Python Library Reference
Release 2.1.1

Guido van Rossum
Fred L. Drake, Jr., editor

July 20, 2001

PythonLabs
E-mail: python-docs@python.org



Copyright (©) 2001 Python Software Foundation. All rights reserved.

Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (©) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.



Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive WWW browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Ezxtending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.






CONTENTS

1 Introduction 1
2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types . . . . o o L e 3
2.2 Built-in Exceptions . . . . . ..o 16
2.3 Built-in Functions . . . . . . . ..o e 20
3 Python Runtime Services 29
3.1 sys — System-specific parameters and functions . . . . . . ... ..o 29
3.2  gc — Garbage Collector interface . . . . . . . ... ... 34
3.3 weakref — Weak references . . . . . . . . L L L 35
3.4  fpectl — Floating point exception control . . . . . . . .. ... Lo oo 38
3.5 atexit — Exit handlers . . . . . .. .. 40
3.6 types — Names for all built-in types . . . . . . . . ... L oo oo 40
3.7 UserDict — Class wrapper for dictionary objects . . . . . .. .. ... ... ... .... 42
3.8 UserList — Class wrapper for list objects . . . . . . . .. ... ... . ... 42
3.9 UserString — Class wrapper for string objects . . . . . . .. .. ... ... ... 43
3.10 operator — Standard operators as functions. . . . ... ... Lo Lo 43
3.11 imspect — Inspect live objects . . . . . . . . ... Lo 47
3.12 traceback — Print or retrieve a stack traceback . . . . ... o000 50
3.13 linecache — Random access to text lines . . . . . .. ... ... .. ... ... 52
3.14 pickle — Python object serialization . . . . . .. ... ... .. o L. 53
3.15 cPickle — Alternate implementation of pickle . . . . . . . ... ... ... ....... 57
3.16 copy_reg — Register pickle support functions . . . . .. ... ... 0oL 57
3.17 shelve — Python object persistence . . . . . .. . .. ... .. L. 57
3.18 copy — Shallow and deep copy operations . . . . . .. . . .. ... 58
3.19 marshal — Alternate Python object serialization . . . .. ... ... .. ... .. .... 59
3.20 warnings — Warning control . . . . . .. ..o oL 60
3.21 imp — Access the import internals . . . . . . .. ... oL 63
3.22 code — Interpreter base classes . . . . . . . ... L 65
3.23 codeop — Compile Python code . . . . . . .. ... 67
3.24 pprint — Data pretty printer . . . . ... ..o 67
3.25 repr — Alternate repr () implementation . . . . ... .. ... ... 69
3.26 new — Creation of runtime internal objects . . . . . . . . . ... Lo oL 71
3.27 site — Site-specific configuration hook . . . . . . ... oo o000 71
3.28 user — User-specific configuration hook . . . .. ... .. ... o oo 72
3.29 __builtin__ — Built-in functions . . . . . ... oL oL o 73
3.30 __main _ — Top-level script environment . . . . . . . .. ... oL 73
4 String Services 75
4.1  string — Common string operations . . . . . . . . . . ... e 75
4.2 re — Regular expression operations . . . . . . . . ... Lo e 78

4.3 struct — Interpret strings as packed binary data . . . . . . ... ... 86




4.4
4.5
4.6
4.7
4.8
4.9

difflib — Helpers for computing deltas . . . . . . . . . ... ... ... ... ......
fpformat — Floating point conversions . . . . . . ... ... . o000
StringI0 — Read and write strings as files . . . . . . .. ... oL
cStringI0 — Faster version of StringI0 . . . . . . . . . . . .. . o
codecs — Codec registry and base classes . . . . . . .. ..o oo
unicodedata — Unicode Database . . . ... .. ... .. ... .. . ..

Miscellaneous Services

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

doctest — Test docstrings represent reality . . . . . . . .. ... o Lo
unittest — Unit testing framework . . . . . . . . .. ...
math — Mathematical functions . . . . . . . . . . . ...
cmath — Mathematical functions for complex numbers . . . . . . .. .. ... ... ...
random — Generate pseudo-random numbers . . . . .. ..o Lo
whrandom — Pseudo-random number generator . . . . . . . . . .. .. ... ...
bisect — Array bisection algorithm . . . . . . . . ... ... ...
array — Efficient arrays of numeric values . . . . .. ... oL oL
ConfigParser — Configuration file parser . . . . . . . ... ... ... ... .......
fileinput — Iterate over lines from multiple input streams . . . .. ... ... ... ..
xreadlines — Efficient iteration over afile. . . . . . . .. .. ..o oL
calendar — General calendar-related functions . . . . . .. .. ... 0.
cmd — Support for line-oriented command interpreters . . . . . . . ... ... ... ...
shlex — Simple lexical analysis . . . . . . . . . ... L

Generic Operating System Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

os — Miscellaneous OS interfaces . . . . . . . . ... L o
os.path — Common pathname manipulations . . . . . ... .. ... ... ... .. ...
dircache — Cached directory listings . . . . . . . .. .. .. ... L.
stat — Interpreting stat() results . . . . . . . . ... Lo
statcache — An optimization of os.stat() . . . . . . . . ... ... ... ... ...
statvfs — Constants used with os.statvfs() . . . . ... .. ... ...
filecmp — File and Directory Comparisons . . . . . . ... ... ... ... .......
popen2 — Subprocesses with accessible I/O streams . . . . . ... ... ... ... ...
time — Time access and conversions . . . . . . . . .. .o e
sched — Event scheduler . . . . . . .. ... L
mutex — Mutual exclusion support . . . . . . . .. L
getpass — Portable password input . . . . .. ..o L Lo
curses — Terminal handling for character-cell displays . . . . . . ... .. .. ... ...
curses.textpad — Text input widget for curses programs . . . . . . .. . ... ... ..
curses.wrapper — Terminal handler for curses programs. . . . . . . .. ... ... ...
curses.ascii — Utilities for ASCII characters . . . . . .. .. .. ... ... ......
curses.panel — A panel stack extension for curses. . . . ... ... L.
getopt — Parser for command line options . . . . . ... ..o oL oL
tempfile — Generate temporary file names . . . . . ... oL oL
errno — Standard errno system symbols . . . ... oL oL oo
glob — UNIX style pathname pattern expansion . . . . . . .. ... ... ... ... ...
fnmatch — UNIX filename pattern matching . . . . . . . ... ... ... ... ......
shutil — High-level file operations . . . . . . . . .. . . L o
locale — Internationalization services . . . . . . . . . . . ... .
gettext — Multilingual internationalization services . . . . . . .. .. ... .. ... ..

Optional Operating System Services

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

signal — Set handlers for asynchronous events . . . . ... ... ... ... .......
socket — Low-level networking interface . . . . . . . . ... ... ... ... ...,
select — Waiting for I/O completion . . . . . . .. . .. .. Lo
thread — Multiple threads of control . . . . . . . . .. . ... ... ... ... ......
threading — Higher-level threading interface . . . . .. . ... .. ... ... ...
Queue — A synchronized queue class . . . . . ... L oL oL
mmap — Memory-mapped file support . . . . . ..o Lo
anydbm — Generic access to DBM-style databases . . . . .. ... ... ... ... ..

99

99
106
115
116
117
120
121
122
124
126
128
128
129
131

135
135
146
148
149
151
151
152
153
154
158
159
160
160
174
175
176
178
179
180
181
187
187
188
189
193




7.9 dumbdbm — Portable DBM implementation . . . . . ... ... ... ... .. ... 220

7.10 dbhash — DBM-style interface to the BSD database library . . . . ... ... ... ... 220
7.11 whichdb — Guess which DBM module created a database . . . .. ... .. ... .... 221
7.12 bsddb — Interface to Berkeley DB library . . . . . ... .. ... .. 0. 221
7.13 zlib — Compression compatible with gzip . . . . . . . ... ... ... ... .. 223
7.14 gzip — Support for gzip files . . . . . .. L 225
7.15 zipfile — Work with ZIP archives . . . . . ... ... ... ... o 0oL 225
7.16 readline — GNU readline interface . . . . . . . . . .. . ... ... ... 228
7.17 rlcompleter — Completion function for GNU readline . . . . . .. ... ... ... ... 230
8 Unix Specific Services 231
8.1 posix — The most common POSIX system calls . . . . . . ... .. ... ... ...... 231
8.2 pwd — The password database . . . . . . . .. ... L L 232
8.3 grp — The group database . . . . . . . . . ... 233
8.4 crypt — Function to check UNIX passwords . . . . . ... ... ... .. ......... 233
8.5 dl — Call C functions in shared objects . . . . . . . .. . ... L oo 234
8.6 dbm — Simple “database” interface . . . . . . .. . ... ... .. e 235
8.7 gdbm — GNU’s reinterpretation of dbm . . . . . . . ... o o000 236
8.8 termios — POSIX style tty control . . . . . . .. . ... Lo 237
8.9 TERMIOS — Constants used with the termios module . . . . . .. ... ... ... .... 238
8.10 tty — Terminal control functions . . . . . . . . . .. Lo 238
8.11 pty — Pseudo-terminal utilities . . . . . . .. .. ..o oo 239
8.12 fecntl — The fentl() and ioctl() systemcalls. . . . . . ... oo oo 239
8.13 pipes — Interface to shell pipelines . . . . . . . .. ... . oL o o 240
8.14 posixfile — File-like objects with locking support . . . . ... .. .. ... ... ... 241
8.15 resource — Resource usage information . . . .. ... ... ... ... ... .. ..., 243
8.16 nis — Interface to Sun’s NIS (Yellow Pages) . . . . . . . . ... ... ... . ... .... 245
8.17 syslog — UNIX syslog library routines . . . . . . . ... ... ... oL 246
8.18 commands — Utilities for running commands . . . . . . . . ... L 0oL 247
9 The Python Debugger 249
9.1 Debugger Commands . . . . . . . . ... e e 250
9.2 How It Works . . . . . . . e 252
10 The Python Profiler 255
10.1 Imtroduction to the profiler . . . . . . . . . ... L 255
10.2 How Is This Profiler Different From The Old Profiler? . . . . . . . .. .. ... ... ... 255
10.3 Imstant Users Manual . . . . . . .. .. o e 256
10.4 What Is Deterministic Profiling? . . . . . . . . . . . . . .. ... ... 258
10.5 Reference Manual . . . . . . . . . . . e 258
10.6 Limitations . . . . . . . Lo 261
10.7 Calibration . . . . . . . oL 261
10.8 Extensions — Deriving Better Profilers . . . . . . .. ... ... L o oL 262
11 Internet Protocols and Support 267
11.1 webbrowser — Convenient Web-browser controller . . . . . . ... .. .. .. ... .... 267
11.2 cgi — Common Gateway Interface support. . . . . . ... . ... ... ... 269
11.3 urllib — Open arbitrary resources by URL . . . . . . . ... ... ... ... .. .... 274
11.4 urllib2 — extensible library for opening URLs . . . . . .. ... ... ... .. .. ... 278
11.5 httplib — HTTP protocol client . . . . . .. .. .. ... . ... 284
11.6 ftplib — FTP protocol client . . . . . . . . . .. .. . 286
11.7 gopherlib — Gopher protocol client . . . . . . ... ... L oo 289
11.8 poplib — POP3 protocol client . . . . . . .. . .. ... 290
11.9 imaplib — IMAP4 protocol client . . . . . . . . ... Lo 291
11.10 nntplib — NNTP protocol client . . . . . .. . ... ... . 294
11.11 smtplib — SMTP protocol client . . . . . .. . ... ... 297
11.12 telnetlib — Telnet client . . . . . . . . . . .. . 300
11.13 urlparse — Parse URLs into components . . . . . .. ... ... ... ... ... .... 302

11.14 SocketServer — A framework for network servers . . . . . . . . .. ... ... ... ... 303




11.15 BaseHTTPServer — Basic HTTP server . . . . . . . . . . .. . .. .. ... ...
11.16 SimpleHTTPServer — Simple HTTP request handler . . . . . ... ... ... ... ...
11.17 CGIHTTPServer — CGIl-capable HTTP request handler . . . . . . . ... ... ... ...
11.18 Cookie — HTTP state management . . . . . . . . . .. ... .. .. ... . ... ....
11.19 asyncore — Asynchronous socket handler . . . . . .. ... ... ... . o L.

12 Internet Data Handling

12.1 formatter — Generic output formatting . . . . . . . ... o oo oL
12.2 rfc822 — Parse RFC 822 mail headers . . . . . . . . ... . ... ... ... ...
12.3 mimetools — Tools for parsing MIME messages . . . . . . . .. .. ... ... ......
12.4 MimeWriter — Generic MIME file writer . . . . . . . . . . . . . . . ... ... ... ..
12.5 multifile — Support for files containing distinct parts . . . . . . . ... ... ... ..
12.6 binhex — Encode and decode binhex4 files . . . . . . . . .. ... Lo oL
12.7 uu — Encode and decode uuencode files . . . . . . ... L oL
12.8 binascii — Convert between binary and ASCIT . . . . . . . ... .. ... ... ....
12.9 xdrlib — Encode and decode XDR data . . . . . . . .. .. ... . L.
12.10 mailcap — Mailcap file handling. . . . . . . . .. .. . L oL
12.11 mimetypes — Map filenames to MIME types . . . . . . ... ... .. L.
12.12 base64 — Encode and decode MIME base64 data . . . . .. ... ... ... ... ....
12.13 quopri — Encode and decode MIME quoted-printable data . . . . . ... ... ... ..
12.14 mailbox — Read various mailbox formats . . . . . .. ... ... L oL
12.15 mh1lib — Access to MH mailboxes . . . . . . . . . . . . . . . e
12.16 mimify — MIME processing of mail messages . . . . . .. ... ... ... ... ....
12.17 netrc — netre file processing . . . . . . ... Lo
12.18 robotparser — Parser for robots.txt . . . . . . ... L oo

13 Structured Markup Processing Tools

13.1 sgmllib — Simple SGML parser . . . . . . . . . .. L
13.2 htmllib — A parser for HTML documents . . . . . . . .. .. ... ... ... ....
13.3 htmlentitydefs — Definitions of HTML general entities . . . . . . . ... ... ... ..
13.4 xml.parsers.expat — Fast XML parsing using Expat . . . .. . . ... ... ... ...
13.5 zml.dom — The Document Object Model APT . . . . . ... .. ... ... ... ...
13.6 zml.dom.minidom — Lightweight DOM implementation . . . . . .. ... ... ... ...
13.7 zml.dom.pulldom — Support for building partial DOM trees . . . . . . . ... ... ...
13.8 xml.sax — Support for SAX2 parsers . . . . . . . ...
13.9 xml.sax.handler — Base classes for SAX handlers . . . . . ... ... ... ... ....
13.10 xml.sax.saxutils — SAX Utilities . . . . . . . . . . . L
13.11 xml.sax.xmlreader — Interface for XML parsers . . . . . . . .. . ... .. ... ....
13.12 xm11ib — A parser for XML documents . . . . . . . . ... L oL

14 Multimedia Services

14.1 audioop — Manipulate raw audio data . . . . . . . .. ... oL 0o
14.2 imageop — Manipulate raw image data . . . . . .. .. ... oL Lo
14.3 aifc — Read and write AIFF and AIFC files. . . . . . . . .. ... ... ... ...,
14.4 sunau — Read and write Sun AU files . . . . . . . .. ... o
14.5 wave — Read and write WAV files . . . . . . . . . . . .
14.6 chunk — Read IFF chunked data . . . . ... ... .. ... ... ... ... ...
14.7 colorsys — Conversions between color systems . . . . . .. ... ... ... .. ...,
14.8 rgbimg — Read and write “SGI RGB” files . . . . . . . ... ... ... ... ...
14.9 imghdr — Determine the type of an image . . . . . . . ... ... ... ..
14.10 sndhdr — Determine type of sound file . . . . . . .. ... L oL oL

15 Cryptographic Services

15.1 md5 — MD5 message digest algorithm . . . . . . .. ... oo
15.2 sha — SHA message digest algorithm . . . . . . ... ... ... ... .. ... ... ...
15.3 mpz — GNU arbitrary magnitude integers. . . . . . . . ... ... 0oL
15.4 rotor — Enigma-like encryption and decryption . . . . . .. ... 0oL

16 Restricted Execution

317
317
321
324
325
326
327
328
328
330
332
333
334
335
335
336
338
339
340

341
341
343
345
345
351
360
365
365
367
371
371
375

379
379
382
383
385
387
389
390
391
391
392

393
393
394
395
396

399




16.1 rexec — Restricted execution framework . . . . . . .. . . ... ...
16.2 Bastion — Restricting access to objects . . . . . . ... Lo

17 Python Language Services

17.1 parser — Access Python parse trees . . . . . . . . . .. Lo L o

17.2 symbol — Constants used with

Python parse trees . . . . . . ... ... L.

17.3 token — Constants used with Python parse trees . . . . .. ... ... ... .. .. ...
17.4 keyword — Testing for Python keywords . . . . . . ... ... ... ... ... ...
17.5 tokenize — Tokenizer for Python source . . . . . . . . ... ... ... .. ..
17.6 tabnanny — Detection of ambiguous indentation . . . . . . . .. ... ... 0L
17.7 pyclbr — Python class browser support . . . . .. .. ... ... .. L.
17.8 py_compile — Compile Python source files . . . . . ... ... ... ... ... ...
17.9 compileall — Byte-compile Python libraries . . . . .. .. ... ... ... ... ....
17.10 dis — Disassembler for Python byte code . . . . . . .. .. ... ... 0.

18 SGI IRIX Specific Services

18.1 al — Audio functions on the SGI . . . . . . . .. ..
18.2 AL — Constants used with the al module . . . . . . . . ... ... ... ... ..
18.3 cd — CD-ROM access on SGI systems . . . . . . . . . .. ... ..
18.4 £1 — FORMS library interface for GUI applications . . . . . . . . . ... ... ... ...
18.5 FL — Constants used with the f1 module . . . . . . . . . .. ... ... ... ... ...
18.6 flp — Functions for loading stored FORMS designs . . . . . ... ... ... ... ....

18.7 fm — Font Manager interface .

18.8 gl — Graphics Library interface . . . . . . . . . . L

18.9 DEVICE — Constants used with

theglmodule . . . .. ... ... ... .. ...

18.10 GL — Constants used with the gl module . . . . . .. ... ... ... ... o000,
18.11 imgfile — Support for SGI imglib files . . . . . . . . ... .o oL 0oL
18.12 jpeg — Read and write JPEG files . . . . . .. ... oL o oL oo

19 SunOS Specific Services

19.1 sunaudiodev — Access to Sun audio hardware . . . . . . . .. ... ... ..
19.2 SUNAUDIODEV — Constants used with sunaudiodev . . . . . . . . . . . .. .. ... ...

20 MS Windows Specific Services

20.1 msvcrt — Useful routines from the MS VC++ runtime . . . . . . . ... ... .. ...
20.2 _winreg — Windows registry access . . . . . . .. ... L Lo e
20.3 winsound — Sound-playing interface for Windows . . . . . . . . . ... Lo

A Undocumented Modules
A.1 Frameworks . .. ... .. ..
A.2 Miscellaneous useful utilities .
A.3 Platform specific modules . . .
A.4 Multimedia . . .. ... .. ..
A5 Obsolete ... .........
A.6  SGI-specific Extension modules

B Reporting Bugs
Module Index

Index

405
405
414
414
415
415
415
416
417
417
417

425
425
427
427
430
435
435
435
436
438
438
438
439

441
441
442

443
443
444
448

451
451
451
451
452
452
453

455

457

461




vi



CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, such as access to specific hardware; others provide interfaces that are specific to a particular
application domain, like the World-Wide Web. Some modules are available in all versions and ports of
Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!







CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.!

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ‘... ¢ notation). The latter conversion is implicitly
used when an object is written by the print statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e zero of any numeric type, for example, 0, OL, 0.0, 0j.

e any empty sequence, for example, *’, (), [].

e any empty mapping, for example, {3}.

e instances of user-defined classes, if the class defines a __nonzero__() or __len__ () method,

when that method returns zero.?

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return O for false and 1 for true,
unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.
2 Additional information on these special methods may be found in the Python Reference Manual.




2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
T or y if z is false, then y, else z (1)
z and y | if z is false, then z, else y (1)

not z if z is false, then 1, else 0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a ==
b), and @ == not b is a syntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher
than that of the Boolean operations). Comparisons can be chained arbitrarily; for example, z < y <=
z is equivalent to < y and y <= z, except that y is evaluated only once (but in both cases z is not
evaluated at all when = < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
1= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between ABC and C! :-)
= is the preferred spelling; <> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Further-
more, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines the __cmp__ () method. Refer
to the Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence
types (below).

2.1.4 Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them at least 32

4 Chapter 2. Built-in Types, Exceptions and Functions



bits of precision. Long integers have unlimited precision. Floating point numbers are implemented using
double in C. All bets on their precision are off unless you happen to know the machine you are working
with.

