arithmetic overflow error"
See Section 3.9 [Math Functions], page 59.

range-error
"Arithmetic range error"
See Section 3.9 [Math Functions], page 59.

singularity-error
"Arithmetic singularity error"
See Section 3.9 [Math Functions], page 59.

790 XEmacs Lisp Reference Manual

underflow-error
"Arithmetic underflow error"
See Section 3.9 [Math Functions], page 59.

Appendix D: Buffer-Local Variables 791

Appendix D Buffer-Local Variables

The table below lists the general-purpose Emacs variables that are automatically local
(when set) in each buffer. Many Lisp packages define such variables for their internal use;
we don’t list them here.

abbrev-mode
see Chapter 39 [Abbrevs], page 587

auto-fill-function
see Section 36.13 [Auto Filling], page 535

buffer-auto-save-file-name
see Section 29.2 [Auto-Saving], page 429

buffer-backed-up
see Section 29.1 [Backup Files], page 425

buffer-display-table
see Section 45.11 [Display Tables], page 669

buffer-file-format
see Section 28.13 [Format Conversion], page 421

buffer-file-name
see Section 30.4 [Buffer File Name], page 438

buffer-file-number
see Section 30.4 [Buffer File Name], page 438

buffer-file-truename
see Section 30.4 [Buffer File Name], page 438

buffer-file-type
see Section 28.14 [Files and MS-DOS], page 423

buffer-invisibility-spec
see Section 45.5 [Invisible Text], page 663

buffer-offer-save
see Section 28.2 [Saving Buffers], page 398

buffer-read-only
see Section 30.7 [Read Only Buffers], page 442

buffer-saved-size
see Section 34.1 [Point], page 493

buffer-undo-list
see Section 36.9 [Undo], page 529

cache-long-line-scans
see Section 34.2.4 [Text Lines], page 496

case-fold-search
see Section 37.7 [Searching and Case], page 572

792 XEmacs Lisp Reference Manual

ctl-arrow
see Section 45.10 [Usual Display], page 668

comment-column
see section “Comments” in The XEmacs User’s Manual

default-directory
see Section 50.3 [System Environment], page 708

defun-prompt-regexp
see Section 34.2.6 [List Motion], page 499

fill-column
see Section 36.13 [Auto Filling], page 535

goal-column
see section “Moving Point” in The XEmacs User’s Manual

left-margin
see Section 36.16 [Indentation], page 540

local-abbrev-table
see Chapter 39 [Abbrevs], page 587

local-write-file-hooks
see Section 28.2 [Saving Buffers], page 398

major-mode
see Section 26.1.4 [Mode Help], page 373

mark-active
see Section 35.6 [The Mark], page 510

mark-ring
see Section 35.6 [The Mark], page 510

minor-modes
see Section 26.2 [Minor Modes], page 374

modeline-format
see Section 26.3.1 [Modeline Data], page 377

modeline-buffer-identification
see Section 26.3.2 [Modeline Variables], page 378

modeline-format
see Section 26.3.1 [Modeline Data], page 377

modeline-modified
see Section 26.3.2 [Modeline Variables], page 378

modeline-process
see Section 26.3.2 [Modeline Variables], page 378

mode-name
see Section 26.3.2 [Modeline Variables], page 378

Appendix D: Buffer-Local Variables 793

overwrite-mode
see Section 36.4 [Insertion], page 520

paragraph-separate
see Section 37.8 [Standard Regexps], page 572

paragraph-start
see Section 37.8 [Standard Regexps], page 572

point-before-scroll
Used for communication between mouse commands and scroll-bar commands.

require-final-newline
see Section 36.4 [Insertion], page 520

selective-display
see Section 45.6 [Selective Display], page 664

selective-display-ellipses
see Section 45.6 [Selective Display], page 664

tab-width
see Section 45.10 [Usual Display], page 668

truncate-lines
see Section 45.2 [Truncation], page 658

vc-mode see Section 26.3.2 [Modeline Variables], page 378

794 XEmacs Lisp Reference Manual

Appendix E: Standard Keymaps 795

Appendix E Standard Keymaps

The following symbols are used as the names for various keymaps. Some of these exist
when XEmacs is first started, others are loaded only when their respective mode is used.
This is not an exhaustive list.

Almost all of these maps are used as local maps. Indeed, of the modes that presently
exist, only Vip mode and Terminal mode ever change the global keymap.

bookmark-map
A keymap containing bindings to bookmark functions.

Buffer-menu-mode-map
A keymap used by Buffer Menu mode.

c++-mode-map
A keymap used by C++ mode.

c-mode-map
A keymap used by C mode. A sparse keymap used by C mode.

command-history-map
A keymap used by Command History mode.

ctl-x-4-map
A keymap for subcommands of the prefix C-x 4.

ctl-x-5-map
A keymap for subcommands of the prefix C-x 5.

ctl-x-map
A keymap for C-x commands.

debugger-mode-map
A keymap used by Debugger mode.

dired-mode-map
A keymap for dired-mode buffers.

edit-abbrevs-map
A keymap used in edit-abbrevs.

edit-tab-stops-map
A keymap used in edit-tab-stops.

electric-buffer-menu-mode-map
A keymap used by Electric Buffer Menu mode.

electric-history-map
A keymap used by Electric Command History mode.

emacs-lisp-mode-map
A keymap used by Emacs Lisp mode.

help-map A keymap for characters following the Help key.

796 XEmacs Lisp Reference Manual

Helper-help-map
A keymap used by the help utility package.
It has the same keymap in its value cell and in its function cell.

Info-edit-map
A keymap used by the e command of Info.

Info-mode-map
A keymap containing Info commands.

isearch-mode-map
A keymap that defines the characters you can type within incremental search.

itimer-edit-map
A keymap used when in Itimer Edit mode.

lisp-interaction-mode-map
A keymap used by Lisp mode.

lisp-mode-map
A keymap used by Lisp mode.
A keymap for minibuffer input with completion.

minibuffer-local-isearch-map
A keymap for editing isearch strings in the minibuffer.

minibuffer-local-map
Default keymap to use when reading from the minibuffer.

minibuffer-local-must-match-map
A keymap for minibuffer input with completion, for exact match.

mode-specific-map
The keymap for characters following C-c. Note, this is in the global map. This
map is not actually mode specific: its name was chosen to be informative for
the user in C-h b (display-bindings), where it describes the main use of the
C-c prefix key.

modeline-map
The keymap consulted for mouse-clicks on the modeline of a window.

objc-mode-map
A keymap used in Objective C mode as a local map.

occur-mode-map
A local keymap used by Occur mode.

overriding-local-map
A keymap that overrides all other local keymaps.

query-replace-map
A local keymap used for responses in query-replace and related commands;
also for y-or-n-p and map-y-or-n-p. The functions that use this map do not
support prefix keys; they look up one event at a time.

Appendix E: Standard Keymaps 797

read-expression-map
The minibuffer keymap used for reading Lisp expressions.

read-shell-command-map
The minibuffer keymap used by shell-command and related commands.

shared-lisp-mode-map
A keymap for commands shared by all sorts of Lisp modes.

text-mode-map
A keymap used by Text mode.

toolbar-map
The keymap consulted for mouse-clicks over a toolbar.

view-mode-map
A keymap used by View mode.

798 XEmacs Lisp Reference Manual

Appendix F: Standard Hooks 799

Appendix F Standard Hooks

The following is a list of hook variables that let you provide functions to be called from
within Emacs on suitable occasions.

Most of these variables have names ending with ‘-hook’. They are normal hooks, run
by means of run-hooks. The value of such a hook is a list of functions. The recommended
way to put a new function on such a hook is to call add-hook. See Section 26.4 [Hooks],
page 382, for more information about using hooks.

The variables whose names end in ‘-function’ have single functions as their values.
Usually there is a specific reason why the variable is not a normal hook, such as the need
to pass arguments to the function. (In older Emacs versions, some of these variables had
names ending in ‘-hook’ even though they were not normal hooks.)

The variables whose names end in ‘-hooks’ or ‘-functions’ have lists of functions as
their values, but these functions are called in a special way (they are passed arguments, or
else their values are used).

activate-menubar-hook

activate-popup-menu-hook

ad-definition-hooks

adaptive-fill-function

add-log-current-defun-function

after-change-functions

after-delete-annotation-hook

after-init-hook

after-insert-file-functions

after-revert-hook

after-save-hook

after-set-visited-file-name-hooks

after-write-file-hooks

auto-fill-function

auto-save-hook

before-change-functions

before-delete-annotation-hook

before-init-hook

before-revert-hook

blink-paren-function

buffers-menu-switch-to-buffer-function

c++-mode-hook

c-delete-function

c-mode-common-hook

800 XEmacs Lisp Reference Manual

c-mode-hook

c-special-indent-hook

calendar-load-hook

change-major-mode-hook

command-history-hook

comment-indent-function

compilation-buffer-name-function

compilation-exit-message-function

compilation-finish-function

compilation-parse-errors-function

compilation-mode-hook

create-console-hook

create-device-hook

create-frame-hook

dabbrev-friend-buffer-function

dabbrev-select-buffers-function

delete-console-hook

delete-device-hook

delete-frame-hook

deselect-frame-hook

diary-display-hook

diary-hook

dired-after-readin-hook

dired-before-readin-hook

dired-load-hook

dired-mode-hook

disabled-command-hook

display-buffer-function

ediff-after-setup-control-frame-hook

ediff-after-setup-windows-hook

ediff-before-setup-control-frame-hook

ediff-before-setup-windows-hook

ediff-brief-help-message-function

ediff-cleanup-hook

ediff-control-frame-position-function

ediff-display-help-hook

ediff-focus-on-regexp-matches-function

ediff-forward-word-function

ediff-hide-regexp-matches-function

Appendix F: Standard Hooks 801

ediff-keymap-setup-hook

ediff-load-hook

ediff-long-help-message-function

ediff-make-wide-display-function

ediff-merge-split-window-function

ediff-meta-action-function

ediff-meta-redraw-function

ediff-mode-hook

ediff-prepare-buffer-hook

ediff-quit-hook

ediff-registry-setup-hook

ediff-select-hook

ediff-session-action-function

ediff-session-group-setup-hook

ediff-setup-diff-regions-function

ediff-show-registry-hook

ediff-show-session-group-hook

ediff-skip-diff-region-function

ediff-split-window-function

ediff-startup-hook

ediff-suspend-hook

ediff-toggle-read-only-function

ediff-unselect-hook

ediff-window-setup-function

edit-picture-hook

electric-buffer-menu-mode-hook

electric-command-history-hook

electric-help-mode-hook

emacs-lisp-mode-hook

fill-paragraph-function

find-file-hooks

find-file-not-found-hooks

first-change-hook

font-lock-after-fontify-buffer-hook

font-lock-beginning-of-syntax-function

font-lock-mode-hook

fume-found-function-hook

fume-list-mode-hook

fume-rescan-buffer-hook

802 XEmacs Lisp Reference Manual

fume-sort-function

gnus-startup-hook

hack-local-variables-hook

highlight-headers-follow-url-function

hyper-apropos-mode-hook

indent-line-function

indent-mim-hook

indent-region-function

initial-calendar-window-hook

isearch-mode-end-hook

isearch-mode-hook

java-mode-hook

kill-buffer-hook

kill-buffer-query-functions

kill-emacs-hook

kill-emacs-query-functions

kill-hooks

LaTeX-mode-hook

latex-mode-hook

ledit-mode-hook

lisp-indent-function

lisp-interaction-mode-hook

lisp-mode-hook

list-diary-entries-hook

load-read-function

log-message-filter-function

m2-mode-hook

mail-citation-hook

mail-mode-hook

mail-setup-hook

make-annotation-hook

makefile-mode-hook

map-frame-hook

mark-diary-entries-hook

medit-mode-hook

menu-no-selection-hook

mh-compose-letter-hook

mh-folder-mode-hook

mh-letter-mode-hook

Appendix F: Standard Hooks 803

mim-mode-hook

minibuffer-exit-hook

minibuffer-setup-hook

mode-motion-hook

mouse-enter-frame-hook

mouse-leave-frame-hook

mouse-track-cleanup-hook

mouse-track-click-hook

mouse-track-down-hook

mouse-track-drag-hook

mouse-track-drag-up-hook

mouse-track-up-hook

mouse-yank-function

news-mode-hook

news-reply-mode-hook

news-setup-hook

nongregorian-diary-listing-hook

nongregorian-diary-marking-hook

nroff-mode-hook

objc-mode-hook

outline-mode-hook

perl-mode-hook

plain-TeX-mode-hook

post-command-hook

post-gc-hook

pre-abbrev-expand-hook

pre-command-hook

pre-display-buffer-function

pre-gc-hook

pre-idle-hook

print-diary-entries-hook

prolog-mode-hook

protect-innocence-hook

remove-message-hook

revert-buffer-function

revert-buffer-insert-contents-function

rmail-edit-mode-hook

rmail-mode-hook

rmail-retry-setup-hook

804 XEmacs Lisp Reference Manual

rmail-summary-mode-hook

scheme-indent-hook

scheme-mode-hook

scribe-mode-hook

select-frame-hook

send-mail-function

shell-mode-hook

shell-set-directory-error-hook

special-display-function

suspend-hook

suspend-resume-hook

temp-buffer-show-function

term-setup-hook

terminal-mode-hook

terminal-mode-break-hook

TeX-mode-hook

tex-mode-hook

text-mode-hook

today-visible-calendar-hook

today-invisible-calendar-hook

tooltalk-message-handler-hook

tooltalk-pattern-handler-hook

tooltalk-unprocessed-message-hook

unmap-frame-hook

vc-checkin-hook

vc-checkout-writable-buffer-hook

vc-log-after-operation-hook

vc-make-buffer-writable-hook

view-hook

vm-arrived-message-hook

vm-arrived-messages-hook

vm-chop-full-name-function

vm-display-buffer-hook

vm-edit-message-hook

vm-forward-message-hook

vm-iconify-frame-hook

vm-inhibit-write-file-hook

vm-key-functions

vm-mail-hook

Appendix F: Standard Hooks 805

vm-mail-mode-hook

vm-menu-setup-hook

vm-mode-hook

vm-quit-hook

vm-rename-current-buffer-function

vm-reply-hook

vm-resend-bounced-message-hook

vm-resend-message-hook

vm-retrieved-spooled-mail-hook

vm-select-message-hook

vm-select-new-message-hook

vm-select-unread-message-hook

vm-send-digest-hook

vm-summary-mode-hook

vm-summary-pointer-update-hook

vm-summary-redo-hook

vm-summary-update-hook

vm-undisplay-buffer-hook

vm-visit-folder-hook

window-setup-hook

write-contents-hooks

write-file-data-hooks

write-file-hooks

write-region-annotate-functions

x-lost-selection-hooks

x-sent-selection-hooks

zmacs-activate-region-hook

zmacs-deactivate-region-hook

zmacs-update-region-hook

806 XEmacs Lisp Reference Manual

Index 807

Index

All variables, functions, keys, programs, files, and concepts are in this one index.
All names and concepts are permuted, so they appear several times, one for each per-

mutation of the parts of the name. For example, function-name would appear as function-
name and name, function-. Key entries are not permuted, however.

#
#$. 213

#@count . 213

$
$ in display . 658

$ in regexp . 559

%
% . 54

% in format . 69

&
& in replacement . 570

&define (Edebug) . 247

¬ (Edebug) . 247

&optional . 168

&optional (Edebug) . 247

&or (Edebug) . 247

&rest . 168

&rest (Edebug) . 247

’
’ for quoting . 129

(
(in regexp . 560

(?: in regexp . 560

(cf. no-redraw-on-reenter), resume 657

(cf. no-redraw-on-reenter), suspend 657

(documentation) file, DOC 385

(Edebug), &define . 247

(Edebug), ¬. 247

(Edebug), &optional . 247

(Edebug), &or . 247

(Edebug), &rest . 247

(Edebug), ‘ . 250

(Edebug), anonymous lambda expressions 234

(Edebug), backquote . 250

(Edebug), cl.el . 234

(Edebug), Common Lisp . 234

(Edebug), current buffer point and mark 244

(Edebug), dotted lists . 249

(Edebug), eval-current-buffer 233

(Edebug), eval-defun . 233

(Edebug), eval-expression 234

(Edebug), eval-region . 233

(Edebug), evaluation list . 240

(Edebug), interactive commands 234

(Edebug), keyboard macros 235

(Edebug), lambda-list . 248

(Edebug), lexical binding . 240

(Edebug), printing . 241

(Edebug), reading . 241

(Edebug), save-excursion . 244

(Edebug), special forms . 234

(Edebug), syntax error . 249

(Edebug), window configuration 244

(for printing), stream . 258

(for reading), stream . 255

(for X windows), selection 723

(in a buffer), restriction . 502

(in a specifier), domain . 610

(in a specifier), fallback . 611

(in a specifier), inst-list. 610

(in a specifier), inst-pair . 610

(in a specifier), instance . 610

(in a specifier), instancing 610

(in a specifier), instantiator 610

(in a specifier), locale . 610

(in a specifier), specification 610

(in a specifier), tag . 610

(in a specifier), tag set . 610

(in buffer), position . 493

(in file name), version number 410

(in obarray), bucket . 115

(in regexp), character set . 558

(input), ISO Latin-1 characters 718

808 XEmacs Lisp Reference Manual

(input), Latin-1 character set 718

(list substitution), ‘ . 183

(list substitution), backquote 183

(mouse), cursor . 649

(mouse), pointer . 649

(of a buffer), accessible portion 502

(of buffer), modification flag 440

(of file name), directory part 410

(of file name), nondirectory part 410

(of file), truename . 405

(of list), element . 79

(symbol), property list cell 113

(with Backquote), , . 183

(with Backquote), ,@ . 184

(with backquote), splicing 184

)
) in regexp . 560

*
* . 53

* in interactive . 287

* in regexp . 557

*? in regexp . 558

scratch . 372

,
, (with Backquote) . 183

,@ (with Backquote) . 184

.

. in lists. 26

. in regexp . 557

.emacs . 702

.emacs customization . 367

/
/ . 53

/= . 50

;
; in comment . 18

?
? in character constant . 23

? in minibuffer . 267

? in regexp . 558

@
@ in interactive . 287

[
[in regexp . 558

]
] in regexp . 558

‘
‘. 183

‘ (Edebug) . 250

‘ (list substitution) . 183

‘, edebug- . 250

in interactive . 287

"