Complex numbers have a real and imaginary part, which are both implemented using double in C. To
extract these parts from a complex number z, use z.real and z.imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or
‘1’ suffix yield long integers (‘L’ is preferred because ‘11’ looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers. Appending ‘j’ or ‘J’ to a
numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different
numeric types, the operand with the “smaller” type is converted to that of the other, where plain integer
is smaller than long integer is smaller than floating point is smaller than complex. Comparisons between
numbers of mixed type use the same rule.® The functions int(), long(), float (), and complex() can
be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same
box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
T+ y sum of z and y
AT difference of = and y
T *xy product of z and y
x /Yy quotient of z and y (1)
x hy remainder of x / y
-x z negated
+x 2 unchanged
abs(z) absolute value or magnitude of x
int (x) x converted to integer (2)
long(z) x converted to long integer (2)
float(x) z converted to floating point
complex(re,im) | a complex number with real part re, imaginary part ém. im defaults to zero.
c.conjugate() | conjugate of the complex number c
divmod(z, y) the pair (x / y, = % y) (3)
pow(z, y) z to the power y
T k*k gy z to the power y
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2 s 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long
integer if either operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() and ceil () in the math module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

3As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

2.1. Built-in Types 5



The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations
(A+7 and &_’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have
the same priority):

Operation | Result Notes
z |y bitwise or of z and y
x "y bitwise exclusive or of x and y
x &y bitwise and of z and y
T << n z shifted left by n bits (1), (2)
T >>n z shifted right by n bits (1), (3)
"z the bits of z inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

2.1.5 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quotes: ’xyzzy’, "frobozz". See chapter 2 of the Python
Reference Manual for more about string literals. Unicode strings are much like strings, but are specified
in the syntax using a preceeding ‘u’ character: u’abc’, u"def". Lists are constructed with square
brackets, separating items with commas: [a, b, c]. Tuples are constructed by the comma operator
(not within square brackets), with or without enclosing parentheses, but an empty tuple must have the
enclosing parentheses, e.g., a, b, c or (). A single item tuple must have a trailing comma, e.g., (d,).
Buffers are not directly supported by Python syntax, but can be created by calling the builtin function
buffer (). XRanges objects are similar to buffers in that there is no specific syntax to create them, but
they are created using the xrange () function.

Sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same priori-
ties as the comparison operations. The ‘+’ and ‘*’ operations have the same priority as the corresponding

numeric operations.*

This table lists the sequence operations sorted in ascending priority (operations in the same box have
the same priority). In the table, s and t are sequences of the same type; n, i and j are integers:

Operation Result Notes
z in s 1 if an item of s is equal to z, else 0O
z not in s | O if an item of s is equal to z, else 1
s+t the concatenation of s and ¢
s * m, n * s | n copies of s concatenated (1)
s[4l i’th item of s, origin 0 (2)
sli:g] slice of s from i to j (2), (3)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s

Notes:

(1) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s).

4They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions



(2) If i or j is negative, the index is relative to the end of the string, i.e., len(s) + 4 or len(s) + jis
substituted. But note that -0 is still 0.

(3) The slice of s from ¢ to j is defined as the sequence of items with index k such that i <= k < j. If
i or j is greater than len(s), use len(s). If ¢ is omitted, use 0. If j is omitted, use len(s). If i
is greater than or equal to j, the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize()
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of length width. Padding is done using spaces.

count (sub [, start [, end] ])
Return the number of occurrences of substring sub in string S[start:end]. Optional arguments
start and end are interpreted as in slice notation.

encode ( [encoding [, errors ] ] )
Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
’strict’, meaning that encoding errors raise a ValueError. Other possible values are ’ignore’
and ’replace’. New in version 2.0.

endswith(suﬁi:p[, start[, end] ])
Return true if the string ends with the specified suffiz, otherwise return false. With optional start,
test beginning at that position. With optional end, stop comparing at that position.

expandtabs ( [tabsize ] )
Return a copy of the string where all tab characters are expanded using spaces. If tabsize is not
given, a tab size of 8 characters is assumed.

find(sub[, start[, end] ])
Return the lowest index in the string where substring sub is found, such that sub is contained in the
range [start, end). Optional arguments start and end are interpreted as in slice notation. Return
-1 if sub is not found.

index (sub [, start [, end] ])
Like £ind (), but raise ValueError when the substring is not found.

isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise.

isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise.

isdigit()
Return true if there are only digit characters, false otherwise.

islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

isspace()
Return true if there are only whitespace characters in the string and the string is not empty, false
otherwise.

istitle()
Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return false otherwise.

2.1. Built-in Types 7



isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased
character, false otherwise.

join(seq)
Return a string which is the concatenation of the strings in the sequence seq. The separator
between elements is the string providing this method.

1just (width)
Return the string left justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

lower ()
Return a copy of the string converted to lowercase.

1strip()
Return a copy of the string with leading whitespace removed.

replace(old, new[, mamsplit])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument maxsplit is given, only the first mazsplit occurrences are replaced.

rfind(sub [,start [,end”)
Return the highest index in the string where substring sub is found, such that sub is contained
within s[start,end]. Optional arguments start and end are interpreted as in slice notation. Return
-1 on failure.

rindex(sub[, stam‘[, end] ])
Like rfind () but raises ValueError when the substring sub is not found.

rjust (width)
Return the string right justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

rstrip()
Return a copy of the string with trailing whitespace removed.

split( [sep [,mawsplit] ])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at
most maxsplit splits are done. If sep is not specified or None, any whitespace string is a separator.

splitlines( [keepends ] )
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included
in the resulting list unless keepends is given and true.

startswith(prefix [, start[, end] ])
Return true if string starts with the prefix, otherwise return false. With optional start, test string
beginning at that position. With optional end, stop comparing string at that position.

strip()
Return a copy of the string with leading and trailing whitespace removed.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

title()
Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased
characters are lowercase.

translate (table [, deletechars ] )
Return a copy of the string where all characters occurring in the optional argument deletechars
are removed, and the remaining characters have been mapped through the given translation table,
which must be a string of length 256.

upper ()
Return a copy of the string converted to uppercase.

8 Chapter 2. Built-in Types, Exceptions and Functions



String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). Given format
%values (where format is a string or Unicode object), % conversion specifications in format are replaced
with zero or more elements of values. The effect is similar to the using sprintf () in the C language. If
format is a Unicode object, or if any of the objects being converted using the %s conversion are Unicode
objects, the result will be a Unicode object as well.

If format requires a single argument, values may be a single non-tuple object. > Otherwise, values must
be a tuple with exactly the number of items specified by the format string, or a single mapping object
(for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must
occur in this order:
1. The ‘%’ character, which marks the start of the specifier.
2. Mapping key value (optional), consisting of an identifier in parentheses (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an ‘*’ (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a ‘.” (dot) followed by the precision. If specified as ‘*’ (an asterisk),
the actual width is read from the next element of the tuple in wvalues, and the value to convert
comes after the precision.

6. Length modifier (optional).
7. Conversion type.
If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have

a parenthesized key into that dictionary inserted immediately after the ‘%’ character, and each format
formats the corresponding entry from the mapping. For example:

>>> count = 2

>>> language = ’Python’

>>> print ’%(language)s has %(count)03d quote types.’ % vars()
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘4" | The value conversion will use the “alternate form” (where defined below).

‘0’ The conversion will be zero padded.

The converted value is left adjusted (overrides ‘-’).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

(0

‘“+’ | A sign character (‘+’ or ‘=’) will precede the conversion (overrides a "space” flag).

The length modifier may be h, 1, and L may be present, but are ignored as they are not necessary for
Python.

The conversion types are:

5A tuple object in this case should be a singleton.

2.1. Built-in Types 9



Conversion | Meaning
‘d’ Signed integer decimal.
‘i’ Signed integer decimal.
‘o’ Unsigned octal.
‘u’ Unsigned decimal.
‘x’ Unsigned hexidecimal (lowercase).
‘X’ Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E’ Floating point exponential format (uppercase).
‘£ Floating point decimal format.
‘F’ Floating point decimal format.
‘g’ Same as ‘e’ if exponent is greater than -4 or less than precision, ‘£’ otherwise.
‘G’ Same as ‘E’ if exponent is greater than -4 or less than precision, ‘F’ otherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object using repr ()).
‘s’ String (converts any python object using str()).
A No argument is converted, results in a ‘%’ character in the result. (The complete specification is %%.)

Since Python strings have an explicit length, %s conversions do not assume that ’>\0’ is the end of the
string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute
value is over 1e25 are replaced by %g conversions.® All other errors raise exceptions.

Additional string operations are defined in standard module string and in built-in module re.

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the
xrange type is that an xrange object will always take the same amount of memory, no matter the size of
the range it represents. There are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where z is an arbitrary object):

6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without
hampering correct use and without having to know the exact precision of floating point values on a particular machine.

10 Chapter 2. Built-in Types, Exceptions and Functions



Operation Result Notes
slil = item 7 of s is replaced by z

sli:jl =t slice of s from ¢ to j is replaced by ¢

del sl[i:j] same as s[i:j] = []

s.append (z) same as s[len(s):len(s)] = [z] (1)

s.extend(z) same as s[len(s):len(s)] = z (2)

s.count () return number of i’s for which s[i] == z

s.index(x) return smallest ¢ such that s[i] == (3)

s.insert (i, z) same as s[i:4] = [z] if ¢ >= 0

s.pop([i]) same as ¢ = s[i]; del s[i]; return z (4)

s.remove (z) same as del s[s.index(z)] (3)

s.reverse() reverses the items of s in place (5)
s. sort([cmpfunc]) sort the items of s in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined
them into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated
since Python 1.4.

(2) Raises an exception when z is not a list object. The extend() method is experimental and not
supported by mutable sequence types other than lists.

(3) Raises ValueError when z is not found in s.

(4) The pop() method is only supported by the list and array types. The optional argument ¢ defaults
to -1, so that by default the last item is removed and returned.

(5) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. They don’t return the sorted or reversed list to remind you of this side effect.

(6) The sort() method takes an optional argument specifying a comparison function of two arguments
(list items) which should return -1, 0 or 1 depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process
down considerably; e.g. to sort a list in reverse order it is much faster to use calls to the methods
sort () and reverse() than to use the built-in function sort () with a comparison function that
reverses the ordering of the elements.

2.1.6  Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are
almost arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g.
1 and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: walue pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a and b are mappings, k is a key, and v and z
are arbitrary objects):

2.1. Built-in Types 11



Operation Result Notes
len(a) the number of items in a
a[k] the item of a with key & (1)
alk]l = v set a[k] to v
del alk] remove a[k] from a (1)
a.clear() remove all items from a
a.copy() a (shallow) copy of a
k in a 1if @ has a key k, else 0
k not in a 0 if a has a key k, else 1
a.has_key (k) Equivalent to k£ in a
a.items() a copy of a’s list of (key, value) pairs (2)
a.keys() a copy of a’s list of keys (2)
a.update (b) for k in b.keys(): alk] = b[k] (3)
a.values() a copy of a’s list of values (2)
a.get(k[, z]) alk] if k in a, else o (4)
a.setdefault (k|, :v]) alkl if £ in a, else z (also setting it) (5)
a.popitem() remove and return an arbitrary (key, value) pair (6)

Notes:

(1) Raises a KeyError exception if % is not in the map.

(2) Keys and values are listed in random order. If keys () and values() are called with no intervening
modifications to the dictionary, the two lists will directly correspond. This allows the creation of
(value, key) pairs using map(): ‘pairs = map(None, a.values(), a.keys())’.

(3) b must be of the same type as a.

(4) Never raises an exception if k is not in the map, instead it returns . z is optional; when z is not
provided and k is not in the map, None is returned.

(5) setdefault() is like get (), except that if k is missing, = is both returned and inserted into the
dictionary as the value of k.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly speaking, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module
named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment
to the __dict__ attribute is not possible (i.e., you can write m.__dict__[’a’] = 1, which defines
m.a to be 1, but you can’t write m.__dict__ = {}.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a
file, they are written as <module ’os’ from ’/usr/local/lib/python2.1/os.pyc’>.

Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

12 Chapter 2. Built-in Types, Exceptions and Functions



Functions

Function objects are created by function definitions. The only operation on a function object is to call
it: funcCargument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both
support the same operation (to call the function), but the implementation is different, hence the different
object types.

The implementation adds two special read-only attributes: f.func_code is a function’s code object (see
below) and f.func_globals is the dictionary used as the function’s global namespace (this is the same
as m.__dict__ where m is the module in which the function f was defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on functions written in Python. Function
attributes on built-ins may be supported in the future.

Functions have another special attribute f.__dict__ (a.k.a. f.func_dict) which contains the names-
pace used to support function attributes. __dict__ can be accessed directly, set to a dictionary object,
or None. It can also be deleted (but the following two lines are equivalent):

del func.__dict__
func.__dict__ = None

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in
methods (such as append() on lists) and class instance methods. Built-in methods are described with
the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the
object on which the method operates, and m.im_func is the function implementing the method. Call-
ing m(arg-1, arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1,
arg-2, ..., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed
through an instance or a class, respectively. When a method is unbound, its im_self attribute will be
None and if called, an explicit self object must be passed as the first argument. In this case, self must
be an instance of the unbound method’s class (or a subclass of that class), otherwise a TypeError is
raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method
attributes are actually stored on the underlying function object (i.e. meth.im_func), setting method
attributes on either bound or unbound methods is disallowed. Attempting to set a method attribute
results in a TypeError being raised. In order to set a method attribute, you need to explicitly set it on
the underlying function object:

class C:
def method(self):
pass

c=CO
c.method.im_func.whoami = ’my name is c’

See the Python Reference Manual for more information.

2.1. Built-in Types 13



Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code
such as a function body. They differ from function objects because they don’t contain a reference to
their global execution environment. Code objects are returned by the built-in compile() function and
can be extracted from function objects through their func_code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval () function.

See the Python Reference Manual for more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function
type(). There are no special operations on types. The standard module types defines names for all
standard built-in types.

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). Tt supports no special
operations. There is exactly one ellipsis object, named E11lipsis (a built-in name).

It is written as E1lipsis.

File Objects

File objects are implemented using C’s stdio package and can be created with the built-in function
open() described in section 2.3, “Built-in Functions.” They are also returned by some other built-
in functions and methods, e.g., os.popen() and os.fdopen() and the makefile() method of socket
objects.

When a file operation fails for an I/O-related reason, the exception I0Error is raised. This includes
situations where the operation is not defined for some reason, like seek() on a tty device or writing a
file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that
the file be open will raise a ValueError after the file has been closed. Calling close() more than
once is allowed.

flush O
Flush the internal buffer, like stdio’s fflush(). This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else false. Note: If a file-like object is
not associated with a real file, this method should not be implemented.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/0O

14 Chapter 2. Built-in Types, Exceptions and Functions



operations from the operating system. This can be useful for other, lower level interfaces that use
file descriptors, e.g. module fcntl or os.read() and friends. Note: File-like objects which do not
have a real file descriptor should not provide this method!

read( [size ] )
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the
size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as
a string object. An empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may
call the underlying C function fread () more than once in an effort to acquire as close to size bytes
as possible.

readline( [sz’ze ] )
Read one entire line from the file. A trailing newline character is kept in the string” (but may
be absent when a file ends with an incomplete line). If the size argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may
be returned. An empty string is returned when EOF is hit immediately. Note: Unlike stdio’s
fgets (), the returned string contains null characters (?\0?) if they occurred in the input.

readlines( [sizehint] )
Read until EOF using readline () and return a list containing the lines thus read. If the optional
sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately
sizehint bytes (possibly after rounding up to an internal buffer size) are read. Objects implement-
ing a file-like interface may choose to ignore sizehint if it cannot be implemented, or cannot be
implemented efficiently.

xreadlines ()
Equivalent to xreadlines.xreadlines(file). (See the xreadlines module for more information.)
New in version 2.1.

seek(oﬁset[, whence])
Set the file’s current position, like stdio’s fseek (). The whence argument is optional and defaults
to 0 (absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek
relative to the file’s end). There is no return value. Note that if the file is opened for appending
(mode ’a’ or ’a+’), any seek() operations will be undone at the next write. If the file is only
opened for writing in append mode (mode ’a’), this method is essentially a no-op, but it remains
useful for files opened in append mode with reading enabled (mode ’a+?).

tell()
Return the file’s current position, like stdio’s ftell().

truncate ( [size ] )
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most)
that size. The size defaults to the current position. Availability of this function depends on the
operating system version (for example, not all UNIX versions support this operation).

write(str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not
actually show up in the file until the flush() or close() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to match
readlines(); writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects,
but should be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attribute; the close ()
method changes the value. It may not be available on all file-like objects.

"The advantage of leaving the newline on is that an empty string can be returned to mean EOF without being ambiguous.
Another advantage is that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning
its lines) you can tell whether the last line of a file ended in a newline or not (yes this happens!).

2.1. Built-in Types 15



mode
The I/O mode for the file. If the file was created using the open () built-in function, this will be the
value of the mode parameter. This is a read-only attribute and may not be present on all file-like
objects.

name
If the file object was created using open(), the name of the file. Otherwise, some string that
indicates the source of the file object, of the form ‘<...>’. This is a read-only attribute and may
not be present on all file-like objects.

softspace

Boolean that indicates whether a space character needs to be printed before another value when
using the print statement. Classes that are trying to simulate a file object should also have
a writable softspace attribute, which should be initialized to zero. This will be automatic for
most classes implemented in Python (care may be needed for objects that override attribute access);
types implemented in C will have to provide a writable softspace attribute. Note: This attribute
is not used to control the print statement, but to allow the implementation of print to keep track
of its internal state.

Internal Objects

See the Python Reference Manual for this information. It describes stack frame objects, traceback objects,
and slice objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are
relevant:

—_dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods_ _
List of the methods of many built-in object types, e.g., []1.__methods__ yields [’append’,
’count’, ’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]. This usually does
not need to be explicitly provided by the object.

__members_ _
Similar to __methods__, but lists data attributes. This usually does not need to be explicitly
provided by the object.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in
past versions of Python, in Python 1.5 and newer versions, all standard exceptions have been converted
to class objects, and users are encouraged to do the same. The exceptions are defined in the module
exceptions. This module never needs to be imported explicitly: the exceptions are provided in the
built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force
programmers to use exception names rather than their string value when specifying exception handlers.
The string value of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

16 Chapter 2. Built-in Types, Exceptions and Functions



For class exceptions, in a try statement with an except clause that mentions a particular class, that
clause also handles any exception classes derived from that class (but not exception classes from which
it is derived). Two exception classes that are not related via subclassing are never equivalent, even if
they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except
where mentioned, they have an “associated value” indicating the detailed cause of the error. This may
be a string or a tuple containing several items of information (e.g., an error code and a string explaining
the code). The associated value is the second argument to the raise statement. For string exceptions,
the associated value itself will be stored in the variable named as the second argument of the except
clause (if any). For class exceptions, that variable receives the exception instance. If the exception
class is derived from the standard root class Exception, the associated value is present as the exception
instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition “just like” the situation in which the interpreter raises the same exception; but beware
that there is nothing to prevent user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

exception Exception

The root class for exceptions. All built-in exceptions are derived from this class. All user-defined
exceptions should also be derived from this class, but this is not (yet) enforced. The str () function,
when applied to an instance of this class (or most derived classes) returns the string value of the
argument or arguments, or an empty string if no arguments were given to the constructor. When
used as a sequence, this accesses the arguments given to the constructor (handy for backward
compatibility with old code). The arguments are also available on the instance’s args attribute,
as a tuple.

exception StandardError
The base class for all built-in exceptions except SystemExit. StandardError itself is derived from
the root class Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError. This can be raised directly by sys.setdefaultencoding().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, 0SError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are avail-
able as above, while the third item is available on the filename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The
errno and strerror attributes are also None when the instance was created with other than 2 or
3 arguments. In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

exception EOFError

2.2. Built-in Exceptions 17



Raised when one of the built-in functions (input () or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the read() and readline () methods of file objects return
an empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be
raised when Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER
symbol is defined in the ‘config.h’ file.

exception I0Error
Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or DEL). During execution, a
check for interrupts is made regularly. Interrupts typed when a built-in function input() or
raw_input ()) is waiting for input also raise this exception.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C’s malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away
program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version
1.5.2.

exception 0SError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New
in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot
occur for long integers (which would rather raise MemoryError than give up). Because of the lack
of standardization of floating point exception handling in C, most floating point operations also
aren’t checked. For plain integers, all operations that can overflow are checked except left shift,
where typical applications prefer to drop bits than raise an exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any more.)

18 Chapter 2. Built-in Types, Exceptions and Functions



exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input (), or when reading the initial
script or standard input (also interactively).

When class exceptions are used, instances of this class have atttributes filename, lineno, offset
and text for easier access to the details; for string exceptions, the associated value is usually a
tuple of the form (message, (filename, lineno, offset, text)). For class exceptions, str()
returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in
low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version string of the Python interpreter (sys.version; it is also printed at the start of an interactive
Python session), the exact error message (the exception’s associated value) and if possible the source
of the program that triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit() function); if it is None, the exit status is zero; if it has another
type (such as a string), the object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting
to None). Also, this exception derives directly from Exception and not StandardError, since it is
not technically an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of
try statements) can be executed, and so that a debugger can execute a script without running the
risk of losing control. The os._exit () function can be used if it is absolutely positively necessary
to exit immediately (e.g., after a fork() in the child process).

exception TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been
bound to that variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.
New in version 2.0.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but
an inappropriate value, and the situation is not described by a more precise exception such as
IndexError.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond
to an errno value. The errno and strerror values are created from the return values of the
GetLastError() and FormatMessage () functions from the Windows Platform API. This is a sub-
class of 0SError. New in version 2.0.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

2.2. Built-in Exceptions 19



exception UserWarning

Base class for warnings generated by user code.

exception DeprecationWarning

Base class for warnings about deprecated features.

exception SyntaxWarning

Base class for warnings about dubious syntax

exception RuntimeWarning

Base class for warnings about dubious runtime behavior.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

__import__(name[, globals[, locals[, fromlist] ] ])

This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own __import__ () function.

For example, the statement ‘import spam’ results in the following call: __import__ (’spam’,
globals(), locals(), []); the statement ‘from spam.ham import eggs’ results in
‘__import__(’spam.ham’, globals(), locals(), [’eggs’])’. Note that even though

locals() and [’eggs’] are passed in as arguments, the __import__ () function does not set
the local variable named eggs; this is done by subsequent code that is generated for the import
statement. (In fact, the standard implementation does not use its locals argument at all, and uses
its globals only to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to extract the desired components.
For example, you could define the following helper:

import string

def my_import (name) :
mod = __import__(name)
components = string.split(name, ’.’)
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs(zx)

Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply (function, args [, keywords])

The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence (if it is not a tuple, the sequence is
first converted to a tuple). The function is called with args as the argument list; the number of
arguments is the the length of the tuple. (This is different from just calling func(args), since in
that case there is always exactly one argument.) If the optional keywords argument is present, it

20

Chapter 2. Built-in Types, Exceptions and Functions



must be a dictionary whose keys are strings. It specifies keyword arguments to be added to the
end of the the argument list.

buffer(abject[, offset [, size] ])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable(object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a
__call__ () method.

chr(7)
Return a string of one character whose ASCII code is the integer i, e.g., chr(97) returns the
string ’a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if 7 is outside that range.

cmp(z, y)
Compare the two objects x and y and return an integer according to the outcome. The return
value is negative if x < y, zero if z == y and strictly positive if z > y.

coerce(z, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kind)
Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval (). The filename argument should give the file from which the code was
read; pass e.g. ’<string>’ if it wasn’t read from a file. The kind argument specifies what kind of
code must be compiled; it can be ’exec’ if string consists of a sequence of statements, ’eval’ if
it consists of a single expression, or ’single’ if it consists of a single interactive statement (in the
latter case, expression statements that evaluate to something else than None will printed).

complex(real[, z'mag])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. Each argument may be any numeric type (including complex). If imag is omitted, it
defaults to zero and the function serves as a numeric conversion function like int (), long() and
float (); in this case it also accepts a string argument which should be a valid complex number.

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be
the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(z, ’foobar’) is equivalent to del x.foobar.

dir([object])
Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attribute for that object. This information is gleaned from
the object’s __dict__, __methods__ and __members__ attributes, if defined. The list is not
necessarily complete; e.g., for classes, attributes defined in base classes are not included, and for
class instances, methods are not included. The resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

[’sys’]

>>> dir(sys)

[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and

2.3. Built-in Functions 21



remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (¢, a % b), where ¢ is usually math.floor(a / b) but may
be 1 less than that. In any case ¢ * b + a % b is very close to a, if a % b is non-zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

eval(expression[, globals[, locals] ])
The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>> x =1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. created by compile()). In
this case pass a code object instead of a string. The code object must have been compiled passing
’eval’ to the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile () function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval () or execfile().

execfile(ﬁle[, globals[, locals] ])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.?

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local namespace. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile ()
is called. The return value is None.

filter (function, list)
Construct a list from those elements of list for which function returns true. If list is a string or a
tuple, the result also has that type; otherwise it is always a list. If function is None, the identity
function is assumed, i.e. all elements of list that are false (zero or empty) are removed.

float(z)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof (z). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed of object. name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that attribute. For example,
getattr(x, ’foobar’) is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of

81t is used relatively rarely so does not warrant being made into a statement.

22 Chapter 2. Built-in Types, Exceptions and Functions



the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, e.g. 1 and 1.0).

hex(z)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, hex(-1) yields
’0xffff£f££f°. When evaluated on a machine with the same word size, this literal is evaluated as
-1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

id (object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be
unique and constant for this object during its lifetime. Two objects whose lifetimes are disjunct
may have the same id() value. (Implementation note: this is the address of the object.)

input( [prompt ] )
Equivalent to eval (raw_input (prompt)). Warning: This function is not safe from user errors!
It expects a valid Python expression as input; if the input is not syntactically valid, a SyntaxError
will be raised. Other exceptions may be raised if there is an error during evaluation. (On the other
hand, sometimes this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

Consider using the raw_input () function for general input from users.

int (;1:[, mdiaz])

Convert a string or number to a plain integer. If the argument is a string, it must contain a pos-
sibly signed decimal number representable as a Python integer, possibly embedded in whitespace;
this behaves identical to string.atoi(x[, mdi:r]). The radiz parameter gives the base for the
conversion and may be any integer in the range [2, 36], or zero. If radiz is zero, the proper radix
is guessed based on the contents of string; the interpretation is the same as for integer literals. If
radiz is specified and z is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating point numbers to integers
is defined by the C semantics; normally the conversion truncates towards zero.’

intern(string)
Enter string in the table of “interned” strings and return the interned string — which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (i.e. never get garbage collected).

isinstance (object, class)
Return true if the object argument is an instance of the class argument, or of a (direct or indirect)
subclass thereof. Also return true if class is a type object and object is an object of that type. If
object is not a class instance or a object of the given type, the function always returns false. If
class is neither a class object nor a type object, a TypeError exception is raised.

issubclass(classl, class2)
Return true if class! is a subclass (direct or indirect) of class2. A class is considered a subclass of

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 23



itself. If either argument is not a class object, a TypeError exception is raised.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

list (sequence)
Return a list whose items are the same and in the same order as sequence’s items. If sequence is
already a list, a copy is made and returned, similar to sequence[:]. For instance, list(’abc’)
returns returns [’a’, ’b’, ’c’] and 1list( (1, 2, 3) ) returns [1, 2, 3].

locals()
Return a dictionary representing the current local symbol table. Warning: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(x[, mdim])
Convert a string or number to a long integer. If the argument is a string, it must contain a
possibly signed number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(z). The radiz argument is interpreted in the same way as for int (), and may
only be given when z is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating
point numbers to integers is defined by the C semantics; see the description of int ().

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map () returns a list consisting
of tuples containing the corresponding items from all lists (i.e. a kind of transpose operation). The
list arguments may be any kind of sequence; the result is always a list.

max(s[, args...])
With a single argument s, return the largest item of a non-empty sequence (e.g., a string, tuple or
list). With more than one argument, return the largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (e.g., a string, tuple
or list). With more than one argument, return the smallest of the arguments.

oct(z)
Convert an integer number (of any size) to an octal string. The result is a valid Python ex-
pression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, oct(-1) yields
2037777777777°. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open (filename [, mode[, bufsize] ])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some UNIX systems means that all writes append to the end of the file,
regardless of the current seek position).

Modes ’r+’, >w+’ and ’a+’ open the file for updating (note that >w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, I0Error is raised.

If mode is omitted, it defaults to >r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,
which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the

24 Chapter 2. Built-in Types, Exceptions and Functions



system default is used.'®

ord(c)
Return the AsciI value of a string of one character or a Unicode character. E.g., ord(’a’) returns
the integer 97, ord (u’
u2020’) returns 8224. This is the inverse of chr() for strings and of unichr() for Unicode
characters.

pow (z, y[, z])
Return z to the power y; if z is present, return z to the power y, modulo z (computed more
efficiently than pow(z, y) % z). The arguments must have numeric types. With mixed operand
types, the rules for binary arithmetic operators apply. The effective operand type is also the type
of the result; if the result is not expressible in this type, the function raises an exception; e.g.,
pow(2, -1) or pow(2, 35000) is not allowed.

range([start,] stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step
greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[o, 3, 6, 9]

>>> range(0, -10, -1)

fo, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

(]

>>> range(1, 0)

1

raw_input ( [prompt ] )
If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input(’--> )

--> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing
and history features.

reduce (function, sequence[, initializer])
Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty.

reload (module)

10Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the
buffer size is not done using a method that calls setvbuf (), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

2.3. Built-in Functions 25



Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (i.e. the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except
for sys, __main__ and __builtin__. In many cases, however, extension modules are not designed
to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload()
for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so
e.g. round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(z, ’foobar’, 123) is
equivalent to z.foobar = 123.

slice([start,] stop [, step])
Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop
and step which merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party extensions. Slice
objects are also generated when extended indexing syntax is used, e.g. for ‘a[start:stop:step]’
or ‘alstart:stop, il]’.

str(object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr (object) is that str(object) does not always attempt to
return a string that is acceptable to eval(); its goal is to return a printable string.

tuple (sequence)
Return a tuple whose items are the same and in the same order as sequence’s items. If sequence

26 Chapter 2. Built-in Types, Exceptions and Functions



is already a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’,
’b?, ’c¢’) and tuple([1, 2, 3]) returns (1, 2, 3).

type (object)
Return the type of an object. The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

unichr(z)
Return the Unicode string of one character whose Unicode code is the integer i, e.g., unichr (97)
returns the string u’a’. This is the inverse of ord() for Unicode strings. The argument must be
in the range [0..65535], inclusive. ValueError is raised otherwise. New in version 2.0.

unicode(stm'ng[, encoding [, ermrs] ])
Decodes string using the codec for encoding. Error handling is done according to errors. The
default behavior is to decode UTF-8 in strict mode, meaning that encoding errors raise ValueError.
See also the codecs module. New in version 2.0.

vars ( [Object ] )
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a __dict__ attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.!!

xrange([start,] stop [, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange () still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine (e.g. MS-DOS) or when all of the range’s elements are never
used (e.g. when the loop is usually terminated with break).

zip(seql, ...)
This function returns a list of tuples, where each tuple contains the i-th element from each of
the argument sequences. At least one sequence is required, otherwise a TypeError is raised. The
returned list is truncated in length to the length of the shortest argument sequence. When there
are multiple argument sequences which are all of the same length, zip() is similar to map() with
an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. New
in version 2.0.

H1n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (e.g. modules) can be. This may change.

2.3. Built-in Functions 27



28



CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here’s an overview:

sys
gc

weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy_reg
shelve

copy
marshal
warnings
imp
code
codeop
pprint
repr
new
site
user

__builtin__

__main___

Access system-specific parameters and functions.

Interface to the cycle-detecting garbage collector.

Support for weak references and weak dictionaries.

Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version of pickle, but not subclassable.

Register pickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of the import statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer

Alternate repr () implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed
using the -c command line option to the interpreter, argv[0] is set to the string >~c’. If no script
name was passed to the Python interpreter, argv has zero length.

29



byteorder
An indicator of the native byte order. This will have the value ’big’ on big-endian (most-
signigicant byte first) platforms, and ’1little’ on little-endian (least-significant byte first) plat-
forms. New in version 2.0.

builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way — modules.keys() only lists the imported
modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value)
If walue is not None, this function prints it to sys.stdout, and saves it in __builtin__._.

sys.displayhook is called on the result of evaluating an expression entered in an interactive
Python session. The display of these values can be customized by assigning another one-argument
function to sys.displayhook.

excepthook (type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three argu-
ments, the exception class, exception instance, and a traceback object. In an interactive session
this happens just before control is returned to the prompt; in a Python program this happens just
before the program exits. The handling of such top-level exceptions can be customized by assigning
another three-argument function to sys.excepthook.

__displayhook__

__excepthook__
These objects contain the original values of displayhook and excepthook at the start of the
program. They are saved so that displayhook and excepthook can be restored in case they
happen to get replaced with broken objects.

exc_info()

This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling an exception, the information
is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing or having executed
an except clause.” For any stack frame, only information about the most recently handled exception
is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, wvalue, traceback). Their meaning is: type
gets the exception type of the exception being handled (a string or class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class
instance if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

Warning: assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions
don’t need access to the traceback, the best solution is to use something like type, value =
sys.exc_info() [:2] to extract only the exception type and value. If you do need the traceback,
make sure to delete it after use (best done with a try ... finally statement) or to call exc_info()
in a function that does not itself handle an exception.

exc_type
exc_value
exc_traceback

30 Chapter 3. Python Runtime Services



Deprecated since release 1.5. Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe
in a multi-threaded program. When no exception is being handled, exc_type is set to None and
the other two are undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are in-
stalled; by default, this is also > /usr/local’. This can be set at build time with the --exec-prefix
argument to the configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file)
are installed in the directory exec_prefix + ’/lib/pythonversion/config’, and shared library
modules are installed in exec_prefix + ’/1ib/pythonversion/lib-dynload’, where version is
equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where
this makes sense.

exit([arg])

Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered “successful
termination” and any nonzero value is considered “abnormal termination” by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1
for all other kind of errors. If another type of object is passed, None is equivalent to passing zero,
and any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Only one function may be installed in this way;
to allow multiple functions which will be called at termination, use the atexit module. Note: the
exit function is not called when the program is killed by a signal, when a Python fatal internal
error is detected, or when os._exit () is called.

getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation. New
in version 2.0.

getrefcount (object)
Return the reference count of the object. The count returned is generally one higher than you
might expect, because it includes the (temporary) reference as an argument to getrefcount ().

getrecursionlimit ()
Return the current value of the recursion limit, the maximum depth of the Python interpreter
stack. This limit prevents infinite recursion from causing an overflow of the C stack and crashing
Python. It can be set by setrecursionlimit().

_getframe( [depth ] )
Return a frame object from the call stack. If optional integer depth is given, return the frame
object that many calls below the top of the stack. If that is deeper than the call stack, ValueError
is raised. The default for depth is zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each ver-
sion, including proper support for non-production releases. For example, to test that the Python
interpreter is at least version 1.5.2, use:

3.1. sys — System-specific parameters and functions 31



if sys.hexversion >= 0x010502FO0:
# use some advanced feature

else:
# use an alternative implementation or warn the user

This is called ‘hexversion’ since it only really looks meaningful when viewed as the result of passing
it to the built-in hex () function. The version_info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last_type
last_value
last_traceback

These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow an
interactive user to import a debugger module and engage in post-mortem debugging without having
to re-execute the command that caused the error. (Typical use is ‘import pdb; pdb.pm()’ to enter
the post-mortem debugger; see the chapter “The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc_type etc.)

maxint

The largest positive integer supported by Python’s regular integer type. This is at least 2*¥*31-1.
The largest negative integer is -maxint-1 — the asymmetry results from the use of 2’s complement
binary arithmetic.

modules

path

This is a dictionary that maps module names to modules which have already been loaded. This
can be manipulated to force reloading of modules and other tricks. Note that removing a module
from this dictionary is not the same as calling reload () on the corresponding module object.

A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, or an installation-dependent default.

The first item of this list, path[0], is the directory containing the script that was used to invoke
the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked
interactively or if the script is read from standard input), path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is
inserted before the entries inserted as a result of PYTHONPATH.

platform

This string contains a platform identifier, e.g. >sunos5’ or ’linux1’. This can be used to append
platform-specific components to path, for instance.

prefix

psl
ps2

A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string ’/usr/local’. This can be set at build time with the
--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + ’/1lib/pythonversion’ while the platform independent header
files (all except ‘config.h’) are stored in prefix + ’/include/pythonversion’, where version is
equal to version[:3].

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are >>>> ? and ’... . If
a non-string object is assigned to either variable, its str() is re-evaluated each time the interpreter
prepares to read a new interactive command; this can be used to implement a dynamic prompt.

32

Chapter 3. Python Runtime Services



setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setdefaultencoding(name)
Set the current default string encoding used by the Unicode implementation. If name does not
match any available encoding, LookupError is raised. This function is only intended to be used by
the site module implementation and, where needed, by sitecustomize. Once used by the site
module, it is removed from the sys module’s namespace. New in version 2.0.

setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in
Python. See the chapter on the Python Profiler. The system’s profile function is called similarly
to the system’s trace function (see settrace()), but it isn’t called for each executed line of code
(only on call and return and when an exception occurs). Also, its return value is not used, so it
can just return None.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite
recursion from causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when
she has a program that requires deep recursion and a platform that supports a higher limit. This
should be done with care, because a too-high limit can lead to a crash.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. See section “How It Works” in the chapter on the Python Debugger.

stdin

stdout

stderr
File objects corresponding to the interpreter’s standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and raw_input().
stdout is used for the output of print and expression statements and for the prompts of input ()
and raw_input (). The interpreter’s own prompts and (almost all of) its error messages go to
stderr. stdout and stderr needn’t be built-in file objects: any object is acceptable as long as it
has a write() method that takes a string argument. (Changing these objects doesn’t affect the
standard I/O streams of processes executed by os.popen(), os.system() or the execx() family
of functions in the os module.)

__stdin___

__stdout__

__stderr__
These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to restore the actual files to known working
file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When
set to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter plus additional information
on the build number and compiler used. It has a value of the form ’wversion (#build_number,
build_date, build_time) [compiler]’. The first three characters are used to identify the version
in the installation directories (where appropriate on each platform). An example:

3.1. sys — System-specific parameters and functions 33



>>> import sys
>>> sys.version
’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version_info
A tuple containing the five components of the version number: major, minor, micro, release-
level, and serial. All values except releaselevel are integers; the release level is >alpha’, ’beta’,
’candidate’, or final’. The version_info value corresponding to the Python version 2.0 is
(2, 0, 0, ’final’, 0). New in version 2.0.

winver
The version number used to form registry keys on Windows platforms. This is stored as string
resource 1000 in the Python DLL. The value is normally the first three characters of version. It
is provided in the sys module for informational purposes; modifying this value has no effect on the
registry keys used by Python. Availability: Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector
(enabled by default). If this was not enabled, an ImportError is raised by attempts to import this
module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the
collector, tune the collection frequency, and set debugging options. It also provides access to unreachable
objects that the collector found but cannot free. Since the collector supplements the reference counting
already used in Python, you can disable the collector if you are sure your program does not create
reference cycles. Automatic collection can be disabled by calling gc.disable(). To debug a leaking
program call gc.set_debug(gc.DEBUG_LEAK).

The gc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable()
Disable automatic garbage collection.

isenabled()
Returns true if automatic collection is enabled.

collect()
Run a full collection. All generations are examined and the number of unreachable objects found
is returned.

set_debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr.
See below for a list of debugging flags which can be combined using bit operations to control
debugging.

get_debug()
Return the debugging flags currently set.

set_threshold(thresholdO[, threshold1 [, threshold?] ])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables
collection.

The GC classifies objects into three generations depending on how many collection sweeps they
have survived. New objects are placed in the youngest generation (generation 0). If an object
survives a collection it is moved into the next older generation. Since generation 2 is the oldest
generation, objects in that generation remain there after a collection. In order to decide when
to run, the collector keeps track of the number object allocations and deallocations since the last
collection. When the number of allocations minus the number of deallocations exceeds threshold0,
collection starts. Initially only generation 0 is examined. If generation 0 has been examined more

34 Chapter 3. Python Runtime Services



than threshold1 times since generation 1 has been examined, then generation 1 is examined as well.
Similarly, threshold2 controls the number of collections of generation 1 before collecting generation
2.

get_threshold()
Return the current collection thresholds as a tuple of (threshold0, thresholdl, threshold2).

The following variable is provided for read-only access:

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable
objects). Objects that have __del__ () methods and create part of a reference cycle cause the
entire reference cycle to be uncollectable. If DEBUG_SAVEALL is set, then all unreachable objects
will be added to this list rather than freed.

The following constants are provided for use with set_debug():

DEBUG_STATS
Print statistics during collection. This information can be useful when tuning the collection fre-
quency.

DEBUG_COLLECTABLE
Print information on collectable objects found.

DEBUG_UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be
freed by the collector). These objects will be added to the garbage list.

DEBUG_INSTANCES
When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about instance ob-
jects found.