" in printing. 260

" in strings . 28

{

{ in regexp . 559

+

+ . 52

+ in regexp . 558

+? in regexp . 558

=

= . 50

Index 809

>
> . 51

>= . 51

^
^ in regexp . 559

\
\ in character constant . 23

\ in display . 658

\ in printing. 260

\ in regexp . 559

\ in replacement . 570

\ in strings . 28

\ in symbols . 23

\%%%123n,m\%%%125 in regexp 558

\’ in regexp . 562

\‘ in regexp . 562

\= in regexp . 562

\> in regexp . 562

\< in regexp . 562

\a . 22

\b . 22

\b in regexp . 562

\B in regexp . 562

\e . 22

\f . 22

\n . 22

\n in print . 262

\n in replacement . 570

\r . 22

\s in regexp . 561

\S in regexp . 561

\t . 22

\v . 22

\w in regexp . 561

\W in regexp . 561

<
< . 50

<= . 50

1
1 character set (input), Latin- 718

1 characters (input), ISO Latin- 718

1, ISO Latin . 75

1- . 52

1+ . 52

4
4, C-x . 323

4-map, ctl-x- . 323, 795

5
5, C-x . 323

5-map, ctl-x- . 323, 795

A
abbrev . 587

abbrev table . 587

abbrev tables in modes . 366

abbrev, add- . 588

abbrev, define- . 588

abbrev, expand- . 590

abbrev, last-. 590

abbrev-alist, directory- . 412

abbrev-all-caps . 590

abbrev-expand-hook, pre- 591

abbrev-expansion . 590

abbrev-file, quietly-read- . 589

abbrev-file, write- . 589

abbrev-file-name . 589

abbrev-location, last- . 590

abbrev-mode . 587

abbrev-mode, default- . 587

abbrev-prefix-mark . 590

abbrev-start-location . 590

abbrev-start-location-buffer 590

abbrev-symbol . 590

abbrev-table, c-mode- . 592

abbrev-table, clear- . 588

abbrev-table, define- . 588

abbrev-table, fundamental-mode- 592

abbrev-table, global- . 591

abbrev-table, lisp-mode- . 592

abbrev-table, local- . 591

abbrev-table, make- . 587

abbrev-table, text-mode- . 592

abbrev-table-description, insert- 588

abbrev-table-name-list . 588

abbrev-text, last- . 591

abbreviate-file-name . 412

abbreviation, directory name 412

abbrevs, only-global- . 589

abbrevs, save- . 589

810 XEmacs Lisp Reference Manual

abbrevs-changed . 589

abbrevs-map, edit- . 795

abort-recursive-edit . 315

aborting . 314

about-lock, ask-user- . 402

about-supersession-threat, ask-user- 441

abs . 52

absolute file name . 413

absolute-p, file-name- . 413

accelerate-menu . 350

accelerator-enabled, menu- 351

accelerator-map, menu- . 351

accelerator-modifiers, menu- 351

accelerator-prefix, menu- . 351

accelerators, keyboard menu 350

accelerators, menu . 350

accept-process-output . 696

access, environment variable 709

accessibility of a file . 402

accessibility, file . 402

accessible portion (of a buffer) 502

accessible-directory-p, file- 403

accessible-keymaps . 337

according-to-mode, indent- 541

acos . 59

acosh . 59

action, annotation-. 653

action, set-annotation- . 654

activate-menubar-hook . 345

activate-popup-menu-hook. 349

activate-region, zmacs- . 514

activate-region-hook, zmacs- 514

active display table . 670

active keymap . 324

active-minibuffer-window . 283

active-p, minibuffer-window- 284

active-p, region- . 514

add-abbrev . 588

add-hook . 383

add-menu . 347

add-menu-button . 346

add-menu-item . 347

add-name-to-file . 408

add-spec-list-to-specifier . 614

add-spec-to-specifier . 614

add-submenu . 346

add-text-properties . 547

add-timeout . 715

add-to-list . 155

add-tooltalk-message-arg . 731

add-tooltalk-pattern-arg . 733

add-tooltalk-pattern-attribute 733

address field of register . 24

address, mail-host- . 709

address, user-mail- . 711

after, char- . 517

after, edebug-print-trace- 242, 253

after-change-function . 553

after-change-functions . 553

after-find-file . 397

after-init-hook . 703

after-insert-file-functions . 550

after-load-alist . 208

after-revert-hook . 434

after-save-hook . 399

age, file . 404

alias, define-obsolete-function- 394

alias, define-obsolete-variable- 394

alias, variable- . 163

aliases, for variables . 163

aliases, variable . 163

alist . 94

alist, after-load- . 208

alist, auto-mode- . 372

alist, command-switch- . 705

alist, copy- . 97

alist, destructive-plist-to- . 100

alist, directory-abbrev- . 412

alist, file-name-buffer-file-type- 423

alist, format- . 421

alist, interpreter-mode- . 373

alist, ldap-host-parameters- 736

alist, minor-mode- . 379

alist, minor-mode-map- . 327

alist, plist-to- . 100

alist, register- . 552

alist, sound- . 671

alist-to-plist . 100

alist-to-plist, destructive- . 100

alists, copying . 97

all, text-property-not- . 549

all-annotations . 654

all-caps, abbrev- . 590

all-completions . 272

all-completions, file-name- 415

all-defs, edebug- . 233, 252

all-forms, edebug- . 233, 252

all-local-variables, kill- . 161

allocate more storage, CL note— 782

allocation, debug- . 786

allocation, memory . 782

allocation-backtrace, debug- 786

Index 811

allow-sendevents, x- . 727

already-exists, file- . 409

alternative, regexp . 559

analysis, performance . 243

and . 134

and, bitwise . 57

and, logical . 57

and-compile, eval- . 214

and-eval-command, edit- . 268

and-exit, minibuffer-complete- 274

and-exit, self-insert- . 282

and-indent, newline- . 541

and-indent, reindent-then-newline- 541

and-init, make-specifier- . 621

and-mark, exchange-point- 512

annotate-functions, write-region- 550

annotation . 651

annotation hooks . 655

annotation, delete- . 652

annotation, hide- . 654

annotation, make- . 652

annotation, reveal- . 654

annotation-action . 653

annotation-action, set- . 654

annotation-data . 653

annotation-data, set- . 653

annotation-down-glyph . 653

annotation-down-glyph, set- 653

annotation-face . 653

annotation-face, set- . 653

annotation-glyph . 653

annotation-glyph, set- . 653

annotation-layout . 653

annotation-layout, set- . 653

annotation-list . 654

annotation-menu . 654

annotation-menu, set- . 654

annotation-side . 653

annotation-visible . 654

annotation-width . 654

annotationp . 652

annotations, all- . 654

annotations-at . 654

annotations-in-region . 654

anonymous function . 174

anonymous lambda expressions (Edebug) 234

another buffer, changing to 435

any, text-property- . 549

API, Drag . 364

API, Drop . 364

apostrophe for quoting . 129

apostrophe, quoting using 129

append . 85

append, kill- . 528

append-to-file . 401

application-class, x-emacs- 725

apply . 172

apply, and debugging . 229

apropos . 391

area, cursor-in-echo- . 661

area, echo . 658

area-message, inhibit-startup-echo- 702

area-p, event-over-text- . 300

area-pixel-edges, window-text- 470

area-pixel-height, window-text- 469

area-pixel-width, window-text- 470

aref . 106

arg, add-tooltalk-message- 731

arg, add-tooltalk-pattern- 733

arg, CL note—default optional 168

arg, current-prefix- . 313

arg, prefix- . 314

arglist, compiled-function- 215

args, command-line- . 705

argument binding . 168

argument descriptors . 286

argument evaluation form 286

argument evaluation, macro 185

argument prompt . 287

argument string, default . 288

argument unreading, prefix 309

argument usage, numeric prefix 289

argument usage, raw prefix 289

argument, digit- . 314

argument, evaluated expression 290

argument, execute with prefix 291

argument, marker . 289

argument, negative- . 314

argument, numeric prefix . 312

argument, position . 288

argument, prefix . 312

argument, raw prefix . 312

argument, region . 289

argument, universal- . 314

argument, wrong-type- . 38

arguments, binding . 168

arguments, command line 704

arguments, complex . 265

arguments, optional . 168

arguments, program . 683

arguments, reading . 265

arguments, reading interactive 288

812 XEmacs Lisp Reference Manual

arguments, repositioning format 71

arguments, rest . 168

arguments, wrong-number-of- 168

arith-error example . 142

arith-error in division . 53

arithmetic shift . 56

array . 105

array elements . 106

arrayp . 106

arrays, character . 61

arrow, ctl-. 669

arrow, default-ctl- . 669

arrow, overlay . 665

arrow-glyph, control- . 650

arrow-position, overlay- . 666

arrow-string, overlay- . 665

ascent, glyph- . 640

ASCII character codes . 21

aset . 107

ash . 56

asin. 59

asinh . 59

ask-user-about-lock . 402

ask-user-about-supersession-threat 441

asking the user questions . 279

asking, trim-versions-without- 428

assoc . 94

association list . 94

association lists, property lists vs 118

assq . 95

asynchronous subprocess . 687

at input, peeking . 308

at, annotations- . 654

at, extent- . 596

at, looking- . 565

at, posix-looking- . 566

at, text-properties- . 546

atan . 59

atanh . 59

atom . 25, 80

atomic extent . 606

atoms . 80

attribute, add-tooltalk-pattern- 733

attribute, get-tooltalk-message- 731

attribute, set-tooltalk-message- 731

attributes of text . 546

attributes, charset-from-. 749

attributes, file . 405

attributes, file- . 406

Auto Fill mode . 535

Auto Fill mode, newline and 521

auto-fill-function . 535

auto-help, completion- . 275

auto-lower-frame . 485

auto-mode, set- . 371

auto-mode-alist . 372

auto-raise-frame . 485

auto-save, do- . 432

auto-save-default . 431

auto-save-file, rename- . 432

auto-save-file-format . 423

auto-save-file-if-necessary, delete-. 432

auto-save-file-name, buffer- 429

auto-save-file-name, make- 430

auto-save-file-name-p . 430

auto-save-files, delete- . 432

auto-save-hook . 431

auto-save-interval . 431

auto-save-list-file-name . 432

auto-save-mode . 430

auto-save-p, recent- . 431

auto-save-timeout . 431

auto-save-visited-file-name 431

auto-saved, set-buffer- . 431

auto-saving . 429

autoload . 202, 743

autoload errors . 203

autoload, function cell in . 203

autoloads, update-directory- 203

autoloads, update-file- . 203

automatic, filling, . 535

automatically buffer-local 159

available fonts . 632

available, closures not . 157

available, fonts . 632

average, load- . 710

avoidance, undo . 551

B
back-to-indentation . 544

backed-up, buffer- . 425

background pixmap . 626

background, face- . 630

background, image-instance- 648

background, set-face- . 629

background-instance, face- 630

background-pixmap, face- 630

background-pixmap, set-face- 630

background-pixmap-instance, face- 630

backquote (Edebug) . 250

backquote (list substitution) 183

Index 813

Backquote), , (with . 183

Backquote), ,@ (with . 184

backquote), splicing (with 184

backslash in character constant 23

backslash in strings . 28

backslash in symbols . 23

backspace . 22

backtrace . 228

backtrace, debug-allocation- 786

backtrace-debug . 229

backtrace-frame . 229

backtracking . 249

backtracking, preventing . 248

backup file . 425

backup files, how to make them 426

backup, file-newest- . 429

backup-buffer . 425

backup-by-copying . 427

backup-by-copying-when-linked 427

backup-by-copying-when-mismatch 427

backup-enable-predicate . 426

backup-file-name, find- . 429

backup-file-name, make- . 428

backup-file-name-p . 428

backup-files, make- . 425

backup-inhibited . 426

backward, posix-search- . 566

backward, re-search- . 564

backward, search- . 556

backward, skip-chars- . 501

backward, skip-syntax- . 581

backward, word-search- . 556

backward-char . 495

backward-char, delete- . 523

backward-delete-char-untabify 523

backward-list . 499

backward-prefix-chars . 581

backward-sexp . 500

backward-to-indentation . 544

backward-word . 495

balancing parentheses . 667

barf-if-buffer-read-only . 443

base buffer . 447

base, ldap-default- . 735

base-buffer, buffer- . 447

baseline, glyph- . 639

baseline, set-glyph- . 639

baseline-instance, glyph- . 640

batch mode . 722

batch-byte-compile . 211

batch-byte-recompile-directory 212

baud-rate, device- . 491, 720

baud-rate, set-device- 491, 720

beep . 671

beeping . 671

before point, insertion . 520

before, edebug-print-trace- 242, 253

before-change-function . 553

before-change-functions . 553

before-init-hook . 703

before-markers, insert- . 520

before-revert-hook . 433

begin-glyph, extent- . 603

begin-glyph, set-extent- . 603

begin-glyph-layout, extent- 602

begin-glyph-layout, set-extent- 603

beginning of line . 497

beginning of line in regexp. 559

beginning, match- . 568

beginning, region- . 513

beginning-of-buffer . 496

beginning-of-defun . 500

beginning-of-line . 497

bell . 671

bell character . 22

bell, visible- . 671

bell-volume . 672

big5-char, decode- . 761

big5-char, encode- . 761

binary files and text files . 423

binary files, text files and . 423

binary, find-file- . 424

binary-process-input . 687

binary-process-output . 687

bind-text-domain . 741

binding (Edebug), lexical . 240

binding arguments . 168

binding local variables . 148

binding of a key . 319

binding, argument . 168

binding, current . 148

binding, deep . 158

binding, global . 148

binding, global-key- . 331

binding, key . 319

binding, key- . 330

binding, keymap-default- . 321

binding, local . 148

binding, local-key- . 331

binding, minor-mode-key- 331

binding, set-keymap-default- 321

binding, shallow . 158

814 XEmacs Lisp Reference Manual

bindings, changing key . 332

bindings, describe- . 339

bindings, describe-prefix- . 393

bindings, Helper-describe- 393

bindings, inheriting a keymap’s 321

bindings, replace . 334

bindings-internal, describe- 339

bit vector . 110

bit vector length . 104

bit vectors, copying . 111

bit-vector . 110

bit-vector, make- . 110

bit-vector-p . 110

bitmap-file-path, x- . 644, 727

bitp . 110

bits, event-modifier- . 302

bitwise and . 57

bitwise exclusive or . 58

bitwise not . 58

bitwise or . 58

blank-lines, delete- . 525

blanks-input, read-no- . 267

blink-matching-open . 668

blink-matching-paren . 668

blink-matching-paren-delay 668

blink-matching-paren-distance 668

blink-paren-function . 668

blink-paren-hook . 667

blinking . 667

bobp . 518

body of function . 167

bold . 632

bold, x-make-font- . 632

bold-italic, x-make-font- . 633

bolp . 518

bookmark-map . 795

boolean . 10

boolean-specifier-p . 613

boolean-specifier-p, face- . 613

bootstrapping XEmacs from temacs 779

border-p, event-over- . 301

bottom-toolbar . 358

bottom-toolbar-height . 359

bottom-toolbar-visible-p . 359

boundary, undo- . 530

boundp . 151

boundp, default- . 162

box diagrams, for lists . 25

box representation for lists 79

box, cons cell as . 79

box, dialog . 353

box, popup-dialog- . 353

box, y-or-n-p-maybe-dialog- 281

box, yes-or-no-p-dialog- . 281

box, yes-or-no-p-maybe-dialog- 281

boxed, for lists, diagrams, . 25

boxes, lists represented as . 79

break . 221

break condition, global . 237

break-condition, edebug-global- 238, 254

break-condition, edebug-set-global- 238

breakpoints . 237

breakpoints, embedded . 238

bucket (in obarray) . 115

buffer . 435

buffer (Edebug), eval-current-. 233

buffer contents . 517

buffer contents, evaluation of 122

buffer excursion, current . 501

buffer file name . 438

buffer input stream . 255

buffer list . 443

buffer mark, current . 511

buffer marker, end of . 508

buffer modification . 440

buffer names . 437

buffer output stream . 259

buffer point and mark (Edebug), current 244

buffer position, current . 493

buffer text notation . 12

buffer text, comparing . 519

buffer), accessible portion (of a 502

buffer), modification flag (of 440

buffer), position (in . 493

buffer), restriction (in a . 502

buffer, abbrev-start-location- 590

buffer, backup- . 425

buffer, base . 447

buffer, beginning-of- . 496

buffer, buffer-base- . 447

buffer, bury- . 444

buffer, changing to another 435

buffer, create-file- . 397

buffer, current . 435

buffer, current- . 437

buffer, cut . 723

buffer, display- . 459

buffer, displaying a . 457

buffer, end-of- . 496

buffer, erase- . 522

buffer, eval- . 122

buffer, event- . 299

Index 815

buffer, file name of . 438

buffer, generate-new- . 445

buffer, get- . 438

buffer, get-file- . 439

buffer, insert- . 521

buffer, kill- . 446

buffer, lock- . 402

buffer, make-indirect- . 447

buffer, marker- . 509

buffer, mouse-grabbed- . 327

buffer, obsolete . 441

buffer, other- . 443

buffer, other-window-scroll- 466

buffer, pop-to- . 458

buffer, process- . 693

buffer, read- . 275

buffer, read-only . 442

buffer, rename- . 438

buffer, revert- . 433

buffer, save- . 398

buffer, save-current- . 502

buffer, selecting a . 435

buffer, set- . 437

buffer, set-process- . 694

buffer, set-window- . 457

buffer, switch-to- . 458

buffer, switching to a . 457

buffer, unlock- . 402

buffer, window- . 457

buffer, with-current- . 502

buffer, with-output-to-temp- 666

buffer-auto-save-file-name 429

buffer-auto-saved, set- . 431

buffer-backed-up . 425

buffer-base-buffer . 447

buffer-case-table, describe- . 75

buffer-create, get- . 444

buffer-dedicated, set-window- 460

buffer-disable-undo . 531

buffer-enable-undo . 531

buffer-end . 494

buffer-file-format . 422

buffer-file-name . 438, 439

buffer-file-number . 439

buffer-file-truename . 439

buffer-file-type . 423

buffer-file-type, default- . 423

buffer-file-type, find- . 423

buffer-file-type-alist, file-name- 423

buffer-flush-undo . 531

buffer-function, buffers-menu-switch-to- 352

buffer-function, display- . 462

buffer-function, revert- . 433

buffer-glyph-p . 648

buffer-hook, kill- . 446

buffer-identification, modeline- 379

buffer-in-windows, replace- 459

buffer-insert-file-contents-function, revert- 433

buffer-invisibility-spec . 663

buffer-list . 443

buffer-live-p . 446

buffer-local variables . 159

buffer-local variables in modes 367

buffer-local, automatically 159

buffer-local, make-variable- 160

buffer-local, variables, . 159

buffer-local-variables . 160

buffer-major-mode, set- . 372

buffer-menu, popup- . 349

Buffer-menu-mode-map . 795

buffer-menu-mode-map, electric- 795

buffer-menubar, set- . 345

buffer-modified-p . 440

buffer-modified-p, set- . 440

buffer-modified-tick . 441

buffer-name . 437

buffer-name, generate-new- 438

buffer-names, same-window- 461

buffer-names, special-display- 461

buffer-offer-save . 398, 446

buffer-other-window, switch-to- 458

buffer-points, edebug-save-displayed- 244, 252

buffer-process, get- . 694

buffer-query-functions, kill- 446

buffer-read-only . 442

buffer-read-only, barf-if- . 443

buffer-saved-size . 432, 494

buffer-show-function, temp- 667

buffer-size . 494

buffer-string . 519

buffer-substring . 519

buffer-substring, insert- . 520

buffer-substrings, compare- 519

buffer-undo-list . 529

buffer-window, get- . 457

bufferp . 435

buffers in interactive, read-only 287

buffers menu . 352

buffers, controlled in windows 457

buffers, creating . 444

buffers, indirect . 447

buffers, killing . 445

816 XEmacs Lisp Reference Manual

buffers, list- . 444

buffers, save-some- . 398

buffers-directory, list- . 440

buffers-menu-filter . 348

buffers-menu-line, format- 352

buffers-menu-max-size . 352

buffers-menu-p, complex- . 352

buffers-menu-switch-to-buffer-function 352

build-time, emacs- . 780

building lists . 84

building XEmacs . 779

built-in function . 165

bury-buffer . 444

busy-pointer-glyph . 649

button type, toolbar . 38

button, add-menu- . 346

button, event- . 302

button, event-toolbar- . 301

button-event-p . 298

button-list, toolbar-make- 357

button-press-event-p . 298

button-release-event-p . 298

button-syntax, check-toolbar- 357

buttons-captioned-p, toolbar- 360

bvconcat . 111

byte-code . 209, 212

byte-code function . 214

byte-code interpreter . 212

byte-code, disassembled . 216

byte-code, make- . 215

byte-compile . 210

byte-compile, batch- . 211

byte-compile-dynamic . 213

byte-compile-dynamic-docstrings 212

byte-compile-file . 211

byte-compiling macros . 182

byte-compiling require . 205

byte-recompile-directory . 211

byte-recompile-directory, batch- 212

byte-recompile-directory-ignore-errors-p 212

bytecode, fetch- . 213

bytes . 61

bytes-used, pure- . 781

C
c, C- . 323

C-c . 323

C-g . 311

C-h . 323

C-M-x . 233

c-mode-abbrev-table . 592

c-mode-map . 795

c-mode-syntax-table . 584

C-q . 721

C-s . 721

C-x . 323

C-x 4 . 323

C-x 5 . 323

C-x a . 323

C-x n . 323

C-x r . 323

c++-mode-map . 795

caaaar . 83

caaadr . 83

caaar . 83

caadar . 83

caaddr . 83

caadr . 83

caar . 83

cadaar . 83

cadadr . 83

cadar . 83

caddar . 83

cadddr . 83

caddr . 83

cadr . 83

call debugging, function . 223

call evaluation, macro . 126

call stack. 228

call, debug-on-next- . 229

call, function . 126

call, interactive . 290

call, macro . 181

call-interactively . 291

call-process . 684

call-process-region . 686

calling a function . 172

cancel-debug-on-entry . 224

canonicalize-inst-list . 616

canonicalize-inst-pair . 616

canonicalize-lax-plist . 100

canonicalize-plist . 99

canonicalize-spec . 616

canonicalize-spec-list . 616

canonicalize-tag-set . 618

capitalization . 73

capitalize . 73

capitalize-region . 544

capitalize-word . 545

caps, abbrev-all- . 590

captioned-p, toolbar-buttons- 360

Index 817

car . 81

car-safe . 82

case changes. 544

case in replacements . 569

case key sequence, upper . 306

case of letters, CL note— . 24

case, character . 72

case, completion-ignore- . 272

case, condition- . 141

case, lower . 72

case, searching and . 572

case, upper . 72

case-fold-search . 572

case-fold-search, default- . 572

case-replace . 572

case-syntax, set- . 75

case-syntax-delims, set- . 75

case-syntax-pair, set- . 75

case-table, current- . 75

case-table, describe-buffer- . 75

case-table, set-. 75

case-table, set-standard- . 75

case-table, standard- . 75

case-table-p . 74

catch . 137

catch, no- . 137

category-designator-p . 768

category-list, coding- . 760

category-system, coding- . 761

category-system, set-coding- 761

category-table . 767

category-table, copy- . 767

category-table, set- . 768

category-table, standard- . 767

category-table-p . 767

category-table-value-p . 768

cbreak . 722

ccl-elapsed-time . 767

ccl-execute . 766

ccl-execute-on-string . 766

ccl-program, charset- . 750

ccl-program, register- . 766

ccl-program, set-charset- . 750

ccl-reset-elapsed-time . 767

cdaaar . 83

cdaadr . 83

cdaar . 83

cdadar . 83

cdaddr . 83

cdadr . 83

cdar . 83

cddaar . 83

cddadr . 83

cddar . 83

cdddar . 83

cddddr . 83

cdddr . 83

cddr . 83

CDE dt . 363

cdr . 81

cdr-safe . 82

ceiling . 52

cell (symbol), property list 113

cell as box, cons . 79

cell in autoload, function . 203

cell, function . 113

cell, print name . 113

cell, value . 113

cell, void function . 176

cells, cons . 84

cells, lists and cons. 79

centering point . 466

change hooks . 553

change, next-property- . 548

change, next-single-property- 549

change, previous-property- 549

change, previous-single-property- 549

change-function, after- . 553

change-function, before- . 553

change-functions, after- . 553

change-functions, before- . 553

change-functions, window-size- 472

change-hook, first- . 553

change-major-mode-hook . 367

changed, abbrevs- . 589

changes, case . 544

changes, hooks for text . 553

changing key bindings . 332

changing to another buffer 435

changing window size . 471

changing, window size, . 471

char quitting, read-quoted- 311

char table type . 31

char, backward- . 495

char, decode-big5- . 761

char, decode-shift-jis- . 761

char, delete previous . 523

char, delete- . 522

char, delete-backward- . 523

char, encode-big5- . 761

char, encode-shift-jis- . 761

char, following- . 517

818 XEmacs Lisp Reference Manual

char, forward- . 495

char, goto- . 494

char, help- . 392

char, insert- . 520

char, int- . 65

char, last-command- . 294

char, last-input- . 309

char, make- . 752

char, make-composite- . 752

char, meta-prefix- . 331

char, preceding- . 518

char, read- . 307

char, read-quoted- . 308

char, string-to- . 67

char, write- . 262

char-after . 517

char-charset . 752

char-description, text- . 391

char-equal . 65

char-in-region, subst-. 551

char-int . 64

char-int confoundance disease 21

char-int-p . 65

char-int-p, char-or- . 65

char-octet . 752

char-or-char-int-p . 65

char-or-marker-p, integer- 507

char-or-marker-p, number- 507

char-or-string-p . 62

char-p, integer-or- . 64

char-property, get- . 546

char-string, composite- . 752

char-syntax . 580

char-table, get- . 77

char-table, get-range- . 77

char-table, make- . 77

char-table, map- . 77

char-table, put- . 77

char-table, reset- . 77

char-table-p . 76

char-table-type . 76

char-table-type-list . 76

char-table-type-p, valid- . 76

char-table-value, check-valid- 77

char-table-value-p, valid- . 77

char-to-string . 67

char-untabify, backward-delete- 523

char= . 65

character arrays . 61

character case . 72

character code, octal . 23

character codes, ASCII . 21

character constant, ? in . 23

character constant, \ in . 23

character constant, backslash in 23

character constant, question mark in 23

character descriptor . 670

character input, octal . 308

character input, quoted . 308

character insertion . 521

character printing . 390

character printing, control 390

character printing, meta . 390

character quote . 577

character set (in regexp) . 558

character set (input), Latin-1 718

character to string . 67

character, bell . 22

character, close parenthesis 577

character, event-to- . 305

character, open parenthesis 577

character, punctuation . 577

character, quote . 582

character, string to . 67

character, whitespace . 576

character-to-event . 305

characteristics of font instances 632

characteristics, font instance 632

characterp . 64

characters . 61

characters (input), ISO Latin-1 718

characters for interactive codes 288

characters in display, control 669

characters in printing, escape 260

characters in printing, quoting 260

characters, control . 22

characters, escape. 262

characters, flow control . 721

characters, printed representation for 21

characters, read syntax for. 21

characters, reading, control 308

characters, reading, nonprinting 308

characters, replace . 551

characters, skipping . 500

characters, syntax for . 21

chars, backward-prefix- . 581

chars, charset- . 750

chars-backward, skip- . 501

chars-forward, skip- . 501

charset type . 37

charset, char- . 752

charset, charset-reverse-direction- 749

Index 819

charset, find- . 749

charset, get- . 749

charset, make- . 749

charset, make-reverse-direction- 749

charset-ccl-program . 750

charset-ccl-program, set- . 750

charset-chars . 750

charset-columns . 750

charset-dimension . 750

charset-direction . 750

charset-doc-string . 750

charset-final . 750

charset-from-attributes . 749

charset-graphic . 750

charset-list . 749

charset-name . 750

charset-property . 750

charset-region, find- . 752

charset-registry . 750

charset-reverse-direction-charset 749

charset-string, find- . 752

charsetp . 747

check-toolbar-button-syntax 357

check-valid-char-table-value 77

check-valid-inst-list . 622

check-valid-instantiator . 622

check-valid-plist . 98

check-valid-spec-list . 622

checking, type . 38

child process . 683

children, extent . 604

children, extent- . 605

children, map-extent- . 599

children, of extent . 604

circle, edebug-print- . 242, 253

circular structures, printing 241

CL note—allocate more storage 782

CL note—case of letters . 24

CL note—default optional arg 168

CL note—integers vrs eq . 50

CL note—lack union, set . 92

CL note—no continuable errors 140

CL note—only throw in Emacs 137

CL note—rplaca vrs setcar 87

CL note—set local . 155

CL note—special forms compared 128

CL note—special variables. 156

CL note—symbol in obarrays 116

cl-read . 241

cl-specs.el . 234

cl.el (Edebug) . 234

class property, mode- . 367

class, device- . 489

class, x-display-visual-. 726

class, x-emacs-application- 725

class-p, valid-device- . 489

classes, display-warning-suppressed- 663

classes, log-warning-suppressed- 662

classes, syntax . 576

cleanup forms . 144

cleanup, error . 144

clear-abbrev-table . 588

clear-hashing, locate-file- . 201

clear-message . 660

clear-range-table . 679

clear-visited-file-modtime . 441

close parenthesis . 667

close parenthesis character. 577

close, ldap- . 738

close, tq- . 699

close-database . 681

closest-point, event- . 300

closures not available . 157

clrhash. 676

code description, interactive 288

code function, byte- . 214

code interpreter, byte- . 212

code, byte- . 209, 212

code, disassembled byte- . 216

code, make-byte- . 215

code, octal character . 23

code-rigidly, indent- . 542

codes, ASCII character . 21

codes, characters for interactive 288

codes, description for interactive 288

codes, interactive, description of 288

coding standards . 769

coding style, standards of 769

coding system type . 37

coding-category-list . 760

coding-category-system. 761

coding-category-system, set- 761

coding-priority-list . 760

coding-priority-list, set- . 760

coding-region, decode- . 760

coding-region, detect- . 761

coding-region, encode- . 760

coding-system, copy- . 759

coding-system, find- . 759

coding-system, get- . 759

coding-system, make- . 759

coding-system, subsidiary- 759

820 XEmacs Lisp Reference Manual

coding-system-doc-string . 760

coding-system-list. 759

coding-system-name . 759

coding-system-p . 756

coding-system-property . 760

coding-system-type . 760

collect, garbage- . 783

collection, marker garbage 505

collector, garbage . 782

color instance type . 38

color instances . 634

color-instance-name . 634

color-instance-p. 634

color-instance-rgb-components 634

color-name . 634

color-pixmap-image-instance-p 646

color-rgb-components . 634

color-specifier-p . 613, 633

color-symbols, xpm-. 644

colorize-image-instance . 647

colors . 633

column, current- . 539

column, current-fill- . 535

column, default-fill- . 534

column, fill- . 534

column, move-to- . 539

columns . 539

columns, charset- . 750

columns, counting . 539

columns, display . 479

columns, sort- . 539

command . 165

command descriptions . 13

command history . 317

command history, record . 291

command in keymap . 328

command key input, waiting for 309

command line arguments . 704

command line options . 705

command line, options on 705

command line, switches on 705

command list, debugger . 225

command loop . 285

command loop, editor . 285

command loop, recursive . 314

command name, read . 291

command override, self-insert- 335

command repetition, kill . 293

command, complex . 317

command, current . 293

command, define-prefix- . 324

command, disable- . 316

command, disabled . 316

command, edit-and-eval- . 268

command, enable- . 316

command, execute-extended- 291

command, help- . 392

command, indent-for-tab- 541

command, keystroke . 166

command, last- . 293

command, minor modes, self-insert- 376

command, prefix . 324

command, prefix-help- . 393

command, process-. 689

command, read- . 276

command, self-insert- . 521

command, start-process-shell- 688

command, this- . 293

command-char, last- . 294

command-debug-status . 229

command-event, last- . 293

command-event, next- . 307

command-event, unread- . 309

command-events, unread- 308

command-execute . 291

command-history . 317

command-history, extended- 269

command-history, shell- . 269

command-history-map . 795

command-hook, disabled-. 316

command-hook, post- . 286

command-hook, pre- . 285

command-keys, substitute- 389

command-keys, this- . 293

command-line . 704

command-line-args . 705

command-line-functions . 705

command-line-processed . 704

command-map, read-shell- 797

command-switch-alist . 705

commandp . 291

commandp example . 276

commands (Edebug), interactive 234

commands, defining . 286

commands, history of . 317

comment ender . 578

comment starter . 578

comment syntax . 578

comment, ; in . 18

comment, forward- . 583

comment, inside . 582

comments . 18

Index 821

comments, header . 775

comments, library header . 775

comments, parse-sexp-ignore- 583

comments, skipping . 583

Common Lisp . 10

Common Lisp (Edebug) . 234

compare-buffer-substrings 519

compared, CL note—special forms 128

comparing buffer text . 519

comparison of modification time 441

comparison of, modification time, 441

comparison, lexical . 66

compilation . 209

compilation functions . 210

compilation, library . 211

compilation, macro . 210

compile, batch-byte- . 211

compile, byte- . 210

compile, eval-and- . 214

compile, eval-when- . 214

compile-defun . 211

compile-dynamic, byte- . 213

compile-dynamic-docstrings, byte- 212

compile-file, byte- . 211

compiled function . 214