DEBUG_OBJECTS
When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about objects other
than instance objects found.

DEBUG_SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This
can be useful for debugging a leaking program.

DEBUG_LEAK
The debugging flags necessary for the collector to print information about a leak-
ing program (equal to DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_INSTANCES |
DEBUG_OBJECTS | DEBUGASAVEALL)

3.3 weakref — Weak references

New in version 2.1.
The weakref module allows the Python programmer to create weak references to objects.
XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions
written in Python (but not in C), and methods (both bound and unbound). Extension types can easily
be made to support weak references; see section 3.3.3, “Weak References in Extension Types,” for more
information.

ref (object [, callback ] )
Return a weak reference to object. If callback is provided, it will be called when the object is about
to be finalized; the weak reference object will be passed as the only parameter to the callback; the
referent will no longer be available. The original object can be retrieved by calling the reference
object, if the referent is still alive.

It is allowable for many weak references to be constructed for the same object. Callbacks registered

3.3. weakref — Weak references 35



for each weak reference will be called from the most recently registered callback to the oldest
registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propa-
gated; they are handled in exactly the same way as exceptions raised from an object’s __del__ ()
method.

Weak references are hashable if the object is hashable. They will maintain their hash value even
after the object was deleted. If hash() is called the first time only after the object was deleted, the
call will raise TypeError.

Weak references support test for equality, but not ordering. If the object is still alive, to references
are equal if the objects are equal (regardless of the callback). If the object has been deleted, they
are equal iff they are identical.

proxy(object[, callback‘])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most
contexts instead of requiring the explicit dereferencing used with weak reference objects. The
returned object will have a type of either ProxyType or CallableProxyType, depending on whether
object is callable. Proxy objects are not hashable regardless of the referent; this avoids a number of
problems related to their fundamentally mutable nature, and prevent their use as dictionary keys.
callback is the same as the parameter of the same name to the ref () function.

getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class WeakKeyDictionary( [dict ] )
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there
is no longer a strong reference to the key. This can be used to associate additional data with an
object owned by other parts of an application without adding attributes to those objects. This can
be especially useful with objects that override attribute accesses.

class WeakValueDictionary( [dict] )
Mapping class that references values weakly. Entries in the dictionary will be discarded when no
strong reference to the value exists anymore.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object
is a proxy without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected.

See Also:

PEP 0205, “Weak References’
The proposal and rationale for this feature, including links to earlier implementations and infor-
mation about similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still
exists, by calling it:

36 Chapter 3. Python Runtime Services



>>> import weakref
>>> class Object:
pass

>>> o = Object()

>>> r = weakref.ref (o)
>>> 02 = r()

>>> o is 02

If the referent no longer exists, calling the reference object returns None:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expression ref .get() is not
None. Normally, application code that needs to use a reference object should follow this pattern:

o = ref.get()
if o is Nome:
# referent has been garbage collected
print "Object has been allocated; can’t frobnicate."
else:
print "Object is still live!"
o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can
cause a weak reference to become invalidated before the get () method is called; the idiom shown above
is safe in threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen
before. The IDs of the objects can then be used in other data structures without forcing the objects to
remain alive, but the objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember (obj):
_id2obj_dict[1d(obj)] = obj

def id2obj(id):
return _id2obj_dict.get(id)

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism
without incurring the overhead on those objects which do not benefit by weak referencing (such as
numbers).

For an object to be weakly referencable, the extension must include a PyObject * field in the instance

3.3. weakref — Weak references 37



structure for the use of the weak reference mechanism; it must be initialized to NULL by the object’s
constructor. It must also set the tp_weaklistoffset field of the corresponding type object to the offset
of the field. For example, the instance type is defined with the following structure:

typedef struct {
PyObject_HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"instance",

/* Lots of stuff omitted for brevity... */
offsetof (PyInstanceObject, in_weakreflist) /* tp_weaklistoffset */

};

The only further addition is that the destructor needs to call the weak reference manager to clear any
weak references. This should be done before any other parts of the destruction have occurred:

static void
instance_dealloc(PyInstanceObject *inst)

{
/* Allocate tempories if needed, but do not begin
destruction just yet.
*/
PyObject_ClearWeakRefs ((PyObject *) inst);
/* Proceed with object destuction normally. */
}

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard.
On any real computer, some floating point operations produce results that cannot be expressed as a
normal floating point value. For example, try

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) ”Inf” is a special,
non-numeric value in IEEE-754 that stands for ”infinity”, and "nan” means "not a number.” Note that,
other than the non-numeric results, nothing special happened when you asked Python to carry out those

38 Chapter 3. Python Runtime Services



calculations. That is in fact the default behaviour prescribed in the IEEE-754 standard, and if it works
for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where
the faulty operation was attempted. The fpectl module is for use in that situation. It provides control
over floating point units from several hardware manufacturers, allowing the user to turn on the generation
of SIGFPE whenever any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation
occurs. In tandem with a pair of wrapper macros that are inserted into the C code comprising your
python system, SIGFPE is trapped and converted into the Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

turnon_sigfpe()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

turnoff_sigfpe()
Reset default handling of floating point exceptions.

exception FloatingPointError
After turnon_sigfpe () has been executed, a floating point operation that raises one of the IEEE-
754 exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard
Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation of the fpectl module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by O PASS
FloatingPointError: Division by zero
[ more output from test elided ]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in 7

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a
per-architecture basis. You may have to modify fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted into your code in an appropriate fash-
ion. Python itself has been modified to support the fpectl module, but many other codes of interest to
numerical analysts have not.

The fpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module op-
erates. The include file ‘Include/pyfpe.h’ discusses the implementation of this module at some length.
‘Modules/fpetestmodule.c’ gives several examples of use. Many additional examples can be found in
‘Objects/floatobject.c’.

3.4. fpectl — Floating point exception control 39



3.5 atexit — Exit handlers

New in version 2.0.

The atexit module defines a single function to register cleanup functions. Functions thus registered are
automatically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal,
when a Python fatal internal error is detected, or when os._exit () is called.

This is an alternate interface to the functionality provided by the sys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that sets sys.exitfunc.
In particular, other core Python modules are free to use atexit without the programmer’s knowledge.
Authors who use sys.exitfunc should convert their code to use atexit instead. The simplest way to
convert code that sets sys.exitfunc is to import atexit and register the function that had been bound
to sys.exitfunc.

register (func[, *args[, **kargs] ])
Register func as a function to be executed at termination. Any optional arguments that are to be
passed to func must be passed as arguments to register().

At normal program termination (for instance, if sys.exit() is called or the main module’s exe-
cution completes), all functions registered are called in last in, first out order. The assumption is
that lower level modules will normally be imported before higher level modules and thus must be
cleaned up later.

See Also:

Module readline (section 7.16):
Useful example of atexit to read and write readline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it
is imported and save the counter’s updated value automatically when the program terminates without
relying on the application making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.6 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but
not for the types defined by various extension modules. It is safe to use ‘from types import *’ — the
module does not export any names besides the ones listed here. New names exported by future versions
of this module will all end in ‘Type’.

40 Chapter 3. Python Runtime Services



Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()).

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1.0).

ComplexType
The type of complex numbers (e.g. 1.0j).

StringType
The type of character strings (e.g. ’Spam’).

UnicodeType
The type of Unicode character strings (e.g. u’Spam’).

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g. [0, 1, 2, 3]).

DictType

The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: 0}).

DictionaryType
An alternate name for DictType.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

CodeType
The type for code objects such as returned by compile().

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

3.6. types — Names for all built-in types

41



BuiltinFunctionType
The type of built-in functions like len() or sys.exit ().

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout.

XRangeType
The type of range objects returned by xrange ().

SliceType
The type of objects returned by slice().

EllipsisType
The type of Ellipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer () function.

3.7 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class
for your own dictionary-like classes, which can inherit from them and override existing methods or add
new ones. In this way one can add new behaviors to dictionaries.

The UserDict module defines the UserDict class:

class UserDict ( [im'tialdata ] )
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is
accessible via the data attribute of UserDict instances. If initialdata is provided, data is initialized
with its contents; note that a reference to initialdata will not be kept, allowing it be used used for
other purposes.

In addition to supporting the methods and operations of mappings (see section 2.1.6), UserDict instances
provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

3.8 UserList — Class wrapper for list objects

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your
own list-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to lists.

The UserList module defines the UserList class:

class UserList ( [list ])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via the data attribute of UserList instances. The instance’s contents are initially set to a copy
of list, defaulting to the empty list [1. list can be either a regular Python list, or an instance of
UserList (or a subclass).

42 Chapter 3. Python Runtime Services



In addition to supporting the methods and operations of mutable sequences (see section 2.1.5), UserList
instances provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be
called with either no arguments or one argument. List operations which return a new sequence attempt
to create an instance of the actual implementation class. To do so, it assumes that the constructor can
be called with a single parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported
by this class will need to be overridden; please consult the sources for information about the methods
which need to be provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with
no parameters, and offer a mutable data attribute. Earlier versions of Python did not attempt to create
instances of the derived class.

3.9 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your
own string-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects;
this is especially the case for MutableString.

The UserString module defines the following classes:

class UserString( [sequence ] )
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular
string or Unicode string object, which is accessible via the data attribute of UserString instances.
The instance’s contents are initially set to a copy of sequence. sequence can be either a regular
Python string or Unicode string, an instance of UserString (or a subclass) or an arbitrary sequence
which can be converted into a string using the built-in str() function.

class MutableString( [sequence ] )
This class is derived from the UserString above and redefines strings to be mutable. Mutable
strings can’t be used as dictionary keys, because dictionaries require immutable objects as keys.
The main intention of this class is to serve as an educational example for inheritance and necessity
to remove (override) the __hash__ () method in order to trap attempts to use a mutable object
as dictionary key, which would be otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.1.5,
“String Methods”), UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of the UserString class.

3.10 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic oper-
ators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function
names are those used for special class methods; variants without leading and trailing ‘__’ are also
provided for convenience.

The operator module defines the following functions:

add(a, b)
__add__(a, b)

3.9. UserString — Class wrapper for string objects 43



Return a + b, for a and b numbers.

sub(a, b)
__sub__C(a, b)
Return a - b.

mul (a, b)
__mul__(a, b)
Return a * b, for a and b numbers.

div(a, b)
__div__C(a, b)
Return a / b.

mod(a, b)
__mod__C(a, b)
Return a % b.

neg(o)
__neg__ (o)

Return o negated.
pos (o)
—_pos__(o0)

Return o positive.
abs (o)
__abs__ (o)

Return the absolute value of o.
inv(o)
invert (o)
__inv__(o)

__invert__(o)
Return the bitwise inverse of the number o. The names invert() and __invert__() were added
in Python 2.0.

1shift(a, b)
__1shift__(a, b)
Return « shifted left by b.

rshift(a, b)
__rshift__(a, b)
Return a shifted right by b.

and_ (a, b)
__and__(a, b)
Return the bitwise and of a and b.

or_(a, b)
__or__(a, b)
Return the bitwise or of a and b.

xor (a, b)
__xor__C(a, b)
Return the bitwise exclusive or of a and b.

not_ (o)

__not__(o)
Return the outcome of not o. (Note that there is no __not__() method for object instances;
only the interpreter core defines this operation.)

truth(o)
Return 1 if o is true, and 0 otherwise.

concat (a, b)

44 Chapter 3. Python Runtime Services



__concat__(a, b)
Return a + b for a and b sequences.

repeat(a, b)
__repeat__(a, b)
Return a * b where a is a sequence and b is an integer.

contains(a, b)

__contains__ (a, b)
Return the outcome of the test b in a. Note the reversed operands. The name __contains__ ()
was added in Python 2.0.

sequenceIncludes(...)
Deprecated since release 2.0. Use contains () instead.

Alias for contains().

countOf (a, b)
Return the number of occurrences of b in a.

index0f (a, b)
Return the index of the first of occurrence of b in a.

getitem(a, )
__getitem__(a, b)
Return the value of a at index b.

setitem(a, b, c)
__setitem__(a, b, ¢)
Set the value of a at index b to c.

delitem(a, b)
__delitem__(a, b)
Remove the value of a at index b.

getslice(aq, b, ¢)
__getslice__(a, b, ¢)
Return the slice of a from index b to index c-1.

setslice(a, b, ¢, v)
__setslice__(a, b, ¢, v)
Set the slice of a from index b to index c¢-1 to the sequence v.

delslice(a, b, ¢)
__delslice__(a, b, ¢)
Delete the slice of a from index b to index c¢-1.

The operator also defines a few predicates to test the type of objects. Note: Be careful not to
misinterpret the results of these functions; only isCallable () has any measure of reliability with instance
objects. For example:

>>> class C:
pass

>>> import operator

>>> o0 = CO)

>>> operator.isMappingType (o)
1

isCallable(o)
Deprecated since release 2.0. Use the callable () built-in function instead.

Returns true if the object o can be called like a function, otherwise it returns false. True is returned
for functions, bound and unbound methods, class objects, and instance objects which support the
__call__ () method.

3.10. operator — Standard operators as functions. 45



isMappingType (o)
Returns true if the object o supports the mapping interface. This is true for dictionaries and all
instance objects. Warning: There is no reliable way to test if an instance supports the complete
mapping protocol since the interface itself is ill-defined. This makes this test less useful than it
otherwise might be.

isNumberType (0)
Returns true if the object o represents a number. This is true for all numeric types implemented in
C, and for all instance objects. Warning: There is no reliable way to test if an instance supports
the complete numeric interface since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.

isSequenceType(0)
Returns true if the object o supports the sequence protocol. This returns true for all objects which
define sequence methods in C, and for all instance objects. Warning: There is no reliable way to
test if an instance supports the complete sequence interface since the interface itself is ill-defined.
This makes this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals from 0 to 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the

functions in the operator module.

Operation Syntax Function

Addition a + b add(a, b)
Concatenation seql + seq? concat (seql, seq2)
Containment Test 0 in seq contains(seq, o)
Division a /b div(a, b)

Bitwise And a &b and_(a, b)

Bitwise Exclusive Or a " b xor(a, b)

Bitwise Inversion " a invert (a)

Bitwise Or a |l b or_(a, b)

Indexed Assignment olkl = v setitem(o, k, v)
Indexed Deletion del ol[k] delitem(o, k)
Indexing ol[k] getitem(o, k)

Left Shift a << b lshift(a, b)
Modulo a%h b mod(a, b)
Multiplication a *x b mul(a, b)

Negation (Arithmetic) -a neg(a)

Negation (Logical) not a not_(a)

Right Shift a > b rshift(a, b)
Sequence Repitition seq * 1 repeat(seq, %)
Slice Assignment seqli:g] = values | setslice(seq, 4, j, values)
Slice Deletion del seqli:j] delslice(seq, i, j)
Slicing seqli:j] getslice(seq, i, j)
String Formatting sh o mod(s, o)
Subtraction a-b sub(a, b)

Truth Test 0 truth(o)

46

Chapter 3. Python Runtime Services



3.11 inspect — Inspect live objects

New in version 2.1.

The inspect module provides several useful functions to help get information about live objects such as
modules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can
help you examine the contents of a class, retrieve the source code of a method, extract and format the
argument list for a function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code,
inspecting classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The nine
functions whose names begin with “is” are mainly provided as convenient choices for the second argument
to getmembers(). They also help you determine when you can expect to find the following special
attributes:

3.11. inspect — Inspect live objects 47



Type Attribute Description
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object in which this method belongs
im_func function object containing implementation of method
im_self instance to which this method is bound, or None
function | __doc__ documentation string
__name__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as __doc__)
func_globals global namespace in which this function was defined
func_name (same as __name__)
traceback | tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback | traceback if raised in this frame, or None
f_exc_type exception type if raised in this frame, or None
f_exc_value exception value if raised in this frame, or None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, or None
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound, or None

getmembers (object [, predicate ] )

Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional
predicate argument is supplied, only members for which the predicate returns a true value are
included.

getmoduleinfo (path)

Return a tuple of values that describe how Python will interpret the file identified by path if it is
a module, or None if it would not be identified as a module. The return tuple is (name, suffiz,
mode, mtype), where name is the name of the module without the name of any enclosing package,
suffiz is the trailing part of the file name (which may not be a dot-delimited extension), mode is

48

Chapter 3. Python Runtime Services



the open() mode that would be used (’r’ or ’rb’), and mtype is an integer giving the type of
the module. mtype will have a value which can be compared to the constants defined in the imp
module; see the documentation for that module for more information on module types.

getmodulename (path)
Return the name of the module named by the file path, without including the names of enclosing
packages. This uses the same algortihm as the interpreter uses when searching for modules. If the
name cannot be matched according to the interpreter’s rules, None is returned.

ismodule (object)
Return true if the object is a module.

isclass(object)
Return true if the object is a class.

ismethod (object)
Return true if the object is a method.

isfunction(object)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback(object)
Return true if the object is a traceback.

isframe (object)
Return true if the object is a frame.

iscode (object)
Return true if the object is a code.

isbuiltin(object)
Return true if the object is a built-in function.

isroutine (object)
Return true if the object is a user-defined or built-in function or method.

3.11.2 Retrieving source code

getdoc (object)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings
that are indented to line up with blocks of code, any whitespace than can be uniformly removed
from the second line onwards is removed.

getcomments (object)
Return in a single string any lines of comments immediately preceding the object’s source code (for
a class, function, or method), or at the top of the Python source file (if the object is a module).

getfile (object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

getmodule (object)
Try to guess which module an object was defined in.

getsourcefile (object)
Return the name of the Python source file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

getsourcelines (object)
Return a list of source lines and starting line number for an object. The argument may be a
module, class, method, function, traceback, frame, or code object. The source code is returned as
a list of the lines corresponding to the object and the line number indicates where in the original
source file the first line of code was found. An IOError is raised if the source code cannot be
retrieved.

getsource (object)

3.11. inspect — Inspect live objects 49



Return the text of the source code for an object. The argument may be a module, class, method,
function, traceback, frame, or code object. The source code is returned as a single string. An
I0Error is raised if the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree(classes [, unique ] )
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it
contains classes derived from the class whose entry immediately precedes the list. Each entry is a
2-tuple containing a class and a tuple of its base classes. If the unique argument is true, exactly
one entry appears in the returned structure for each class in the given list. Otherwise, classes using
multiple inheritance and their descendants will appear multiple times.

getargspec (func)
Get the names and default values of a function’s arguments. A tuple of four things is returned:
(args, warargs, varkw, defaults). args is a list of the argument names (it may contain nested
lists). warargs and varkw are the names of the * and ** arguments or None. defaults is a tuple of
default argument values; if this tuple has n elements, they correspond to the last n elements listed
in args.

getargvalues (frame)
Get information about arguments passed into a particular frame. A tuple of four things is returned:
(args, warargs, varkw, locals). args is a list of the argument names (it may contain nested lists).
varargs and varkw are the names of the * and ** arguments or None. locals is the locals dictionary
of the given frame.

formatargspec(args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultformat])
Format a pretty argument spec from the four values returned by getargspec(). The other four
arguments are the corresponding optional formatting functions that are called to turn names and
values into strings.

formatargvalues (args [, varargs, varkw, locals, argformat, varargsformat, varkwformat, valueformat])
Format a pretty argument spec from the four values returned by getargvalues(). The other four
arguments are the corresponding optional formatting functions that are called to turn names and
values into strings.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame
object, the filename, the line number of the current line, the function name, a list of lines of context
from the source code, and the index of the current line within that list. The optional context argument
specifies the number of lines of context to return, which are centered around the current line.

getouterframes (frame [, context ] )
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes (traceback [, context ] )
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe ()
Return the frame object for the caller’s stack frame.

stack( [contea:t ] )
Return a list of frame records for the stack above the caller’s frame.

trace( [contemt ] )
Return a list of frame records for the stack below the current exception.

3.12 traceback — Print or retrieve a stack traceback

50 Chapter 3. Python Runtime Services



This module provides a standard interface to extract, format and print stack traces of Python programs.
It exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful
when you want to print stack traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the wvariables
sys.exc_traceback and sys.last_traceback and returned as the third item from sys.exc_info().

The module defines the following functions:

print_tb(tmceback[, limit[, ﬁle] ])
Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are
printed. If file is omitted or None, the output goes to sys.stderr; otherwise it should be an open
file or file-like object to receive the output.

print_exception(type, value, tmceback[, limit[, ﬁle] ])
Print exception information and up to limit stack trace entries from traceback to file. This differs
from print_tb() in the following ways: (1) if traceback is not None, it prints a header ‘Traceback
(most recent call last):’; (2) it prints the exception type and value after the stack trace; (3)
if type is SyntaxError and value has the appropriate format, it prints the line where the syntax
error occurred with a caret indicating the approximate position of the error.

print_exc( [limit [, ﬁle] ])
This is a  shorthand for  ‘print_exception(sys.exc_type, sys.exc_value,
sys.exc_traceback, limit, file)’. (In fact, it uses sys.exc_info() to retrieve the same
information in a thread-safe way.)

print_last( [lz’mit[, ﬁle] ])
This is a  shorthand for ‘print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit, file)’.

printfstack([f[, limit [, ﬁle] ] ])
This function prints a stack trace from its invocation point. The optional f argument can be used
to specify an alternate stack frame to start. The optional limit and file arguments have the same
meaning as for print_exception().

extract_tb(traceback [, limat ] )
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object
traceback. 1t is useful for alternate formatting of stack traces. If limit is omitted or None, all entries
are extracted. A “pre-processed” stack trace entry is a quadruple (filename, line number, function
name, text) representing the information that is usually printed for a stack trace. The text is a
string with leading and trailing whitespace stripped; if the source is not available it is None.

extract_stack( [f [, limit] ])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

format_list (list)
Given a list of tuples as returned by extract_tb() or extract_stack(), return a list of strings
ready for printing. Each string in the resulting list corresponds to the item with the same index
in the argument list. Each string ends in a newline; the strings may contain internal newlines as
well, for those items whose source text line is not None.

format_exception_only (type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as
given by sys.last_type and sys.last_value. The return value is a list of strings, each ending
in a newline. Normally, the list contains a single string; however, for SyntaxError exceptions,
it contains several lines that (when printed) display detailed information about where the syntax
error occurred. The message indicating which exception occurred is the always last string in the
list.

format_exception(type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as
the corresponding arguments to print_exception(). The return value is a list of strings, each

3.12. traceback — Print or retrieve a stack traceback 51



ending in a newline and some containing internal newlines. When these lines are concatenated and
printed, exactly the same text is printed as does print_exception().

format_tb(tb [, limat ] )
A shorthand for format_list(extract_tb(tb, limit)).

format_stack( [f [, limit] ])
A shorthand for format_list(extract_stack(f, limit)).

tb_lineno (th)
This function returns the current line number set in the traceback object. This is normally the
same as the tb.tb_lineno field of the object, but when optimization is used (the -O flag) this field
is not updated correctly; this function calculates the correct value.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard
Python interactive interpreter loop. For a more complete implementation of the interpreter loop, refer
to the code module.

import sys, traceback

def run_user_code(envdir) :

source = raw_input(">>> ")

try:
exec source in envdir

except:
print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

envdir = {}
while 1:
run_user_code (envdir)

3.13 1linecache — Random access to text lines

The 1linecache module allows one to get any line from any file, while attempting to optimize internally,
using a cache, the common case where many lines are read from a single file. This is used by the
traceback module to retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

getline (filename, lineno)
Get line lineno from file named filename. This function will never throw an exception — it will
return ’”’ on errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path,
sys.path.

clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using
getline().

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and
you require the updated version.

52 Chapter 3. Python Runtime Services



Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, mar-
shalling or flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream
of bytes (and back: “unpickling”). This is a more primitive notion than persistence — although pickle
reads and writes file objects, it does not handle the issue of naming persistent objects, nor the (even
more complicated) area of concurrent access to persistent objects. The pickle module can transform a
complex object into a byte stream and it can transform the byte stream into an object with the same
internal structure. The most obvious thing to do with these byte streams is to write them onto a file, but
it is also conceivable to send them across a network or store them in a database. The module shelve
provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: The pickle module is rather slow. A reimplementation of the same algorithm in C, which is
up to 1000 times faster, is available as the cPickle module. This has the same interface except that
Pickler and Unpickler are factory functions, not classes (so they cannot be used as base classes for
inheritance).

Although the pickle module can use the built-in module marshal internally, it differs from marshal in
the way it handles certain kinds of data:

e Recursive objects (objects containing references to themselves): pickle keeps track of the objects
it has already serialized, so later references to the same object won’t be serialized again. (The
marshal module breaks for this.)

e Object sharing (references to the same object in different places): This is similar to self-referencing
objects; pickle stores the object once, and ensures that all other references point to the master
copy. Shared objects remain shared, which can be very important for mutable objects.

e User-defined classes and their instances: marshal does not support these at all, but pickle can
save and restore class instances transparently. The class definition must be importable and live in
the same module as when the object was stored.

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as XDR, (which can’t represent pointer sharing); however it means
that non-Python programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable ASCII representation. This is slightly more volu-
minous than a binary representation. The big advantage of using printable Ascit (and of some other
characteristics of pickle’s representation) is that for debugging or recovery purposes it is possible for a
human to read the pickled file with a standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for
the bin argument to the Pickler constructor or the dump () and dumps() functions. The binary format
is not the default because of backwards compatibility with the Python 1.4 pickle module. In a future
version, the default may change to binary.

The pickle module doesn’t handle code objects, which the marshal module does. I suppose pickle
could, and maybe it should, but there’s probably no great need for it right now (as long as marshal
continues to be used for reading and writing code objects), and at least this avoids the possibility of
smuggling Trojan horses into a program.

For the benefit of persistence modules written using pickle, it supports the notion of a reference to an
object outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary

3.14. pickle — Python object serialization 53



string of printable ASCII characters. The resolution of such names is not defined by the pickle module —
the persistent object module will have to implement a method persistent_load(). To write references
to persistent objects, the persistent module must define a method persistent_id () which returns either
None or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables
must be picklable.

When a pickled class instance is unpickled, its __init__ () method is normally not invoked. Note: This
is a deviation from previous versions of this module; the change was introduced in Python 1.5b2. The
reason for the change is that in many cases it is desirable to have a constructor that requires arguments;
it is a (minor) nuisance to have to provide a __getinitargs__() method.

If it is desirable that the __init__ () method be called on unpickling, a class can define a method
__getinitargs__ (), which should return a tuple containing the arguments to be passed to the class
constructor (—_init__()). This method is called at pickle time; the tuple it returns is incorporated in
the pickle for the instance.

Classes can further influence how their instances are pickled — if the class defines the method
__getstate__(), it is called and the return state is pickled as the contents for the instance, and if
the class defines the method __setstate__(), it is called with the unpickled state. (Note that these
methods can also be used to implement copying class instances.) If there is no __getstate__ () method,
the instance’s __dict__ is pickled. If there is no __setstate__() method, the pickled object must
be a dictionary and its items are assigned to the new instance’s dictionary. (If a class defines both
__getstate__() and __setstate__(), the state object needn’t be a dictionary — these methods can
do what they want.) This protocol is also used by the shallow and deep copying operations defined in
the copy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them.
Only the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add
methods and still load objects that were created with an earlier version of the class. If you plan to have
long-lived objects that will see many versions of a class, it may be worthwhile to put a version number
in the objects so that suitable conversions can be made by the class’s __setstate__() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-
imported by the unpickling process. Therefore, the restriction that the class must be defined at the top
level in a module applies to pickled classes as well.

The interface can be summarized as follows.
To pickle an object x onto a file £, open for writing:

p = pickle.Pickler(f)
p.dump (x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object x from a file £, open for reading;:

u
X

pickle.Unpickler(f)
u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the method f.write() with a string argument. The Unpickler calls the

54 Chapter 3. Python Runtime Services



methods f.read() (with an integer argument) and f.readline() (without argument), both returning
a string. It is explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for the Pickler class has an optional second argument, bin. If this is present and true,
the binary pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text
pickle format is used. The Unpickler class does not have an argument to distinguish between binary
and text pickle formats; it accepts either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e normal and Unicode strings

e tuples, lists and dictionaries containing only picklable objects

e functions defined at the top level of a module (by name reference, not storage of the implementation)
e built-in functions

e classes that are defined at the top level in a module

e instances of such classes whose __dict__ or __setstate__() is picklable

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an
unspecified number of bytes may have been written to the file.

It is possible to make multiple calls to the dump () method of the same Pickler instance. These must
then be matched to the same number of calls to the load() method of the corresponding Unpickler
instance. If the same object is pickled by multiple dump () calls, the 1load () will all yield references to the
same object. Warning: this is intended for pickling multiple objects without intervening modifications
to the objects or their parts. If you modify an object and then pickle it again using the same Pickler
instance, the object is not pickled again — a reference to it is pickled and the Unpickler will return the
old value, not the modified one. (There are two problems here: (a) detecting changes, and (b) marshalling
a minimal set of changes. I have no answers. Garbage Collection may also become a problem here.)

Apart from the Pickler and Unpickler classes, the module defines the following functions, and an
exception:

dump (object, ﬁle[, bm])
Write a pickled representation of object to the open file object file. This is equivalent to
‘Pickler(file, bin) .dump(object)’. If the optional bin argument is present and nonzero, the bi-
nary pickle format is used; if it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file object file. This is equivalent to ‘Unpickler (file) .1oad()’.

dumps(object[, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the
optional bin argument is present and nonzero, the binary pickle format is used; if it is zero or
absent, the (less efficient) text pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled
object’s representation are ignored.

exception PicklingError
This exception is raised when an unpicklable object is passed to Pickler.dump().

See Also:

Module copy_reg (section 3.16):
Pickle interface constructor registration for extension types.

3.14. pickle — Python object serialization 55



Module shelve (section 3.17):
Indexed databases of objects; uses pickle.

Module copy (section 3.18):
Shallow and deep object copying.

Module marshal (section 3.19):
High-performance serialization of built-in types.

3.14.1 Example

Here’s a simple example of how to modify pickling behavior for a class. The TextReader class opens a
text file, and returns the line number and line contents each time its readline () method is called. If a
TextReader instance is pickled, all attributes except the file object member are saved. When the instance
is unpickled, the file is reopened, and reading resumes from the last location. The __setstate__() and
__getstate__() methods are used to implement this behavior.

# illustrate __setstate__ and __getstate__ methods
# used in pickling.

class TextReader:
"Print and number lines in a text file."
def __init__(self,file):
self.file = file
self.fh = open(file,’r’)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
return "%d: %s" % (self.lineno,linel[:-1])

# return data representation for pickled object

def __getstate__(self):
odict = self.__dict__ # get attribute dictionary
del odict[’fh’] # remove filehandle entry
return odict

# restore object state from data representation generated
# by __getstate__
def __setstate__(self,dict):
fh = open(dict[’file’]) # reopen file
count = dict[’lineno’] read from file...
while count: # until line count is restored
fh.readline()
count = count - 1
dict[’fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

**

A sample usage might be something like this:

56 Chapter 3. Python Runtime Services



>>> import TextReader

>>> obj = TextReader.TextReader ("TextReader.py")

>>> obj.readline()

’1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)
. obj.readline()

’7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open(’save.p’,’w’))

(start another Python session)

>>> import pickle

>>> reader = pickle.load(open(’save.p’))

>>> reader.readline()

’8: "Print and number lines in a text file.™"’

3.15 cPickle — Alternate implementation of pickle

The cPickle module provides a similar interface and identical functionality as the pickle module, but
can be up to 1000 times faster since it is implemented in C. The only other important difference to note
is that Pickler() and Unpickler () are functions and not classes, and so cannot be subclassed. This
should not be an issue in most cases.

The format of the pickle data is identical to that produced using the pickle module, so it is possible to
use pickle and cPickle interchangeably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some
freedoms in the encodings of certain objects, it’s possible that the two modules produce different pickled
data for the same input objects; however they will always be able to read each other’s pickles back in.)

3.16 copy_reg — Register pickle support functions

The copy_reg module provides support for the pickle and cPickle modules. The copy module is likely
to use this in the future as well. It provides configuration information about object constructors which
are not classes. Such constructors may be factory functions or class instances.

constructor (object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a
constructor), raises TypeError.

pickle (type, function[, constructor])
Declares that function should be used as a “reduction” function for objects of type type; type should
not a class object. function should return either a string or a tuple. The optional constructor
parameter, if provided, is a callable object which can be used to reconstruct the object when called
with the tuple of arguments returned by function at pickling time. TypeError will be raised if
object is a class or constructor is not callable.

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values
(not the keys!) in a shelf can be essentially arbitrary Python objects — anything that the pickle module
can handle. This includes most class instances, recursive data types, and objects containing lots of shared
sub-objects. The keys are ordinary strings.

3.15. cPickle — Alternate implementation of pickle 57



To summarize the interface (key is a string, data is an arbitrary object):

import shelve
d = shelve.open(filename) # open, with (g)dbm filename -- no suffix
d[key] = data # store data at key (overwrites old data if
# using an existing key)
data = d[key] # retrieve data at key (raise KeyError if no
# such key)

#

delete data stored at key (raises KeyError
# if no such key)

del dlkey]

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)
d.close() # close it

Restrictions:

e The choice of which database package will be used (e.g. dbm or gdbm) depends on which interface
is available. Therefore it is not safe to open the database directly using dbm. The database is
also (unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled
representation of) the objects stored in the database should be fairly small, and in rare cases key
collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to
flush changes to disk.

e The shelve module does not support concurrent read/write access to shelved objects. (Multiple
simultaneous read accesses are safe.) When a program has a shelf open for writing, no other
program should have it open for reading or writing. UNIX file locking can be used to solve this,
but this differs across UNIX versions and requires knowledge about the database implementation
used.

See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module dbhash (section 7.10):
BSD db database interface.

Module dbm (section 8.6):
Standard UNIX database interface.

Module dumbdbm (section 7.9):
Portable implementation of the dbm interface.

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

Module pickle (section 3.14):
Object serialization used by shelve.

Module cPickle (section 3.15):
High-performance version of pickle.

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

58 Chapter 3. Python Runtime Services



Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y

For module specific errors, copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that
contain other objects, like lists or class instances):

e A shallow copy constructs a new compound object and then (to the extent possible) inserts refer-
ences into it to the objects found in the original.

e A deep copy constructs a new compound object and then, recursively, inserts copies into it of the
objects found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

e Because deep copy copies everything it may copy too much, e.g., administrative data structures
that should be shared even between copies.

The deepcopy () function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file,
socket, window, array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define
methods called __getinitargs__(), __getstate__() and __setstate__(). See the description
of module pickle for information on these methods. The copy module does not use the copy_reg
registration module.

In order for a class to define its own copy implementation, it can define special methods __copy__()
and __deepcopy__(). The former is called to implement the shallow copy operation; no additional
arguments are passed. The latter is called to implement the deep copy operation; it is passed one
argument, the memo dictionary. If the __deepcopy__() implementation needs to make a deep copy
of a component, it should call the deepcopy () function with the component as first argument and the
memo dictionary as second argument.

See Also:

Module pickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format
is specific to Python, but independent of machine architecture issues (e.g., you can write a Python

3.19. marshal — Alternate Python object serialization 59



value to a file on a PC, transport the file to a Sun, and read it back there). Details of the format are
undocumented on purpose; it may change between Python versions (although it rarely does).!

This is not a general “persistence” module. For general persistence and transfer of Python objects
through RPC calls, see the modules pickle and shelve. The marshal module exists mainly to support
reading and writing the “pseudo-compiled” code for Python modules of ‘.pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from
a particular invocation of Python can be written and read by this module. The following types are
supported: None, integers, long integers, floating point numbers, strings, Unicode objects, tuples, lists,
dictionaries, and code objects, where it should be understood that tuples, lists and dictionaries are only
supported as long as the values contained therein are themselves supported; and recursive lists and
dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C’s long int type has more than 32 bits (such as the DEC Alpha), it is
possible to create plain Python integers that are longer than 32 bits. Since the current marshal module
uses 32 bits to transfer plain Python integers, such values are silently truncated. This particularly affects
the use of very long integer literals in Python modules — these will be accepted by the parser on such
machines, but will be silently be truncated when the module is read from the ‘.pyc’ instead.?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump (value, file)
Write the value on the open file. The value must be a supported type. The file must be an open
file object such as sys.stdout or returned by open() or posix.popen(). It must be opened in
binary mode (’wb’ or ’w+b’).
If the value has (or contains an object that has) an unsupported type, a ValueError exception is
raised — but garbage data will also be written to the file. The object will not be properly read
back by load().

load(file)
Read one value from the open file and return it. If no valid value is read, raise EOFError,
ValueError or TypeError. The file must be an open file object opened in binary mode (’rb’
or ’r+b’).
Warning: If an object containing an unsupported type was marshalled with dump (), load() will
substitute None for the unmarshallable type.

dumps (value)
Return the string that would be written to a file by dump(value, file). The value must be a
supported type. Raise a ValueError exception if value has (or contains an object that has) an
unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition
in a program, where that condition (normally) doesn’t warrant raising an exception and terminating the
program. For example, one might want to issue a warning when a program uses an obsolete module.

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who
use the term “marshalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means
to convert some data from internal to external form (in an RPC buffer for instance) and “unmarshalling” for the reverse
process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution
would be to let the marshal module raise an exception when an integer value would be truncated. At least one of these
solutions will be implemented in a future version.

60 Chapter 3. Python Runtime Services



Python programmers issue warnings by calling the warn() function defined in this module. (C program-
mers use PyErr_Warn(); see the Python/C API Reference Manual for details).

Warning messages are normally written to sys.stderr, but their disposition can be changed flexibly,
from ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based
on the warning category (see below), the text of the warning message, and the source location where it
is issued. Repetitions of a particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made
whether a message should be issued or not; next, if a message is to be issued, it is formatted and printed
using a user-settable hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a
sequence of matching rules and actions. Rules can be added to the filter by calling filterwarnings ()
and reset to its default state by calling resetwarnings().

The printing of warning messages is done by calling showwarning (), which may be overidden; the default
implementation of this function formats the message by calling formatwarning(), which is also available
for use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful
to be able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It itself a subclass of Exception.
UserWarning The default category for warn().

DeprecationWarning | Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

While these are technically built-in exceptions, they are documented here, because conceptually they
belong to the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories.
A warning category must always be a subclass of the Warning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an
exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is
matched against each filter specification in the list in turn until a match is found; the match determines
the disposition of the match. Each entry is a tuple of the form (action, message, category, module,
lineno), where:

e action is one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" | print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

3.20. warnings — Warning control 61



e message is a compiled regular expression that the warning message must match (the match is
case-insensitive)

e category is a class (a subclass of Warning) of which the warning category must be a subclass in
order to match

e module is a compiled regular expression that the module name must match

e [ineno is an integer that the line number where the warning occurred must match, or 0 to match
all line numbers

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we
simply raise category(message).

The warnings filter is initialized by -W options passed to the Python interpreter command line. The
interpreter saves the arguments for all -W options without interpretation in sys.warnoptions; the
warnings module parses these when it is first imported (invalid options are ignored, after printing a
message to sys.stderr).

3.20.3 Available Functions

warn(message[, category [, stacklevel] ])
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must be
a warning category class (see above); it defaults to UserWarning. This function raises an exception
if the particular warning issued is changed into an error by the warnings filter see above. The
stacklevel argument can be used by wrapper functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, level=2)

This makes the warning refer to deprecation()’s caller, rather than to the source of
deprecation() itself (since the latter would defeat the purpose of the warning message).

warn_explicit(message, category, filename, lineno[, module [, registry] ])
This is a low-level interface to the functionality of warn(), passing in explicitly the message,
category, filename and line number, and optionally the module name and the registry (which
should be the __warningregistry__ dictionary of the module). The module name defaults to
the filename with .py stripped; if no registry is passed, the warning is never suppressed.

showwarning (message, category, filename, lineno[, ﬁle])
Write a warning to a file. The default implementation calls showwarning(message, category,
filename, lineno) and writes the resulting string to file, which defaults to sys.stderr. You may
replace this function with an alternative implementation by assigning to warnings.showwarning.

formatwarning(message, category, filename, lineno)
Format a warning the standard way. This returns a string which may contain embedded newlines
and ends in a newline.

filterwarnings(action[, message [, category[, module[, lineno[, append] ] ] ] ])
Insert an entry into the list of warnings filters. The entry is inserted at the front by default; if
append is true, it is inserted at the end. This checks the types of the arguments, compiles the
message and module regular expressions, and inserts them as a tuple in front of the warnings filter.
Entries inserted later override entries inserted earlier, if both match a particular warning. Omitted
arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous calls to filterwarnings(),
including that of the -W command line options.

62 Chapter 3. Python Runtime Services



3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines
the following constants and functions:

get_magic()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value
may be different for each Python version.)

get_suffixes()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the
filename to search for, mode is the mode string to pass to the built-in open() function to open the
file (this can be ’r’ for text files or rb’ for binary files), and type is the file type, which has one
of the values PY_SOURCE, PY_COMPILED, or C_EXTENSION, described below.

find_module(name [, path ] )

Try to find the module name on the search path path. If path is a list of directory names, each
directory is searched for files with any of the suffixes returned by get_suffixes() above. Invalid
names in the list are silently ignored (but all list items must be strings). If path is omitted or
None, the list of directory names given by sys.path is searched, but first it searches a few special
places: it tries to find a built-in module with the given name (C_BUILTIN), then a frozen module
(PY_FROZEN), and on some systems some other places are looked in as well (on the Mac, it looks
for a resource (PY_RESOURCE); on Windows, it looks in the registry which may point to a specific
file).