compiled-function-arglist . 215

compiled-function-constants 215

compiled-function-doc-string 215

compiled-function-domain 216

compiled-function-instructions 215

compiled-function-interactive 216

compiled-function-p . 166

compiled-function-stack-size 215

compiling macros, byte- . 182

compiling require, byte- . 205

complement, two’s . 47

complete key . 319

complete subexpression, previous 582

complete, minibuffer- . 274

complete-and-exit, minibuffer- 274

complete-word, minibuffer- 274

completing-read . 272

completion . 270

completion subroutines, file name 415

completion, file name . 415

completion, file-name- . 416

completion, interactive . 288

completion, obarray in . 271

completion, programmed . 278

completion, try- . 270

completion-auto-help . 275

completion-confirm, minibuffer- 275

completion-help, minibuffer- 275

completion-ignore-case . 272

completion-ignored-extensions 416

completion-list, display- . 275

completion-map, minibuffer-local- 273, 796

completion-predicate, minibuffer- 274

completion-table, minibuffer- 274

completions, all- . 272

completions, file-name-all- 415

complex arguments . 265

complex command . 317

complex-buffers-menu-p . 352

components, color-instance-rgb- 634

components, color-rgb- . 634

components, symbol . 113

compose-region . 752

composite-char, make- . 752

composite-char-string . 752

concat . 63

concatenating lists . 90

concatenating strings. 63

cond . 133

condition name . 143

condition, edebug-global-break- 238, 254

condition, edebug-set-global-break- 238

condition, global break . 237

condition-case . 141

conditional evaluation . 132

conditions, error- . 143

configuration (Edebug), window 244

configuration, current-frame- 486

configuration, current-window- 473

configuration, frame . 485

configuration, menubar- . 344

configuration, set-frame- . 486

configuration, set-window- 473

configuration, system- . 708

configuration-p, window- . 474

configurations, window . 473

confirm, minibuffer-completion- 275

confoundance disease, char-int 21

connection, network . 699

connection-type, process- . 688

cons . 84

cons cell as box . 79

cons cells . 84

cons cells, lists and. 79

cons-threshold, gc- . 785

conservatively, scroll-. 466

consing . 84

822 XEmacs Lisp Reference Manual

console, select- . 490

console, selected- . 490

console-device-list . 487

console-disable-input . 491

console-enable-input . 491

console-list . 487

console-live-p . 490

console-type-image-conversion-list 644

console-type-image-conversion-list, set- 644

consolep . 487

consoles . 487

consp . 80

constant, ? in character . 23

constant, \ in character . 23

constant, backslash in character 23

constant, question mark in character 23

constant, setting- . 147

constants, compiled-function- 215

constituent, symbol . 576

constituent, word . 576

construct, modeline . 377

containing parentheses, innermost 582

contents, buffer . 517

contents, evaluation of buffer 122

contents, insert-file- . 400

contents-function, revert-buffer-insert-file- 433

contents-hooks, write- . 399

context-lines, next-screen- 466

continuable errors, CL note—no 140

continuation lines . 658

continuation-glyph . 650

continue-kbd-macro, edebug- 253

continue-process . 693

contrib-p, glyph- . 639

contrib-p, set-glyph- . 639

contrib-p-instance, glyph- 639

control character printing 390

control characters . 22

control characters in display 669

control characters, flow . 721

control characters, reading 308

control structures . 131

control structures, special forms for 131

control, enable-flow- . 721

control, version- . 427

control-arrow-glyph . 650

control-on, enable-flow-. 721

Control-X-prefix . 323

controlled in windows, buffers, 457

controlling precisely, windows, 457

conventions for writing minor modes 375

conventions, documentation 385

conventions, minor mode . 375

conversion of image instantiators 644

conversion of strings . 67

conversion, file format . 421

conversion, image instantiator 644

conversion, rounding without 55

conversion-list, console-type-image- 644

conversion-list, set-console-type-image- 644

conversions, rounding in . 51

copy, file-local- . 419

copy-alist . 97

copy-category-table . 767

copy-coding-system . 759

copy-event . 304

copy-extent . 604

copy-face . 626

copy-file . 409

copy-hashtable . 675

copy-keymap . 320

copy-marker . 508

copy-range-table . 679

copy-region-as-kill . 526

copy-sequence . 103

copy-specifier . 623

copy-syntax-table . 580

copying alists . 97

copying bit vectors . 111

copying files . 408

copying lists . 85

copying sequences . 104

copying strings . 63

copying vectors . 109

copying, backup-by- . 427

copying-when-linked, backup-by- 427

copying-when-mismatch, backup-by- 427

cos . 59

cosh . 59

count, edebug-display-freq- 243

count-lines . 497

count-loop . 13

counting columns . 539

counts, frequency . 243

coverage testing . 243

coverage, edebug-test- . 253

create, get-buffer- . 444

create, tq- . 698

create-device-hook . 490

create-file-buffer . 397

create-frame-hook . 486

create-tooltalk-message . 732

Index 823

create-tooltalk-pattern . 733

creating buffers . 444

creating keymaps . 320

creating, buffers, . 444

ctl-arrow . 669

ctl-arrow, default- . 669

ctl-x-4-map . 323, 795

ctl-x-5-map . 323, 795

ctl-x-map . 323, 795

cube-root . 60

current binding . 148

current buffer . 435

current buffer excursion . 501

current buffer mark . 511

current buffer point and mark (Edebug) 244

current buffer position . 493

current command . 293

current stack frame . 224

current-buffer . 437

current-buffer (Edebug), eval-. 233

current-buffer, save- . 502

current-buffer, with- . 502

current-case-table . 75

current-column . 539

current-fill-column . 535

current-frame-configuration 486

current-global-map . 326

current-indentation . 540

current-input-mode . 717

current-justification . 533

current-keymaps . 326

current-kill . 527

current-left-margin . 535

current-line, justify- . 533

current-local-map . 326

current-menubar . 345

current-message . 660

current-minor-mode-maps 327

current-mouse-event . 294

current-prefix-arg . 313

current-time . 713

current-time-string . 712

current-time-zone . 713

current-window-configuration 473

cursor (mouse) . 649

cursor, mouse . 649

cursor-in-echo-area . 661

cursor-redisplay, force- . 657

cust-print . 241

customization, .emacs . 367

cut buffer . 723

cut-function, interprogram- 528

cutbuffer, x-get- . 723

cutbuffer, x-store- . 723

cyclic ordering of windows 455

cyclic, ordering of windows, 455

cyclic, window ordering, . 455

D
data type . 17

data, annotation- . 653

data, match . 568

data, match- . 570

data, save-match- . 571

data, set-annotation- . 653

data, set-match- . 571

data, store-match- . 571

data-directory . 388

database . 681

database type . 37

database, close- . 681

database, get- . 681

database, map- . 681

database, open- . 681

database, put- . 681

database, remove- . 681

database-file-name . 682

database-last-error . 682

database-live-p . 681

database-subtype . 682

database-type . 682

databasep . 681

deactivate-region, zmacs- . 514

deactivate-region-hook, zmacs- 515

deallocate-event . 304

debug . 226

debug, backtrace- . 229

debug, error in . 227

debug, lambda in . 226

debug-allocation . 786

debug-allocation-backtrace 786

debug-events, x- . 727

debug-ignored-errors . 222

debug-mode, x- . 727

debug-on-entry . 223

debug-on-entry, cancel- . 224

debug-on-error . 221

debug-on-error use . 140

debug-on-next-call . 229

debug-on-quit . 222

debug-on-signal . 222

824 XEmacs Lisp Reference Manual

debug-status, command- . 229

debugger . 221, 228

debugger command list . 225

debugger, Lisp . 221

debugger-mode-map . 795

debugging errors . 221

debugging specific functions 223

debugging, apply, and . 229

debugging, error . 221

debugging, eval, and . 229

debugging, funcall, and . 229

debugging, function call . 223

decimal, integer to . 68

decode-big5-char . 761

decode-coding-region . 760

decode-shift-jis-char . 761

decode-time . 715

decoding file formats . 421

decompose-region . 752

decrement field of register . 24

dedicated window . 460, 462

dedicated, set-window-buffer- 460

dedicated-p, set-window- . 462

dedicated-p, window- 460, 462

deep binding . 158

def-edebug-spec . 245

defalias . 171

default argument string . 288

default init file . 702

default optional arg, CL note— 168

default value . 161

default, auto-save- . 431

default, set- . 163

default, setq- . 162

default-abbrev-mode . 587

default-base, ldap- . 735

default-binding, keymap- . 321

default-binding, set-keymap- 321

default-boundp . 162

default-buffer-file-type . 423

default-case-fold-search . 572

default-ctl-arrow . 669

default-deselect-frame-hook 485

default-directory . 414

default-directory, insert- . 278

default-file-modes . 409

default-file-modes, set- . 409

default-fill-column . 534

default-frame-name . 479

default-frame-plist . 477

default-host, ldap- . 735

default-init, inhibit- . 703

default-justification . 533

default-major-mode . 372

default-menubar . 345

default-minibuffer-frame . 482

default-modeline-format . 380

default-p, face-differs-from- 631

default-popup-menu. 349

default-port, ldap- . 735

default-select-frame-hook . 485

default-sounds, load- . 672

default-text-properties . 546

default-toolbar . 357

default-toolbar-height . 358

default-toolbar-position . 358

default-toolbar-position, set- 357

default-toolbar-visible-p . 359

default-toolbar-width . 358

default-truncate-lines . 658

default-value . 162

default-x-device . 724

default.el . 701

defconst . 152, 743

defcustom . 191

defgroup . 190

define-abbrev . 588

define-abbrev-table . 588

define-derived-mode . 374

define-function . 171

define-key . 332

define-logical-name. 409

define-obsolete-function-alias 394

define-obsolete-variable-alias 394

define-prefix-command . 324

define-specifier-tag . 618

defined error, user- . 143

defining a function . 170

defining commands . 286

defining, commands, . 286

defining-kbd-macro . 318

definition of a symbol . 114

definition, format . 421

definition, function . 169

definition, substitute-key- 334

definition, variable . 151

defmacro . 183

defs, edebug-all- . 233, 252

defsubst. 178

defun . 170

defun (Edebug), eval- . 233

defun, beginning-of- . 500

Index 825

defun, compile- . 211

defun, end-of- . 500

defun-prompt-regexp . 500

defvar . 151, 743

defvaralias . 163

deiconify-frame . 484

delay, blink-matching-paren- 668

delete . 93

delete previous char . 523

delete-annotation . 652

delete-auto-save-file-if-necessary 432

delete-auto-save-files . 432

delete-backward-char . 523

delete-blank-lines . 525

delete-char . 522

delete-char-untabify, backward- 523

delete-device . 489

delete-device-hook . 490

delete-directory . 418

delete-exited-processes . 689

delete-extent . 594

delete-file . 409

delete-frame . 480

delete-frame-hook . 486

delete-horizontal-space . 523

delete-indentation . 524

delete-menu-item . 346

delete-other-windows . 453

delete-process . 689

delete-region . 522

delete-to-left-margin . 535

delete-window . 453

delete-windows-on . 453

deleting files . 408

deleting processes . 688

deleting whitespace . 523

deleting windows . 453

deletion of elements . 92

deletion of frames . 480

deletion vs killing . 522

deletion, tab . 523

delimiter, page- . 572

delimiter, paired . 578

delims, set-case-syntax- . 75

delq . 92

demibold . 632

depth, image-instance- . 647

depth, max-lisp-eval- . 123

depth, minibuffer- . 284

depth, parenthesis . 582

depth, recursion- . 316

derived-mode, define- . 374

descendants, extent- . 605

descent, glyph- . 640

describe-bindings . 339

describe-bindings, Helper- 393

describe-bindings-internal 339

describe-buffer-case-table . 75

describe-mode . 373

describe-prefix-bindings . 393

describe-tooltalk-message . 734

description for interactive codes 288

description format . 12

description of, codes, interactive, 288

description, insert-abbrev-table-. 588

description, interactive code 288

description, key- . 390

description, single-key- . 390

description, text-char- . 391

descriptions, command . 13

descriptions, function . 13

descriptions, macro . 13

descriptions, option . 14

descriptions, special form . 13

descriptions, variable . 14

descriptor, character . 670

descriptor, syntax . 576

descriptors, argument . 286

deselect-frame-hook . 486

deselect-frame-hook, default- 485

designator-p, category- . 768

destroy-tooltalk-message . 732

destroy-tooltalk-pattern . 734

destructive-alist-to-plist . 100

destructive-plist-to-alist . 100

detach-extent . 604

detached extent . 604

detached-p, extent- . 604

detect-coding-region . 761

device, default-x- . 724

device, delete- . 489

device, event- . 302

device, frame- . 488

device, make- . 489

device, make-tty- . 489

device, make-x- . 489

device, select- . 490

device, selected- . 490

device, terminal- . 489

device-baud-rate . 491, 720

device-baud-rate, set- 491, 720

device-class . 489

826 XEmacs Lisp Reference Manual

device-class-p, valid- . 489

device-frame-list . 481, 488

device-hook, create- . 490

device-hook, delete- . 490

device-list . 488

device-list, console- . 487

device-live-p . 490

device-matches-specifier-tag-set-p 618

device-matching-specifier-tag-list 619

device-or-frame-p . 488

device-or-frame-type . 489

device-type . 488

device-type-p, valid- . 489

device-x-display . 490

devicep . 487

devices . 487

dgettext . 741

diagrams, boxed, for lists . 25

diagrams, for lists, box . 25

dialog box . 353

dialog-box, popup- . 353

dialog-box, y-or-n-p-maybe- 281

dialog-box, yes-or-no-p- . 281

dialog-box, yes-or-no-p-maybe- 281

differs-from-default-p, face- 631

digit-argument . 314

dimension, charset- . 750

ding . 671

direction, charset- . 750

direction-charset, charset-reverse- 749

direction-charset, make-reverse- 749

directories, program. 684

directory name . 411

directory name abbreviation 412

directory part (of file name) 410

directory, batch-byte-recompile- 212

directory, byte-recompile- 211

directory, data- . 388

directory, default- . 414

directory, delete- . 418

directory, doc- . 388

directory, exec- . 684

directory, file name of . 411

directory, file names in . 416

directory, file-name- . 410

directory, file-name-as- . 412

directory, insert- . 417

directory, insert-default- . 278

directory, installation- . 710

directory, invocation- . 710

directory, list-buffers- . 440

directory, make- . 417

directory, temp- . 415

directory, unhandled-file-name- 419

directory, user-home- . 712

directory-abbrev-alist . 412

directory-autoloads, update- 203

directory-file-name . 412

directory-files . 416

directory-ignore-errors-p, byte-recompile- 212

directory-oriented functions 416

directory-p, file- . 404

directory-p, file-accessible- 403

directory-program, insert- 417

dired-kept-versions . 428

dired-mode-map . 795

dirty-flag, set-menubar- . 345

disable undo . 531

disable-command . 316

disable-input, console- . 491

disable-menu-item . 347

disable-timeout . 716

disable-undo, buffer- . 531

disabled . 316

disabled command . 316

disabled-command-hook . 316

disassemble . 216

disassembled byte-code . 216

discard input . 310

discard-input . 310

disease, char-int confoundance 21

disown-selection, x- . 723

dispatch-event . 308

dispatching an event . 308

display columns . 479

display lines . 479

display order . 595

display table . 669

display table, active . 670

display update . 657

display, $ in . 658

display, \ in . 658

display, control characters in 669

display, device-x- . 490

display, error . 658

display, momentary-string- 667

display, redraw-. 657

display, refresh . 657

display, selective . 664

display, selective- . 664

display, update . 657

display-buffer . 459

Index 827

display-buffer-function . 462

display-buffer-names, special- 461

display-completion-list . 275

display-ellipses, selective- . 665

display-frame-plist, special- 461

display-freq-count, edebug- 243

display-function, special- . 461

display-message. 659

display-popup-frame, special- 461

display-regexps, special- . 461

display-table, make- . 670

display-visual-class, x-. 726

display-warning . 662

display-warning-minimum-level 662

display-warning-suppressed-classes 663

displayed-buffer-points, edebug-save- 244, 252

displayed-text-pixel-height, window- 470

displaying a buffer . 457

distance, blink-matching-paren- 668

division, arith-error in . 53

DND, OffiX . 363

do-auto-save . 432

DOC (documentation) file 385

doc string, string, writing a 385

doc, function-obsoleteness- 394

doc, variable-obsoleteness- 394

doc-directory . 388

doc-file-name, internal- . 388

doc-string, charset- . 750

doc-string, coding-system- 760

doc-string, compiled-function- 215

docstrings, byte-compile-dynamic- 212

documentation . 386

documentation conventions 385

documentation for major mode 373

documentation notation . 11

documentation of function 169

documentation string, writing a 385

documentation strings. 385

documentation strings, keys in 388

documentation, dynamic loading of 212

documentation, keys in . 388

documentation, Snarf-. 388

documentation, substituting keys in 388

documentation, variable- . 385

documentation-property . 386

domain . 742

domain (in a specifier) . 610

domain, bind-text- . 741

domain, compiled-function- 216

domain, specifier, . 610

domain-of . 742

domain-p, valid-specifier- . 622

DOS and file modes, MS-. 409

DOS file types, MS- . 423

DOS, file modes and MS-. 409

DOS, file types on MS- . 423

dotted lists (Edebug) . 249

dotted pair notation . 26

double-quote in strings . 28

down, scroll- . 465

down-glyph, annotation- . 653

down-glyph, set-annotation- 653

down-list . 500

downcase . 73

downcase-region . 545

downcase-word . 545

downcasing in lookup-key 306

drag . 364

drag and drop . 363

Drag API . 364

dribble file . 719

dribble-file, open- . 719

drop . 364

Drop API . 364

drop, drag and . 363

dt, CDE . 363

dump-emacs . 780

duplicable extent . 605

duplicable, extent, . 605

dynamic loading of documentation 212

dynamic loading of functions 213

dynamic scoping . 156

dynamic, byte-compile- . 213

dynamic-docstrings, byte-compile- 212

E
echo area . 658

echo-area, cursor-in- . 661

echo-area-message, inhibit-startup- 702

echo-keystrokes . 294, 661

edebug . 238

Edebug . 231

Edebug execution modes . 234

Edebug mode . 231

Edebug specification list . 246

edebug-‘ . 250

edebug-all-defs . 233, 252

edebug-all-forms . 233, 252

edebug-continue-kbd-macro 253

edebug-display-freq-count 243

828 XEmacs Lisp Reference Manual

edebug-eval-top-level-form 233

edebug-global-break-condition 238, 254

edebug-initial-mode . 253

edebug-on-error . 238, 254

edebug-on-quit . 238, 254

edebug-print-circle . 242, 253

edebug-print-length. 242, 253

edebug-print-level . 242, 253

edebug-print-trace-after 242, 253

edebug-print-trace-before 242, 253

edebug-save-displayed-buffer-points 244, 252

edebug-save-windows 244, 252

edebug-set-global-break-condition 238

edebug-setup-hook . 252

edebug-spec, def- . 245

edebug-test-coverage . 253

edebug-trace . 242, 253

edebug-tracing . 242

edebug-unwrap . 246

edebug-unwrap-results 251, 254

edges, window-pixel- . 470

edges, window-text-area-pixel- 470

edit, abort-recursive- . 315

edit, exit-recursive- . 315

edit, recursive- . 315

edit-abbrevs-map . 795

edit-and-eval-command . 268

edit-map, Info- . 796

edit-map, itimer- . 796

edit-menu-filter . 348

edit-tab-stops-map . 795

editing level, recursive . 314

editing types . 32

editing, exit recursive . 314

editing, regexps used standardly in 572

editing, standard regexps used in 572

editor command loop . 285

effect, side . 121

eighth . 84

elapsed-time, ccl- . 767

elapsed-time, ccl-reset- . 767

elc-files, load-ignore- . 202

electric-buffer-menu-mode-map 795

electric-future-map . 14

electric-history-map . 795

element (of list) . 79

element, next-history- . 283

element, next-matching-history- 283

element, previous-history- 283

element, previous-matching-history- 283

elements of sequences . 105

elements, array . 106

elements, deletion of . 92

elements, list . 81

ellipses, selective-display- . 665

elt . 105

Emacs, CL note—only throw in 137

emacs, dump- . 780

emacs, kill- . 706

emacs, suspend- . 707

emacs-application-class, x- 725

emacs-build-time . 780

emacs-from-temacs, run- . 780

emacs-hook, kill- . 706

emacs-lisp-mode-map . 795

emacs-lisp-mode-syntax-table 584

emacs-major-version . 781

emacs-minor-version . 781

emacs-pid . 710

emacs-query-functions, kill- 706

emacs-version . 780, 781

EMACSLOADPATH environment variable. . . . 200

embedded breakpoints . 238

empty list . 25

enable-command . 316

enable-flow-control . 721

enable-flow-control-on . 721

enable-input, console- . 491

enable-local-eval . 371

enable-local-variables . 371

enable-menu-item . 347

enable-predicate, backup-. 426

enable-recursive-minibuffers 284

enable-undo, buffer- . 531

enabled, menu-accelerator- 351

encode-big5-char . 761

encode-coding-region . 760

encode-shift-jis-char . 761

encode-time . 715

encoding file formats . 421

end of buffer marker . 508

end position, extent . 595

end, buffer- . 494

end, match- . 569

end, region- . 513

end, sentence- . 573

end, window- . 463

end-glyph, extent- . 603

end-glyph, set-extent- . 603

end-glyph-layout, extent- . 602

end-glyph-layout, set-extent- 603

end-of-buffer . 496

Index 829

end-of-defun . 500

end-of-file . 258

end-of-line . 497

end-position, extent- . 595

ender, comment . 578

endpoint, extent . 595

endpoints, set-extent- . 595

enlarge-window . 471

enlarge-window-horizontally 471

enlarge-window-pixels . 471

enqueue, tq- . 698

enqueue-eval-event . 307

entry, cancel-debug-on- . 224

entry, debug-on- . 223

entry, keymap . 328

entry, modify-syntax- . 580

environment . 121

environment variable access 709

environment variable, EMACSLOADPATH . . . 200

environment variable, HOME 683

environment variable, PATH 683

environment variable, TERM 704

environment variables, subprocesses 684

environment, operating system 708

environment, process- . 709

eobp . 518

eof, process-send- . 691

eolp . 518

eq . 44

eq, CL note—integers vrs . 50

eq, lax-plists- . 100

eq, old- . 45

eq, plists- . 99, 120

equal . 45

equal, char- . 65

equal, face- . 631

equal, lax-plists- . 100

equal, plists- . 99, 120

equal, string- . 66

equality . 44

equality, number . 49

equality, string . 65

equality, symbol . 115

erase-buffer . 522

error . 139

error (Edebug), syntax . 249

error cleanup . 144

error debugging . 221

error display . 658

error example, arith- . 142

error handler . 140

error in debug . 227

error in division, arith- . 53

error message notation . 12

error name . 143

error symbol . 143

error use, debug-on-. 140

error with require, load . 205

error, database-last-. 682

error, debug-on- . 221

error, edebug-on- . 238, 254

error, evaluation . 149

error, file mode specification 371

error, file open . 397

error, file- . 200

error, invalid prefix key . 332

error, key sequence . 332

error, Lisp nesting . 123

error, peculiar . 143

error, user-defined . 143

error, variable limit . 149

error-conditions. 143

errors . 138

errors, autoload. 203

errors, CL note—no continuable 140

errors, debug-ignored- . 222

errors, debugging . 221

errors, handling. 140

errors, load . 200

errors, signaling . 139

errors-p, byte-recompile-directory-ignore- 212

ESC . 331

esc-map . 324

ESC-prefix . 324

escape . 22, 577

escape characters . 262

escape characters in printing 260

escape sequence . 22

escape-glyph, octal- . 650

escape-newlines, print- . 262

escapes, words-include- . 495

eval. 122

eval, and debugging . 229

eval, enable-local- . 371

eval-and-compile . 214

eval-buffer . 122

eval-command, edit-and- . 268

eval-current-buffer (Edebug) 233

eval-defun (Edebug) . 233

eval-depth, max-lisp- . 123

eval-event, enqueue- . 307

eval-event-p . 298

830 XEmacs Lisp Reference Manual

eval-expression (Edebug) . 234

eval-minibuffer . 268

eval-region . 122

eval-region (Edebug) . 233

eval-top-level-form, edebug-. 233

eval-when-compile . 214

evaluated expression argument 290

evaluating form, self- . 124

evaluation . 121

evaluation error . 149

evaluation form, argument 286

evaluation list (Edebug) . 240

evaluation notation . 11

evaluation of buffer contents 122

evaluation, conditional . 132

evaluation, function form . 126

evaluation, list form . 125

evaluation, literal . 124

evaluation, macro argument 185

evaluation, macro call . 126

evaluation, recursive . 121

evaluation, special form . 127

evaluation, suspend . 315

evaluation, symbol . 124

evaluation, vector . 124

event printing . 390

event standard notation, XEmacs 390

event, character-to- . 305

event, copy- . 304

event, current-mouse- . 294

event, deallocate- . 304

event, dispatch- . 308

event, dispatching an . 308

event, enqueue-eval- . 307

event, last-command- . 293

event, last-input- . 309

event, make- . 303

event, next- . 307

event, next-command- . 307

event, unread-command- . 309

event-buffer . 299

event-button . 302

event-closest-point . 300

event-device . 302

event-frame . 299

event-function . 302

event-glyph-extent . 301

event-glyph-x-pixel. 301

event-glyph-y-pixel. 301

event-key . 302

event-live-p . 298

event-matches-key-specifier-p 323

event-modifier-bits . 302

event-modifiers . 302

event-object . 302

event-over-border-p . 301

event-over-glyph-p . 301

event-over-modeline-p . 300

event-over-text-area-p . 300

event-over-toolbar-p . 301

event-p, button- . 298

event-p, button-press- . 298

event-p, button-release- . 298

event-p, eval- . 298

event-p, key-press- . 298

event-p, misc-user- . 298

event-p, motion- . 298

event-p, mouse- . 298

event-p, process- . 298

event-p, timeout- . 298

event-point . 300

event-process . 302

event-timestamp . 302

event-to-character . 305

event-toolbar-button . 301

event-type . 297

event-window . 299

event-window-x-pixel . 300

event-window-y-pixel . 300

event-x . 300

event-x-pixel . 299

event-y . 300

event-y-pixel . 299

eventp . 295

events . 294

events, input . 294

events, stopping on . 237

events, translating input . 717

events, unread-command- 308

events, x-debug- . 727

events-to-keys . 305

examining windows . 457

example, arith-error . 142

example, commandp . 276

example, print . 259

example, syntax table . 368

example, throw . 314

example, user-variable-p . 277

examples of using interactive 290

examples of using, interactive, 290

exchange-point-and-mark . 512

exclusive or, bitwise . 58

Index 831

exclusive or, logical . 58

excursion . 501

excursion (Edebug), save- 244

excursion, current buffer . 501

excursion, mark . 501

excursion, point . 501

excursion, save- . 501

excursion, save-window- . 473

excursions, window . 502

exec-directory . 684

exec-path . 684

executable-p, file- . 403

execute program . 683

execute with prefix argument 291

execute, ccl- . 766

execute, command- . 291

execute-extended-command 291

execute-kbd-macro . 317

execute-on-string, ccl- . 766

executing-macro . 318

execution modes, Edebug . 234

execution speed . 772

execution, keyboard macro 291

exists, file-already- . 409

exists-p, file- . 403

exists-p, region- . 514

exit . 314

exit recursive editing . 314

exit, minibuffer-complete-and- 274

exit, self-insert-and- . 282

exit-hook, minibuffer- . 283

exit-minibuffer . 282

exit-recursive-edit . 315

exit-status, process- . 690

exited-processes, delete- . 689

exiting XEmacs. 705

exits, nonlocal . 136

exp . 59

expand-abbrev . 590

expand-file-name . 413

expand-hook, pre-abbrev- 591

expansion of file names . 413

expansion of macros . 181

expansion, abbrev- . 590

expansion, macro . 182

explicit, filling, . 532

expression . 121

expression (Edebug), eval- 234

expression argument, evaluated 290

expression in hook, lambda 382

expression motion, Lisp . 499

expression prefix . 578

expression searching, regular 563

expression, lambda. 166

expression, regular . 556

expression, value of . 121

expression-history, read- . 270

expression-map, read- . 797

expressions (Edebug), anonymous lambda 234

expt . 60

extended-command, execute- 291

extended-command-history 269

extension, file-name-sans-. 411

extensions, completion-ignored- 416

extent . 156, 593

extent children . 604

extent end position . 595

extent endpoint . 595

extent order . 595

extent parent . 604

extent priority . 593

extent property . 599

extent replica . 605

extent start position . 595

extent, atomic . 606

extent, children, of . 604

extent, copy- . 604

extent, delete- . 594

extent, detach- . 604

extent, detached . 604

extent, duplicable . 605

extent, event-glyph- . 301

extent, force-highlight- . 606

extent, highlight- . 606

extent, insert- . 604

extent, make- . 594

extent, next- . 597

extent, parent, of . 604

extent, previous- . 597

extent, priority of an . 593

extent, property of an . 599

extent, unique . 605

extent, zero-length . 595

extent-at . 596

extent-begin-glyph . 603

extent-begin-glyph, set- . 603

extent-begin-glyph-layout 602

extent-begin-glyph-layout, set- 603

extent-children . 605

extent-children, map- . 599

extent-descendants . 605

extent-detached-p . 604

832 XEmacs Lisp Reference Manual

extent-end-glyph . 603

extent-end-glyph, set- . 603

extent-end-glyph-layout . 602

extent-end-glyph-layout, set- 603

extent-end-position . 595

extent-endpoints, set- . 595

extent-face . 602

extent-face, set- . 603

extent-in-region-p . 599

extent-initial-redisplay-function, set- 603

extent-keymap . 602

extent-keymap, set- . 603

extent-length . 595

extent-list . 596

extent-live-p . 594

extent-mouse-face . 602

extent-mouse-face, set- . 603

extent-object . 594

extent-parent . 605

extent-parent, set- . 604

extent-priority . 602

extent-priority, set- . 603

extent-properties . 600

extent-properties, set- . 600

extent-property . 599

extent-property, set- . 600

extent-start-position . 595

extentp . 593

extents, locating . 596

extents, map- . 597

extents, mapcar- . 599

extents, mapping . 597

extents, markers vs. 505

extents, order of . 595

extents, unique . 605

F
face type . 37

face, annotation- . 653

face, copy- . 626

face, extent- . 602

face, extent-mouse- . 602

face, glyph- . 640

face, invert- . 631

face, make- . 626

face, set-annotation- . 653

face, set-extent- . 603

face, set-extent-mouse- . 603

face, set-glyph- . 640

face-background . 630

face-background, set- . 629

face-background-instance . 630

face-background-pixmap . 630

face-background-pixmap, set- 630

face-background-pixmap-instance 630

face-boolean-specifier-p . 613

face-differs-from-default-p 631

face-equal . 631

face-font . 630

face-font, set- . 630

face-font-instance . 630

face-font-name . 630

face-foreground . 630

face-foreground, set- . 629

face-foreground-instance . 630

face-list . 626

face-property . 628

face-property, set- . 627

face-property-instance . 629

face-underline-p . 630

face-underline-p, set- . 630

facep . 626

faces . 625

failed, search- . 555

fallback (in a specifier) . 611

fallback, specifier, . 611

fallback, specifier- . 617

false . 10

fboundp . 176

fceiling . 55

feature, unload- . 207

featurep . 206

features . 205, 207

features, providing . 205

features, requiring . 205

fetch-bytecode . 213

ffloor . 55

field of register, address . 24

field of register, decrement . 24

field width . 71

fields, sort- . 538

fields, sort-numeric- . 538

fields, sort-regexp- . 537

fifth . 84

file accessibility . 402

file age . 404

file attributes . 405

file format conversion . 421

file formats, decoding . 421

file formats, encoding . 421

file hard link . 408

Index 833

file locks . 401

file message, new . 397

file mode specification error 371

file mode, visited . 371

file modes and MS-DOS . 409

file modes, MS-DOS and . 409

file modification time . 404

file name completion subroutines 415

file name of buffer . 438

file name of directory . 411

file name), directory part (of 410

file name), nondirectory part (of 410

file name), version number (in 410