If search is successful, the return value is a triple (file, pathname, description) where file is an
open file object positioned at the beginning, pathname is the pathname of the file found, and
description is a triple as contained in the list returned by get_suffixes() describing the kind of
module found. If the module does not live in a file, the returned file is None, filename is the empty
string, and the description tuple contains empty strings for its suffix and mode; the module type
is as indicate in parentheses above. If the search is unsuccessful, ImportError is raised. Other
exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to find
P.M, i.e., submodule M of package P, use find_module() and load _module() to find and load
package P, and then use find_module() with the path argument set to P.__path__. When P
itself has a dotted name, apply this recipe recursively.

load_module (name, file, filename, description)

Load a module that was previously found by find_module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module
was already imported, it is equivalent to a reload ()! The name argument indicates the full module
name (including the package name, if this is a submodule of a package). The file argument is an
open file, and filename is the corresponding file name; these can be None and ’’, respectively,
when the module is not being loaded from a file. The description argument is a tuple, as would be
returned by get_suffixes(), describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when
an exception is raised. This is best done using a try ... finally statement.

new_module (name)
Return a new empty module object called name. This object is not inserted in sys.modules.

The following constants with integer values, defined in this module, are used to indicate the search result
of find_module().

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

3.21. imp — Access the import internals 63



C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (see init_frozen()).

The following constant and functions are obsolete; their functionality is available through find_module ()
or load_module(). They are kept around for backward compatibility:

SEARCH_ERROR
Unused.

init_builtin(name)
Initialize the built-in module called name and return its module object. If the module was already
initialized, it will be initialized again. A few modules cannot be initialized twice — attempting
to initialize these again will raise an ImportError exception. If there is no built-in module called
name, None is returned.

init_frozen(name)
Initialize the frozen module called name and return its module object. If the module was already
initialized, it will be initialized again. If there is no frozen module called name, None is returned.
(Frozen modules are modules written in Python whose compiled byte-code object is incorporated
into a custom-built Python interpreter by Python’s freeze utility. See ‘Tools/freeze/’ for now.)

is_builtin(name)
Return 1 if there is a built-in module called name which can be initialized again. Return -1 if
there is a built-in module called name which cannot be initialized again (see init_builtin()).
Return 0 if there is no built-in module called name.

is_frozen(name)
Return 1 if there is a frozen module (see init_frozen()) called name, or 0 if there is no such
module.

load_compiled(name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module
object. If the module was already initialized, it will be initialized again. The name argument is
used to create or access a module object. The pathname argument points to the byte-compiled
code file. The file argument is the byte-compiled code file, open for reading in binary mode, from
the beginning. It must currently be a real file object, not a user-defined class emulating a file.

load_dynamic (name, pathname[, ﬁle])
Load and initialize a module implemented as a dynamically loadable shared library and return its
module object. If the module was already initialized, it will be initialized again. Some modules
don’t like that and may raise an exception. The pathname argument must point to the shared
library. The name argument is used to construct the name of the initialization function: an
external C function called ‘initname ()’ in the shared library is called. The optional file argument
is ignored. (Note: using shared libraries is highly system dependent, and not all systems support
it.)

load_source (name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If
the module was already initialized, it will be initialized again. The name argument is used to create
or access a module object. The pathname argument points to the source file. The file argument is
the source file, open for reading as text, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file. Note that if a properly matching byte-compiled file (with
suffix ‘.pyc’ or ‘.pyo’) exists, it will be used instead of parsing the given source file.

64 Chapter 3. Python Runtime Services



3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no
hierarchical module names). (This implementation wouldn’t work in that version, since find_module ()
has been extended and load_module() has been added in 1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
# Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

# If any of the following calls raises an exception,
# there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module (name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
# Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and includes a reload () function
can be found in the standard module knee (which is intended as an example only — don’t rely on any
part of it being a standard interface).

3.22 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and
convenience functions are included which can be used to build applications which provide an interactive
interpreter prompt.

class InteractiveInterpreter( [locals ] )
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with
input buffering or prompting or input file naming (the filename is always passed in explicitly). The
optional locals argument specifies the dictionary in which code will be executed; it defaults to a
newly created dictionary with key >__name__’ set to ’__console__’ and key ’__doc__’ set
to None.

class InteractiveConsole([locals[, ﬁlename] ])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and input
buffering.

interact([banner[, readfunc[, local] ] ])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and sets readfunc to be used as the raw_input () method, if provided. If
local is provided, it is passed to the InteractiveConsole constructor for use as the default names-
pace for the interpreter loop. The interact() method of the instance is then run with banner
passed as the banner to use, if provided. The console object is discarded after use.

compile_conunand(source[, ﬁlename[, symbol] ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a.

3.22. code — Interpreter base classes 65



the read-eval-print loop). The tricky part is to determine when the user has entered an incomplete
command that can be completed by entering more text (as opposed to a complete command or a
syntax error). This function almost always makes the same decision as the real interpreter main
loop.

source is the source string; filename is the optional filename from which source was read, defaulting
to ’<input>’; and symbol is the optional grammar start symbol, which should be either >single’
(the default) or ’eval’.

Returns a code object (the same as compile(source, filename, symbol)) if the command is com-
plete and valid; None if the command is incomplete; raises SyntaxError if the command is complete
and contains a syntax error, or raises OverflowError if the command includes a numeric constant
which exceeds the range of the appropriate numeric type.

3.22.1 Interactive Interpreter Objects

runsource (source [, ﬁlename[, symbol] ])
Compile and run some source in the interpreter. Arguments are the same as for
compile_command(); the default for filename is ’><input>’, and for symbol is ’single’. One
several things can happen:

eThe input is incorrect; compile_command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror ()
method. runsource() returns O.

eThe input is incomplete, and more input is required; compile_command() returned None.
runsource() returns 1.

eThe input is complete; compile_command() returned a code object. The code is executed
by calling the runcode () (which also handles run-time exceptions, except for SystemExit).
runsource () returns 0.

The return value can be used to decide whether to use sys.psl or sys.ps2 to prompt the next
line.

runcode (code)
Execute a code object. When an exception occurs, showtraceback() is called to display a trace-
back. All exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror ( [ﬁlename ] )
Display the syntax error that just occurred. This does not display a stack trace because there isn’t
one for syntax errors. If filename is given, it is stuffed into the exception instead of the default
filename provided by Python’s parser, because it always uses ’<string>’ when reading from a
string. The output is written by the write() method.

showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the
interpreter object implementation. The output is written by the write () method.

write(data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to
provide the appropriate output handling as needed.

3.22.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods
of the interpreter objects as well as the following additions.

66 Chapter 3. Python Runtime Services



interact( [banner] )
Closely emulate the interactive Python console. The optional banner argument specify the banner
to print before the first interaction; by default it prints a banner similar to the one printed by the
standard Python interpreter, followed by the class name of the console object in parentheses (so
as not to confuse this with the real interpreter — since it’s so close!).

push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may
have internal newlines. The line is appended to a buffer and the interpreter’s runsource () method
is called with the concatenated contents of the buffer as source. If this indicates that the command
was executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer
is left as it was after the line was appended. The return value is 1 if more input is required, O if
the line was dealt with in some way (this is the same as runsource()).

resetbuffer()
Remove any unhandled source text from the input buffer.

raw_input( [prompt ] )
Write a prompt and read a line. The returned line does not include the trailing newline. When the
user enters the EOF key sequence, EOFError is raised. The base implementation uses the built-in
function raw_input (); a subclass may replace this with a different implementation.

3.23 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly
complete, possibly complete or definitely incomplete. This is used by the code module and should not
normally be used directly.

The codeop module defines the following function:

compile_command(source[, ﬁlename[, symbol] ])
Tries to compile source, which should be a string of Python code and return a code object if source
is valid Python code. In that case, the filename attribute of the code object will be filename, which
defaults to ’<input>’. Returns None if source is not valid Python code, but is a prefix of valid
Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is
invalid Python syntax, and OverflowError if there is an invalid numeric constant.

The symbol argument determines whether source is compiled as a statement (’single’, the default)
or as an expression (’eval’). Any other value will cause ValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome
before reaching the end of the source; in this case, trailing symbols may be ignored instead of
causing an error. For example, a backslash followed by two newlines may be followed by arbitrary
garbage. This will be fixed once the API for the parser is better.

3.24 pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form
which can be used as input to the interpreter. If the formatted structures include objects which are not
fundamental Python types, the representation may not be loadable. This may be the case if objects such
as files, sockets, classes, or instances are included, as well as many other builtin objects which are not
representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines
if they don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to
adjust the width constraint.

The pprint module defines one class:

3.23. codeop — Compile Python code 67



class PrettyPrinter(...)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters.
An output stream may be set using the stream keyword; the only method used on the stream object
is the file protocol’s write() method. If not specified, the PrettyPrinter adopts sys.stdout.
Three additional parameters may be used to control the formatted representation. The keywords
are indent, depth, and width. The amount of indentation added for each recursive level is specified
by indent; the default is one. Other values can cause output to look a little odd, but can make
nesting easier to spot. The number of levels which may be printed is controlled by depth; if the
data structure being printed is too deep, the next contained level is replaced by . ..’. By default,
there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is eighty characters. If a structure cannot be
formatted within the constrained width, a best effort will be made.

>>> import pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint (stuff)

t r
’/usr/local/lib/pythonl.5’,
’/usr/local/lib/pythonl.5/test’,
’/usr/local/lib/pythonl.5/sunos5’,
’/usr/local/lib/pythonl.5/sharedmodules’,
’/usr/local/lib/pythonl.5/tkinter’],

1)
B

’/usr/local/lib/pythonl.5’,

> /usr/local/lib/pythonl
’/usr/local/lib/pythonl
’/usr/local/lib/pythonl
> /usr/local/lib/pythonl

.5/test’,
.5/sunosb5’,
.5/sharedmodules’,
.5/tkinter’]

>>>

>>> import parser
>>> tup = parser.ast2tuple(

... parser.suite(open(’pprint.py’) .read())) [1][1] [1]
>>> pp = pprint.PrettyPrinter (depth=6)

>>> pp.pprint (tup)
(266, (267, (307, (287,

(288, (...00))N

The PrettyPrinter class supports several derivative functions:

pformat (object)

Return the formatted representation of object as a string. The default parameters for formatting
are used.

pprint (object [, stream ] )

Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement
for inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint (stuff)

[<Recursion on list with id=869440>,

b

> /usr/local/lib/pythonl
’/usr/local/lib/pythonl
’/usr/local/lib/pythonl
’/usr/local/lib/pythonl
’/usr/local/lib/pythoni

isreadable (object)

.57,

.5/test’,
.5/sunosb’,
.5/sharedmodules’,
.5/tkinter’]

68

Chapter 3. Python Runtime Services



Determine if the formatted representation of object is “readable,” or can be used to reconstruct
the value using eval (). This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation of object, protected against recursive data structures. If the represen-
tation of object exposes a recursive entry, the recursive reference will be represented as ‘<Recursion
on typename with id=number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ’’, ’/usr/local/lib/pythonl.5’, ’/usr/loca
1/1ib/pythoni.5/test’, ’/usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

3.24.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation of object. This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names.
Using these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t
need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct
the value using eval (). Note that this returns false for recursive objects. If the depth parameter
of the PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

3.25 repr — Alternate repr () implementation

The repr module provides a means for producing object representations with limits on the size of the
resulting strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class Repr ()
Class which provides formatting services useful in implementing functions similar to the built-in
repr (); size limits for different object types are added to avoid the generation of representations
which are excessively long.

aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing
the attributes of this object will affect the size limits used by repr() and the Python debugger.

3.25. repr — Alternate repr () implementation 69



repr (obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in
function of the same name, but with limits on most sizes.

3.25.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations
of different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The default for maxdict
is 4, for the others, 6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from
the middle. The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal”
representation of the string is used as the character source: if escape sequences are needed in the
representation, these may be mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is
available on the Repr object. It is applied in a similar manner as maxstring. The default is 20.

repr (obj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

reprl(obj, level)
Recursive implementation used by repr (). This uses the type of 0bj to determine which formatting
method to call, passing it 0bj and level. The type-specific methods should call repr1() to perform
recursive formatting, with level - 1 for the value of level in the recursive call.

repr_type (obj, level)
Formatting methods for specific types are implemented as methods with a
name based on the type name. In the method name, type is replaced by
string. join(string.split(type(obj).__name__, °_’). Dispatch to these methods is
handled by repr1(). Type-specific methods which need to recursively format a value should call
‘self.reprl(subobj, level - 1)’

3.25.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repri () allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how
special support for file objects could be added:

70 Chapter 3. Python Runtime Services



import repr
import sys

class MyRepr (repr.Repr):
def repr_file(self, obj, level):
if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name
else:
return ‘obj‘

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

3.26 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the
regular creation functions. This module provides a low-level interface to the interpreter, so care must be
exercised when using this module.

The new module defines the following functions:

instance(class[, dict])
This function creates an instance of class with dictionary dict without calling the __init__ ()
constructor. If dict is omitted or None, a new, empty dictionary is created for the new instance.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None.
function must be callable, and instance must be an instance object or None.

function(code, globals[, name [, argdefs] ])
Returns a (Python) function with the given code and globals. If name is given, it must be a string
or None. If it is a string, the function will have the given name, otherwise the function name will
be taken from code.co_name. If argdefs is given, it must be a tuple and will be used to determine
the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab)
This function is an interface to the PyCode_New() C function.

module (name)
This function returns a new module object with name name. name must be a string.

classobj(name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should
be a tuple of classes) and with namespace dict.

3.27 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-
specific modules would place ‘import site’ somewhere near the top of their code. This is no longer
necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses

3.26. new — Creation of runtime internal objects 71



sys.prefix and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty string
(on Macintosh or Windows) or it uses first ‘lib/python2.1/site-packages’ and then ‘lib/site-python’ (on UNIX).
For each of the distinct head-tail combinations, it sees if it refers to an existing directory, and if so, adds
to sys.path, and also inspects the path for configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items
(one per line) to be added to sys.path. Non-existing items are never added to sys.path, but no check
is made that the item refers to a directory (rather than a file). No item is added to sys.path more than
once. Blank lines and lines beginning with # are skipped. Lines starting with import are executed.

For example, suppose sys.prefix and sys.exec_prefix are set to ‘/usr/local’. The Python 2.1.1 library
is then installed in ‘/usr/local/lib/python2.1’ (where only the first three characters of sys.version are used
to form the installation path name). Suppose this has a subdirectory ¢/usr/local/lib/python2.1/site-packages’
with three subsubdirectories, ‘foo’, ‘bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’.
Assume ‘foo.pth’ contains the following:

# foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

# bar package configuration

bar

Then the following directories are added to sys.path, in this order:

/usr/local/lib/pythonl.5/site-packages/bar
/usr/local/lib/pythonl.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory
because ‘bar.pth’ comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned
in either path configuration file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which
can perform arbitrary site-specific customizations. If this import fails with an ImportError exception,
it is silently ignored.

Note that for some non-UNIX systems, sys.prefix and sys.exec_prefix are empty, and the path
manipulations are skipped; however the import of sitecustomize is still attempted.

3.28 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive
sessions execute the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization
file, which gets run when a program requests it. This module implements such a mechanism. A program
that wishes to use the mechanism must execute the statement

import user

3

The user module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened,

72 Chapter 3. Python Runtime Services



executes it (using execfile()) in its own (i.e. the module user’s) global namespace. Errors during this
phase are not caught; that’s up to the program that imports the user module, if it wishes. The home
directory is assumed to be named by the HOME environment variable; if this is not set, the current
directory is used.

The user’s ‘.pythonrc.py’ could conceivably test for sys.version if it wishes to do different things de-
pending on the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t
know which programs will use it, changing the behavior of standard modules or functions is generally
not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options
for your package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module.
For example, a module spam that has a verbosity level can look for a variable user.spam_verbose, as
follows:
import user
try:
verbose = user.spam_verbose # user’s verbosity preference

except AttributeError:
verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization

file.

Programs with security or privacy concerns should not import this module; a user can easily break into
a program by placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use should not import this module; it may interfere with the operation of the
importing program.

See Also:

Module site (section 3.27):
Site-wide customization mechanism.

3.29 _ _builtin__ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g. __builtin__.open is the
full name for the built-in function open(). See section 2.3, “Built-in Functions.”

330 _ _main _ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program exe-
cutes — commands read either from standard input, from a script file, or from an interactive prompt.
It is this environment in which the idiomatic “conditional script” stanza causes a script to run:

if __name__ == "__main__":
main()

3.29. __builtin__ — Built-in functions 73



74



CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s
an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.

fpformat General floating point formatting functions.

StringIO Read and write strings as if they were files.

cStringI0 Faster version of StringI0, but not subclassable.

codecs Encode and decode data and streams.

unicodedata Access the Unicode Database.

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions.
See the module re for string functions based on regular expressions.

The constants defined in this module are:
digits
The string >0123456789°.

hexdigits
The string *0123456789abcdef ABCDEF’.

letters
The concatenation of the strings lowercase and uppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this
is the string ’abcdefghijklmnopqrstuvwxyz’. Do not change its definition — the effect on the
routines upper () and swapcase() is undefined.

octdigits
The string *01234567°.

punctuation
String of AScII characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this
is the string > ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the
routines lower () and swapcase() is undefined.

75



whitespace
A string containing all characters that are considered whitespace. On most systems this includes
the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition
— the effect on the routines strip() and split() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects;
see “String Methods” (section 2.1.5) for more information on those. The functions defined in this module
are:

atof (s)
Deprecated since release 2.0. Use the float () built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a
floating point literal in Python, optionally preceded by a sign (‘+” or ‘=’). Note that this behaves
identical to the built-in function float () when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

atoi(s[, base])
Deprecated since release 2.0. Use the int () built-in function.

Convert string s to an integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘=’). The base defaults to 10. If it is 0, a default base is chosen
depending on the leading characters of the string (after stripping the sign): ‘0x’ or ‘0X’ means 16,
‘0’ means 8, anything else means 10. If base is 16, a leading ‘0x’ or ‘0X’ is always accepted, though
not required. This behaves identically to the built-in function int () when passed a string. (Also
note: for a more flexible interpretation of numeric literals, use the built-in function eval().)

atol(s[, base])
Deprecated since release 2.0. Use the long() built-in function.

Convert string s to a long integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘=’). The base argument has the same meaning as for atoi().
A trailing ‘1’ or ‘L’ is not allowed, except if the base is 0. Note that when invoked without base or
with base set to 10, this behaves identical to the built-in function long() when passed a string.

capitalize (word)
Capitalize the first character of the argument.

capwords (s)
Split the argument into words using split (), capitalize each word using capitalize(), and join
the capitalized words using join(). Note that this replaces runs of whitespace characters by a
single space, and removes leading and trailing whitespace.

expandtabs (s [, tabsize ] )
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column
and the given tab size. The column number is reset to zero after each newline occurring in the
string. This doesn’t understand other non-printing characters or escape sequences. The tab size
defaults to 8.

find (s, sub[, start[,end] ])
Return the lowest index in s where the substring sub is found such that sub is wholly contained
in s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative
values is the same as for slices.

rfind(s, sub[, start[, end] ])
Like £ind () but find the highest index.

index (s, sub[, start[, end] ])
Like find () but raise ValueError when the substring is not found.

rindex(s, sub[, start[, end] ])
Like rfind () but raise ValueError when the substring is not found.

76 Chapter 4. String Services



count (s, sub[, start[, end] ])
Return the number of (non-overlapping) occurrences of substring sub in string s [start:end]. De-
faults for start and end and interpretation of negative values are the same as for slices.

lower(s)
Return a copy of s, but with upper case letters converted to lower case.

maketrans (from, to)
Return a translation table suitable for passing to translate() or regex.compile(), that will map
each character in from into the character at the same position in to; from and to must have the
same length.