file name, absolute . 413

file name, buffer . 438

file name, completion, . 415

file name, relative . 413

file names . 410

file names in directory . 416

file names, expansion of . 413

file names, magic . 418

file open error . 397

file symbolic links . 404

file types on MS-DOS . 423

file types, MS-DOS . 423

file with multiple names . 408

file), truename (of . 405

file, accessibility of a . 402

file, add-name-to- . 408

file, after-find- . 397

file, append-to- . 401

file, backup . 425

file, byte-compile- . 211

file, copy- . 409

file, default init . 702

file, delete- . 409

file, DOC (documentation) 385

file, dribble . 719

file, end-of- . 258

file, find- . 395

file, format-find- . 422

file, format-insert- . 422, 423

file, format-write- . 422

file, init . 702

file, load-sound- . 672

file, locate- . 201

file, open-dribble- . 719

file, play-sound- . 673

file, quietly-read-abbrev- . 589

file, rename- . 408

file, rename-auto-save- . 432

file, site-run- . 703

file, termscript . 720

file, view- . 396

file, visited . 438

file, with-temp- . 502

file, write- . 398

file, write-abbrev- . 589

file-accessible-directory-p . 403

file-already-exists . 409

file-attributes . 406

file-autoloads, update- . 203

file-binary, find- . 424

file-buffer, create- . 397

file-buffer, get- . 439

file-clear-hashing, locate- . 201

file-contents, insert- . 400

file-contents-function, revert-buffer-insert- 433

file-directory-p . 404

file-error . 200

file-executable-p . 403

file-exists-p . 403

file-format, auto-save- . 423

file-format, buffer- . 422

file-functions, after-insert- 550

file-hooks, find- . 397

file-hooks, local-write- . 399

file-hooks, write- . 399

file-if-necessary, delete-auto-save-. 432

file-local-copy . 419

file-locked . 402

file-locked-p . 402

file-menu-filter . 348

file-modes . 405

file-modes, default- . 409

file-modes, set- . 409

file-modes, set-default- . 409

file-modtime, clear-visited- 441

file-modtime, set-visited- . 441

file-modtime, verify-visited- 441

file-modtime, visited- . 441

file-name, abbrev- . 589

file-name, abbreviate- . 412

file-name, auto-save-list- . 432

file-name, auto-save-visited- 431

file-name, buffer- . 438, 439

file-name, buffer-auto-save- 429

file-name, database- . 682

file-name, directory- . 412

file-name, expand- . 413

file-name, find-backup- . 429

file-name, image-instance- 647

834 XEmacs Lisp Reference Manual

file-name, image-instance-mask- 647

file-name, internal-doc- . 388

file-name, make-auto-save- 430

file-name, make-backup- . 428

file-name, read- . 277

file-name, set-visited- . 439

file-name, substitute-in- . 414

file-name-absolute-p . 413

file-name-all-completions . 415

file-name-as-directory . 412

file-name-buffer-file-type-alist 423

file-name-completion . 416

file-name-directory . 410

file-name-directory, unhandled- 419

file-name-handler, find- . 419

file-name-handlers, inhibit- 419

file-name-history . 269

file-name-nondirectory . 410

file-name-operation, inhibit- 419

file-name-p, auto-save- . 430

file-name-p, backup- . 428

file-name-sans-extension . 411

file-name-sans-versions . 411

file-newer-than-file-p . 404

file-newest-backup . 429

file-nlinks . 406

file-noselect, find- . 396

file-not-found-hooks, find- 397

file-number, buffer- . 439

file-other-window, find- . 396

file-ownership-preserved-p 404

file-p, file-newer-than- . 404

file-part, make- . 420

file-path, x-bitmap- . 644, 727

file-precious-flag . 399

file-prefix, term- . 704

file-read-only, find- . 396

file-readable-p . 403

file-regular-p . 405

file-relative-name . 414

file-supersession . 442

file-symlink-p . 404

file-text, find- . 424

file-truename . 405

file-truename, buffer- . 439

file-type, buffer- . 423

file-type, default-buffer- . 423

file-type, find-buffer- . 423

file-type-alist, file-name-buffer- 423

file-writable-p . 403

files and binary files, text . 423

files and text files, binary . 423

files, binary files and text . 423

files, copying . 408

files, delete-auto-save- . 432

files, deleting . 408

files, directory- . 416

files, finding . 395

files, how to make them, backup 426

files, linking . 408

files, load-ignore-elc- . 202

files, make-backup- . 425

files, partial . 420

files, renaming . 408

files, setting modes of . 408

files, text files and binary . 423

files, text properties in . 550

files, visiting. 395

Fill mode, Auto . 535

Fill mode, newline and Auto 521

fill-column . 534

fill-column, current- . 535

fill-column, default- . 534

fill-function, auto- . 535

fill-individual-paragraphs . 532

fill-individual-varying-indent 533

fill-paragraph . 532

fill-paragraph-function . 533

fill-prefix . 534

fill-region . 532

fill-region-as-paragraph . 533

fillarray . 107

filling a paragraph . 532

filling, automatic . 535

filling, explicit . 532

filter function . 694

filter, buffers-menu- . 348

filter, edit-menu- . 348

filter, file-menu- . 348

filter, process . 694

filter, process- . 696

filter, set-process- . 696

filters, menu . 348

final, charset- . 750

final-newline, require- . 399

find-backup-file-name . 429

find-buffer-file-type . 423

find-charset . 749

find-charset-region . 752

find-charset-string . 752

find-coding-system . 759

find-file . 395

Index 835

find-file, after- . 397

find-file, format- . 422

find-file-binary . 424

find-file-hooks . 397

find-file-name-handler . 419

find-file-noselect . 396

find-file-not-found-hooks . 397

find-file-other-window . 396

find-file-read-only . 396

find-file-text . 424

find-larger-font, x- . 632

find-menu-item . 347

find-smaller-font, x- . 632

finding files . 395

finding windows . 454

first. 83

first-change-hook . 553

fixup-whitespace . 524

flag (of buffer), modification 440

flag, file-precious- . 399

flag, purify- . 782

flag, quit- . 312

flag, set-menubar-dirty- . 345

flags, syntax . 578

float . 51

float-output-format . 264

floating point, IEEE . 48

floating-point numbers, printing. 264

floatp . 49

floor . 51

flow control characters . 721

flow-control, enable- . 721

flow-control-on, enable-. 721

flush input . 310

flush-undo, buffer- . 531

fmakunbound . 176

focus, input . 483

focus-frame . 483

fold-search, case- . 572

fold-search, default-case- . 572

following-char . 517

font instance characteristics 632

font instance name . 632

font instance size . 632

font instance type . 38

font instances, characteristics of 632

font, face- . 630

font, set-face- . 630

font, x-find-larger- . 632

font, x-find-smaller- . 632

font-bold, x-make- . 632

font-bold-italic, x-make- . 633

font-instance, face- . 630

font-instance, make- . 631

font-instance-name . 632

font-instance-p . 631

font-instance-properties . 632

font-instance-truename . 632

font-italic, x-make- . 633

font-name . 633

font-name, face- . 630

font-properties. 633

font-size, x- . 632

font-specifier-p . 613, 631

font-truename . 633

font-unbold, x-make- . 633

font-unitalic, x-make- . 633

fonts . 10, 631

fonts available . 632

fonts, available . 632

fonts, list- . 632

foo . 13

for . 184

for, sit- . 310

for, sleep- . 310

for-tab-command, indent- 541

for-user-input-p, waiting- . 698

force-cursor-redisplay . 657

force-highlight-extent . 606

forcing redisplay . 310

foreground, face- . 630

foreground, image-instance- 647

foreground, set-face- . 629

foreground-instance, face- 630

form descriptions, special . 13

form evaluation, function . 126

form evaluation, list . 125

form evaluation, special . 127

form, argument evaluation 286

form, edebug-eval-top-level-. 233

form, help- . 392

form, minibuffer-help- . 283

form, self-evaluating . 124

form, top-level . 199

format . 69

format arguments, repositioning 71

format conversion, file . 421

format definition . 421

format of keymaps . 320

format of menus . 341

format of the menubar . 344

format precision . 72

836 XEmacs Lisp Reference Manual

format specification . 69

format, % in . 69

format, auto-save-file- . 423

format, buffer-file- . 422

format, default-modeline- . 380

format, description . 12

format, float-output- . 264

format, frame-icon-title- . 480

format, frame-title- . 480

format, keymap . 320

format, menu . 341

format, menubar . 344

format, modeline- . 377

format, Shell mode modeline- 378

format-alist . 421

format-buffers-menu-line . 352

format-find-file . 422

format-insert-file . 422, 423

format-list, image-instantiator- 644

format-p, valid-image-instantiator- 644

format-time-string . 713

format-write-file . 422

formats, decoding file . 421

formats, encoding file . 421

formatted numbers, precision of 72

formatting strings. 69

formatting them, strings, . 69

formatting, multilingual string 71

formfeed . 22

forms . 121

forms (Edebug), special . 234

forms compared, CL note—special 128

forms for control structures, special 131

forms, cleanup . 144

forms, edebug-all- . 233, 252

forms, protected . 144

forms, special . 30

forward, posix-search- . 566

forward, re-search- . 563

forward, search- . 555

forward, skip-chars- . 501

forward, skip-syntax- . 581

forward, word-search- . 556

forward-char . 495

forward-comment . 583

forward-line . 497

forward-list. 499

forward-sexp . 500

forward-to-indentation . 544

forward-word . 495

found-hooks, find-file-not- 397

fourth . 84

frame . 475

frame configuration . 485

frame hooks . 486

frame name . 479

frame of terminal . 450

frame position . 479

frame size . 479

frame visibility . 484

frame, auto-lower- . 485

frame, auto-raise- . 485

frame, backtrace- . 229

frame, current stack . 224

frame, default-minibuffer- 482

frame, deiconify- . 484

frame, delete- . 480

frame, event- . 299

frame, focus- . 483

frame, iconified . 484

frame, iconify- . 484

frame, invisible . 484

frame, lower- . 485

frame, lowering a . 485

frame, make- . 475

frame, next- . 481

frame, position of . 479

frame, previous- . 481

frame, raise- . 485

frame, raising a . 485

frame, redraw- . 657

frame, save-selected- . 483

frame, select- . 483

frame, selected . 483

frame, selected- . 483

frame, size of . 479

frame, special-display-popup- 461

frame, terminal . 450, 475

frame, visible . 484

frame, window- . 482

frame, with-selected- . 483

frame, X window . 475

frame-configuration, current- 486

frame-configuration, set- . 486

frame-device . 488

frame-function, pop-up- . 460

frame-height . 479

frame-hook, create- . 486

frame-hook, default-deselect- 485

frame-hook, default-select- 485

frame-hook, delete- . 486

frame-hook, deselect- . 486

Index 837

frame-hook, map- . 486

frame-hook, select- . 486

frame-hook, unmap- . 486

frame-icon-pixmap, x-set- 480

frame-icon-title-format . 480

frame-iconified-p . 484

frame-invisible, make- . 484

frame-list . 481

frame-list, device- . 481, 488

frame-list, visible-. 481

frame-live-p . 480

frame-name . 479

frame-name, default- . 479

frame-p, device-or- . 488

frame-pixel-height . 479

frame-pixel-width . 479

frame-plist, default- . 477

frame-plist, initial- . 476

frame-plist, minibuffer- . 476

frame-plist, pop-up- . 460

frame-plist, special-display- 461

frame-pointer, set- . 650

frame-position, set- . 479

frame-properties . 476

frame-properties, set- . 476

frame-property . 476

frame-property, set- . 476

frame-root-window . 482

frame-selected-window . 482

frame-size, set- . 479

frame-title-format. 480

frame-top-window . 482

frame-totally-visible-p . 484

frame-type, device-or- . 489

frame-visible, make- . 484

frame-visible-p . 484

frame-width . 479

framep . 475

frames, deletion of . 480

frames, pop-up-. 460

free list . 782

freq-count, edebug-display- 243

frequency counts . 243

fround . 55

fset . 177

ftp-login . 145

ftruncate . 55

full-name, user- . 711, 712

fullness, hashtable- . 675

fullness, keymap- . 338

funcall . 172

funcall, and debugging . 229

function . 165, 175

function call . 126

function call debugging . 223

function cell . 113

function cell in autoload . 203

function cell, void . 176

function definition . 169

function descriptions . 13

function form evaluation . 126

function indirection, symbol 125

function input stream . 256

function invocation . 172

function name . 169

function output stream . 259

function quoting . 175

function, after-change- . 553

function, anonymous . 174

function, auto-fill- . 535

function, before-change- . 553

function, blink-paren- . 668

function, body of . 167

function, buffers-menu-switch-to-buffer- 352

function, built-in . 165

function, byte-code . 214

function, calling a. 172

function, compiled . 214

function, define- . 171

function, defining a . 170

function, display-buffer- . 462

function, documentation of 169

function, event- . 302

function, fill-paragraph- . 533

function, filter . 694

function, indent-line- . 541

function, indent-region- . 542

function, indirect- . 126

function, interactive . 286

function, interprogram-cut- 528

function, interprogram-paste- 528

function, invalid . 125

function, invalid- . 125

function, key translation . 718

function, load-read- . 201

function, named . 169

function, pop-up-frame- . 460

function, revert-buffer- . 433

function, revert-buffer-insert-file-contents- 433

function, set-extent-initial-redisplay- 603

function, special-display- . 461

function, symbol- . 176

838 XEmacs Lisp Reference Manual

function, temp-buffer-show- 667

function, void . 125

function, void- . 176

function-alias, define-obsolete- 394

function-arglist, compiled- 215

function-constants, compiled- 215

function-doc-string, compiled- 215

function-domain, compiled- 216

function-instructions, compiled- 215

function-interactive . 287

function-interactive, compiled- 216

function-key-map . 717

function-obsoleteness-doc . 394

function-p, compiled- . 166

function-stack-size, compiled- 215

functionals . 173

functions in modes . 366

functions, after-change- . 553

functions, after-insert-file- 550

functions, before-change- . 553

functions, command-line- . 705

functions, compilation . 210

functions, debugging specific 223

functions, directory-oriented 416

functions, dynamic loading of 213

functions, inline . 178

functions, kill-buffer-query- 446

functions, kill-emacs-query- 706

functions, making them interactive 286

functions, mapping . 173

functions, mathematical . 59

functions, transcendental . 59

functions, window-size-change- 472

functions, write-region-annotate- 550

Fundamental mode . 365

fundamental-mode . 371

fundamental-mode-abbrev-table 592

future-map, electric- . 14

G
g, C- . 311

garbage collection, marker 505

garbage collector . 782

garbage-collect . 783

gc-cons-threshold . 785

gc-hook, post- . 786

gc-hook, pre- . 786

gc-message . 786

gc-pointer-glyph . 649, 786

generate-new-buffer . 445

generate-new-buffer-name 438

generic-specifier-p . 613

gensym, print- . 263

get . 119

get, lax-plist- . 99

get, plist- . 98

get-buffer . 438

get-buffer-create . 444

get-buffer-process . 694

get-buffer-window . 457

get-char-property . 546

get-char-table . 77

get-charset . 749

get-coding-system. 759

get-cutbuffer, x- . 723

get-database . 681

get-file-buffer . 439

get-largest-window . 455

get-lru-window . 455

get-process . 689

get-range-char-table . 77

get-range-table . 679

get-register . 552

get-resource, x- . 724

get-selection, x- . 723

get-text-property . 546

get-tooltalk-message-attribute 731

getenv . 709

getf . 119

gethash . 676

gettext . 741

global binding . 148

global break condition. 237

global keymap . 324

global mark ring . 510

global variable . 147

global-abbrev-table . 591

global-abbrevs, only- . 589

global-break-condition, edebug- 238, 254

global-break-condition, edebug-set- 238

global-key-binding . 331

global-map . 326

global-map, current- . 326

global-map, use- . 327

global-mark, pop- . 513

global-mark-ring . 513

global-mode-string . 379

global-popup-menu . 349

global-set-key . 336

global-unset-key . 336

glyph type . 37

Index 839

glyph, annotation- . 653

glyph, annotation-down- . 653

glyph, busy-pointer- . 649

glyph, continuation-. 650

glyph, control-arrow- . 650

glyph, extent-begin- . 603

glyph, extent-end- . 603

glyph, gc-pointer- . 649, 786

glyph, hscroll- . 650

glyph, invisible-text- . 650

glyph, make- . 635

glyph, make-icon- . 636

glyph, make-pointer- . 636

glyph, menubar-pointer- . 649

glyph, modeline-pointer- . 649

glyph, nontext-pointer- . 649

glyph, octal-escape- . 650

glyph, scrollbar-pointer- . 649

glyph, selection-pointer- . 649

glyph, set-annotation- . 653

glyph, set-annotation-down- 653

glyph, set-extent-begin- . 603

glyph, set-extent-end- . 603

glyph, text-pointer- . 649

glyph, toolbar-pointer- . 649

glyph, truncation- . 650

glyph-ascent . 640

glyph-baseline . 639

glyph-baseline, set- . 639

glyph-baseline-instance . 640

glyph-contrib-p . 639

glyph-contrib-p, set- . 639

glyph-contrib-p-instance . 639

glyph-descent . 640

glyph-extent, event- . 301

glyph-face . 640

glyph-face, set- . 640

glyph-height . 640

glyph-image . 639

glyph-image, set- . 639

glyph-image-instance . 639

glyph-internal, make- . 635

glyph-layout, extent-begin- 602

glyph-layout, extent-end- . 602

glyph-layout, set-extent-begin- 603

glyph-layout, set-extent-end- 603

glyph-p, buffer- . 648

glyph-p, event-over- . 301

glyph-p, icon- . 648

glyph-p, pointer- . 648

glyph-property . 637

glyph-property, remove- . 638

glyph-property, set- . 636

glyph-property-instance . 638

glyph-type . 648

glyph-type-list . 648

glyph-type-p, valid- . 648

glyph-width . 640

glyph-x-pixel, event- . 301

glyph-y-pixel, event- . 301

glyphp . 635

glyphs . 635

goto-char . 494

goto-line . 496

grab-keyboard, x- . 726

grab-pointer, x- . 726

grabbed-buffer, mouse- . 327

graphic, charset- . 750

grouping, regexp . 560

H
h, C- . 323

hack-local-variables . 373

handler, error . 140

handler, find-file-name- . 419

handlers, inhibit-file-name- 419

handling errors . 140

hard link, file . 408

hard-newlines, use- . 534

hash notation . 17

hash table . 675

hash table type . 31

hash table, weak . 676

hashing . 115

hashing, locate-file-clear- . 201

hashing, symbol name . 115

hashtable, copy- . 675

hashtable, make- . 675

hashtable, make-key-weak- 677

hashtable, make-value-weak- 677

hashtable, make-weak- . 677

hashtable-fullness . 675

hashtablep . 675

header comments . 775

header comments, library . 775

height, bottom-toolbar- . 359

height, default-toolbar- . 358

height, frame- . 479

height, frame-pixel- . 479

height, glyph- . 640

height, image-instance- . 647

840 XEmacs Lisp Reference Manual

height, top-toolbar- . 359

height, window- . 468

height, window-displayed-text-pixel- 470

height, window-min- . 472

height, window-pixel- . 469

height, window-text-area-pixel- 469

height-threshold, split- . 460

help for major mode . 373

help, completion-auto- . 275

help, Helper- . 393

help, minibuffer-completion- 275

help, mode . 373

help-char . 392

help-command . 392

help-command, prefix- . 393

help-form . 392

help-form, minibuffer- . 283

help-map . 392, 795

help-map, Helper- . 796

help-return-message, print- 392

Helper-describe-bindings . 393

Helper-help . 393

Helper-help-map . 796

hexadecimal, integer to . 70

hide-annotation . 654

highest-p, window- . 470

highlight-extent . 606

highlight-extent, force- . 606

highlight-priority, mouse- . 606

history list . 269

history of commands . 317

history, command . 317

history, command- . 317

history, extended-command- 269

history, file-name- . 269

history, Info-minibuffer- . 270

history, Lisp . 10

history, load- . 208

history, Manual-page-minibuffer- 270

history, minibuffer . 269

history, minibuffer- . 269

history, query-replace- . 269

history, read-expression- . 270

history, record command . 291

history, regexp- . 269

history, shell-command- . 269

history-element, next- . 283

history-element, next-matching- 283

history-element, previous- 283

history-element, previous-matching- 283

history-map, command- . 795

history-map, electric- . 795

HOME environment variable 683

home-directory, user- . 712

hook, activate-menubar- . 345

hook, activate-popup-menu- 349

hook, add- . 383

hook, after-init- . 703

hook, after-revert- . 434

hook, after-save- . 399

hook, auto-save- . 431

hook, before-init- . 703

hook, before-revert- . 433

hook, blink-paren- . 667

hook, change-major-mode-. 367

hook, create-device- . 490

hook, create-frame- . 486

hook, default-deselect-frame- 485

hook, default-select-frame- 485

hook, delete-device- . 490

hook, delete-frame- . 486

hook, deselect-frame- . 486

hook, disabled-command-. 316

hook, edebug-setup- . 252

hook, first-change- . 553

hook, kill-buffer- . 446

hook, kill-emacs- . 706

hook, lambda expression in 382

hook, major mode . 367

hook, make-local- . 384

hook, map-frame- . 486

hook, menu-no-selection- . 346

hook, minibuffer-exit- . 283

hook, minibuffer-setup- . 283

hook, mode . 367

hook, post-command- . 286

hook, post-gc- . 786

hook, pre-abbrev-expand- 591

hook, pre-command- . 285

hook, pre-gc- . 786

hook, remove- . 384

hook, select-frame- . 486

hook, suspend- . 707

hook, suspend-resume- . 707

hook, term-setup- . 704

hook, unmap-frame- . 486

hook, window-setup- . 704

hook, zmacs-activate-region- 514

hook, zmacs-deactivate-region- 515

hook, zmacs-update-region- 515

hooks . 382

hooks for loading . 208

Index 841

hooks for text changes . 553

hooks, annotation . 655

hooks, change . 553

hooks, find-file- . 397

hooks, find-file-not-found- 397

hooks, frame . 486

hooks, loading . 208

hooks, local-write-file- . 399

hooks, run- . 383

hooks, write-contents- . 399

hooks, write-file- . 399

horizontal position . 539

horizontal scrolling. 467

horizontal-space, delete- . 523

horizontally, enlarge-window- 471

horizontally, shrink-window- 472

horizontally, split-window- 452

host, ldap- . 737

host, ldap-default- . 735

host-address, mail- . 709

host-parameters-alist, ldap- 736

hotspot-x, image-instance- 647

hotspot-y, image-instance- 647

hscroll, set-window- . 468

hscroll, window- . 467

hscroll-glyph . 650

I
icon-glyph, make- . 636

icon-glyph-p . 648

icon-pixmap, x-set-frame- 480

icon-title-format, frame- . 480

iconified frame . 484

iconified-p, frame- . 484

iconify-frame . 484

id, process- . 690

id, x-window- . 727

identification, modeline-buffer- 379

identity . 173

IEEE floating point . 48

if . 132

if-buffer-read-only, barf- . 443

if-necessary, delete-auto-save-file-. 432

ignore . 173

ignore-case, completion- . 272

ignore-comments, parse-sexp- 583

ignore-elc-files, load- . 202

ignore-errors-p, byte-recompile-directory- 212

ignore-labels, log-message- 660

ignore-regexps, log-message- 661

ignored-errors, debug- . 222

ignored-extensions, completion- 416

ignored-local-variables . 371

image instance type . 38

image instance types . 645

image instances . 645

image instantiator conversion 644

image instantiators, conversion of 644

image specifiers . 640

image, glyph- . 639

image, set-glyph- . 639

image-conversion-list, console-type- 644

image-conversion-list, set-console-type- 644

image-instance, colorize- . 647

image-instance, glyph- . 639

image-instance, make- . 646

image-instance-background 648

image-instance-depth . 647

image-instance-file-name . 647

image-instance-foreground 647

image-instance-height . 647

image-instance-hotspot-x . 647

image-instance-hotspot-y . 647

image-instance-mask-file-name 647

image-instance-name . 647

image-instance-p . 645

image-instance-p, color-pixmap- 646

image-instance-p, mono-pixmap- 646

image-instance-p, nothing- 646

image-instance-p, pointer- 646

image-instance-p, subwindow- 646

image-instance-p, text- . 646

image-instance-string . 647

image-instance-type . 645

image-instance-type-list . 645

image-instance-type-p, valid- 645

image-instance-width . 647

image-instantiator-format-list 644

image-instantiator-format-p, valid- 644

image-specifier, make- . 641

image-specifier-p . 613, 641

implicit progn . 131

inc . 181

include-escapes, words- . 495

inclusive or, logical . 58

indent, fill-individual-varying-. 533

indent, newline-and- . 541

indent, reindent-then-newline-and- 541

indent-according-to-mode. 541

indent-code-rigidly . 542

indent-for-tab-command . 541

842 XEmacs Lisp Reference Manual

indent-line-function . 541

indent-region . 541

indent-region-function . 542

indent-relative . 542

indent-relative-maybe . 543

indent-rigidly . 542

indent-tabs-mode . 540

indent-to . 540

indent-to-left-margin . 535

indentation . 540

indentation, back-to- . 544

indentation, backward-to- 544

indentation, current- . 540

indentation, delete- . 524

indentation, forward-to- . 544

indentation, tabs stops for 543

indenting with parentheses 582

indirect buffers . 447

indirect specifications . 248

indirect variables . 163

indirect, variables, . 163

indirect-buffer, make- . 447

indirect-function . 126

indirect-variable . 163

indirection . 125

indirection, symbol function 125

individual-paragraphs, fill- 532

individual-varying-indent, fill-. 533

infinite loop, quitting from 222

infinite loop, stopping an . 222

infinite loops . 222

infinite recursion . 149

infinite, loops, . 222

infinity . 48

infinity, negative . 48

infinity, positive . 48

Info-edit-map . 796

Info-minibuffer-history . 270

Info-mode-map . 796

information, saving window 473

inherit . 578

inheritance, keymap . 321

inheriting a keymap’s bindings 321

inhibit-default-init . 703

inhibit-file-name-handlers 419

inhibit-file-name-operation. 419

inhibit-quit . 312

inhibit-read-only . 442

inhibit-startup-echo-area-message 702

inhibit-startup-message . 702

inhibited, backup- . 426

init file . 702

init file, default . 702

init, inhibit-default- . 703

init, make-specifier-and- . 621

init-hook, after- . 703

init-hook, before- . 703

init.el, site- . 780

initial-frame-plist . 476

initial-major-mode . 372

initial-mode, edebug- . 253

initial-redisplay-function, set-extent- 603

initial-toolbar-spec . 360

initialization . 701

initialization, terminal-specific 703

inline functions . 178

innermost containing parentheses 582

input events . 294

input events, translating . 717

input focus . 483

input modes . 716

input modes, terminal . 716

input stream . 255

input stream, buffer . 255

input stream, function . 256

input stream, marker . 256

input stream, nil . 256

input stream, string . 256

input stream, t . 256

input, binary-process- . 687

input, console-disable-. 491

input, console-enable- . 491

input, discard . 310

input, discard- . 310

input, flush . 310

input, key sequence . 306

input, minibuffer . 314

input, next . 308

input, octal character . 308

input, peeking at . 308

input, process . 691

input, quoted character . 308

input, read-no-blanks- . 267

input, standard- . 258

input, terminal . 716

input, waiting for command key 309

input-char, last- . 309

input-event, last- . 309

input-mode, current- . 717

input-mode, set- . 716

input-p, waiting-for-user- . 698

input-pending-p . 309

Index 843

insert . 520

insert suppression, quoted- 335

insert-abbrev-table-description 588

insert-and-exit, self- . 282

insert-before-markers . 520

insert-buffer . 521

insert-buffer-substring . 520

insert-char . 520

insert-command override, self- 335

insert-command, minor modes, self- 376

insert-command, self- . 521

insert-default-directory . 278

insert-directory . 417

insert-directory-program . 417

insert-extent . 604

insert-file, format- . 422, 423

insert-file-contents . 400

insert-file-contents-function, revert-buffer- 433

insert-file-functions, after- 550

insert-register . 552

insert-string . 520

inserting killed text . 527

insertion before point . 520

insertion of text . 520

insertion, before point, . 520

insertion, character . 521

insertion, self- . 521

insertion, text . 520

inside comment . 582

inside margin . 651

inside string . 582

inst-list (in a specifier) . 610

inst-list, canonicalize- . 616

inst-list, check-valid- . 622

inst-list, specifier, . 610

inst-list, specifier-instance-from- 620

inst-list-p, valid- . 622

inst-pair (in a specifier) . 610

inst-pair, canonicalize- . 616

inst-pair, specifier, . 610

installation-directory . 710

instance (in a specifier) . 610

instance characteristics, font 632

instance name, font . 632

instance size, font . 632

instance type, color . 38

instance type, font . 38

instance type, image . 38

instance types, image . 645

instance, colorize-image-. 647

instance, face-background- 630

instance, face-background-pixmap- 630

instance, face-font- . 630

instance, face-foreground- 630

instance, face-property- . 629

instance, glyph-baseline- . 640

instance, glyph-contrib-p- 639

instance, glyph-image- . 639

instance, glyph-property- . 638

instance, make-font- . 631

instance, make-image- . 646

instance, specifier, . 610

instance, specifier- . 619

instance-background, image- 648

instance-depth, image- . 647

instance-file-name, image- 647

instance-foreground, image- 647

instance-from-inst-list, specifier- 620

instance-height, image- . 647

instance-hotspot-x, image- 647

instance-hotspot-y, image- 647

instance-mask-file-name, image- 647

instance-name, color- . 634

instance-name, font- . 632

instance-name, image- . 647

instance-p, color- . 634

instance-p, color-pixmap-image- 646

instance-p, font- . 631

instance-p, image- . 645

instance-p, mono-pixmap-image- 646

instance-p, nothing-image- 646

instance-p, pointer-image- 646

instance-p, subwindow-image- 646

instance-p, text-image- . 646

instance-properties, font- . 632

instance-rgb-components, color- 634

instance-string, image- . 647

instance-truename, font- . 632

instance-type, image- . 645

instance-type-list, image- . 645

instance-type-p, valid-image- 645

instance-width, image- . 647

instances, characteristics of font 632

instances, color . 634

instances, image . 645

instancing (in a specifier) . 610

instancing, specifier, . 610

instantiator (in a specifier) 610

instantiator conversion, image 644

instantiator, check-valid- . 622

instantiator, specifier, . 610

instantiator-format-list, image- 644

844 XEmacs Lisp Reference Manual

instantiator-format-p, valid-image- 644

instantiator-p, valid- . 622

instantiators, conversion of image 644

instructions, compiled-function- 215

int confoundance disease, char- 21

int, char- . 64

int, string-to- . 68

int-char . 65

int-p, char- . 65

int-p, char-or-char- . 65

int-to-string . 68

integer to decimal . 68

integer to hexadecimal . 70

integer to octal . 70

integer to string . 68

integer-char-or-marker-p . 507

integer-or-char-p . 64

integer-or-marker-p . 507

integer-specifier-p . 613

integerp . 49

integers . 47

integers vrs eq, CL note— . 50

interaction-mode-map, lisp- 796

interactive . 286

interactive arguments, reading 288

interactive call . 290

interactive code description 288

interactive codes, characters for 288

interactive codes, description for 288

interactive commands (Edebug) 234

interactive completion . 288

interactive function . 286

interactive, * in . 287

interactive, @ in . 287

interactive, in . 287

interactive, compiled-function- 216

interactive, description of, codes, 288

interactive, examples of using 290

interactive, function- . 287

interactive, functions, making them 286

interactive, read-only buffers in 287

interactive-p . 292

interactively, call- . 291

intern . 116

intern-soft . 117

internal, describe-bindings- 339

internal, ldap-search- . 738

internal, make-glyph- . 635

internal, where-is- . 338

internal-doc-file-name . 388

internals, syntax table. 584

interning . 115

interpreter . 121

interpreter, byte-code . 212

interpreter-mode-alist . 373

interprogram-cut-function 528

interprogram-paste-function 528

interrupt-process . 692

interval, auto-save- . 431

invalid function . 125

invalid prefix key error . 332

invalid-function . 125

invalid-read-syntax . 18

invalid-regexp . 562

invert-face . 631

invisibility-spec, buffer- . 663

invisible frame . 484

invisible text . 663

invisible, make-frame- . 484

invisible-text-glyph . 650

invocation, function . 172

invocation-directory . 710

invocation-name . 710

is-internal, where- . 338

isearch-map, minibuffer-local- 796

isearch-mode-map . 796

ISO Latin 1 . 75

ISO Latin-1 characters (input) 718

iso-syntax . 75

iso-transl . 718

italic. 632

italic, x-make-font- . 633

italic, x-make-font-bold- . 633

item, add-menu- . 347

item, delete-menu- . 346

item, disable-menu- . 347

item, enable-menu- . 347

item, find-menu- . 347

item, relabel-menu- . 347

iteration . 135

itimer-edit-map . 796

J
jis-char, decode-shift- . 761

jis-char, encode-shift- . 761

joining lists. 90

just-one-space . 525

justification, current- . 533

justification, default- . 533

justify-current-line . 533

Index 845

K
kbd-macro, defining- . 318

kbd-macro, edebug-continue- 253

kbd-macro, execute- . 317

kbd-macro, last- . 318

kept-new-versions . 427

kept-old-versions . 428

kept-versions, dired- . 428

key . 319

key binding . 319

key bindings, changing . 332

key error, invalid prefix . 332

key input, waiting for command 309

key lookup . 328

key sequence . 306

key sequence error . 332

key sequence input . 306

key sequence, upper case . 306

key sequences . 322

key translation function . 718

key, binding of a . 319

key, complete . 319

key, define- . 332

key, downcasing in lookup- 306

key, event- . 302

key, global-set- . 336

key, global-unset- . 336

key, local-set- . 336

key, local-unset- . 336

key, lookup- . 330

key, prefix . 323

key, preventing prefix . 329

key, undefined . 319

key-binding . 330

key-binding, global- . 331

key-binding, local- . 331

key-binding, minor-mode- 331

key-definition, substitute- 334

key-description . 390

key-description, single- . 390

key-map, function- . 717

key-press-event-p . 298

key-sequence, read- . 306

key-specifier-p, event-matches- 323

key-translation-map . 718

key-weak-hashtable, make- 677

keybindings, menubar-show- 345

keyboard macro execution 291

keyboard macro termination 671

keyboard macro, terminate 310

keyboard macros . 317

keyboard macros (Edebug) 235

keyboard menu accelerators 350

keyboard, x-grab- . 726

keyboard, x-ungrab- . 726

keyboard-quit . 312

keymap . 319

keymap entry . 328

keymap format . 320

keymap in keymap . 328

keymap inheritance . 321

keymap parent . 321

keymap’s bindings, inheriting a 321

keymap, active . 324

keymap, command in . 328

keymap, copy- . 320

keymap, extent- . 602

keymap, global . 324

keymap, keymap in . 328

keymap, lambda in . 329

keymap, list in . 329

keymap, local . 324

keymap, major mode . 325

keymap, make- . 320

keymap, make-sparse- . 320

keymap, map- . 338

keymap, nil in . 328

keymap, parent of a . 321

keymap, set-extent- . 603

keymap, string in . 328

keymap, suppress- . 335

keymap, symbol in . 329

keymap, undefined in . 329

keymap-default-binding . 321

keymap-default-binding, set- 321

keymap-fullness. 338

keymap-name . 320

keymap-name, set- . 320

keymap-parents . 321

keymap-parents, set- . 321

keymap-prompt . 340

keymap-prompt, set- . 340

keymapp . 320

keymaps in modes . 366

keymaps, accessible- . 337

keymaps, creating . 320

keymaps, current-. 326

keymaps, format of . 320

keys in documentation strings 388

keys in documentation, substituting 388

keys in, documentation, . 388

keys, events-to- . 305

846 XEmacs Lisp Reference Manual

keys, recent- . 719

keys, substitute-command- 389

keys, this-command- . 293

keys, unbinding . 336

keys-ring-size, recent- . 719

keys-ring-size, set-recent- . 719

keystroke . 319

keystroke command . 166

keystrokes, echo- . 294, 661

keysym-name-p, x-valid- . 727

keywordp . 248

keywordp, lambda-list- . 248

kill command repetition . 293

kill ring . 525

kill, copy-region-as- . 526

kill, current- . 527

kill-all-local-variables . 161

kill-append . 528

kill-buffer . 446

kill-buffer-hook . 446

kill-buffer-query-functions 446

kill-emacs . 706

kill-emacs-hook . 706

kill-emacs-query-functions 706

kill-local-variable . 161

kill-new . 528

kill-process . 692

kill-region . 526

kill-ring . 529

kill-ring-max . 529

kill-ring-yank-pointer . 529

kill-without-query, process- 689

kill-without-query-p, process- 690

killed text, inserting . 527

killing buffers . 445

killing XEmacs . 706

killing, buffers, . 445

killing, deletion vs . 522

L
labels, log-message-ignore- 660

lack union, set, CL note— . 92

lambda expression . 166

lambda expression in hook 382

lambda expressions (Edebug), anonymous 234

lambda in debug . 226

lambda in keymap . 329

lambda list . 166

lambda-list (Edebug) . 248

lambda-list-keywordp . 248

larger-font, x-find- . 632

largest-window, get- . 455

last-abbrev . 590

last-abbrev-location . 590

last-abbrev-text . 591

last-command . 293

last-command-char . 294

last-command-event . 293

last-error, database-. 682

last-input-char . 309

last-input-event . 309

last-kbd-macro . 318

Latin 1, ISO . 75

Latin-1 character set (input) 718

Latin-1 characters (input), ISO 718

lax-plist, canonicalize- . 100

lax-plist-get . 99

lax-plist-member . 99

lax-plist-put . 99

lax-plist-remprop . 99

lax-plists-eq . 100

lax-plists-equal . 100

layout policy . 652

layout types . 651

layout, annotation- . 653

layout, extent-begin-glyph- 602

layout, extent-end-glyph- . 602

layout, screen. 35

layout, set-annotation- . 653

layout, set-extent-begin-glyph- 603

layout, set-extent-end-glyph- 603

lazy loading . 213

LDAP . 735

ldap-close . 738

ldap-default-base . 735

ldap-default-host . 735

ldap-default-port . 735

ldap-host. 737

ldap-host-parameters-alist 736

ldap-live-p . 737

ldap-open . 737

ldap-search . 736

ldap-search-internal . 738

ldapp . 737

left, scroll- . 467

left-margin . 535

left-margin, current- . 535

left-margin, delete-to- . 535

left-margin, indent-to- . 535

left-margin, move-to- . 535

left-margin, set- . 534

Index 847

left-margin-pixel-width, window- 655

left-margin-width . 655

left-overflow, use- . 655

left-toolbar . 358

left-toolbar-visible-p . 359

left-toolbar-width . 359

length . 104

length extent, zero- . 595

length, bit vector . 104

length, edebug-print- 242, 253

length, extent- . 595

length, list . 104

length, maximum when printing, string 263

length, print- . 263

length, print-string- . 263

length, sequence . 104

length, string . 104

length, vector . 104

lessp, string-. 67

let . 148

let* . 149

let-specifier . 615

letters, CL note—case of . 24

level form, top- . 199

level, display-warning-minimum- 662

level, edebug-print- . 242, 253

level, log-warning-minimum- 662

level, print- . 263

level, recursive editing. 314

level, top- . 316

level-form, edebug-eval-top-. 233

lexical binding (Edebug) . 240

lexical comparison . 66

library . 199

library compilation . 211

library header comments . 775

library, Lisp . 199

library-search-path, x- . 727

limit error, variable . 149

limit, memory- . 785

limit, undo- . 531

limit, undo-strong- . 532

limits, printing . 263

line arguments, command 704

line in regexp, beginning of 559

line options, command . 705

line wrapping . 658

line, beginning of . 497

line, beginning-of- . 497

line, command- . 704

line, end-of- . 497

line, format-buffers-menu- 352

line, forward- . 497

line, goto- . 496

line, justify-current- . 533

line, move-to-window- . 499

line, options on command 705

line, split- . 522

line, switches on command 705

line, window top . 463

line-args, command- . 705

line-function, indent- . 541

line-functions, command- . 705

line-processed, command- 704

lines . 496

lines in region . 497

lines, continuation . 658

lines, count- . 497

lines, default-truncate- . 658

lines, delete-blank- . 525

lines, display . 479

lines, next-screen-context- 466

lines, sort- . 538

lines, truncate- . 658

link, file hard . 408

link, make-symbolic- . 409

linked, backup-by-copying-when- 427

linking files . 408

links, file symbolic . 404

Lisp (Edebug), Common . 234

Lisp debugger . 221

Lisp expression motion . 499

Lisp history . 10

Lisp library . 199

Lisp nesting error . 123

Lisp object . 17

Lisp printer . 261

Lisp reader . 255

Lisp, Common . 10

lisp-eval-depth, max- . 123

lisp-interaction-mode-map 796

lisp-mode-abbrev-table . 592

lisp-mode-map . 796

lisp-mode-map, emacs- . 795

lisp-mode-map, shared- . 797

lisp-mode-syntax-table, emacs- 584

lisp-mode.el . 368

list . 79, 84

list (Edebug), evaluation . 240

list (Edebug), lambda- . 248

list (in a specifier), inst- . 610

list cell (symbol), property 113

848 XEmacs Lisp Reference Manual

list elements . 81

list form evaluation . 125

list in keymap . 329

list length . 104

list motion . 499

list structure . 79

list type, weak . 32

list), element (of . 79

list, abbrev-table-name- . 588

list, add-to- . 155

list, annotation- . 654

list, association . 94

list, backward-. 499

list, buffer . 443

list, buffer- . 443

list, buffer-undo- . 529

list, canonicalize-inst- . 616

list, canonicalize-spec- . 616

list, char-table-type- . 76

list, charset- . 749

list, check-valid-inst- . 622

list, check-valid-spec- . 622

list, coding-category- . 760

list, coding-priority- . 760

list, coding-system- . 759

list, console- . 487

list, console-device- . 487

list, console-type-image-conversion- 644

list, debugger command . 225

list, device- . 488

list, device-frame- . 481, 488

list, device-matching-specifier-tag- 619

list, display-completion- . 275

list, down- . 500

list, Edebug specification . 246

list, empty . 25

list, extent-. 596

list, face- . 626

list, forward- . 499

list, frame- . 481

list, free . 782

list, glyph-type- . 648

list, history . 269

list, image-instance-type- . 645

list, image-instantiator-format-. 644

list, lambda . 166

list, make-. 85

list, make-weak- . 101

list, membership in a . 92

list, process- . 689

list, property . 98

list, reversing a . 91

list, set-coding-priority- . 760

list, set-console-type-image-conversion- 644

list, set-weak-list- . 101

list, specifier, inst- . 610

list, specifier-instance-from-inst- 620

list, specifier-spec- . 617

list, specifier-tag- . 619

list, symbol, property . 118

list, tab-stop- . 544

list, toolbar-make-button- 357

list, up- . 499

list, visible-frame-. 481

list, weak . 101

list, weak-list- . 101

list-buffers . 444

list-buffers-directory . 440

list-file-name, auto-save- . 432

list-fonts . 632

list-keywordp, lambda- . 248

list-list, set-weak- . 101

list-list, weak- . 101

list-p, valid-inst- . 622

list-p, valid-spec- . 622

list-p, weak- . 101

list-processes . 689

list-to-specifier, add-spec- 614

list-type, weak- . 101

listp . 81

lists (Edebug), dotted . 249

lists and cons cells . 79

lists as sets . 92

lists represented as boxes . 79

lists vs association lists, property 118

lists, . in . 26

lists, box diagrams, for . 25

lists, box representation for 79

lists, building . 84

lists, concatenating . 90

lists, copying . 85

lists, diagrams, boxed, for . 25

lists, joining . 90

lists, modification of . 90

lists, nil and . 79

lists, nil in . 25

lists, property lists vs association 118

lists, rearrangement of . 90

lists, scan- . 583

lists, sorting . 91

literal evaluation . 124

live-p, buffer- . 446

Index 849

live-p, console- . 490

live-p, database- . 681

live-p, device- . 490

live-p, event- . 298

live-p, extent- . 594

live-p, frame- . 480

live-p, ldap- . 737

live-p, window- . 453

lmessage . 660

ln . 409

load . 199

load error with require . 205

load errors . 200

load-alist, after- . 208

load-average . 710

load-default-sounds . 672

load-history . 208

load-ignore-elc-files . 202

load-in-progress. 201

load-path . 200

load-read-function . 201

load-sound-file . 672

load-warn-when-source-newer 201

load-warn-when-source-only 202

load.el, site- . 780

loading . 199

loading hooks . 208

loading of documentation, dynamic 212

loading of functions, dynamic 213

loading, hooks for . 208

loading, lazy . 213

loading, mode . 367

loading, repeated . 204

loadup.el . 779

local binding . 148

local keymap . 324

local variable, permanent . 161

local variables . 148

local variables in modes, buffer- 367

local variables, binding . 148

local variables, buffer- . 159

local, automatically buffer- 159

local, CL note—set . 155

local, make-variable-buffer- 160

local, variables, buffer- . 159

local-abbrev-table . 591

local-completion-map, minibuffer- 273, 796

local-copy, file- . 419

local-eval, enable- . 371

local-hook, make- . 384

local-isearch-map, minibuffer- 796

local-key-binding . 331

local-map, current- . 326

local-map, minibuffer- 266, 796

local-map, overriding- 328, 796

local-map, overriding-terminal- 328

local-map, use- . 327

local-must-match-map, minibuffer- 274, 796

local-ns-map, minibuffer- . 267

local-set-key . 336

local-unset-key . 336

local-variable, kill- . 161

local-variable, make- . 159

local-variable-p . 160

local-variables, buffer- . 160

local-variables, enable- . 371

local-variables, hack- . 373

local-variables, ignored- . 371

local-variables, kill-all- . 161

local-write-file-hooks . 399

locale (in a specifier) . 610

locale, specifier, . 610

locale, specifier-locale-type-from- 624

locale-p, valid-specifier- . 622

locale-type-from-locale, specifier- 624

locale-type-p, valid-specifier- 622

locate-file . 201

locate-file-clear-hashing . 201

locating, extents, . 596

location, abbrev-start- . 590

location, last-abbrev- . 590

location-buffer, abbrev-start- 590

lock, ask-user-about- . 402

lock-buffer . 402

locked, file- . 402

locked-p, file- . 402

locks, file . 401

log . 59

log-message-ignore-labels . 660

log-message-ignore-regexps 661

log-message-max-size . 660

log-warning-minimum-level 662

log-warning-suppressed-classes 662

log10 . 60

logand . 57

logb . 48

logical and . 57

logical exclusive or . 58

logical inclusive or . 58

logical not . 58

logical shift. 55

logical-name, define- . 409

850 XEmacs Lisp Reference Manual

login, ftp- . 145

login-name, user- . 711, 712

login-name, user-real- 711, 712

logior . 58

lognot . 58

logxor . 58

looking-at . 565

looking-at, posix- . 566

lookup, key . 328

lookup-key . 330

lookup-key, downcasing in 306

loop, command . 285

loop, count- . 13

loop, editor command . 285

loop, quitting from infinite 222

loop, recursive command . 314

loop, recursive, command . 314

loop, stopping an infinite . 222

loops, infinite . 222

lower case . 72

lower-frame . 485

lower-frame, auto- . 485

lowering a frame . 485

lowest-p, window- . 470

lru-window, get- . 455

lsh . 55

lwarn . 662

M
M-x . 292

M-x, C- . 233

Maclisp . 10

macro . 165

macro argument evaluation 185

macro call . 181

macro call evaluation . 126

macro compilation . 210

macro descriptions . 13

macro execution, keyboard 291

macro expansion . 182

macro termination, keyboard 671

macro, defining-kbd- . 318

macro, edebug-continue-kbd- 253

macro, execute-kbd- . 317

macro, executing- . 318

macro, last-kbd- . 318

macro, terminate keyboard 310

macroexpand . 182

macros . 181

macros (Edebug), keyboard 235

macros, byte-compiling . 182

macros, expansion of . 181

macros, keyboard . 317

magic file names . 418

mail-address, user- . 711

mail-host-address . 709

major mode . 365

major mode hook . 367

major mode keymap . 325

major mode, documentation for 373

major mode, help for . 373

major-mode . 373

major-mode, default- . 372

major-mode, initial- . 372

major-mode, set-buffer- . 372

major-mode-hook, change-. 367

major-version, emacs- . 781

make them, backup files, how to 426

make-abbrev-table . 587

make-annotation . 652

make-auto-save-file-name . 430

make-backup-file-name . 428

make-backup-files . 425

make-bit-vector . 110

make-button-list, toolbar- 357

make-byte-code . 215

make-char . 752

make-char-table . 77

make-charset . 749

make-coding-system . 759

make-composite-char . 752

make-device . 489

make-directory . 417

make-display-table . 670

make-event . 303

make-extent . 594

make-face . 626

make-file-part . 420

make-font-bold, x- . 632

make-font-bold-italic, x- . 633

make-font-instance . 631

make-font-italic, x- . 633

make-font-unbold, x- . 633

make-font-unitalic, x- . 633

make-frame . 475

make-frame-invisible . 484

make-frame-visible . 484

make-glyph . 635

make-glyph-internal . 635

make-hashtable . 675

make-icon-glyph . 636

Index 851

make-image-instance . 646

make-image-specifier . 641

make-indirect-buffer . 447

make-key-weak-hashtable . 677

make-keymap . 320

make-list . 85

make-local-hook . 384

make-local-variable . 159

make-marker . 507

make-obsolete . 393

make-obsolete-variable . 394

make-pointer-glyph . 636

make-range-table . 679

make-reverse-direction-charset 749

make-sparse-keymap . 320

make-specifier . 621

make-specifier-and-init . 621

make-string . 62

make-symbol . 116

make-symbolic-link . 409

make-syntax-table . 579

make-temp-name . 415

make-tooltalk-message . 730

make-tooltalk-pattern . 732

make-tty-device . 489

make-value-weak-hashtable 677

make-variable-buffer-local 160

make-vector . 109

make-weak-hashtable . 677

make-weak-list . 101

make-x-device . 489

making them interactive, functions, 286

makunbound . 150

Manual-page-minibuffer-history 270

map, bookmark- . 795

map, Buffer-menu-mode- . 795

map, c-mode- . 795

map, c++-mode- . 795

map, command-history- . 795

map, ctl-x- . 323, 795

map, ctl-x-4- . 323, 795

map, ctl-x-5- . 323, 795

map, current-global- . 326

map, current-local- . 326

map, debugger-mode- . 795

map, dired-mode- . 795

map, edit-abbrevs- . 795

map, edit-tab-stops- . 795

map, electric-buffer-menu-mode- 795

map, electric-future- . 14

map, electric-history- . 795

map, emacs-lisp-mode- . 795

map, esc- . 324

map, function-key- . 717

map, global- . 326

map, help- . 392, 795

map, Helper-help- . 796

map, Info-edit- . 796

map, Info-mode- . 796

map, isearch-mode- . 796

map, itimer-edit- . 796

map, key-translation- . 718

map, lisp-interaction-mode- 796

map, lisp-mode- . 796

map, menu-accelerator- . 351

map, minibuffer-local- 266, 796

map, minibuffer-local-completion- 273, 796

map, minibuffer-local-isearch- 796

map, minibuffer-local-must-match- 274, 796

map, minibuffer-local-ns- . 267

map, mode-specific- . 323, 796

map, modeline- . 327, 796

map, objc-mode- . 796

map, occur-mode- . 796

map, overriding-local- 328, 796

map, overriding-terminal-local- 328

map, query-replace- . 567, 796

map, read-expression- . 797

map, read-shell-command- 797

map, shared-lisp-mode-. 797

map, text-mode- . 797

map, toolbar- . 327, 797

map, use-global- . 327

map, use-local- . 327

map, view-mode- . 797

map-alist, minor-mode- . 327

map-char-table . 77

map-database . 681

map-extent-children . 599

map-extents . 597

map-frame-hook . 486

map-keymap . 338

map-range-table . 679

map-specifier . 623

map-y-or-n-p . 281

mapatoms . 117

mapcar . 173

mapcar-extents . 599

mapconcat . 174

maphash . 676

mapping functions . 173

mapping, extents, . 597

852 XEmacs Lisp Reference Manual

maps, current-minor-mode- 327

margin . 651

margin width . 655

margin, current-left- . 535

margin, delete-to-left- . 535

margin, indent-to-left- . 535

margin, inside . 651

margin, left- . 535

margin, move-to-left- . 535

margin, outside . 651

margin, set-left- . 534

margin, set-right- . 534

margin-pixel-width, window-left- 655

margin-pixel-width, window-right- 655

margin-width, left- . 655

margin-width, right- . 655

mark . 511

mark (Edebug), current buffer point and 244

mark excursion . 501

mark in character constant, question 23

mark ring . 510

mark ring, global . 510

mark, abbrev-prefix- . 590

mark, current buffer . 511

mark, exchange-point-and- 512

mark, pop- . 512

mark, pop-global- . 513

mark, process- . 694

mark, push- . 512

mark, set- . 511

mark, the . 510

mark-marker . 511

mark-ring . 512

mark-ring, global- . 513

mark-ring-max . 512, 513

marker argument . 289

marker garbage collection 505

marker input stream . 256

marker output stream . 259

marker relocation . 505

marker, copy- . 508

marker, end of buffer . 508

marker, make- . 507

marker, mark- . 511

marker, move- . 510

marker, point- . 507

marker, point-max- . 508

marker, point-min- . 507

marker, set- . 509

marker-buffer . 509

marker-p, integer-char-or- 507

marker-p, integer-or- . 507

marker-p, number-char-or- 507

marker-p, number-or- . 507

marker-position . 509

markerp . 507

markers . 505

markers as numbers . 505

markers vs. extents . 505

markers, insert-before- . 520

mask-file-name, image-instance- 647

match data . 568

match, posix-string- . 566

match, replace- . 570

match, string- . 564

match-beginning . 568

match-data . 570

match-data, save- . 571

match-data, set- . 571

match-data, store- . 571

match-end . 569

match-map, minibuffer-local-must- 274, 796

match-string . 568

matches-key-specifier-p, event- 323

matches-specifier-tag-set-p, device- 618

matching, parenthesis . 667

matching-history-element, next- 283

matching-history-element, previous- 283

matching-open, blink- . 668

matching-paren, blink- . 668

matching-paren-delay, blink- 668

matching-paren-distance, blink- 668

matching-specifier-tag-list, device- 619

mathematical functions . 59

max . 51

max, kill-ring- . 529

max, mark-ring- . 512, 513

max, point- . 493

max-lisp-eval-depth . 123

max-marker, point- . 508

max-size, buffers-menu- . 352

max-size, log-message- . 660

max-specpdl-size. 149

maximum when printing, string length, 263

maybe, indent-relative- . 543

maybe-dialog-box, y-or-n-p- 281

maybe-dialog-box, yes-or-no-p- 281

member . 93

member, lax-plist- . 99

member, plist- . 98

membership in a list . 92

memory allocation . 782

Index 853

memory-limit . 785

memq . 92

menu . 341

menu accelerators . 350

menu accelerators, keyboard 350

menu filters . 348

menu format . 341

menu, accelerate- . 350

menu, add- . 347

menu, annotation- . 654

menu, buffers . 352

menu, default-popup- . 349

menu, global-popup- . 349

menu, mode-popup- . 349

menu, pop-up . 349

menu, popup- . 349

menu, popup-buffer- . 349

menu, popup-menubar- . 349

menu, popup-mode- . 349

menu, set-annotation- . 654

menu-accelerator-enabled . 351

menu-accelerator-map . 351

menu-accelerator-modifiers 351

menu-accelerator-prefix . 351

menu-button, add- . 346

menu-filter, buffers- . 348

menu-filter, edit- . 348

menu-filter, file- . 348

menu-hook, activate-popup- 349

menu-item, add- . 347

menu-item, delete- . 346

menu-item, disable- . 347

menu-item, enable- . 347

menu-item, find- . 347

menu-item, relabel- . 347

menu-line, format-buffers- 352

menu-max-size, buffers- . 352

menu-mode-map, Buffer- . 795

menu-mode-map, electric-buffer- 795

menu-no-selection-hook . 346

menu-p, complex-buffers- . 352

menu-switch-to-buffer-function, buffers- 352

menu-titles, popup- . 349

menu-up-p, popup- . 349

menubar . 344

menubar format . 344

menubar, current- . 345

menubar, default- . 345

menubar, format of the . 344

menubar, set- . 345

menubar, set-buffer- . 345

menubar-configuration . 344

menubar-dirty-flag, set- . 345

menubar-hook, activate- . 345

menubar-menu, popup- . 349

menubar-pointer-glyph . 649

menubar-show-keybindings 345

menus, format of . 341

message . 659

message notation, error. 12

message, clear- . 660

message, create-tooltalk- . 732

message, current- . 660

message, describe-tooltalk- 734

message, destroy-tooltalk- 732

message, display- . 659

message, gc- . 786

message, inhibit-startup- . 702

message, inhibit-startup-echo-area- 702

message, make-tooltalk- . 730

message, new file . 397

message, print-help-return- 392

message, return-tooltalk- . 730

message, send-tooltalk- . 730

message, ToolTalk . 729

message-arg, add-tooltalk- 731

message-attribute, get-tooltalk- 731

message-attribute, set-tooltalk- 731

message-ignore-labels, log- 660

message-ignore-regexps, log- 661

message-max-size, log- . 660

messages, receiving ToolTalk 732

messages, sending ToolTalk 729

meta character printing . 390

meta-prefix-char . 331

min . 51

min, point- . 493

min-height, window- . 472

min-marker, point- . 507

min-width, window- . 472

minibuffer . 265

minibuffer history . 269

minibuffer input . 314

minibuffer window . 455

minibuffer, ? in . 267

minibuffer, eval- . 268

minibuffer, exit- . 282

minibuffer, read- . 267

minibuffer, read-from- . 266

minibuffer, SPC in . 267

minibuffer, TAB in . 267

minibuffer-complete . 274

854 XEmacs Lisp Reference Manual

minibuffer-complete-and-exit 274

minibuffer-complete-word. 274

minibuffer-completion-confirm 275

minibuffer-completion-help 275

minibuffer-completion-predicate 274

minibuffer-completion-table 274

minibuffer-depth . 284

minibuffer-exit-hook . 283

minibuffer-frame, default- 482

minibuffer-frame-plist . 476

minibuffer-help-form . 283

minibuffer-history. 269

minibuffer-history, Info- . 270

minibuffer-history, Manual-page- 270

minibuffer-local-completion-map 273, 796

minibuffer-local-isearch-map 796

minibuffer-local-map. 266, 796

minibuffer-local-must-match-map 274, 796

minibuffer-local-ns-map . 267

minibuffer-p, window- . 284

minibuffer-prompt . 283

minibuffer-prompt-width . 283

minibuffer-scroll-window . 284

minibuffer-setup-hook . 283

minibuffer-window . 283

minibuffer-window, active- 283

minibuffer-window-active-p 284

minibuffers, enable-recursive- 284

minimum window size . 472

minimum-level, display-warning- 662

minimum-level, log-warning- 662

minor mode . 374

minor mode conventions . 375

minor modes, conventions for writing 375

minor modes, self-insert-command, 376

minor-mode-alist . 379

minor-mode-key-binding . 331

minor-mode-map-alist . 327

minor-mode-maps, current- 327

minor-version, emacs- . 781

misc-user-event-p . 298

mismatch, backup-by-copying-when- 427

mod . 54

mode . 365

mode conventions, minor . 375

mode help . 373

mode hook . 367

mode hook, major . 367

mode keymap, major . 325

mode loading . 367

mode modeline-format, Shell. 378

mode specification error, file 371

mode variable . 375

mode, abbrev- . 587

mode, Auto Fill . 535

mode, auto-save- . 430

mode, batch . 722

mode, current-input- . 717

mode, default-abbrev- . 587

mode, default-major- . 372

mode, define-derived- . 374

mode, describe- . 373

mode, documentation for major 373

mode, Edebug . 231

mode, edebug-initial- . 253

mode, Fundamental . 365

mode, fundamental- . 371

mode, help for major . 373

mode, indent-according-to- 541

mode, indent-tabs- . 540

mode, initial-major- . 372

mode, major . 365

mode, major- . 373

mode, minor . 374

mode, newline and Auto Fill 521

mode, normal- . 371

mode, Outline . 551

mode, overwrite- . 522

mode, set-auto- . 371

mode, set-buffer-major- . 372

mode, set-input- . 716

mode, vc- . 380

mode, visited file . 371

mode, x-debug- . 727

mode-abbrev-table, c- . 592

mode-abbrev-table, fundamental- 592

mode-abbrev-table, lisp- . 592

mode-abbrev-table, text- . 592

mode-alist, auto- . 372

mode-alist, interpreter- . 373

mode-alist, minor- . 379

mode-class property. 367

mode-hook, change-major-. 367

mode-key-binding, minor- 331

mode-map, Buffer-menu- . 795

mode-map, c- . 795

mode-map, c++- . 795

mode-map, debugger- . 795

mode-map, dired- . 795

mode-map, electric-buffer-menu- 795

mode-map, emacs-lisp- . 795

mode-map, Info- . 796

Index 855

mode-map, isearch- . 796

mode-map, lisp- . 796

mode-map, lisp-interaction- 796

mode-map, objc- . 796

mode-map, occur- . 796

mode-map, shared-lisp-. 797

mode-map, text- . 797

mode-map, view- . 797

mode-map-alist, minor- . 327

mode-maps, current-minor- 327

mode-menu, popup- . 349

mode-name . 379

mode-popup-menu . 349

mode-specific-map . 323, 796

mode-string, global- . 379

mode-syntax-table, c- . 584

mode-syntax-table, emacs-lisp- 584

mode-syntax-table, text- . 584

mode.el, lisp- . 368

modeline . 376

modeline construct . 377

modeline, percent symbol in 377

modeline, redraw- . 376

modeline-buffer-identification 379

modeline-format . 377

modeline-format, default- . 380

modeline-format, Shell mode. 378

modeline-map . 327, 796

modeline-modified . 378

modeline-p, event-over- . 300

modeline-pointer-glyph . 649

modeline-process . 380

modes and MS-DOS, file . 409

modes of files, setting . 408

modes, abbrev tables in . 366

modes, buffer-local variables in 367

modes, conventions for writing minor 375

modes, default-file- . 409

modes, Edebug execution . 234

modes, file- . 405

modes, functions in . 366

modes, input . 716

modes, keymaps in . 366

modes, MS-DOS and file . 409

modes, self-insert-command, minor 376

modes, set-default-file- . 409

modes, set-file- . 409

modes, syntax tables in . 366

modes, terminal input . 716

modification flag (of buffer) 440

modification of lists . 90

modification time, comparison of 441

modification time, file . 404

modification, buffer . 440

modified, modeline- . 378

modified, not- . 440

modified-p, buffer- . 440

modified-p, set-buffer- . 440

modified-tick, buffer- . 441

modified-tick, string- . 69

modifier-bits, event- . 302

modifiers, event- . 302

modifiers, menu-accelerator- 351

modify-syntax-entry . 580

modifying, strings, . 69

modtime, clear-visited-file- 441

modtime, set-visited-file- . 441

modtime, verify-visited-file- 441

modtime, visited-file- . 441

modulus . 54

momentary-string-display 667

mono-pixmap-image-instance-p 646

more storage, CL note—allocate 782

motion, Lisp expression . 499

motion, list. 499

motion, sexp . 499

motion, vertical- . 498

motion-event-p . 298

motion-pixels, vertical- . 498

mouse cursor . 649

mouse pointer . 649

mouse-event, current- . 294

mouse-event-p . 298

mouse-face, extent- . 602

mouse-face, set-extent- . 603

mouse-grabbed-buffer . 327

mouse-highlight-priority . 606

move-marker . 510

move-to-column . 539

move-to-left-margin . 535

move-to-window-line . 499

MS-DOS and file modes . 409

MS-DOS file types . 423

MS-DOS, file modes and . 409

MS-DOS, file types on . 423

MSWindows OLE . 364

multilingual string formatting 71

multiple names, file with . 408

multiple windows . 449

must-match-map, minibuffer-local- 274, 796

856 XEmacs Lisp Reference Manual

N
n, C-x . 323

n-p, map-y-or- . 281

n-p, y-or- . 279

n-p-maybe-dialog-box, y-or- 281

name abbreviation, directory 412

name cell, print . 113

name completion subroutines, file 415

name hashing, symbol . 115

name of buffer, file . 438

name of directory, file . 411

name), directory part (of file 410

name), nondirectory part (of file 410

name), version number (in file 410

name, abbrev-file- . 589

name, abbreviate-file- . 412

name, absolute file . 413

name, auto-save-list-file- . 432

name, auto-save-visited-file- 431

name, buffer file . 438

name, buffer- . 437

name, buffer-auto-save-file- 429

name, buffer-file- . 438, 439

name, charset- . 750

name, coding-system- . 759

name, color- . 634

name, color-instance- . 634

name, completion, file . 415

name, condition . 143

name, database-file- . 682

name, default-frame- . 479

name, define-logical- . 409

name, directory . 411

name, directory-file- . 412

name, error . 143

name, expand-file- . 413

name, face-font- . 630

name, file-relative- . 414

name, find-backup-file- . 429

name, font instance . 632

name, font- . 633

name, font-instance- . 632

name, frame . 479

name, frame- . 479

name, function . 169

name, generate-new-buffer- 438

name, image-instance- . 647

name, image-instance-file- 647

name, image-instance-mask-file- 647

name, internal-doc-file- . 388

name, invocation- . 710

name, keymap- . 320

name, make-auto-save-file- 430

name, make-backup-file- . 428

name, make-temp- . 415

name, mode- . 379

name, process-. 690

name, process-tty- . 691

name, read command . 291

name, read-file- . 277

name, relative file . 413

name, set-keymap- . 320

name, set-visited-file- . 439

name, substitute-in-file- . 414

name, symbol- . 116

name, system- . 709

name, user-full- . 711, 712

name, user-login- . 711, 712

name, user-real-login- 711, 712

name-absolute-p, file- . 413

name-all-completions, file- 415

name-as-directory, file- . 412

name-buffer-file-type-alist, file- 423

name-completion, file- . 416

name-directory, file- . 410

name-directory, unhandled-file- 419

name-handler, find-file- . 419

name-handlers, inhibit-file- 419

name-history, file- . 269

name-list, abbrev-table- . 588

name-nondirectory, file- . 410

name-operation, inhibit-file- 419

name-p, auto-save-file- . 430

name-p, backup-file- . 428

name-p, x-valid-keysym- . 727

name-sans-extension, file-. 411

name-sans-versions, file- . 411

name-to-file, add- . 408

named function . 169