Warning: don’t use strings derived from lowercase and uppercase as arguments; in some locales,
these don’t have the same length. For case conversions, always use lower () and upper ().

split(s[, sep [, maxsplit] ])

Return a list of the words of the string s. If the optional second argument sep is absent or None,
the words are separated by arbitrary strings of whitespace characters (space, tab, newline, return,
formfeed). If the second argument sep is present and not None, it specifies a string to be used as the
word separator. The returned list will then have one more item than the number of non-overlapping
occurrences of the separator in the string. The optional third argument mazsplit defaults to 0. If
it is nonzero, at most mazsplit number of splits occur, and the remainder of the string is returned
as the final element of the list (thus, the list will have at most maxsplit+1 elements).

splitfields(s[, sep [, maxsplit] ])
This function behaves identically to split(). (In the past, split() was only used with one
argument, while splitfields() was only used with two arguments.)

join(words [, sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep
is a single space character. It is always true that ‘string.join(string.split(s, sep), sep)’
equals s.

joinfields(words [, sep] )
This function behaves identical to join(). (In the past, join() was only used with one argument,
while joinfields() was only used with two arguments.)

lstrip(s)
Return a copy of s but without leading whitespace characters.

rstrip(s)
Return a copy of s but without trailing whitespace characters.

strip(s)
Return a copy of s without leading or trailing whitespace.

swapcase(s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate(s, table [, deletechars ] )
Delete all characters from s that are in deletechars (if present), and then translate the characters
using table, which must be a 256-character string giving the translation for each character value,
indexed by its ordinal.

upper (s)
Return a copy of s, but with lower case letters converted to upper case.

ljust (s, width)

rjust (s, width)

center (s, width)
These functions respectively left-justify, right-justify and center a string in a field of given width.
They return a string that is at least width characters wide, created by padding the string s with
spaces until the given width on the right, left or both sides. The string is never truncated.

zfill (s, width)

4.1. string — Common string operations 7



Pad a numeric string on the left with zero digits until the given width is reached. Strings starting
with a sign are handled correctly.

replace(str, old, new[, mazsplit])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional
argument mazxsplit is given, the first maxsplit occurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular
expression pattern strings may not contain null bytes, but can specify the null byte using the \number
notation. Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. The
re module is always available.

Regular expressions use the backslash character (‘\’) to indicate special forms or to allow special char-
acters to be used without invoking their special meaning. This collides with Python’s usage of the same
character for the same purpose in string literals; for example, to match a literal backslash, one might have
to write \\\\’ as the pattern string, because the regular expression must be ‘\\’, and each backslash
must be expressed as ‘\\’ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are
not handled in any special way in a string literal prefixed with ‘r’. So r"\n" is a two-character string
containing ‘\’ and ‘n’, while "\n" is a one-character string containing a newline. Usually patterns will
be expressed in Python code using this raw string notation.

Implementation note: The re module has two distinct implementations: sre is the default imple-
mentation and includes Unicode support, but may run into stack limitations for some patterns. Though
this will be fixed for a future release of Python, the older implementation (without Unicode support) is
still available as the pre module.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The Python material in this
book dates from before the re module, but it covers writing good regular expression patterns in
great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches
a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also an regular expression. If a string p matches A and another string ¢ matches
B, the string pg will match AB. Thus, complex expressions can easily be constructed from simpler
primitive expressions like the ones described here. For details of the theory and implementation of
regular expressions, consult the Friedl book referenced below, or almost any textbook about compiler
construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the Regular Expression HOWTO, accessible from http://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like
‘A’ ‘a’; or ‘07, are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so last) matches the string >last’. (In the rest of this section, we’ll write RE’s in
'this special stylej, usually without quotes, and strings to be matched ’in single quotes’.)
Some characters, like ‘|’ or ‘(’, are special. Special characters either stand for classes of ordinary
characters, or affect how the regular expressions around them are interpreted.

78 Chapter 4. String Services



The special characters are:

*.” (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag

x7, 47, 77

{m,n}

{m,n}?

(]

has been specified, this matches any character including a newline.

(Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately
after each newline.

Matches the end of the string, and in MULTILINE mode also matches before a newline. 'foo,
matches both 'foo’ and ’foobar’, while the regular expression 'foo$ matches only foo’.

Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many
repetitions as are possible. 'ab% will match ’a’, ’ab’, or ’a’ followed by any number of "b’s.

Causes the resulting RE to match 1 or more repetitions of the preceding RE. 'ab+ will match
‘a’ followed by any non-zero number of 'b’s; it will not match just ’a’.

Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. 'ab? will match
either 'a’ or ’ab’.

The ‘*’, ‘+’) and ‘?’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <.*> is matched against ’<H1>title</H1>’, it will
match the entire string, and not just ><H1>’. Adding ‘?’ after the qualifier makes it perform
the match in non-greedy or minimal fashion; as few characters as possible will be matched.
Using . #7, in the previous expression will match only ’<H1>.

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting
to match as many repetitions as possible. For example, 'a{3,5}; will match from 3 to 5 ‘a’
characters. Omitting n specifies an infinite upper bound; you can’t omit m.

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to
match as few repetitions as possible. This is the non-greedy version of the previous qualifier.
For example, on the 6-character string ’aaaaaa’, 'a{3,5} will match 5 ‘a’ characters, while
fa{3,5}7 will only match 3 characters.

Either escapes special characters (permitting you to match characters like ‘*’, *?’) and so
forth), or signals a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the
backslash as an escape sequence in string literals; if the escape sequence isn’t recognized by
Python’s parser, the backslash and subsequent character are included in the resulting string.
However, if Python would recognize the resulting sequence, the backslash should be repeated
twice. This is complicated and hard to understand, so it’s highly recommended that you use
raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of
characters can be indicated by giving two characters and separating them by a ‘-’. Special
characters are not active inside sets. For example, [akm$]; will match any of the characters
‘a’, k', ‘m’, or ‘¢”; "[a-z], will match any lowercase letter, and [a-zA-Z0-9] matches any
letter or digit. Character classes such as \w or \S (defined below) are also acceptable inside a
range. If you want to include a ‘]’ or a ‘-’ inside a set, precede it with a backslash, or place
it as the first character. The pattern '[1]) will match ’]°, for example.

You can match the characters not within a range by complementing the set. This is indicated
by including a ‘~’ as the first character of the set; ‘~’ elsewhere will simply match the
character. For example, '[~5]) will match any character except ‘5’

(e~

A|B, where A and B can be arbitrary REs, creates a regular expression that will match either
A or B. An arbitrary number of REs can be separated by the ‘|’ in this way. This can be
used inside groups (see below) as well. REs separated by ‘|’ are tried from left to right, and
the first one that allows the complete pattern to match is considered the accepted branch.
This means that if A matches, B will never be tested, even if it would produce a longer overall
match. In other words, the ‘|’ operator is never greedy. To match a literal ‘|’, use \|;, or
enclose it inside a character class, as in '[|]}.

4.2. re — Regular expression operations 79



(7...)

(?7iLmsux)

Matches whatever regular expression is inside the parentheses, and indicates the start and
end of a group; the contents of a group can be retrieved after a match has been performed,
and can be matched later in the string with the \number special sequence, described below.
To match the literals ‘(" or *)’, use \( or \);, or enclose them inside a character class: [ (]

D1

This is an extension notation (a ‘?’ following a ‘(C is not meaningful otherwise). The first
character after the ‘?’ determines what the meaning and further syntax of the construct is.
Extensions usually do not create a new group; '(?P<name>. . .);is the only exception to this
rule. Following are the currently supported extensions.

9 [

(One or more letters from the set ‘i’ ‘L, ‘m’, ‘s’, ‘u’, ‘x’.) The group matches the empty
string; the letters set the corresponding flags (re.I, re.L, re.M, re.S, re.U, re.X) for the
entire regular expression. This is useful if you wish to include the flags as part of the regular
expression, instead of passing a flag argument to the compile () function.

Note that the '(?x), flag changes how the expression is parsed. It should be used first in the
expression string, or after one or more whitespace characters. If there are non-whitespace
characters before the flag, the results are undefined.

A non-grouping version of regular parentheses. Matches whatever regular expression is inside
the parentheses, but the substring matched by the group cannot be retrieved after performing
a match or referenced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via

the symbolic group name name. Group names must be valid Python identifiers. A symbolic
group is also a numbered group, just as if the group were not named. So the group named
'id’ in the example above can also be referenced as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\w%),, the group can be referenced by its
name in arguments to methods of match objects, such as m.group(’id’) or m.end(’id’),
and also by name in pattern text (e.g. '(?P=id))) and replacement text (e.g. \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.

(7#...)
(7=...)

(?r...)
(7<=...)
(7<1..))

A comment; the contents of the parentheses are simply ignored.

Matches if ". . .; matches next, but doesn’t consume any of the string. This is called a looka-
head assertion. For example, Tsaac (?=Asimov); will match ’Isaac ’ only if it’s followed
by ’Asimov’.

Matches if ... doesn’t match next. This is a negative lookahead assertion. For example,
Tsaac (?!Asimov); will match ’Isaac ’ only if it’s not followed by ’Asimov’.

Matches if the current position in the string is preceded by a match for I...; that ends at
the current position. This is called a positive lookbehind assertion. (?<=abc)def; will match
‘abcdef’, since the lookbehind will back up 3 characters and check if the contained pattern
matches. The contained pattern must only match strings of some fixed length, meaning that
fabc) or 'a|b are allowed, but ax isn’t.

Matches if the current position in the string is not preceded by a match for ..., This
is called a negative lookbehind assertion. Similar to positive lookbehind assertions, the
contained pattern must only match strings of some fixed length.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary character is
not on the list, then the resulting RE will match the second character. For example, \$; matches the
character ‘$’.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1.

For example, '(.+) \1 matches ’the the’ or ’55 55, but not ’the end’ (note the space
after the group). This special sequence can only be used to match one of the first 99 groups.
If the first digit of number is 0, or number is 3 octal digits long, it will not be interpreted
as a group match, but as the character with octal value number. Inside the ‘[’ and ‘]’ of a
character class, all numeric escapes are treated as characters.

80

Chapter 4. String Services



\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined
as a sequence of alphanumeric characters, so the end of a word is indicated by whitespace
or a non-alphanumeric character. Inside a character range, \b represents the backspace
character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word.
\d Matches any decimal digit; this is equivalent to the set [0-9],.

\D Matches any non-digit character; this is equivalent to the set "[~0-9],.

\s Matches any whitespace character; this is equivalent to the set [ \t\n\r\f\v],.

\S Matches any non-whitespace character; this is equivalent to the set '[~ \t\n\r\f\v],

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character;
this is equivalent to the set "[a-zA-Z0-9_]. With LOCALE, it will match the set "[0-9_],
plus whatever characters are defined as letters for the current locale. If UNICODE is set, this
will match the characters '[0-9_] plus whatever is classified as alphanumeric in the Unicode
character properties database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric char-
acter; this is equivalent to the set [~a-zA-Z0-9_]. With LOCALE, it will match any character
not in the set '[0-9_1;, and not defined as a letter for the current locale. If UNICODE is set,
this will match anything other than '[0-9_]1, and characters marked at alphanumeric in the
Unicode character properties database.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you
are accustomed to Perl’s semantics, the search operation is what you’re looking for. See the search()
function and corresponding method of compiled regular expression objects.

<

Note that match may differ from search using a regular expression beginning with ‘~’: ‘~’ matches only
at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the
starting position given by the optional pos argument regardless of whether a newline precedes it.

re.compile("a") .match("ba", 1) succeeds

#
re.compile("~a").search("ba", 1) # fails; ’a’ not at start
re.compile("~a").search("\na", 1) # fails; ’a’ not at start
re.compile(""a", re.M).search("\na", 1) # succeeds

#

re.compile("~a", re.M).search("ba", 1) fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern [, flags ] )
Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR (the | operator).

4.2. re — Regular expression operations 81



The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version using compile() is more efficient when the expression will be used several times
in a single program.

I

IGNORECASE
Perform case-insensitive matching; expressions like [A-Z]; will match lowercase letters, too. This
is not affected by the current locale.

L

LOCALE
Make \w, \W, \bj, and \B; dependent on the current locale.

M

MULTILINE
When specified, the pattern character ‘~’ matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character ‘¢’ matches at the
end of the string and at the end of each line (immediately preceding each newline). By default, ‘~’
matches only at the beginning of the string, and ‘$’ only at the end of the string and immediately
before the newline (if any) at the end of the string.

S

DOTALL
Make the ‘.’ special character match any character at all, including a newline; without this flag,
.7 will match anything ezcept a newline.

U

UNICODE
Make \w, \W, \b, and \B} dependent on the Unicode character properties database. ~New in
version 2.0.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is
ignored, except when in a character class or preceded by an unescaped backslash, and, when a line
contains a ‘#’ neither in a character class or preceded by an unescaped backslash, all characters
from the leftmost such ‘#’ through the end of the line are ignored.

search (pattern, strmg[, ﬂags])
Scan through string looking for a location where the regular expression pattern produces a match,
and return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

match (pattern, string [, flags ] )
If zero or more characters at the beginning of string match the regular expression pattern, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

split (pattern, stm’ng[, mazxsplit = 0])
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the
text of all groups in the pattern are also returned as part of the resulting list. If mazsplit is nonzero,
at most mazxsplit splits occur, and the remainder of the string is returned as the final element of
the list. (Incompatibility note: in the original Python 1.5 release, mazsplit was ignored. This has

82 Chapter 4. String Services



been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]

>>> re.split(’ (\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]

>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

This function combines and extends the functionality of the old regsub.split() and
regsub.splitx().

findall (pattern, string)
Return a list of all non-overlapping matches of pattern in string. If one or more groups are present
in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one
group. Empty matches are included in the result. New in version 1.5.2.

sub (pattern, repl, stm'ng[, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in
string by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl
can be a string or a function; if a function, it is called for every non-overlapping occurrence of
pattern. The function takes a single match object argument, and returns the replacement string.
For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-’: return ’ °’
. else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you
must use a RE object, or use embedded modifiers in a pattern; e.g. ‘sub("(?1i)b+", "x", "bbbb
BBBB")’ returns ’x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced; count
must be a non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous match, so
‘sub(’x*’, ’-’, ’abc’)’ returns ’-a-b-c-’.

If repl is a string, any backslash escapes in it are processed. That is, ‘\n’ is converted to a single
newline character, ‘\r’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j’ are
left alone. Backreferences, such as ‘\6’, are replaced with the substring matched by group 6 in the
pattern.

In addition to character escapes and backreferences as described above, ‘\g<name>’ will use the sub-
string matched by the group named ‘name’, as defined by the (?P<name>. . .) syntax. ‘\g<number>’
uses the corresponding group number; ‘\g<2>’ is therefore equivalent to ‘\2’, but isn’t ambiguous
in a replacement such as ‘\g<2>0’. ‘\20’ would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ‘0.

subn (pattern, repl, strmg[, count = 0])
Perform the same operation as sub(), but return a tuple (new_string, number_of_subs_made).

escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an
arbitrary literal string that may have regular expression metacharacters in it.

exception error
Exception raised when a string passed to one of the functions here is not a valid regular expression
(e.g., unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern.

4.2. re — Regular expression operations 83



4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string [, pos[, endpos] ])

Scan through string looking for a location where this regular expression produces a match, and
return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the match() method.

match (string [, pas[, endpos] ])

If zero or more characters at the beginning of string match this regular expression, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

The optional second parameter pos gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the ’>~’ pattern character
matches at the real beginning of the string and at positions just after a newline, but not necessarily
at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string
is endpos characters long, so only the characters from pos to endpos will be searched for a match.

split(string[, maxsplit = 0])

Identical to the split() function, using the compiled pattern.

findall (string)

Identical to the findall() function, using the compiled pattern.

sub (repl, string[, count = 0])

Identical to the sub() function, using the compiled pattern.

subn (repl, string [, count = 0])

Identical to the subn() function, using the compiled pattern.

flags

The flags argument used when the RE object was compiled, or 0 if no flags were provided.

groupindex

A dictionary mapping any symbolic group names defined by '(?P<id>); to group numbers. The
dictionary is empty if no symbolic groups were used in the pattern.

pattern

The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (template)

Return the string obtained by doing backslash substitution on the template string template, as
done by the sub() method. Escapes such as ‘\n’ are converted to the appropriate characters, and
numeric backreferences (‘\1’, ‘\2’) and named backreferences (‘\g<1>’, ‘\g<name>’) are replaced
by the contents of the corresponding group.

group([group], ])

Returns one or more subgroups of the match. If there is a single argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. Without
arguments, group! defaults to zero (i.e. the whole match is returned). If a groupN argument is
zero, the corresponding return value is the entire matching string; if it is in the inclusive range
[1..99], it is the string matching the the corresponding parenthesized group. If a group number
is negative or larger than the number of groups defined in the pattern, an IndexError exception

84

Chapter 4. String Services



is raised. If a group is contained in a part of the pattern that did not match, the corresponding
result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses the '(?P<name>...); syntax, the groupN arguments may also be
strings identifying groups by their group name. If a string argument is not used as a group name
in the pattern, an IndexError exception is raised.

A moderately complicated example:

m = re.match(r" (?P<int>\d+)\.(\d*)", ’3.14’)

After performing this match, m.group(1) is ’3’, as ism.group(’int’), and m.group(2) is >14°.

groups ( [default ] )
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are
in the pattern. The default argument is used for groups that did not participate in the match; it
defaults to None. (Incompatibility note: in the original Python 1.5 release, if the tuple was one
element long, a string would be returned instead. In later versions (from 1.5.1 on), a singleton
tuple is returned in such cases.)

groupdict( [default ] )
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name.
The default argument is used for groups that did not participate in the match; it defaults to None.

start( [group ] )

end ( [gmup] )
Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return -1 if group exists but did not contribute to the
match. For a match object m, and a group ¢ that did contribute to the match, the substring
matched by group ¢ (equivalent to m.group(g)) is

m.string[m.start(g) :m.end(g)]

Note that m.start (group) will equal m.end (group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’), m.start(0) is 1, m.end(0) is 2, m.start(1) and
m.end (1) are both 2, and m.start(2) raises an IndexError exception.

span ( [gmup ] )
For MatchObject m, return the 2-tuple (m.start(group), m.end(group)). Note that if group
did not contribute to the match, this is (-1, -1). Again, group defaults to zero.

pos
The value of pos which was passed to the search() or match() function. This is the index into
the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search() or match() function. This is the index into
the string beyond which the RE engine will not go.

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no
group was matched at all.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all.

re
The regular expression object whose match() or search() method produced this MatchObject
instance.

string

The string passed to match() or search().

4.2. re — Regular expression operations 85



4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings.
It uses format strings (explained below) as compact descriptions of the lay-out of the C structs and the
intended conversion to/from Python values. This can be used in handling binary data stored in files or
from network connections, among other sources.

The module defines the following exception and functions:

exception error
Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, vi, v2, ...)
Return a string containing the values vi, v2, ... packed according to the given format. The
arguments must match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed by pack(fmt, ...)) according to the given format. The
result is a tuple even if it contains exactly one item. The string must contain exactly the amount
of data required by the format (i.e. len(string) must equal calcsize (fmt)).

calcsize(fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types:

Format | C Type Python Notes
‘x’ pad byte no value
‘c’ char string of length 1
‘D’ signed char integer
‘B’ unsigned char | integer
‘n’ short integer
‘H’ unsigned short | integer
‘i’ int integer
‘v unsigned int long (1)
‘v long integer
‘v’ unsigned long | long
‘£’ float float
‘d’ double float
‘s’ char[] string
‘p’ char[] string
‘P’ void * integer

Notes:

(1) The ‘I’ conversion code will convert to a Python long if the C int is the same size as a C long,
which is typical on most modern systems. If a C int is smaller than a C long, an Python integer
will be created instead.

A format character may be preceded by an integral repeat count; e.g. the format string ’4h’ means
exactly the same as *hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

For the ‘s’ format character, the count is interpreted as the size of the string, not a repeat count like for
the other format characters; e.g. >10s’ means a single 10-byte string, while >10c’ means 10 characters.
For packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking,
the resulting string always has exactly the specified number of bytes. As a special case, 0s’ means a
single, empty string (while ’0c’ means 0 characters).

86 Chapter 4. String Services



The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored
string, with the bytes of the string following. If count is given, it is used as the total number of bytes
used, including the length byte. If the string passed in to pack() is too long, the stored representation
is truncated. If the string is too short, padding is used to ensure that exactly enough bytes are used to
satisfy the count.

For the ‘I’ and ‘L’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size
needed to hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned
as the Python integer 0. When packing pointer-sized values, Python integer or long integer objects may
be used. For example, the Alpha and Merced processors use 64-bit pointer values, meaning a Python
long integer will be used to hold the pointer; other platforms use 32-bit pointers and will use a Python
integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly
aligned by skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and
alignment of the packed data, according to the following table:

Character | Byte order Size and alignment
‘@’ native native
=’ native standard
< little-endian standard
>’ big-endian standard
‘o network (= big-endian) | standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun
are big-endian; Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’s sizeof expression. This is always
combined with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use
pad bytes); short is 2 bytes; int and long are 4 bytes. float and double are 32-bit and 64-bit IEEE
floating point numbers, respectively.

Note the difference between ‘@’ and ‘=": both use native byte order, but the size and alignment of the
latter is standardized.