names in directory, file . 416

names, buffer . 437

names, expansion of file . 413

names, file . 410

names, file with multiple . 408

names, magic file . 418

names, same-window-buffer- 461

names, special-display-buffer- 461

NaN . 48

narrow-to-page . 503

narrow-to-region . 503

narrowing . 502

narrowing, point with . 493

Index 857

natnum-specifier-p . 613

natnump . 49

natural numbers . 49

nconc . 90

necessary, delete-auto-save-file-if-. 432

negative infinity . 48

negative-argument . 314

nesting error, Lisp . 123

network connection . 699

network-stream, open- . 699

new file message . 397

new, kill- . 528

new-buffer, generate- . 445

new-buffer-name, generate- 438

new-versions, kept- . 427

newer, load-warn-when-source- 201

newer-than-file-p, file- . 404

newest-backup, file- . 429

newline . 22, 521

newline and Auto Fill mode 521

newline in print . 262

newline in strings . 28

newline, require-final- . 399

newline-and-indent . 541

newline-and-indent, reindent-then- 541

newlines, print-escape- . 262

newlines, use-hard- . 534

next input . 308

next-call, debug-on- . 229

next-command-event . 307

next-event . 307

next-extent . 597

next-frame . 481

next-history-element . 283

next-matching-history-element 283

next-property-change . 548

next-screen-context-lines . 466

next-single-property-change 549

next-window . 455

nil . 147

nil and lists . 79

nil in keymap . 328

nil in lists . 25

nil input stream . 256

nil output stream . 259

nil, uses of . 10

ninth . 84

nlinks, file- . 406

nlistp . 81

no continuable errors, CL note— 140

no questions, yes-or- . 279

no-blanks-input, read- . 267

no-catch . 137

no-p, yes-or- . 280

no-p-dialog-box, yes-or- . 281

no-p-maybe-dialog-box, yes-or- 281

no-redraw-on-reenter . 657

no-redraw-on-reenter), resume (cf. 657

no-redraw-on-reenter), suspend (cf. 657

no-selection-hook, menu- . 346

nondirectory part (of file name) 410

nondirectory, file-name- . 410

noninteractive . 722

noninteractive use . 722

nonlocal exits . 136

nonprinting characters, reading 308

nontext-pointer-glyph . 649

normal-mode . 371

noselect, find-file- . 396

not . 134

not available, closures . 157

not, bitwise . 58

not, logical . 58

not-all, text-property- . 549

not-found-hooks, find-file- 397

not-modified . 440

notation, buffer text . 12

notation, documentation . 11

notation, dotted pair . 26

notation, error message. 12

notation, evaluation . 11

notation, hash . 17

notation, printing . 11

notation, XEmacs event standard 390

note—allocate more storage, CL 782

note—case of letters, CL . 24

note—default optional arg, CL 168

note—integers vrs eq, CL . 50

note—lack union, set, CL. 92

note—no continuable errors, CL 140

note—only throw in Emacs, CL 137

note—rplaca vrs setcar, CL 87

note—set local, CL . 155

note—special forms compared, CL 128

note—special variables, CL 156

note—symbol in obarrays, CL 116

nothing-image-instance-p . 646

nreverse . 90

ns-map, minibuffer-local- . 267

nth . 82

nthcdr . 82

null . 81

858 XEmacs Lisp Reference Manual

number (in file name), version 410

number equality . 49

number, buffer-file- . 439

number, string to . 68

number, string-to- . 68

number-char-or-marker-p . 507

number-of-arguments, wrong- 168

number-or-marker-p . 507

number-to-string . 68

numberp . 49

numbers . 47

numbers, markers as . 505

numbers, natural . 49

numbers, precision of formatted 72

numbers, printing floating-point. 264

numbers, printing, floating-point 264

numbers, random . 60

numeric prefix . 71

numeric prefix argument . 312

numeric prefix argument usage 289

numeric-fields, sort- . 538

numeric-value, prefix- . 313

O
obarray . 115, 117

obarray in completion . 271

obarray), bucket (in . 115

obarrays, CL note—symbol in 116

objc-mode-map . 796

object . 17

object to string . 262

object, event- . 302

object, extent- . 594

object, Lisp . 17

object, string to . 258

objects, window-system . 625

oblique . 632

obsolete buffer . 441

obsolete, make- . 393

obsolete-function-alias, define- 394

obsolete-variable, make- . 394

obsolete-variable-alias, define- 394

obsoleteness-doc, function- 394

obsoleteness-doc, variable- 394

occur-mode-map . 796

octal character code . 23

octal character input . 308

octal, integer to . 70

octal-escape-glyph . 650

octet, char- . 752

offer-save, buffer- . 398, 446

OffiX DND . 363

old-eq . 45

old-versions, kept- . 428

OLE, MSWindows . 364

one-space, just- . 525

one-window-p . 450, 452

only buffer, read- . 442

only buffers in interactive, read- 287

only throw in Emacs, CL note— 137

only, barf-if-buffer-read- . 443

only, buffer, read- . 442

only, buffer-read- . 442

only, find-file-read- . 396

only, inhibit-read- . 442

only, load-warn-when-source- 202

only, toggle-read- . 442

only-global-abbrevs . 589

open error, file. 397

open parenthesis character 577

open, blink-matching- . 668

open, ldap- . 737

open-database . 681

open-dribble-file . 719

open-network-stream . 699

open-termscript . 720

operating system environment 708

operation, inhibit-file-name- 419

option descriptions . 14

option, user . 153

optional arg, CL note—default 168

optional arguments . 168

options on command line . 705

options, command line . 705

or . 135

or, bitwise . 58

or, bitwise exclusive . 58

or, logical exclusive . 58

or, logical inclusive . 58

or-char-int-p, char- . 65

or-char-p, integer- . 64

or-frame-p, device- . 488

or-frame-type, device- . 489

or-marker-p, integer- . 507

or-marker-p, integer-char- 507

or-marker-p, number- . 507

or-marker-p, number-char- 507

or-n-p, map-y- . 281

or-n-p, y- . 279

or-n-p-maybe-dialog-box, y- 281

or-no questions, yes- . 279

Index 859

or-no-p, yes- . 280

or-no-p-dialog-box, yes- . 281

or-no-p-maybe-dialog-box, yes- 281

or-string-p, char- . 62

order of extents . 595

order, display. 595

order, extent . 595

ordering of windows, cyclic 455

ordering, cyclic, window . 455

oriented functions, directory- 416

other-buffer . 443

other-window . 456

other-window, find-file- . 396

other-window, scroll- . 465

other-window, switch-to-buffer- 458

other-window-scroll-buffer 466

other-windows, delete- . 453

Outline mode . 551

output from processes . 693

output stream . 258

output stream, buffer . 259

output stream, function . 259

output stream, marker . 259

output stream, nil . 259

output stream, t . 259

output, accept-process- . 696

output, binary-process- . 687

output, process . 693

output, standard- . 262

output, terminal . 719

output-format, float- . 264

output-to-temp-buffer, with- 666

outside margin . 651

over-border-p, event- . 301

over-glyph-p, event- . 301

over-modeline-p, event- . 300

over-text-area-p, event- . 300

over-toolbar-p, event- . 301

overflow . 47

overflow, use-left- . 655

overflow, use-right- . 655

overlay arrow . 665

overlay-arrow-position . 666

overlay-arrow-string . 665

override, self-insert-command 335

overriding-local-map . 328, 796

overriding-terminal-local-map 328

overwrite-mode . 522

own-selection, x- . 723

ownership-preserved-p, file- 404

P
p example, user-variable- . 277

p, auto-save-file-name- . 430

p, backup-file-name- . 428

p, bit-vector- . 110

p, boolean-specifier- . 613

p, bottom-toolbar-visible- 359

p, buffer-glyph- . 648

p, buffer-live- . 446

p, buffer-modified- . 440

p, button-event- . 298

p, button-press-event- . 298

p, button-release-event- . 298

p, byte-recompile-directory-ignore-errors- 212

p, case-table- . 74

p, category-designator- . 768

p, category-table- . 767

p, category-table-value- . 768

p, char-int- . 65

p, char-or-char-int- . 65

p, char-or-string- . 62

p, char-table- . 76

p, coding-system- . 756

p, color-instance- . 634

p, color-pixmap-image-instance- 646

p, color-specifier- . 613, 633

p, compiled-function- . 166

p, complex-buffers-menu- . 352

p, console-live- . 490

p, database-live- . 681

p, default-toolbar-visible- . 359

p, device-live- . 490

p, device-matches-specifier-tag-set- 618

p, device-or-frame- . 488

p, eval-event- . 298

p, event-live- . 298

p, event-matches-key-specifier- 323

p, event-over-border- . 301

p, event-over-glyph- . 301

p, event-over-modeline- . 300

p, event-over-text-area- . 300

p, event-over-toolbar- . 301

p, extent-detached- . 604

p, extent-in-region- . 599

p, extent-live- . 594

p, face-boolean-specifier- . 613

p, face-differs-from-default- 631

p, face-underline- . 630

p, file-accessible-directory- 403

p, file-directory- . 404

p, file-executable- . 403

860 XEmacs Lisp Reference Manual

p, file-exists- . 403

p, file-locked- . 402

p, file-name-absolute- . 413

p, file-newer-than-file- . 404

p, file-ownership-preserved- 404

p, file-readable- . 403

p, file-regular- . 405

p, file-symlink- . 404

p, file-writable- . 403

p, font-instance- . 631

p, font-specifier- . 613, 631

p, frame-iconified- . 484

p, frame-live- . 480

p, frame-totally-visible- . 484

p, frame-visible- . 484

p, generic-specifier- . 613

p, glyph-contrib- . 639

p, icon-glyph- . 648

p, image-instance- . 645

p, image-specifier- . 613, 641

p, input-pending- . 309

p, integer-char-or-marker- 507

p, integer-or-char- . 64

p, integer-or-marker- . 507

p, integer-specifier- . 613

p, interactive- . 292

p, key-press-event- . 298

p, ldap-live- . 737

p, left-toolbar-visible- . 359

p, local-variable- . 160

p, map-y-or-n- . 281

p, minibuffer-window-active- 284

p, misc-user-event- . 298

p, mono-pixmap-image-instance- 646

p, motion-event- . 298

p, mouse-event- . 298

p, natnum-specifier- . 613

p, nothing-image-instance- 646

p, number-char-or-marker- 507

p, number-or-marker- . 507

p, one-window- . 450, 452

p, pointer-glyph- . 648

p, pointer-image-instance- 646

p, popup-menu-up- . 349

p, pos-visible-in-window- . 464

p, process-event- . 298

p, process-kill-without-query- 690

p, range-table- . 679

p, recent-auto-save- . 431

p, region-active- . 514

p, region-exists- . 514

p, right-toolbar-visible- . 359

p, set-buffer-modified- . 440

p, set-face-underline- . 630

p, set-glyph-contrib- . 639

p, set-window-dedicated- . 462

p, subwindow-image-instance- 646

p, syntax-table- . 575

p, text-image-instance- . 646

p, timeout-event- . 298

p, toolbar-buttons-captioned- 360

p, toolbar-specifier- . 358, 613

p, top-toolbar-visible- . 359

p, user-variable- . 153

p, valid-char-table-type- . 76

p, valid-char-table-value- . 77

p, valid-device-class- . 489

p, valid-device-type- . 489

p, valid-glyph-type- . 648

p, valid-image-instance-type- 645

p, valid-image-instantiator-format- 644

p, valid-inst-list- . 622

p, valid-instantiator- . 622

p, valid-plist- . 98

p, valid-spec-list- . 622

p, valid-specifier-domain- . 622

p, valid-specifier-locale- . 622

p, valid-specifier-locale-type- 622

p, valid-specifier-tag- 618, 622

p, valid-specifier-tag-set- . 618

p, valid-specifier-type- . 622

p, waiting-for-user-input- . 698

p, weak-list- . 101

p, window-configuration- . 474

p, window-dedicated- 460, 462

p, window-highest- . 470

p, window-live- . 453

p, window-lowest- . 470

p, window-minibuffer- . 284

p, x-valid-keysym-name- . 727

p, y-or-n- . 279

p, yes-or-no- . 280

p-dialog-box, yes-or-no- . 281

p-instance, glyph-contrib- 639

p-maybe-dialog-box, y-or-n- 281

p-maybe-dialog-box, yes-or-no- 281

padding . 71

page, narrow-to- . 503

page-delimiter . 572

page-minibuffer-history, Manual- 270

pages, sort-. 538

pair (in a specifier), inst- . 610

Index 861

pair notation, dotted . 26

pair, canonicalize-inst- . 616

pair, set-case-syntax- . 75

pair, specifier, inst- . 610

paired delimiter . 578

paragraph, fill- . 532

paragraph, fill-region-as- . 533

paragraph, filling a . 532

paragraph-function, fill- . 533

paragraph-separate . 573

paragraph-start . 573

paragraphs, fill-individual- 532

paragraphs, sort- . 538

parameters-alist, ldap-host- 736

paren, blink-matching- . 668

paren-delay, blink-matching- 668

paren-distance, blink-matching- 668

paren-function, blink- . 668

paren-hook, blink- . 667

parent of a keymap . 321

parent process . 683

parent, extent . 604

parent, extent- . 605

parent, keymap . 321

parent, of extent . 604

parent, set-extent- . 604

parentheses, balancing . 667

parentheses, indenting with 582

parentheses, innermost containing 582

parenthesis . 25

parenthesis character, close 577

parenthesis character, open 577

parenthesis depth . 582

parenthesis matching . 667

parenthesis syntax . 577

parenthesis, close . 667

parents, keymap- . 321

parents, set-keymap- . 321

parse state . 582

parse-partial-sexp . 582

parse-sexp-ignore-comments 583

parsing . 575

parsing, text . 575

part (of file name), directory 410

part (of file name), nondirectory 410

part, make-file- . 420

partial files . 420

partial-sexp, parse- . 582

partial-width-windows, truncate- 658

paste-function, interprogram- 528

PATH environment variable 683

path, exec- . 684

path, load- . 200

path, split- . 565

path, x-bitmap-file- . 644, 727

path, x-library-search- . 727

path-separator . 710

pattern, create-tooltalk- . 733

pattern, destroy-tooltalk- . 734

pattern, make-tooltalk- . 732

pattern, register-tooltalk- . 733

pattern, ToolTalk . 732

pattern, unregister-tooltalk- 733

pattern-arg, add-tooltalk- 733

pattern-attribute, add-tooltalk- 733

pausing . 310

peculiar error . 143

peeking at input . 308

pending-p, input- . 309

percent symbol in modeline 377

perform-replace . 566

performance analysis . 243

permanent local variable . 161

permission . 405

pid, emacs- . 710

pipes . 688

pixel, event-glyph-x- . 301

pixel, event-glyph-y- . 301

pixel, event-window-x- . 300

pixel, event-window-y- . 300

pixel, event-x- . 299

pixel, event-y- . 299

pixel-edges, window- . 470

pixel-edges, window-text-area- 470

pixel-height, frame- . 479

pixel-height, window- . 469

pixel-height, window-displayed-text- 470

pixel-height, window-text-area- 469

pixel-width, frame- . 479

pixel-width, window- . 469

pixel-width, window-left-margin- 655

pixel-width, window-right-margin- 655

pixel-width, window-text-area- 470

pixels, enlarge-window- . 471

pixels, shrink-window- . 472

pixels, vertical-motion- . 498

pixmap, background . 626

pixmap, face-background- 630

pixmap, set-face-background- 630

pixmap, x-set-frame-icon- 480

pixmap-image-instance-p, color- 646

pixmap-image-instance-p, mono- 646

862 XEmacs Lisp Reference Manual

pixmap-instance, face-background- 630

play-sound . 673

play-sound-file . 673

plist . 98

plist, alist-to- . 100

plist, canonicalize- . 99

plist, canonicalize-lax- . 100

plist, check-valid- . 98

plist, default-frame- . 477

plist, destructive-alist-to- . 100

plist, initial-frame- . 476

plist, minibuffer-frame- . 476

plist, pop-up-frame- . 460

plist, special-display-frame- 461

plist, symbol . 118

plist, symbol- . 119

plist-get . 98

plist-get, lax- . 99

plist-member . 98

plist-member, lax- . 99

plist-p, valid- . 98

plist-put . 98

plist-put, lax-. 99

plist-remprop . 98

plist-remprop, lax- . 99

plist-to-alist . 100

plist-to-alist, destructive- . 100

plists-eq . 99, 120

plists-eq, lax- . 100

plists-equal . 99, 120

plists-equal, lax- . 100

point . 493

point and mark (Edebug), current buffer 244

point excursion . 501

point in window . 462

point numbers, printing floating- 264

point numbers, printing, floating- 264

point with narrowing . 493

point, centering . 466

point, event- . 300

point, event-closest- . 300

point, IEEE floating . 48

point, insertion before . 520

point, insertion, before . 520

point, set-window- . 463

point, window . 462

point, window- . 462

point-and-mark, exchange- 512

point-marker . 507

point-max . 493

point-max-marker . 508

point-min . 493

point-min-marker . 507

pointer (mouse) . 649

pointer, kill-ring-yank- . 529

pointer, mouse . 649

pointer, set-frame- . 650

pointer, x-grab- . 726

pointer, x-ungrab- . 726

pointer-glyph, busy- . 649

pointer-glyph, gc- . 649, 786

pointer-glyph, make- . 636

pointer-glyph, menubar- . 649

pointer-glyph, modeline- . 649

pointer-glyph, nontext- . 649

pointer-glyph, scrollbar- . 649

pointer-glyph, selection- . 649

pointer-glyph, text- . 649

pointer-glyph, toolbar- . 649

pointer-glyph-p . 648

pointer-image-instance-p . 646

points, edebug-save-displayed-buffer- 244, 252

points, stop . 232

policy, layout . 652

pop, yank- . 527

pop-global-mark . 513

pop-mark . 512

pop-to-buffer . 458

pop-up menu . 349

pop-up-frame-function . 460

pop-up-frame-plist . 460

pop-up-frames . 460

pop-up-windows . 460

popup-buffer-menu . 349

popup-dialog-box . 353

popup-frame, special-display- 461

popup-menu . 349

popup-menu, default- . 349

popup-menu, global- . 349

popup-menu, mode- . 349

popup-menu-hook, activate- 349

popup-menu-titles . 349

popup-menu-up-p . 349

popup-menubar-menu . 349

popup-mode-menu . 349

port, ldap-default- . 735

portion (of a buffer), accessible 502

pos-visible-in-window-p . 464

position (in buffer) . 493

position argument . 288

position in window . 462

position of frame . 479

Index 863

position of window . 470

position, current buffer . 493

position, default-toolbar- . 358

position, extent end . 595

position, extent start . 595

position, extent-end- . 595

position, extent-start- . 595

position, frame . 479

position, horizontal . 539

position, marker- . 509

position, overlay-arrow- . 666

position, set-default-toolbar- 357

position, set-frame- . 479

position, window . 462, 470

positive infinity . 48

posix-looking-at . 566

posix-search-backward . 566

posix-search-forward . 566

posix-string-match . 566

post-command-hook . 286

post-gc-hook . 786

pre-abbrev-expand-hook . 591

pre-command-hook . 285

pre-gc-hook . 786

preceding-char . 518

precious-flag, file- . 399

precisely, windows, controlling 457

precision of formatted numbers 72

precision, format . 72

predicate, backup-enable-. 426

predicate, minibuffer-completion- 274

predicate, specifier-tag- . 619

predicates . 38

predicates, type . 39

prefix argument . 312

prefix argument unreading 309

prefix argument usage, numeric 289

prefix argument usage, raw 289

prefix argument, execute with 291

prefix argument, numeric . 312

prefix argument, raw . 312

prefix command . 324

prefix key . 323

prefix key error, invalid . 332

prefix key, preventing . 329

prefix, Control-X- . 323

prefix, ESC- . 324

prefix, expression . 578

prefix, fill- . 534

prefix, menu-accelerator- . 351

prefix, numeric . 71

prefix, term-file- . 704

prefix-arg . 314

prefix-arg, current- . 313

prefix-bindings, describe- . 393

prefix-char, meta- . 331

prefix-chars, backward- . 581

prefix-command, define- . 324

prefix-help-command . 393

prefix-mark, abbrev- . 590

prefix-numeric-value . 313

preserved-p, file-ownership- 404

press-event-p, button- . 298

press-event-p, key- . 298

preventing backtracking . 248

preventing prefix key . 329

previous char, delete . 523

previous complete subexpression 582

previous-extent . 597

previous-frame . 481

previous-history-element . 283

previous-matching-history-element 283

previous-property-change . 549

previous-single-property-change 549

previous-window . 456

primitive . 165

primitive type . 17

primitive types . 18

primitive-undo . 530

prin1 . 261

prin1-to-string . 262

princ . 261

print . 261

print example . 259

print name cell . 113

print, \n in . 262

print, cust- . 241

print, newline in . 262

print-circle, edebug- . 242, 253

print-escape-newlines . 262

print-gensym . 263

print-help-return-message 392

print-length . 263

print-length, edebug- 242, 253

print-level . 263

print-level, edebug- . 242, 253

print-readably . 242, 263

print-string-length . 263

print-trace-after, edebug- 242, 253

print-trace-before, edebug- 242, 253

printed representation . 17

printed representation for characters 21

864 XEmacs Lisp Reference Manual

printer, Lisp . 261

printing . 255

printing (Edebug) . 241

printing circular structures 241

printing floating-point numbers 264

printing limits . 263

printing notation . 11

printing readably . 263

printing uninterned symbols 263

printing), stream (for . 258

printing, " in . 260

printing, \ in . 260

printing, character . 390

printing, control character 390

printing, escape characters in 260

printing, event . 390

printing, floating-point numbers, 264

printing, meta character . 390

printing, quoting characters in 260

printing, string length, maximum when 263

printing, uninterned symbols, 263

priority of an extent . 593

priority, extent . 593

priority, extent- . 602

priority, mouse-highlight- . 606

priority, set-extent- . 603

priority-list, coding- . 760

priority-list, set-coding- . 760

process . 683

process filter . 694

process input . 691

process output. 693

process sentinel . 697

process signals . 692

process window size . 698

process, call- . 684

process, child . 683

process, continue- . 693

process, delete- . 689

process, event- . 302

process, get- . 689

process, get-buffer- . 694

process, interrupt- . 692

process, kill- . 692

process, modeline- . 380

process, parent . 683

process, quit- . 693

process, signal- . 693

process, start- . 687

process, stop- . 693

process-buffer . 693

process-buffer, set- . 694

process-command . 689

process-connection-type . 688

process-environment . 709

process-event-p . 298

process-exit-status . 690

process-filter . 696

process-filter, set- . 696

process-id . 690

process-input, binary- . 687

process-kill-without-query 689

process-kill-without-query-p 690

process-list . 689

process-mark . 694

process-name . 690

process-output, accept- . 696

process-output, binary- . 687

process-region, call- . 686

process-send-eof . 691

process-send-region . 691

process-send-string . 691

process-sentinel . 698

process-sentinel, set- . 697

process-shell-command, start- 688

process-status . 690

process-tty-name . 691

process-window-size, set- . 698

processed, command-line- 704

processes, delete-exited- . 689

processes, deleting . 688

processes, list- . 689

processes, output from . 693

processp . 683

profile.el . 772

profiling . 772

prog1 . 132

prog2 . 132

progn . 131

progn, implicit . 131

program arguments . 683

program directories . 684

program, charset-ccl- . 750

program, execute . 683

program, insert-directory- 417

program, register-ccl- . 766

program, set-charset-ccl- . 750

programmed completion . 278

programming types . 20

programs, timing . 772

progress, load-in- . 201

prompt, argument . 287

Index 865

prompt, keymap- . 340

prompt, minibuffer- . 283

prompt, set-keymap- . 340

prompt-regexp, defun- . 500

prompt-width, minibuffer- 283

properties in files, text . 550

properties of strings . 69

properties of text . 546

properties, add-text- . 547

properties, default-text- . 546

properties, extent- . 600

properties, font- . 633

properties, font-instance- . 632

properties, frame- . 476

properties, remove-text- . 547

properties, saving text . 550

properties, set-extent- . 600

properties, set-frame- . 476

properties, set-text- . 548

properties, string . 69

properties, text . 546

properties-at, text- . 546

property list . 98

property list cell (symbol) 113

property list, symbol . 118

property lists vs association lists 118

property of an extent . 599

property, charset- . 750

property, coding-system- . 760

property, documentation- . 386

property, extent . 599

property, extent- . 599

property, face- . 628

property, frame- . 476

property, get-char- . 546

property, get-text- . 546

property, glyph- . 637

property, mode-class . 367

property, put-text- . 547

property, remove-glyph- . 638

property, set-extent- . 600

property, set-face- . 627

property, set-frame- . 476

property, set-glyph- . 636

property-any, text- . 549

property-change, next- . 548

property-change, next-single- 549

property-change, previous- 549

property-change, previous-single- 549

property-instance, face- . 629

property-instance, glyph- . 638

property-not-all, text- . 549

protect, unwind- . 144

protected forms . 144

provide . 206

providing features . 205

ptys . 688

punctuation character . 577

pure storage . 781

pure-bytes-used . 781

purecopy . 781

purify-flag . 782

push-mark . 512

put . 119

put, lax-plist-. 99

put, plist- . 98

put-char-table . 77

put-database . 681

put-range-table . 679

put-resource, x- . 725

put-text-property . 547

putf . 120

puthash . 676

Q
q, C- . 721

query, process-kill-without- 689

query-functions, kill-buffer- 446

query-functions, kill-emacs- 706

query-p, process-kill-without- 690

query-replace-history . 269

query-replace-map . 567, 796

querying the user . 279

question mark in character constant 23

questions, asking the user 279

questions, yes-or-no . 279

queue, transaction . 698

quietly-read-abbrev-file . 589

quit, debug-on- . 222

quit, edebug-on- . 238, 254

quit, inhibit- . 312

quit, keyboard- . 312

quit-flag . 312

quit-process . 693

quitting . 311

quitting from infinite loop 222

quitting, read-quoted-char 311

quote . 129

quote character . 582

quote in strings, double- . 28

quote, character . 577

866 XEmacs Lisp Reference Manual

quote, regexp- . 562

quote, string . 577

quoted character input . 308

quoted-char quitting, read- 311

quoted-char, read- . 308

quoted-insert suppression . 335

quoting . 129

quoting characters in printing 260

quoting using apostrophe . 129

quoting, ’ for . 129

quoting, apostrophe for . 129

quoting, function . 175

R
r, C-x . 323

raise-frame . 485

raise-frame, auto- . 485

raising a frame . 485

random . 60

random numbers . 60

range table type . 31

Range Tables . 679

range-char-table, get- . 77

range-table, clear- . 679

range-table, copy- . 679

range-table, get- . 679

range-table, make- . 679

range-table, map- . 679

range-table, put- . 679

range-table, remove- . 679

range-table-p . 679

rassoc . 95

rassq. 96

rate, device-baud- . 491, 720

rate, set-device-baud- 491, 720

raw prefix argument . 312

raw prefix argument usage 289

re-search-backward . 564

re-search-forward . 563

read . 258

read command name . 291

read syntax . 17

read syntax for characters . 21

read, cl- . 241

read, completing- . 272

read-abbrev-file, quietly- . 589

read-buffer . 275

read-char . 307

read-command . 276

read-expression-history . 270

read-expression-map . 797

read-file-name . 277

read-from-minibuffer . 266

read-from-string . 258

read-function, load- . 201

read-key-sequence . 306

read-minibuffer . 267

read-no-blanks-input . 267

read-only buffer . 442

read-only buffers in interactive 287

read-only, barf-if-buffer- . 443

read-only, buffer, . 442

read-only, buffer- . 442

read-only, find-file- . 396

read-only, inhibit- . 442

read-only, toggle- . 442

read-quoted-char . 308

read-quoted-char quitting 311

read-shell-command-map . 797

read-string . 266

read-syntax, invalid- . 18

read-variable . 276

readable-p, file- . 403

readably, print- . 242, 263

readably, printing . 263

reader, Lisp . 255

reading . 255

reading (Edebug) . 241

reading interactive arguments 288

reading symbols . 115

reading), stream (for . 255

reading, arguments, . 265

reading, control characters, 308

reading, nonprinting characters, 308

real-login-name, user- 711, 712

real-uid, user- . 712

rearrangement of lists . 90

rebinding . 332

receiving ToolTalk messages 732

recent-auto-save-p . 431

recent-keys . 719

recent-keys-ring-size. 719

recent-keys-ring-size, set- . 719

recenter . 466

recompile-directory, batch-byte- 212

recompile-directory, byte- 211

recompile-directory-ignore-errors-p, byte- 212

record command history . 291

recursion . 135

recursion, infinite . 149

recursion-depth . 316

Index 867

recursive command loop . 314

recursive editing level . 314

recursive editing, exit . 314

recursive evaluation . 121

recursive, command loop, . 314

recursive-edit . 315

recursive-edit, abort- . 315

recursive-edit, exit- . 315

recursive-minibuffers, enable- 284

redisplay, force-cursor- . 657

redisplay, forcing . 310

redisplay, resize . 479

redisplay-function, set-extent-initial- 603

redo . 529

redraw-display . 657

redraw-frame . 657

redraw-modeline . 376

redraw-on-reenter), resume (cf. no- 657

redraw-on-reenter), suspend (cf. no- 657

redraw-on-reenter, no- . 657

reenter), resume (cf. no-redraw-on- 657

reenter), suspend (cf. no-redraw-on- 657

reenter, no-redraw-on- . 657

refresh display . 657

regexp . 556

regexp alternative . 559

regexp grouping . 560

regexp searching . 563

regexp), character set (in . 558

regexp, $ in . 559

regexp, (in . 560

regexp, (?: in . 560

regexp,) in . 560

regexp, * in . 557

regexp, *? in . 558

regexp, . in . 557

regexp, ? in . 558

regexp, [in . 558

regexp,] in . 558

regexp, { in . 559

regexp, + in . 558

regexp, +? in . 558

regexp, ^ in . 559

regexp, \ in . 559

regexp, \%%%123n,m\%%%125 in 558

regexp, \’ in . 562

regexp, \‘ in . 562

regexp, \= in . 562

regexp, \> in . 562

regexp, \< in . 562

regexp, \b in . 562

regexp, \B in . 562

regexp, \s in . 561

regexp, \S in . 561

regexp, \w in . 561

regexp, \W in . 561

regexp, beginning of line in 559

regexp, defun-prompt- . 500

regexp, invalid- . 562

regexp, searching for . 563

regexp-fields, sort- . 537

regexp-history . 269

regexp-quote . 562

regexps used in editing, standard 572

regexps used standardly in editing 572

regexps, log-message-ignore- 661

regexps, same-window- . 461

regexps, special-display- . 461

region (Edebug), eval- . 233

region argument . 289

region, annotations-in- . 654

region, call-process- . 686

region, capitalize- . 544

region, compose- . 752

region, decode-coding- . 760

region, decompose- . 752

region, delete- . 522

region, detect-coding- . 761

region, downcase- . 545

region, encode-coding- . 760

region, eval- . 122

region, fill- . 532

region, find-charset- . 752

region, indent- . 541

region, kill- . 526

region, lines in . 497

region, narrow-to- . 503

region, process-send- . 691

region, subst-char-in-. 551

region, the . 513

region, translate- . 551

region, upcase- . 545

region, write- . 401

region, zmacs-activate- . 514

region, zmacs-deactivate- . 514

region, zmacs-update- . 514

region-active-p . 514

region-annotate-functions, write- 550

region-as-kill, copy- . 526

region-as-paragraph, fill- . 533

region-beginning . 513

region-end . 513

868 XEmacs Lisp Reference Manual

region-exists-p . 514

region-function, indent- . 542

region-hook, zmacs-activate- 514

region-hook, zmacs-deactivate- 515

region-hook, zmacs-update- 515

region-p, extent-in- . 599

region-stays, zmacs- . 514

regions, transpose- . 552

regions, zmacs- . 513

register, address field of . 24

register, decrement field of . 24

register, get- . 552

register, insert- . 552

register, set- . 552

register, view- . 552

register-alist . 552

register-ccl-program . 766

register-tooltalk-pattern . 733

registers . 551

registry, charset- . 750

regular expression . 556

regular expression searching 563

regular-p, file- . 405

reindent-then-newline-and-indent 541

relabel-menu-item . 347

relative file name . 413

relative, indent- . 542

relative-maybe, indent- . 543

relative-name, file- . 414

release-event-p, button- . 298

relocation, marker . 505

remainder . 54

remassoc . 96

remassq . 96

remhash . 676

remove-database . 681

remove-glyph-property . 638

remove-hook . 384

remove-range-table . 679

remove-specifier . 623

remove-text-properties . 547

remprop, lax-plist- . 99

remprop, plist- . 98

remrassoc . 96

remrassq . 97

rename-auto-save-file . 432

rename-buffer . 438

rename-file . 408

renaming files . 408

repeated loading . 204

repetition, kill command . 293

replace bindings . 334

replace characters . 551

replace, case- . 572

replace, perform- . 566

replace-buffer-in-windows . 459

replace-history, query- . 269

replace-map, query- . 567, 796

replace-match . 570

replacement . 566

replacement, & in . 570

replacement, \ in . 570

replacement, \n in . 570

replacements, case in . 569

replica, extent . 605

repositioning format arguments 71

representation for characters, printed 21

representation for lists, box 79

representation, printed . 17

represented as boxes, lists . 79

require . 206

require, byte-compiling . 205

require, load error with . 205

require-final-newline . 399

requiring features . 205

reset-char-table . 77