The form ‘!’ is available for those poor souls who claim they can’t remember whether network byte
order is big-endian or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice
of <’ or >,

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the
‘@ byte order character). The byte order character ‘=" chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the ‘P’ format is
not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(’hhl’, 1, 2, 3)
’\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack(’hhl’, ’\x00\x01\x00\x02\x00\x00\x00\x03’)

(1, 2, 3)
>>> calcsize(’hhl’)
8

4.3. struct — Interpret strings as packed binary data 87



Hint: to align the end of a structure to the alignment requirement of a particular type, end the format
with the code for that type with a repeat count of zero, e.g. the format >11h01’ specifies two pad bytes
at the end, assuming longs are aligned on 4-byte boundaries. This only works when native size and
alignment are in effect; standard size and alignment does not enforce any alignment.

See Also:

Module array (section 5.8):
Packed binary storage of homogeneous data.

Module xdrlib (section 12.9):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

get_close_matches (word, possibilities [, n[, cutoﬁ] ])
Return a list of the best “good enough” matches. word is a sequence for which close matches are
desired (typically a string), and possibilities is a list of sequences against which to match word
(typically a list of strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be
greater than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score
at least that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity
score, most similar first.

>>> get_close_matches(’appel’, [’ape’, ’apple’, ’peach’, ’puppy’]l)
[’apple’, ’ape’]

>>> import keyword

>>> get_close_matches(’wheel’, keyword.kwlist)

[’while’]

>>> get_close_matches(’apple’, keyword.kwlist)
1

>>> get_close_matches(’accept’, keyword.kwlist)
[’except’]

class SequenceMatcher(...)
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence
elements are hashable. The basic algorithm predates, and is a little fancier than, an algorithm
published in the late 1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern
matching.” The idea is to find the longest contiguous matching subsequence that contains no
“junk” elements (the Ratcliff and Obershelp algorithm doesn’t address junk). The same idea is
then applied recursively to the pieces of the sequences to the left and to the right of the matching
subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time
in the expected case. SequenceMatcher is quadratic time for the worst case and has expected-case
behavior dependent in a complicated way on how many elements the sequences have in common;
best case time is linear.

See Also:

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published in
Dr. Dobb’s Journal in July, 1988.

88 Chapter 4. String Services



4.4.1 SequenceMatcher Objects

class SequenceMatcher([isjunk[, a[, b] ] ])
Optional argument isjunk must be None (the default) or a one-argument function that takes a
sequence element and returns true if and only if the element is “junk” and should be ignored. None
is equivalent to passing lambda x: O, i.e. no elements are ignored. For example, pass

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard
tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The
elements of both sequences must be hashable.

SequenceMatcher objects have the following methods:

set_seqs(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seq2() to set the commonly used sequence
once and call set_seql () repeatedly, once for each of the other sequences.

set_seql(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match(alo, ahi, blo, bhi)
Find longest matching block in a[alo: ahi] and b[blo: bhi].

If isjunk was omitted or None, get_longest_match() returns (i, j, k) such that ali:i+k] is
equal to b[j:j+k], where alo <= ¢ <= i+k <= ahi and blo <= j <= j+k <= bhi. For all (+’, j’,
k’) meeting those conditions, the additional conditions & >= k’, i <= ¢’ and if ¢ == i’ j <= j
are also met. In other words, of all maximal matching blocks, return one that starts earliest in a,
and of all those maximal matching blocks that start earliest in a, return the one that starts earliest
in b.

)

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
0, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the
additional restriction that no junk element appears in the block. Then that block is extended
as far as possible by matching (only) junk elements on both sides. So the resulting block never
matches on junk except as identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents > abcd’ from
matching the > abcd’ at the tail end of the second sequence directly. Instead only the >abcd’ can
match, and matches the leftmost >abcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(1, 0, 4)

If no blocks match, this returns (alo, blo, 0).

get_matching_blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means that ali:i+n] == b[j:j+n]. The triples are monotonically increasing in 7 and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with n

4.4, difflib — Helpers for computing deltas 89



>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[(o, o0, 2), (3, 2, 2), (5, 4, 0)]

get_opcodes ()

Return list of 5-tuples describing how to turn @ into b. Each tuple is of the form (tag, i1, i2,
j1, j2). The first tuple has i/ == jI == 0, and remaining tuples have il equal to the i2 from
the preceeding tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:
Value | Meaning
’replace’ | alil:4i2] should be replaced by b[j1:52].
’delete’ a[i1:12] should be deleted. Note that 71 == ;2 in this case.
’insert’ b[j1:52] should be inserted at a[¢l:i1]. Note that i1 == i2 in this case.
’equal’ alil:12] == blj1:52] (the sub-sequences are equal).
For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, il, i2, j1, j2 in s.get_opcodes():
print ("#7s allkd:%d] Chs) blhd:%dl (hs)" %
(tag, i1, i2, alil:i2], j1, j2, bl[j1:j21))
delete al0:1] (q) b[0:0] O
equal a[1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)
equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (£)

ratio()

Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1. if the sequences are identical, and 0. if they have nothing in
common.

This is expensive to compute if get_matching blocks() or get_opcodes() hasn’t already been
called, in which case you may want to try quick_ratio() or real_quick_ratio() first to get an
upper bound.

quick_ratio()

Return an upper bound on ratio() relatively quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute.

real_quick_ratio()

Return an upper bound on ratio() very quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute than
either ratio() or quick_ratio().

The three methods that return the ratio of matching to total characters can give different results due
to differing levels of approximation, although quick_ratio() and real_quick_ratio() are always at
least as large as ratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

90

Chapter 4. String Services



4.4.2 Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio()
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences match, get_matching blocks() is handy:

>>> for block in s.get_matching_blocks():

print "a[/%d] and b[/d] match for %d elements" % block
a[0] and b[0] match for 8 elements

a[8] and b[17] match for 6 elements

a[14] and b[23] match for 15 elements

a[29] and b[38] match for O elements

Note that the last tuple returned by get_matching blocks() is always a dummy, (len(a), len(d),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes():

>>> for opcode in s.get_opcodes():

. print "%6s alld:%d] bl[%d:%dl" % opcode
equal a[0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See ‘Tools/scripts/ndiff.py’ from the Python source distribution for a fancy human-friendly file differencer,
which uses SequenceMatcher both to view files as sequences of lines, and lines as sequences of characters.

See also the function get_close_matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100%
pure Python. Note: This module is unneeded: everything here could be done via the % string interpo-
lation operator.

The fpformat module defines the following functions and an exception:

fix(x, digs)
Format = as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <=
0, the decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.

Return value is a string.

4.5. fpformat — Floating point conversions 91



sci(x, digs)
Format z as [-]1d.dddE[+-]1ddd with digs digits after the point and exactly one digit before. If
digs <= 0, one digit is kept and the point is suppressed.
x can be either a real number, or a string that looks like one. digs is an integer.

Return value is a string.

exception NotANumber
Exception raised when a string passed to £ix() or sci() as the x parameter does not look like a
number. This is a subclass of ValueError when the standard exceptions are strings. The exception
value is the improperly formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
’1.27

4.6 StringI0 — Read and write strings as files

This module implements a file-like class, StringI0, that reads and writes a string buffer (also known as
memory files). See the description of file objects for operations (section 2.1.7).

class StringI0( [buﬁer ] )
When a StringI0 object is created, it can be initialized to an existing string by passing the string
to the constructor. If no string is given, the StringI0 will start empty.

The StringI0 object can accept either Unicode or 8-bit strings, but mixing the two may take some
care. If both are used, 8-bit strings that cannot be interpreted as 7-bit AScCII (i.e., that use the 8th
bit) will cause a UnicodeError to be raised when getvalue() is called.

The following methods of StringI0 objects require special mention:

getvalue()
Retrieve the entire contents of the “file” at any time before the StringI0 object’s close () method
is called. See the note above for information about mixing Unicode and 8-bit strings; such mixing
can cause this method to raise UnicodeError.

close()
Free the memory buffer.

4.7 cStringI0 — Faster version of StringI0

The module cStringI0 provides an interface similar to that of the StringI0 module. Heavy use of
StringI0.StringI0 objects can be made more efficient by using the function StringI0() from this
module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to
build your own version using subclassing. Use the original StringI0 module in that case.

Unlike the memory files implemented by the StringI0 module, those provided by this module are not
able to accept Unicode strings that cannot be encoded as plain ASCII strings.

The following data objects are provided as well:

InputType
The type object of the objects created by calling StringI0 with a string parameter.

OutputType
The type object of the objects returned by calling StringI0 with no parameters.

92 Chapter 4. String Services



There is a C API to the module as well; refer to the module source for more information.

4.8

codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access
to the internal Python codec registry which manages the codec lookup process.

It defines the following functions:

register (search_function)

Register a codec search function. Search functions are expected to take one argument, the encoding
name in all lower case letters, and return a tuple of functions (encoder, decoder, stream_reader,
stream_writer) taking the following arguments:

encoder and decoder: These must be functions or methods which have the same interface as the
encode () /decode () methods of Codec instances (see Codec Interface). The functions/methods
are expected to work in a stateless mode.

stream_reader and stream_writer: These have to be factory functions providing the following
interface:

factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter and StreamReader, respectively. Stream codecs can maintain state.

Possible values for errors are ’strict’ (raise an exception in case of an encoding error), *replace’
(replace malformed data with a suitable replacement marker, such as ‘?’) and ’ignore’ (ignore
malformed data and continue without further notice).

In case a search function cannot find a given encoding, it should return None.

lookup (encoding)

Looks up a codec tuple in the Python codec registry and returns the function tuple as defined
above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search
functions is scanned. If no codecs tuple is found, a LookupError is raised. Otherwise, the codecs
tuple is stored in the cache and returned to the caller.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode [, encoding[, ermrs[, buﬁering] ] ])

Open an encoded file using the given mode and return a wrapped version providing transparent
encoding/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode
objects for most built-in codecs. Output is also codec-dependent and will usually be Unicode as
well.

encoding specifies the encoding which is to be used for the the file.

errors may be given to define the error handling. It defaults to ’strict’ which causes a
ValueError to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to line buffered.

EncodedFile (file, z'nput[, output [, errors] ])

Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then
written to the original file as strings using the output encoding. The intermediate encoding will
usually be Unicode but depends on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to >strict’, which causes ValueError
to be raised in case an encoding error occurs.

4.8.

codecs — Codec registry and base classes 93



The module also provides the following constants which are useful for reading and writing to platform
dependent files:

BOM

BOM_BE

BOM_LE

BOM32_BE

BOM32_LE

BOM64_BE

BOM64_LE
These constants define the byte order marks (BOM) used in data streams to indicate the byte order
used in the stream or file. BOM is either BOM_BE or BOM_LE depending on the platform’s native byte
order, while the others represent big endian (‘_BE’ suffix) and little endian (‘_LE’ suffix) byte order
using 32-bit and 64-bit encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They
are in the early stages of development at the time of this writing — look in their FTP area for
downloadable files.

4.8.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write
you own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless
decoder, stream reader and stream writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode() and decode () methods may implement dif-
ferent error handling schemes by providing the errors string argument. The following string values are
defined and implemented by all standard Python codecs:

Value | Meaning

’strict’ Raise ValueError (or a subclass); this is the default.

>ignore’ | Ignore the character and continue with the next.

’replace’ | Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMENT (

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder
and decoder:

encode (input [, errors ] )
Encodes the object input and returns a tuple (output object, length consumed).
errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have
to keep state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output
object type in this situation.

decode (input [, errors ] )
Decodes the object input and returns a tuple (output object, length consumed).

input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer
objects and memory mapped files are examples of objects providing this slot.

94 Chapter 4. String Services



errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have
to keep state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output
object type in this situation.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encodings submodules very easily. See encodings.utf_8 for an example on how this is
done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream
writer must define in order to be compatible to the Python codec registry.

class StreamWriter(stTeam[, errors ])
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providing the errors key-
word argument. These parameters are defined:

o’strict’ Raise ValueError (or a subclass); this is the default.
o’ignore’ Ignore the character and continue with the next.
o’replace’ Replace with a suitable replacement character

write(object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).

reset()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attribute
from the underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream
reader must define in order to be compatible to the Python codec registry.

class Strea.mReader(stream[, errors])
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing the errors key-
word argument. These parameters are defined:

e’strict’ Raise ValueError (or a subclass); this is the default.

o’ignore’ Ignore the character and continue with the next.

4.8. codecs — Codec registry and base classes 95



o’ replace’ Replace with a suitable replacement character.

read ( [size ] )
Decodes data from the stream and returns the resulting object.
size indicates the approximate maximum number of bytes to read from the stream for decoding
purposes. The decoder can modify this setting as appropriate. The default value -1 indicates to
read and decode as much as possible. size is intended to prevent having to decode huge files in one
step.
The method should use a greedy read strategy meaning that it should read as much data as is
allowed within the definition of the encoding and the given size, e.g. if optional encoding endings
or state markers are available on the stream, these should be read too.

readline(/size])
Read one line from the input stream and return the decoded data.

Note: Unlike the readlines() method, this method inherits the line breaking knowledge from the
underlying stream’s readline () method — there is currently no support for line breaking using the
codec decoder due to lack of line buffering. Sublcasses should however, if possible, try to implement
this method using their own knowledge of line breaking.

size, if given, is passed as size argument to the stream’s readline () method.

readlines ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.

sizehint, if given, is passed as size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able
to recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attribute
from the underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but
may provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the lookup () function to construct
the instance.

class StreamReaderWriter (stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer
must be factory functions or classes providing the StreamReader and StreamWriter interface resp.
Error handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects
The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the lookup () function to construct
the instance.

96 Chapter 4. String Services



class StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode
work on the frontend (the input to read() and output of write()) while Reader and Writer work
on the backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface, Reader, Writer must be factory functions or
classes providing objects of the the StreamReader and StreamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend
translation. The intermediate format used is determined by the two sets of codecs, e.g. the
Unicode codecs will use Unicode as intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes.
They inherit all other methods and attribute from the underlying stream.

4.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for
all Unicode characters. The data in this database is based on the ‘UnicodeData.txt’ file version 3.0.0 which
is publically available from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.0.0 (see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html). It defines the following functions:

lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding
Unicode character. If not found, KeyError is raised.

name(um'chr[, default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined,
default is returned, or, if not given, ValueError is raised.

decimal Cunichr [, default ] )
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

digit (unichr[, default] )
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

numeric (unichr [, default ] )
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

category (unichr)
Returns the general category assigned to the Unicode character unichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode character unichr as string. If no such
value is defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns
0 if no combining class is defined.

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode character unichr as integer. Returns 1
if the character has been identified as a “mirrored” character in bidirectional text, 0 otherwise.

4.9. unicodedata — Unicode Database 97



decomposition(unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string.
An empty string is returned in case no such mapping is defined.

98 Chapter 4. String Services



CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python
versions. Here’s an overview:

doctest A framework for verifying examples in docstrings.

unittest Unit testing framework for Python.

math Mathematical functions (sin() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.

whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

array Efficient arrays of uniformly typed numeric values.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.

calendar General functions for working with the calendar, including some emulation of the UNIX cal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for UNIX shell-like languages.

5.1 doctest — Test docstrings represent reality

The doctest module searches a module’s docstrings for text that looks like an interactive Python session,
then executes all such sessions to verify they still work exactly as shown. Here’s a complete but small
example:

99



This is module example.
Example supplies one function, factorial. For example,

>>> factorial(5)
120

def factorial(nm):
"""Return the factorial of n, an exact integer >= O.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L

>>> factorial (30L)
265252859812191058636308480000000L

>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are 0K, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large
nmnn

100 Chapter 5. Miscellaneous Services



import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")
if n+l == n: # e.g., 1e300
raise OverflowError("n too large")
result =1
factor = 2
while factor <= n:
try:
result *= factor
except OverflowError:
result *= long(factor)
factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if __name__ == "__main__":
_test()

If you run ‘example.py’ directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and
doctest prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v

Running example.__doc__

Trying: factorial(5)

Expecting: 120

ok

0 of 1 examples failed in example.__doc_
Running example.factorial.__doc__
Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: factorial(30)

Expecting: 265252859812191058636308480000000L
ok

And so on, eventually ending with:

5.1. doctest — Test docstrings represent reality 101



Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc__
2 items passed all tests:
1 tests in example
8 tests in example.factorial
9 tests in 2 items.
9 passed and O failed.
Test passed.
$

That’s all you need to know to start making productive use of doctest! Jump in. The docstrings
in doctest.py contain detailed information about all aspects of doctest, and we’ll just cover the more
important points here.

5.1.1 Normal Usage

In normal use, end each module M with:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M) # ditto

if __name__ == "__main__":

_test()

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s)
of the failure(s) are printed to stdout, and the final line of output is *Test failed.’.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to stdout, along with assorted summaries at the
end.

You can force verbose mode by passing verbose=1 to testmod, or prohibit it by passing verbose=0. In
either of those cases, sys.argv is not examined by testmod.

In any case, testmod returns a 2-tuple of ints (f, t), where f is the number of docstring examples that
failed and ¢ is the total number of docstring examples attempted.

5.1.2  Which Docstrings Are Examined?

See ‘docstring.py’ for all the details. They’re unsurprising: the module docstring, and all function, class
and method docstrings are searched, with the exception of docstrings attached to objects with private
names.

102 Chapter 5. Miscellaneous Services



In addition, if M. __test__ exists and ”is true”, it must be a dict, and each entry maps a (string) name to
a function object, class object, or string. Function and class object docstrings found from M. __test__
are searched even if the name is private, and strings are searched directly as if they were docstrings. In
output, a key K in M. __test__ appears with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and
nested classes. While private names reached from M’s globals are skipped, all names reached from
M.__test__ are searched.

5.1.3 What's the Execution Context?

By default, each time testmod finds a docstring to test, it uses a copy of M’s globals, so that running
tests on a module doesn’t change the module’s real globals, and so that one test in M can’t leave behind
crumbs that accidentally allow another test to work. This means examples can freely use any names
defined at top-level in M, and names defined earlier in the docstring being run. It also means that sloppy
imports (see below) can cause examples in external docstrings to use globals inappropriate for them.

You can force use of your own dict as the execution context by passing globs=your_dict to testmod()
instead. Presumably this would be a copy of M. __dict__ merged with the globals from other imported
modules.

5.1.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in 7
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback).
The various “File” lines in between can be left out (unless they add significantly to the documentation
value of the example).

5.1.5 Advanced Usage

testmod () actually creates a local instance of class Tester, runs appropriate methods of that class, and
merges the results into global Tester instance master.

You can create your own instances of Tester, and so build your own policies, or even run methods of
master directly. See Tester.__doc__ for details.

5.1.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine — just make sure the leading
whitespace is rigidly consistent (you can mix tabs and spaces if you're too lazy to do it right, but doctest
is not in the business of guessing what you think a tab means).

5.1. doctest — Test docstrings represent reality 103



Any expected output must immediately follow the final >>>> ? or ...
the expected output (if any) extends to the next >>>> ? or all-whitespace line.

>>> # comments are ignored
>>> x = 12

>>> x

12

>>> if x == 13:
print "yes"

. else:

print "no"
print "NO"
print "NO!I!!"®

no

NO

No!!!

>>>

The fine print:

e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end
of expected output.

e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a
different means).

e If you continue a line via backslashing in an interactive session, or for any other reason use a
backslash, you need to double the backslash in the docstring version. This is simply because you're
in a string, and so the backslash must be escaped for it to survive intact. Like:

>>> if "yes" == \\
|ly|| + \\
|leS|| .

print ’yes’
yes

e The starting column doesn’t matter:

>>> assert "Easy!"

>>> import math
>>> math.floor(1.9)

1.0

and as many leading whitespace characters are stripped from the expected output as appeared in
the initial >>>> ° line that triggered it.

5.1.7 Warnings

1. Sloppy imports can cause trouble; e.g., if you do

from XYZ import XYZclass

then XYZclass is a name in M.__dict__ too, and doctest has no way to know that XYZclass
wasn’t defined in M. So it may try to execute the examples in XYZclass’s docstring, and those in

104

> line containing the code, and

Chapter 5. Miscellaneous Services



<

turn may require a different set of globals to work correctly. I prefer to do
imports, a la

‘import *”-friendly

from XYZ import XYZclass as _XYZclass

and then the leading underscore makes _XYZclass a private name so testmod skips it by default.
Other approaches are described in ‘doctest.py’.

2. doctest is serious about requiring exact matches in expected output. If even a single character
doesn’t match, the test fails. This will probably surprise you a few times, as you learn exactly
what Python does and doesn’t guarantee about output. For example, when printing a dict, Python
doesn’t guarantee that the key-value pairs will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
1
>>>

instead. Another is to do

>>> d = foo().items()

>>> d.sort()

>>> d

[(’Harry’, ’broomstick’), (’Hermione’, ’hippogryph’)]

There are others, but you get the idea.
Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

Floating-point numbers are also subject to small output variations across platforms, because
Python defers to the platform C library for float formatting, and C libraries vary widely in qual