reset-elapsed-time, ccl- . 767

resize redisplay . 479

resizing, window . 471

resource type, X . 38

resource, x-get- . 724

resource, x-put- . 725

rest arguments . 168

restriction (in a buffer) . 502

restriction, save- . 503

results, edebug-unwrap- 251, 254

resume (cf. no-redraw-on-reenter) 657

resume-hook, suspend- . 707

return . 22

return-message, print-help- 392

return-tooltalk-message . 730

reveal-annotation . 654

reverse . 86

reverse-direction-charset, charset- 749

reverse-direction-charset, make- 749

reversing a list . 91

revert-buffer . 433

revert-buffer-function . 433

revert-buffer-insert-file-contents-function 433

revert-hook, after- . 434

revert-hook, before- . 433

rgb-components, color- . 634

Index 869

rgb-components, color-instance- 634

right, scroll- . 467

right-margin, set- . 534

right-margin-pixel-width, window- 655

right-margin-width . 655

right-overflow, use- . 655

right-toolbar . 358

right-toolbar-visible-p . 359

right-toolbar-width . 359

rigidly, indent- . 542

rigidly, indent-code- . 542

ring, global mark . 510

ring, global-mark- . 513

ring, kill . 525

ring, kill- . 529

ring, mark . 510

ring, mark- . 512

ring-max, kill- . 529

ring-max, mark- . 512, 513

ring-size, recent-keys- . 719

ring-size, set-recent-keys- . 719

ring-yank-pointer, kill- . 529

rm. 409

root, cube- . 60

root-window, frame- . 482

round . 52

rounding in conversions . 51

rounding without conversion 55

rplaca. 87

rplaca vrs setcar, CL note— 87

rplacd . 87

run time stack . 228

run time stack, tag on . 137

run-emacs-from-temacs . 780

run-file, site- . 703

run-hooks . 383

runnable temacs . 779

S
s, C- . 721

safe, car- . 82

safe, cdr- . 82

same-window-buffer-names 461

same-window-regexps . 461

sans-extension, file-name-. 411

sans-versions, file-name- . 411

save, buffer-offer- . 398, 446

save, do-auto- . 432

save-abbrevs . 589

save-buffer . 398

save-current-buffer . 502

save-default, auto- . 431

save-displayed-buffer-points, edebug- 244, 252

save-excursion . 501

save-excursion (Edebug) . 244

save-file, rename-auto- . 432

save-file-format, auto- . 423

save-file-if-necessary, delete-auto-. 432

save-file-name, buffer-auto- 429

save-file-name, make-auto- 430

save-file-name-p, auto- . 430

save-files, delete-auto- . 432

save-hook, after- . 399

save-hook, auto- . 431

save-interval, auto- . 431

save-list-file-name, auto- . 432

save-match-data . 571

save-mode, auto- . 430

save-p, recent-auto- . 431

save-restriction . 503

save-selected-frame . 483

save-selected-window 454, 502

save-some-buffers . 398

save-timeout, auto- . 431

save-visited-file-name, auto- 431

save-window-excursion . 473

save-windows, edebug- 244, 252

saved, set-buffer-auto- . 431

saved-size, buffer- . 432, 494

saving text properties . 550

saving window information 473

saving, auto- . 429

scan-lists . 583

scan-sexps. 583

scope . 156

scoping, dynamic . 156

screen layout . 35

screen-context-lines, next- 466

scroll-buffer, other-window- 466

scroll-conservatively . 466

scroll-down . 465

scroll-left . 467

scroll-other-window . 465

scroll-right . 467

scroll-step . 466

scroll-up . 465

scroll-window, minibuffer- 284

scrollbar-pointer-glyph . 649

scrollbars . 361

scrolling vertically . 465

scrolling, horizontal . 467

870 XEmacs Lisp Reference Manual

scrolling, vertical . 465

search, case-fold- . 572

search, default-case-fold- . 572

search, ldap- . 736

search, string . 555

search, word . 556

search-backward . 556

search-backward, posix- . 566

search-backward, re- . 564

search-backward, word- . 556

search-failed . 555

search-forward . 555

search-forward, posix- . 566

search-forward, re- . 563

search-forward, word- . 556

search-internal, ldap- . 738

search-path, x-library- . 727

searching . 555

searching and case . 572

searching for regexp . 563

searching, regexp . 563

searching, regular expression 563

second . 84

select-console . 490

select-device . 490

select-frame . 483

select-frame-hook . 486

select-frame-hook, default- 485

select-window . 454

selected frame . 483

selected window . 449

selected-console . 490

selected-device . 490

selected-frame . 483

selected-frame, save- . 483

selected-frame, with- . 483

selected-window . 454

selected-window, frame- . 482

selected-window, save- 454, 502

selecting a buffer . 435

selecting windows . 454

selection (for X windows) . 723

selection, x-disown- . 723

selection, x-get- . 723

selection, x-own- . 723

selection-hook, menu-no- . 346

selection-pointer-glyph . 649

selective display . 664

selective-display . 664

selective-display-ellipses . 665

self-evaluating form . 124

self-insert-and-exit . 282

self-insert-command . 521

self-insert-command override. 335

self-insert-command, minor modes 376

self-insertion . 521

send-eof, process- . 691

send-region, process- . 691

send-string, process- . 691

send-string-to-terminal . 720

send-tooltalk-message . 730

sendevents, x-allow- . 727

sending signals . 692

sending ToolTalk messages 729

sentence-end . 573

sentinel . 697

sentinel, process . 697

sentinel, process- . 698

sentinel, set-process- . 697

separate, paragraph- . 573

separator, path- . 710

sequence . 103

sequence error, key . 332

sequence input, key . 306

sequence length . 104

sequence, copy- . 103

sequence, escape . 22

sequence, key . 306

sequence, read-key- . 306

sequence, upper case key . 306

sequencep . 103

sequences, copying . 104

sequences, elements of . 105

sequences, key . 322

server-vendor, x- . 726

server-version, x- . 726

set. 155

set (in a specifier), tag . 610

set (in regexp), character . 558

set (input), Latin-1 character 718

set local, CL note— . 155

set, canonicalize-tag- . 618

set, CL note—lack union,. 92

set, specifier, tag. 610

set-annotation-action . 654

set-annotation-data . 653

set-annotation-down-glyph 653

set-annotation-face . 653

set-annotation-glyph . 653

set-annotation-layout . 653

set-annotation-menu . 654

set-auto-mode . 371

Index 871

set-buffer . 437

set-buffer-auto-saved . 431

set-buffer-major-mode . 372

set-buffer-menubar . 345

set-buffer-modified-p . 440

set-case-syntax . 75

set-case-syntax-delims . 75

set-case-syntax-pair . 75

set-case-table . 75

set-category-table . 768

set-charset-ccl-program . 750

set-coding-category-system 761

set-coding-priority-list . 760

set-console-type-image-conversion-list. 644

set-default . 163

set-default-file-modes . 409

set-default-toolbar-position 357

set-device-baud-rate . 491, 720

set-extent-begin-glyph . 603

set-extent-begin-glyph-layout 603

set-extent-end-glyph . 603

set-extent-end-glyph-layout 603

set-extent-endpoints . 595

set-extent-face . 603

set-extent-initial-redisplay-function 603

set-extent-keymap . 603

set-extent-mouse-face . 603

set-extent-parent . 604

set-extent-priority . 603

set-extent-properties . 600

set-extent-property . 600

set-face-background . 629

set-face-background-pixmap 630

set-face-font . 630

set-face-foreground . 629

set-face-property . 627

set-face-underline-p . 630

set-file-modes . 409

set-frame-configuration . 486

set-frame-icon-pixmap, x- 480

set-frame-pointer . 650

set-frame-position. 479

set-frame-properties . 476

set-frame-property . 476

set-frame-size . 479

set-global-break-condition, edebug- 238

set-glyph-baseline . 639

set-glyph-contrib-p . 639

set-glyph-face . 640

set-glyph-image . 639

set-glyph-property . 636

set-input-mode . 716

set-key, global- . 336

set-key, local- . 336

set-keymap-default-binding 321

set-keymap-name . 320

set-keymap-parents . 321

set-keymap-prompt . 340

set-left-margin . 534

set-mark . 511

set-marker . 509

set-match-data . 571

set-menubar . 345

set-menubar-dirty-flag . 345

set-p, device-matches-specifier-tag- 618

set-p, valid-specifier-tag- . 618

set-process-buffer . 694

set-process-filter . 696

set-process-sentinel . 697

set-process-window-size . 698

set-recent-keys-ring-size . 719

set-register . 552

set-right-margin . 534

set-specifier . 615

set-standard-case-table . 75

set-syntax-table . 581

set-text-properties . 548

set-tooltalk-message-attribute 731

set-visited-file-modtime . 441

set-visited-file-name . 439

set-weak-list-list . 101

set-window-buffer . 457

set-window-buffer-dedicated 460

set-window-configuration . 473

set-window-dedicated-p . 462

set-window-hscroll . 468

set-window-point . 463

set-window-start . 463

setcar . 87

setcar, CL note—rplaca vrs 87

setcdr . 88

setenv . 709

setplist. 119

setprv . 710

setq . 154

setq-default . 162

sets . 92

sets, lists as . 92

setting modes of files . 408

setting-constant . 147

setup-hook, edebug- . 252

setup-hook, minibuffer- . 283

872 XEmacs Lisp Reference Manual

setup-hook, term- . 704

setup-hook, window- . 704

seventh . 84

sexp motion . 499

sexp, backward- . 500

sexp, forward- . 500

sexp, parse-partial- . 582

sexp-ignore-comments, parse- 583

sexps, scan- . 583

shadowing of variables . 148

shallow binding . 158

shared-lisp-mode-map . 797

Shell mode modeline-format 378

shell-command, start-process- 688

shell-command-history . 269

shell-command-map, read- 797

shift, arithmetic . 56

shift, logical . 55

shift-jis-char, decode- . 761

shift-jis-char, encode- . 761

show-function, temp-buffer- 667

show-keybindings, menubar- 345

shrink-window . 471

shrink-window-horizontally 472

shrink-window-pixels . 472

side effect . 121

side, annotation- . 653

signal . 139

signal, debug-on- . 222

signal-process . 693

signaling errors . 139

signals . 692

signals, process . 692

signals, sending . 692

sin . 59

single-key-description . 390

single-property-change, next- 549

single-property-change, previous- 549

sinh . 59

sit-for . 310

site-init.el . 780

site-load.el . 780

site-run-file . 703

site-start.el . 701

sixth . 84

size of frame . 479

size of window . 468

size, buffer- . 494

size, buffer-saved- . 432, 494

size, buffers-menu-max- . 352

size, changing window . 471

size, changing, window . 471

size, compiled-function-stack- 215

size, font instance . 632

size, frame . 479

size, log-message-max- . 660

size, max-specpdl- . 149

size, minimum window . 472

size, process window . 698

size, recent-keys-ring- . 719

size, set-frame- . 479

size, set-process-window- . 698

size, set-recent-keys-ring- . 719

size, window . 468

size, x-font- . 632

size-change-functions, window- 472

skip-chars-backward . 501

skip-chars-forward . 501

skip-syntax-backward . 581

skip-syntax-forward . 581

skipping characters . 500

skipping comments . 583

sleep-for . 310

smaller-font, x-find- . 632

Snarf-documentation . 388

soft, intern- . 117

some-buffers, save- . 398

sort . 91

sort, stable . 91

sort-columns . 539

sort-fields . 538

sort-lines . 538

sort-numeric-fields . 538

sort-pages . 538

sort-paragraphs . 538

sort-regexp-fields . 537

sort-subr . 536

sorting lists . 91

sorting text . 536

sound . 671

sound, play- . 673

sound-alist . 671

sound-file, load- . 672

sound-file, play- . 673

sounds, load-default- . 672

source-newer, load-warn-when- 201

source-only, load-warn-when- 202

space, delete-horizontal- . 523

space, just-one- . 525

sparse-keymap, make- . 320

SPC in minibuffer . 267

spec, buffer-invisibility- . 663

Index 873

spec, canonicalize- . 616

spec, def-edebug- . 245

spec, initial-toolbar- . 360

spec-list, canonicalize- . 616

spec-list, check-valid-. 622

spec-list, specifier- . 617

spec-list-p, valid- . 622

spec-list-to-specifier, add- 614

spec-to-specifier, add- . 614

special . 367

special form descriptions . 13

special form evaluation . 127

special forms . 30

special forms (Edebug) . 234

special forms compared, CL note—. 128

special forms for control structures 131

special variables, CL note— 156

special-display-buffer-names 461

special-display-frame-plist 461

special-display-function . 461

special-display-popup-frame 461

special-display-regexps . 461

specific functions, debugging 223

specific initialization, terminal- 703

specific-map, mode- . 323, 796

specification (in a specifier) 610

specification error, file mode 371

specification list, Edebug . 246

specification, format . 69

specification, specifier, . 610

specifications, indirect . 248

specifier . 609

specifier type . 38

specifier), domain (in a . 610

specifier), fallback (in a . 611

specifier), inst-list (in a. 610

specifier), inst-pair (in a . 610

specifier), instance (in a . 610

specifier), instancing (in a 610

specifier), instantiator (in a 610

specifier), locale (in a . 610

specifier), specification (in a 610

specifier), tag (in a . 610

specifier), tag set (in a . 610

specifier, add-spec-list-to- 614

specifier, add-spec-to- . 614

specifier, copy- . 623

specifier, domain. 610

specifier, fallback . 611

specifier, inst-list . 610

specifier, inst-pair . 610

specifier, instance . 610

specifier, instancing . 610

specifier, instantiator . 610

specifier, let- . 615

specifier, locale . 610

specifier, make- . 621

specifier, make-image- . 641

specifier, map- . 623

specifier, remove- . 623

specifier, set- . 615

specifier, specification . 610

specifier, tag . 610

specifier, tag set . 610

specifier-and-init, make- . 621

specifier-domain-p, valid- . 622

specifier-fallback . 617

specifier-instance . 619

specifier-instance-from-inst-list 620

specifier-locale-p, valid- . 622

specifier-locale-type-from-locale 624

specifier-locale-type-p, valid- 622

specifier-p, boolean- . 613

specifier-p, color- . 613, 633

specifier-p, event-matches-key- 323

specifier-p, face-boolean- . 613

specifier-p, font- . 613, 631

specifier-p, generic- . 613

specifier-p, image- . 613, 641

specifier-p, integer- . 613

specifier-p, natnum- . 613

specifier-p, toolbar- . 358, 613

specifier-spec-list . 617

specifier-specs . 617

specifier-tag, define- . 618

specifier-tag-list . 619

specifier-tag-list, device-matching- 619

specifier-tag-p, valid- 618, 622

specifier-tag-predicate . 619

specifier-tag-set-p, device-matches- 618

specifier-tag-set-p, valid- . 618

specifier-type . 613

specifier-type-p, valid- . 622

specifierp . 609

specifiers, image . 640

specpdl-size, max- . 149

specs, specifier- . 617

specs.el, cl- . 234

speed, execution . 772

speedups . 772

splicing (with backquote) . 184

split-height-threshold . 460

874 XEmacs Lisp Reference Manual

split-line . 522

split-path . 565

split-string . 565

split-window . 450

split-window-horizontally . 452

split-window-vertically . 452

splitting windows . 450

splitting, window . 450

sqrt . 60

stable sort. 91

stack frame, current. 224

stack, call . 228

stack, run time . 228

stack, tag on run time . 137

stack-size, compiled-function- 215

standard notation, XEmacs event 390

standard regexps used in editing 572

standard-case-table . 75

standard-case-table, set- . 75

standard-category-table . 767

standard-input . 258

standard-output . 262

standard-syntax-table . 584

standardly in editing, regexps used 572

standards of coding style . 769

standards, coding . 769

start position, extent . 595

start up of XEmacs . 701

start, paragraph- . 573

start, set-window- . 463

start, window- . 463

start-location, abbrev- . 590

start-location-buffer, abbrev- 590

start-position, extent- . 595

start-process . 687

start-process-shell-command 688

start.el, site- . 701

starter, comment . 578

startup-echo-area-message, inhibit- 702

startup-message, inhibit- . 702

startup.el . 701

state, parse. 582

status, command-debug- . 229

status, process- . 690

status, process-exit- . 690

stays, zmacs-region- . 514

step, scroll-. 466

stop points . 232

stop, tab-to-tab- . 543

stop-list, tab- . 544

stop-process . 693

stopping an infinite loop . 222

stopping on events . 237

stops for indentation, tabs 543

stops-map, edit-tab- . 795

storage, CL note—allocate more 782

storage, pure . 781

store-cutbuffer, x- . 723

store-match-data . 571

stream (for printing) . 258

stream (for reading) . 255

stream, buffer input . 255

stream, buffer output . 259

stream, function input . 256

stream, function output . 259

stream, input . 255

stream, marker input . 256

stream, marker output . 259

stream, nil input . 256

stream, nil output . 259

stream, open-network- . 699

stream, output . 258

stream, string input . 256

stream, t input . 256

stream, t output . 259

string . 62

string equality . 65

string formatting, multilingual 71

string in keymap . 328

string input stream . 256

string length . 104

string length, maximum when printing 263

string properties . 69

string quote . 577

string search . 555

string to character . 67

string to number . 68

string to object . 258

string, buffer- . 519

string, ccl-execute-on- . 766

string, char-to- . 67

string, character to . 67

string, charset-doc- . 750

string, coding-system-doc- 760

string, compiled-function-doc- 215

string, composite-char- . 752

string, current-time- . 712

string, default argument . 288

string, find-charset- . 752

string, format-time- . 713

string, global-mode- . 379

string, image-instance- . 647

Index 875

string, insert- . 520

string, inside . 582

string, int-to- . 68

string, integer to . 68

string, make- . 62

string, match- . 568

string, number-to- . 68

string, object to . 262

string, overlay-arrow- . 665

string, prin1-to- . 262

string, process-send- . 691

string, read- . 266

string, read-from- . 258

string, split- . 565

string, string, writing a doc 385

string, writing a doc string 385

string, writing a documentation 385

string-display, momentary- 667

string-equal . 66

string-length, print- . 263

string-lessp . 67

string-match . 564

string-match, posix- . 566

string-modified-tick . 69

string-p, char-or- . 62

string-to-char . 67

string-to-int . 68

string-to-number . 68

string-to-terminal, send- . 720

string= . 66

string< . 66

stringp . 62

strings . 61

strings, " in . 28

strings, \ in . 28

strings, backslash in . 28

strings, concatenating . 63

strings, conversion of . 67

strings, copying . 63

strings, documentation . 385

strings, double-quote in . 28

strings, formatting . 69

strings, formatting them. 69

strings, keys in documentation 388

strings, modifying. 69

strings, newline in . 28

strings, properties of . 69

strong-limit, undo- . 532

structure, list . 79

structures, control . 131

structures, printing circular 241

structures, special forms for control 131

style, standards of coding 769

subexpression, previous complete 582

submenu, add- . 346

subprocess . 683

subprocess, asynchronous . 687

subprocess, synchronous . 684

subprocesses, environment variables, 684

subr . 165

subr, sort- . 536

subroutines, file name completion 415

subrp . 166

subsidiary-coding-system . 759

subst-char-in-region . 551

substitute-command-keys . 389

substitute-in-file-name . 414

substitute-key-definition . 334

substituting keys in documentation 388

substitution), ‘ (list . 183

substitution), backquote (list 183

substring . 62

substring, buffer- . 519

substring, insert-buffer- . 520

substrings, compare-buffer- 519

subtype, database- . 682

subwindow type . 38

subwindow-image-instance-p 646

subwindowp . 650

supersession, file- . 442

supersession-threat, ask-user-about- 441

suppress-keymap. 335

suppressed-classes, display-warning- 663

suppressed-classes, log-warning- 662

suppression, quoted-insert 335

suppression, yank . 335

suspend (cf. no-redraw-on-reenter) 657

suspend evaluation . 315

suspend-emacs. 707

suspend-hook . 707

suspend-resume-hook . 707

suspending XEmacs . 706

switch-alist, command- . 705

switch-to-buffer . 458

switch-to-buffer-function, buffers-menu- 352

switch-to-buffer-other-window 458

switches on command line 705

switching to a buffer . 457

symbol . 113

symbol components . 113

symbol constituent . 576

symbol equality . 115

876 XEmacs Lisp Reference Manual

symbol evaluation . 124

symbol function indirection 125

symbol in keymap . 329

symbol in modeline, percent 377

symbol in obarrays, CL note— 116

symbol name hashing . 115

symbol, abbrev- . 590

symbol, definition of a . 114

symbol, error . 143

symbol, make- . 116

symbol, plist, . 118

symbol, property list, . 118

symbol, uninterned . 115

symbol-function . 176

symbol-name . 116

symbol-plist . 119

symbol-value . 154

symbolic links, file . 404

symbolic-link, make- . 409

symbolp . 113

symbols, \ in . 23

symbols, backslash in . 23

symbols, printing uninterned 263

symbols, printing, uninterned 263

symbols, reading . 115

symbols, xpm-color-. 644

symlink-p, file- . 404

synchronous subprocess . 684

syntax classes . 576

syntax descriptor . 576

syntax error (Edebug) . 249

syntax flags . 578

syntax for characters . 21

syntax for characters, read. 21

syntax table . 575

syntax table example . 368

syntax table internals . 584

syntax tables in modes . 366

syntax, char- . 580

syntax, check-toolbar-button- 357

syntax, comment . 578

syntax, invalid-read- . 18

syntax, iso- . 75

syntax, parenthesis . 577

syntax, read . 17

syntax, set-case- . 75

syntax-backward, skip- . 581

syntax-delims, set-case- . 75

syntax-entry, modify- . 580

syntax-forward, skip- . 581

syntax-pair, set-case- . 75

syntax-table . 581

syntax-table, c-mode- . 584

syntax-table, copy- . 580

syntax-table, emacs-lisp-mode- 584

syntax-table, make- . 579

syntax-table, set- . 581

syntax-table, standard- . 584

syntax-table, text-mode- . 584

syntax-table-p . 575

system environment, operating 708

system objects, window- . 625

system type, coding . 37

system types, window . 37

system, coding-category- . 761

system, copy-coding- . 759

system, find-coding-. 759

system, get-coding- . 759

system, make-coding- . 759

system, set-coding-category- 761

system, subsidiary-coding- 759

system-configuration . 708

system-doc-string, coding- 760

system-list, coding- . 759

system-name . 709

system-name, coding- . 759

system-p, coding- . 756

system-property, coding- . 760

system-type . 708

system-type, coding- . 760

T
t . 147

t and truth . 11

t input stream . 256

t output stream . 259

tab . 22

tab deletion . 523

TAB in minibuffer . 267

tab, vertical . 22

tab-command, indent-for- 541

tab-stop, tab-to- . 543

tab-stop-list . 544

tab-stops-map, edit- . 795

tab-to-tab-stop . 543

tab-width . 669

table example, syntax . 368

table internals, syntax . 584

table type, char . 31

table type, hash . 31

table type, range . 31

Index 877

table, abbrev . 587

table, active display . 670

table, c-mode-abbrev- . 592

table, c-mode-syntax- . 584

table, category- . 767

table, clear-abbrev- . 588

table, clear-range- . 679

table, copy-category- . 767

table, copy-range- . 679

table, copy-syntax- . 580

table, current-case- . 75

table, define-abbrev- . 588

table, describe-buffer-case- . 75

table, display . 669

table, emacs-lisp-mode-syntax- 584

table, fundamental-mode-abbrev- 592

table, get-char- . 77

table, get-range- . 679

table, get-range-char- . 77

table, global-abbrev- . 591

table, hash . 675

table, lisp-mode-abbrev- . 592

table, local-abbrev- . 591

table, make-abbrev- . 587

table, make-char- . 77

table, make-display- . 670

table, make-range- . 679

table, make-syntax- . 579

table, map-char- . 77

table, map-range- . 679

table, minibuffer-completion- 274

table, put-char- . 77

table, put-range- . 679

table, remove-range- . 679

table, reset-char- . 77

table, set-case-. 75

table, set-category- . 768

table, set-standard-case- . 75

table, set-syntax- . 581

table, standard-case- . 75

table, standard-category- . 767

table, standard-syntax- . 584

table, syntax . 575

table, syntax- . 581

table, text-mode-abbrev- . 592

table, text-mode-syntax- . 584

table, weak hash . 676

table, weak, hash . 676

table-description, insert-abbrev- 588

table-name-list, abbrev- . 588

table-p, case- . 74

table-p, category- . 767

table-p, char- . 76

table-p, range- . 679

table-p, syntax- . 575

table-type, char- . 76

table-type-list, char- . 76

table-type-p, valid-char- . 76

table-value, check-valid-char- 77

table-value-p, category- . 768

table-value-p, valid-char- . 77

tables in modes, abbrev . 366

tables in modes, syntax . 366

Tables, Range . 679

tabs stops for indentation 543

tabs-mode, indent- . 540

tag (in a specifier) . 610

tag on run time stack . 137

tag set (in a specifier) . 610

tag set, specifier,. 610

tag, define-specifier- . 618

tag, specifier, . 610

tag-list, device-matching-specifier- 619

tag-list, specifier- . 619

tag-p, valid-specifier- 618, 622

tag-predicate, specifier- . 619

tag-set, canonicalize- . 618

tag-set-p, device-matches-specifier- 618

tag-set-p, valid-specifier- . 618

tan . 59

tanh . 59

TCP . 699

temacs . 779

temacs, bootstrapping XEmacs from 779

temacs, run-emacs-from- . 780

temacs, runnable . 779

temp-buffer, with-output-to- 666

temp-buffer-show-function 667

temp-directory . 415

temp-file, with- . 502

temp-name, make- . 415

tenth . 84

TERM environment variable 704

term-file-prefix . 704

term-setup-hook . 704

Termcap . 703

terminal frame . 450, 475

terminal input . 716

terminal input modes . 716

terminal output . 719

terminal, frame of . 450

terminal, send-string-to- . 720

878 XEmacs Lisp Reference Manual

terminal-device . 489

terminal-local-map, overriding- 328

terminal-specific initialization 703

terminate keyboard macro 310

termination, keyboard macro 671

termscript file . 720

termscript, open- . 720

terpri . 262

test-coverage, edebug- . 253

testing types . 39

testing, coverage . 243

text . 517

text changes, hooks for . 553

text files and binary files . 423

text files, binary files and . 423

text insertion . 520

text notation, buffer . 12

text parsing . 575

text properties . 546

text properties in files . 550

text properties, saving . 550

text, attributes of . 546

text, comparing buffer . 519

text, find-file- . 424

text, inserting killed . 527

text, insertion of . 520

text, invisible . 663

text, last-abbrev- . 591

text, properties of . 546

text, sorting . 536

text-area-p, event-over- . 300

text-area-pixel-edges, window- 470

text-area-pixel-height, window- 469

text-area-pixel-width, window- 470

text-char-description . 391

text-domain, bind- . 741

text-glyph, invisible- . 650

text-image-instance-p . 646

text-mode-abbrev-table . 592

text-mode-map . 797

text-mode-syntax-table . 584

text-pixel-height, window-displayed- 470

text-pointer-glyph . 649

text-properties, add- . 547

text-properties, default- . 546

text-properties, remove- . 547

text-properties, set- . 548

text-properties-at . 546

text-property, get- . 546

text-property, put- . 547

text-property-any . 549

text-property-not-all . 549

than-file-p, file-newer- . 404

then-newline-and-indent, reindent- 541

third . 84

this-command . 293

this-command-keys . 293

threat, ask-user-about-supersession- 441

threshold, gc-cons- . 785

threshold, split-height- . 460

throw . 137

throw example . 314

throw in Emacs, CL note—only 137

tick, buffer-modified- . 441

tick, string-modified- . 69

tiled windows . 450

time stack, run . 228

time stack, tag on run . 137

time, ccl-elapsed- . 767

time, ccl-reset-elapsed- . 767

time, comparison of modification 441

time, comparison of, modification 441

time, current- . 713

time, decode- . 715

time, emacs-build- . 780

time, encode- . 715

time, file modification . 404

time-string, current- . 712

time-string, format- . 713

time-zone, current- . 713

timeout, add- . 715

timeout, auto-save- . 431

timeout, disable- . 716

timeout-event-p . 298

timestamp, event- . 302

timing programs . 772

tips . 769

title-format, frame- . 480

title-format, frame-icon- . 480

titles, popup-menu- . 349

toggle-read-only . 442

toolbar . 355

toolbar button type . 38

toolbar, bottom- . 358

toolbar, default- . 357

toolbar, left- . 358

toolbar, right- . 358

toolbar, top- . 358

toolbar-button, event- . 301

toolbar-button-syntax, check- 357

toolbar-buttons-captioned-p 360

toolbar-height, bottom- . 359

Index 879

toolbar-height, default- . 358

toolbar-height, top- . 359

toolbar-make-button-list . 357

toolbar-map . 327, 797

toolbar-p, event-over- . 301

toolbar-pointer-glyph . 649

toolbar-position, default- . 358

toolbar-position, set-default- 357

toolbar-spec, initial- . 360

toolbar-specifier-p . 358, 613

toolbar-visible-p, bottom- 359

toolbar-visible-p, default- . 359

toolbar-visible-p, left- . 359

toolbar-visible-p, right- . 359

toolbar-visible-p, top- . 359

toolbar-width, default- . 358

toolbar-width, left- . 359

toolbar-width, right- . 359

ToolTalk . 729

ToolTalk message . 729

ToolTalk messages, receiving 732

ToolTalk messages, sending 729

ToolTalk pattern . 732

tooltalk-message, create- . 732

tooltalk-message, describe- 734

tooltalk-message, destroy- 732

tooltalk-message, make- . 730

tooltalk-message, return- . 730

tooltalk-message, send- . 730

tooltalk-message-arg, add- 731

tooltalk-message-attribute, get- 731

tooltalk-message-attribute, set- 731

tooltalk-pattern, create- . 733

tooltalk-pattern, destroy- . 734

tooltalk-pattern, make- . 732

tooltalk-pattern, register- . 733

tooltalk-pattern, unregister- 733

tooltalk-pattern-arg, add- 733

tooltalk-pattern-attribute, add- 733

top line, window . 463

top-level . 316

top-level form . 199

top-level-form, edebug-eval-. 233

top-toolbar . 358

top-toolbar-height . 359

top-toolbar-visible-p . 359

top-window, frame- . 482

totally-visible-p, frame- . 484

tq-close . 699

tq-create . 698

tq-enqueue . 698

trace, edebug- . 242, 253

trace-after, edebug-print- 242, 253

trace-before, edebug-print- 242, 253

tracing . 242

tracing, edebug- . 242

transaction queue . 698

transcendental functions . 59

transl, iso- . 718

translate-region . 551

translating input events . 717

translation function, key . 718

translation-map, key- . 718

transpose-regions . 552

trim-versions-without-asking 428

true . 11

truename (of file) . 405

truename, buffer-file- . 439

truename, file- . 405

truename, font- . 633

truename, font-instance- . 632

truncate . 51

truncate-lines. 658

truncate-lines, default- . 658

truncate-partial-width-windows 658

truncation-glyph . 650

truth value . 10

truth, t and . 11

try-completion . 270

tty-device, make- . 489

tty-name, process- . 691

two’s complement . 47

type . 17

type checking . 38

type predicates . 39

type, buffer-file- . 423

type, char table . 31

type, char-table- . 76

type, charset . 37

type, coding system . 37

type, coding-system- . 760

type, color instance . 38

type, data . 17

type, database . 37

type, database- . 682

type, default-buffer-file- . 423

type, device- . 488

type, device-or-frame- . 489

type, event- . 297

type, face . 37

type, find-buffer-file- . 423

type, font instance . 38

880 XEmacs Lisp Reference Manual

type, glyph . 37

type, glyph- . 648

type, hash table . 31

type, image instance . 38

type, image-instance- . 645

type, primitive . 17

type, process-connection- . 688

type, range table . 31

type, specifier . 38

type, specifier- . 613

type, subwindow . 38

type, system- . 708

type, toolbar button . 38

type, weak list . 32

type, weak-list- . 101

type, X resource . 38

type-alist, file-name-buffer-file- 423

type-argument, wrong- . 38

type-from-locale, specifier-locale- 624

type-image-conversion-list, console- 644

type-image-conversion-list, set-console- 644

type-list, char-table- . 76

type-list, glyph- . 648

type-list, image-instance- . 645

type-of . 43

type-p, valid-char-table- . 76

type-p, valid-device- . 489

type-p, valid-glyph- . 648

type-p, valid-image-instance- 645

type-p, valid-specifier- . 622

type-p, valid-specifier-locale- 622

types on MS-DOS, file . 423

types, editing . 32

types, image instance . 645

types, layout . 651

types, MS-DOS file . 423

types, primitive . 18

types, programming . 20

types, testing . 39

types, window system . 37

U
uid, user- . 712

uid, user-real- . 712

unbinding keys . 336

unbold, x-make-font- . 633

undefined . 330

undefined in keymap . 329

undefined key . 319

underline-p, face- . 630

underline-p, set-face- . 630

undo avoidance . 551

undo, buffer-disable- . 531

undo, buffer-enable- . 531

undo, buffer-flush- . 531

undo, disable . 531

undo, primitive- . 530

undo-boundary . 530

undo-limit . 531

undo-list, buffer- . 529

undo-strong-limit . 532

unexec . 780

ungrab-keyboard, x- . 726

ungrab-pointer, x- . 726

unhandled-file-name-directory 419

unintern . 117

uninterned symbol . 115

uninterned symbols, printing 263

union, set, CL note—lack. 92

unique extents . 605

unique, extent, . 605

unitalic, x-make-font- . 633

universal-argument . 314

unload-feature . 207

unloading . 207

unlock-buffer . 402

unmap-frame-hook . 486

unread-command-event . 309

unread-command-events . 308

unreading . 256

unreading, prefix argument 309

unregister-tooltalk-pattern. 733

unset-key, global- . 336

unset-key, local- . 336

untabify, backward-delete-char- 523

unwind-protect . 144

unwinding . 144

unwrap, edebug- . 246

unwrap-results, edebug- 251, 254

up menu, pop- . 349

up of XEmacs, start . 701

up, buffer-backed- . 425

up, scroll- . 465

up-frame-function, pop- . 460

up-frame-plist, pop- . 460

up-frames, pop- . 460

up-list . 499

up-p, popup-menu- . 349

up-windows, pop- . 460

upcase . 73

upcase-region . 545

Index 881

upcase-word . 545

update display . 657

update, display . 657

update-directory-autoloads 203

update-file-autoloads . 203

update-region, zmacs- . 514

update-region-hook, zmacs- 515

upper case . 72

upper case key sequence . 306

usage, numeric prefix argument 289

usage, raw prefix argument 289

use, debug-on-error . 140

use, noninteractive . 722

use-global-map . 327

use-hard-newlines . 534

use-left-overflow . 655

use-local-map . 327

use-right-overflow . 655

used in editing, standard regexps 572

used standardly in editing, regexps 572

used, pure-bytes- . 781

user option . 153

user questions, asking the 279

user, querying the . 279

user-about-lock, ask- . 402

user-about-supersession-threat, ask- 441

user-defined error . 143

user-event-p, misc- . 298

user-full-name . 711, 712

user-home-directory . 712

user-input-p, waiting-for- . 698

user-login-name . 711, 712

user-mail-address . 711

user-real-login-name . 711, 712

user-real-uid . 712

user-uid . 712

user-variable-p. 153

user-variable-p example . 277

uses of, nil, . 10

using apostrophe, quoting 129

using interactive, examples of 290

using, interactive, examples of 290

V
valid-char-table-type-p . 76

valid-char-table-value, check- 77

valid-char-table-value-p. 77

valid-device-class-p . 489

valid-device-type-p . 489

valid-glyph-type-p . 648

valid-image-instance-type-p 645

valid-image-instantiator-format-p 644

valid-inst-list, check- . 622

valid-inst-list-p . 622

valid-instantiator, check- . 622

valid-instantiator-p . 622

valid-keysym-name-p, x- . 727

valid-plist, check- . 98

valid-plist-p . 98

valid-spec-list, check- . 622

valid-spec-list-p . 622

valid-specifier-domain-p . 622

valid-specifier-locale-p . 622

valid-specifier-locale-type-p 622

valid-specifier-tag-p . 618, 622

valid-specifier-tag-set-p . 618

valid-specifier-type-p . 622

value cell . 113

value of expression . 121

value, check-valid-char-table- 77

value, default . 161

value, default- . 162

value, prefix-numeric- . 313

value, symbol- . 154

value, truth . 10

value-p, category-table- . 768

value-p, valid-char-table- . 77

value-weak-hashtable, make- 677

values. 123

variable . 147

variable access, environment 709

variable aliases . 163

variable definition . 151

variable descriptions . 14

variable limit error . 149

variable, EMACSLOADPATH environment . . . 200

variable, global . 147

variable, HOME environment 683

variable, indirect- . 163

variable, kill-local- . 161

variable, make-local- . 159

variable, make-obsolete- . 394

variable, mode . 375

variable, PATH environment 683

variable, permanent local . 161

variable, read- . 276

variable, TERM environment 704

variable, void . 150

variable, void- . 150

variable-alias . 163

variable-alias, define-obsolete- 394

882 XEmacs Lisp Reference Manual

variable-buffer-local, make- 160

variable-documentation . 385

variable-obsoleteness-doc . 394

variable-p example, user- . 277

variable-p, local- . 160

variable-p, user- . 153

variables in modes, buffer-local 367

variables, aliases, for . 163

variables, binding local . 148

variables, buffer-local . 159

variables, buffer-local- . 160

variables, CL note—special 156

variables, enable-local- . 371

variables, hack-local- . 373

variables, ignored-local- . 371

variables, indirect . 163

variables, kill-all-local- . 161

variables, local . 148

variables, shadowing of . 148

variables, subprocesses, environment 684

varying-indent, fill-individual-. 533

vc-mode . 380

vconcat . 109

vector . 108, 109

vector evaluation . 124

vector length . 104

vector length, bit . 104

vector, bit . 110

vector, bit- . 110

vector, make- . 109

vector, make-bit- . 110

vector-p, bit- . 110

vectorp . 108

vectors, copying . 109

vectors, copying bit . 111

vendor, x-server- . 726

verify-visited-file-modtime 441

version number (in file name) 410

version, emacs- . 780, 781

version, emacs-major- . 781

version, emacs-minor- . 781

version, x-server- . 726

version-control. 427

versions, dired-kept- . 428

versions, file-name-sans- . 411

versions, kept-new- . 427

versions, kept-old- . 428

versions-without-asking, trim- 428

vertical scrolling . 465

vertical tab . 22

vertical-motion . 498

vertical-motion-pixels . 498

vertically, scrolling . 465

vertically, split-window- . 452

view-file . 396

view-mode-map . 797

view-register . 552

visibility, frame . 484

visible frame . 484

visible, annotation- . 654

visible, make-frame- . 484

visible-bell . 671

visible-frame-list . 481

visible-in-window-p, pos- . 464

visible-p, bottom-toolbar- 359

visible-p, default-toolbar- . 359

visible-p, frame- . 484

visible-p, frame-totally- . 484

visible-p, left-toolbar- . 359

visible-p, right-toolbar- . 359

visible-p, top-toolbar- . 359

visited file . 438

visited file mode . 371

visited-file-modtime . 441

visited-file-modtime, clear- 441

visited-file-modtime, set- . 441

visited-file-modtime, verify- 441

visited-file-name, auto-save- 431

visited-file-name, set- . 439

visiting files . 395

visual-class, x-display-. 726

void function . 125

void function cell . 176

void variable . 150

void-function . 176

void-variable . 150

volume, bell- . 672

vrs eq, CL note—integers . 50

vrs setcar, CL note—rplaca 87

vs association lists, property lists 118

vs killing, deletion . 522

vs. extents, markers . 505

W
waiting . 310

waiting for command key input 309

waiting-for-user-input-p . 698

wakeup . 684

walk-windows . 457

warn-when-source-newer, load- 201

warn-when-source-only, load- 202

Index 883

warning, display- . 662

warning-minimum-level, display- 662

warning-minimum-level, log- 662

warning-suppressed-classes, display- 663

warning-suppressed-classes, log- 662

weak hash table . 676

weak list . 101

weak list type . 32

weak, hash table, . 676

weak-hashtable, make- . 677

weak-hashtable, make-key- 677

weak-hashtable, make-value- 677

weak-list, make- . 101

weak-list-list . 101

weak-list-list, set- . 101

weak-list-p . 101

weak-list-type . 101

when printing, string length, maximum 263

when-compile, eval- . 214

when-linked, backup-by-copying- 427

when-mismatch, backup-by-copying- 427

when-source-newer, load-warn- 201

when-source-only, load-warn- 202

where-is-internal . 338

while . 135

whitespace . 22

whitespace character . 576

whitespace, deleting . 523

whitespace, fixup- . 524

widen . 503

widening . 503

width, annotation- . 654

width, default-toolbar- . 358

width, field . 71

width, frame- . 479

width, frame-pixel- . 479

width, glyph- . 640

width, image-instance- . 647

width, left-margin- . 655

width, left-toolbar- . 359

width, margin . 655

width, minibuffer-prompt- 283

width, right-margin- . 655

width, right-toolbar- . 359

width, tab- . 669

width, window- . 468

width, window-left-margin-pixel- 655

width, window-min- . 472

width, window-pixel- . 469

width, window-right-margin-pixel- 655

width, window-text-area-pixel- 470

width-windows, truncate-partial- 658

window . 449

window configuration (Edebug) 244

window configurations . 473

window excursions . 502

window frame, X . 475

window information, saving 473

window ordering, cyclic . 455

window point . 462

window position . 462, 470

window resizing . 471

window size . 468

window size, changing . 471

window size, minimum . 472

window size, process . 698

window splitting . 450

window system types . 37

window top line . 463

window, active-minibuffer- 283

window, dedicated . 460, 462

window, delete- . 453

window, enlarge- . 471

window, event- . 299

window, find-file-other- . 396

window, frame-root- . 482

window, frame-selected- . 482

window, frame-top- . 482

window, get-buffer- . 457

window, get-largest- . 455

window, get-lru- . 455

window, minibuffer . 455

window, minibuffer- . 283

window, minibuffer-scroll- 284

window, next- . 455

window, other- . 456

window, point in . 462

window, position in . 462

window, position of . 470

window, previous- . 456

window, save-selected- 454, 502

window, scroll-other- . 465

window, select- . 454

window, selected . 449

window, selected- . 454

window, shrink- . 471

window, size of . 468

window, split- . 450

window, switch-to-buffer-other- 458

window-active-p, minibuffer- 284

window-buffer . 457

window-buffer, set- . 457

884 XEmacs Lisp Reference Manual

window-buffer-dedicated, set- 460

window-buffer-names, same- 461

window-configuration, current- 473

window-configuration, set- 473

window-configuration-p . 474

window-dedicated-p . 460, 462

window-dedicated-p, set- . 462

window-displayed-text-pixel-height 470

window-end . 463

window-excursion, save- . 473

window-frame . 482

window-height . 468

window-highest-p . 470

window-horizontally, enlarge- 471

window-horizontally, shrink- 472

window-horizontally, split- 452

window-hscroll . 467

window-hscroll, set- . 468

window-id, x- . 727

window-left-margin-pixel-width 655

window-line, move-to- . 499

window-live-p . 453

window-lowest-p . 470

window-min-height. 472

window-min-width . 472

window-minibuffer-p . 284

window-p, one- . 450, 452

window-p, pos-visible-in- . 464

window-pixel-edges . 470

window-pixel-height . 469

window-pixel-width . 469

window-pixels, enlarge- . 471

window-pixels, shrink- . 472

window-point . 462

window-point, set- . 463

window-regexps, same- . 461

window-right-margin-pixel-width 655

window-scroll-buffer, other- 466

window-setup-hook . 704

window-size, set-process- . 698

window-size-change-functions 472

window-start . 463

window-start, set- . 463

window-system objects . 625

window-text-area-pixel-edges 470

window-text-area-pixel-height 469

window-text-area-pixel-width 470

window-vertically, split- . 452

window-width . 468

window-x-pixel, event- . 300

window-y-pixel, event- . 300

windowp . 450

windows), selection (for X 723

windows, buffers, controlled in 457

windows, controlling precisely 457

windows, cyclic ordering of 455

windows, cyclic, ordering of 455

windows, delete-other- . 453

windows, deleting . 453

windows, edebug-save- 244, 252

windows, examining . 457

windows, finding . 454

windows, multiple . 449

windows, pop-up- . 460

windows, replace-buffer-in- 459

windows, selecting . 454

windows, splitting . 450

windows, tiled . 450

windows, truncate-partial-width- 658

windows, walk- . 457

Windows, X- . 723

windows-on, delete- . 453

with multiple names, file . 408

with narrowing, point . 493

with parentheses, indenting 582

with prefix argument, execute 291

with require, load error . 205

with-current-buffer . 502

with-output-to-temp-buffer 666

with-selected-frame . 483

with-temp-file . 502

without conversion, rounding 55

without-asking, trim-versions- 428

without-query, process-kill- 689

without-query-p, process-kill- 690

word constituent . 576

word search . 556

word, backward- . 495

word, capitalize- . 545

word, downcase- . 545

word, forward- . 495

word, minibuffer-complete- 274

word, upcase- . 545

word-search-backward . 556

word-search-forward . 556

words-include-escapes . 495

wrapping, line . 658

writable-p, file- . 403

write-abbrev-file . 589

write-char . 262

write-contents-hooks . 399

write-file . 398

Index 885

write-file, format- . 422

write-file-hooks . 399

write-file-hooks, local- . 399

write-region . 401

write-region-annotate-functions 550

writing a doc string, string, 385

writing a documentation string 385

writing minor modes, conventions for 375

wrong-number-of-arguments 168

wrong-type-argument . 38

X
X. 723

x 4, C- . 323

x 5, C- . 323

x a, C- . 323

x n, C- . 323

x r, C- . 323

X resource type . 38

X window frame . 475

X windows), selection (for 723

x, C- . 323

x, C-M- . 233

x, event- . 300

x, image-instance-hotspot- 647

x, M- . 292

x-4-map, ctl- . 323, 795

x-5-map, ctl- . 323, 795

x-allow-sendevents . 727

x-bitmap-file-path . 644, 727

x-debug-events . 727

x-debug-mode . 727

x-device, default- . 724

x-device, make- . 489

x-disown-selection . 723

x-display, device- . 490

x-display-visual-class . 726

x-emacs-application-class . 725

x-find-larger-font . 632

x-find-smaller-font . 632

x-font-size . 632

x-get-cutbuffer . 723

x-get-resource . 724

x-get-selection . 723

x-grab-keyboard . 726

x-grab-pointer . 726

x-library-search-path . 727

x-make-font-bold . 632

x-make-font-bold-italic . 633

x-make-font-italic . 633

x-make-font-unbold . 633

x-make-font-unitalic. 633

x-map, ctl- . 323, 795

x-own-selection . 723

x-pixel, event- . 299

x-pixel, event-glyph- . 301

x-pixel, event-window- . 300

X-prefix, Control- . 323

x-put-resource . 725

x-server-vendor . 726

x-server-version . 726

x-set-frame-icon-pixmap . 480

x-store-cutbuffer . 723

x-ungrab-keyboard . 726

x-ungrab-pointer . 726

x-valid-keysym-name-p . 727

x-window-id . 727

X-Windows . 723

XEmacs event standard notation 390

XEmacs from temacs, bootstrapping 779

XEmacs, building . 779

XEmacs, exiting . 705

XEmacs, killing. 706

XEmacs, start up of . 701

XEmacs, suspending . 706

xpm-color-symbols . 644

Y

y, event- . 300

y, image-instance-hotspot- 647

y-or-n-p . 279

y-or-n-p, map- . 281

y-or-n-p-maybe-dialog-box 281

y-pixel, event- . 299

y-pixel, event-glyph- . 301

y-pixel, event-window- . 300

yank . 527

yank suppression . 335

yank-pointer, kill-ring- . 529

yank-pop . 527

yes-or-no questions. 279

yes-or-no-p . 280

yes-or-no-p-dialog-box . 281

yes-or-no-p-maybe-dialog-box 281

886 XEmacs Lisp Reference Manual

Z
zero-length extent . 595

zerop . 49

zmacs-activate-region . 514

zmacs-activate-region-hook 514

zmacs-deactivate-region . 514

zmacs-deactivate-region-hook 515

zmacs-region-stays . 514

zmacs-regions . 513

zmacs-update-region . 514

zmacs-update-region-hook 515

zone, current-time- . 713

	XEmacs Lisp Reference Manual
	Short Contents
	Table of Contents
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Introduction
	Caveats
	Lisp History
	Conventions
	Some Terms
	nil and t
	Evaluation Notation
	Printing Notation
	Error Messages
	Buffer Text Notation
	Format of Descriptions
	A Sample Function Description
	A Sample Variable Description

	Acknowledgements

	Lisp Data Types
	Printed Representation and Read Syntax
	Comments
	Primitive Types
	Programming Types
	Integer Type
	Floating Point Type
	Character Type
	Symbol Type
	Sequence Types
	Cons Cell and List Types
	Dotted Pair Notation
	Association List Type

	Array Type
	String Type
	Vector Type
	Bit Vector Type
	Function Type
	Macro Type
	Primitive Function Type
	Compiled-Function Type
	Autoload Type
	Char Table Type
	Hash Table Type
	Range Table Type
	Weak List Type

	Editing Types
	Buffer Type
	Marker Type
	Extent Type
	Window Type
	Frame Type
	Device Type
	Console Type
	Window Configuration Type
	Event Type
	Process Type
	Stream Type
	Keymap Type
	Syntax Table Type
	Display Table Type
	Database Type
	Charset Type
	Coding System Type
	ToolTalk Message Type
	ToolTalk Pattern Type

	Window-System Types
	Face Type
	Glyph Type
	Specifier Type
	Font Instance Type
	Color Instance Type
	Image Instance Type
	Toolbar Button Type
	Subwindow Type
	X Resource Type

	Type Predicates
	Equality Predicates

	Numbers
	Integer Basics
	Floating Point Basics
	Type Predicates for Numbers
	Comparison of Numbers
	Numeric Conversions
	Arithmetic Operations
	Rounding Operations
	Bitwise Operations on Integers
	Standard Mathematical Functions
	Random Numbers

	Strings and Characters
	String and Character Basics
	The Predicates for Strings
	Creating Strings
	The Predicates for Characters
	Character Codes
	Comparison of Characters and Strings
	Conversion of Characters and Strings
	Modifying Strings
	String Properties
	Formatting Strings
	Character Case
	The Case Table
	The Char Table
	Char Table Types
	Working With Char Tables

	Lists
	Lists and Cons Cells
	Lists as Linked Pairs of Boxes
	Predicates on Lists
	Accessing Elements of Lists
	Building Cons Cells and Lists
	Modifying Existing List Structure
	Altering List Elements with setcar
	Altering the CDR of a List
	Functions that Rearrange Lists

	Using Lists as Sets
	Association Lists
	Property Lists
	Working With Normal Plists
	Working With Lax Plists
	Converting Plists To/From Alists

	Weak Lists

	Sequences, Arrays, and Vectors
	Sequences
	Arrays
	Functions that Operate on Arrays
	Vectors
	Functions That Operate on Vectors
	Bit Vectors
	Functions That Operate on Bit Vectors

	Symbols
	Symbol Components
	Defining Symbols
	Creating and Interning Symbols
	Symbol Properties
	Property Lists and Association Lists
	Property List Functions for Symbols
	Property Lists Outside Symbols

	Evaluation
	Eval
	Kinds of Forms
	Self-Evaluating Forms
	Symbol Forms
	Classification of List Forms
	Symbol Function Indirection
	Evaluation of Function Forms
	Lisp Macro Evaluation
	Special Forms
	Autoloading

	Quoting

	Control Structures
	Sequencing
	Conditionals
	Constructs for Combining Conditions
	Iteration
	Nonlocal Exits
	Explicit Nonlocal Exits: catch and throw
	Examples of catch and throw
	Errors
	How to Signal an Error
	How XEmacs Processes Errors
	Writing Code to Handle Errors
	Error Symbols and Condition Names

	Cleaning Up from Nonlocal Exits

	Variables
	Global Variables
	Variables That Never Change
	Local Variables
	When a Variable is ``Void''
	Defining Global Variables
	Accessing Variable Values
	How to Alter a Variable Value
	Scoping Rules for Variable Bindings
	Scope
	Extent
	Implementation of Dynamic Scoping
	Proper Use of Dynamic Scoping

	Buffer-Local Variables
	Introduction to Buffer-Local Variables
	Creating and Deleting Buffer-Local Bindings
	The Default Value of a Buffer-Local Variable

	Variable Aliases

	Functions
	What Is a Function?
	Lambda Expressions
	Components of a Lambda Expression
	A Simple Lambda-Expression Example
	Advanced Features of Argument Lists
	Documentation Strings of Functions

	Naming a Function
	Defining Functions
	Calling Functions
	Mapping Functions
	Anonymous Functions
	Accessing Function Cell Contents
	Inline Functions
	Other Topics Related to Functions

	Macros
	A Simple Example of a Macro
	Expansion of a Macro Call
	Macros and Byte Compilation
	Defining Macros
	Backquote
	Common Problems Using Macros
	Evaluating Macro Arguments Repeatedly
	Local Variables in Macro Expansions
	Evaluating Macro Arguments in Expansion
	How Many Times is the Macro Expanded?

	Writing Customization Definitions
	Common Keywords for All Kinds of Items
	Defining Custom Groups
	Defining Customization Variables
	Customization Types
	Simple Types
	Composite Types
	Splicing into Lists
	Type Keywords

	Loading
	How Programs Do Loading
	Autoload
	Repeated Loading
	Features
	Unloading
	Hooks for Loading

	Byte Compilation
	Performance of Byte-Compiled Code
	The Compilation Functions
	Documentation Strings and Compilation
	Dynamic Loading of Individual Functions
	Evaluation During Compilation
	Compiled-Function Objects
	Disassembled Byte-Code

	Debugging Lisp Programs
	The Lisp Debugger
	Entering the Debugger on an Error
	Debugging Infinite Loops
	Entering the Debugger on a Function Call
	Explicit Entry to the Debugger
	Using the Debugger
	Debugger Commands
	Invoking the Debugger
	Internals of the Debugger

	Debugging Invalid Lisp Syntax
	Excess Open Parentheses
	Excess Close Parentheses

	Debugging Problems in Compilation
	Edebug
	Using Edebug
	Instrumenting for Edebug
	Edebug Execution Modes
	Jumping
	Miscellaneous
	Breakpoints
	Global Break Condition
	Embedded Breakpoints

	Trapping Errors
	Edebug Views
	Evaluation
	Evaluation List Buffer
	Reading in Edebug
	Printing in Edebug
	Tracing
	Coverage Testing
	The Outside Context
	Checking Whether to Stop
	Edebug Display Update
	Edebug Recursive Edit

	Instrumenting Macro Calls
	Specification List
	Backtracking
	Debugging Backquote
	Specification Examples

	Edebug Options

	Reading and Printing Lisp Objects
	Introduction to Reading and Printing
	Input Streams
	Input Functions
	Output Streams
	Output Functions
	Variables Affecting Output

	Minibuffers
	Introduction to Minibuffers
	Reading Text Strings with the Minibuffer
	Reading Lisp Objects with the Minibuffer
	Minibuffer History
	Completion
	Basic Completion Functions
	Completion and the Minibuffer
	Minibuffer Commands That Do Completion
	High-Level Completion Functions
	Reading File Names
	Programmed Completion

	Yes-or-No Queries
	Asking Multiple Y-or-N Questions
	Minibuffer Miscellany

	Command Loop
	Command Loop Overview
	Defining Commands
	Using interactive
	Code Characters for interactive
	Examples of Using interactive

	Interactive Call
	Information from the Command Loop
	Events
	Event Types
	Contents of the Different Types of Events
	Event Predicates
	Accessing the Position of a Mouse Event
	Frame-Level Event Position Info
	Window-Level Event Position Info
	Event Text Position Info
	Event Glyph Position Info
	Event Toolbar Position Info
	Other Event Position Info

	Accessing the Other Contents of Events
	Working With Events
	Converting Events

	Reading Input
	Key Sequence Input
	Reading One Event
	Dispatching an Event
	Quoted Character Input
	Miscellaneous Event Input Features

	Waiting for Elapsed Time or Input
	Quitting
	Prefix Command Arguments
	Recursive Editing
	Disabling Commands
	Command History
	Keyboard Macros

	Keymaps
	Keymap Terminology
	Format of Keymaps
	Creating Keymaps
	Inheritance and Keymaps
	Key Sequences
	Prefix Keys
	Active Keymaps
	Key Lookup
	Functions for Key Lookup
	Changing Key Bindings
	Commands for Binding Keys
	Scanning Keymaps
	Other Keymap Functions

	Menus
	Format of Menus
	Format of the Menubar
	Menubar
	Modifying Menus
	Menu Filters
	Pop-Up Menus
	Menu Accelerators
	Creating Menu Accelerators
	Keyboard Menu Traversal
	Menu Accelerator Functions

	Buffers Menu

	Dialog Boxes
	Dialog Box Format
	Dialog Box Functions

	Toolbar
	Toolbar Intro
	Toolbar Descriptor Format
	Specifying the Toolbar
	Other Toolbar Variables

	scrollbars
	Drag and Drop
	Supported Protocols
	OffiX DND
	CDE dt
	MSWindows OLE
	Loose ends

	Drop Interface
	Drag Interface

	Major and Minor Modes
	Major Modes
	Major Mode Conventions
	Major Mode Examples
	How XEmacs Chooses a Major Mode
	Getting Help about a Major Mode
	Defining Derived Modes

	Minor Modes
	Conventions for Writing Minor Modes
	Keymaps and Minor Modes

	Modeline Format
	The Data Structure of the Modeline
	Variables Used in the Modeline
	%-Constructs in the ModeLine

	Hooks

	Documentation
	Documentation Basics
	Access to Documentation Strings
	Substituting Key Bindings in Documentation
	Describing Characters for Help Messages
	Help Functions
	Obsoleteness

	Files
	Visiting Files
	Functions for Visiting Files
	Subroutines of Visiting

	Saving Buffers
	Reading from Files
	Writing to Files
	File Locks
	Information about Files
	Testing Accessibility
	Distinguishing Kinds of Files
	Truenames
	Other Information about Files

	Changing File Names and Attributes
	File Names
	File Name Components
	Directory Names
	Absolute and Relative File Names
	Functions that Expand Filenames
	Generating Unique File Names
	File Name Completion

	Contents of Directories
	Creating and Deleting Directories
	Making Certain File Names ``Magic''
	Partial Files
	Intro to Partial Files
	Creating a Partial File
	Detached Partial Files

	File Format Conversion
	Files and MS-DOS

	Backups and Auto-Saving
	Backup Files
	Making Backup Files
	Backup by Renaming or by Copying?
	Making and Deleting Numbered Backup Files
	Naming Backup Files

	Auto-Saving
	Reverting

	Buffers
	Buffer Basics
	The Current Buffer
	Buffer Names
	Buffer File Name
	Buffer Modification
	Comparison of Modification Time
	Read-Only Buffers
	The Buffer List
	Creating Buffers
	Killing Buffers
	Indirect Buffers

	Windows
	Basic Concepts of Emacs Windows
	Splitting Windows
	Deleting Windows
	Selecting Windows
	Cyclic Ordering of Windows
	Buffers and Windows
	Displaying Buffers in Windows
	Choosing a Window for Display
	Windows and Point
	The Window Start Position
	Vertical Scrolling
	Horizontal Scrolling
	The Size of a Window
	The Position of a Window
	Changing the Size of a Window
	Window Configurations

	Frames
	Creating Frames
	Frame Properties
	Access to Frame Properties
	Initial Frame Properties
	X Window Frame Properties
	Frame Size And Position
	The Name of a Frame (As Opposed to Its Title)

	Frame Titles
	Deleting Frames
	Finding All Frames
	Frames and Windows
	Minibuffers and Frames
	Input Focus
	Visibility of Frames
	Raising and Lowering Frames
	Frame Configurations
	Hooks for Customizing Frame Behavior

	Consoles and Devices
	Basic Console Functions
	Basic Device Functions
	Console Types and Device Classes
	Connecting to a Console or Device
	The Selected Console and Device
	Console and Device I/O

	Positions
	Point
	Motion
	Motion by Characters
	Motion by Words
	Motion to an End of the Buffer
	Motion by Text Lines
	Motion by Screen Lines
	Moving over Balanced Expressions
	Skipping Characters

	Excursions
	Narrowing

	Markers
	Overview of Markers
	Predicates on Markers
	Functions That Create Markers
	Information from Markers
	Changing Marker Positions
	The Mark
	The Region

	Text
	Examining Text Near Point
	Examining Buffer Contents
	Comparing Text
	Inserting Text
	User-Level Insertion Commands
	Deleting Text
	User-Level Deletion Commands
	The Kill Ring
	Kill Ring Concepts
	Functions for Killing
	Functions for Yanking
	Low-Level Kill Ring
	Internals of the Kill Ring

	Undo
	Maintaining Undo Lists
	Filling
	Margins for Filling
	Auto Filling
	Sorting Text
	Counting Columns
	Indentation
	Indentation Primitives
	Indentation Controlled by Major Mode
	Indenting an Entire Region
	Indentation Relative to Previous Lines
	Adjustable ``Tab Stops''
	Indentation-Based Motion Commands

	Case Changes
	Text Properties
	Examining Text Properties
	Changing Text Properties
	Property Search Functions
	Properties with Special Meanings
	Saving Text Properties in Files

	Substituting for a Character Code
	Registers
	Transposition of Text
	Change Hooks

	Searching and Matching
	Searching for Strings
	Regular Expressions
	Syntax of Regular Expressions
	Complex Regexp Example

	Regular Expression Searching
	POSIX Regular Expression Searching
	Search and Replace
	The Match Data
	Simple Match Data Access
	Replacing the Text That Matched
	Accessing the Entire Match Data
	Saving and Restoring the Match Data

	Searching and Case
	Standard Regular Expressions Used in Editing

	Syntax Tables
	Syntax Table Concepts
	Syntax Descriptors
	Table of Syntax Classes
	Syntax Flags

	Syntax Table Functions
	Motion and Syntax
	Parsing Balanced Expressions
	Some Standard Syntax Tables
	Syntax Table Internals

	Abbrevs And Abbrev Expansion
	Setting Up Abbrev Mode
	Abbrev Tables
	Defining Abbrevs
	Saving Abbrevs in Files
	Looking Up and Expanding Abbreviations
	Standard Abbrev Tables

	Extents
	Introduction to Extents
	Creating and Modifying Extents
	Extent Endpoints
	Finding Extents
	Mapping Over Extents
	Properties of Extents
	Detached Extents
	Extent Parents
	Duplicable Extents
	Interaction of Extents with Keyboard and Mouse Events
	Atomic Extents

	Specifiers
	Introduction to Specifiers
	In-Depth Overview of a Specifier
	How a Specifier Is Instanced
	Specifier Types
	Adding specifications to a Specifier
	Retrieving the Specifications from a Specifier
	Working With Specifier Tags
	Functions for Instancing a Specifier
	Example of Specifier Usage
	Creating New Specifier Objects
	Functions for Checking the Validity of Specifier Components
	Other Functions for Working with Specifications in a Specifier

	Faces and Window-System Objects
	Faces
	Merging Faces for Display
	Basic Functions for Working with Faces
	Face Properties
	Face Convenience Functions
	Other Face Display Functions

	Fonts
	Font Specifiers
	Font Instances
	Font Instance Names
	Font Instance Size
	Font Instance Characteristics
	Font Convenience Functions

	Colors
	Color Specifiers
	Color Instances
	Color Instance Properties
	Color Convenience Functions

	Glyphs
	Glyph Functions
	Creating Glyphs
	Glyph Properties
	Glyph Convenience Functions
	Glyph Dimensions

	Images
	Image Specifiers
	Image Instantiator Conversion
	Image Instances
	Image Instance Types
	Image Instance Functions

	Glyph Types
	Mouse Pointer
	Redisplay Glyphs
	Subwindows

	Annotations
	Annotation Basics
	Annotation Primitives
	Annotation Properties
	Locating Annotations
	Margin Primitives
	Annotation Hooks

	Emacs Display
	Refreshing the Screen
	Truncation
	The Echo Area
	Warnings
	Invisible Text
	Selective Display
	The Overlay Arrow
	Temporary Displays
	Blinking Parentheses
	Usual Display Conventions
	Display Tables
	Display Table Format
	Active Display Table
	Character Descriptors

	Beeping

	Hash Tables
	Introduction to Hash Tables
	Working With Hash Tables
	Weak Hash Tables

	Range Tables
	Introduction to Range Tables
	Working With Range Tables

	Databases
	Connecting to a Database
	Working With a Database
	Other Database Functions

	Processes
	Functions that Create Subprocesses
	Creating a Synchronous Process
	MS-DOS Subprocesses
	Creating an Asynchronous Process
	Deleting Processes
	Process Information
	Sending Input to Processes
	Sending Signals to Processes
	Receiving Output from Processes
	Process Buffers
	Process Filter Functions
	Accepting Output from Processes

	Sentinels: Detecting Process Status Changes
	Process Window Size
	Transaction Queues
	Network Connections

	Operating System Interface
	Starting Up XEmacs
	Summary: Sequence of Actions at Start Up
	The Init File: .emacs
	Terminal-Specific Initialization
	Command Line Arguments

	Getting out of XEmacs
	Killing XEmacs
	Suspending XEmacs

	Operating System Environment
	User Identification
	Time of Day
	Time Conversion
	Timers for Delayed Execution
	Terminal Input
	Input Modes
	Translating Input Events
	Recording Input

	Terminal Output
	Flow Control
	Batch Mode

	Functions Specific to the X Window System
	X Selections
	X Server
	Resources
	Data about the X Server
	Restricting Access to the Server by Other Apps

	Miscellaneous X Functions and Variables

	ToolTalk Support
	XEmacs ToolTalk API Summary
	Sending Messages
	Example of Sending Messages
	Elisp Interface for Sending Messages

	Receiving Messages
	Example of Receiving Messages
	Elisp Interface for Receiving Messages

	LDAP Support
	Building XEmacs with LDAP support
	XEmacs LDAP API
	LDAP Variables
	The High-Level LDAP API
	The Low-Level LDAP API
	The LDAP Lisp Object
	Opening and Closing a LDAP Connection
	Searching on a LDAP Server (Low-level)

	Syntax of Search Filters

	Internationalization
	I18N Levels 1 and 2
	I18N Level 3
	Level 3 Basics
	Level 3 Primitives
	Dynamic Messaging
	Domain Specification
	Documentation String Extraction

	I18N Level 4

	MULE
	Internationalization Terminology
	Charsets
	Charset Properties
	Basic Charset Functions
	Charset Property Functions
	Predefined Charsets

	MULE Characters
	Composite Characters
	ISO 2022
	Coding Systems
	Coding System Types
	EOL Conversion
	Coding System Properties
	Basic Coding System Functions
	Coding System Property Functions
	Encoding and Decoding Text
	Detection of Textual Encoding
	Big5 and Shift-JIS Functions

	CCL
	CCL Syntax
	CCL Statements
	CCL Expressions
	Calling CCL
	CCL Examples

	Category Tables

	Tips and Standards
	Writing Clean Lisp Programs
	Tips for Making Compiled Code Fast
	Tips for Documentation Strings
	Tips on Writing Comments
	Conventional Headers for XEmacs Libraries

	Building XEmacs; Allocation of Objects
	Building XEmacs
	Pure Storage
	Garbage Collection

	Standard Errors
	Buffer-Local Variables
	Standard Keymaps
	Standard Hooks
	Index

